xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonPatterns.td (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1//==- HexagonPatterns.td - Target Description for Hexagon -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// Table of contents:
10//     (0) Definitions
11//     (1) Immediates
12//     (2) Type casts
13//     (3) Extend/truncate
14//     (4) Logical
15//     (5) Compare
16//     (6) Select
17//     (7) Insert/extract
18//     (8) Shift/permute
19//     (9) Arithmetic/bitwise
20//    (10) Bit
21//    (11) PIC
22//    (12) Load
23//    (13) Store
24//    (14) Memop
25//    (15) Call
26//    (16) Branch
27//    (17) Misc
28
29// Guidelines (in no particular order):
30// 1. Avoid relying on pattern ordering to give preference to one pattern
31//    over another, prefer using AddedComplexity instead. The reason for
32//    this is to avoid unintended conseqeuences (caused by altering the
33//    order) when making changes. The current order of patterns in this
34//    file obviously does play some role, but none of the ordering was
35//    deliberately chosen (other than to create a logical structure of
36//    this file). When making changes, adding AddedComplexity to existing
37//    patterns may be needed.
38// 2. Maintain the logical structure of the file, try to put new patterns
39//    in designated sections.
40// 3. Do not use A2_combinew instruction directly, use Combinew fragment
41//    instead. It uses REG_SEQUENCE, which is more amenable to optimizations.
42// 4. Most selection macros are based on PatFrags. For DAGs that involve
43//    SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags
44//    whenever possible (see the Definitions section). When adding new
45//    macro, try to make is general to enable reuse across sections.
46// 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition
47//    that the nested operation has only one use. Having it separated in case
48//    of multiple uses avoids duplication of (processor) work.
49// 6. The v4 vector instructions (64-bit) are treated as core instructions,
50//    for example, A2_vaddh is in the "arithmetic" section with A2_add.
51// 7. When adding a pattern for an instruction with a constant-extendable
52//    operand, allow all possible kinds of inputs for the immediate value
53//    (see AnyImm/anyimm and their variants in the Definitions section).
54
55
56// --(0) Definitions -----------------------------------------------------
57//
58
59// This complex pattern exists only to create a machine instruction operand
60// of type "frame index". There doesn't seem to be a way to do that directly
61// in the patterns.
62def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;
63
64// These complex patterns are not strictly necessary, since global address
65// folding will happen during DAG combining. For distinguishing between GA
66// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
67def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
68def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
69def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>;
70def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>;
71
72// Global address or a constant being a multiple of 2^n.
73def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>;
74def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>;
75def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>;
76def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>;
77
78
79// Type helper frags.
80def V2I1:   PatLeaf<(v2i1    PredRegs:$R)>;
81def V4I1:   PatLeaf<(v4i1    PredRegs:$R)>;
82def V8I1:   PatLeaf<(v8i1    PredRegs:$R)>;
83def V4I8:   PatLeaf<(v4i8    IntRegs:$R)>;
84def V2I16:  PatLeaf<(v2i16   IntRegs:$R)>;
85
86def V8I8:   PatLeaf<(v8i8    DoubleRegs:$R)>;
87def V4I16:  PatLeaf<(v4i16   DoubleRegs:$R)>;
88def V2I32:  PatLeaf<(v2i32   DoubleRegs:$R)>;
89
90def HQ8:    PatLeaf<(VecQ8   HvxQR:$R)>;
91def HQ16:   PatLeaf<(VecQ16  HvxQR:$R)>;
92def HQ32:   PatLeaf<(VecQ32  HvxQR:$R)>;
93
94def HVI8:   PatLeaf<(VecI8   HvxVR:$R)>;
95def HVI16:  PatLeaf<(VecI16  HvxVR:$R)>;
96def HVI32:  PatLeaf<(VecI32  HvxVR:$R)>;
97
98def HWI8:   PatLeaf<(VecPI8  HvxWR:$R)>;
99def HWI16:  PatLeaf<(VecPI16 HvxWR:$R)>;
100def HWI32:  PatLeaf<(VecPI32 HvxWR:$R)>;
101
102def SDTVecLeaf:
103  SDTypeProfile<1, 0, [SDTCisVec<0>]>;
104def SDTVecVecIntOp:
105  SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>,
106                       SDTCisVT<3,i32>]>;
107
108def HexagonPTRUE:      SDNode<"HexagonISD::PTRUE",      SDTVecLeaf>;
109def HexagonPFALSE:     SDNode<"HexagonISD::PFALSE",     SDTVecLeaf>;
110def HexagonVALIGN:     SDNode<"HexagonISD::VALIGN",     SDTVecVecIntOp>;
111def HexagonVALIGNADDR: SDNode<"HexagonISD::VALIGNADDR", SDTIntUnaryOp>;
112
113def ptrue:  PatFrag<(ops), (HexagonPTRUE)>;
114def pfalse: PatFrag<(ops), (HexagonPFALSE)>;
115def pnot:   PatFrag<(ops node:$Pu), (xor node:$Pu, ptrue)>;
116
117def valign: PatFrag<(ops node:$Vt, node:$Vs, node:$Ru),
118                    (HexagonVALIGN node:$Vt, node:$Vs, node:$Ru)>;
119def valignaddr: PatFrag<(ops node:$Addr), (HexagonVALIGNADDR node:$Addr)>;
120
121// Pattern fragments to extract the low and high subregisters from a
122// 64-bit value.
123def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>;
124def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>;
125
126def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
127  return isOrEquivalentToAdd(N);
128}]>;
129
130def IsPow2_32: PatLeaf<(i32 imm), [{
131  uint32_t V = N->getZExtValue();
132  return isPowerOf2_32(V);
133}]>;
134
135def IsPow2_64: PatLeaf<(i64 imm), [{
136  uint64_t V = N->getZExtValue();
137  return isPowerOf2_64(V);
138}]>;
139
140def IsNPow2_32: PatLeaf<(i32 imm), [{
141  uint32_t NV = ~N->getZExtValue();
142  return isPowerOf2_32(NV);
143}]>;
144
145def IsPow2_64L: PatLeaf<(i64 imm), [{
146  uint64_t V = N->getZExtValue();
147  return isPowerOf2_64(V) && Log2_64(V) < 32;
148}]>;
149
150def IsPow2_64H: PatLeaf<(i64 imm), [{
151  uint64_t V = N->getZExtValue();
152  return isPowerOf2_64(V) && Log2_64(V) >= 32;
153}]>;
154
155def IsNPow2_64L: PatLeaf<(i64 imm), [{
156  uint64_t NV = ~N->getZExtValue();
157  return isPowerOf2_64(NV) && Log2_64(NV) < 32;
158}]>;
159
160def IsNPow2_64H: PatLeaf<(i64 imm), [{
161  uint64_t NV = ~N->getZExtValue();
162  return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
163}]>;
164
165class IsULE<int Width, int Arg>: PatLeaf<(i32 imm),
166  "uint64_t V = N->getZExtValue();" #
167  "return isUInt<" # Width # ">(V) && V <= " # Arg # ";"
168>;
169
170class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm),
171  "uint64_t V = N->getZExtValue();" #
172  "return isUInt<" # Width # ">(V) && V > " # Arg # ";"
173>;
174
175def SDEC1: SDNodeXForm<imm, [{
176  int32_t V = N->getSExtValue();
177  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
178}]>;
179
180def UDEC1: SDNodeXForm<imm, [{
181  uint32_t V = N->getZExtValue();
182  assert(V >= 1);
183  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
184}]>;
185
186def UDEC32: SDNodeXForm<imm, [{
187  uint32_t V = N->getZExtValue();
188  assert(V >= 32);
189  return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
190}]>;
191
192class Subi<int From>: SDNodeXForm<imm,
193  "int32_t V = " # From # " - N->getSExtValue();" #
194  "return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);"
195>;
196
197def Log2_32: SDNodeXForm<imm, [{
198  uint32_t V = N->getZExtValue();
199  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
200}]>;
201
202def Log2_64: SDNodeXForm<imm, [{
203  uint64_t V = N->getZExtValue();
204  return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
205}]>;
206
207def LogN2_32: SDNodeXForm<imm, [{
208  uint32_t NV = ~N->getZExtValue();
209  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
210}]>;
211
212def LogN2_64: SDNodeXForm<imm, [{
213  uint64_t NV = ~N->getZExtValue();
214  return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
215}]>;
216
217def NegImm8: SDNodeXForm<imm, [{
218  int8_t NV = -N->getSExtValue();
219  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
220}]>;
221
222def NegImm16: SDNodeXForm<imm, [{
223  int16_t NV = -N->getSExtValue();
224  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
225}]>;
226
227def NegImm32: SDNodeXForm<imm, [{
228  int32_t NV = -N->getSExtValue();
229  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
230}]>;
231
232
233// Helpers for type promotions/contractions.
234def I1toI32:  OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>;
235def I32toI1:  OutPatFrag<(ops node:$Rs), (i1 (C2_cmpgtui (i32 $Rs), (i32 0)))>;
236def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>;
237def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>;
238def ToAext64: OutPatFrag<(ops node:$Rs),
239  (REG_SEQUENCE DoubleRegs, (i32 (IMPLICIT_DEF)), isub_hi, (i32 $Rs), isub_lo)>;
240
241def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt),
242  (REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>;
243
244def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
245def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
246def anyimm: PatLeaf<(i32 AnyImm:$Imm)>;
247def anyint: PatLeaf<(i32 AnyInt:$Imm)>;
248
249// Global address or an aligned constant.
250def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>;
251def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>;
252def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>;
253def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>;
254
255def f32ImmPred : PatLeaf<(f32 fpimm:$F)>;
256def f64ImmPred : PatLeaf<(f64 fpimm:$F)>;
257
258// This complex pattern is really only to detect various forms of
259// sign-extension i32->i64. The selected value will be of type i64
260// whose low word is the value being extended. The high word is
261// unspecified.
262def Usxtw:  ComplexPattern<i64, 1, "DetectUseSxtw", [], []>;
263
264def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>;
265def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>;
266def Sext64: PatLeaf<(i64 Usxtw:$Rs)>;
267
268def azext: PatFrags<(ops node:$Rs), [(zext node:$Rs), (anyext node:$Rs)]>;
269def asext: PatFrags<(ops node:$Rs), [(sext node:$Rs), (anyext node:$Rs)]>;
270
271def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off),
272         (PS_fi (i32 AddrFI:$Rs), imm:$off)>;
273
274
275// Converters from unary/binary SDNode to PatFrag.
276class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>;
277class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>;
278
279class Not2<PatFrag P>
280  : PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>;
281
282// If there is a constant operand that feeds the and/or instruction,
283// do not generate the compound instructions.
284// It is not always profitable, as some times we end up with a transfer.
285// Check the below example.
286// ra = #65820; rb = lsr(rb, #8); rc ^= and (rb, ra)
287// Instead this is preferable.
288// ra = and (#65820, lsr(ra, #8)); rb = xor(rb, ra)
289class Su_ni1<PatFrag Op>
290  : PatFrag<Op.Operands, !head(Op.Fragments), [{
291            if (hasOneUse(N)){
292              // Check if Op1 is an immediate operand.
293              SDValue Op1 = N->getOperand(1);
294              return !isa<ConstantSDNode>(Op1);
295            }
296            return false;}],
297            Op.OperandTransform>;
298
299class Su<PatFrag Op>
300  : PatFrag<Op.Operands, !head(Op.Fragments), [{ return hasOneUse(N); }],
301            Op.OperandTransform>;
302
303// Main selection macros.
304
305class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred>
306  : Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>;
307
308class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
309                 PatFrag RegPred, PatFrag ImmPred>
310  : Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)),
311        (MI RegPred:$Rs, imm:$I)>;
312
313class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
314                 PatFrag RsPred, PatFrag RtPred = RsPred>
315  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
316        (MI RsPred:$Rs, RtPred:$Rt)>;
317
318class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
319                 PatFrag RegPred, PatFrag ImmPred>
320  : Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)),
321        (MI RegPred:$Rx, RegPred:$Rs, imm:$I)>;
322
323class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
324                 PatFrag RxPred, PatFrag RsPred, PatFrag RtPred>
325  : Pat<(AccOp RxPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)),
326        (MI RxPred:$Rx, RsPred:$Rs, RtPred:$Rt)>;
327
328multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val,
329                          InstHexagon InstA, InstHexagon InstB> {
330  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B),
331           (InstA Val:$A, Val:$B)>;
332  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A),
333           (InstB Val:$A, Val:$B)>;
334}
335
336multiclass MinMax_pats<InstHexagon PickT, InstHexagon PickS,
337                       PatFrag Sel, PatFrag CmpOp,
338                       ValueType CmpType, PatFrag CmpPred> {
339  def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)),
340                CmpPred:$Vt, CmpPred:$Vs),
341           (PickT CmpPred:$Vs, CmpPred:$Vt)>;
342  def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)),
343                CmpPred:$Vs, CmpPred:$Vt),
344           (PickS CmpPred:$Vs, CmpPred:$Vt)>;
345}
346
347// Bitcasts between same-size vector types are no-ops, except for the
348// actual type change.
349multiclass NopCast_pat<ValueType Ty1, ValueType Ty2, RegisterClass RC> {
350  def: Pat<(Ty1 (bitconvert (Ty2 RC:$Val))), (Ty1 RC:$Val)>;
351  def: Pat<(Ty2 (bitconvert (Ty1 RC:$Val))), (Ty2 RC:$Val)>;
352}
353
354
355// Frags for commonly used SDNodes.
356def Add: pf2<add>;    def And: pf2<and>;    def Sra: pf2<sra>;
357def Sub: pf2<sub>;    def Or:  pf2<or>;     def Srl: pf2<srl>;
358def Mul: pf2<mul>;    def Xor: pf2<xor>;    def Shl: pf2<shl>;
359
360def Rol: pf2<rotl>;
361
362// --(1) Immediate -------------------------------------------------------
363//
364
365def Imm64Lo: SDNodeXForm<imm, [{
366  return CurDAG->getTargetConstant(int32_t (N->getSExtValue()),
367                                   SDLoc(N), MVT::i32);
368}]>;
369def Imm64Hi: SDNodeXForm<imm, [{
370  return CurDAG->getTargetConstant(int32_t (N->getSExtValue()>>32),
371                                   SDLoc(N), MVT::i32);
372}]>;
373
374
375def SDTHexagonCONST32
376  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>;
377
378def HexagonJT:          SDNode<"HexagonISD::JT",          SDTIntUnaryOp>;
379def HexagonCP:          SDNode<"HexagonISD::CP",          SDTIntUnaryOp>;
380def HexagonCONST32:     SDNode<"HexagonISD::CONST32",     SDTHexagonCONST32>;
381def HexagonCONST32_GP:  SDNode<"HexagonISD::CONST32_GP",  SDTHexagonCONST32>;
382
383def TruncI64ToI32: SDNodeXForm<imm, [{
384  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
385}]>;
386
387def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>;
388def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>;
389
390def: Pat<(HexagonCONST32    tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>;
391def: Pat<(HexagonCONST32    bbl:$A),            (A2_tfrsi imm:$A)>;
392def: Pat<(HexagonCONST32    tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
393def: Pat<(HexagonCONST32_GP tblockaddress:$A),  (A2_tfrsi imm:$A)>;
394def: Pat<(HexagonCONST32_GP tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
395def: Pat<(HexagonJT         tjumptable:$A),     (A2_tfrsi imm:$A)>;
396def: Pat<(HexagonCP         tconstpool:$A),     (A2_tfrsi imm:$A)>;
397// The HVX load patterns also match CP directly. Make sure that if
398// the selection of this opcode changes, it's updated in all places.
399
400def: Pat<(i1 0),        (PS_false)>;
401def: Pat<(i1 1),        (PS_true)>;
402def: Pat<(i64 imm:$v),  (CONST64 imm:$v)>,
403     Requires<[UseSmallData,NotOptTinyCore]>;
404def: Pat<(i64 imm:$v),
405         (Combinew (A2_tfrsi (Imm64Hi $v)), (A2_tfrsi (Imm64Lo $v)))>;
406
407def ftoi : SDNodeXForm<fpimm, [{
408  APInt I = N->getValueAPF().bitcastToAPInt();
409  return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N),
410                                   MVT::getIntegerVT(I.getBitWidth()));
411}]>;
412
413def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>;
414def: Pat<(f64ImmPred:$f), (CONST64  (ftoi $f))>;
415
416def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>;
417
418// --(2) Type cast -------------------------------------------------------
419//
420
421def: OpR_R_pat<F2_conv_sf2df,      pf1<fpextend>,   f64, F32>;
422def: OpR_R_pat<F2_conv_df2sf,      pf1<fpround>,    f32, F64>;
423
424def: OpR_R_pat<F2_conv_w2sf,       pf1<sint_to_fp>, f32, I32>;
425def: OpR_R_pat<F2_conv_d2sf,       pf1<sint_to_fp>, f32, I64>;
426def: OpR_R_pat<F2_conv_w2df,       pf1<sint_to_fp>, f64, I32>;
427def: OpR_R_pat<F2_conv_d2df,       pf1<sint_to_fp>, f64, I64>;
428
429def: OpR_R_pat<F2_conv_uw2sf,      pf1<uint_to_fp>, f32, I32>;
430def: OpR_R_pat<F2_conv_ud2sf,      pf1<uint_to_fp>, f32, I64>;
431def: OpR_R_pat<F2_conv_uw2df,      pf1<uint_to_fp>, f64, I32>;
432def: OpR_R_pat<F2_conv_ud2df,      pf1<uint_to_fp>, f64, I64>;
433
434def: OpR_R_pat<F2_conv_sf2w_chop,  pf1<fp_to_sint>, i32, F32>;
435def: OpR_R_pat<F2_conv_df2w_chop,  pf1<fp_to_sint>, i32, F64>;
436def: OpR_R_pat<F2_conv_sf2d_chop,  pf1<fp_to_sint>, i64, F32>;
437def: OpR_R_pat<F2_conv_df2d_chop,  pf1<fp_to_sint>, i64, F64>;
438
439def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>;
440def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>;
441def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>;
442def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>;
443
444// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
445def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>;
446def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>;
447def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>;
448def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>;
449
450// Bit convert 32- and 64-bit types.
451// All of these are bitcastable to one another: i32, v2i16, v4i8.
452defm: NopCast_pat<i32,   v2i16, IntRegs>;
453defm: NopCast_pat<i32,    v4i8, IntRegs>;
454defm: NopCast_pat<v2i16,  v4i8, IntRegs>;
455// All of these are bitcastable to one another: i64, v2i32, v4i16, v8i8.
456defm: NopCast_pat<i64,   v2i32, DoubleRegs>;
457defm: NopCast_pat<i64,   v4i16, DoubleRegs>;
458defm: NopCast_pat<i64,    v8i8, DoubleRegs>;
459defm: NopCast_pat<v2i32, v4i16, DoubleRegs>;
460defm: NopCast_pat<v2i32,  v8i8, DoubleRegs>;
461defm: NopCast_pat<v4i16,  v8i8, DoubleRegs>;
462
463
464// --(3) Extend/truncate -------------------------------------------------
465//
466
467def: Pat<(sext_inreg I32:$Rs, i8),  (A2_sxtb I32:$Rs)>;
468def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>;
469def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>;
470def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>;
471def: Pat<(sext_inreg I64:$Rs, i8),  (A2_sxtw (A2_sxtb (LoReg $Rs)))>;
472
473def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>;
474def: Pat<(Zext64 I32:$Rs),     (ToZext64 $Rs)>;
475def: Pat<(Aext64 I32:$Rs),     (ToZext64 $Rs)>;
476
477def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>;
478def: Pat<(i1 (trunc I32:$Rs)),  (S2_tstbit_i I32:$Rs, 0)>;
479def: Pat<(i1 (trunc I64:$Rs)),  (S2_tstbit_i (LoReg $Rs), 0)>;
480
481let AddedComplexity = 20 in {
482  def: Pat<(and I32:$Rs, 255),   (A2_zxtb I32:$Rs)>;
483  def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>;
484}
485
486// Extensions from i1 or vectors of i1.
487def: Pat<(i32 (azext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
488def: Pat<(i64 (azext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
489def: Pat<(i32  (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>;
490def: Pat<(i64  (sext I1:$Pu)), (Combinew (C2_muxii PredRegs:$Pu, -1, 0),
491                                         (C2_muxii PredRegs:$Pu, -1, 0))>;
492
493def: Pat<(v2i16 (sext V2I1:$Pu)), (S2_vtrunehb (C2_mask V2I1:$Pu))>;
494def: Pat<(v2i32 (sext V2I1:$Pu)), (C2_mask V2I1:$Pu)>;
495def: Pat<(v4i8  (sext V4I1:$Pu)), (S2_vtrunehb (C2_mask V4I1:$Pu))>;
496def: Pat<(v4i16 (sext V4I1:$Pu)), (C2_mask V4I1:$Pu)>;
497def: Pat<(v8i8  (sext V8I1:$Pu)), (C2_mask V8I1:$Pu)>;
498
499def Vsplatpi: OutPatFrag<(ops node:$V),
500                         (Combinew (A2_tfrsi $V), (A2_tfrsi $V))>;
501
502def: Pat<(v2i16 (azext V2I1:$Pu)),
503         (A2_andir (LoReg (C2_mask V2I1:$Pu)), (i32 0x00010001))>;
504def: Pat<(v2i32 (azext V2I1:$Pu)),
505         (A2_andp (C2_mask V2I1:$Pu), (A2_combineii (i32 1), (i32 1)))>;
506def: Pat<(v4i8 (azext V4I1:$Pu)),
507         (A2_andir (LoReg (C2_mask V4I1:$Pu)), (i32 0x01010101))>;
508def: Pat<(v4i16 (azext V4I1:$Pu)),
509         (A2_andp (C2_mask V4I1:$Pu), (Vsplatpi (i32 0x00010001)))>;
510def: Pat<(v8i8 (azext V8I1:$Pu)),
511         (A2_andp (C2_mask V8I1:$Pu), (Vsplatpi (i32 0x01010101)))>;
512
513def: Pat<(v4i16 (azext  V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
514def: Pat<(v2i32 (azext  V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
515def: Pat<(v4i16 (sext   V4I8:$Rs)),  (S2_vsxtbh V4I8:$Rs)>;
516def: Pat<(v2i32 (sext   V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;
517
518def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
519         (Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;
520
521def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
522         (Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;
523
524// Truncate: from vector B copy all 'E'ven 'B'yte elements:
525// A[0] = B[0];  A[1] = B[2];  A[2] = B[4];  A[3] = B[6];
526def: Pat<(v4i8 (trunc V4I16:$Rs)),
527         (S2_vtrunehb V4I16:$Rs)>;
528
529// Truncate: from vector B copy all 'O'dd 'B'yte elements:
530// A[0] = B[1];  A[1] = B[3];  A[2] = B[5];  A[3] = B[7];
531// S2_vtrunohb
532
533// Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
534// A[0] = B[0];  A[1] = B[2];  A[2] = C[0];  A[3] = C[2];
535// S2_vtruneh
536
537def: Pat<(v2i16 (trunc V2I32:$Rs)),
538         (A2_combine_ll (HiReg $Rs), (LoReg $Rs))>;
539
540
541// --(4) Logical ---------------------------------------------------------
542//
543
544def: Pat<(not I1:$Ps),      (C2_not I1:$Ps)>;
545def: Pat<(pnot V2I1:$Ps),   (C2_not V2I1:$Ps)>;
546def: Pat<(pnot V4I1:$Ps),   (C2_not V4I1:$Ps)>;
547def: Pat<(pnot V8I1:$Ps),   (C2_not V8I1:$Ps)>;
548def: Pat<(add I1:$Ps, -1),  (C2_not I1:$Ps)>;
549
550multiclass BoolOpR_RR_pat<InstHexagon MI, PatFrag Op> {
551  def: OpR_RR_pat<MI, Op,   i1,   I1>;
552  def: OpR_RR_pat<MI, Op, v2i1, V2I1>;
553  def: OpR_RR_pat<MI, Op, v4i1, V4I1>;
554  def: OpR_RR_pat<MI, Op, v8i1, V8I1>;
555}
556
557multiclass BoolAccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op> {
558  def: AccRRR_pat<MI, AccOp, Op,   I1,   I1,   I1>;
559  def: AccRRR_pat<MI, AccOp, Op, V2I1, V2I1, V2I1>;
560  def: AccRRR_pat<MI, AccOp, Op, V4I1, V4I1, V4I1>;
561  def: AccRRR_pat<MI, AccOp, Op, V8I1, V8I1, V8I1>;
562}
563
564defm: BoolOpR_RR_pat<C2_and,   And>;
565defm: BoolOpR_RR_pat<C2_or,    Or>;
566defm: BoolOpR_RR_pat<C2_xor,   Xor>;
567defm: BoolOpR_RR_pat<C2_andn,  Not2<And>>;
568defm: BoolOpR_RR_pat<C2_orn,   Not2<Or>>;
569
570// op(Ps, op(Pt, Pu))
571defm: BoolAccRRR_pat<C4_and_and,   And, Su<And>>;
572defm: BoolAccRRR_pat<C4_and_or,    And, Su<Or>>;
573defm: BoolAccRRR_pat<C4_or_and,    Or,  Su<And>>;
574defm: BoolAccRRR_pat<C4_or_or,     Or,  Su<Or>>;
575
576// op(Ps, op(Pt, ~Pu))
577defm: BoolAccRRR_pat<C4_and_andn,  And, Su<Not2<And>>>;
578defm: BoolAccRRR_pat<C4_and_orn,   And, Su<Not2<Or>>>;
579defm: BoolAccRRR_pat<C4_or_andn,   Or,  Su<Not2<And>>>;
580defm: BoolAccRRR_pat<C4_or_orn,    Or,  Su<Not2<Or>>>;
581
582
583// --(5) Compare ---------------------------------------------------------
584//
585
586// Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)".
587// These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt).
588
589def: OpR_RI_pat<C2_cmpeqi,    seteq,          i1, I32,  anyimm>;
590def: OpR_RI_pat<C2_cmpgti,    setgt,          i1, I32,  anyimm>;
591def: OpR_RI_pat<C2_cmpgtui,   setugt,         i1, I32,  anyimm>;
592
593def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)),
594         (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>;
595def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)),
596         (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>;
597
598def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)),
599         (C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>;
600def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)),
601         (C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>;
602
603// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
604// that reverse the order of the operands.
605class RevCmp<PatFrag F>
606  : PatFrag<(ops node:$rhs, node:$lhs), !head(F.Fragments), F.PredicateCode,
607            F.OperandTransform>;
608
609def: OpR_RR_pat<C2_cmpeq,     seteq,          i1,   I32>;
610def: OpR_RR_pat<C2_cmpgt,     setgt,          i1,   I32>;
611def: OpR_RR_pat<C2_cmpgtu,    setugt,         i1,   I32>;
612def: OpR_RR_pat<C2_cmpgt,     RevCmp<setlt>,  i1,   I32>;
613def: OpR_RR_pat<C2_cmpgtu,    RevCmp<setult>, i1,   I32>;
614def: OpR_RR_pat<C2_cmpeqp,    seteq,          i1,   I64>;
615def: OpR_RR_pat<C2_cmpgtp,    setgt,          i1,   I64>;
616def: OpR_RR_pat<C2_cmpgtup,   setugt,         i1,   I64>;
617def: OpR_RR_pat<C2_cmpgtp,    RevCmp<setlt>,  i1,   I64>;
618def: OpR_RR_pat<C2_cmpgtup,   RevCmp<setult>, i1,   I64>;
619def: OpR_RR_pat<A2_vcmpbeq,   seteq,          i1,   V8I8>;
620def: OpR_RR_pat<A2_vcmpbeq,   seteq,          v8i1, V8I8>;
621def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  i1,   V8I8>;
622def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  v8i1, V8I8>;
623def: OpR_RR_pat<A4_vcmpbgt,   setgt,          i1,   V8I8>;
624def: OpR_RR_pat<A4_vcmpbgt,   setgt,          v8i1, V8I8>;
625def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, i1,   V8I8>;
626def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, v8i1, V8I8>;
627def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         i1,   V8I8>;
628def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         v8i1, V8I8>;
629def: OpR_RR_pat<A2_vcmpheq,   seteq,          i1,   V4I16>;
630def: OpR_RR_pat<A2_vcmpheq,   seteq,          v4i1, V4I16>;
631def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  i1,   V4I16>;
632def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  v4i1, V4I16>;
633def: OpR_RR_pat<A2_vcmphgt,   setgt,          i1,   V4I16>;
634def: OpR_RR_pat<A2_vcmphgt,   setgt,          v4i1, V4I16>;
635def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, i1,   V4I16>;
636def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, v4i1, V4I16>;
637def: OpR_RR_pat<A2_vcmphgtu,  setugt,         i1,   V4I16>;
638def: OpR_RR_pat<A2_vcmphgtu,  setugt,         v4i1, V4I16>;
639def: OpR_RR_pat<A2_vcmpweq,   seteq,          i1,   V2I32>;
640def: OpR_RR_pat<A2_vcmpweq,   seteq,          v2i1, V2I32>;
641def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  i1,   V2I32>;
642def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  v2i1, V2I32>;
643def: OpR_RR_pat<A2_vcmpwgt,   setgt,          i1,   V2I32>;
644def: OpR_RR_pat<A2_vcmpwgt,   setgt,          v2i1, V2I32>;
645def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, i1,   V2I32>;
646def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, v2i1, V2I32>;
647def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         i1,   V2I32>;
648def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         v2i1, V2I32>;
649
650def: OpR_RR_pat<F2_sfcmpeq,   seteq,          i1, F32>;
651def: OpR_RR_pat<F2_sfcmpgt,   setgt,          i1, F32>;
652def: OpR_RR_pat<F2_sfcmpge,   setge,          i1, F32>;
653def: OpR_RR_pat<F2_sfcmpeq,   setoeq,         i1, F32>;
654def: OpR_RR_pat<F2_sfcmpgt,   setogt,         i1, F32>;
655def: OpR_RR_pat<F2_sfcmpge,   setoge,         i1, F32>;
656def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setolt>, i1, F32>;
657def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setole>, i1, F32>;
658def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setlt>,  i1, F32>;
659def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setle>,  i1, F32>;
660def: OpR_RR_pat<F2_sfcmpuo,   setuo,          i1, F32>;
661
662def: OpR_RR_pat<F2_dfcmpeq,   seteq,          i1, F64>;
663def: OpR_RR_pat<F2_dfcmpgt,   setgt,          i1, F64>;
664def: OpR_RR_pat<F2_dfcmpge,   setge,          i1, F64>;
665def: OpR_RR_pat<F2_dfcmpeq,   setoeq,         i1, F64>;
666def: OpR_RR_pat<F2_dfcmpgt,   setogt,         i1, F64>;
667def: OpR_RR_pat<F2_dfcmpge,   setoge,         i1, F64>;
668def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setolt>, i1, F64>;
669def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setole>, i1, F64>;
670def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setlt>,  i1, F64>;
671def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setle>,  i1, F64>;
672def: OpR_RR_pat<F2_dfcmpuo,   setuo,          i1, F64>;
673
674// Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds.
675
676def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)),
677         (C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>;
678def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)),
679         (C2_not (C2_cmpgti I32:$Rs, imm:$u5))>;
680def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)),
681         (C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>;
682
683class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType,
684                  PatFrag RsPred, PatFrag RtPred = RsPred>
685  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
686        (Output RsPred:$Rs, RtPred:$Rt)>;
687
688class Outn<InstHexagon MI>
689  : OutPatFrag<(ops node:$Rs, node:$Rt),
690               (C2_not (MI $Rs, $Rt))>;
691
692def: OpmR_RR_pat<Outn<C2_cmpeq>,    setne,          i1,   I32>;
693def: OpmR_RR_pat<Outn<C2_cmpgt>,    setle,          i1,   I32>;
694def: OpmR_RR_pat<Outn<C2_cmpgtu>,   setule,         i1,   I32>;
695def: OpmR_RR_pat<Outn<C2_cmpgt>,    RevCmp<setge>,  i1,   I32>;
696def: OpmR_RR_pat<Outn<C2_cmpgtu>,   RevCmp<setuge>, i1,   I32>;
697def: OpmR_RR_pat<Outn<C2_cmpeqp>,   setne,          i1,   I64>;
698def: OpmR_RR_pat<Outn<C2_cmpgtp>,   setle,          i1,   I64>;
699def: OpmR_RR_pat<Outn<C2_cmpgtup>,  setule,         i1,   I64>;
700def: OpmR_RR_pat<Outn<C2_cmpgtp>,   RevCmp<setge>,  i1,   I64>;
701def: OpmR_RR_pat<Outn<C2_cmpgtup>,  RevCmp<setuge>, i1,   I64>;
702def: OpmR_RR_pat<Outn<A2_vcmpbeq>,  setne,          v8i1, V8I8>;
703def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  setle,          v8i1, V8I8>;
704def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, setule,         v8i1, V8I8>;
705def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  RevCmp<setge>,  v8i1, V8I8>;
706def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, RevCmp<setuge>, v8i1, V8I8>;
707def: OpmR_RR_pat<Outn<A2_vcmpheq>,  setne,          v4i1, V4I16>;
708def: OpmR_RR_pat<Outn<A2_vcmphgt>,  setle,          v4i1, V4I16>;
709def: OpmR_RR_pat<Outn<A2_vcmphgtu>, setule,         v4i1, V4I16>;
710def: OpmR_RR_pat<Outn<A2_vcmphgt>,  RevCmp<setge>,  v4i1, V4I16>;
711def: OpmR_RR_pat<Outn<A2_vcmphgtu>, RevCmp<setuge>, v4i1, V4I16>;
712def: OpmR_RR_pat<Outn<A2_vcmpweq>,  setne,          v2i1, V2I32>;
713def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  setle,          v2i1, V2I32>;
714def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, setule,         v2i1, V2I32>;
715def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  RevCmp<setge>,  v2i1, V2I32>;
716def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, RevCmp<setuge>, v2i1, V2I32>;
717
718let AddedComplexity = 100 in {
719  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)),
720           (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
721  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)),
722           (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
723  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
724           (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
725  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
726           (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
727}
728
729// PatFrag for AsserZext which takes the original type as a parameter.
730def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>;
731def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>;
732class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>;
733
734multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
735                      PatLeaf ImmPred, int Mask> {
736  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
737           (MI I32:$Rs, imm:$I)>;
738  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
739           (MI I32:$Rs, imm:$I)>;
740}
741
742multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
743                     PatLeaf ImmPred, int Mask> {
744  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
745           (C2_not (MI I32:$Rs, imm:$I))>;
746  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
747           (C2_not (MI I32:$Rs, imm:$I))>;
748}
749
750multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
751                      PatLeaf ImmPred, int Mask> {
752  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
753           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
754  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
755           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
756}
757
758let AddedComplexity = 200 in {
759  defm: Cmpb_pat  <A4_cmpbeqi,  seteq,  AssertZext<i8>,  IsUGT<8,31>,  255>;
760  defm: CmpbN_pat <A4_cmpbeqi,  setne,  AssertZext<i8>,  IsUGT<8,31>,  255>;
761  defm: Cmpb_pat  <A4_cmpbgtui, setugt, AssertZext<i8>,  IsUGT<32,31>, 255>;
762  defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>,  IsUGT<32,31>, 255>;
763  defm: Cmpb_pat  <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>;
764  defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>;
765  defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>,  IsUGT<32,32>, 255>;
766  defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>;
767}
768
769def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))),
770         (A4_rcmpeq I32:$Rs, I32:$Rt)>;
771def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))),
772         (A4_rcmpneq I32:$Rs, I32:$Rt)>;
773def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))),
774         (A4_rcmpeqi I32:$Rs, imm:$s8)>;
775def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))),
776         (A4_rcmpneqi I32:$Rs, imm:$s8)>;
777
778def: Pat<(i1 (seteq I1:$Ps, (i1 -1))), (I1:$Ps)>;
779def: Pat<(i1 (setne I1:$Ps, (i1 -1))), (C2_not I1:$Ps)>;
780def: Pat<(i1 (seteq I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, (C2_not I1:$Pt))>;
781def: Pat<(i1 (setne I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, I1:$Pt)>;
782
783// Floating-point comparisons with checks for ordered/unordered status.
784
785class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3>
786  : OutPatFrag<(ops node:$Rs, node:$Rt),
787               (MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>;
788
789class Cmpuf<InstHexagon MI>:  T3<C2_or,  F2_sfcmpuo, MI>;
790class Cmpud<InstHexagon MI>:  T3<C2_or,  F2_dfcmpuo, MI>;
791
792class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>;
793class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>;
794
795def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>,  setueq,         i1, F32>;
796def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  setuge,         i1, F32>;
797def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  setugt,         i1, F32>;
798def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  RevCmp<setule>, i1, F32>;
799def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  RevCmp<setult>, i1, F32>;
800def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune,         i1, F32>;
801
802def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>,  setueq,         i1, F64>;
803def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  setuge,         i1, F64>;
804def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  setugt,         i1, F64>;
805def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  RevCmp<setule>, i1, F64>;
806def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  RevCmp<setult>, i1, F64>;
807def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune,         i1, F64>;
808
809def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>;
810def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne,  i1, F32>;
811
812def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>;
813def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne,  i1, F64>;
814
815def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto,   i1, F32>;
816def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto,   i1, F64>;
817
818
819// --(6) Select ----------------------------------------------------------
820//
821
822def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt),
823         (C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>;
824def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs),
825         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
826def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8),
827         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
828def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8),
829         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
830
831def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt),
832         (C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>;
833def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8),
834         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
835def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs),
836         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
837def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8),
838         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
839
840// Map from a 64-bit select to an emulated 64-bit mux.
841// Hexagon does not support 64-bit MUXes; so emulate with combines.
842def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt),
843         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
844                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
845
846def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I),
847         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
848def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt),
849         (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
850def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt),
851         (C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>;
852def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt),
853         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
854                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
855
856def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt),
857         (C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>;
858def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt),
859         (C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>;
860
861def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs),
862         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
863def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I),
864         (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
865
866def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt),
867         (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
868def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt),
869         (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
870def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt),
871         (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;
872
873def: Pat<(vselect (pnot V8I1:$Pu), V8I8:$Rs, V8I8:$Rt),
874         (C2_vmux V8I1:$Pu, V8I8:$Rt, V8I8:$Rs)>;
875def: Pat<(vselect (pnot V4I1:$Pu), V4I16:$Rs, V4I16:$Rt),
876         (C2_vmux V4I1:$Pu, V4I16:$Rt, V4I16:$Rs)>;
877def: Pat<(vselect (pnot V2I1:$Pu), V2I32:$Rs, V2I32:$Rt),
878         (C2_vmux V2I1:$Pu, V2I32:$Rt, V2I32:$Rs)>;
879
880
881// From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw).
882def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw),
883         (C2_or (C2_and  I1:$Pu, I1:$Pv),
884                (C2_andn I1:$Pw, I1:$Pu))>;
885
886
887def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{
888  return isPositiveHalfWord(N);
889}]>;
890
891multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA,
892                            InstHexagon InstB> {
893  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
894                               IsPosHalf:$Rs, IsPosHalf:$Rt), i16),
895           (InstA IntRegs:$Rs, IntRegs:$Rt)>;
896  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
897                               IsPosHalf:$Rt, IsPosHalf:$Rs), i16),
898           (InstB IntRegs:$Rs, IntRegs:$Rt)>;
899}
900
901let AddedComplexity = 200 in {
902  defm: SelMinMax16_pats<setge,  A2_max,  A2_min>;
903  defm: SelMinMax16_pats<setgt,  A2_max,  A2_min>;
904  defm: SelMinMax16_pats<setle,  A2_min,  A2_max>;
905  defm: SelMinMax16_pats<setlt,  A2_min,  A2_max>;
906  defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>;
907  defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>;
908  defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>;
909  defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>;
910}
911
912let AddedComplexity = 200 in {
913  defm: MinMax_pats<A2_min,   A2_max,   select,  setgt, i1, I32>;
914  defm: MinMax_pats<A2_min,   A2_max,   select,  setge, i1, I32>;
915  defm: MinMax_pats<A2_max,   A2_min,   select,  setlt, i1, I32>;
916  defm: MinMax_pats<A2_max,   A2_min,   select,  setle, i1, I32>;
917  defm: MinMax_pats<A2_minu,  A2_maxu,  select, setugt, i1, I32>;
918  defm: MinMax_pats<A2_minu,  A2_maxu,  select, setuge, i1, I32>;
919  defm: MinMax_pats<A2_maxu,  A2_minu,  select, setult, i1, I32>;
920  defm: MinMax_pats<A2_maxu,  A2_minu,  select, setule, i1, I32>;
921
922  defm: MinMax_pats<A2_minp,  A2_maxp,  select,  setgt, i1, I64>;
923  defm: MinMax_pats<A2_minp,  A2_maxp,  select,  setge, i1, I64>;
924  defm: MinMax_pats<A2_maxp,  A2_minp,  select,  setlt, i1, I64>;
925  defm: MinMax_pats<A2_maxp,  A2_minp,  select,  setle, i1, I64>;
926  defm: MinMax_pats<A2_minup, A2_maxup, select, setugt, i1, I64>;
927  defm: MinMax_pats<A2_minup, A2_maxup, select, setuge, i1, I64>;
928  defm: MinMax_pats<A2_maxup, A2_minup, select, setult, i1, I64>;
929  defm: MinMax_pats<A2_maxup, A2_minup, select, setule, i1, I64>;
930}
931
932let AddedComplexity = 100 in {
933  defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setogt, i1, F32>;
934  defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setoge, i1, F32>;
935  defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setolt, i1, F32>;
936  defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setole, i1, F32>;
937}
938
939let AddedComplexity = 100, Predicates = [HasV67] in {
940  defm: MinMax_pats<F2_dfmin, F2_dfmax, select, setogt, i1, F64>;
941  defm: MinMax_pats<F2_dfmin, F2_dfmax, select, setoge, i1, F64>;
942  defm: MinMax_pats<F2_dfmax, F2_dfmin, select, setolt, i1, F64>;
943  defm: MinMax_pats<F2_dfmax, F2_dfmin, select, setole, i1, F64>;
944}
945
946defm: MinMax_pats<A2_vminb,  A2_vmaxb,  vselect,  setgt,  v8i1,  V8I8>;
947defm: MinMax_pats<A2_vminb,  A2_vmaxb,  vselect,  setge,  v8i1,  V8I8>;
948defm: MinMax_pats<A2_vminh,  A2_vmaxh,  vselect,  setgt,  v4i1, V4I16>;
949defm: MinMax_pats<A2_vminh,  A2_vmaxh,  vselect,  setge,  v4i1, V4I16>;
950defm: MinMax_pats<A2_vminw,  A2_vmaxw,  vselect,  setgt,  v2i1, V2I32>;
951defm: MinMax_pats<A2_vminw,  A2_vmaxw,  vselect,  setge,  v2i1, V2I32>;
952defm: MinMax_pats<A2_vminub, A2_vmaxub, vselect, setugt,  v8i1,  V8I8>;
953defm: MinMax_pats<A2_vminub, A2_vmaxub, vselect, setuge,  v8i1,  V8I8>;
954defm: MinMax_pats<A2_vminuh, A2_vmaxuh, vselect, setugt,  v4i1, V4I16>;
955defm: MinMax_pats<A2_vminuh, A2_vmaxuh, vselect, setuge,  v4i1, V4I16>;
956defm: MinMax_pats<A2_vminuw, A2_vmaxuw, vselect, setugt,  v2i1, V2I32>;
957defm: MinMax_pats<A2_vminuw, A2_vmaxuw, vselect, setuge,  v2i1, V2I32>;
958
959// --(7) Insert/extract --------------------------------------------------
960//
961
962def SDTHexagonINSERT:
963  SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
964                       SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
965def HexagonINSERT:    SDNode<"HexagonISD::INSERT",   SDTHexagonINSERT>;
966
967let AddedComplexity = 10 in {
968  def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2),
969           (S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>;
970  def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2),
971           (S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>;
972}
973def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, I32:$Width, I32:$Off),
974         (S2_insert_rp I32:$Rs, I32:$Rt, (Combinew $Width, $Off))>;
975def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, I32:$Width, I32:$Off),
976         (S2_insertp_rp I64:$Rs, I64:$Rt, (Combinew $Width, $Off))>;
977
978def SDTHexagonEXTRACTU
979  : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
980                  SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
981def HexagonEXTRACTU:   SDNode<"HexagonISD::EXTRACTU",   SDTHexagonEXTRACTU>;
982
983let AddedComplexity = 10 in {
984  def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5),
985           (S2_extractu I32:$Rs, imm:$u5, imm:$U5)>;
986  def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6),
987           (S2_extractup I64:$Rs, imm:$u6, imm:$U6)>;
988}
989def: Pat<(HexagonEXTRACTU I32:$Rs, I32:$Width, I32:$Off),
990         (S2_extractu_rp I32:$Rs, (Combinew $Width, $Off))>;
991def: Pat<(HexagonEXTRACTU I64:$Rs, I32:$Width, I32:$Off),
992         (S2_extractup_rp I64:$Rs, (Combinew $Width, $Off))>;
993
994def SDTHexagonVSPLAT:
995  SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
996
997def HexagonVSPLAT: SDNode<"HexagonISD::VSPLAT", SDTHexagonVSPLAT>;
998
999def: Pat<(v4i8  (HexagonVSPLAT I32:$Rs)), (S2_vsplatrb I32:$Rs)>;
1000def: Pat<(v4i16 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrh I32:$Rs)>;
1001def: Pat<(v2i32 (HexagonVSPLAT s8_0ImmPred:$s8)),
1002         (A2_combineii imm:$s8, imm:$s8)>;
1003def: Pat<(v2i32 (HexagonVSPLAT I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>;
1004
1005let AddedComplexity = 10 in
1006def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)), (S6_vsplatrbp I32:$Rs)>,
1007     Requires<[HasV62]>;
1008def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)),
1009         (Combinew (S2_vsplatrb I32:$Rs), (S2_vsplatrb I32:$Rs))>;
1010
1011
1012// --(8) Shift/permute ---------------------------------------------------
1013//
1014
1015def SDTHexagonI64I32I32: SDTypeProfile<1, 2,
1016  [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
1017
1018def HexagonCOMBINE:  SDNode<"HexagonISD::COMBINE",  SDTHexagonI64I32I32>;
1019
1020def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>;
1021
1022// The complexity of the combines involving immediates should be greater
1023// than the complexity of the combine with two registers.
1024let AddedComplexity = 50 in {
1025  def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8),
1026           (A4_combineri IntRegs:$Rs, imm:$s8)>;
1027  def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs),
1028           (A4_combineir imm:$s8, IntRegs:$Rs)>;
1029}
1030
1031// The complexity of the combine with two immediates should be greater than
1032// the complexity of a combine involving a register.
1033let AddedComplexity = 75 in {
1034  def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6),
1035           (A4_combineii imm:$s8, imm:$u6)>;
1036  def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8),
1037           (A2_combineii imm:$s8, imm:$S8)>;
1038}
1039
1040def: Pat<(bswap I32:$Rs),  (A2_swiz I32:$Rs)>;
1041def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)),
1042                                     (A2_swiz (HiReg $Rss)))>;
1043
1044def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt),  (S4_lsli imm:$s6, I32:$Rt)>;
1045def: Pat<(shl I32:$Rs, (i32 16)),         (A2_aslh I32:$Rs)>;
1046def: Pat<(sra I32:$Rs, (i32 16)),         (A2_asrh I32:$Rs)>;
1047
1048def: OpR_RI_pat<S2_asr_i_r,  Sra, i32,   I32,   u5_0ImmPred>;
1049def: OpR_RI_pat<S2_lsr_i_r,  Srl, i32,   I32,   u5_0ImmPred>;
1050def: OpR_RI_pat<S2_asl_i_r,  Shl, i32,   I32,   u5_0ImmPred>;
1051def: OpR_RI_pat<S2_asr_i_p,  Sra, i64,   I64,   u6_0ImmPred>;
1052def: OpR_RI_pat<S2_lsr_i_p,  Srl, i64,   I64,   u6_0ImmPred>;
1053def: OpR_RI_pat<S2_asl_i_p,  Shl, i64,   I64,   u6_0ImmPred>;
1054def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>;
1055def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>;
1056def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>;
1057def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>;
1058def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>;
1059def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>;
1060
1061def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>;
1062def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>;
1063def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>;
1064def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>;
1065def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>;
1066def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>;
1067
1068// Funnel shifts.
1069def IsMul8_U3: PatLeaf<(i32 imm), [{
1070  uint64_t V = N->getZExtValue();
1071  return V % 8 == 0 && isUInt<3>(V / 8);
1072}]>;
1073
1074def Divu8: SDNodeXForm<imm, [{
1075  return CurDAG->getTargetConstant(N->getZExtValue() / 8, SDLoc(N), MVT::i32);
1076}]>;
1077
1078// Funnel shift-left.
1079def FShl32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1080  (HiReg (S2_asl_i_p (Combinew $Rs, $Rt), $S))>;
1081def FShl32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1082  (HiReg (S2_asl_r_p (Combinew $Rs, $Rt), $Ru))>;
1083
1084def FShl64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1085  (S2_lsr_i_p_or (S2_asl_i_p $Rt, $S),  $Rs, (Subi<64> $S))>;
1086def FShl64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1087  (S2_lsr_r_p_or (S2_asl_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>;
1088
1089// Combined SDNodeXForm: (Divu8 (Subi<64> $S))
1090def Divu64_8: SDNodeXForm<imm, [{
1091  return CurDAG->getTargetConstant((64 - N->getSExtValue()) / 8,
1092                                   SDLoc(N), MVT::i32);
1093}]>;
1094
1095// Special cases:
1096let AddedComplexity = 100 in {
1097  def: Pat<(fshl I32:$Rs, I32:$Rt, (i32 16)),
1098           (A2_combine_lh I32:$Rs, I32:$Rt)>;
1099  def: Pat<(fshl I64:$Rs, I64:$Rt, IsMul8_U3:$S),
1100           (S2_valignib I64:$Rs, I64:$Rt, (Divu64_8 $S))>;
1101}
1102
1103let Predicates = [HasV60], AddedComplexity = 50 in {
1104  def: OpR_RI_pat<S6_rol_i_r, Rol, i32, I32, u5_0ImmPred>;
1105  def: OpR_RI_pat<S6_rol_i_p, Rol, i64, I64, u6_0ImmPred>;
1106}
1107let AddedComplexity = 30 in {
1108  def: Pat<(rotl I32:$Rs, u5_0ImmPred:$S),          (FShl32i $Rs, $Rs, imm:$S)>;
1109  def: Pat<(rotl I64:$Rs, u6_0ImmPred:$S),          (FShl64i $Rs, $Rs, imm:$S)>;
1110  def: Pat<(fshl I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShl32i $Rs, $Rt, imm:$S)>;
1111  def: Pat<(fshl I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShl64i $Rs, $Rt, imm:$S)>;
1112}
1113def: Pat<(rotl I32:$Rs, I32:$Rt),           (FShl32r $Rs, $Rs, $Rt)>;
1114def: Pat<(rotl I64:$Rs, I32:$Rt),           (FShl64r $Rs, $Rs, $Rt)>;
1115def: Pat<(fshl I32:$Rs, I32:$Rt, I32:$Ru),  (FShl32r $Rs, $Rt, $Ru)>;
1116def: Pat<(fshl I64:$Rs, I64:$Rt, I32:$Ru),  (FShl64r $Rs, $Rt, $Ru)>;
1117
1118// Funnel shift-right.
1119def FShr32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1120  (LoReg (S2_lsr_i_p (Combinew $Rs, $Rt), $S))>;
1121def FShr32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1122  (LoReg (S2_lsr_r_p (Combinew $Rs, $Rt), $Ru))>;
1123
1124def FShr64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1125  (S2_asl_i_p_or (S2_lsr_i_p $Rt, $S),  $Rs, (Subi<64> $S))>;
1126def FShr64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1127  (S2_asl_r_p_or (S2_lsr_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>;
1128
1129// Special cases:
1130let AddedComplexity = 100 in {
1131  def: Pat<(fshr I32:$Rs, I32:$Rt, (i32 16)),
1132           (A2_combine_lh I32:$Rs, I32:$Rt)>;
1133  def: Pat<(fshr I64:$Rs, I64:$Rt, IsMul8_U3:$S),
1134           (S2_valignib I64:$Rs, I64:$Rt, (Divu8 $S))>;
1135}
1136
1137let Predicates = [HasV60], AddedComplexity = 50 in {
1138  def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S), (S6_rol_i_r I32:$Rs, (Subi<32> $S))>;
1139  def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S), (S6_rol_i_p I64:$Rs, (Subi<64> $S))>;
1140}
1141let AddedComplexity = 30 in {
1142  def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S),          (FShr32i $Rs, $Rs, imm:$S)>;
1143  def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S),          (FShr64i $Rs, $Rs, imm:$S)>;
1144  def: Pat<(fshr I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShr32i $Rs, $Rt, imm:$S)>;
1145  def: Pat<(fshr I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShr64i $Rs, $Rt, imm:$S)>;
1146}
1147def: Pat<(rotr I32:$Rs, I32:$Rt),           (FShr32r $Rs, $Rs, $Rt)>;
1148def: Pat<(rotr I64:$Rs, I32:$Rt),           (FShr64r $Rs, $Rs, $Rt)>;
1149def: Pat<(fshr I32:$Rs, I32:$Rt, I32:$Ru),  (FShr32r $Rs, $Rt, $Ru)>;
1150def: Pat<(fshr I64:$Rs, I64:$Rt, I32:$Ru),  (FShr64r $Rs, $Rt, $Ru)>;
1151
1152
1153def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)),
1154         (S2_asr_i_r_rnd I32:$Rs, imm:$u5)>;
1155def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)),
1156         (S2_asr_i_p_rnd I64:$Rs, imm:$u6)>;
1157
1158// Prefer S2_addasl_rrri over S2_asl_i_r_acc.
1159let AddedComplexity = 120 in
1160def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)),
1161         (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>;
1162
1163let AddedComplexity = 100 in {
1164  def: AccRRI_pat<S2_asr_i_r_acc,   Add, Su<Sra>, I32, u5_0ImmPred>;
1165  def: AccRRI_pat<S2_asr_i_r_nac,   Sub, Su<Sra>, I32, u5_0ImmPred>;
1166  def: AccRRI_pat<S2_asr_i_r_and,   And, Su<Sra>, I32, u5_0ImmPred>;
1167  def: AccRRI_pat<S2_asr_i_r_or,    Or,  Su<Sra>, I32, u5_0ImmPred>;
1168
1169  def: AccRRI_pat<S2_asr_i_p_acc,   Add, Su<Sra>, I64, u6_0ImmPred>;
1170  def: AccRRI_pat<S2_asr_i_p_nac,   Sub, Su<Sra>, I64, u6_0ImmPred>;
1171  def: AccRRI_pat<S2_asr_i_p_and,   And, Su<Sra>, I64, u6_0ImmPred>;
1172  def: AccRRI_pat<S2_asr_i_p_or,    Or,  Su<Sra>, I64, u6_0ImmPred>;
1173
1174  def: AccRRI_pat<S2_lsr_i_r_acc,   Add, Su<Srl>, I32, u5_0ImmPred>;
1175  def: AccRRI_pat<S2_lsr_i_r_nac,   Sub, Su<Srl>, I32, u5_0ImmPred>;
1176  def: AccRRI_pat<S2_lsr_i_r_and,   And, Su<Srl>, I32, u5_0ImmPred>;
1177  def: AccRRI_pat<S2_lsr_i_r_or,    Or,  Su<Srl>, I32, u5_0ImmPred>;
1178  def: AccRRI_pat<S2_lsr_i_r_xacc,  Xor, Su<Srl>, I32, u5_0ImmPred>;
1179
1180  def: AccRRI_pat<S2_lsr_i_p_acc,   Add, Su<Srl>, I64, u6_0ImmPred>;
1181  def: AccRRI_pat<S2_lsr_i_p_nac,   Sub, Su<Srl>, I64, u6_0ImmPred>;
1182  def: AccRRI_pat<S2_lsr_i_p_and,   And, Su<Srl>, I64, u6_0ImmPred>;
1183  def: AccRRI_pat<S2_lsr_i_p_or,    Or,  Su<Srl>, I64, u6_0ImmPred>;
1184  def: AccRRI_pat<S2_lsr_i_p_xacc,  Xor, Su<Srl>, I64, u6_0ImmPred>;
1185
1186  def: AccRRI_pat<S2_asl_i_r_acc,   Add, Su<Shl>, I32, u5_0ImmPred>;
1187  def: AccRRI_pat<S2_asl_i_r_nac,   Sub, Su<Shl>, I32, u5_0ImmPred>;
1188  def: AccRRI_pat<S2_asl_i_r_and,   And, Su<Shl>, I32, u5_0ImmPred>;
1189  def: AccRRI_pat<S2_asl_i_r_or,    Or,  Su<Shl>, I32, u5_0ImmPred>;
1190  def: AccRRI_pat<S2_asl_i_r_xacc,  Xor, Su<Shl>, I32, u5_0ImmPred>;
1191
1192  def: AccRRI_pat<S2_asl_i_p_acc,   Add, Su<Shl>, I64, u6_0ImmPred>;
1193  def: AccRRI_pat<S2_asl_i_p_nac,   Sub, Su<Shl>, I64, u6_0ImmPred>;
1194  def: AccRRI_pat<S2_asl_i_p_and,   And, Su<Shl>, I64, u6_0ImmPred>;
1195  def: AccRRI_pat<S2_asl_i_p_or,    Or,  Su<Shl>, I64, u6_0ImmPred>;
1196  def: AccRRI_pat<S2_asl_i_p_xacc,  Xor, Su<Shl>, I64, u6_0ImmPred>;
1197
1198  let Predicates = [HasV60] in {
1199    def: AccRRI_pat<S6_rol_i_r_acc,   Add, Su<Rol>, I32, u5_0ImmPred>;
1200    def: AccRRI_pat<S6_rol_i_r_nac,   Sub, Su<Rol>, I32, u5_0ImmPred>;
1201    def: AccRRI_pat<S6_rol_i_r_and,   And, Su<Rol>, I32, u5_0ImmPred>;
1202    def: AccRRI_pat<S6_rol_i_r_or,    Or,  Su<Rol>, I32, u5_0ImmPred>;
1203    def: AccRRI_pat<S6_rol_i_r_xacc,  Xor, Su<Rol>, I32, u5_0ImmPred>;
1204
1205    def: AccRRI_pat<S6_rol_i_p_acc,   Add, Su<Rol>, I64, u6_0ImmPred>;
1206    def: AccRRI_pat<S6_rol_i_p_nac,   Sub, Su<Rol>, I64, u6_0ImmPred>;
1207    def: AccRRI_pat<S6_rol_i_p_and,   And, Su<Rol>, I64, u6_0ImmPred>;
1208    def: AccRRI_pat<S6_rol_i_p_or,    Or,  Su<Rol>, I64, u6_0ImmPred>;
1209    def: AccRRI_pat<S6_rol_i_p_xacc,  Xor, Su<Rol>, I64, u6_0ImmPred>;
1210  }
1211}
1212
1213let AddedComplexity = 100 in {
1214  def: AccRRR_pat<S2_asr_r_r_acc,   Add, Su<Sra>, I32, I32, I32>;
1215  def: AccRRR_pat<S2_asr_r_r_nac,   Sub, Su<Sra>, I32, I32, I32>;
1216  def: AccRRR_pat<S2_asr_r_r_and,   And, Su<Sra>, I32, I32, I32>;
1217  def: AccRRR_pat<S2_asr_r_r_or,    Or,  Su<Sra>, I32, I32, I32>;
1218
1219  def: AccRRR_pat<S2_asr_r_p_acc,   Add, Su<Sra>, I64, I64, I32>;
1220  def: AccRRR_pat<S2_asr_r_p_nac,   Sub, Su<Sra>, I64, I64, I32>;
1221  def: AccRRR_pat<S2_asr_r_p_and,   And, Su<Sra>, I64, I64, I32>;
1222  def: AccRRR_pat<S2_asr_r_p_or,    Or,  Su<Sra>, I64, I64, I32>;
1223  def: AccRRR_pat<S2_asr_r_p_xor,   Xor, Su<Sra>, I64, I64, I32>;
1224
1225  def: AccRRR_pat<S2_lsr_r_r_acc,   Add, Su<Srl>, I32, I32, I32>;
1226  def: AccRRR_pat<S2_lsr_r_r_nac,   Sub, Su<Srl>, I32, I32, I32>;
1227  def: AccRRR_pat<S2_lsr_r_r_and,   And, Su<Srl>, I32, I32, I32>;
1228  def: AccRRR_pat<S2_lsr_r_r_or,    Or,  Su<Srl>, I32, I32, I32>;
1229
1230  def: AccRRR_pat<S2_lsr_r_p_acc,   Add, Su<Srl>, I64, I64, I32>;
1231  def: AccRRR_pat<S2_lsr_r_p_nac,   Sub, Su<Srl>, I64, I64, I32>;
1232  def: AccRRR_pat<S2_lsr_r_p_and,   And, Su<Srl>, I64, I64, I32>;
1233  def: AccRRR_pat<S2_lsr_r_p_or,    Or,  Su<Srl>, I64, I64, I32>;
1234  def: AccRRR_pat<S2_lsr_r_p_xor,   Xor, Su<Srl>, I64, I64, I32>;
1235
1236  def: AccRRR_pat<S2_asl_r_r_acc,   Add, Su<Shl>, I32, I32, I32>;
1237  def: AccRRR_pat<S2_asl_r_r_nac,   Sub, Su<Shl>, I32, I32, I32>;
1238  def: AccRRR_pat<S2_asl_r_r_and,   And, Su<Shl>, I32, I32, I32>;
1239  def: AccRRR_pat<S2_asl_r_r_or,    Or,  Su<Shl>, I32, I32, I32>;
1240
1241  def: AccRRR_pat<S2_asl_r_p_acc,   Add, Su<Shl>, I64, I64, I32>;
1242  def: AccRRR_pat<S2_asl_r_p_nac,   Sub, Su<Shl>, I64, I64, I32>;
1243  def: AccRRR_pat<S2_asl_r_p_and,   And, Su<Shl>, I64, I64, I32>;
1244  def: AccRRR_pat<S2_asl_r_p_or,    Or,  Su<Shl>, I64, I64, I32>;
1245  def: AccRRR_pat<S2_asl_r_p_xor,   Xor, Su<Shl>, I64, I64, I32>;
1246}
1247
1248
1249class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp,
1250                  PatFrag RegPred, PatFrag ImmPred>
1251  : Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)),
1252        (MI anyimm:$u8, RegPred:$Rs, imm:$U5)>;
1253
1254let AddedComplexity = 200, Predicates = [UseCompound] in {
1255  def: OpshIRI_pat<S4_addi_asl_ri,  Add, Su<Shl>, I32, u5_0ImmPred>;
1256  def: OpshIRI_pat<S4_addi_lsr_ri,  Add, Su<Srl>, I32, u5_0ImmPred>;
1257  def: OpshIRI_pat<S4_subi_asl_ri,  Sub, Su<Shl>, I32, u5_0ImmPred>;
1258  def: OpshIRI_pat<S4_subi_lsr_ri,  Sub, Su<Srl>, I32, u5_0ImmPred>;
1259  def: OpshIRI_pat<S4_andi_asl_ri,  And, Su<Shl>, I32, u5_0ImmPred>;
1260  def: OpshIRI_pat<S4_andi_lsr_ri,  And, Su<Srl>, I32, u5_0ImmPred>;
1261  def: OpshIRI_pat<S4_ori_asl_ri,   Or,  Su<Shl>, I32, u5_0ImmPred>;
1262  def: OpshIRI_pat<S4_ori_lsr_ri,   Or,  Su<Srl>, I32, u5_0ImmPred>;
1263}
1264
1265// Prefer this pattern to S2_asl_i_p_or for the special case of joining
1266// two 32-bit words into a 64-bit word.
1267let AddedComplexity = 200 in
1268def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)),
1269         (Combinew I32:$a, I32:$b)>;
1270
1271def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)),
1272                     (Zext64 (and I32:$a, (i32 65535)))),
1273                 (shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))),
1274             (shl (Aext64 I32:$d), (i32 48))),
1275         (Combinew (A2_combine_ll I32:$d, I32:$c),
1276                   (A2_combine_ll I32:$b, I32:$a))>;
1277
1278let AddedComplexity = 200 in {
1279  def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))),
1280           (A2_combine_ll I32:$Rt, I32:$Rs)>;
1281  def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))),
1282           (A2_combine_lh I32:$Rt, I32:$Rs)>;
1283  def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))),
1284           (A2_combine_hl I32:$Rt, I32:$Rs)>;
1285  def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))),
1286           (A2_combine_hh I32:$Rt, I32:$Rs)>;
1287}
1288
1289def SDTHexagonVShift
1290  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>;
1291
1292def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>;
1293def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>;
1294def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>;
1295
1296def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>;
1297def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>;
1298def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>;
1299def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>;
1300def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>;
1301def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>;
1302
1303def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>;
1304def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>;
1305def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>;
1306def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>;
1307def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>;
1308def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>;
1309
1310def: Pat<(sra V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
1311         (S2_asr_i_vw V2I32:$b, imm:$c)>;
1312def: Pat<(srl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
1313         (S2_lsr_i_vw V2I32:$b, imm:$c)>;
1314def: Pat<(shl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
1315         (S2_asl_i_vw V2I32:$b, imm:$c)>;
1316def: Pat<(sra V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
1317         (S2_asr_i_vh V4I16:$b, imm:$c)>;
1318def: Pat<(srl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
1319         (S2_lsr_i_vh V4I16:$b, imm:$c)>;
1320def: Pat<(shl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
1321         (S2_asl_i_vh V4I16:$b, imm:$c)>;
1322
1323def: Pat<(HexagonVASR V2I16:$Rs, u4_0ImmPred:$S),
1324         (LoReg (S2_asr_i_vh (ToAext64 $Rs), imm:$S))>;
1325def: Pat<(HexagonVASL V2I16:$Rs, u4_0ImmPred:$S),
1326         (LoReg (S2_asl_i_vh (ToAext64 $Rs), imm:$S))>;
1327def: Pat<(HexagonVLSR V2I16:$Rs, u4_0ImmPred:$S),
1328         (LoReg (S2_lsr_i_vh (ToAext64 $Rs), imm:$S))>;
1329def: Pat<(HexagonVASR V2I16:$Rs, I32:$Rt),
1330         (LoReg (S2_asr_i_vh (ToAext64 $Rs), I32:$Rt))>;
1331def: Pat<(HexagonVASL V2I16:$Rs, I32:$Rt),
1332         (LoReg (S2_asl_i_vh (ToAext64 $Rs), I32:$Rt))>;
1333def: Pat<(HexagonVLSR V2I16:$Rs, I32:$Rt),
1334         (LoReg (S2_lsr_i_vh (ToAext64 $Rs), I32:$Rt))>;
1335
1336
1337// --(9) Arithmetic/bitwise ----------------------------------------------
1338//
1339
1340def: Pat<(abs  I32:$Rs), (A2_abs   I32:$Rs)>;
1341def: Pat<(abs  I64:$Rs), (A2_absp  I64:$Rs)>;
1342def: Pat<(not  I32:$Rs), (A2_subri -1, I32:$Rs)>;
1343def: Pat<(not  I64:$Rs), (A2_notp  I64:$Rs)>;
1344def: Pat<(ineg I64:$Rs), (A2_negp  I64:$Rs)>;
1345
1346def: Pat<(fabs F32:$Rs), (S2_clrbit_i    F32:$Rs, 31)>;
1347def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>;
1348
1349def: Pat<(fabs F64:$Rs),
1350         (Combinew (S2_clrbit_i (HiReg $Rs), 31),
1351                   (i32 (LoReg $Rs)))>;
1352def: Pat<(fneg F64:$Rs),
1353         (Combinew (S2_togglebit_i (HiReg $Rs), 31),
1354                   (i32 (LoReg $Rs)))>;
1355
1356def: Pat<(add I32:$Rs, anyimm:$s16),   (A2_addi   I32:$Rs,  imm:$s16)>;
1357def: Pat<(or  I32:$Rs, anyimm:$s10),   (A2_orir   I32:$Rs,  imm:$s10)>;
1358def: Pat<(and I32:$Rs, anyimm:$s10),   (A2_andir  I32:$Rs,  imm:$s10)>;
1359def: Pat<(sub anyimm:$s10, I32:$Rs),   (A2_subri  imm:$s10, I32:$Rs)>;
1360
1361def: OpR_RR_pat<A2_add,       Add,        i32,   I32>;
1362def: OpR_RR_pat<A2_sub,       Sub,        i32,   I32>;
1363def: OpR_RR_pat<A2_and,       And,        i32,   I32>;
1364def: OpR_RR_pat<A2_or,        Or,         i32,   I32>;
1365def: OpR_RR_pat<A2_xor,       Xor,        i32,   I32>;
1366def: OpR_RR_pat<A2_addp,      Add,        i64,   I64>;
1367def: OpR_RR_pat<A2_subp,      Sub,        i64,   I64>;
1368def: OpR_RR_pat<A2_andp,      And,        i64,   I64>;
1369def: OpR_RR_pat<A2_orp,       Or,         i64,   I64>;
1370def: OpR_RR_pat<A2_xorp,      Xor,        i64,   I64>;
1371def: OpR_RR_pat<A4_andnp,     Not2<And>,  i64,   I64>;
1372def: OpR_RR_pat<A4_ornp,      Not2<Or>,   i64,   I64>;
1373
1374def: OpR_RR_pat<A2_svaddh,    Add,        v2i16, V2I16>;
1375def: OpR_RR_pat<A2_svsubh,    Sub,        v2i16, V2I16>;
1376
1377def: OpR_RR_pat<A2_vaddub,    Add,        v8i8,  V8I8>;
1378def: OpR_RR_pat<A2_vaddh,     Add,        v4i16, V4I16>;
1379def: OpR_RR_pat<A2_vaddw,     Add,        v2i32, V2I32>;
1380def: OpR_RR_pat<A2_vsubub,    Sub,        v8i8,  V8I8>;
1381def: OpR_RR_pat<A2_vsubh,     Sub,        v4i16, V4I16>;
1382def: OpR_RR_pat<A2_vsubw,     Sub,        v2i32, V2I32>;
1383
1384def: OpR_RR_pat<A2_and,       And,        v4i8,  V4I8>;
1385def: OpR_RR_pat<A2_xor,       Xor,        v4i8,  V4I8>;
1386def: OpR_RR_pat<A2_or,        Or,         v4i8,  V4I8>;
1387def: OpR_RR_pat<A2_and,       And,        v2i16, V2I16>;
1388def: OpR_RR_pat<A2_xor,       Xor,        v2i16, V2I16>;
1389def: OpR_RR_pat<A2_or,        Or,         v2i16, V2I16>;
1390def: OpR_RR_pat<A2_andp,      And,        v8i8,  V8I8>;
1391def: OpR_RR_pat<A2_orp,       Or,         v8i8,  V8I8>;
1392def: OpR_RR_pat<A2_xorp,      Xor,        v8i8,  V8I8>;
1393def: OpR_RR_pat<A2_andp,      And,        v4i16, V4I16>;
1394def: OpR_RR_pat<A2_orp,       Or,         v4i16, V4I16>;
1395def: OpR_RR_pat<A2_xorp,      Xor,        v4i16, V4I16>;
1396def: OpR_RR_pat<A2_andp,      And,        v2i32, V2I32>;
1397def: OpR_RR_pat<A2_orp,       Or,         v2i32, V2I32>;
1398def: OpR_RR_pat<A2_xorp,      Xor,        v2i32, V2I32>;
1399
1400def: OpR_RR_pat<M2_mpyi,      Mul,        i32,   I32>;
1401def: OpR_RR_pat<M2_mpy_up,    pf2<mulhs>, i32,   I32>;
1402def: OpR_RR_pat<M2_mpyu_up,   pf2<mulhu>, i32,   I32>;
1403def: OpR_RI_pat<M2_mpysip,    Mul,        i32,   I32, u32_0ImmPred>;
1404def: OpR_RI_pat<M2_mpysmi,    Mul,        i32,   I32, s32_0ImmPred>;
1405
1406// Arithmetic on predicates.
1407def: OpR_RR_pat<C2_xor,       Add,        i1,    I1>;
1408def: OpR_RR_pat<C2_xor,       Add,        v2i1,  V2I1>;
1409def: OpR_RR_pat<C2_xor,       Add,        v4i1,  V4I1>;
1410def: OpR_RR_pat<C2_xor,       Add,        v8i1,  V8I1>;
1411def: OpR_RR_pat<C2_xor,       Sub,        i1,    I1>;
1412def: OpR_RR_pat<C2_xor,       Sub,        v2i1,  V2I1>;
1413def: OpR_RR_pat<C2_xor,       Sub,        v4i1,  V4I1>;
1414def: OpR_RR_pat<C2_xor,       Sub,        v8i1,  V8I1>;
1415def: OpR_RR_pat<C2_and,       Mul,        i1,    I1>;
1416def: OpR_RR_pat<C2_and,       Mul,        v2i1,  V2I1>;
1417def: OpR_RR_pat<C2_and,       Mul,        v4i1,  V4I1>;
1418def: OpR_RR_pat<C2_and,       Mul,        v8i1,  V8I1>;
1419
1420def: OpR_RR_pat<F2_sfadd,     pf2<fadd>,    f32, F32>;
1421def: OpR_RR_pat<F2_sfsub,     pf2<fsub>,    f32, F32>;
1422def: OpR_RR_pat<F2_sfmpy,     pf2<fmul>,    f32, F32>;
1423def: OpR_RR_pat<F2_sfmin,     pf2<fminnum>, f32, F32>;
1424def: OpR_RR_pat<F2_sfmax,     pf2<fmaxnum>, f32, F32>;
1425
1426let Predicates = [HasV66] in {
1427  def: OpR_RR_pat<F2_dfadd,     pf2<fadd>,    f64, F64>;
1428  def: OpR_RR_pat<F2_dfsub,     pf2<fsub>,    f64, F64>;
1429}
1430
1431def DfMpy: OutPatFrag<(ops node:$Rs, node:$Rt),
1432  (F2_dfmpyhh
1433    (F2_dfmpylh
1434      (F2_dfmpylh
1435        (F2_dfmpyll $Rs, $Rt),
1436      $Rs, $Rt),
1437    $Rt, $Rs),
1438  $Rs, $Rt)>;
1439
1440let Predicates = [HasV67,UseUnsafeMath], AddedComplexity = 50 in {
1441  def: Pat<(fmul F64:$Rs, F64:$Rt), (DfMpy $Rs, $Rt)>;
1442}
1443let Predicates = [HasV67] in {
1444  def: OpR_RR_pat<F2_dfmin,     pf2<fminnum>, f64, F64>;
1445  def: OpR_RR_pat<F2_dfmax,     pf2<fmaxnum>, f64, F64>;
1446
1447  def: Pat<(fmul F64:$Rs, F64:$Rt), (DfMpy (F2_dfmpyfix $Rs, $Rt),
1448                                           (F2_dfmpyfix $Rt, $Rs))>;
1449}
1450
1451// In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add,
1452// over add-add with individual multiplies as inputs.
1453let AddedComplexity = 10 in {
1454  def: AccRRI_pat<M2_macsip,    Add, Su<Mul>, I32, u32_0ImmPred>;
1455  def: AccRRI_pat<M2_macsin,    Sub, Su<Mul>, I32, u32_0ImmPred>;
1456  def: AccRRR_pat<M2_maci,      Add, Su<Mul>, I32, I32, I32>;
1457  let Predicates = [HasV66] in
1458  def: AccRRR_pat<M2_mnaci,     Sub, Su<Mul>, I32, I32, I32>;
1459}
1460
1461def: AccRRI_pat<M2_naccii,    Sub, Su<Add>, I32, s32_0ImmPred>;
1462def: AccRRI_pat<M2_accii,     Add, Su<Add>, I32, s32_0ImmPred>;
1463def: AccRRR_pat<M2_acci,      Add, Su<Add>, I32, I32, I32>;
1464
1465// Mulh for vectors
1466//
1467def: Pat<(v2i32 (mulhu V2I32:$Rss, V2I32:$Rtt)),
1468         (Combinew (M2_mpyu_up (HiReg $Rss), (HiReg $Rtt)),
1469                   (M2_mpyu_up (LoReg $Rss), (LoReg $Rtt)))>;
1470
1471def: Pat<(v2i32 (mulhs V2I32:$Rs, V2I32:$Rt)),
1472         (Combinew (M2_mpy_up (HiReg $Rs), (HiReg $Rt)),
1473                   (M2_mpy_up (LoReg $Rt), (LoReg $Rt)))>;
1474
1475def Mulhub:
1476  OutPatFrag<(ops node:$Rss, node:$Rtt),
1477             (Combinew (S2_vtrunohb (M5_vmpybuu (HiReg $Rss), (HiReg $Rtt))),
1478                       (S2_vtrunohb (M5_vmpybuu (LoReg $Rss), (LoReg $Rtt))))>;
1479
1480// Equivalent of byte-wise arithmetic shift right by 7 in v8i8.
1481def Asr7:
1482  OutPatFrag<(ops node:$Rss), (C2_mask (C2_not (A4_vcmpbgti $Rss, 0)))>;
1483
1484def: Pat<(v8i8 (mulhu V8I8:$Rss, V8I8:$Rtt)),
1485         (Mulhub $Rss, $Rtt)>;
1486
1487def: Pat<(v8i8 (mulhs V8I8:$Rss, V8I8:$Rtt)),
1488         (A2_vsubub
1489           (Mulhub $Rss, $Rtt),
1490           (A2_vaddub (A2_andp V8I8:$Rss, (Asr7 $Rtt)),
1491                      (A2_andp V8I8:$Rtt, (Asr7 $Rss))))>;
1492
1493def Mpysh:
1494  OutPatFrag<(ops node:$Rs, node:$Rt), (M2_vmpy2s_s0 $Rs, $Rt)>;
1495def Mpyshh:
1496  OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (HiReg $Rss), (HiReg $Rtt))>;
1497def Mpyshl:
1498  OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (LoReg $Rss), (LoReg $Rtt))>;
1499
1500def Mulhsh:
1501  OutPatFrag<(ops node:$Rss, node:$Rtt),
1502             (Combinew (A2_combine_hh (HiReg (Mpyshh $Rss, $Rtt)),
1503                                      (LoReg (Mpyshh $Rss, $Rtt))),
1504                       (A2_combine_hh (HiReg (Mpyshl $Rss, $Rtt)),
1505                                      (LoReg (Mpyshl $Rss, $Rtt))))>;
1506
1507def: Pat<(v4i16 (mulhs V4I16:$Rss, V4I16:$Rtt)), (Mulhsh $Rss, $Rtt)>;
1508
1509def: Pat<(v4i16 (mulhu V4I16:$Rss, V4I16:$Rtt)),
1510         (A2_vaddh
1511           (Mulhsh $Rss, $Rtt),
1512           (A2_vaddh (A2_andp V4I16:$Rss, (S2_asr_i_vh $Rtt, 15)),
1513                     (A2_andp V4I16:$Rtt, (S2_asr_i_vh $Rss, 15))))>;
1514
1515
1516def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)),
1517         (M2_mpysin IntRegs:$Rs, imm:$u8)>;
1518
1519def n8_0ImmPred: PatLeaf<(i32 imm), [{
1520  int64_t V = N->getSExtValue();
1521  return -255 <= V && V <= 0;
1522}]>;
1523
1524// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
1525def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8),
1526         (M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>;
1527
1528def: Pat<(add Sext64:$Rs, I64:$Rt),
1529         (A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>;
1530
1531def: AccRRR_pat<M4_and_and,   And, Su_ni1<And>,  I32,  I32,  I32>;
1532def: AccRRR_pat<M4_and_or,    And, Su_ni1<Or>,   I32,  I32,  I32>;
1533def: AccRRR_pat<M4_and_xor,   And, Su<Xor>,      I32,  I32,  I32>;
1534def: AccRRR_pat<M4_or_and,    Or,  Su_ni1<And>,  I32,  I32,  I32>;
1535def: AccRRR_pat<M4_or_or,     Or,  Su_ni1<Or>,   I32,  I32,  I32>;
1536def: AccRRR_pat<M4_or_xor,    Or,  Su<Xor>,      I32,  I32,  I32>;
1537def: AccRRR_pat<M4_xor_and,   Xor, Su_ni1<And>,  I32,  I32,  I32>;
1538def: AccRRR_pat<M4_xor_or,    Xor, Su_ni1<Or>,   I32,  I32,  I32>;
1539def: AccRRR_pat<M2_xor_xacc,  Xor, Su<Xor>,      I32,  I32,  I32>;
1540def: AccRRR_pat<M4_xor_xacc,  Xor, Su<Xor>,      I64,  I64,  I64>;
1541
1542// For dags like (or (and (not _), _), (shl _, _)) where the "or" with
1543// one argument matches the patterns below, and with the other argument
1544// matches S2_asl_r_r_or, etc, prefer the patterns below.
1545let AddedComplexity = 110 in {  // greater than S2_asl_r_r_and/or/xor.
1546  def: AccRRR_pat<M4_and_andn,  And, Su<Not2<And>>, I32,  I32,  I32>;
1547  def: AccRRR_pat<M4_or_andn,   Or,  Su<Not2<And>>, I32,  I32,  I32>;
1548  def: AccRRR_pat<M4_xor_andn,  Xor, Su<Not2<And>>, I32,  I32,  I32>;
1549}
1550
1551// S4_addaddi and S4_subaddi don't have tied operands, so give them
1552// a bit of preference.
1553let AddedComplexity = 30, Predicates = [UseCompound] in {
1554  def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)),
1555           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
1556  def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)),
1557           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
1558  def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)),
1559           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1560  def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru),
1561           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1562  def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6),
1563           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1564}
1565
1566let Predicates = [UseCompound] in
1567def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)),
1568         (S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>;
1569
1570def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)),
1571         (S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
1572def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)),
1573         (S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
1574
1575
1576def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
1577         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1578def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
1579         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1580
1581def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)),
1582         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
1583def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)),
1584         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
1585def: Pat<(mul Sext64:$Rs, Sext64:$Rt),
1586         (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1587
1588def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
1589         (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1590def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
1591         (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1592def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
1593         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1594def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
1595         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1596def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
1597         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1598def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
1599         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1600
1601// Add halfword.
1602def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16),
1603         (A2_addh_l16_ll I32:$Rt, I32:$Rs)>;
1604def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
1605         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
1606def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)),
1607         (A2_addh_h16_ll I32:$Rt, I32:$Rs)>;
1608
1609// Subtract halfword.
1610def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16),
1611         (A2_subh_l16_ll I32:$Rt, I32:$Rs)>;
1612def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
1613         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
1614def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)),
1615         (A2_subh_h16_ll I32:$Rt, I32:$Rs)>;
1616
1617def: Pat<(mul I64:$Rss, I64:$Rtt),
1618         (Combinew
1619           (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))),
1620                             (LoReg $Rss),
1621                             (HiReg $Rtt)),
1622                    (LoReg $Rtt),
1623                    (HiReg $Rss)),
1624           (i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>;
1625
1626def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt),
1627  (A2_addp
1628    (M2_dpmpyuu_acc_s0
1629      (S2_lsr_i_p
1630        (A2_addp
1631          (M2_dpmpyuu_acc_s0
1632            (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32),
1633            (HiReg $Rss),
1634            (LoReg $Rtt)),
1635          (A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))),
1636        32),
1637      (HiReg $Rss),
1638      (HiReg $Rtt)),
1639    (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>;
1640
1641// Multiply 64-bit unsigned and use upper result.
1642def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>;
1643
1644// Multiply 64-bit signed and use upper result.
1645//
1646// For two signed 64-bit integers A and B, let A' and B' denote A and B
1647// with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the
1648// sign bit of A (and identically for B). With this notation, the signed
1649// product A*B can be written as:
1650//   AB = (-2^63 s(A) + A') * (-2^63 s(B) + B')
1651//      = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B'
1652//      = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A']
1653//      = (unsigned product AB) - 2^64 [s(A)B'+s(B)A']
1654
1655// Clear the sign bit in a 64-bit register.
1656def ClearSign : OutPatFrag<(ops node:$Rss),
1657  (Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>;
1658
1659def : Pat <(mulhs I64:$Rss, I64:$Rtt),
1660  (A2_subp
1661    (MulHU $Rss, $Rtt),
1662    (A2_addp
1663      (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)),
1664      (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>;
1665
1666// Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions
1667// will put the immediate addend into a register, while these instructions will
1668// use it directly. Such a construct does not appear in the middle of a gep,
1669// where M2_macsip would be preferable.
1670let AddedComplexity = 20, Predicates = [UseCompound] in {
1671  def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6),
1672           (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>;
1673  def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6),
1674           (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>;
1675}
1676
1677// Keep these instructions less preferable to M2_macsip/M2_macsin.
1678let Predicates = [UseCompound] in {
1679  def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)),
1680           (M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>;
1681  def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)),
1682           (M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>;
1683  def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)),
1684           (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>;
1685}
1686
1687def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx),
1688         (F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>;
1689def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx),
1690         (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
1691def: Pat<(fma F32:$Rs, (fneg F32:$Rt), F32:$Rx),
1692         (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
1693
1694def: Pat<(mul V2I32:$Rs, V2I32:$Rt),
1695         (PS_vmulw V2I32:$Rs, V2I32:$Rt)>;
1696def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)),
1697         (PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>;
1698
1699// Add/subtract two v4i8: Hexagon does not have an insn for this one, so
1700// we use the double add v8i8, and use only the low part of the result.
1701def: Pat<(add V4I8:$Rs, V4I8:$Rt),
1702         (LoReg (A2_vaddub (ToAext64 $Rs), (ToAext64 $Rt)))>;
1703def: Pat<(sub V4I8:$Rs, V4I8:$Rt),
1704         (LoReg (A2_vsubub (ToAext64 $Rs), (ToAext64 $Rt)))>;
1705
1706// Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two
1707// half-words, and saturates the result to a 32-bit value, except the
1708// saturation never happens (it can only occur with scaling).
1709def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
1710         (LoReg (S2_vtrunewh (A2_combineii 0, 0),
1711                             (M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>;
1712def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
1713         (S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)),
1714                      (M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>;
1715
1716// Multiplies two v4i8 vectors.
1717def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
1718         (S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>;
1719
1720// Multiplies two v8i8 vectors.
1721def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
1722         (Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))),
1723                   (S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>;
1724
1725
1726// --(10) Bit ------------------------------------------------------------
1727//
1728
1729// Count leading zeros.
1730def: Pat<(i32 (ctlz I32:$Rs)),                (S2_cl0 I32:$Rs)>;
1731def: Pat<(i32 (trunc (ctlz I64:$Rss))),       (S2_cl0p I64:$Rss)>;
1732
1733// Count trailing zeros.
1734def: Pat<(i32 (cttz I32:$Rs)),                (S2_ct0 I32:$Rs)>;
1735def: Pat<(i32 (trunc (cttz I64:$Rss))),       (S2_ct0p I64:$Rss)>;
1736
1737// Count leading ones.
1738def: Pat<(i32 (ctlz (not I32:$Rs))),          (S2_cl1 I32:$Rs)>;
1739def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
1740
1741// Count trailing ones.
1742def: Pat<(i32 (cttz (not I32:$Rs))),           (S2_ct1 I32:$Rs)>;
1743def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;
1744
1745// Define leading/trailing patterns that require zero-extensions to 64 bits.
1746def: Pat<(i64 (ctlz I64:$Rss)),               (ToZext64 (S2_cl0p I64:$Rss))>;
1747def: Pat<(i64 (cttz I64:$Rss)),               (ToZext64 (S2_ct0p I64:$Rss))>;
1748def: Pat<(i64 (ctlz (not I64:$Rss))),         (ToZext64 (S2_cl1p I64:$Rss))>;
1749def: Pat<(i64 (cttz (not I64:$Rss))),         (ToZext64 (S2_ct1p I64:$Rss))>;
1750
1751def: Pat<(i64 (ctpop I64:$Rss)),  (ToZext64 (S5_popcountp I64:$Rss))>;
1752def: Pat<(i32 (ctpop I32:$Rs)),   (S5_popcountp (A4_combineir 0, I32:$Rs))>;
1753
1754def: Pat<(bitreverse I32:$Rs),    (S2_brev I32:$Rs)>;
1755def: Pat<(bitreverse I64:$Rss),   (S2_brevp I64:$Rss)>;
1756
1757let AddedComplexity = 20 in { // Complexity greater than and/or/xor
1758  def: Pat<(and I32:$Rs, IsNPow2_32:$V),
1759           (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
1760  def: Pat<(or I32:$Rs, IsPow2_32:$V),
1761           (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
1762  def: Pat<(xor I32:$Rs, IsPow2_32:$V),
1763           (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;
1764
1765  def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
1766           (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1767  def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
1768           (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1769  def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
1770           (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
1771}
1772
1773// Clr/set/toggle bit for 64-bit values with immediate bit index.
1774let AddedComplexity = 20 in { // Complexity greater than and/or/xor
1775  def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
1776           (Combinew (i32 (HiReg $Rss)),
1777                     (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>;
1778  def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
1779           (Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
1780                     (i32 (LoReg $Rss)))>;
1781
1782  def: Pat<(or I64:$Rss, IsPow2_64L:$V),
1783           (Combinew (i32 (HiReg $Rss)),
1784                     (S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>;
1785  def: Pat<(or I64:$Rss, IsPow2_64H:$V),
1786           (Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
1787                     (i32 (LoReg $Rss)))>;
1788
1789  def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
1790           (Combinew (i32 (HiReg $Rss)),
1791                     (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>;
1792  def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
1793           (Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
1794                     (i32 (LoReg $Rss)))>;
1795}
1796
1797
1798let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
1799  def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
1800           (S2_tstbit_i IntRegs:$Rs, imm:$u5)>;
1801  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1802           (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1803  def: Pat<(i1 (trunc I32:$Rs)),
1804           (S2_tstbit_i IntRegs:$Rs, 0)>;
1805  def: Pat<(i1 (trunc I64:$Rs)),
1806           (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
1807}
1808
1809def: Pat<(and (srl I32:$Rs, u5_0ImmPred:$u5), 1),
1810         (I1toI32 (S2_tstbit_i I32:$Rs, imm:$u5))>;
1811def: Pat<(and (srl I64:$Rss, IsULE<32,31>:$u6), 1),
1812         (ToZext64 (I1toI32 (S2_tstbit_i (LoReg $Rss), imm:$u6)))>;
1813def: Pat<(and (srl I64:$Rss, IsUGT<32,31>:$u6), 1),
1814         (ToZext64 (I1toI32 (S2_tstbit_i (HiReg $Rss), (UDEC32 $u6))))>;
1815
1816def: Pat<(and (not (srl I32:$Rs, u5_0ImmPred:$u5)), 1),
1817         (I1toI32 (S4_ntstbit_i I32:$Rs, imm:$u5))>;
1818def: Pat<(and (not (srl I64:$Rss, IsULE<32,31>:$u6)), 1),
1819         (ToZext64 (I1toI32 (S4_ntstbit_i (LoReg $Rss), imm:$u6)))>;
1820def: Pat<(and (not (srl I64:$Rss, IsUGT<32,31>:$u6)), 1),
1821         (ToZext64 (I1toI32 (S4_ntstbit_i (HiReg $Rss), (UDEC32 $u6))))>;
1822
1823let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
1824  def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)),
1825           (C2_bitsclri IntRegs:$Rs, imm:$u6)>;
1826  def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)),
1827           (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
1828}
1829
1830let AddedComplexity = 10 in   // Complexity greater than compare reg-reg.
1831def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)),
1832         (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
1833
1834def SDTTestBit:
1835  SDTypeProfile<1, 2, [SDTCisVT<0, i1>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
1836def HexagonTSTBIT: SDNode<"HexagonISD::TSTBIT", SDTTestBit>;
1837
1838def: Pat<(HexagonTSTBIT I32:$Rs, u5_0ImmPred:$u5),
1839         (S2_tstbit_i I32:$Rs, imm:$u5)>;
1840def: Pat<(HexagonTSTBIT I32:$Rs, I32:$Rt),
1841         (S2_tstbit_r I32:$Rs, I32:$Rt)>;
1842
1843// Add extra complexity to prefer these instructions over bitsset/bitsclr.
1844// The reason is that tstbit/ntstbit can be folded into a compound instruction:
1845//   if ([!]tstbit(...)) jump ...
1846let AddedComplexity = 20 in {   // Complexity greater than cmp reg-imm.
1847  def: Pat<(i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)),
1848           (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
1849  def: Pat<(i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)),
1850           (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
1851  def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1852           (S4_ntstbit_r I32:$Rs, I32:$Rt)>;
1853  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1854           (S2_tstbit_r I32:$Rs, I32:$Rt)>;
1855}
1856
1857def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64L:$u6), 0)),
1858         (S4_ntstbit_i (LoReg $Rs), (Log2_64 $u6))>;
1859def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64H:$u6), 0)),
1860         (S4_ntstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 $u6))))>;
1861def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64L:$u6), 0)),
1862         (S2_tstbit_i (LoReg $Rs), (Log2_64 imm:$u6))>;
1863def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64H:$u6), 0)),
1864         (S2_tstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 imm:$u6))))>;
1865
1866// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
1867// represented as a compare against "value & 0xFF", which is an exact match
1868// for cmpb (same for cmph). The patterns below do not contain any additional
1869// complexity that would make them preferable, and if they were actually used
1870// instead of cmpb/cmph, they would result in a compare against register that
1871// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
1872def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)),
1873         (C4_nbitsclri I32:$Rs, imm:$u6)>;
1874def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
1875         (C4_nbitsclr I32:$Rs, I32:$Rt)>;
1876def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
1877         (C4_nbitsset I32:$Rs, I32:$Rt)>;
1878
1879// Special patterns to address certain cases where the "top-down" matching
1880// algorithm would cause suboptimal selection.
1881
1882let AddedComplexity = 100 in {
1883  // Avoid A4_rcmp[n]eqi in these cases:
1884  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1885           (I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
1886  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1887           (I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
1888  def: Pat<(i32 (zext (i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)))),
1889           (I1toI32 (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5)))>;
1890  def: Pat<(i32 (zext (i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)))),
1891           (I1toI32 (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5)))>;
1892  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1893           (I1toI32 (S4_ntstbit_r I32:$Rs, I32:$Rt))>;
1894  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1895           (I1toI32 (S2_tstbit_r I32:$Rs, I32:$Rt))>;
1896}
1897
1898// --(11) PIC ------------------------------------------------------------
1899//
1900
1901def SDT_HexagonAtGot
1902  : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
1903def SDT_HexagonAtPcrel
1904  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
1905
1906// AT_GOT address-of-GOT, address-of-global, offset-in-global
1907def HexagonAtGot       : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
1908// AT_PCREL address-of-global
1909def HexagonAtPcrel     : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;
1910
1911def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
1912         (L2_loadri_io I32:$got, imm:$addr)>;
1913def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
1914         (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
1915def: Pat<(HexagonAtPcrel I32:$addr),
1916         (C4_addipc imm:$addr)>;
1917
1918// The HVX load patterns also match AT_PCREL directly. Make sure that
1919// if the selection of this opcode changes, it's updated in all places.
1920
1921
1922// --(12) Load -----------------------------------------------------------
1923//
1924
1925def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
1926  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
1927}]>;
1928def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
1929  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
1930}]>;
1931
1932def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
1933  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
1934}]>;
1935def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
1936  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
1937}]>;
1938
1939def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
1940  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
1941}]>;
1942def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
1943  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
1944}]>;
1945
1946// Patterns to select load-indexed: Rs + Off.
1947// - frameindex [+ imm],
1948multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
1949                       InstHexagon MI> {
1950  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
1951           (VT (MI AddrFI:$fi, imm:$Off))>;
1952  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
1953           (VT (MI AddrFI:$fi, imm:$Off))>;
1954  def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
1955}
1956
1957// Patterns to select load-indexed: Rs + Off.
1958// - base reg [+ imm]
1959multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
1960                       InstHexagon MI> {
1961  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
1962           (VT (MI IntRegs:$Rs, imm:$Off))>;
1963  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
1964           (VT (MI IntRegs:$Rs, imm:$Off))>;
1965  def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>;
1966}
1967
1968// Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi.
1969multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
1970                      InstHexagon MI> {
1971  defm: Loadxfi_pat<Load, VT, ImmPred, MI>;
1972  defm: Loadxgi_pat<Load, VT, ImmPred, MI>;
1973}
1974
1975// Patterns to select load reg indexed: Rs + Off with a value modifier.
1976// - frameindex [+ imm]
1977multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
1978                        PatLeaf ImmPred, InstHexagon MI> {
1979  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
1980           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
1981  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
1982           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
1983  def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>;
1984}
1985
1986// Patterns to select load reg indexed: Rs + Off with a value modifier.
1987// - base reg [+ imm]
1988multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
1989                        PatLeaf ImmPred, InstHexagon MI> {
1990  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
1991           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
1992  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
1993           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
1994  def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
1995}
1996
1997// Patterns to select load reg indexed: Rs + Off with a value modifier.
1998// Combines Loadxfim + Loadxgim.
1999multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2000                       PatLeaf ImmPred, InstHexagon MI> {
2001  defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>;
2002  defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>;
2003}
2004
2005// Pattern to select load reg reg-indexed: Rs + Rt<<u2.
2006class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI>
2007  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
2008        (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;
2009
2010// Pattern to select load reg reg-indexed: Rs + Rt<<0.
2011class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI>
2012  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
2013        (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;
2014
2015// Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier.
2016class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2017                      InstHexagon MI>
2018  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
2019        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>;
2020
2021// Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier.
2022class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2023                      InstHexagon MI>
2024  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
2025        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>;
2026
2027// Pattern to select load long-offset reg-indexed: Addr + Rt<<u2.
2028// Don't match for u2==0, instead use reg+imm for those cases.
2029class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI>
2030  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
2031        (VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>;
2032
2033class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod,
2034                  InstHexagon MI>
2035  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
2036        (VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>;
2037
2038// Pattern to select load absolute.
2039class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
2040  : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;
2041
2042// Pattern to select load absolute with value modifier.
2043class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
2044                 InstHexagon MI>
2045  : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;
2046
2047
2048let AddedComplexity = 20 in {
2049  defm: Loadxi_pat<extloadi1,       i32,   anyimm0, L2_loadrub_io>;
2050  defm: Loadxi_pat<extloadi8,       i32,   anyimm0, L2_loadrub_io>;
2051  defm: Loadxi_pat<extloadi16,      i32,   anyimm1, L2_loadruh_io>;
2052  defm: Loadxi_pat<extloadv2i8,     v2i16, anyimm1, L2_loadbzw2_io>;
2053  defm: Loadxi_pat<extloadv4i8,     v4i16, anyimm2, L2_loadbzw4_io>;
2054  defm: Loadxi_pat<sextloadi8,      i32,   anyimm0, L2_loadrb_io>;
2055  defm: Loadxi_pat<sextloadi16,     i32,   anyimm1, L2_loadrh_io>;
2056  defm: Loadxi_pat<sextloadv2i8,    v2i16, anyimm1, L2_loadbsw2_io>;
2057  defm: Loadxi_pat<sextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
2058  defm: Loadxi_pat<zextloadi1,      i32,   anyimm0, L2_loadrub_io>;
2059  defm: Loadxi_pat<zextloadi8,      i32,   anyimm0, L2_loadrub_io>;
2060  defm: Loadxi_pat<zextloadi16,     i32,   anyimm1, L2_loadruh_io>;
2061  defm: Loadxi_pat<zextloadv2i8,    v2i16, anyimm1, L2_loadbzw2_io>;
2062  defm: Loadxi_pat<zextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
2063  defm: Loadxi_pat<load,            i32,   anyimm2, L2_loadri_io>;
2064  defm: Loadxi_pat<load,            v2i16, anyimm2, L2_loadri_io>;
2065  defm: Loadxi_pat<load,            v4i8,  anyimm2, L2_loadri_io>;
2066  defm: Loadxi_pat<load,            i64,   anyimm3, L2_loadrd_io>;
2067  defm: Loadxi_pat<load,            v2i32, anyimm3, L2_loadrd_io>;
2068  defm: Loadxi_pat<load,            v4i16, anyimm3, L2_loadrd_io>;
2069  defm: Loadxi_pat<load,            v8i8,  anyimm3, L2_loadrd_io>;
2070  defm: Loadxi_pat<load,            f32,   anyimm2, L2_loadri_io>;
2071  defm: Loadxi_pat<load,            f64,   anyimm3, L2_loadrd_io>;
2072  // No sextloadi1.
2073
2074  defm: Loadxi_pat<atomic_load_8 ,  i32, anyimm0, L2_loadrub_io>;
2075  defm: Loadxi_pat<atomic_load_16,  i32, anyimm1, L2_loadruh_io>;
2076  defm: Loadxi_pat<atomic_load_32,  i32, anyimm2, L2_loadri_io>;
2077  defm: Loadxi_pat<atomic_load_64,  i64, anyimm3, L2_loadrd_io>;
2078}
2079
2080let AddedComplexity = 30 in {
2081  defm: Loadxim_pat<extloadi1,    i64, ToAext64, anyimm0, L2_loadrub_io>;
2082  defm: Loadxim_pat<extloadi8,    i64, ToAext64, anyimm0, L2_loadrub_io>;
2083  defm: Loadxim_pat<extloadi16,   i64, ToAext64, anyimm1, L2_loadruh_io>;
2084  defm: Loadxim_pat<extloadi32,   i64, ToAext64, anyimm2, L2_loadri_io>;
2085  defm: Loadxim_pat<zextloadi1,   i64, ToZext64, anyimm0, L2_loadrub_io>;
2086  defm: Loadxim_pat<zextloadi8,   i64, ToZext64, anyimm0, L2_loadrub_io>;
2087  defm: Loadxim_pat<zextloadi16,  i64, ToZext64, anyimm1, L2_loadruh_io>;
2088  defm: Loadxim_pat<zextloadi32,  i64, ToZext64, anyimm2, L2_loadri_io>;
2089  defm: Loadxim_pat<sextloadi8,   i64, ToSext64, anyimm0, L2_loadrb_io>;
2090  defm: Loadxim_pat<sextloadi16,  i64, ToSext64, anyimm1, L2_loadrh_io>;
2091  defm: Loadxim_pat<sextloadi32,  i64, ToSext64, anyimm2, L2_loadri_io>;
2092}
2093
2094let AddedComplexity  = 60 in {
2095  def: Loadxu_pat<extloadi8,    i32,   anyimm0, L4_loadrub_ur>;
2096  def: Loadxu_pat<extloadi16,   i32,   anyimm1, L4_loadruh_ur>;
2097  def: Loadxu_pat<extloadv2i8,  v2i16, anyimm1, L4_loadbzw2_ur>;
2098  def: Loadxu_pat<extloadv4i8,  v4i16, anyimm2, L4_loadbzw4_ur>;
2099  def: Loadxu_pat<sextloadi8,   i32,   anyimm0, L4_loadrb_ur>;
2100  def: Loadxu_pat<sextloadi16,  i32,   anyimm1, L4_loadrh_ur>;
2101  def: Loadxu_pat<sextloadv2i8, v2i16, anyimm1, L4_loadbsw2_ur>;
2102  def: Loadxu_pat<sextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
2103  def: Loadxu_pat<zextloadi8,   i32,   anyimm0, L4_loadrub_ur>;
2104  def: Loadxu_pat<zextloadi16,  i32,   anyimm1, L4_loadruh_ur>;
2105  def: Loadxu_pat<zextloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
2106  def: Loadxu_pat<zextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
2107  def: Loadxu_pat<load,         i32,   anyimm2, L4_loadri_ur>;
2108  def: Loadxu_pat<load,         v2i16, anyimm2, L4_loadri_ur>;
2109  def: Loadxu_pat<load,         v4i8,  anyimm2, L4_loadri_ur>;
2110  def: Loadxu_pat<load,         i64,   anyimm3, L4_loadrd_ur>;
2111  def: Loadxu_pat<load,         v2i32, anyimm3, L4_loadrd_ur>;
2112  def: Loadxu_pat<load,         v4i16, anyimm3, L4_loadrd_ur>;
2113  def: Loadxu_pat<load,         v8i8,  anyimm3, L4_loadrd_ur>;
2114  def: Loadxu_pat<load,         f32,   anyimm2, L4_loadri_ur>;
2115  def: Loadxu_pat<load,         f64,   anyimm3, L4_loadrd_ur>;
2116
2117  def: Loadxum_pat<sextloadi8,  i64, anyimm0, ToSext64, L4_loadrb_ur>;
2118  def: Loadxum_pat<zextloadi8,  i64, anyimm0, ToZext64, L4_loadrub_ur>;
2119  def: Loadxum_pat<extloadi8,   i64, anyimm0, ToAext64, L4_loadrub_ur>;
2120  def: Loadxum_pat<sextloadi16, i64, anyimm1, ToSext64, L4_loadrh_ur>;
2121  def: Loadxum_pat<zextloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
2122  def: Loadxum_pat<extloadi16,  i64, anyimm1, ToAext64, L4_loadruh_ur>;
2123  def: Loadxum_pat<sextloadi32, i64, anyimm2, ToSext64, L4_loadri_ur>;
2124  def: Loadxum_pat<zextloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
2125  def: Loadxum_pat<extloadi32,  i64, anyimm2, ToAext64, L4_loadri_ur>;
2126}
2127
2128let AddedComplexity = 40 in {
2129  def: Loadxr_shl_pat<extloadi8,     i32,   L4_loadrub_rr>;
2130  def: Loadxr_shl_pat<zextloadi8,    i32,   L4_loadrub_rr>;
2131  def: Loadxr_shl_pat<sextloadi8,    i32,   L4_loadrb_rr>;
2132  def: Loadxr_shl_pat<extloadi16,    i32,   L4_loadruh_rr>;
2133  def: Loadxr_shl_pat<zextloadi16,   i32,   L4_loadruh_rr>;
2134  def: Loadxr_shl_pat<sextloadi16,   i32,   L4_loadrh_rr>;
2135  def: Loadxr_shl_pat<load,          i32,   L4_loadri_rr>;
2136  def: Loadxr_shl_pat<load,          v2i16, L4_loadri_rr>;
2137  def: Loadxr_shl_pat<load,          v4i8,  L4_loadri_rr>;
2138  def: Loadxr_shl_pat<load,          i64,   L4_loadrd_rr>;
2139  def: Loadxr_shl_pat<load,          v2i32, L4_loadrd_rr>;
2140  def: Loadxr_shl_pat<load,          v4i16, L4_loadrd_rr>;
2141  def: Loadxr_shl_pat<load,          v8i8,  L4_loadrd_rr>;
2142  def: Loadxr_shl_pat<load,          f32,   L4_loadri_rr>;
2143  def: Loadxr_shl_pat<load,          f64,   L4_loadrd_rr>;
2144}
2145
2146let AddedComplexity = 20 in {
2147  def: Loadxr_add_pat<extloadi8,     i32,   L4_loadrub_rr>;
2148  def: Loadxr_add_pat<zextloadi8,    i32,   L4_loadrub_rr>;
2149  def: Loadxr_add_pat<sextloadi8,    i32,   L4_loadrb_rr>;
2150  def: Loadxr_add_pat<extloadi16,    i32,   L4_loadruh_rr>;
2151  def: Loadxr_add_pat<zextloadi16,   i32,   L4_loadruh_rr>;
2152  def: Loadxr_add_pat<sextloadi16,   i32,   L4_loadrh_rr>;
2153  def: Loadxr_add_pat<load,          i32,   L4_loadri_rr>;
2154  def: Loadxr_add_pat<load,          v2i16, L4_loadri_rr>;
2155  def: Loadxr_add_pat<load,          v4i8,  L4_loadri_rr>;
2156  def: Loadxr_add_pat<load,          i64,   L4_loadrd_rr>;
2157  def: Loadxr_add_pat<load,          v2i32, L4_loadrd_rr>;
2158  def: Loadxr_add_pat<load,          v4i16, L4_loadrd_rr>;
2159  def: Loadxr_add_pat<load,          v8i8,  L4_loadrd_rr>;
2160  def: Loadxr_add_pat<load,          f32,   L4_loadri_rr>;
2161  def: Loadxr_add_pat<load,          f64,   L4_loadrd_rr>;
2162}
2163
2164let AddedComplexity = 40 in {
2165  def: Loadxrm_shl_pat<extloadi8,    i64, ToAext64, L4_loadrub_rr>;
2166  def: Loadxrm_shl_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
2167  def: Loadxrm_shl_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
2168  def: Loadxrm_shl_pat<extloadi16,   i64, ToAext64, L4_loadruh_rr>;
2169  def: Loadxrm_shl_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
2170  def: Loadxrm_shl_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
2171  def: Loadxrm_shl_pat<extloadi32,   i64, ToAext64, L4_loadri_rr>;
2172  def: Loadxrm_shl_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
2173  def: Loadxrm_shl_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
2174}
2175
2176let AddedComplexity = 20 in {
2177  def: Loadxrm_add_pat<extloadi8,    i64, ToAext64, L4_loadrub_rr>;
2178  def: Loadxrm_add_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
2179  def: Loadxrm_add_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
2180  def: Loadxrm_add_pat<extloadi16,   i64, ToAext64, L4_loadruh_rr>;
2181  def: Loadxrm_add_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
2182  def: Loadxrm_add_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
2183  def: Loadxrm_add_pat<extloadi32,   i64, ToAext64, L4_loadri_rr>;
2184  def: Loadxrm_add_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
2185  def: Loadxrm_add_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
2186}
2187
2188// Absolute address
2189
2190let AddedComplexity  = 60 in {
2191  def: Loada_pat<zextloadi1,      i32,   anyimm0, PS_loadrubabs>;
2192  def: Loada_pat<sextloadi8,      i32,   anyimm0, PS_loadrbabs>;
2193  def: Loada_pat<extloadi8,       i32,   anyimm0, PS_loadrubabs>;
2194  def: Loada_pat<zextloadi8,      i32,   anyimm0, PS_loadrubabs>;
2195  def: Loada_pat<sextloadi16,     i32,   anyimm1, PS_loadrhabs>;
2196  def: Loada_pat<extloadi16,      i32,   anyimm1, PS_loadruhabs>;
2197  def: Loada_pat<zextloadi16,     i32,   anyimm1, PS_loadruhabs>;
2198  def: Loada_pat<load,            i32,   anyimm2, PS_loadriabs>;
2199  def: Loada_pat<load,            v2i16, anyimm2, PS_loadriabs>;
2200  def: Loada_pat<load,            v4i8,  anyimm2, PS_loadriabs>;
2201  def: Loada_pat<load,            i64,   anyimm3, PS_loadrdabs>;
2202  def: Loada_pat<load,            v2i32, anyimm3, PS_loadrdabs>;
2203  def: Loada_pat<load,            v4i16, anyimm3, PS_loadrdabs>;
2204  def: Loada_pat<load,            v8i8,  anyimm3, PS_loadrdabs>;
2205  def: Loada_pat<load,            f32,   anyimm2, PS_loadriabs>;
2206  def: Loada_pat<load,            f64,   anyimm3, PS_loadrdabs>;
2207
2208  def: Loada_pat<atomic_load_8,   i32, anyimm0, PS_loadrubabs>;
2209  def: Loada_pat<atomic_load_16,  i32, anyimm1, PS_loadruhabs>;
2210  def: Loada_pat<atomic_load_32,  i32, anyimm2, PS_loadriabs>;
2211  def: Loada_pat<atomic_load_64,  i64, anyimm3, PS_loadrdabs>;
2212}
2213
2214let AddedComplexity  = 30 in {
2215  def: Loadam_pat<extloadi8,      i64, anyimm0, ToAext64, PS_loadrubabs>;
2216  def: Loadam_pat<sextloadi8,     i64, anyimm0, ToSext64, PS_loadrbabs>;
2217  def: Loadam_pat<zextloadi8,     i64, anyimm0, ToZext64, PS_loadrubabs>;
2218  def: Loadam_pat<extloadi16,     i64, anyimm1, ToAext64, PS_loadruhabs>;
2219  def: Loadam_pat<sextloadi16,    i64, anyimm1, ToSext64, PS_loadrhabs>;
2220  def: Loadam_pat<zextloadi16,    i64, anyimm1, ToZext64, PS_loadruhabs>;
2221  def: Loadam_pat<extloadi32,     i64, anyimm2, ToAext64, PS_loadriabs>;
2222  def: Loadam_pat<sextloadi32,    i64, anyimm2, ToSext64, PS_loadriabs>;
2223  def: Loadam_pat<zextloadi32,    i64, anyimm2, ToZext64, PS_loadriabs>;
2224
2225  def: Loadam_pat<load,           i1,  anyimm0, I32toI1,  PS_loadrubabs>;
2226  def: Loadam_pat<zextloadi1,     i64, anyimm0, ToZext64, PS_loadrubabs>;
2227}
2228
2229// GP-relative address
2230
2231let AddedComplexity  = 100 in {
2232  def: Loada_pat<extloadi1,       i32,   addrgp,  L2_loadrubgp>;
2233  def: Loada_pat<zextloadi1,      i32,   addrgp,  L2_loadrubgp>;
2234  def: Loada_pat<extloadi8,       i32,   addrgp,  L2_loadrubgp>;
2235  def: Loada_pat<sextloadi8,      i32,   addrgp,  L2_loadrbgp>;
2236  def: Loada_pat<zextloadi8,      i32,   addrgp,  L2_loadrubgp>;
2237  def: Loada_pat<extloadi16,      i32,   addrgp,  L2_loadruhgp>;
2238  def: Loada_pat<sextloadi16,     i32,   addrgp,  L2_loadrhgp>;
2239  def: Loada_pat<zextloadi16,     i32,   addrgp,  L2_loadruhgp>;
2240  def: Loada_pat<load,            i32,   addrgp,  L2_loadrigp>;
2241  def: Loada_pat<load,            v2i16, addrgp,  L2_loadrigp>;
2242  def: Loada_pat<load,            v4i8,  addrgp,  L2_loadrigp>;
2243  def: Loada_pat<load,            i64,   addrgp,  L2_loadrdgp>;
2244  def: Loada_pat<load,            v2i32, addrgp,  L2_loadrdgp>;
2245  def: Loada_pat<load,            v4i16, addrgp,  L2_loadrdgp>;
2246  def: Loada_pat<load,            v8i8,  addrgp,  L2_loadrdgp>;
2247  def: Loada_pat<load,            f32,   addrgp,  L2_loadrigp>;
2248  def: Loada_pat<load,            f64,   addrgp,  L2_loadrdgp>;
2249
2250  def: Loada_pat<atomic_load_8,   i32, addrgp,  L2_loadrubgp>;
2251  def: Loada_pat<atomic_load_16,  i32, addrgp,  L2_loadruhgp>;
2252  def: Loada_pat<atomic_load_32,  i32, addrgp,  L2_loadrigp>;
2253  def: Loada_pat<atomic_load_64,  i64, addrgp,  L2_loadrdgp>;
2254}
2255
2256let AddedComplexity  = 70 in {
2257  def: Loadam_pat<extloadi8,      i64, addrgp,  ToAext64, L2_loadrubgp>;
2258  def: Loadam_pat<sextloadi8,     i64, addrgp,  ToSext64, L2_loadrbgp>;
2259  def: Loadam_pat<zextloadi8,     i64, addrgp,  ToZext64, L2_loadrubgp>;
2260  def: Loadam_pat<extloadi16,     i64, addrgp,  ToAext64, L2_loadruhgp>;
2261  def: Loadam_pat<sextloadi16,    i64, addrgp,  ToSext64, L2_loadrhgp>;
2262  def: Loadam_pat<zextloadi16,    i64, addrgp,  ToZext64, L2_loadruhgp>;
2263  def: Loadam_pat<extloadi32,     i64, addrgp,  ToAext64, L2_loadrigp>;
2264  def: Loadam_pat<sextloadi32,    i64, addrgp,  ToSext64, L2_loadrigp>;
2265  def: Loadam_pat<zextloadi32,    i64, addrgp,  ToZext64, L2_loadrigp>;
2266
2267  def: Loadam_pat<load,           i1,  addrgp,  I32toI1,  L2_loadrubgp>;
2268  def: Loadam_pat<zextloadi1,     i64, addrgp,  ToZext64, L2_loadrubgp>;
2269}
2270
2271
2272// Sign-extending loads of i1 need to replicate the lowest bit throughout
2273// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
2274// do the trick.
2275let AddedComplexity = 20 in
2276def: Pat<(i32 (sextloadi1 I32:$Rs)),
2277         (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;
2278
2279// Patterns for loads of i1:
2280def: Pat<(i1 (load AddrFI:$fi)),
2281         (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
2282def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))),
2283         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
2284def: Pat<(i1 (load I32:$Rs)),
2285         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;
2286
2287
2288// --(13) Store ----------------------------------------------------------
2289//
2290
2291class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, InstHexagon MI>
2292  : Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4),
2293        (MI I32:$Rx, imm:$s4, Value:$Rt)>;
2294
2295def: Storepi_pat<post_truncsti8,  I32, s4_0ImmPred, S2_storerb_pi>;
2296def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
2297def: Storepi_pat<post_store,      I32, s4_2ImmPred, S2_storeri_pi>;
2298def: Storepi_pat<post_store,      I64, s4_3ImmPred, S2_storerd_pi>;
2299
2300// Patterns for generating stores, where the address takes different forms:
2301// - frameindex,
2302// - frameindex + offset,
2303// - base + offset,
2304// - simple (base address without offset).
2305// These would usually be used together (via Storexi_pat defined below), but
2306// in some cases one may want to apply different properties (such as
2307// AddedComplexity) to the individual patterns.
2308class Storexi_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2309  : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
2310
2311multiclass Storexi_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2312                              InstHexagon MI> {
2313  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
2314           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
2315  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
2316           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
2317}
2318
2319multiclass Storexi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2320                           InstHexagon MI> {
2321  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
2322           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
2323  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
2324           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
2325}
2326
2327class Storexi_base_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2328  : Pat<(Store Value:$Rt, I32:$Rs),
2329        (MI IntRegs:$Rs, 0, Value:$Rt)>;
2330
2331// Patterns for generating stores, where the address takes different forms,
2332// and where the value being stored is transformed through the value modifier
2333// ValueMod.  The address forms are same as above.
2334class Storexim_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2335                      InstHexagon MI>
2336  : Pat<(Store Value:$Rs, AddrFI:$fi),
2337        (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
2338
2339multiclass Storexim_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2340                               PatFrag ValueMod, InstHexagon MI> {
2341  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
2342           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
2343  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
2344           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
2345}
2346
2347multiclass Storexim_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2348                            PatFrag ValueMod, InstHexagon MI> {
2349  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
2350           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
2351  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
2352           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
2353}
2354
2355class Storexim_base_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2356                        InstHexagon MI>
2357  : Pat<(Store Value:$Rt, I32:$Rs),
2358        (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;
2359
2360multiclass Storexi_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
2361                       InstHexagon MI> {
2362  defm: Storexi_fi_add_pat <Store, Value, ImmPred, MI>;
2363  def:  Storexi_fi_pat     <Store, Value,          MI>;
2364  defm: Storexi_add_pat    <Store, Value, ImmPred, MI>;
2365}
2366
2367multiclass Storexim_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
2368                        PatFrag ValueMod, InstHexagon MI> {
2369  defm: Storexim_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
2370  def:  Storexim_fi_pat     <Store, Value,          ValueMod, MI>;
2371  defm: Storexim_add_pat    <Store, Value, ImmPred, ValueMod, MI>;
2372}
2373
2374// Reg<<S + Imm
2375class Storexu_shl_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, InstHexagon MI>
2376  : Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)),
2377        (MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>;
2378
2379// Reg<<S + Reg
2380class Storexr_shl_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2381  : Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))),
2382        (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;
2383
2384// Reg + Reg
2385class Storexr_add_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2386  : Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)),
2387        (MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>;
2388
2389class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
2390  : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;
2391
2392class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
2393                  InstHexagon MI>
2394  : Pat<(Store Value:$val, Addr:$addr),
2395        (MI Addr:$addr, (ValueMod Value:$val))>;
2396
2397// Regular stores in the DAG have two operands: value and address.
2398// Atomic stores also have two, but they are reversed: address, value.
2399// To use atomic stores with the patterns, they need to have their operands
2400// swapped. This relies on the knowledge that the F.Fragment uses names
2401// "ptr" and "val".
2402class AtomSt<PatFrag F>
2403  : PatFrag<(ops node:$val, node:$ptr), !head(F.Fragments), F.PredicateCode,
2404            F.OperandTransform> {
2405  let IsAtomic = F.IsAtomic;
2406  let MemoryVT = F.MemoryVT;
2407}
2408
2409
2410def IMM_BYTE : SDNodeXForm<imm, [{
2411  // -1 can be represented as 255, etc.
2412  // assigning to a byte restores our desired signed value.
2413  int8_t imm = N->getSExtValue();
2414  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2415}]>;
2416
2417def IMM_HALF : SDNodeXForm<imm, [{
2418  // -1 can be represented as 65535, etc.
2419  // assigning to a short restores our desired signed value.
2420  int16_t imm = N->getSExtValue();
2421  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2422}]>;
2423
2424def IMM_WORD : SDNodeXForm<imm, [{
2425  // -1 can be represented as 4294967295, etc.
2426  // Currently, it's not doing this. But some optimization
2427  // might convert -1 to a large +ve number.
2428  // assigning to a word restores our desired signed value.
2429  int32_t imm = N->getSExtValue();
2430  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2431}]>;
2432
2433def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
2434def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
2435def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;
2436
2437// Even though the offset is not extendable in the store-immediate, we
2438// can still generate the fi# in the base address. If the final offset
2439// is not valid for the instruction, we will replace it with a scratch
2440// register.
2441class SmallStackStore<PatFrag Store>
2442  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
2443  return isSmallStackStore(cast<StoreSDNode>(N));
2444}]>;
2445
2446// This is the complement of SmallStackStore.
2447class LargeStackStore<PatFrag Store>
2448  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
2449  return !isSmallStackStore(cast<StoreSDNode>(N));
2450}]>;
2451
2452// Preferred addressing modes for various combinations of stored value
2453// and address computation.
2454// For stores where the address and value are both immediates, prefer
2455// store-immediate. The reason is that the constant-extender optimization
2456// can replace store-immediate with a store-register, but there is nothing
2457// to generate a store-immediate out of a store-register.
2458//
2459//         C     R     F    F+C   R+C   R+R   R<<S+C   R<<S+R
2460// --+-------+-----+-----+------+-----+-----+--------+--------
2461// C |   imm | imm | imm |  imm | imm |  rr |     ur |     rr
2462// R |  abs* |  io |  io |   io |  io |  rr |     ur |     rr
2463//
2464// (*) Absolute or GP-relative.
2465//
2466// Note that any expression can be matched by Reg. In particular, an immediate
2467// can always be placed in a register, so patterns checking for Imm should
2468// have a higher priority than the ones involving Reg that could also match.
2469// For example, *(p+4) could become r1=#4; memw(r0+r1<<#0) instead of the
2470// preferred memw(r0+#4). Similarly Reg+Imm or Reg+Reg should be tried before
2471// Reg alone.
2472//
2473// The order in which the different combinations are tried:
2474//
2475//         C     F     R    F+C   R+C   R+R   R<<S+C   R<<S+R
2476// --+-------+-----+-----+------+-----+-----+--------+--------
2477// C |     1 |   6 |   - |    5 |   9 |   - |      - |      -
2478// R |     2 |   8 |  12 |    7 |  10 |  11 |      3 |      4
2479
2480
2481// First, match the unusual case of doubleword store into Reg+Imm4, i.e.
2482// a store where the offset Imm4 is a multiple of 4, but not of 8. This
2483// implies that Reg is also a proper multiple of 4. To still generate a
2484// doubleword store, add 4 to Reg, and subtract 4 from the offset.
2485
2486def s30_2ProperPred  : PatLeaf<(i32 imm), [{
2487  int64_t v = (int64_t)N->getSExtValue();
2488  return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v);
2489}]>;
2490def RoundTo8 : SDNodeXForm<imm, [{
2491  int32_t Imm = N->getSExtValue();
2492  return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32);
2493}]>;
2494
2495let AddedComplexity = 150 in
2496def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)),
2497         (S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>;
2498
2499class Storexi_abs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2500  : Pat<(Store Value:$val, anyimm:$addr),
2501        (MI (ToI32 $addr), 0, Value:$val)>;
2502class Storexim_abs_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2503                       InstHexagon MI>
2504  : Pat<(Store Value:$val, anyimm:$addr),
2505        (MI (ToI32 $addr), 0, (ValueMod Value:$val))>;
2506
2507let AddedComplexity = 140 in {
2508  def: Storexim_abs_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
2509  def: Storexim_abs_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
2510  def: Storexim_abs_pat<store,         anyint, ToImmWord, S4_storeiri_io>;
2511
2512  def: Storexi_abs_pat<truncstorei8,  anyimm, S4_storeirb_io>;
2513  def: Storexi_abs_pat<truncstorei16, anyimm, S4_storeirh_io>;
2514  def: Storexi_abs_pat<store,         anyimm, S4_storeiri_io>;
2515}
2516
2517// GP-relative address
2518let AddedComplexity = 120 in {
2519  def: Storea_pat<truncstorei8,               I32, addrgp, S2_storerbgp>;
2520  def: Storea_pat<truncstorei16,              I32, addrgp, S2_storerhgp>;
2521  def: Storea_pat<store,                      I32, addrgp, S2_storerigp>;
2522  def: Storea_pat<store,                     V4I8, addrgp, S2_storerigp>;
2523  def: Storea_pat<store,                    V2I16, addrgp, S2_storerigp>;
2524  def: Storea_pat<store,                      I64, addrgp, S2_storerdgp>;
2525  def: Storea_pat<store,                     V8I8, addrgp, S2_storerdgp>;
2526  def: Storea_pat<store,                    V4I16, addrgp, S2_storerdgp>;
2527  def: Storea_pat<store,                    V2I32, addrgp, S2_storerdgp>;
2528  def: Storea_pat<store,                      F32, addrgp, S2_storerigp>;
2529  def: Storea_pat<store,                      F64, addrgp, S2_storerdgp>;
2530  def: Storea_pat<AtomSt<atomic_store_8>,     I32, addrgp, S2_storerbgp>;
2531  def: Storea_pat<AtomSt<atomic_store_16>,    I32, addrgp, S2_storerhgp>;
2532  def: Storea_pat<AtomSt<atomic_store_32>,    I32, addrgp, S2_storerigp>;
2533  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, addrgp, S2_storerigp>;
2534  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, addrgp, S2_storerigp>;
2535  def: Storea_pat<AtomSt<atomic_store_64>,    I64, addrgp, S2_storerdgp>;
2536  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, addrgp, S2_storerdgp>;
2537  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, addrgp, S2_storerdgp>;
2538  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, addrgp, S2_storerdgp>;
2539
2540  def: Stoream_pat<truncstorei8,  I64, addrgp, LoReg,    S2_storerbgp>;
2541  def: Stoream_pat<truncstorei16, I64, addrgp, LoReg,    S2_storerhgp>;
2542  def: Stoream_pat<truncstorei32, I64, addrgp, LoReg,    S2_storerigp>;
2543  def: Stoream_pat<store,         I1,  addrgp, I1toI32,  S2_storerbgp>;
2544}
2545
2546// Absolute address
2547let AddedComplexity = 110 in {
2548  def: Storea_pat<truncstorei8,               I32, anyimm0, PS_storerbabs>;
2549  def: Storea_pat<truncstorei16,              I32, anyimm1, PS_storerhabs>;
2550  def: Storea_pat<store,                      I32, anyimm2, PS_storeriabs>;
2551  def: Storea_pat<store,                     V4I8, anyimm2, PS_storeriabs>;
2552  def: Storea_pat<store,                    V2I16, anyimm2, PS_storeriabs>;
2553  def: Storea_pat<store,                      I64, anyimm3, PS_storerdabs>;
2554  def: Storea_pat<store,                     V8I8, anyimm3, PS_storerdabs>;
2555  def: Storea_pat<store,                    V4I16, anyimm3, PS_storerdabs>;
2556  def: Storea_pat<store,                    V2I32, anyimm3, PS_storerdabs>;
2557  def: Storea_pat<store,                      F32, anyimm2, PS_storeriabs>;
2558  def: Storea_pat<store,                      F64, anyimm3, PS_storerdabs>;
2559  def: Storea_pat<AtomSt<atomic_store_8>,     I32, anyimm0, PS_storerbabs>;
2560  def: Storea_pat<AtomSt<atomic_store_16>,    I32, anyimm1, PS_storerhabs>;
2561  def: Storea_pat<AtomSt<atomic_store_32>,    I32, anyimm2, PS_storeriabs>;
2562  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, PS_storeriabs>;
2563  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, PS_storeriabs>;
2564  def: Storea_pat<AtomSt<atomic_store_64>,    I64, anyimm3, PS_storerdabs>;
2565  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, PS_storerdabs>;
2566  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, PS_storerdabs>;
2567  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, PS_storerdabs>;
2568
2569  def: Stoream_pat<truncstorei8,  I64, anyimm0, LoReg,    PS_storerbabs>;
2570  def: Stoream_pat<truncstorei16, I64, anyimm1, LoReg,    PS_storerhabs>;
2571  def: Stoream_pat<truncstorei32, I64, anyimm2, LoReg,    PS_storeriabs>;
2572  def: Stoream_pat<store,         I1,  anyimm0, I1toI32,  PS_storerbabs>;
2573}
2574
2575// Reg<<S + Imm
2576let AddedComplexity = 100 in {
2577  def: Storexu_shl_pat<truncstorei8,    I32, anyimm0, S4_storerb_ur>;
2578  def: Storexu_shl_pat<truncstorei16,   I32, anyimm1, S4_storerh_ur>;
2579  def: Storexu_shl_pat<store,           I32, anyimm2, S4_storeri_ur>;
2580  def: Storexu_shl_pat<store,          V4I8, anyimm2, S4_storeri_ur>;
2581  def: Storexu_shl_pat<store,         V2I16, anyimm2, S4_storeri_ur>;
2582  def: Storexu_shl_pat<store,           I64, anyimm3, S4_storerd_ur>;
2583  def: Storexu_shl_pat<store,          V8I8, anyimm3, S4_storerd_ur>;
2584  def: Storexu_shl_pat<store,         V4I16, anyimm3, S4_storerd_ur>;
2585  def: Storexu_shl_pat<store,         V2I32, anyimm3, S4_storerd_ur>;
2586  def: Storexu_shl_pat<store,           F32, anyimm2, S4_storeri_ur>;
2587  def: Storexu_shl_pat<store,           F64, anyimm3, S4_storerd_ur>;
2588
2589  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)),
2590           (S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>;
2591}
2592
2593// Reg<<S + Reg
2594let AddedComplexity = 90 in {
2595  def: Storexr_shl_pat<truncstorei8,    I32, S4_storerb_rr>;
2596  def: Storexr_shl_pat<truncstorei16,   I32, S4_storerh_rr>;
2597  def: Storexr_shl_pat<store,           I32, S4_storeri_rr>;
2598  def: Storexr_shl_pat<store,          V4I8, S4_storeri_rr>;
2599  def: Storexr_shl_pat<store,         V2I16, S4_storeri_rr>;
2600  def: Storexr_shl_pat<store,           I64, S4_storerd_rr>;
2601  def: Storexr_shl_pat<store,          V8I8, S4_storerd_rr>;
2602  def: Storexr_shl_pat<store,         V4I16, S4_storerd_rr>;
2603  def: Storexr_shl_pat<store,         V2I32, S4_storerd_rr>;
2604  def: Storexr_shl_pat<store,           F32, S4_storeri_rr>;
2605  def: Storexr_shl_pat<store,           F64, S4_storerd_rr>;
2606
2607  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)),
2608           (S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>;
2609}
2610
2611class SS_<PatFrag F> : SmallStackStore<F>;
2612class LS_<PatFrag F> : LargeStackStore<F>;
2613
2614multiclass IMFA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
2615  defm: Storexim_fi_add_pat<S, V, O, M, I>;
2616}
2617multiclass IFA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
2618  defm: Storexi_fi_add_pat<S, V, O, I>;
2619}
2620
2621// Fi+Imm, store-immediate
2622let AddedComplexity = 80 in {
2623  defm: IMFA_<SS_<truncstorei8>,  anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
2624  defm: IMFA_<SS_<truncstorei16>, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
2625  defm: IMFA_<SS_<store>,         anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
2626
2627  defm: IFA_<SS_<truncstorei8>,   anyimm, u6_0ImmPred, S4_storeirb_io>;
2628  defm: IFA_<SS_<truncstorei16>,  anyimm, u6_1ImmPred, S4_storeirh_io>;
2629  defm: IFA_<SS_<store>,          anyimm, u6_2ImmPred, S4_storeiri_io>;
2630
2631  // For large-stack stores, generate store-register (prefer explicit Fi
2632  // in the address).
2633  defm: IMFA_<LS_<truncstorei8>,   anyimm, u6_0ImmPred, ToI32, S2_storerb_io>;
2634  defm: IMFA_<LS_<truncstorei16>,  anyimm, u6_1ImmPred, ToI32, S2_storerh_io>;
2635  defm: IMFA_<LS_<store>,          anyimm, u6_2ImmPred, ToI32, S2_storeri_io>;
2636}
2637
2638// Fi, store-immediate
2639let AddedComplexity = 70 in {
2640  def: Storexim_fi_pat<SS_<truncstorei8>,  anyint, ToImmByte, S4_storeirb_io>;
2641  def: Storexim_fi_pat<SS_<truncstorei16>, anyint, ToImmHalf, S4_storeirh_io>;
2642  def: Storexim_fi_pat<SS_<store>,         anyint, ToImmWord, S4_storeiri_io>;
2643
2644  def: Storexi_fi_pat<SS_<truncstorei8>,   anyimm, S4_storeirb_io>;
2645  def: Storexi_fi_pat<SS_<truncstorei16>,  anyimm, S4_storeirh_io>;
2646  def: Storexi_fi_pat<SS_<store>,          anyimm, S4_storeiri_io>;
2647
2648  // For large-stack stores, generate store-register (prefer explicit Fi
2649  // in the address).
2650  def: Storexim_fi_pat<LS_<truncstorei8>,  anyimm, ToI32, S2_storerb_io>;
2651  def: Storexim_fi_pat<LS_<truncstorei16>, anyimm, ToI32, S2_storerh_io>;
2652  def: Storexim_fi_pat<LS_<store>,         anyimm, ToI32, S2_storeri_io>;
2653}
2654
2655// Fi+Imm, Fi, store-register
2656let AddedComplexity = 60 in {
2657  defm: Storexi_fi_add_pat<truncstorei8,    I32, anyimm, S2_storerb_io>;
2658  defm: Storexi_fi_add_pat<truncstorei16,   I32, anyimm, S2_storerh_io>;
2659  defm: Storexi_fi_add_pat<store,           I32, anyimm, S2_storeri_io>;
2660  defm: Storexi_fi_add_pat<store,          V4I8, anyimm, S2_storeri_io>;
2661  defm: Storexi_fi_add_pat<store,         V2I16, anyimm, S2_storeri_io>;
2662  defm: Storexi_fi_add_pat<store,           I64, anyimm, S2_storerd_io>;
2663  defm: Storexi_fi_add_pat<store,          V8I8, anyimm, S2_storerd_io>;
2664  defm: Storexi_fi_add_pat<store,         V4I16, anyimm, S2_storerd_io>;
2665  defm: Storexi_fi_add_pat<store,         V2I32, anyimm, S2_storerd_io>;
2666  defm: Storexi_fi_add_pat<store,           F32, anyimm, S2_storeri_io>;
2667  defm: Storexi_fi_add_pat<store,           F64, anyimm, S2_storerd_io>;
2668  defm: Storexim_fi_add_pat<store, I1, anyimm, I1toI32, S2_storerb_io>;
2669
2670  def: Storexi_fi_pat<truncstorei8,     I32, S2_storerb_io>;
2671  def: Storexi_fi_pat<truncstorei16,    I32, S2_storerh_io>;
2672  def: Storexi_fi_pat<store,            I32, S2_storeri_io>;
2673  def: Storexi_fi_pat<store,           V4I8, S2_storeri_io>;
2674  def: Storexi_fi_pat<store,          V2I16, S2_storeri_io>;
2675  def: Storexi_fi_pat<store,            I64, S2_storerd_io>;
2676  def: Storexi_fi_pat<store,           V8I8, S2_storerd_io>;
2677  def: Storexi_fi_pat<store,          V4I16, S2_storerd_io>;
2678  def: Storexi_fi_pat<store,          V2I32, S2_storerd_io>;
2679  def: Storexi_fi_pat<store,            F32, S2_storeri_io>;
2680  def: Storexi_fi_pat<store,            F64, S2_storerd_io>;
2681  def: Storexim_fi_pat<store, I1, I1toI32, S2_storerb_io>;
2682}
2683
2684
2685multiclass IMRA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
2686  defm: Storexim_add_pat<S, V, O, M, I>;
2687}
2688multiclass IRA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
2689  defm: Storexi_add_pat<S, V, O, I>;
2690}
2691
2692// Reg+Imm, store-immediate
2693let AddedComplexity = 50 in {
2694  defm: IMRA_<truncstorei8,   anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
2695  defm: IMRA_<truncstorei16,  anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
2696  defm: IMRA_<store,          anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
2697
2698  defm: IRA_<truncstorei8,    anyimm, u6_0ImmPred, S4_storeirb_io>;
2699  defm: IRA_<truncstorei16,   anyimm, u6_1ImmPred, S4_storeirh_io>;
2700  defm: IRA_<store,           anyimm, u6_2ImmPred, S4_storeiri_io>;
2701}
2702
2703// Reg+Imm, store-register
2704let AddedComplexity = 40 in {
2705  defm: Storexi_pat<truncstorei8,     I32, anyimm0, S2_storerb_io>;
2706  defm: Storexi_pat<truncstorei16,    I32, anyimm1, S2_storerh_io>;
2707  defm: Storexi_pat<store,            I32, anyimm2, S2_storeri_io>;
2708  defm: Storexi_pat<store,           V4I8, anyimm2, S2_storeri_io>;
2709  defm: Storexi_pat<store,          V2I16, anyimm2, S2_storeri_io>;
2710  defm: Storexi_pat<store,            I64, anyimm3, S2_storerd_io>;
2711  defm: Storexi_pat<store,           V8I8, anyimm3, S2_storerd_io>;
2712  defm: Storexi_pat<store,          V4I16, anyimm3, S2_storerd_io>;
2713  defm: Storexi_pat<store,          V2I32, anyimm3, S2_storerd_io>;
2714  defm: Storexi_pat<store,            F32, anyimm2, S2_storeri_io>;
2715  defm: Storexi_pat<store,            F64, anyimm3, S2_storerd_io>;
2716
2717  defm: Storexim_pat<truncstorei8,  I64, anyimm0, LoReg,   S2_storerb_io>;
2718  defm: Storexim_pat<truncstorei16, I64, anyimm1, LoReg,   S2_storerh_io>;
2719  defm: Storexim_pat<truncstorei32, I64, anyimm2, LoReg,   S2_storeri_io>;
2720  defm: Storexim_pat<store,         I1,  anyimm0, I1toI32, S2_storerb_io>;
2721
2722  defm: Storexi_pat<AtomSt<atomic_store_8>,     I32, anyimm0, S2_storerb_io>;
2723  defm: Storexi_pat<AtomSt<atomic_store_16>,    I32, anyimm1, S2_storerh_io>;
2724  defm: Storexi_pat<AtomSt<atomic_store_32>,    I32, anyimm2, S2_storeri_io>;
2725  defm: Storexi_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, S2_storeri_io>;
2726  defm: Storexi_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, S2_storeri_io>;
2727  defm: Storexi_pat<AtomSt<atomic_store_64>,    I64, anyimm3, S2_storerd_io>;
2728  defm: Storexi_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, S2_storerd_io>;
2729  defm: Storexi_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, S2_storerd_io>;
2730  defm: Storexi_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, S2_storerd_io>;
2731}
2732
2733// Reg+Reg
2734let AddedComplexity = 30 in {
2735  def: Storexr_add_pat<truncstorei8,    I32, S4_storerb_rr>;
2736  def: Storexr_add_pat<truncstorei16,   I32, S4_storerh_rr>;
2737  def: Storexr_add_pat<store,           I32, S4_storeri_rr>;
2738  def: Storexr_add_pat<store,          V4I8, S4_storeri_rr>;
2739  def: Storexr_add_pat<store,         V2I16, S4_storeri_rr>;
2740  def: Storexr_add_pat<store,           I64, S4_storerd_rr>;
2741  def: Storexr_add_pat<store,          V8I8, S4_storerd_rr>;
2742  def: Storexr_add_pat<store,         V4I16, S4_storerd_rr>;
2743  def: Storexr_add_pat<store,         V2I32, S4_storerd_rr>;
2744  def: Storexr_add_pat<store,           F32, S4_storeri_rr>;
2745  def: Storexr_add_pat<store,           F64, S4_storerd_rr>;
2746
2747  def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)),
2748           (S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>;
2749}
2750
2751// Reg, store-immediate
2752let AddedComplexity = 20 in {
2753  def: Storexim_base_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
2754  def: Storexim_base_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
2755  def: Storexim_base_pat<store,         anyint, ToImmWord, S4_storeiri_io>;
2756
2757  def: Storexi_base_pat<truncstorei8,   anyimm, S4_storeirb_io>;
2758  def: Storexi_base_pat<truncstorei16,  anyimm, S4_storeirh_io>;
2759  def: Storexi_base_pat<store,          anyimm, S4_storeiri_io>;
2760}
2761
2762// Reg, store-register
2763let AddedComplexity = 10 in {
2764  def: Storexi_base_pat<truncstorei8,     I32, S2_storerb_io>;
2765  def: Storexi_base_pat<truncstorei16,    I32, S2_storerh_io>;
2766  def: Storexi_base_pat<store,            I32, S2_storeri_io>;
2767  def: Storexi_base_pat<store,           V4I8, S2_storeri_io>;
2768  def: Storexi_base_pat<store,          V2I16, S2_storeri_io>;
2769  def: Storexi_base_pat<store,            I64, S2_storerd_io>;
2770  def: Storexi_base_pat<store,           V8I8, S2_storerd_io>;
2771  def: Storexi_base_pat<store,          V4I16, S2_storerd_io>;
2772  def: Storexi_base_pat<store,          V2I32, S2_storerd_io>;
2773  def: Storexi_base_pat<store,            F32, S2_storeri_io>;
2774  def: Storexi_base_pat<store,            F64, S2_storerd_io>;
2775
2776  def: Storexim_base_pat<truncstorei8,  I64, LoReg,   S2_storerb_io>;
2777  def: Storexim_base_pat<truncstorei16, I64, LoReg,   S2_storerh_io>;
2778  def: Storexim_base_pat<truncstorei32, I64, LoReg,   S2_storeri_io>;
2779  def: Storexim_base_pat<store,         I1,  I1toI32, S2_storerb_io>;
2780
2781  def: Storexi_base_pat<AtomSt<atomic_store_8>,     I32, S2_storerb_io>;
2782  def: Storexi_base_pat<AtomSt<atomic_store_16>,    I32, S2_storerh_io>;
2783  def: Storexi_base_pat<AtomSt<atomic_store_32>,    I32, S2_storeri_io>;
2784  def: Storexi_base_pat<AtomSt<atomic_store_32>,   V4I8, S2_storeri_io>;
2785  def: Storexi_base_pat<AtomSt<atomic_store_32>,  V2I16, S2_storeri_io>;
2786  def: Storexi_base_pat<AtomSt<atomic_store_64>,    I64, S2_storerd_io>;
2787  def: Storexi_base_pat<AtomSt<atomic_store_64>,   V8I8, S2_storerd_io>;
2788  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V4I16, S2_storerd_io>;
2789  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V2I32, S2_storerd_io>;
2790}
2791
2792
2793// --(14) Memop ----------------------------------------------------------
2794//
2795
2796def m5_0Imm8Pred : PatLeaf<(i32 imm), [{
2797  int8_t V = N->getSExtValue();
2798  return -32 < V && V <= -1;
2799}]>;
2800
2801def m5_0Imm16Pred : PatLeaf<(i32 imm), [{
2802  int16_t V = N->getSExtValue();
2803  return -32 < V && V <= -1;
2804}]>;
2805
2806def m5_0ImmPred  : PatLeaf<(i32 imm), [{
2807  int64_t V = N->getSExtValue();
2808  return -31 <= V && V <= -1;
2809}]>;
2810
2811def IsNPow2_8 : PatLeaf<(i32 imm), [{
2812  uint8_t NV = ~N->getZExtValue();
2813  return isPowerOf2_32(NV);
2814}]>;
2815
2816def IsNPow2_16 : PatLeaf<(i32 imm), [{
2817  uint16_t NV = ~N->getZExtValue();
2818  return isPowerOf2_32(NV);
2819}]>;
2820
2821def Log2_8 : SDNodeXForm<imm, [{
2822  uint8_t V = N->getZExtValue();
2823  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
2824}]>;
2825
2826def Log2_16 : SDNodeXForm<imm, [{
2827  uint16_t V = N->getZExtValue();
2828  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
2829}]>;
2830
2831def LogN2_8 : SDNodeXForm<imm, [{
2832  uint8_t NV = ~N->getZExtValue();
2833  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
2834}]>;
2835
2836def LogN2_16 : SDNodeXForm<imm, [{
2837  uint16_t NV = ~N->getZExtValue();
2838  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
2839}]>;
2840
2841def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>;
2842
2843multiclass Memopxr_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
2844                            InstHexagon MI> {
2845  // Addr: i32
2846  def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs),
2847           (MI I32:$Rs, 0, I32:$A)>;
2848  // Addr: fi
2849  def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs),
2850           (MI AddrFI:$Rs, 0, I32:$A)>;
2851}
2852
2853multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2854                           SDNode Oper, InstHexagon MI> {
2855  // Addr: i32
2856  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A),
2857                  (add I32:$Rs, ImmPred:$Off)),
2858           (MI I32:$Rs, imm:$Off, I32:$A)>;
2859  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A),
2860                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
2861           (MI I32:$Rs, imm:$Off, I32:$A)>;
2862  // Addr: fi
2863  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A),
2864                  (add AddrFI:$Rs, ImmPred:$Off)),
2865           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
2866  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A),
2867                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
2868           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
2869}
2870
2871multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2872                       SDNode Oper, InstHexagon MI> {
2873  let Predicates = [UseMEMOPS] in {
2874    defm: Memopxr_base_pat <Load, Store,          Oper, MI>;
2875    defm: Memopxr_add_pat  <Load, Store, ImmPred, Oper, MI>;
2876  }
2877}
2878
2879let AddedComplexity = 200 in {
2880  // add reg
2881  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add,
2882        /*anyext*/  L4_add_memopb_io>;
2883  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add,
2884        /*sext*/    L4_add_memopb_io>;
2885  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add,
2886        /*zext*/    L4_add_memopb_io>;
2887  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add,
2888        /*anyext*/  L4_add_memoph_io>;
2889  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add,
2890        /*sext*/    L4_add_memoph_io>;
2891  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add,
2892        /*zext*/    L4_add_memoph_io>;
2893  defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>;
2894
2895  // sub reg
2896  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub,
2897        /*anyext*/  L4_sub_memopb_io>;
2898  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub,
2899        /*sext*/    L4_sub_memopb_io>;
2900  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub,
2901        /*zext*/    L4_sub_memopb_io>;
2902  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub,
2903        /*anyext*/  L4_sub_memoph_io>;
2904  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub,
2905        /*sext*/    L4_sub_memoph_io>;
2906  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub,
2907        /*zext*/    L4_sub_memoph_io>;
2908  defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>;
2909
2910  // and reg
2911  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and,
2912        /*anyext*/  L4_and_memopb_io>;
2913  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and,
2914        /*sext*/    L4_and_memopb_io>;
2915  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and,
2916        /*zext*/    L4_and_memopb_io>;
2917  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and,
2918        /*anyext*/  L4_and_memoph_io>;
2919  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and,
2920        /*sext*/    L4_and_memoph_io>;
2921  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and,
2922        /*zext*/    L4_and_memoph_io>;
2923  defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>;
2924
2925  // or reg
2926  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or,
2927        /*anyext*/  L4_or_memopb_io>;
2928  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or,
2929        /*sext*/    L4_or_memopb_io>;
2930  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or,
2931        /*zext*/    L4_or_memopb_io>;
2932  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or,
2933        /*anyext*/  L4_or_memoph_io>;
2934  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or,
2935        /*sext*/    L4_or_memoph_io>;
2936  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or,
2937        /*zext*/    L4_or_memoph_io>;
2938  defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>;
2939}
2940
2941
2942multiclass Memopxi_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
2943                            PatFrag Arg, SDNodeXForm ArgMod, InstHexagon MI> {
2944  // Addr: i32
2945  def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs),
2946           (MI I32:$Rs, 0, (ArgMod Arg:$A))>;
2947  // Addr: fi
2948  def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs),
2949           (MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>;
2950}
2951
2952multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2953                           SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
2954                           InstHexagon MI> {
2955  // Addr: i32
2956  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A),
2957                  (add I32:$Rs, ImmPred:$Off)),
2958           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
2959  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A),
2960                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
2961           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
2962  // Addr: fi
2963  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
2964                  (add AddrFI:$Rs, ImmPred:$Off)),
2965           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
2966  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
2967                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
2968           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
2969}
2970
2971multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2972                       SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
2973                       InstHexagon MI> {
2974  let Predicates = [UseMEMOPS] in {
2975    defm: Memopxi_base_pat <Load, Store,          Oper, Arg, ArgMod, MI>;
2976    defm: Memopxi_add_pat  <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>;
2977  }
2978}
2979
2980let AddedComplexity = 220 in {
2981  // add imm
2982  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
2983        /*anyext*/  IdImm, L4_iadd_memopb_io>;
2984  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
2985        /*sext*/    IdImm, L4_iadd_memopb_io>;
2986  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
2987        /*zext*/    IdImm, L4_iadd_memopb_io>;
2988  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
2989        /*anyext*/  IdImm, L4_iadd_memoph_io>;
2990  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
2991        /*sext*/    IdImm, L4_iadd_memoph_io>;
2992  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
2993        /*zext*/    IdImm, L4_iadd_memoph_io>;
2994  defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm,
2995                    L4_iadd_memopw_io>;
2996  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
2997        /*anyext*/  NegImm8, L4_iadd_memopb_io>;
2998  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
2999        /*sext*/    NegImm8, L4_iadd_memopb_io>;
3000  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
3001        /*zext*/    NegImm8, L4_iadd_memopb_io>;
3002  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
3003        /*anyext*/  NegImm16, L4_iadd_memoph_io>;
3004  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
3005        /*sext*/    NegImm16, L4_iadd_memoph_io>;
3006  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
3007        /*zext*/    NegImm16, L4_iadd_memoph_io>;
3008  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32,
3009                    L4_iadd_memopw_io>;
3010
3011  // sub imm
3012  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
3013        /*anyext*/  IdImm, L4_isub_memopb_io>;
3014  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
3015        /*sext*/    IdImm, L4_isub_memopb_io>;
3016  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
3017        /*zext*/    IdImm, L4_isub_memopb_io>;
3018  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
3019        /*anyext*/  IdImm, L4_isub_memoph_io>;
3020  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
3021        /*sext*/    IdImm, L4_isub_memoph_io>;
3022  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
3023        /*zext*/    IdImm, L4_isub_memoph_io>;
3024  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm,
3025                    L4_isub_memopw_io>;
3026  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
3027        /*anyext*/  NegImm8, L4_isub_memopb_io>;
3028  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
3029        /*sext*/    NegImm8, L4_isub_memopb_io>;
3030  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
3031        /*zext*/    NegImm8, L4_isub_memopb_io>;
3032  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
3033        /*anyext*/  NegImm16, L4_isub_memoph_io>;
3034  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
3035        /*sext*/    NegImm16, L4_isub_memoph_io>;
3036  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
3037        /*zext*/    NegImm16, L4_isub_memoph_io>;
3038  defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32,
3039                    L4_isub_memopw_io>;
3040
3041  // clrbit imm
3042  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3043        /*anyext*/  LogN2_8, L4_iand_memopb_io>;
3044  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3045        /*sext*/    LogN2_8, L4_iand_memopb_io>;
3046  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3047        /*zext*/    LogN2_8, L4_iand_memopb_io>;
3048  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3049        /*anyext*/  LogN2_16, L4_iand_memoph_io>;
3050  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3051        /*sext*/    LogN2_16, L4_iand_memoph_io>;
3052  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3053        /*zext*/    LogN2_16, L4_iand_memoph_io>;
3054  defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32,
3055		    LogN2_32, L4_iand_memopw_io>;
3056
3057  // setbit imm
3058  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3059        /*anyext*/  Log2_8, L4_ior_memopb_io>;
3060  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3061        /*sext*/    Log2_8, L4_ior_memopb_io>;
3062  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3063        /*zext*/    Log2_8, L4_ior_memopb_io>;
3064  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3065        /*anyext*/  Log2_16, L4_ior_memoph_io>;
3066  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3067        /*sext*/    Log2_16, L4_ior_memoph_io>;
3068  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3069        /*zext*/    Log2_16, L4_ior_memoph_io>;
3070  defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32,
3071		    Log2_32, L4_ior_memopw_io>;
3072}
3073
3074
3075// --(15) Call -----------------------------------------------------------
3076//
3077
3078// Pseudo instructions.
3079def SDT_SPCallSeqStart
3080  : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3081def SDT_SPCallSeqEnd
3082  : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3083
3084def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
3085                          [SDNPHasChain, SDNPOutGlue]>;
3086def callseq_end:   SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
3087                          [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
3088
3089def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
3090
3091def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
3092                         [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
3093def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall,
3094                   [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
3095def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall,
3096                     [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
3097
3098def: Pat<(callseq_start timm:$amt, timm:$amt2),
3099         (ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>;
3100def: Pat<(callseq_end timm:$amt1, timm:$amt2),
3101         (ADJCALLSTACKUP imm:$amt1, imm:$amt2)>;
3102
3103def: Pat<(HexagonTCRet tglobaladdr:$dst),   (PS_tailcall_i tglobaladdr:$dst)>;
3104def: Pat<(HexagonTCRet texternalsym:$dst),  (PS_tailcall_i texternalsym:$dst)>;
3105def: Pat<(HexagonTCRet I32:$dst),           (PS_tailcall_r I32:$dst)>;
3106
3107def: Pat<(callv3 I32:$dst),                 (J2_callr I32:$dst)>;
3108def: Pat<(callv3 tglobaladdr:$dst),         (J2_call tglobaladdr:$dst)>;
3109def: Pat<(callv3 texternalsym:$dst),        (J2_call texternalsym:$dst)>;
3110def: Pat<(callv3 tglobaltlsaddr:$dst),      (J2_call tglobaltlsaddr:$dst)>;
3111
3112def: Pat<(callv3nr I32:$dst),               (PS_callr_nr I32:$dst)>;
3113def: Pat<(callv3nr tglobaladdr:$dst),       (PS_call_nr tglobaladdr:$dst)>;
3114def: Pat<(callv3nr texternalsym:$dst),      (PS_call_nr texternalsym:$dst)>;
3115
3116def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
3117                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
3118def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
3119
3120def: Pat<(retflag),   (PS_jmpret (i32 R31))>;
3121def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>;
3122
3123
3124// --(16) Branch ---------------------------------------------------------
3125//
3126
3127def: Pat<(br      bb:$dst),         (J2_jump  b30_2Imm:$dst)>;
3128def: Pat<(brind   I32:$dst),        (J2_jumpr I32:$dst)>;
3129
3130def: Pat<(brcond I1:$Pu, bb:$dst),
3131         (J2_jumpt I1:$Pu, bb:$dst)>;
3132def: Pat<(brcond (not I1:$Pu), bb:$dst),
3133         (J2_jumpf I1:$Pu, bb:$dst)>;
3134def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst),
3135         (J2_jumpf I1:$Pu, bb:$dst)>;
3136def: Pat<(brcond (i1 (seteq I1:$Pu, 0)), bb:$dst),
3137         (J2_jumpf I1:$Pu, bb:$dst)>;
3138def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst),
3139         (J2_jumpt I1:$Pu, bb:$dst)>;
3140
3141
3142// --(17) Misc -----------------------------------------------------------
3143
3144
3145// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
3146// for C code of the form r = (c>='0' && c<='9') ? 1 : 0.
3147// The isdigit transformation relies on two 'clever' aspects:
3148// 1) The data type is unsigned which allows us to eliminate a zero test after
3149//    biasing the expression by 48. We are depending on the representation of
3150//    the unsigned types, and semantics.
3151// 2) The front end has converted <= 9 into < 10 on entry to LLVM.
3152//
3153// For the C code:
3154//   retval = (c >= '0' && c <= '9') ? 1 : 0;
3155// The code is transformed upstream of llvm into
3156//   retval = (c-48) < 10 ? 1 : 0;
3157
3158def u7_0PosImmPred : ImmLeaf<i32, [{
3159  // True if the immediate fits in an 7-bit unsigned field and is positive.
3160  return Imm > 0 && isUInt<7>(Imm);
3161}]>;
3162
3163let AddedComplexity = 139 in
3164def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))),
3165         (C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>;
3166
3167let AddedComplexity = 100 in
3168def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
3169                                     (i32 (extloadi8  (add I32:$b, 3))),
3170                                     24, 8),
3171                      (i32 16)),
3172                 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
3173             (zextloadi8 I32:$b)),
3174         (A2_swiz (L2_loadri_io I32:$b, 0))>;
3175
3176
3177// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
3178// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
3179// We don't really want either one here.
3180def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
3181def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
3182                           [SDNPHasChain]>;
3183
3184def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3),
3185         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
3186def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
3187         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
3188
3189def SDTHexagonALLOCA
3190  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3191def HexagonALLOCA
3192  : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>;
3193
3194def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)),
3195         (PS_alloca IntRegs:$Rs, imm:$A)>;
3196
3197def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
3198def: Pat<(HexagonBARRIER), (Y2_barrier)>;
3199
3200def: Pat<(trap), (PS_crash)>;
3201
3202// Read cycle counter.
3203def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
3204def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf,
3205  [SDNPHasChain]>;
3206
3207def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>;
3208
3209// The declared return value of the store-locked intrinsics is i32, but
3210// the instructions actually define i1. To avoid register copies from
3211// IntRegs to PredRegs and back, fold the entire pattern checking the
3212// result against true/false.
3213let AddedComplexity = 100 in {
3214  def: Pat<(i1 (setne (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
3215           (S2_storew_locked I32:$Rs, I32:$Rt)>;
3216  def: Pat<(i1 (seteq (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
3217           (C2_not (S2_storew_locked I32:$Rs, I32:$Rt))>;
3218  def: Pat<(i1 (setne (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
3219           (S4_stored_locked I32:$Rs, I64:$Rt)>;
3220  def: Pat<(i1 (seteq (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
3221           (C2_not (S4_stored_locked I32:$Rs, I64:$Rt))>;
3222}
3223