xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSplitDouble.cpp (revision 06e20d1babecec1f45ffda513f55a8db5f1c0f56)
1 //===- HexagonSplitDouble.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #define DEBUG_TYPE "hsdr"
10 
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/Config/llvm-config.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 #include <limits>
40 #include <map>
41 #include <set>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 namespace llvm {
48 
49   FunctionPass *createHexagonSplitDoubleRegs();
50   void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
51 
52 } // end namespace llvm
53 
54 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
55     cl::desc("Maximum number of split partitions"));
56 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
57     cl::desc("Do not split loads or stores"));
58   static cl::opt<bool> SplitAll("hsdr-split-all", cl::Hidden, cl::init(false),
59       cl::desc("Split all partitions"));
60 
61 namespace {
62 
63   class HexagonSplitDoubleRegs : public MachineFunctionPass {
64   public:
65     static char ID;
66 
67     HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {}
68 
69     StringRef getPassName() const override {
70       return "Hexagon Split Double Registers";
71     }
72 
73     void getAnalysisUsage(AnalysisUsage &AU) const override {
74       AU.addRequired<MachineLoopInfo>();
75       AU.addPreserved<MachineLoopInfo>();
76       MachineFunctionPass::getAnalysisUsage(AU);
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80 
81   private:
82     static const TargetRegisterClass *const DoubleRC;
83 
84     const HexagonRegisterInfo *TRI = nullptr;
85     const HexagonInstrInfo *TII = nullptr;
86     const MachineLoopInfo *MLI;
87     MachineRegisterInfo *MRI;
88 
89     using USet = std::set<unsigned>;
90     using UUSetMap = std::map<unsigned, USet>;
91     using UUPair = std::pair<unsigned, unsigned>;
92     using UUPairMap = std::map<unsigned, UUPair>;
93     using LoopRegMap = std::map<const MachineLoop *, USet>;
94 
95     bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
96     bool isVolatileInstr(const MachineInstr *MI) const;
97     bool isFixedInstr(const MachineInstr *MI) const;
98     void partitionRegisters(UUSetMap &P2Rs);
99     int32_t profit(const MachineInstr *MI) const;
100     int32_t profit(unsigned Reg) const;
101     bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
102 
103     void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
104     void collectIndRegs(LoopRegMap &IRM);
105 
106     void createHalfInstr(unsigned Opc, MachineInstr *MI,
107         const UUPairMap &PairMap, unsigned SubR);
108     void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
109     void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
110     void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
111     void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
112     void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
113     void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
114     bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
115     void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
116     void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
117     bool splitPartition(const USet &Part);
118 
119     static int Counter;
120 
121     static void dump_partition(raw_ostream&, const USet&,
122        const TargetRegisterInfo&);
123   };
124 
125 } // end anonymous namespace
126 
127 char HexagonSplitDoubleRegs::ID;
128 int HexagonSplitDoubleRegs::Counter = 0;
129 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC =
130     &Hexagon::DoubleRegsRegClass;
131 
132 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
133   "Hexagon Split Double Registers", false, false)
134 
135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
136 LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
137       const USet &Part, const TargetRegisterInfo &TRI) {
138   dbgs() << '{';
139   for (auto I : Part)
140     dbgs() << ' ' << printReg(I, &TRI);
141   dbgs() << " }";
142 }
143 #endif
144 
145 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
146   for (auto I : IRM) {
147     const USet &Rs = I.second;
148     if (Rs.find(Reg) != Rs.end())
149       return true;
150   }
151   return false;
152 }
153 
154 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
155   for (auto &MO : MI->memoperands())
156     if (MO->isVolatile() || MO->isAtomic())
157       return true;
158   return false;
159 }
160 
161 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
162   if (MI->mayLoadOrStore())
163     if (MemRefsFixed || isVolatileInstr(MI))
164       return true;
165   if (MI->isDebugInstr())
166     return false;
167 
168   unsigned Opc = MI->getOpcode();
169   switch (Opc) {
170     default:
171       return true;
172 
173     case TargetOpcode::PHI:
174     case TargetOpcode::COPY:
175       break;
176 
177     case Hexagon::L2_loadrd_io:
178       // Not handling stack stores (only reg-based addresses).
179       if (MI->getOperand(1).isReg())
180         break;
181       return true;
182     case Hexagon::S2_storerd_io:
183       // Not handling stack stores (only reg-based addresses).
184       if (MI->getOperand(0).isReg())
185         break;
186       return true;
187     case Hexagon::L2_loadrd_pi:
188     case Hexagon::S2_storerd_pi:
189 
190     case Hexagon::A2_tfrpi:
191     case Hexagon::A2_combineii:
192     case Hexagon::A4_combineir:
193     case Hexagon::A4_combineii:
194     case Hexagon::A4_combineri:
195     case Hexagon::A2_combinew:
196     case Hexagon::CONST64:
197 
198     case Hexagon::A2_sxtw:
199 
200     case Hexagon::A2_andp:
201     case Hexagon::A2_orp:
202     case Hexagon::A2_xorp:
203     case Hexagon::S2_asl_i_p_or:
204     case Hexagon::S2_asl_i_p:
205     case Hexagon::S2_asr_i_p:
206     case Hexagon::S2_lsr_i_p:
207       break;
208   }
209 
210   for (auto &Op : MI->operands()) {
211     if (!Op.isReg())
212       continue;
213     Register R = Op.getReg();
214     if (!Register::isVirtualRegister(R))
215       return true;
216   }
217   return false;
218 }
219 
220 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
221   using UUMap = std::map<unsigned, unsigned>;
222   using UVect = std::vector<unsigned>;
223 
224   unsigned NumRegs = MRI->getNumVirtRegs();
225   BitVector DoubleRegs(NumRegs);
226   for (unsigned i = 0; i < NumRegs; ++i) {
227     unsigned R = Register::index2VirtReg(i);
228     if (MRI->getRegClass(R) == DoubleRC)
229       DoubleRegs.set(i);
230   }
231 
232   BitVector FixedRegs(NumRegs);
233   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
234     unsigned R = Register::index2VirtReg(x);
235     MachineInstr *DefI = MRI->getVRegDef(R);
236     // In some cases a register may exist, but never be defined or used.
237     // It should never appear anywhere, but mark it as "fixed", just to be
238     // safe.
239     if (!DefI || isFixedInstr(DefI))
240       FixedRegs.set(x);
241   }
242 
243   UUSetMap AssocMap;
244   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
245     if (FixedRegs[x])
246       continue;
247     unsigned R = Register::index2VirtReg(x);
248     LLVM_DEBUG(dbgs() << printReg(R, TRI) << " ~~");
249     USet &Asc = AssocMap[R];
250     for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
251          U != Z; ++U) {
252       MachineOperand &Op = *U;
253       MachineInstr *UseI = Op.getParent();
254       if (isFixedInstr(UseI))
255         continue;
256       for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
257         MachineOperand &MO = UseI->getOperand(i);
258         // Skip non-registers or registers with subregisters.
259         if (&MO == &Op || !MO.isReg() || MO.getSubReg())
260           continue;
261         Register T = MO.getReg();
262         if (!Register::isVirtualRegister(T)) {
263           FixedRegs.set(x);
264           continue;
265         }
266         if (MRI->getRegClass(T) != DoubleRC)
267           continue;
268         unsigned u = Register::virtReg2Index(T);
269         if (FixedRegs[u])
270           continue;
271         LLVM_DEBUG(dbgs() << ' ' << printReg(T, TRI));
272         Asc.insert(T);
273         // Make it symmetric.
274         AssocMap[T].insert(R);
275       }
276     }
277     LLVM_DEBUG(dbgs() << '\n');
278   }
279 
280   UUMap R2P;
281   unsigned NextP = 1;
282   USet Visited;
283   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
284     unsigned R = Register::index2VirtReg(x);
285     if (Visited.count(R))
286       continue;
287     // Create a new partition for R.
288     unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
289     UVect WorkQ;
290     WorkQ.push_back(R);
291     for (unsigned i = 0; i < WorkQ.size(); ++i) {
292       unsigned T = WorkQ[i];
293       if (Visited.count(T))
294         continue;
295       R2P[T] = ThisP;
296       Visited.insert(T);
297       // Add all registers associated with T.
298       USet &Asc = AssocMap[T];
299       for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
300         WorkQ.push_back(*J);
301     }
302   }
303 
304   for (auto I : R2P)
305     P2Rs[I.second].insert(I.first);
306 }
307 
308 static inline int32_t profitImm(unsigned Imm) {
309   int32_t P = 0;
310   if (Imm == 0 || Imm == 0xFFFFFFFF)
311     P += 10;
312   return P;
313 }
314 
315 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
316   unsigned ImmX = 0;
317   unsigned Opc = MI->getOpcode();
318   switch (Opc) {
319     case TargetOpcode::PHI:
320       for (const auto &Op : MI->operands())
321         if (!Op.getSubReg())
322           return 0;
323       return 10;
324     case TargetOpcode::COPY:
325       if (MI->getOperand(1).getSubReg() != 0)
326         return 10;
327       return 0;
328 
329     case Hexagon::L2_loadrd_io:
330     case Hexagon::S2_storerd_io:
331       return -1;
332     case Hexagon::L2_loadrd_pi:
333     case Hexagon::S2_storerd_pi:
334       return 2;
335 
336     case Hexagon::A2_tfrpi:
337     case Hexagon::CONST64: {
338       uint64_t D = MI->getOperand(1).getImm();
339       unsigned Lo = D & 0xFFFFFFFFULL;
340       unsigned Hi = D >> 32;
341       return profitImm(Lo) + profitImm(Hi);
342     }
343     case Hexagon::A2_combineii:
344     case Hexagon::A4_combineii: {
345       const MachineOperand &Op1 = MI->getOperand(1);
346       const MachineOperand &Op2 = MI->getOperand(2);
347       int32_t Prof1 = Op1.isImm() ? profitImm(Op1.getImm()) : 0;
348       int32_t Prof2 = Op2.isImm() ? profitImm(Op2.getImm()) : 0;
349       return Prof1 + Prof2;
350     }
351     case Hexagon::A4_combineri:
352       ImmX++;
353       // Fall through into A4_combineir.
354       LLVM_FALLTHROUGH;
355     case Hexagon::A4_combineir: {
356       ImmX++;
357       const MachineOperand &OpX = MI->getOperand(ImmX);
358       if (OpX.isImm()) {
359         int64_t V = OpX.getImm();
360         if (V == 0 || V == -1)
361           return 10;
362       }
363       // Fall through into A2_combinew.
364       LLVM_FALLTHROUGH;
365     }
366     case Hexagon::A2_combinew:
367       return 2;
368 
369     case Hexagon::A2_sxtw:
370       return 3;
371 
372     case Hexagon::A2_andp:
373     case Hexagon::A2_orp:
374     case Hexagon::A2_xorp: {
375       Register Rs = MI->getOperand(1).getReg();
376       Register Rt = MI->getOperand(2).getReg();
377       return profit(Rs) + profit(Rt);
378     }
379 
380     case Hexagon::S2_asl_i_p_or: {
381       unsigned S = MI->getOperand(3).getImm();
382       if (S == 0 || S == 32)
383         return 10;
384       return -1;
385     }
386     case Hexagon::S2_asl_i_p:
387     case Hexagon::S2_asr_i_p:
388     case Hexagon::S2_lsr_i_p:
389       unsigned S = MI->getOperand(2).getImm();
390       if (S == 0 || S == 32)
391         return 10;
392       if (S == 16)
393         return 5;
394       if (S == 48)
395         return 7;
396       return -10;
397   }
398 
399   return 0;
400 }
401 
402 int32_t HexagonSplitDoubleRegs::profit(unsigned Reg) const {
403   assert(Register::isVirtualRegister(Reg));
404 
405   const MachineInstr *DefI = MRI->getVRegDef(Reg);
406   switch (DefI->getOpcode()) {
407     case Hexagon::A2_tfrpi:
408     case Hexagon::CONST64:
409     case Hexagon::A2_combineii:
410     case Hexagon::A4_combineii:
411     case Hexagon::A4_combineri:
412     case Hexagon::A4_combineir:
413     case Hexagon::A2_combinew:
414       return profit(DefI);
415     default:
416       break;
417   }
418   return 0;
419 }
420 
421 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
422       const {
423   unsigned FixedNum = 0, LoopPhiNum = 0;
424   int32_t TotalP = 0;
425 
426   for (unsigned DR : Part) {
427     MachineInstr *DefI = MRI->getVRegDef(DR);
428     int32_t P = profit(DefI);
429     if (P == std::numeric_limits<int>::min())
430       return false;
431     TotalP += P;
432     // Reduce the profitability of splitting induction registers.
433     if (isInduction(DR, IRM))
434       TotalP -= 30;
435 
436     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
437          U != W; ++U) {
438       MachineInstr *UseI = U->getParent();
439       if (isFixedInstr(UseI)) {
440         FixedNum++;
441         // Calculate the cost of generating REG_SEQUENCE instructions.
442         for (auto &Op : UseI->operands()) {
443           if (Op.isReg() && Part.count(Op.getReg()))
444             if (Op.getSubReg())
445               TotalP -= 2;
446         }
447         continue;
448       }
449       // If a register from this partition is used in a fixed instruction,
450       // and there is also a register in this partition that is used in
451       // a loop phi node, then decrease the splitting profit as this can
452       // confuse the modulo scheduler.
453       if (UseI->isPHI()) {
454         const MachineBasicBlock *PB = UseI->getParent();
455         const MachineLoop *L = MLI->getLoopFor(PB);
456         if (L && L->getHeader() == PB)
457           LoopPhiNum++;
458       }
459       // Splittable instruction.
460       int32_t P = profit(UseI);
461       if (P == std::numeric_limits<int>::min())
462         return false;
463       TotalP += P;
464     }
465   }
466 
467   if (FixedNum > 0 && LoopPhiNum > 0)
468     TotalP -= 20*LoopPhiNum;
469 
470   LLVM_DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
471   if (SplitAll)
472     return true;
473   return TotalP > 0;
474 }
475 
476 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
477       USet &Rs) {
478   const MachineBasicBlock *HB = L->getHeader();
479   const MachineBasicBlock *LB = L->getLoopLatch();
480   if (!HB || !LB)
481     return;
482 
483   // Examine the latch branch. Expect it to be a conditional branch to
484   // the header (either "br-cond header" or "br-cond exit; br header").
485   MachineBasicBlock *TB = nullptr, *FB = nullptr;
486   MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
487   SmallVector<MachineOperand,2> Cond;
488   bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
489   // Only analyzable conditional branches. HII::analyzeBranch will put
490   // the branch opcode as the first element of Cond, and the predicate
491   // operand as the second.
492   if (BadLB || Cond.size() != 2)
493     return;
494   // Only simple jump-conditional (with or without negation).
495   if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
496     return;
497   // Must go to the header.
498   if (TB != HB && FB != HB)
499     return;
500   assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch");
501   // Expect a predicate register.
502   Register PR = Cond[1].getReg();
503   assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
504 
505   // Get the registers on which the loop controlling compare instruction
506   // depends.
507   Register CmpR1, CmpR2;
508   const MachineInstr *CmpI = MRI->getVRegDef(PR);
509   while (CmpI->getOpcode() == Hexagon::C2_not)
510     CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
511 
512   int Mask = 0, Val = 0;
513   bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
514   if (!OkCI)
515     return;
516   // Eliminate non-double input registers.
517   if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
518     CmpR1 = 0;
519   if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
520     CmpR2 = 0;
521   if (!CmpR1 && !CmpR2)
522     return;
523 
524   // Now examine the top of the loop: the phi nodes that could poten-
525   // tially define loop induction registers. The registers defined by
526   // such a phi node would be used in a 64-bit add, which then would
527   // be used in the loop compare instruction.
528 
529   // Get the set of all double registers defined by phi nodes in the
530   // loop header.
531   using UVect = std::vector<unsigned>;
532 
533   UVect DP;
534   for (auto &MI : *HB) {
535     if (!MI.isPHI())
536       break;
537     const MachineOperand &MD = MI.getOperand(0);
538     Register R = MD.getReg();
539     if (MRI->getRegClass(R) == DoubleRC)
540       DP.push_back(R);
541   }
542   if (DP.empty())
543     return;
544 
545   auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
546     for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
547          I != E; ++I) {
548       const MachineInstr *UseI = I->getParent();
549       if (UseI->getOpcode() != Hexagon::A2_addp)
550         continue;
551       // Get the output from the add. If it is one of the inputs to the
552       // loop-controlling compare instruction, then R is likely an induc-
553       // tion register.
554       Register T = UseI->getOperand(0).getReg();
555       if (T == CmpR1 || T == CmpR2)
556         return false;
557     }
558     return true;
559   };
560   UVect::iterator End = llvm::remove_if(DP, NoIndOp);
561   Rs.insert(DP.begin(), End);
562   Rs.insert(CmpR1);
563   Rs.insert(CmpR2);
564 
565   LLVM_DEBUG({
566     dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: ";
567     dump_partition(dbgs(), Rs, *TRI);
568     dbgs() << '\n';
569   });
570 }
571 
572 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
573   using LoopVector = std::vector<MachineLoop *>;
574 
575   LoopVector WorkQ;
576 
577   for (auto I : *MLI)
578     WorkQ.push_back(I);
579   for (unsigned i = 0; i < WorkQ.size(); ++i) {
580     for (auto I : *WorkQ[i])
581       WorkQ.push_back(I);
582   }
583 
584   USet Rs;
585   for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
586     MachineLoop *L = WorkQ[i];
587     Rs.clear();
588     collectIndRegsForLoop(L, Rs);
589     if (!Rs.empty())
590       IRM.insert(std::make_pair(L, Rs));
591   }
592 }
593 
594 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
595       const UUPairMap &PairMap, unsigned SubR) {
596   MachineBasicBlock &B = *MI->getParent();
597   DebugLoc DL = MI->getDebugLoc();
598   MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
599 
600   for (auto &Op : MI->operands()) {
601     if (!Op.isReg()) {
602       NewI->addOperand(Op);
603       continue;
604     }
605     // For register operands, set the subregister.
606     Register R = Op.getReg();
607     unsigned SR = Op.getSubReg();
608     bool isVirtReg = Register::isVirtualRegister(R);
609     bool isKill = Op.isKill();
610     if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
611       isKill = false;
612       UUPairMap::const_iterator F = PairMap.find(R);
613       if (F == PairMap.end()) {
614         SR = SubR;
615       } else {
616         const UUPair &P = F->second;
617         R = (SubR == Hexagon::isub_lo) ? P.first : P.second;
618         SR = 0;
619       }
620     }
621     auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
622           Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
623           Op.isInternalRead());
624     NewI->addOperand(CO);
625   }
626 }
627 
628 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
629       const UUPairMap &PairMap) {
630   bool Load = MI->mayLoad();
631   unsigned OrigOpc = MI->getOpcode();
632   bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
633                   OrigOpc == Hexagon::S2_storerd_pi);
634   MachineInstr *LowI, *HighI;
635   MachineBasicBlock &B = *MI->getParent();
636   DebugLoc DL = MI->getDebugLoc();
637 
638   // Index of the base-address-register operand.
639   unsigned AdrX = PostInc ? (Load ? 2 : 1)
640                           : (Load ? 1 : 0);
641   MachineOperand &AdrOp = MI->getOperand(AdrX);
642   unsigned RSA = getRegState(AdrOp);
643   MachineOperand &ValOp = Load ? MI->getOperand(0)
644                                : (PostInc ? MI->getOperand(3)
645                                           : MI->getOperand(2));
646   UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
647   assert(F != PairMap.end());
648 
649   if (Load) {
650     const UUPair &P = F->second;
651     int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
652     LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
653              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
654              .addImm(Off);
655     HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
656               .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
657               .addImm(Off+4);
658   } else {
659     const UUPair &P = F->second;
660     int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
661     LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
662              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
663              .addImm(Off)
664              .addReg(P.first);
665     HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
666               .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
667               .addImm(Off+4)
668               .addReg(P.second);
669   }
670 
671   if (PostInc) {
672     // Create the increment of the address register.
673     int64_t Inc = Load ? MI->getOperand(3).getImm()
674                        : MI->getOperand(2).getImm();
675     MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
676     const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
677     Register NewR = MRI->createVirtualRegister(RC);
678     assert(!UpdOp.getSubReg() && "Def operand with subreg");
679     BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
680       .addReg(AdrOp.getReg(), RSA)
681       .addImm(Inc);
682     MRI->replaceRegWith(UpdOp.getReg(), NewR);
683     // The original instruction will be deleted later.
684   }
685 
686   // Generate a new pair of memory-operands.
687   MachineFunction &MF = *B.getParent();
688   for (auto &MO : MI->memoperands()) {
689     const MachinePointerInfo &Ptr = MO->getPointerInfo();
690     MachineMemOperand::Flags F = MO->getFlags();
691     Align A = MO->getAlign();
692 
693     auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4 /*size*/, A);
694     LowI->addMemOperand(MF, Tmp1);
695     auto *Tmp2 =
696         MF.getMachineMemOperand(Ptr, F, 4 /*size*/, std::min(A, Align(4)));
697     HighI->addMemOperand(MF, Tmp2);
698   }
699 }
700 
701 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
702       const UUPairMap &PairMap) {
703   MachineOperand &Op0 = MI->getOperand(0);
704   MachineOperand &Op1 = MI->getOperand(1);
705   assert(Op0.isReg() && Op1.isImm());
706   uint64_t V = Op1.getImm();
707 
708   MachineBasicBlock &B = *MI->getParent();
709   DebugLoc DL = MI->getDebugLoc();
710   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
711   assert(F != PairMap.end());
712   const UUPair &P = F->second;
713 
714   // The operand to A2_tfrsi can only have 32 significant bits. Immediate
715   // values in MachineOperand are stored as 64-bit integers, and so the
716   // value -1 may be represented either as 64-bit -1, or 4294967295. Both
717   // will have the 32 higher bits truncated in the end, but -1 will remain
718   // as -1, while the latter may appear to be a large unsigned value
719   // requiring a constant extender. The casting to int32_t will select the
720   // former representation. (The same reasoning applies to all 32-bit
721   // values.)
722   BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
723     .addImm(int32_t(V & 0xFFFFFFFFULL));
724   BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
725     .addImm(int32_t(V >> 32));
726 }
727 
728 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
729       const UUPairMap &PairMap) {
730   MachineOperand &Op0 = MI->getOperand(0);
731   MachineOperand &Op1 = MI->getOperand(1);
732   MachineOperand &Op2 = MI->getOperand(2);
733   assert(Op0.isReg());
734 
735   MachineBasicBlock &B = *MI->getParent();
736   DebugLoc DL = MI->getDebugLoc();
737   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
738   assert(F != PairMap.end());
739   const UUPair &P = F->second;
740 
741   if (!Op1.isReg()) {
742     BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
743       .add(Op1);
744   } else {
745     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
746       .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
747   }
748 
749   if (!Op2.isReg()) {
750     BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
751       .add(Op2);
752   } else {
753     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
754       .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
755   }
756 }
757 
758 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
759       const UUPairMap &PairMap) {
760   MachineOperand &Op0 = MI->getOperand(0);
761   MachineOperand &Op1 = MI->getOperand(1);
762   assert(Op0.isReg() && Op1.isReg());
763 
764   MachineBasicBlock &B = *MI->getParent();
765   DebugLoc DL = MI->getDebugLoc();
766   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
767   assert(F != PairMap.end());
768   const UUPair &P = F->second;
769   unsigned RS = getRegState(Op1);
770 
771   BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
772     .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
773   BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
774     .addReg(Op1.getReg(), RS, Op1.getSubReg())
775     .addImm(31);
776 }
777 
778 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
779       const UUPairMap &PairMap) {
780   using namespace Hexagon;
781 
782   MachineOperand &Op0 = MI->getOperand(0);
783   MachineOperand &Op1 = MI->getOperand(1);
784   MachineOperand &Op2 = MI->getOperand(2);
785   assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
786   int64_t Sh64 = Op2.getImm();
787   assert(Sh64 >= 0 && Sh64 < 64);
788   unsigned S = Sh64;
789 
790   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
791   assert(F != PairMap.end());
792   const UUPair &P = F->second;
793   Register LoR = P.first;
794   Register HiR = P.second;
795 
796   unsigned Opc = MI->getOpcode();
797   bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
798   bool Left = !Right;
799   bool Signed = (Opc == S2_asr_i_p);
800 
801   MachineBasicBlock &B = *MI->getParent();
802   DebugLoc DL = MI->getDebugLoc();
803   unsigned RS = getRegState(Op1);
804   unsigned ShiftOpc = Left ? S2_asl_i_r
805                            : (Signed ? S2_asr_i_r : S2_lsr_i_r);
806   unsigned LoSR = isub_lo;
807   unsigned HiSR = isub_hi;
808 
809   if (S == 0) {
810     // No shift, subregister copy.
811     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
812       .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
813     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
814       .addReg(Op1.getReg(), RS, HiSR);
815   } else if (S < 32) {
816     const TargetRegisterClass *IntRC = &IntRegsRegClass;
817     Register TmpR = MRI->createVirtualRegister(IntRC);
818     // Expansion:
819     // Shift left:    DR = shl R, #s
820     //   LoR  = shl R.lo, #s
821     //   TmpR = extractu R.lo, #s, #32-s
822     //   HiR  = or (TmpR, asl(R.hi, #s))
823     // Shift right:   DR = shr R, #s
824     //   HiR  = shr R.hi, #s
825     //   TmpR = shr R.lo, #s
826     //   LoR  = insert TmpR, R.hi, #s, #32-s
827 
828     // Shift left:
829     //   LoR  = shl R.lo, #s
830     // Shift right:
831     //   TmpR = shr R.lo, #s
832 
833     // Make a special case for A2_aslh and A2_asrh (they are predicable as
834     // opposed to S2_asl_i_r/S2_asr_i_r).
835     if (S == 16 && Left)
836       BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
837         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
838     else if (S == 16 && Signed)
839       BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
840         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
841     else
842       BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
843         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
844         .addImm(S);
845 
846     if (Left) {
847       // TmpR = extractu R.lo, #s, #32-s
848       BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
849         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
850         .addImm(S)
851         .addImm(32-S);
852       // HiR  = or (TmpR, asl(R.hi, #s))
853       BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
854         .addReg(TmpR)
855         .addReg(Op1.getReg(), RS, HiSR)
856         .addImm(S);
857     } else {
858       // HiR  = shr R.hi, #s
859       BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
860         .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
861         .addImm(S);
862       // LoR  = insert TmpR, R.hi, #s, #32-s
863       BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
864         .addReg(TmpR)
865         .addReg(Op1.getReg(), RS, HiSR)
866         .addImm(S)
867         .addImm(32-S);
868     }
869   } else if (S == 32) {
870     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
871       .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
872     if (!Signed)
873       BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
874         .addImm(0);
875     else  // Must be right shift.
876       BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
877         .addReg(Op1.getReg(), RS, HiSR)
878         .addImm(31);
879   } else if (S < 64) {
880     S -= 32;
881     if (S == 16 && Left)
882       BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
883         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
884     else if (S == 16 && Signed)
885       BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
886         .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
887     else
888       BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
889         .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
890         .addImm(S);
891 
892     if (Signed)
893       BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
894         .addReg(Op1.getReg(), RS, HiSR)
895         .addImm(31);
896     else
897       BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
898         .addImm(0);
899   }
900 }
901 
902 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
903       const UUPairMap &PairMap) {
904   using namespace Hexagon;
905 
906   MachineOperand &Op0 = MI->getOperand(0);
907   MachineOperand &Op1 = MI->getOperand(1);
908   MachineOperand &Op2 = MI->getOperand(2);
909   MachineOperand &Op3 = MI->getOperand(3);
910   assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
911   int64_t Sh64 = Op3.getImm();
912   assert(Sh64 >= 0 && Sh64 < 64);
913   unsigned S = Sh64;
914 
915   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
916   assert(F != PairMap.end());
917   const UUPair &P = F->second;
918   unsigned LoR = P.first;
919   unsigned HiR = P.second;
920 
921   MachineBasicBlock &B = *MI->getParent();
922   DebugLoc DL = MI->getDebugLoc();
923   unsigned RS1 = getRegState(Op1);
924   unsigned RS2 = getRegState(Op2);
925   const TargetRegisterClass *IntRC = &IntRegsRegClass;
926 
927   unsigned LoSR = isub_lo;
928   unsigned HiSR = isub_hi;
929 
930   // Op0 = S2_asl_i_p_or Op1, Op2, Op3
931   // means:  Op0 = or (Op1, asl(Op2, Op3))
932 
933   // Expansion of
934   //   DR = or (R1, asl(R2, #s))
935   //
936   //   LoR  = or (R1.lo, asl(R2.lo, #s))
937   //   Tmp1 = extractu R2.lo, #s, #32-s
938   //   Tmp2 = or R1.hi, Tmp1
939   //   HiR  = or (Tmp2, asl(R2.hi, #s))
940 
941   if (S == 0) {
942     // DR  = or (R1, asl(R2, #0))
943     //    -> or (R1, R2)
944     // i.e. LoR = or R1.lo, R2.lo
945     //      HiR = or R1.hi, R2.hi
946     BuildMI(B, MI, DL, TII->get(A2_or), LoR)
947       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
948       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
949     BuildMI(B, MI, DL, TII->get(A2_or), HiR)
950       .addReg(Op1.getReg(), RS1, HiSR)
951       .addReg(Op2.getReg(), RS2, HiSR);
952   } else if (S < 32) {
953     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
954       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
955       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
956       .addImm(S);
957     Register TmpR1 = MRI->createVirtualRegister(IntRC);
958     BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
959       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
960       .addImm(S)
961       .addImm(32-S);
962     Register TmpR2 = MRI->createVirtualRegister(IntRC);
963     BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
964       .addReg(Op1.getReg(), RS1, HiSR)
965       .addReg(TmpR1);
966     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
967       .addReg(TmpR2)
968       .addReg(Op2.getReg(), RS2, HiSR)
969       .addImm(S);
970   } else if (S == 32) {
971     // DR  = or (R1, asl(R2, #32))
972     //    -> or R1, R2.lo
973     // LoR = R1.lo
974     // HiR = or R1.hi, R2.lo
975     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
976       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
977     BuildMI(B, MI, DL, TII->get(A2_or), HiR)
978       .addReg(Op1.getReg(), RS1, HiSR)
979       .addReg(Op2.getReg(), RS2, LoSR);
980   } else if (S < 64) {
981     // DR  = or (R1, asl(R2, #s))
982     //
983     // LoR = R1:lo
984     // HiR = or (R1:hi, asl(R2:lo, #s-32))
985     S -= 32;
986     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
987       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
988     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
989       .addReg(Op1.getReg(), RS1, HiSR)
990       .addReg(Op2.getReg(), RS2, LoSR)
991       .addImm(S);
992   }
993 }
994 
995 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
996       const UUPairMap &PairMap) {
997   using namespace Hexagon;
998 
999   LLVM_DEBUG(dbgs() << "Splitting: " << *MI);
1000   bool Split = false;
1001   unsigned Opc = MI->getOpcode();
1002 
1003   switch (Opc) {
1004     case TargetOpcode::PHI:
1005     case TargetOpcode::COPY: {
1006       Register DstR = MI->getOperand(0).getReg();
1007       if (MRI->getRegClass(DstR) == DoubleRC) {
1008         createHalfInstr(Opc, MI, PairMap, isub_lo);
1009         createHalfInstr(Opc, MI, PairMap, isub_hi);
1010         Split = true;
1011       }
1012       break;
1013     }
1014     case A2_andp:
1015       createHalfInstr(A2_and, MI, PairMap, isub_lo);
1016       createHalfInstr(A2_and, MI, PairMap, isub_hi);
1017       Split = true;
1018       break;
1019     case A2_orp:
1020       createHalfInstr(A2_or, MI, PairMap, isub_lo);
1021       createHalfInstr(A2_or, MI, PairMap, isub_hi);
1022       Split = true;
1023       break;
1024     case A2_xorp:
1025       createHalfInstr(A2_xor, MI, PairMap, isub_lo);
1026       createHalfInstr(A2_xor, MI, PairMap, isub_hi);
1027       Split = true;
1028       break;
1029 
1030     case L2_loadrd_io:
1031     case L2_loadrd_pi:
1032     case S2_storerd_io:
1033     case S2_storerd_pi:
1034       splitMemRef(MI, PairMap);
1035       Split = true;
1036       break;
1037 
1038     case A2_tfrpi:
1039     case CONST64:
1040       splitImmediate(MI, PairMap);
1041       Split = true;
1042       break;
1043 
1044     case A2_combineii:
1045     case A4_combineir:
1046     case A4_combineii:
1047     case A4_combineri:
1048     case A2_combinew:
1049       splitCombine(MI, PairMap);
1050       Split = true;
1051       break;
1052 
1053     case A2_sxtw:
1054       splitExt(MI, PairMap);
1055       Split = true;
1056       break;
1057 
1058     case S2_asl_i_p:
1059     case S2_asr_i_p:
1060     case S2_lsr_i_p:
1061       splitShift(MI, PairMap);
1062       Split = true;
1063       break;
1064 
1065     case S2_asl_i_p_or:
1066       splitAslOr(MI, PairMap);
1067       Split = true;
1068       break;
1069 
1070     default:
1071       llvm_unreachable("Instruction not splitable");
1072       return false;
1073   }
1074 
1075   return Split;
1076 }
1077 
1078 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1079       const UUPairMap &PairMap) {
1080   for (auto &Op : MI->operands()) {
1081     if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1082       continue;
1083     Register R = Op.getReg();
1084     UUPairMap::const_iterator F = PairMap.find(R);
1085     if (F == PairMap.end())
1086       continue;
1087     const UUPair &P = F->second;
1088     switch (Op.getSubReg()) {
1089       case Hexagon::isub_lo:
1090         Op.setReg(P.first);
1091         break;
1092       case Hexagon::isub_hi:
1093         Op.setReg(P.second);
1094         break;
1095     }
1096     Op.setSubReg(0);
1097   }
1098 }
1099 
1100 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1101       const UUPairMap &PairMap) {
1102   MachineBasicBlock &B = *MI->getParent();
1103   DebugLoc DL = MI->getDebugLoc();
1104 
1105   for (auto &Op : MI->operands()) {
1106     if (!Op.isReg() || !Op.isUse())
1107       continue;
1108     Register R = Op.getReg();
1109     if (!Register::isVirtualRegister(R))
1110       continue;
1111     if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1112       continue;
1113     UUPairMap::const_iterator F = PairMap.find(R);
1114     if (F == PairMap.end())
1115       continue;
1116     const UUPair &Pr = F->second;
1117     Register NewDR = MRI->createVirtualRegister(DoubleRC);
1118     BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1119       .addReg(Pr.first)
1120       .addImm(Hexagon::isub_lo)
1121       .addReg(Pr.second)
1122       .addImm(Hexagon::isub_hi);
1123     Op.setReg(NewDR);
1124   }
1125 }
1126 
1127 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1128   using MISet = std::set<MachineInstr *>;
1129 
1130   const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1131   bool Changed = false;
1132 
1133   LLVM_DEBUG(dbgs() << "Splitting partition: ";
1134              dump_partition(dbgs(), Part, *TRI); dbgs() << '\n');
1135 
1136   UUPairMap PairMap;
1137 
1138   MISet SplitIns;
1139   for (unsigned DR : Part) {
1140     MachineInstr *DefI = MRI->getVRegDef(DR);
1141     SplitIns.insert(DefI);
1142 
1143     // Collect all instructions, including fixed ones.  We won't split them,
1144     // but we need to visit them again to insert the REG_SEQUENCE instructions.
1145     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1146          U != W; ++U)
1147       SplitIns.insert(U->getParent());
1148 
1149     Register LoR = MRI->createVirtualRegister(IntRC);
1150     Register HiR = MRI->createVirtualRegister(IntRC);
1151     LLVM_DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> "
1152                       << printReg(HiR, TRI) << ':' << printReg(LoR, TRI)
1153                       << '\n');
1154     PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1155   }
1156 
1157   MISet Erase;
1158   for (auto MI : SplitIns) {
1159     if (isFixedInstr(MI)) {
1160       collapseRegPairs(MI, PairMap);
1161     } else {
1162       bool Done = splitInstr(MI, PairMap);
1163       if (Done)
1164         Erase.insert(MI);
1165       Changed |= Done;
1166     }
1167   }
1168 
1169   for (unsigned DR : Part) {
1170     // Before erasing "double" instructions, revisit all uses of the double
1171     // registers in this partition, and replace all uses of them with subre-
1172     // gisters, with the corresponding single registers.
1173     MISet Uses;
1174     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1175          U != W; ++U)
1176       Uses.insert(U->getParent());
1177     for (auto M : Uses)
1178       replaceSubregUses(M, PairMap);
1179   }
1180 
1181   for (auto MI : Erase) {
1182     MachineBasicBlock *B = MI->getParent();
1183     B->erase(MI);
1184   }
1185 
1186   return Changed;
1187 }
1188 
1189 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1190   if (skipFunction(MF.getFunction()))
1191     return false;
1192 
1193   LLVM_DEBUG(dbgs() << "Splitting double registers in function: "
1194                     << MF.getName() << '\n');
1195 
1196   auto &ST = MF.getSubtarget<HexagonSubtarget>();
1197   TRI = ST.getRegisterInfo();
1198   TII = ST.getInstrInfo();
1199   MRI = &MF.getRegInfo();
1200   MLI = &getAnalysis<MachineLoopInfo>();
1201 
1202   UUSetMap P2Rs;
1203   LoopRegMap IRM;
1204 
1205   collectIndRegs(IRM);
1206   partitionRegisters(P2Rs);
1207 
1208   LLVM_DEBUG({
1209     dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1210     for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1211       dbgs() << '#' << I->first << " -> ";
1212       dump_partition(dbgs(), I->second, *TRI);
1213       dbgs() << '\n';
1214     }
1215   });
1216 
1217   bool Changed = false;
1218   int Limit = MaxHSDR;
1219 
1220   for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1221     if (I->first == 0)
1222       continue;
1223     if (Limit >= 0 && Counter >= Limit)
1224       break;
1225     USet &Part = I->second;
1226     LLVM_DEBUG(dbgs() << "Calculating profit for partition #" << I->first
1227                       << '\n');
1228     if (!isProfitable(Part, IRM))
1229       continue;
1230     Counter++;
1231     Changed |= splitPartition(Part);
1232   }
1233 
1234   return Changed;
1235 }
1236 
1237 FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1238   return new HexagonSplitDoubleRegs();
1239 }
1240