xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonPseudo.td (revision b3e7694832e81d7a904a10f525f8797b753bf0d3)
1//===--- HexagonPseudo.td -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// The pat frags in the definitions below need to have a named register,
10// otherwise i32 will be assumed regardless of the register class. The
11// name of the register does not matter.
12def I1  : PatLeaf<(i1 PredRegs:$R)>;
13def I32 : PatLeaf<(i32 IntRegs:$R)>;
14def I64 : PatLeaf<(i64 DoubleRegs:$R)>;
15def F32 : PatLeaf<(f32 IntRegs:$R)>;
16def F64 : PatLeaf<(f64 DoubleRegs:$R)>;
17
18let PrintMethod = "printGlobalOperand" in {
19  def globaladdress : Operand<i32>;
20  def globaladdressExt : Operand<i32>;
21}
22
23let isPseudo = 1 in {
24let isCodeGenOnly = 0 in
25def A2_iconst : Pseudo<(outs IntRegs:$Rd32),
26    (ins s27_2Imm:$Ii), "${Rd32} = iconst(#${Ii})">;
27
28def DUPLEX_Pseudo : InstHexagon<(outs),
29    (ins s32_0Imm:$offset), "DUPLEX", [], "", DUPLEX, TypePSEUDO>;
30}
31
32let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
33    isAsmParserOnly = 1 in
34def TFRI64_V2_ext : InstHexagon<(outs DoubleRegs:$dst),
35    (ins s32_0Imm:$src1, s8_0Imm:$src2),
36    "$dst = combine(#$src1,#$src2)", [], "",
37    A2_combineii.Itinerary, TypeALU32_2op>, OpcodeHexagon;
38
39// HI/LO Instructions
40let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
41    hasNewValue = 1, opNewValue = 0 in
42class REG_IMMED<string RegHalf, bit Rs, bits<3> MajOp, bit MinOp,
43                InstHexagon rootInst>
44  : InstHexagon<(outs IntRegs:$dst),
45                (ins u16_0Imm:$imm_value),
46                "$dst"#RegHalf#" = #$imm_value", [], "",
47                rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
48    bits<5> dst;
49    bits<32> imm_value;
50
51    let Inst{27} = Rs;
52    let Inst{26-24} = MajOp;
53    let Inst{21} = MinOp;
54    let Inst{20-16} = dst;
55    let Inst{23-22} = imm_value{15-14};
56    let Inst{13-0} = imm_value{13-0};
57}
58
59let isAsmParserOnly = 1 in {
60  def LO : REG_IMMED<".l", 0b0, 0b001, 0b1, A2_tfril>;
61  def HI : REG_IMMED<".h", 0b0, 0b010, 0b1, A2_tfrih>;
62}
63
64let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in {
65  def CONST32 : CONSTLDInst<(outs IntRegs:$Rd), (ins i32imm:$v),
66                "$Rd = CONST32(#$v)", []>;
67  def CONST64 : CONSTLDInst<(outs DoubleRegs:$Rd), (ins i64imm:$v),
68                "$Rd = CONST64(#$v)", []>;
69}
70
71let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
72    isCodeGenOnly = 1 in
73def PS_true : InstHexagon<(outs PredRegs:$dst), (ins), "",
74              [(set I1:$dst, 1)], "", C2_orn.Itinerary, TypeCR>;
75
76let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
77    isCodeGenOnly = 1 in
78def PS_false : InstHexagon<(outs PredRegs:$dst), (ins), "",
79               [(set I1:$dst, 0)], "", C2_andn.Itinerary, TypeCR>;
80
81let Defs = [R29, R30], Uses = [R31, R30, R29], isPseudo = 1 in
82def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
83                              ".error \"should not emit\" ", []>;
84
85let Defs = [R29, R30, R31], Uses = [R29], isPseudo = 1 in
86def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
87                             ".error \"should not emit\" ", []>;
88
89
90let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
91    Defs = [PC, LC0], Uses = [SA0, LC0] in {
92def ENDLOOP0 : Endloop<(outs), (ins b30_2Imm:$offset),
93                       ":endloop0",
94                       []>;
95}
96
97let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
98    Defs = [PC, LC1], Uses = [SA1, LC1] in {
99def ENDLOOP1 : Endloop<(outs), (ins b30_2Imm:$offset),
100                       ":endloop1",
101                       []>;
102}
103
104let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
105    Defs = [PC, LC0, LC1], Uses = [SA0, SA1, LC0, LC1] in {
106def ENDLOOP01 : Endloop<(outs), (ins b30_2Imm:$offset),
107                        ":endloop01",
108                        []>;
109}
110
111let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
112    opExtendable = 0, hasSideEffects = 0 in
113class LOOP_iBase<string mnemonic, InstHexagon rootInst>
114         : InstHexagon <(outs), (ins b30_2Imm:$offset, u10_0Imm:$src2),
115           mnemonic#"($offset,#$src2)",
116           [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
117    bits<9> offset;
118    bits<10> src2;
119
120    let IClass = 0b0110;
121
122    let Inst{27-22} = 0b100100;
123    let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
124    let Inst{20-16} = src2{9-5};
125    let Inst{12-8} = offset{8-4};
126    let Inst{7-5} = src2{4-2};
127    let Inst{4-3} = offset{3-2};
128    let Inst{1-0} = src2{1-0};
129}
130
131let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
132    opExtendable = 0, hasSideEffects = 0 in
133class LOOP_rBase<string mnemonic, InstHexagon rootInst>
134         : InstHexagon<(outs), (ins b30_2Imm:$offset, IntRegs:$src2),
135           mnemonic#"($offset,$src2)",
136           [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
137    bits<9> offset;
138    bits<5> src2;
139
140    let IClass = 0b0110;
141
142    let Inst{27-22} = 0b000000;
143    let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
144    let Inst{20-16} = src2;
145    let Inst{12-8} = offset{8-4};
146    let Inst{4-3} = offset{3-2};
147  }
148
149let Defs = [SA0, LC0, USR], isCodeGenOnly = 1, isExtended = 1,
150    opExtendable = 0 in {
151  def J2_loop0iext : LOOP_iBase<"loop0", J2_loop0i>;
152  def J2_loop1iext : LOOP_iBase<"loop1", J2_loop1i>;
153}
154
155// Interestingly only loop0's appear to set usr.lpcfg
156let Defs = [SA1, LC1], isCodeGenOnly = 1, isExtended = 1, opExtendable = 0 in {
157  def J2_loop0rext : LOOP_rBase<"loop0", J2_loop0r>;
158  def J2_loop1rext : LOOP_rBase<"loop1", J2_loop1r>;
159}
160
161let isCall = 1, hasSideEffects = 1, isPredicable = 0,
162    isExtended = 0, isExtendable = 1, opExtendable = 0,
163    isExtentSigned = 1, opExtentBits = 24, opExtentAlign = 2 in
164class T_Call<string ExtStr>
165  : InstHexagon<(outs), (ins a30_2Imm:$dst),
166      "call " # ExtStr # "$dst", [], "", J2_call.Itinerary, TypeJ>,
167    OpcodeHexagon {
168  let BaseOpcode = "call";
169  bits<24> dst;
170
171  let IClass = 0b0101;
172  let Inst{27-25} = 0b101;
173  let Inst{24-16,13-1} = dst{23-2};
174  let Inst{0} = 0b0;
175}
176
177let isCodeGenOnly = 1, isCall = 1, hasSideEffects = 1, Defs = [R16],
178    isPredicable = 0 in
179def CALLProfile :  T_Call<"">;
180
181let isCodeGenOnly = 1, isCall = 1, hasSideEffects = 1,
182    Defs = [PC, R31, R6, R7, P0] in
183def PS_call_stk : T_Call<"">;
184
185// This pseudo instruction is used to replace int_hexagon_instrprof_custom intrinsic
186// with a call to custom handler passed as the first argument to the intrinsic.
187
188// Pleae Note:
189// 1) The call to the custom handler is being treated as a special one as the
190//    callee is responsible for saving and restoring all the registers it needs
191//    to modify. This includes caller saved registers as well as r0-r5 argument
192//    registers. This is done to reduce the impact of instrumentation on the
193//    code being instrumented/profiled.
194// 2) R14, R15 and R28 are reserved for PLT handling and therefore are
195//    part of the def list.
196// 3) R0 is used to pass the unique id associated with an instrumentation site
197//    to the handler.
198// 4) All the other registers (R29, R30, R31, PC) get modified by the call
199//    instruction.
200
201// TODO: It may be a good idea to add a separate pseudo instruction for
202// static relocation which doesn't need to reserve r14, r15 and r28.
203
204let hasSideEffects = 1, isCall = 1, Defs = [R0, R14, R15, R28, R29, R30, R31, PC] in
205def PS_call_instrprof_custom :  Pseudo<(outs), (ins s32_0Imm:$dst, u32_0Imm:$Ii), "">;
206
207// Call, no return.
208let isCall = 1, hasSideEffects = 1, cofMax1 = 1, isCodeGenOnly = 1 in
209def PS_callr_nr: InstHexagon<(outs), (ins IntRegs:$Rs),
210    "callr $Rs", [], "", J2_callr.Itinerary, TypeJ>, OpcodeHexagon {
211    bits<5> Rs;
212    bits<2> Pu;
213    let isPredicatedFalse = 1;
214
215    let IClass = 0b0101;
216    let Inst{27-21} = 0b0000101;
217    let Inst{20-16} = Rs;
218  }
219
220let isCall = 1, hasSideEffects = 1,
221    isExtended = 0, isExtendable = 1, opExtendable = 0, isCodeGenOnly = 1,
222    BaseOpcode = "PS_call_nr", isExtentSigned = 1, opExtentAlign = 2 in
223class Call_nr<bits<5> nbits, bit isFalse, dag iops,
224              InstrItinClass itin>
225  : Pseudo<(outs), iops, "">, PredRel {
226    bits<2> Pu;
227    bits<17> dst;
228    let opExtentBits = nbits;
229    let isPredicable = 0;  // !if(isPred, 0, 1);
230    let isPredicated = 0;  // isPred;
231    let isPredicatedFalse = isFalse;
232    let Itinerary = itin;
233}
234
235def PS_call_nr : Call_nr<24, 0, (ins s32_0Imm:$Ii), J2_call.Itinerary>;
236//def PS_call_nrt: Call_nr<17, 1, 0, (ins PredRegs:$Pu, s32_0Imm:$dst),
237//                         J2_callt.Itinerary>;
238//def PS_call_nrf: Call_nr<17, 1, 1, (ins PredRegs:$Pu, s32_0Imm:$dst),
239//                         J2_callf.Itinerary>;
240
241let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC],
242    isPredicable = 1, hasSideEffects = 0, InputType = "reg",
243    cofMax1 = 1 in
244class T_JMPr <InstHexagon rootInst>
245  :  InstHexagon<(outs), (ins IntRegs:$dst), "jumpr $dst", [],
246                 "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
247    bits<5> dst;
248
249    let IClass = 0b0101;
250    let Inst{27-21} = 0b0010100;
251    let Inst{20-16} = dst;
252}
253
254// A return through builtin_eh_return.
255let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0,
256    isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
257def EH_RETURN_JMPR : T_JMPr<J2_jumpr>;
258
259// Indirect tail-call.
260let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
261    isTerminator = 1, isCodeGenOnly = 1 in
262def PS_tailcall_r : T_JMPr<J2_jumpr>;
263
264//
265// Direct tail-calls.
266let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
267    isTerminator = 1, isCodeGenOnly = 1 in
268def PS_tailcall_i : Pseudo<(outs), (ins a30_2Imm:$dst), "", []>;
269
270let isCodeGenOnly = 1, isPseudo = 1, Uses = [R30], hasSideEffects = 0 in
271def PS_aligna : Pseudo<(outs IntRegs:$Rd), (ins u32_0Imm:$A), "", []>;
272
273// Generate frameindex addresses. The main reason for the offset operand is
274// that every instruction that is allowed to have frame index as an operand
275// will then have that operand followed by an immediate operand (the offset).
276// This simplifies the frame-index elimination code.
277//
278let isMoveImm = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
279    isPseudo = 1, isCodeGenOnly = 1, hasSideEffects = 0, isExtendable = 1,
280    isExtentSigned = 1, opExtentBits = 16, opExtentAlign = 0 in {
281  let opExtendable = 2 in
282  def PS_fi  : Pseudo<(outs IntRegs:$Rd),
283                      (ins IntRegs:$fi, s32_0Imm:$off), "">;
284  let opExtendable = 3 in
285  def PS_fia : Pseudo<(outs IntRegs:$Rd),
286                      (ins IntRegs:$Rs, IntRegs:$fi, s32_0Imm:$off), "">;
287}
288
289class CondStr<string CReg, bit True, bit New> {
290  string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") ";
291}
292class JumpOpcStr<string Mnemonic, bit Taken> {
293  string S = Mnemonic # !if(Taken, ":t", ":nt");
294}
295let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1,
296    hasSideEffects = 0, InputType = "reg", cofMax1 = 1 in
297class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak, InstHexagon rootInst>
298  :  InstHexagon<(outs), (ins PredRegs:$src, IntRegs:$dst),
299                 CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
300                 JumpOpcStr<"jumpr", isTak>.S # " $dst",
301                 [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
302
303    let isTaken = isTak;
304    let isPredicatedFalse = PredNot;
305    let isPredicatedNew = isPredNew;
306    bits<2> src;
307    bits<5> dst;
308
309    let IClass = 0b0101;
310
311    let Inst{27-22} = 0b001101;
312    let Inst{21} = PredNot;
313    let Inst{20-16} = dst;
314    let Inst{12} = isTak;
315    let Inst{11} = isPredNew;
316    let Inst{9-8} = src;
317}
318
319let isTerminator = 1, hasSideEffects = 0, isReturn = 1, isCodeGenOnly = 1,
320    isBarrier = 1, BaseOpcode = "JMPret" in {
321  def PS_jmpret : T_JMPr<J2_jumpr>, PredNewRel;
322  def PS_jmprett : T_JMPr_c<0, 0, 0, J2_jumprt>, PredNewRel;
323  def PS_jmpretf : T_JMPr_c<1, 0, 0, J2_jumprf>, PredNewRel;
324  def PS_jmprettnew : T_JMPr_c<0, 1, 0, J2_jumprtnew>, PredNewRel;
325  def PS_jmpretfnew : T_JMPr_c<1, 1, 0, J2_jumprfnew>, PredNewRel;
326  def PS_jmprettnewpt : T_JMPr_c<0, 1, 1, J2_jumprtnewpt>, PredNewRel;
327  def PS_jmpretfnewpt : T_JMPr_c<1, 1, 1, J2_jumprfnewpt>, PredNewRel;
328}
329
330//defm V6_vtran2x2_map : HexagonMapping<(outs HvxVR:$Vy32, HvxVR:$Vx32), (ins HvxVR:$Vx32in, IntRegs:$Rt32), "vtrans2x2(${Vy32},${Vx32},${Rt32})", (V6_vshuff HvxVR:$Vy32, HvxVR:$Vx32, HvxVR:$Vx32in, IntRegs:$Rt32)>;
331
332// The reason for the custom inserter is to record all ALLOCA instructions
333// in MachineFunctionInfo.
334let Defs = [R29], hasSideEffects = 1 in
335def PS_alloca: Pseudo <(outs IntRegs:$Rd),
336                       (ins IntRegs:$Rs, u32_0Imm:$A), "", []>;
337
338// Load predicate.
339let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
340    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
341def LDriw_pred : LDInst<(outs PredRegs:$dst),
342                        (ins IntRegs:$addr, s32_0Imm:$off),
343                        ".error \"should not emit\"", []>;
344
345// Load modifier.
346let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
347    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
348def LDriw_ctr : LDInst<(outs CtrRegs:$dst),
349                        (ins IntRegs:$addr, s32_0Imm:$off),
350                        ".error \"should not emit\"", []>;
351
352
353let isCodeGenOnly = 1, isPseudo = 1 in
354def PS_pselect: InstHexagon<(outs DoubleRegs:$Rd),
355      (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt),
356      ".error \"should not emit\" ", [], "", A2_tfrpt.Itinerary, TypeALU32_2op>;
357
358let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0,
359    isPredicable = 1,
360    isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
361    opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in
362class T_JMP: InstHexagon<(outs), (ins b30_2Imm:$dst),
363      "jump $dst",
364      [], "", J2_jump.Itinerary, TypeJ>, OpcodeHexagon {
365    bits<24> dst;
366    let IClass = 0b0101;
367
368    let Inst{27-25} = 0b100;
369    let Inst{24-16} = dst{23-15};
370    let Inst{13-1} = dst{14-2};
371}
372
373// Restore registers and dealloc return function call.
374let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
375    Defs = [R29, R30, R31, PC], isPredicable = 0, isAsmParserOnly = 1 in {
376  def RESTORE_DEALLOC_RET_JMP_V4 : T_JMP;
377
378  let isExtended = 1, opExtendable = 0 in
379  def RESTORE_DEALLOC_RET_JMP_V4_EXT : T_JMP;
380
381  let Defs = [R14, R15, R28, R29, R30, R31, PC] in {
382    def RESTORE_DEALLOC_RET_JMP_V4_PIC : T_JMP;
383
384    let isExtended = 1, opExtendable = 0 in
385    def RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC : T_JMP;
386  }
387}
388
389// Restore registers and dealloc frame before a tail call.
390let isCall = 1, Defs = [R29, R30, R31, PC], isAsmParserOnly = 1 in {
391  def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : T_Call<"">, PredRel;
392
393  let isExtended = 1, opExtendable = 0 in
394  def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT : T_Call<"">, PredRel;
395
396  let Defs = [R14, R15, R28, R29, R30, R31, PC] in {
397    def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC : T_Call<"">, PredRel;
398
399    let isExtended = 1, opExtendable = 0 in
400    def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC : T_Call<"">, PredRel;
401  }
402}
403
404// Save registers function call.
405let isCall = 1, Uses = [R29, R31], isAsmParserOnly = 1 in {
406  def SAVE_REGISTERS_CALL_V4 : T_Call<"">, PredRel;
407
408  let isExtended = 1, opExtendable = 0 in
409  def SAVE_REGISTERS_CALL_V4_EXT : T_Call<"">, PredRel;
410
411  let Defs = [P0] in
412  def SAVE_REGISTERS_CALL_V4STK : T_Call<"">, PredRel;
413
414  let Defs = [P0], isExtended = 1, opExtendable = 0 in
415  def SAVE_REGISTERS_CALL_V4STK_EXT : T_Call<"">, PredRel;
416
417  let Defs = [R14, R15, R28] in
418  def SAVE_REGISTERS_CALL_V4_PIC : T_Call<"">, PredRel;
419
420  let Defs = [R14, R15, R28], isExtended = 1, opExtendable = 0 in
421  def SAVE_REGISTERS_CALL_V4_EXT_PIC : T_Call<"">, PredRel;
422
423  let Defs = [R14, R15, R28, P0] in
424  def SAVE_REGISTERS_CALL_V4STK_PIC : T_Call<"">, PredRel;
425
426  let Defs = [R14, R15, R28, P0], isExtended = 1, opExtendable = 0 in
427  def SAVE_REGISTERS_CALL_V4STK_EXT_PIC : T_Call<"">, PredRel;
428}
429
430let Predicates = [UseHVX], isPseudo = 1, isCodeGenOnly = 1,
431                 hasSideEffects = 0, hasPostISelHook = 1 in
432class Vsplatr_template : InstHexagon<(outs HvxVR:$Vd), (ins IntRegs:$Rs),
433                         "", [], "", V6_lvsplatw.Itinerary, V6_lvsplatw.Type>;
434def PS_vsplatrb: Vsplatr_template;
435def PS_vsplatrh: Vsplatr_template;
436def PS_vsplatrw: Vsplatr_template;
437
438let Predicates = [UseHVX], isPseudo = 1, isCodeGenOnly = 1,
439                 hasSideEffects = 0, hasPostISelHook = 1 in
440class Vsplati_template : InstHexagon<(outs HvxVR:$Vd), (ins s32_0Imm:$Val),
441                         "", [], "", V6_lvsplatw.Itinerary, V6_lvsplatw.Type>;
442def PS_vsplatib: Vsplati_template;
443def PS_vsplatih: Vsplati_template;
444def PS_vsplatiw: Vsplati_template;
445
446// Vector store pseudos
447let Predicates = [HasV60,UseHVX], isPseudo = 1, isCodeGenOnly = 1,
448    mayStore = 1, accessSize = HVXVectorAccess, hasSideEffects = 0 in
449class STriv_template<RegisterClass RC, InstHexagon rootInst>
450  : InstHexagon<(outs), (ins IntRegs:$addr, s32_0Imm:$off, RC:$src),
451    "", [], "", rootInst.Itinerary, rootInst.Type>;
452
453def PS_vstorerv_ai: STriv_template<HvxVR, V6_vS32b_ai>,
454      Requires<[HasV60,UseHVX]>;
455def PS_vstorerv_nt_ai: STriv_template<HvxVR, V6_vS32b_nt_ai>,
456      Requires<[HasV60,UseHVX]>;
457def PS_vstorerw_ai: STriv_template<HvxWR, V6_vS32b_ai>,
458      Requires<[HasV60,UseHVX]>;
459def PS_vstorerw_nt_ai: STriv_template<HvxWR, V6_vS32b_nt_ai>,
460      Requires<[HasV60,UseHVX]>;
461
462let isPseudo = 1, isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0 in
463def PS_vstorerq_ai: Pseudo<(outs),
464      (ins IntRegs:$Rs, s32_0Imm:$Off, HvxQR:$Qt), "", []>,
465      Requires<[HasV60,UseHVX]>;
466
467// Vector load pseudos
468let Predicates = [HasV60, UseHVX], isPseudo = 1, isCodeGenOnly = 1,
469    mayLoad = 1, accessSize = HVXVectorAccess, hasSideEffects = 0 in
470class LDriv_template<RegisterClass RC, InstHexagon rootInst>
471  : InstHexagon<(outs RC:$dst), (ins IntRegs:$addr, s32_0Imm:$off),
472    "", [], "", rootInst.Itinerary, rootInst.Type>;
473
474def PS_vloadrv_ai: LDriv_template<HvxVR, V6_vL32b_ai>,
475      Requires<[HasV60,UseHVX]>;
476def PS_vloadrv_nt_ai: LDriv_template<HvxVR, V6_vL32b_nt_ai>,
477      Requires<[HasV60,UseHVX]>;
478def PS_vloadrw_ai: LDriv_template<HvxWR, V6_vL32b_ai>,
479      Requires<[HasV60,UseHVX]>;
480def PS_vloadrw_nt_ai: LDriv_template<HvxWR, V6_vL32b_nt_ai>,
481      Requires<[HasV60,UseHVX]>;
482
483let isPseudo = 1, isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0 in
484def PS_vloadrq_ai: Pseudo<(outs HvxQR:$Qd),
485      (ins IntRegs:$Rs, s32_0Imm:$Off), "", []>,
486      Requires<[HasV60,UseHVX]>;
487
488
489let isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
490class VSELInst<dag outs, dag ins, InstHexagon rootInst>
491  : InstHexagon<outs, ins, "", [], "", rootInst.Itinerary, rootInst.Type>;
492
493def PS_vselect: VSELInst<(outs HvxVR:$dst),
494      (ins PredRegs:$src1, HvxVR:$src2, HvxVR:$src3), V6_vcmov>,
495      Requires<[HasV60,UseHVX]>;
496def PS_wselect: VSELInst<(outs HvxWR:$dst),
497      (ins PredRegs:$src1, HvxWR:$src2, HvxWR:$src3), V6_vccombine>,
498      Requires<[HasV60,UseHVX]>;
499
500let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
501    isCodeGenOnly = 1 in {
502  def PS_qtrue:  InstHexagon<(outs HvxQR:$Qd), (ins), "", [], "",
503                 V6_veqw.Itinerary, TypeCVI_VA>;
504  def PS_qfalse: InstHexagon<(outs HvxQR:$Qd), (ins), "", [], "",
505                 V6_vgtw.Itinerary, TypeCVI_VA>;
506  def PS_vdd0:   InstHexagon<(outs HvxWR:$Vd), (ins), "", [], "",
507                 V6_vsubw_dv.Itinerary, TypeCVI_VA_DV>;
508}
509
510// Store predicate.
511let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
512    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
513def STriw_pred : STInst<(outs),
514      (ins IntRegs:$addr, s32_0Imm:$off, PredRegs:$src1),
515      ".error \"should not emit\"", []>;
516// Store modifier.
517let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
518    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
519def STriw_ctr : STInst<(outs),
520      (ins IntRegs:$addr, s32_0Imm:$off, CtrRegs:$src1),
521      ".error \"should not emit\"", []>;
522
523let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
524    isAsmParserOnly = 1 in
525def TFRI64_V4 : InstHexagon<(outs DoubleRegs:$dst),
526    (ins u64_0Imm:$src1),
527    "$dst = #$src1", [], "",
528    A2_combineii.Itinerary, TypeALU32_2op>, OpcodeHexagon;
529
530// Hexagon doesn't have a vector multiply with C semantics.
531// Instead, generate a pseudo instruction that gets expanded into two
532// scalar MPYI instructions.
533// This is expanded by ExpandPostRAPseudos.
534let isPseudo = 1 in
535def PS_vmulw : PseudoM<(outs DoubleRegs:$Rd),
536      (ins DoubleRegs:$Rs, DoubleRegs:$Rt), "", []>;
537
538let isPseudo = 1 in
539def PS_vmulw_acc : PseudoM<(outs DoubleRegs:$Rd),
540      (ins DoubleRegs:$Rx, DoubleRegs:$Rs, DoubleRegs:$Rt), "", [],
541      "$Rd = $Rx">;
542
543def DuplexIClass0:  InstDuplex < 0 >;
544def DuplexIClass1:  InstDuplex < 1 >;
545def DuplexIClass2:  InstDuplex < 2 >;
546let isExtendable = 1 in {
547  def DuplexIClass3:  InstDuplex < 3 >;
548  def DuplexIClass4:  InstDuplex < 4 >;
549  def DuplexIClass5:  InstDuplex < 5 >;
550  def DuplexIClass6:  InstDuplex < 6 >;
551  def DuplexIClass7:  InstDuplex < 7 >;
552}
553def DuplexIClass8:  InstDuplex < 8 >;
554def DuplexIClass9:  InstDuplex < 9 >;
555def DuplexIClassA:  InstDuplex < 0xA >;
556def DuplexIClassB:  InstDuplex < 0xB >;
557def DuplexIClassC:  InstDuplex < 0xC >;
558def DuplexIClassD:  InstDuplex < 0xD >;
559def DuplexIClassE:  InstDuplex < 0xE >;
560def DuplexIClassF:  InstDuplex < 0xF >;
561
562// Pseudos for circular buffer instructions. These are needed in order to
563// allocate the correct pair of CSx and Mx registers.
564multiclass NewCircularLoad<RegisterClass RC, MemAccessSize MS> {
565
566let isCodeGenOnly = 1, isPseudo = 1, Defs = [CS], Uses = [CS],
567    addrMode = PostInc, accessSize = MS, hasSideEffects = 0 in {
568  // Use timing class of L2_loadrb_pci.
569  def NAME#_pci : LDInst<(outs RC:$Rd32, IntRegs:$Rx32),
570       (ins IntRegs:$Rx32in, s4_0Imm:$Ii, ModRegs:$Mu2, IntRegs:$Cs),
571       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_5ceb2f9e>;
572
573  // Use timing class of L2_loadrb_pcr.
574  def NAME#_pcr : LDInst<(outs RC:$Rd32, IntRegs:$Rx32),
575       (ins IntRegs:$Rx32in, ModRegs:$Mu2, IntRegs:$Cs),
576       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_075c8dd8>;
577}
578}
579
580defm PS_loadrub : NewCircularLoad<IntRegs, ByteAccess>;
581defm PS_loadrb : NewCircularLoad<IntRegs, ByteAccess>;
582defm PS_loadruh : NewCircularLoad<IntRegs, HalfWordAccess>;
583defm PS_loadrh : NewCircularLoad<IntRegs, HalfWordAccess>;
584defm PS_loadri : NewCircularLoad<IntRegs, WordAccess>;
585defm PS_loadrd : NewCircularLoad<DoubleRegs, DoubleWordAccess>;
586
587multiclass NewCircularStore<RegisterClass RC, MemAccessSize MS> {
588
589let isCodeGenOnly = 1, isPseudo = 1, Defs = [CS], Uses = [CS],
590    addrMode = PostInc, accessSize = MS, hasSideEffects = 0 in {
591  // Use timing class of S2_storerb_pci.
592  def NAME#_pci : STInst<(outs IntRegs:$Rx32),
593       (ins IntRegs:$Rx32in, s4_0Imm:$Ii, ModRegs:$Mu2, RC:$Rt32, IntRegs:$Cs),
594       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_b4dc7630>;
595
596  // Use timing class of S2_storerb_pcr.
597  def NAME#_pcr : STInst<(outs IntRegs:$Rx32),
598       (ins IntRegs:$Rx32in, ModRegs:$Mu2, RC:$Rt32, IntRegs:$Cs),
599       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_a2b365d2>;
600}
601}
602
603defm PS_storerb : NewCircularStore<IntRegs, ByteAccess>;
604defm PS_storerh : NewCircularStore<IntRegs, HalfWordAccess>;
605defm PS_storerf : NewCircularStore<IntRegs, HalfWordAccess>;
606defm PS_storeri : NewCircularStore<IntRegs, WordAccess>;
607defm PS_storerd : NewCircularStore<DoubleRegs, WordAccess>;
608
609// A pseudo that generates a runtime crash. This is used to implement
610// __builtin_trap.
611let hasSideEffects = 1, isPseudo = 1, isCodeGenOnly = 1, isSolo = 1 in
612def PS_crash: InstHexagon<(outs), (ins), "", [], "", PSEUDO, TypePSEUDO>;
613
614// This is actual trap1 instruction from before v65. It's here since it is
615// no longer included in DepInstrInfo.td.
616def PS_trap1 : HInst<(outs), (ins u8_0Imm:$Ii), "trap1(#$Ii)", tc_53c851ab,
617                     TypeJ>, Enc_a51a9a, Requires<[HasPreV65]> {
618  let Inst{1-0} = 0b00;
619  let Inst{7-5} = 0b000;
620  let Inst{13-13} = 0b0;
621  let Inst{31-16} = 0b0101010010000000;
622}
623
624