xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonOptAddrMode.cpp (revision 02e9120893770924227138ba49df1edb3896112a)
1 //===- HexagonOptAddrMode.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This implements a Hexagon-specific pass to optimize addressing mode for
9 // load/store instructions.
10 //===----------------------------------------------------------------------===//
11 
12 #include "HexagonInstrInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "MCTargetDesc/HexagonBaseInfo.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineDominanceFrontier.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RDFGraph.h"
28 #include "llvm/CodeGen/RDFLiveness.h"
29 #include "llvm/CodeGen/RDFRegisters.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 
41 #define DEBUG_TYPE "opt-addr-mode"
42 
43 using namespace llvm;
44 using namespace rdf;
45 
46 static cl::opt<int> CodeGrowthLimit("hexagon-amode-growth-limit",
47   cl::Hidden, cl::init(0), cl::desc("Code growth limit for address mode "
48   "optimization"));
49 
50 namespace llvm {
51 
52   FunctionPass *createHexagonOptAddrMode();
53   void initializeHexagonOptAddrModePass(PassRegistry&);
54 
55 } // end namespace llvm
56 
57 namespace {
58 
59 class HexagonOptAddrMode : public MachineFunctionPass {
60 public:
61   static char ID;
62 
63   HexagonOptAddrMode() : MachineFunctionPass(ID) {}
64 
65   StringRef getPassName() const override {
66     return "Optimize addressing mode of load/store";
67   }
68 
69   void getAnalysisUsage(AnalysisUsage &AU) const override {
70     MachineFunctionPass::getAnalysisUsage(AU);
71     AU.addRequired<MachineDominatorTree>();
72     AU.addRequired<MachineDominanceFrontier>();
73     AU.setPreservesAll();
74   }
75 
76   bool runOnMachineFunction(MachineFunction &MF) override;
77 
78 private:
79   using MISetType = DenseSet<MachineInstr *>;
80   using InstrEvalMap = DenseMap<MachineInstr *, bool>;
81 
82   MachineRegisterInfo *MRI = nullptr;
83   const HexagonInstrInfo *HII = nullptr;
84   const HexagonRegisterInfo *HRI = nullptr;
85   MachineDominatorTree *MDT = nullptr;
86   DataFlowGraph *DFG = nullptr;
87   DataFlowGraph::DefStackMap DefM;
88   Liveness *LV = nullptr;
89   MISetType Deleted;
90 
91   bool processBlock(NodeAddr<BlockNode *> BA);
92   bool xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
93                   NodeAddr<UseNode *> UseN, unsigned UseMOnum);
94   bool processAddUses(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI,
95                       const NodeList &UNodeList);
96   bool updateAddUses(MachineInstr *AddMI, MachineInstr *UseMI);
97   bool analyzeUses(unsigned DefR, const NodeList &UNodeList,
98                    InstrEvalMap &InstrEvalResult, short &SizeInc);
99   bool hasRepForm(MachineInstr &MI, unsigned TfrDefR);
100   bool canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN, MachineInstr &MI,
101                        const NodeList &UNodeList);
102   bool isSafeToExtLR(NodeAddr<StmtNode *> SN, MachineInstr *MI,
103                      unsigned LRExtReg, const NodeList &UNodeList);
104   void getAllRealUses(NodeAddr<StmtNode *> SN, NodeList &UNodeList);
105   bool allValidCandidates(NodeAddr<StmtNode *> SA, NodeList &UNodeList);
106   short getBaseWithLongOffset(const MachineInstr &MI) const;
107   bool changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
108                    unsigned ImmOpNum);
109   bool changeLoad(MachineInstr *OldMI, MachineOperand ImmOp, unsigned ImmOpNum);
110   bool changeAddAsl(NodeAddr<UseNode *> AddAslUN, MachineInstr *AddAslMI,
111                     const MachineOperand &ImmOp, unsigned ImmOpNum);
112   bool isValidOffset(MachineInstr *MI, int Offset);
113   unsigned getBaseOpPosition(MachineInstr *MI);
114   unsigned getOffsetOpPosition(MachineInstr *MI);
115 };
116 
117 } // end anonymous namespace
118 
119 char HexagonOptAddrMode::ID = 0;
120 
121 INITIALIZE_PASS_BEGIN(HexagonOptAddrMode, "amode-opt",
122                       "Optimize addressing mode", false, false)
123 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
124 INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
125 INITIALIZE_PASS_END(HexagonOptAddrMode, "amode-opt", "Optimize addressing mode",
126                     false, false)
127 
128 bool HexagonOptAddrMode::hasRepForm(MachineInstr &MI, unsigned TfrDefR) {
129   const MCInstrDesc &MID = MI.getDesc();
130 
131   if ((!MID.mayStore() && !MID.mayLoad()) || HII->isPredicated(MI))
132     return false;
133 
134   if (MID.mayStore()) {
135     MachineOperand StOp = MI.getOperand(MI.getNumOperands() - 1);
136     if (StOp.isReg() && StOp.getReg() == TfrDefR)
137       return false;
138   }
139 
140   if (HII->getAddrMode(MI) == HexagonII::BaseRegOffset)
141     // Tranform to Absolute plus register offset.
142     return (HII->changeAddrMode_rr_ur(MI) >= 0);
143   else if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset)
144     // Tranform to absolute addressing mode.
145     return (HII->changeAddrMode_io_abs(MI) >= 0);
146 
147   return false;
148 }
149 
150 // Check if addasl instruction can be removed. This is possible only
151 // if it's feeding to only load/store instructions with base + register
152 // offset as these instruction can be tranformed to use 'absolute plus
153 // shifted register offset'.
154 // ex:
155 // Rs = ##foo
156 // Rx = addasl(Rs, Rt, #2)
157 // Rd = memw(Rx + #28)
158 // Above three instructions can be replaced with Rd = memw(Rt<<#2 + ##foo+28)
159 
160 bool HexagonOptAddrMode::canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN,
161                                          MachineInstr &MI,
162                                          const NodeList &UNodeList) {
163   // check offset size in addasl. if 'offset > 3' return false
164   const MachineOperand &OffsetOp = MI.getOperand(3);
165   if (!OffsetOp.isImm() || OffsetOp.getImm() > 3)
166     return false;
167 
168   Register OffsetReg = MI.getOperand(2).getReg();
169   RegisterRef OffsetRR;
170   NodeId OffsetRegRD = 0;
171   for (NodeAddr<UseNode *> UA : AddAslSN.Addr->members_if(DFG->IsUse, *DFG)) {
172     RegisterRef RR = UA.Addr->getRegRef(*DFG);
173     if (OffsetReg == RR.Reg) {
174       OffsetRR = RR;
175       OffsetRegRD = UA.Addr->getReachingDef();
176     }
177   }
178 
179   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
180     NodeAddr<UseNode *> UA = *I;
181     NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG);
182     if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
183       return false;
184     NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(OffsetRR, IA);
185     if ((DFG->IsDef(AA) && AA.Id != OffsetRegRD) ||
186          AA.Addr->getReachingDef() != OffsetRegRD)
187       return false;
188 
189     MachineInstr &UseMI = *NodeAddr<StmtNode *>(IA).Addr->getCode();
190     NodeAddr<DefNode *> OffsetRegDN = DFG->addr<DefNode *>(OffsetRegRD);
191     // Reaching Def to an offset register can't be a phi.
192     if ((OffsetRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
193         MI.getParent() != UseMI.getParent())
194     return false;
195 
196     const MCInstrDesc &UseMID = UseMI.getDesc();
197     if ((!UseMID.mayLoad() && !UseMID.mayStore()) ||
198         HII->getAddrMode(UseMI) != HexagonII::BaseImmOffset ||
199         getBaseWithLongOffset(UseMI) < 0)
200       return false;
201 
202     // Addasl output can't be a store value.
203     if (UseMID.mayStore() && UseMI.getOperand(2).isReg() &&
204         UseMI.getOperand(2).getReg() == MI.getOperand(0).getReg())
205       return false;
206 
207     for (auto &Mo : UseMI.operands())
208       if (Mo.isFI())
209         return false;
210   }
211   return true;
212 }
213 
214 bool HexagonOptAddrMode::allValidCandidates(NodeAddr<StmtNode *> SA,
215                                             NodeList &UNodeList) {
216   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
217     NodeAddr<UseNode *> UN = *I;
218     RegisterRef UR = UN.Addr->getRegRef(*DFG);
219     NodeSet Visited, Defs;
220     const auto &P = LV->getAllReachingDefsRec(UR, UN, Visited, Defs);
221     if (!P.second) {
222       LLVM_DEBUG({
223         dbgs() << "*** Unable to collect all reaching defs for use ***\n"
224                << PrintNode<UseNode*>(UN, *DFG) << '\n'
225                << "The program's complexity may exceed the limits.\n";
226       });
227       return false;
228     }
229     const auto &ReachingDefs = P.first;
230     if (ReachingDefs.size() > 1) {
231       LLVM_DEBUG({
232         dbgs() << "*** Multiple Reaching Defs found!!! ***\n";
233         for (auto DI : ReachingDefs) {
234           NodeAddr<UseNode *> DA = DFG->addr<UseNode *>(DI);
235           NodeAddr<StmtNode *> TempIA = DA.Addr->getOwner(*DFG);
236           dbgs() << "\t\t[Reaching Def]: "
237                  << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
238         }
239       });
240       return false;
241     }
242   }
243   return true;
244 }
245 
246 void HexagonOptAddrMode::getAllRealUses(NodeAddr<StmtNode *> SA,
247                                         NodeList &UNodeList) {
248   for (NodeAddr<DefNode *> DA : SA.Addr->members_if(DFG->IsDef, *DFG)) {
249     LLVM_DEBUG(dbgs() << "\t\t[DefNode]: "
250                       << Print<NodeAddr<DefNode *>>(DA, *DFG) << "\n");
251     RegisterRef DR = DA.Addr->getRegRef(*DFG);
252 
253     auto UseSet = LV->getAllReachedUses(DR, DA);
254 
255     for (auto UI : UseSet) {
256       NodeAddr<UseNode *> UA = DFG->addr<UseNode *>(UI);
257       LLVM_DEBUG({
258         NodeAddr<StmtNode *> TempIA = UA.Addr->getOwner(*DFG);
259         dbgs() << "\t\t\t[Reached Use]: "
260                << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
261       });
262 
263       if (UA.Addr->getFlags() & NodeAttrs::PhiRef) {
264         NodeAddr<PhiNode *> PA = UA.Addr->getOwner(*DFG);
265         NodeId id = PA.Id;
266         const Liveness::RefMap &phiUse = LV->getRealUses(id);
267         LLVM_DEBUG(dbgs() << "\t\t\t\tphi real Uses"
268                           << Print<Liveness::RefMap>(phiUse, *DFG) << "\n");
269         if (!phiUse.empty()) {
270           for (auto I : phiUse) {
271             if (!DFG->getPRI().alias(RegisterRef(I.first), DR))
272               continue;
273             auto phiUseSet = I.second;
274             for (auto phiUI : phiUseSet) {
275               NodeAddr<UseNode *> phiUA = DFG->addr<UseNode *>(phiUI.first);
276               UNodeList.push_back(phiUA);
277             }
278           }
279         }
280       } else
281         UNodeList.push_back(UA);
282     }
283   }
284 }
285 
286 bool HexagonOptAddrMode::isSafeToExtLR(NodeAddr<StmtNode *> SN,
287                                        MachineInstr *MI, unsigned LRExtReg,
288                                        const NodeList &UNodeList) {
289   RegisterRef LRExtRR;
290   NodeId LRExtRegRD = 0;
291   // Iterate through all the UseNodes in SN and find the reaching def
292   // for the LRExtReg.
293   for (NodeAddr<UseNode *> UA : SN.Addr->members_if(DFG->IsUse, *DFG)) {
294     RegisterRef RR = UA.Addr->getRegRef(*DFG);
295     if (LRExtReg == RR.Reg) {
296       LRExtRR = RR;
297       LRExtRegRD = UA.Addr->getReachingDef();
298     }
299   }
300 
301   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
302     NodeAddr<UseNode *> UA = *I;
303     NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG);
304     // The reaching def of LRExtRR at load/store node should be same as the
305     // one reaching at the SN.
306     if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
307       return false;
308     NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(LRExtRR, IA);
309     if ((DFG->IsDef(AA) && AA.Id != LRExtRegRD) ||
310         AA.Addr->getReachingDef() != LRExtRegRD) {
311       LLVM_DEBUG(
312           dbgs() << "isSafeToExtLR: Returning false; another reaching def\n");
313       return false;
314     }
315 
316     // If the register is undefined (for example if it's a reserved register),
317     // it may still be possible to extend the range, but it's safer to be
318     // conservative and just punt.
319     if (LRExtRegRD == 0)
320       return false;
321 
322     MachineInstr *UseMI = NodeAddr<StmtNode *>(IA).Addr->getCode();
323     NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD);
324     // Reaching Def to LRExtReg can't be a phi.
325     if ((LRExtRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
326         MI->getParent() != UseMI->getParent())
327       return false;
328   }
329   return true;
330 }
331 
332 bool HexagonOptAddrMode::isValidOffset(MachineInstr *MI, int Offset) {
333   if (HII->isHVXVec(*MI)) {
334     // only HVX vgather instructions handled
335     // TODO: extend the pass to other vector load/store operations
336     switch (MI->getOpcode()) {
337     case Hexagon::V6_vgathermh_pseudo:
338     case Hexagon::V6_vgathermw_pseudo:
339     case Hexagon::V6_vgathermhw_pseudo:
340     case Hexagon::V6_vgathermhq_pseudo:
341     case Hexagon::V6_vgathermwq_pseudo:
342     case Hexagon::V6_vgathermhwq_pseudo:
343       return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
344     default:
345       return false;
346     }
347   }
348 
349   if (HII->getAddrMode(*MI) != HexagonII::BaseImmOffset)
350     return false;
351 
352   unsigned AlignMask = 0;
353   switch (HII->getMemAccessSize(*MI)) {
354   case HexagonII::MemAccessSize::DoubleWordAccess:
355     AlignMask = 0x7;
356     break;
357   case HexagonII::MemAccessSize::WordAccess:
358     AlignMask = 0x3;
359     break;
360   case HexagonII::MemAccessSize::HalfWordAccess:
361     AlignMask = 0x1;
362     break;
363   case HexagonII::MemAccessSize::ByteAccess:
364     AlignMask = 0x0;
365     break;
366   default:
367     return false;
368   }
369 
370   if ((AlignMask & Offset) != 0)
371     return false;
372   return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
373 }
374 
375 unsigned HexagonOptAddrMode::getBaseOpPosition(MachineInstr *MI) {
376   const MCInstrDesc &MID = MI->getDesc();
377   switch (MI->getOpcode()) {
378   // vgather pseudos are mayLoad and mayStore
379   // hence need to explicitly specify Base and
380   // Offset operand positions
381   case Hexagon::V6_vgathermh_pseudo:
382   case Hexagon::V6_vgathermw_pseudo:
383   case Hexagon::V6_vgathermhw_pseudo:
384   case Hexagon::V6_vgathermhq_pseudo:
385   case Hexagon::V6_vgathermwq_pseudo:
386   case Hexagon::V6_vgathermhwq_pseudo:
387     return 0;
388   default:
389     return MID.mayLoad() ? 1 : 0;
390   }
391 }
392 
393 unsigned HexagonOptAddrMode::getOffsetOpPosition(MachineInstr *MI) {
394   assert(
395       (HII->getAddrMode(*MI) == HexagonII::BaseImmOffset) &&
396       "Looking for an offset in non-BaseImmOffset addressing mode instruction");
397 
398   const MCInstrDesc &MID = MI->getDesc();
399   switch (MI->getOpcode()) {
400   // vgather pseudos are mayLoad and mayStore
401   // hence need to explicitly specify Base and
402   // Offset operand positions
403   case Hexagon::V6_vgathermh_pseudo:
404   case Hexagon::V6_vgathermw_pseudo:
405   case Hexagon::V6_vgathermhw_pseudo:
406   case Hexagon::V6_vgathermhq_pseudo:
407   case Hexagon::V6_vgathermwq_pseudo:
408   case Hexagon::V6_vgathermhwq_pseudo:
409     return 1;
410   default:
411     return MID.mayLoad() ? 2 : 1;
412   }
413 }
414 
415 bool HexagonOptAddrMode::processAddUses(NodeAddr<StmtNode *> AddSN,
416                                         MachineInstr *AddMI,
417                                         const NodeList &UNodeList) {
418 
419   Register AddDefR = AddMI->getOperand(0).getReg();
420   Register BaseReg = AddMI->getOperand(1).getReg();
421   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
422     NodeAddr<UseNode *> UN = *I;
423     NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
424     MachineInstr *MI = SN.Addr->getCode();
425     const MCInstrDesc &MID = MI->getDesc();
426     if ((!MID.mayLoad() && !MID.mayStore()) ||
427         HII->getAddrMode(*MI) != HexagonII::BaseImmOffset)
428       return false;
429 
430     MachineOperand BaseOp = MI->getOperand(getBaseOpPosition(MI));
431 
432     if (!BaseOp.isReg() || BaseOp.getReg() != AddDefR)
433       return false;
434 
435     MachineOperand OffsetOp = MI->getOperand(getOffsetOpPosition(MI));
436     if (!OffsetOp.isImm())
437       return false;
438 
439     int64_t newOffset = OffsetOp.getImm() + AddMI->getOperand(2).getImm();
440     if (!isValidOffset(MI, newOffset))
441       return false;
442 
443     // Since we'll be extending the live range of Rt in the following example,
444     // make sure that is safe. another definition of Rt doesn't exist between 'add'
445     // and load/store instruction.
446     //
447     // Ex: Rx= add(Rt,#10)
448     //     memw(Rx+#0) = Rs
449     // will be replaced with =>  memw(Rt+#10) = Rs
450     if (!isSafeToExtLR(AddSN, AddMI, BaseReg, UNodeList))
451       return false;
452   }
453 
454   NodeId LRExtRegRD = 0;
455   // Iterate through all the UseNodes in SN and find the reaching def
456   // for the LRExtReg.
457   for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(DFG->IsUse, *DFG)) {
458     RegisterRef RR = UA.Addr->getRegRef(*DFG);
459     if (BaseReg == RR.Reg)
460       LRExtRegRD = UA.Addr->getReachingDef();
461   }
462 
463   // Update all the uses of 'add' with the appropriate base and offset
464   // values.
465   bool Changed = false;
466   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
467     NodeAddr<UseNode *> UseN = *I;
468     assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
469            "Found a PhiRef node as a real reached use!!");
470 
471     NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG);
472     MachineInstr *UseMI = OwnerN.Addr->getCode();
473     LLVM_DEBUG(dbgs() << "\t\t[MI <BB#" << UseMI->getParent()->getNumber()
474                       << ">]: " << *UseMI << "\n");
475     Changed |= updateAddUses(AddMI, UseMI);
476 
477     // Set the reachingDef for UseNode under consideration
478     // after updating the Add use. This local change is
479     // to avoid rebuilding of the RDF graph after update.
480     NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD);
481     UseN.Addr->linkToDef(UseN.Id, LRExtRegDN);
482   }
483 
484   if (Changed)
485     Deleted.insert(AddMI);
486 
487   return Changed;
488 }
489 
490 bool HexagonOptAddrMode::updateAddUses(MachineInstr *AddMI,
491                                        MachineInstr *UseMI) {
492   const MachineOperand ImmOp = AddMI->getOperand(2);
493   const MachineOperand AddRegOp = AddMI->getOperand(1);
494   Register NewReg = AddRegOp.getReg();
495 
496   MachineOperand &BaseOp = UseMI->getOperand(getBaseOpPosition(UseMI));
497   MachineOperand &OffsetOp = UseMI->getOperand(getOffsetOpPosition(UseMI));
498   BaseOp.setReg(NewReg);
499   BaseOp.setIsUndef(AddRegOp.isUndef());
500   BaseOp.setImplicit(AddRegOp.isImplicit());
501   OffsetOp.setImm(ImmOp.getImm() + OffsetOp.getImm());
502   MRI->clearKillFlags(NewReg);
503 
504   return true;
505 }
506 
507 bool HexagonOptAddrMode::analyzeUses(unsigned tfrDefR,
508                                      const NodeList &UNodeList,
509                                      InstrEvalMap &InstrEvalResult,
510                                      short &SizeInc) {
511   bool KeepTfr = false;
512   bool HasRepInstr = false;
513   InstrEvalResult.clear();
514 
515   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
516     bool CanBeReplaced = false;
517     NodeAddr<UseNode *> UN = *I;
518     NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
519     MachineInstr &MI = *SN.Addr->getCode();
520     const MCInstrDesc &MID = MI.getDesc();
521     if ((MID.mayLoad() || MID.mayStore())) {
522       if (!hasRepForm(MI, tfrDefR)) {
523         KeepTfr = true;
524         continue;
525       }
526       SizeInc++;
527       CanBeReplaced = true;
528     } else if (MI.getOpcode() == Hexagon::S2_addasl_rrri) {
529       NodeList AddaslUseList;
530 
531       LLVM_DEBUG(dbgs() << "\nGetting ReachedUses for === " << MI << "\n");
532       getAllRealUses(SN, AddaslUseList);
533       // Process phi nodes.
534       if (allValidCandidates(SN, AddaslUseList) &&
535           canRemoveAddasl(SN, MI, AddaslUseList)) {
536         SizeInc += AddaslUseList.size();
537         SizeInc -= 1; // Reduce size by 1 as addasl itself can be removed.
538         CanBeReplaced = true;
539       } else
540         SizeInc++;
541     } else
542       // Currently, only load/store and addasl are handled.
543       // Some other instructions to consider -
544       // A2_add -> A2_addi
545       // M4_mpyrr_addr -> M4_mpyrr_addi
546       KeepTfr = true;
547 
548     InstrEvalResult[&MI] = CanBeReplaced;
549     HasRepInstr |= CanBeReplaced;
550   }
551 
552   // Reduce total size by 2 if original tfr can be deleted.
553   if (!KeepTfr)
554     SizeInc -= 2;
555 
556   return HasRepInstr;
557 }
558 
559 bool HexagonOptAddrMode::changeLoad(MachineInstr *OldMI, MachineOperand ImmOp,
560                                     unsigned ImmOpNum) {
561   bool Changed = false;
562   MachineBasicBlock *BB = OldMI->getParent();
563   auto UsePos = MachineBasicBlock::iterator(OldMI);
564   MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
565   ++InsertPt;
566   unsigned OpStart;
567   unsigned OpEnd = OldMI->getNumOperands();
568   MachineInstrBuilder MIB;
569 
570   if (ImmOpNum == 1) {
571     if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) {
572       short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI);
573       assert(NewOpCode >= 0 && "Invalid New opcode\n");
574       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
575       MIB.add(OldMI->getOperand(0));
576       MIB.add(OldMI->getOperand(2));
577       MIB.add(OldMI->getOperand(3));
578       MIB.add(ImmOp);
579       OpStart = 4;
580       Changed = true;
581     } else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset &&
582                OldMI->getOperand(2).isImm()) {
583       short NewOpCode = HII->changeAddrMode_io_abs(*OldMI);
584       assert(NewOpCode >= 0 && "Invalid New opcode\n");
585       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode))
586                 .add(OldMI->getOperand(0));
587       const GlobalValue *GV = ImmOp.getGlobal();
588       int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(2).getImm();
589 
590       MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags());
591       OpStart = 3;
592       Changed = true;
593     } else
594       Changed = false;
595 
596     LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
597     LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
598   } else if (ImmOpNum == 2) {
599     if (OldMI->getOperand(3).isImm() && OldMI->getOperand(3).getImm() == 0) {
600       short NewOpCode = HII->changeAddrMode_rr_io(*OldMI);
601       assert(NewOpCode >= 0 && "Invalid New opcode\n");
602       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
603       MIB.add(OldMI->getOperand(0));
604       MIB.add(OldMI->getOperand(1));
605       MIB.add(ImmOp);
606       OpStart = 4;
607       Changed = true;
608       LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
609       LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
610     }
611   }
612 
613   if (Changed)
614     for (unsigned i = OpStart; i < OpEnd; ++i)
615       MIB.add(OldMI->getOperand(i));
616 
617   return Changed;
618 }
619 
620 bool HexagonOptAddrMode::changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
621                                      unsigned ImmOpNum) {
622   bool Changed = false;
623   unsigned OpStart = 0;
624   unsigned OpEnd = OldMI->getNumOperands();
625   MachineBasicBlock *BB = OldMI->getParent();
626   auto UsePos = MachineBasicBlock::iterator(OldMI);
627   MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
628   ++InsertPt;
629   MachineInstrBuilder MIB;
630   if (ImmOpNum == 0) {
631     if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) {
632       short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI);
633       assert(NewOpCode >= 0 && "Invalid New opcode\n");
634       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
635       MIB.add(OldMI->getOperand(1));
636       MIB.add(OldMI->getOperand(2));
637       MIB.add(ImmOp);
638       MIB.add(OldMI->getOperand(3));
639       OpStart = 4;
640       Changed = true;
641     } else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset) {
642       short NewOpCode = HII->changeAddrMode_io_abs(*OldMI);
643       assert(NewOpCode >= 0 && "Invalid New opcode\n");
644       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
645       const GlobalValue *GV = ImmOp.getGlobal();
646       int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(1).getImm();
647       MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags());
648       MIB.add(OldMI->getOperand(2));
649       OpStart = 3;
650       Changed = true;
651     }
652   } else if (ImmOpNum == 1 && OldMI->getOperand(2).getImm() == 0) {
653     short NewOpCode = HII->changeAddrMode_rr_io(*OldMI);
654     assert(NewOpCode >= 0 && "Invalid New opcode\n");
655     MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
656     MIB.add(OldMI->getOperand(0));
657     MIB.add(ImmOp);
658     OpStart = 3;
659     Changed = true;
660   }
661   if (Changed) {
662     LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
663     LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
664 
665     for (unsigned i = OpStart; i < OpEnd; ++i)
666       MIB.add(OldMI->getOperand(i));
667   }
668 
669   return Changed;
670 }
671 
672 short HexagonOptAddrMode::getBaseWithLongOffset(const MachineInstr &MI) const {
673   if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset) {
674     short TempOpCode = HII->changeAddrMode_io_rr(MI);
675     return HII->changeAddrMode_rr_ur(TempOpCode);
676   }
677   return HII->changeAddrMode_rr_ur(MI);
678 }
679 
680 bool HexagonOptAddrMode::changeAddAsl(NodeAddr<UseNode *> AddAslUN,
681                                       MachineInstr *AddAslMI,
682                                       const MachineOperand &ImmOp,
683                                       unsigned ImmOpNum) {
684   NodeAddr<StmtNode *> SA = AddAslUN.Addr->getOwner(*DFG);
685 
686   LLVM_DEBUG(dbgs() << "Processing addasl :" << *AddAslMI << "\n");
687 
688   NodeList UNodeList;
689   getAllRealUses(SA, UNodeList);
690 
691   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
692     NodeAddr<UseNode *> UseUN = *I;
693     assert(!(UseUN.Addr->getFlags() & NodeAttrs::PhiRef) &&
694            "Can't transform this 'AddAsl' instruction!");
695 
696     NodeAddr<StmtNode *> UseIA = UseUN.Addr->getOwner(*DFG);
697     LLVM_DEBUG(dbgs() << "[InstrNode]: "
698                       << Print<NodeAddr<InstrNode *>>(UseIA, *DFG) << "\n");
699     MachineInstr *UseMI = UseIA.Addr->getCode();
700     LLVM_DEBUG(dbgs() << "[MI <" << printMBBReference(*UseMI->getParent())
701                       << ">]: " << *UseMI << "\n");
702     const MCInstrDesc &UseMID = UseMI->getDesc();
703     assert(HII->getAddrMode(*UseMI) == HexagonII::BaseImmOffset);
704 
705     auto UsePos = MachineBasicBlock::iterator(UseMI);
706     MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
707     short NewOpCode = getBaseWithLongOffset(*UseMI);
708     assert(NewOpCode >= 0 && "Invalid New opcode\n");
709 
710     unsigned OpStart;
711     unsigned OpEnd = UseMI->getNumOperands();
712 
713     MachineBasicBlock *BB = UseMI->getParent();
714     MachineInstrBuilder MIB =
715         BuildMI(*BB, InsertPt, UseMI->getDebugLoc(), HII->get(NewOpCode));
716     // change mem(Rs + # ) -> mem(Rt << # + ##)
717     if (UseMID.mayLoad()) {
718       MIB.add(UseMI->getOperand(0));
719       MIB.add(AddAslMI->getOperand(2));
720       MIB.add(AddAslMI->getOperand(3));
721       const GlobalValue *GV = ImmOp.getGlobal();
722       MIB.addGlobalAddress(GV, UseMI->getOperand(2).getImm()+ImmOp.getOffset(),
723                            ImmOp.getTargetFlags());
724       OpStart = 3;
725     } else if (UseMID.mayStore()) {
726       MIB.add(AddAslMI->getOperand(2));
727       MIB.add(AddAslMI->getOperand(3));
728       const GlobalValue *GV = ImmOp.getGlobal();
729       MIB.addGlobalAddress(GV, UseMI->getOperand(1).getImm()+ImmOp.getOffset(),
730                            ImmOp.getTargetFlags());
731       MIB.add(UseMI->getOperand(2));
732       OpStart = 3;
733     } else
734       llvm_unreachable("Unhandled instruction");
735 
736     for (unsigned i = OpStart; i < OpEnd; ++i)
737       MIB.add(UseMI->getOperand(i));
738 
739     Deleted.insert(UseMI);
740   }
741 
742   return true;
743 }
744 
745 bool HexagonOptAddrMode::xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
746                                     NodeAddr<UseNode *> UseN,
747                                     unsigned UseMOnum) {
748   const MachineOperand ImmOp = TfrMI->getOperand(1);
749   const MCInstrDesc &MID = UseMI->getDesc();
750   unsigned Changed = false;
751   if (MID.mayLoad())
752     Changed = changeLoad(UseMI, ImmOp, UseMOnum);
753   else if (MID.mayStore())
754     Changed = changeStore(UseMI, ImmOp, UseMOnum);
755   else if (UseMI->getOpcode() == Hexagon::S2_addasl_rrri)
756     Changed = changeAddAsl(UseN, UseMI, ImmOp, UseMOnum);
757 
758   if (Changed)
759     Deleted.insert(UseMI);
760 
761   return Changed;
762 }
763 
764 bool HexagonOptAddrMode::processBlock(NodeAddr<BlockNode *> BA) {
765   bool Changed = false;
766 
767   for (auto IA : BA.Addr->members(*DFG)) {
768     if (!DFG->IsCode<NodeAttrs::Stmt>(IA))
769       continue;
770 
771     NodeAddr<StmtNode *> SA = IA;
772     MachineInstr *MI = SA.Addr->getCode();
773     if ((MI->getOpcode() != Hexagon::A2_tfrsi ||
774          !MI->getOperand(1).isGlobal()) &&
775         (MI->getOpcode() != Hexagon::A2_addi ||
776          !MI->getOperand(2).isImm() || HII->isConstExtended(*MI)))
777     continue;
778 
779     LLVM_DEBUG(dbgs() << "[Analyzing " << HII->getName(MI->getOpcode())
780                       << "]: " << *MI << "\n\t[InstrNode]: "
781                       << Print<NodeAddr<InstrNode *>>(IA, *DFG) << '\n');
782 
783     NodeList UNodeList;
784     getAllRealUses(SA, UNodeList);
785 
786     if (!allValidCandidates(SA, UNodeList))
787       continue;
788 
789     // Analyze all uses of 'add'. If the output of 'add' is used as an address
790     // in the base+immediate addressing mode load/store instructions, see if
791     // they can be updated to use the immediate value as an offet. Thus,
792     // providing us the opportunity to eliminate 'add'.
793     // Ex: Rx= add(Rt,#12)
794     //     memw(Rx+#0) = Rs
795     // This can be replaced with memw(Rt+#12) = Rs
796     //
797     // This transformation is only performed if all uses can be updated and
798     // the offset isn't required to be constant extended.
799     if (MI->getOpcode() == Hexagon::A2_addi) {
800       Changed |= processAddUses(SA, MI, UNodeList);
801       continue;
802     }
803 
804     short SizeInc = 0;
805     Register DefR = MI->getOperand(0).getReg();
806     InstrEvalMap InstrEvalResult;
807 
808     // Analyze all uses and calculate increase in size. Perform the optimization
809     // only if there is no increase in size.
810     if (!analyzeUses(DefR, UNodeList, InstrEvalResult, SizeInc))
811       continue;
812     if (SizeInc > CodeGrowthLimit)
813       continue;
814 
815     bool KeepTfr = false;
816 
817     LLVM_DEBUG(dbgs() << "\t[Total reached uses] : " << UNodeList.size()
818                       << "\n");
819     LLVM_DEBUG(dbgs() << "\t[Processing Reached Uses] ===\n");
820     for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
821       NodeAddr<UseNode *> UseN = *I;
822       assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
823              "Found a PhiRef node as a real reached use!!");
824 
825       NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG);
826       MachineInstr *UseMI = OwnerN.Addr->getCode();
827       LLVM_DEBUG(dbgs() << "\t\t[MI <" << printMBBReference(*UseMI->getParent())
828                         << ">]: " << *UseMI << "\n");
829 
830       int UseMOnum = -1;
831       unsigned NumOperands = UseMI->getNumOperands();
832       for (unsigned j = 0; j < NumOperands - 1; ++j) {
833         const MachineOperand &op = UseMI->getOperand(j);
834         if (op.isReg() && op.isUse() && DefR == op.getReg())
835           UseMOnum = j;
836       }
837       // It is possible that the register will not be found in any operand.
838       // This could happen, for example, when DefR = R4, but the used
839       // register is D2.
840 
841       // Change UseMI if replacement is possible. If any replacement failed,
842       // or wasn't attempted, make sure to keep the TFR.
843       bool Xformed = false;
844       if (UseMOnum >= 0 && InstrEvalResult[UseMI])
845         Xformed = xformUseMI(MI, UseMI, UseN, UseMOnum);
846       Changed |=  Xformed;
847       KeepTfr |= !Xformed;
848     }
849     if (!KeepTfr)
850       Deleted.insert(MI);
851   }
852   return Changed;
853 }
854 
855 bool HexagonOptAddrMode::runOnMachineFunction(MachineFunction &MF) {
856   if (skipFunction(MF.getFunction()))
857     return false;
858 
859   bool Changed = false;
860   auto &HST = MF.getSubtarget<HexagonSubtarget>();
861   MRI = &MF.getRegInfo();
862   HII = HST.getInstrInfo();
863   HRI = HST.getRegisterInfo();
864   const auto &MDF = getAnalysis<MachineDominanceFrontier>();
865   MDT = &getAnalysis<MachineDominatorTree>();
866 
867   DataFlowGraph G(MF, *HII, *HRI, *MDT, MDF);
868   // Need to keep dead phis because we can propagate uses of registers into
869   // nodes dominated by those would-be phis.
870   G.build(BuildOptions::KeepDeadPhis);
871   DFG = &G;
872 
873   Liveness L(*MRI, *DFG);
874   L.computePhiInfo();
875   LV = &L;
876 
877   Deleted.clear();
878   NodeAddr<FuncNode *> FA = DFG->getFunc();
879   LLVM_DEBUG(dbgs() << "==== [RefMap#]=====:\n "
880                     << Print<NodeAddr<FuncNode *>>(FA, *DFG) << "\n");
881 
882   for (NodeAddr<BlockNode *> BA : FA.Addr->members(*DFG))
883     Changed |= processBlock(BA);
884 
885   for (auto *MI : Deleted)
886     MI->eraseFromParent();
887 
888   if (Changed) {
889     G.build();
890     L.computeLiveIns();
891     L.resetLiveIns();
892     L.resetKills();
893   }
894 
895   return Changed;
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //                         Public Constructor Functions
900 //===----------------------------------------------------------------------===//
901 
902 FunctionPass *llvm::createHexagonOptAddrMode() {
903   return new HexagonOptAddrMode();
904 }
905