xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonOptAddrMode.cpp (revision 05427f4639bcf2703329a9be9d25ec09bb782742)
1 //===- HexagonOptAddrMode.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This implements a Hexagon-specific pass to optimize addressing mode for
9 // load/store instructions.
10 //===----------------------------------------------------------------------===//
11 
12 #include "HexagonInstrInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "MCTargetDesc/HexagonBaseInfo.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineDominanceFrontier.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RDFGraph.h"
28 #include "llvm/CodeGen/RDFLiveness.h"
29 #include "llvm/CodeGen/RDFRegisters.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 
41 #define DEBUG_TYPE "opt-addr-mode"
42 
43 using namespace llvm;
44 using namespace rdf;
45 
46 static cl::opt<int> CodeGrowthLimit("hexagon-amode-growth-limit",
47   cl::Hidden, cl::init(0), cl::desc("Code growth limit for address mode "
48   "optimization"));
49 
50 extern cl::opt<unsigned> RDFFuncBlockLimit;
51 
52 namespace llvm {
53 
54   FunctionPass *createHexagonOptAddrMode();
55   void initializeHexagonOptAddrModePass(PassRegistry&);
56 
57 } // end namespace llvm
58 
59 namespace {
60 
61 class HexagonOptAddrMode : public MachineFunctionPass {
62 public:
63   static char ID;
64 
65   HexagonOptAddrMode() : MachineFunctionPass(ID) {}
66 
67   StringRef getPassName() const override {
68     return "Optimize addressing mode of load/store";
69   }
70 
71   void getAnalysisUsage(AnalysisUsage &AU) const override {
72     MachineFunctionPass::getAnalysisUsage(AU);
73     AU.addRequired<MachineDominatorTreeWrapperPass>();
74     AU.addRequired<MachineDominanceFrontier>();
75     AU.setPreservesAll();
76   }
77 
78   bool runOnMachineFunction(MachineFunction &MF) override;
79 
80 private:
81   using MISetType = DenseSet<MachineInstr *>;
82   using InstrEvalMap = DenseMap<MachineInstr *, bool>;
83 
84   MachineRegisterInfo *MRI = nullptr;
85   const HexagonInstrInfo *HII = nullptr;
86   const HexagonRegisterInfo *HRI = nullptr;
87   MachineDominatorTree *MDT = nullptr;
88   DataFlowGraph *DFG = nullptr;
89   DataFlowGraph::DefStackMap DefM;
90   Liveness *LV = nullptr;
91   MISetType Deleted;
92 
93   bool processBlock(NodeAddr<BlockNode *> BA);
94   bool xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
95                   NodeAddr<UseNode *> UseN, unsigned UseMOnum);
96   bool processAddUses(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI,
97                       const NodeList &UNodeList);
98   bool updateAddUses(MachineInstr *AddMI, MachineInstr *UseMI);
99   bool analyzeUses(unsigned DefR, const NodeList &UNodeList,
100                    InstrEvalMap &InstrEvalResult, short &SizeInc);
101   bool hasRepForm(MachineInstr &MI, unsigned TfrDefR);
102   bool canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN, MachineInstr &MI,
103                        const NodeList &UNodeList);
104   bool isSafeToExtLR(NodeAddr<StmtNode *> SN, MachineInstr *MI,
105                      unsigned LRExtReg, const NodeList &UNodeList);
106   void getAllRealUses(NodeAddr<StmtNode *> SN, NodeList &UNodeList);
107   bool allValidCandidates(NodeAddr<StmtNode *> SA, NodeList &UNodeList);
108   short getBaseWithLongOffset(const MachineInstr &MI) const;
109   bool changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
110                    unsigned ImmOpNum);
111   bool changeLoad(MachineInstr *OldMI, MachineOperand ImmOp, unsigned ImmOpNum);
112   bool changeAddAsl(NodeAddr<UseNode *> AddAslUN, MachineInstr *AddAslMI,
113                     const MachineOperand &ImmOp, unsigned ImmOpNum);
114   bool isValidOffset(MachineInstr *MI, int Offset);
115   unsigned getBaseOpPosition(MachineInstr *MI);
116   unsigned getOffsetOpPosition(MachineInstr *MI);
117 };
118 
119 } // end anonymous namespace
120 
121 char HexagonOptAddrMode::ID = 0;
122 
123 INITIALIZE_PASS_BEGIN(HexagonOptAddrMode, "amode-opt",
124                       "Optimize addressing mode", false, false)
125 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
126 INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
127 INITIALIZE_PASS_END(HexagonOptAddrMode, "amode-opt", "Optimize addressing mode",
128                     false, false)
129 
130 bool HexagonOptAddrMode::hasRepForm(MachineInstr &MI, unsigned TfrDefR) {
131   const MCInstrDesc &MID = MI.getDesc();
132 
133   if ((!MID.mayStore() && !MID.mayLoad()) || HII->isPredicated(MI))
134     return false;
135 
136   if (MID.mayStore()) {
137     MachineOperand StOp = MI.getOperand(MI.getNumOperands() - 1);
138     if (StOp.isReg() && StOp.getReg() == TfrDefR)
139       return false;
140   }
141 
142   if (HII->getAddrMode(MI) == HexagonII::BaseRegOffset)
143     // Tranform to Absolute plus register offset.
144     return (HII->changeAddrMode_rr_ur(MI) >= 0);
145   else if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset)
146     // Tranform to absolute addressing mode.
147     return (HII->changeAddrMode_io_abs(MI) >= 0);
148 
149   return false;
150 }
151 
152 // Check if addasl instruction can be removed. This is possible only
153 // if it's feeding to only load/store instructions with base + register
154 // offset as these instruction can be tranformed to use 'absolute plus
155 // shifted register offset'.
156 // ex:
157 // Rs = ##foo
158 // Rx = addasl(Rs, Rt, #2)
159 // Rd = memw(Rx + #28)
160 // Above three instructions can be replaced with Rd = memw(Rt<<#2 + ##foo+28)
161 
162 bool HexagonOptAddrMode::canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN,
163                                          MachineInstr &MI,
164                                          const NodeList &UNodeList) {
165   // check offset size in addasl. if 'offset > 3' return false
166   const MachineOperand &OffsetOp = MI.getOperand(3);
167   if (!OffsetOp.isImm() || OffsetOp.getImm() > 3)
168     return false;
169 
170   Register OffsetReg = MI.getOperand(2).getReg();
171   RegisterRef OffsetRR;
172   NodeId OffsetRegRD = 0;
173   for (NodeAddr<UseNode *> UA : AddAslSN.Addr->members_if(DFG->IsUse, *DFG)) {
174     RegisterRef RR = UA.Addr->getRegRef(*DFG);
175     if (OffsetReg == RR.Reg) {
176       OffsetRR = RR;
177       OffsetRegRD = UA.Addr->getReachingDef();
178     }
179   }
180 
181   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
182     NodeAddr<UseNode *> UA = *I;
183     NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG);
184     if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
185       return false;
186     NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(OffsetRR, IA);
187     if ((DFG->IsDef(AA) && AA.Id != OffsetRegRD) ||
188          AA.Addr->getReachingDef() != OffsetRegRD)
189       return false;
190 
191     MachineInstr &UseMI = *NodeAddr<StmtNode *>(IA).Addr->getCode();
192     NodeAddr<DefNode *> OffsetRegDN = DFG->addr<DefNode *>(OffsetRegRD);
193     // Reaching Def to an offset register can't be a phi.
194     if ((OffsetRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
195         MI.getParent() != UseMI.getParent())
196     return false;
197 
198     const MCInstrDesc &UseMID = UseMI.getDesc();
199     if ((!UseMID.mayLoad() && !UseMID.mayStore()) ||
200         HII->getAddrMode(UseMI) != HexagonII::BaseImmOffset ||
201         getBaseWithLongOffset(UseMI) < 0)
202       return false;
203 
204     // Addasl output can't be a store value.
205     if (UseMID.mayStore() && UseMI.getOperand(2).isReg() &&
206         UseMI.getOperand(2).getReg() == MI.getOperand(0).getReg())
207       return false;
208 
209     for (auto &Mo : UseMI.operands())
210       if (Mo.isFI())
211         return false;
212   }
213   return true;
214 }
215 
216 bool HexagonOptAddrMode::allValidCandidates(NodeAddr<StmtNode *> SA,
217                                             NodeList &UNodeList) {
218   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
219     NodeAddr<UseNode *> UN = *I;
220     RegisterRef UR = UN.Addr->getRegRef(*DFG);
221     NodeSet Visited, Defs;
222     const auto &P = LV->getAllReachingDefsRec(UR, UN, Visited, Defs);
223     if (!P.second) {
224       LLVM_DEBUG({
225         dbgs() << "*** Unable to collect all reaching defs for use ***\n"
226                << PrintNode<UseNode*>(UN, *DFG) << '\n'
227                << "The program's complexity may exceed the limits.\n";
228       });
229       return false;
230     }
231     const auto &ReachingDefs = P.first;
232     if (ReachingDefs.size() > 1) {
233       LLVM_DEBUG({
234         dbgs() << "*** Multiple Reaching Defs found!!! ***\n";
235         for (auto DI : ReachingDefs) {
236           NodeAddr<UseNode *> DA = DFG->addr<UseNode *>(DI);
237           NodeAddr<StmtNode *> TempIA = DA.Addr->getOwner(*DFG);
238           dbgs() << "\t\t[Reaching Def]: "
239                  << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
240         }
241       });
242       return false;
243     }
244   }
245   return true;
246 }
247 
248 void HexagonOptAddrMode::getAllRealUses(NodeAddr<StmtNode *> SA,
249                                         NodeList &UNodeList) {
250   for (NodeAddr<DefNode *> DA : SA.Addr->members_if(DFG->IsDef, *DFG)) {
251     LLVM_DEBUG(dbgs() << "\t\t[DefNode]: "
252                       << Print<NodeAddr<DefNode *>>(DA, *DFG) << "\n");
253     RegisterRef DR = DA.Addr->getRegRef(*DFG);
254 
255     auto UseSet = LV->getAllReachedUses(DR, DA);
256 
257     for (auto UI : UseSet) {
258       NodeAddr<UseNode *> UA = DFG->addr<UseNode *>(UI);
259       LLVM_DEBUG({
260         NodeAddr<StmtNode *> TempIA = UA.Addr->getOwner(*DFG);
261         dbgs() << "\t\t\t[Reached Use]: "
262                << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
263       });
264 
265       if (UA.Addr->getFlags() & NodeAttrs::PhiRef) {
266         NodeAddr<PhiNode *> PA = UA.Addr->getOwner(*DFG);
267         NodeId id = PA.Id;
268         const Liveness::RefMap &phiUse = LV->getRealUses(id);
269         LLVM_DEBUG(dbgs() << "\t\t\t\tphi real Uses"
270                           << Print<Liveness::RefMap>(phiUse, *DFG) << "\n");
271         if (!phiUse.empty()) {
272           for (auto I : phiUse) {
273             if (!DFG->getPRI().alias(RegisterRef(I.first), DR))
274               continue;
275             auto phiUseSet = I.second;
276             for (auto phiUI : phiUseSet) {
277               NodeAddr<UseNode *> phiUA = DFG->addr<UseNode *>(phiUI.first);
278               UNodeList.push_back(phiUA);
279             }
280           }
281         }
282       } else
283         UNodeList.push_back(UA);
284     }
285   }
286 }
287 
288 bool HexagonOptAddrMode::isSafeToExtLR(NodeAddr<StmtNode *> SN,
289                                        MachineInstr *MI, unsigned LRExtReg,
290                                        const NodeList &UNodeList) {
291   RegisterRef LRExtRR;
292   NodeId LRExtRegRD = 0;
293   // Iterate through all the UseNodes in SN and find the reaching def
294   // for the LRExtReg.
295   for (NodeAddr<UseNode *> UA : SN.Addr->members_if(DFG->IsUse, *DFG)) {
296     RegisterRef RR = UA.Addr->getRegRef(*DFG);
297     if (LRExtReg == RR.Reg) {
298       LRExtRR = RR;
299       LRExtRegRD = UA.Addr->getReachingDef();
300     }
301   }
302 
303   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
304     NodeAddr<UseNode *> UA = *I;
305     NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG);
306     // The reaching def of LRExtRR at load/store node should be same as the
307     // one reaching at the SN.
308     if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
309       return false;
310     NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(LRExtRR, IA);
311     if ((DFG->IsDef(AA) && AA.Id != LRExtRegRD) ||
312         AA.Addr->getReachingDef() != LRExtRegRD) {
313       LLVM_DEBUG(
314           dbgs() << "isSafeToExtLR: Returning false; another reaching def\n");
315       return false;
316     }
317 
318     // If the register is undefined (for example if it's a reserved register),
319     // it may still be possible to extend the range, but it's safer to be
320     // conservative and just punt.
321     if (LRExtRegRD == 0)
322       return false;
323 
324     MachineInstr *UseMI = NodeAddr<StmtNode *>(IA).Addr->getCode();
325     NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD);
326     // Reaching Def to LRExtReg can't be a phi.
327     if ((LRExtRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
328         MI->getParent() != UseMI->getParent())
329       return false;
330   }
331   return true;
332 }
333 
334 bool HexagonOptAddrMode::isValidOffset(MachineInstr *MI, int Offset) {
335   if (HII->isHVXVec(*MI)) {
336     // only HVX vgather instructions handled
337     // TODO: extend the pass to other vector load/store operations
338     switch (MI->getOpcode()) {
339     case Hexagon::V6_vgathermh_pseudo:
340     case Hexagon::V6_vgathermw_pseudo:
341     case Hexagon::V6_vgathermhw_pseudo:
342     case Hexagon::V6_vgathermhq_pseudo:
343     case Hexagon::V6_vgathermwq_pseudo:
344     case Hexagon::V6_vgathermhwq_pseudo:
345       return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
346     default:
347       return false;
348     }
349   }
350 
351   if (HII->getAddrMode(*MI) != HexagonII::BaseImmOffset)
352     return false;
353 
354   unsigned AlignMask = 0;
355   switch (HII->getMemAccessSize(*MI)) {
356   case HexagonII::MemAccessSize::DoubleWordAccess:
357     AlignMask = 0x7;
358     break;
359   case HexagonII::MemAccessSize::WordAccess:
360     AlignMask = 0x3;
361     break;
362   case HexagonII::MemAccessSize::HalfWordAccess:
363     AlignMask = 0x1;
364     break;
365   case HexagonII::MemAccessSize::ByteAccess:
366     AlignMask = 0x0;
367     break;
368   default:
369     return false;
370   }
371 
372   if ((AlignMask & Offset) != 0)
373     return false;
374   return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
375 }
376 
377 unsigned HexagonOptAddrMode::getBaseOpPosition(MachineInstr *MI) {
378   const MCInstrDesc &MID = MI->getDesc();
379   switch (MI->getOpcode()) {
380   // vgather pseudos are mayLoad and mayStore
381   // hence need to explicitly specify Base and
382   // Offset operand positions
383   case Hexagon::V6_vgathermh_pseudo:
384   case Hexagon::V6_vgathermw_pseudo:
385   case Hexagon::V6_vgathermhw_pseudo:
386   case Hexagon::V6_vgathermhq_pseudo:
387   case Hexagon::V6_vgathermwq_pseudo:
388   case Hexagon::V6_vgathermhwq_pseudo:
389     return 0;
390   default:
391     return MID.mayLoad() ? 1 : 0;
392   }
393 }
394 
395 unsigned HexagonOptAddrMode::getOffsetOpPosition(MachineInstr *MI) {
396   assert(
397       (HII->getAddrMode(*MI) == HexagonII::BaseImmOffset) &&
398       "Looking for an offset in non-BaseImmOffset addressing mode instruction");
399 
400   const MCInstrDesc &MID = MI->getDesc();
401   switch (MI->getOpcode()) {
402   // vgather pseudos are mayLoad and mayStore
403   // hence need to explicitly specify Base and
404   // Offset operand positions
405   case Hexagon::V6_vgathermh_pseudo:
406   case Hexagon::V6_vgathermw_pseudo:
407   case Hexagon::V6_vgathermhw_pseudo:
408   case Hexagon::V6_vgathermhq_pseudo:
409   case Hexagon::V6_vgathermwq_pseudo:
410   case Hexagon::V6_vgathermhwq_pseudo:
411     return 1;
412   default:
413     return MID.mayLoad() ? 2 : 1;
414   }
415 }
416 
417 bool HexagonOptAddrMode::processAddUses(NodeAddr<StmtNode *> AddSN,
418                                         MachineInstr *AddMI,
419                                         const NodeList &UNodeList) {
420 
421   Register AddDefR = AddMI->getOperand(0).getReg();
422   Register BaseReg = AddMI->getOperand(1).getReg();
423   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
424     NodeAddr<UseNode *> UN = *I;
425     NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
426     MachineInstr *MI = SN.Addr->getCode();
427     const MCInstrDesc &MID = MI->getDesc();
428     if ((!MID.mayLoad() && !MID.mayStore()) ||
429         HII->getAddrMode(*MI) != HexagonII::BaseImmOffset)
430       return false;
431 
432     MachineOperand BaseOp = MI->getOperand(getBaseOpPosition(MI));
433 
434     if (!BaseOp.isReg() || BaseOp.getReg() != AddDefR)
435       return false;
436 
437     MachineOperand OffsetOp = MI->getOperand(getOffsetOpPosition(MI));
438     if (!OffsetOp.isImm())
439       return false;
440 
441     int64_t newOffset = OffsetOp.getImm() + AddMI->getOperand(2).getImm();
442     if (!isValidOffset(MI, newOffset))
443       return false;
444 
445     // Since we'll be extending the live range of Rt in the following example,
446     // make sure that is safe. another definition of Rt doesn't exist between 'add'
447     // and load/store instruction.
448     //
449     // Ex: Rx= add(Rt,#10)
450     //     memw(Rx+#0) = Rs
451     // will be replaced with =>  memw(Rt+#10) = Rs
452     if (!isSafeToExtLR(AddSN, AddMI, BaseReg, UNodeList))
453       return false;
454   }
455 
456   NodeId LRExtRegRD = 0;
457   // Iterate through all the UseNodes in SN and find the reaching def
458   // for the LRExtReg.
459   for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(DFG->IsUse, *DFG)) {
460     RegisterRef RR = UA.Addr->getRegRef(*DFG);
461     if (BaseReg == RR.Reg)
462       LRExtRegRD = UA.Addr->getReachingDef();
463   }
464 
465   // Update all the uses of 'add' with the appropriate base and offset
466   // values.
467   bool Changed = false;
468   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
469     NodeAddr<UseNode *> UseN = *I;
470     assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
471            "Found a PhiRef node as a real reached use!!");
472 
473     NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG);
474     MachineInstr *UseMI = OwnerN.Addr->getCode();
475     LLVM_DEBUG(dbgs() << "\t\t[MI <BB#" << UseMI->getParent()->getNumber()
476                       << ">]: " << *UseMI << "\n");
477     Changed |= updateAddUses(AddMI, UseMI);
478 
479     // Set the reachingDef for UseNode under consideration
480     // after updating the Add use. This local change is
481     // to avoid rebuilding of the RDF graph after update.
482     NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD);
483     UseN.Addr->linkToDef(UseN.Id, LRExtRegDN);
484   }
485 
486   if (Changed)
487     Deleted.insert(AddMI);
488 
489   return Changed;
490 }
491 
492 bool HexagonOptAddrMode::updateAddUses(MachineInstr *AddMI,
493                                        MachineInstr *UseMI) {
494   const MachineOperand ImmOp = AddMI->getOperand(2);
495   const MachineOperand AddRegOp = AddMI->getOperand(1);
496   Register NewReg = AddRegOp.getReg();
497 
498   MachineOperand &BaseOp = UseMI->getOperand(getBaseOpPosition(UseMI));
499   MachineOperand &OffsetOp = UseMI->getOperand(getOffsetOpPosition(UseMI));
500   BaseOp.setReg(NewReg);
501   BaseOp.setIsUndef(AddRegOp.isUndef());
502   BaseOp.setImplicit(AddRegOp.isImplicit());
503   OffsetOp.setImm(ImmOp.getImm() + OffsetOp.getImm());
504   MRI->clearKillFlags(NewReg);
505 
506   return true;
507 }
508 
509 bool HexagonOptAddrMode::analyzeUses(unsigned tfrDefR,
510                                      const NodeList &UNodeList,
511                                      InstrEvalMap &InstrEvalResult,
512                                      short &SizeInc) {
513   bool KeepTfr = false;
514   bool HasRepInstr = false;
515   InstrEvalResult.clear();
516 
517   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
518     bool CanBeReplaced = false;
519     NodeAddr<UseNode *> UN = *I;
520     NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
521     MachineInstr &MI = *SN.Addr->getCode();
522     const MCInstrDesc &MID = MI.getDesc();
523     if ((MID.mayLoad() || MID.mayStore())) {
524       if (!hasRepForm(MI, tfrDefR)) {
525         KeepTfr = true;
526         continue;
527       }
528       SizeInc++;
529       CanBeReplaced = true;
530     } else if (MI.getOpcode() == Hexagon::S2_addasl_rrri) {
531       NodeList AddaslUseList;
532 
533       LLVM_DEBUG(dbgs() << "\nGetting ReachedUses for === " << MI << "\n");
534       getAllRealUses(SN, AddaslUseList);
535       // Process phi nodes.
536       if (allValidCandidates(SN, AddaslUseList) &&
537           canRemoveAddasl(SN, MI, AddaslUseList)) {
538         SizeInc += AddaslUseList.size();
539         SizeInc -= 1; // Reduce size by 1 as addasl itself can be removed.
540         CanBeReplaced = true;
541       } else
542         SizeInc++;
543     } else
544       // Currently, only load/store and addasl are handled.
545       // Some other instructions to consider -
546       // A2_add -> A2_addi
547       // M4_mpyrr_addr -> M4_mpyrr_addi
548       KeepTfr = true;
549 
550     InstrEvalResult[&MI] = CanBeReplaced;
551     HasRepInstr |= CanBeReplaced;
552   }
553 
554   // Reduce total size by 2 if original tfr can be deleted.
555   if (!KeepTfr)
556     SizeInc -= 2;
557 
558   return HasRepInstr;
559 }
560 
561 bool HexagonOptAddrMode::changeLoad(MachineInstr *OldMI, MachineOperand ImmOp,
562                                     unsigned ImmOpNum) {
563   bool Changed = false;
564   MachineBasicBlock *BB = OldMI->getParent();
565   auto UsePos = MachineBasicBlock::iterator(OldMI);
566   MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
567   ++InsertPt;
568   unsigned OpStart;
569   unsigned OpEnd = OldMI->getNumOperands();
570   MachineInstrBuilder MIB;
571 
572   if (ImmOpNum == 1) {
573     if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) {
574       short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI);
575       assert(NewOpCode >= 0 && "Invalid New opcode\n");
576       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
577       MIB.add(OldMI->getOperand(0));
578       MIB.add(OldMI->getOperand(2));
579       MIB.add(OldMI->getOperand(3));
580       MIB.add(ImmOp);
581       OpStart = 4;
582       Changed = true;
583     } else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset &&
584                OldMI->getOperand(2).isImm()) {
585       short NewOpCode = HII->changeAddrMode_io_abs(*OldMI);
586       assert(NewOpCode >= 0 && "Invalid New opcode\n");
587       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode))
588                 .add(OldMI->getOperand(0));
589       const GlobalValue *GV = ImmOp.getGlobal();
590       int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(2).getImm();
591 
592       MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags());
593       OpStart = 3;
594       Changed = true;
595     } else
596       Changed = false;
597 
598     LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
599     LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
600   } else if (ImmOpNum == 2) {
601     if (OldMI->getOperand(3).isImm() && OldMI->getOperand(3).getImm() == 0) {
602       short NewOpCode = HII->changeAddrMode_rr_io(*OldMI);
603       assert(NewOpCode >= 0 && "Invalid New opcode\n");
604       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
605       MIB.add(OldMI->getOperand(0));
606       MIB.add(OldMI->getOperand(1));
607       MIB.add(ImmOp);
608       OpStart = 4;
609       Changed = true;
610       LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
611       LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
612     }
613   }
614 
615   if (Changed)
616     for (unsigned i = OpStart; i < OpEnd; ++i)
617       MIB.add(OldMI->getOperand(i));
618 
619   return Changed;
620 }
621 
622 bool HexagonOptAddrMode::changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
623                                      unsigned ImmOpNum) {
624   bool Changed = false;
625   unsigned OpStart = 0;
626   unsigned OpEnd = OldMI->getNumOperands();
627   MachineBasicBlock *BB = OldMI->getParent();
628   auto UsePos = MachineBasicBlock::iterator(OldMI);
629   MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
630   ++InsertPt;
631   MachineInstrBuilder MIB;
632   if (ImmOpNum == 0) {
633     if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) {
634       short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI);
635       assert(NewOpCode >= 0 && "Invalid New opcode\n");
636       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
637       MIB.add(OldMI->getOperand(1));
638       MIB.add(OldMI->getOperand(2));
639       MIB.add(ImmOp);
640       MIB.add(OldMI->getOperand(3));
641       OpStart = 4;
642       Changed = true;
643     } else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset) {
644       short NewOpCode = HII->changeAddrMode_io_abs(*OldMI);
645       assert(NewOpCode >= 0 && "Invalid New opcode\n");
646       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
647       const GlobalValue *GV = ImmOp.getGlobal();
648       int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(1).getImm();
649       MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags());
650       MIB.add(OldMI->getOperand(2));
651       OpStart = 3;
652       Changed = true;
653     }
654   } else if (ImmOpNum == 1 && OldMI->getOperand(2).getImm() == 0) {
655     short NewOpCode = HII->changeAddrMode_rr_io(*OldMI);
656     assert(NewOpCode >= 0 && "Invalid New opcode\n");
657     MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
658     MIB.add(OldMI->getOperand(0));
659     MIB.add(ImmOp);
660     OpStart = 3;
661     Changed = true;
662   }
663   if (Changed) {
664     LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
665     LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
666 
667     for (unsigned i = OpStart; i < OpEnd; ++i)
668       MIB.add(OldMI->getOperand(i));
669   }
670 
671   return Changed;
672 }
673 
674 short HexagonOptAddrMode::getBaseWithLongOffset(const MachineInstr &MI) const {
675   if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset) {
676     short TempOpCode = HII->changeAddrMode_io_rr(MI);
677     return HII->changeAddrMode_rr_ur(TempOpCode);
678   }
679   return HII->changeAddrMode_rr_ur(MI);
680 }
681 
682 bool HexagonOptAddrMode::changeAddAsl(NodeAddr<UseNode *> AddAslUN,
683                                       MachineInstr *AddAslMI,
684                                       const MachineOperand &ImmOp,
685                                       unsigned ImmOpNum) {
686   NodeAddr<StmtNode *> SA = AddAslUN.Addr->getOwner(*DFG);
687 
688   LLVM_DEBUG(dbgs() << "Processing addasl :" << *AddAslMI << "\n");
689 
690   NodeList UNodeList;
691   getAllRealUses(SA, UNodeList);
692 
693   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
694     NodeAddr<UseNode *> UseUN = *I;
695     assert(!(UseUN.Addr->getFlags() & NodeAttrs::PhiRef) &&
696            "Can't transform this 'AddAsl' instruction!");
697 
698     NodeAddr<StmtNode *> UseIA = UseUN.Addr->getOwner(*DFG);
699     LLVM_DEBUG(dbgs() << "[InstrNode]: "
700                       << Print<NodeAddr<InstrNode *>>(UseIA, *DFG) << "\n");
701     MachineInstr *UseMI = UseIA.Addr->getCode();
702     LLVM_DEBUG(dbgs() << "[MI <" << printMBBReference(*UseMI->getParent())
703                       << ">]: " << *UseMI << "\n");
704     const MCInstrDesc &UseMID = UseMI->getDesc();
705     assert(HII->getAddrMode(*UseMI) == HexagonII::BaseImmOffset);
706 
707     auto UsePos = MachineBasicBlock::iterator(UseMI);
708     MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
709     short NewOpCode = getBaseWithLongOffset(*UseMI);
710     assert(NewOpCode >= 0 && "Invalid New opcode\n");
711 
712     unsigned OpStart;
713     unsigned OpEnd = UseMI->getNumOperands();
714 
715     MachineBasicBlock *BB = UseMI->getParent();
716     MachineInstrBuilder MIB =
717         BuildMI(*BB, InsertPt, UseMI->getDebugLoc(), HII->get(NewOpCode));
718     // change mem(Rs + # ) -> mem(Rt << # + ##)
719     if (UseMID.mayLoad()) {
720       MIB.add(UseMI->getOperand(0));
721       MIB.add(AddAslMI->getOperand(2));
722       MIB.add(AddAslMI->getOperand(3));
723       const GlobalValue *GV = ImmOp.getGlobal();
724       MIB.addGlobalAddress(GV, UseMI->getOperand(2).getImm()+ImmOp.getOffset(),
725                            ImmOp.getTargetFlags());
726       OpStart = 3;
727     } else if (UseMID.mayStore()) {
728       MIB.add(AddAslMI->getOperand(2));
729       MIB.add(AddAslMI->getOperand(3));
730       const GlobalValue *GV = ImmOp.getGlobal();
731       MIB.addGlobalAddress(GV, UseMI->getOperand(1).getImm()+ImmOp.getOffset(),
732                            ImmOp.getTargetFlags());
733       MIB.add(UseMI->getOperand(2));
734       OpStart = 3;
735     } else
736       llvm_unreachable("Unhandled instruction");
737 
738     for (unsigned i = OpStart; i < OpEnd; ++i)
739       MIB.add(UseMI->getOperand(i));
740 
741     Deleted.insert(UseMI);
742   }
743 
744   return true;
745 }
746 
747 bool HexagonOptAddrMode::xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
748                                     NodeAddr<UseNode *> UseN,
749                                     unsigned UseMOnum) {
750   const MachineOperand ImmOp = TfrMI->getOperand(1);
751   const MCInstrDesc &MID = UseMI->getDesc();
752   unsigned Changed = false;
753   if (MID.mayLoad())
754     Changed = changeLoad(UseMI, ImmOp, UseMOnum);
755   else if (MID.mayStore())
756     Changed = changeStore(UseMI, ImmOp, UseMOnum);
757   else if (UseMI->getOpcode() == Hexagon::S2_addasl_rrri)
758     Changed = changeAddAsl(UseN, UseMI, ImmOp, UseMOnum);
759 
760   if (Changed)
761     Deleted.insert(UseMI);
762 
763   return Changed;
764 }
765 
766 bool HexagonOptAddrMode::processBlock(NodeAddr<BlockNode *> BA) {
767   bool Changed = false;
768 
769   for (auto IA : BA.Addr->members(*DFG)) {
770     if (!DFG->IsCode<NodeAttrs::Stmt>(IA))
771       continue;
772 
773     NodeAddr<StmtNode *> SA = IA;
774     MachineInstr *MI = SA.Addr->getCode();
775     if ((MI->getOpcode() != Hexagon::A2_tfrsi ||
776          !MI->getOperand(1).isGlobal()) &&
777         (MI->getOpcode() != Hexagon::A2_addi ||
778          !MI->getOperand(2).isImm() || HII->isConstExtended(*MI)))
779     continue;
780 
781     LLVM_DEBUG(dbgs() << "[Analyzing " << HII->getName(MI->getOpcode())
782                       << "]: " << *MI << "\n\t[InstrNode]: "
783                       << Print<NodeAddr<InstrNode *>>(IA, *DFG) << '\n');
784 
785     NodeList UNodeList;
786     getAllRealUses(SA, UNodeList);
787 
788     if (!allValidCandidates(SA, UNodeList))
789       continue;
790 
791     // Analyze all uses of 'add'. If the output of 'add' is used as an address
792     // in the base+immediate addressing mode load/store instructions, see if
793     // they can be updated to use the immediate value as an offet. Thus,
794     // providing us the opportunity to eliminate 'add'.
795     // Ex: Rx= add(Rt,#12)
796     //     memw(Rx+#0) = Rs
797     // This can be replaced with memw(Rt+#12) = Rs
798     //
799     // This transformation is only performed if all uses can be updated and
800     // the offset isn't required to be constant extended.
801     if (MI->getOpcode() == Hexagon::A2_addi) {
802       Changed |= processAddUses(SA, MI, UNodeList);
803       continue;
804     }
805 
806     short SizeInc = 0;
807     Register DefR = MI->getOperand(0).getReg();
808     InstrEvalMap InstrEvalResult;
809 
810     // Analyze all uses and calculate increase in size. Perform the optimization
811     // only if there is no increase in size.
812     if (!analyzeUses(DefR, UNodeList, InstrEvalResult, SizeInc))
813       continue;
814     if (SizeInc > CodeGrowthLimit)
815       continue;
816 
817     bool KeepTfr = false;
818 
819     LLVM_DEBUG(dbgs() << "\t[Total reached uses] : " << UNodeList.size()
820                       << "\n");
821     LLVM_DEBUG(dbgs() << "\t[Processing Reached Uses] ===\n");
822     for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
823       NodeAddr<UseNode *> UseN = *I;
824       assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
825              "Found a PhiRef node as a real reached use!!");
826 
827       NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG);
828       MachineInstr *UseMI = OwnerN.Addr->getCode();
829       LLVM_DEBUG(dbgs() << "\t\t[MI <" << printMBBReference(*UseMI->getParent())
830                         << ">]: " << *UseMI << "\n");
831 
832       int UseMOnum = -1;
833       unsigned NumOperands = UseMI->getNumOperands();
834       for (unsigned j = 0; j < NumOperands - 1; ++j) {
835         const MachineOperand &op = UseMI->getOperand(j);
836         if (op.isReg() && op.isUse() && DefR == op.getReg())
837           UseMOnum = j;
838       }
839       // It is possible that the register will not be found in any operand.
840       // This could happen, for example, when DefR = R4, but the used
841       // register is D2.
842 
843       // Change UseMI if replacement is possible. If any replacement failed,
844       // or wasn't attempted, make sure to keep the TFR.
845       bool Xformed = false;
846       if (UseMOnum >= 0 && InstrEvalResult[UseMI])
847         Xformed = xformUseMI(MI, UseMI, UseN, UseMOnum);
848       Changed |=  Xformed;
849       KeepTfr |= !Xformed;
850     }
851     if (!KeepTfr)
852       Deleted.insert(MI);
853   }
854   return Changed;
855 }
856 
857 bool HexagonOptAddrMode::runOnMachineFunction(MachineFunction &MF) {
858   if (skipFunction(MF.getFunction()))
859     return false;
860 
861   // Perform RDF optimizations only if number of basic blocks in the
862   // function is less than the limit
863   if (MF.size() > RDFFuncBlockLimit) {
864     LLVM_DEBUG(dbgs() << "Skipping " << getPassName()
865                       << ": too many basic blocks\n");
866     return false;
867   }
868 
869   bool Changed = false;
870   auto &HST = MF.getSubtarget<HexagonSubtarget>();
871   MRI = &MF.getRegInfo();
872   HII = HST.getInstrInfo();
873   HRI = HST.getRegisterInfo();
874   const auto &MDF = getAnalysis<MachineDominanceFrontier>();
875   MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
876 
877   DataFlowGraph G(MF, *HII, *HRI, *MDT, MDF);
878   // Need to keep dead phis because we can propagate uses of registers into
879   // nodes dominated by those would-be phis.
880   G.build(BuildOptions::KeepDeadPhis);
881   DFG = &G;
882 
883   Liveness L(*MRI, *DFG);
884   L.computePhiInfo();
885   LV = &L;
886 
887   Deleted.clear();
888   NodeAddr<FuncNode *> FA = DFG->getFunc();
889   LLVM_DEBUG(dbgs() << "==== [RefMap#]=====:\n "
890                     << Print<NodeAddr<FuncNode *>>(FA, *DFG) << "\n");
891 
892   for (NodeAddr<BlockNode *> BA : FA.Addr->members(*DFG))
893     Changed |= processBlock(BA);
894 
895   for (auto *MI : Deleted)
896     MI->eraseFromParent();
897 
898   if (Changed) {
899     G.build();
900     L.computeLiveIns();
901     L.resetLiveIns();
902     L.resetKills();
903   }
904 
905   return Changed;
906 }
907 
908 //===----------------------------------------------------------------------===//
909 //                         Public Constructor Functions
910 //===----------------------------------------------------------------------===//
911 
912 FunctionPass *llvm::createHexagonOptAddrMode() {
913   return new HexagonOptAddrMode();
914 }
915