xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonNewValueJump.cpp (revision d4eeb02986980bf33dd56c41ceb9fc5f180c0d47)
1 //===- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements NewValueJump pass in Hexagon.
10 // Ideally, we should merge this as a Peephole pass prior to register
11 // allocation, but because we have a spill in between the feeder and new value
12 // jump instructions, we are forced to write after register allocation.
13 // Having said that, we should re-attempt to pull this earlier at some point
14 // in future.
15 
16 // The basic approach looks for sequence of predicated jump, compare instruciton
17 // that genereates the predicate and, the feeder to the predicate. Once it finds
18 // all, it collapses compare and jump instruction into a new value jump
19 // intstructions.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/InitializePasses.h"
24 #include "Hexagon.h"
25 #include "HexagonInstrInfo.h"
26 #include "HexagonRegisterInfo.h"
27 #include "HexagonSubtarget.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetOpcodes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/MC/MCInstrDesc.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "hexagon-nvj"
56 
57 STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
58 
59 static cl::opt<int> DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden,
60     cl::desc("Maximum number of predicated jumps to be converted to "
61     "New Value Jump"));
62 
63 static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
64     cl::ZeroOrMore, cl::init(false),
65     cl::desc("Disable New Value Jumps"));
66 
67 namespace llvm {
68 
69 FunctionPass *createHexagonNewValueJump();
70 void initializeHexagonNewValueJumpPass(PassRegistry&);
71 
72 } // end namespace llvm
73 
74 namespace {
75 
76   struct HexagonNewValueJump : public MachineFunctionPass {
77     static char ID;
78 
79     HexagonNewValueJump() : MachineFunctionPass(ID) {}
80 
81     void getAnalysisUsage(AnalysisUsage &AU) const override {
82       AU.addRequired<MachineBranchProbabilityInfo>();
83       MachineFunctionPass::getAnalysisUsage(AU);
84     }
85 
86     StringRef getPassName() const override { return "Hexagon NewValueJump"; }
87 
88     bool runOnMachineFunction(MachineFunction &Fn) override;
89 
90     MachineFunctionProperties getRequiredProperties() const override {
91       return MachineFunctionProperties().set(
92           MachineFunctionProperties::Property::NoVRegs);
93     }
94 
95   private:
96     const HexagonInstrInfo *QII;
97     const HexagonRegisterInfo *QRI;
98 
99     /// A handle to the branch probability pass.
100     const MachineBranchProbabilityInfo *MBPI;
101 
102     bool isNewValueJumpCandidate(const MachineInstr &MI) const;
103   };
104 
105 } // end anonymous namespace
106 
107 char HexagonNewValueJump::ID = 0;
108 
109 INITIALIZE_PASS_BEGIN(HexagonNewValueJump, "hexagon-nvj",
110                       "Hexagon NewValueJump", false, false)
111 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
112 INITIALIZE_PASS_END(HexagonNewValueJump, "hexagon-nvj",
113                     "Hexagon NewValueJump", false, false)
114 
115 // We have identified this II could be feeder to NVJ,
116 // verify that it can be.
117 static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
118                                       const TargetRegisterInfo *TRI,
119                                       MachineBasicBlock::iterator II,
120                                       MachineBasicBlock::iterator end,
121                                       MachineBasicBlock::iterator skip,
122                                       MachineFunction &MF) {
123   // Predicated instruction can not be feeder to NVJ.
124   if (QII->isPredicated(*II))
125     return false;
126 
127   // Bail out if feederReg is a paired register (double regs in
128   // our case). One would think that we can check to see if a given
129   // register cmpReg1 or cmpReg2 is a sub register of feederReg
130   // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
131   // before the callsite of this function
132   // But we can not as it comes in the following fashion.
133   //    %d0 = Hexagon_S2_lsr_r_p killed %d0, killed %r2
134   //    %r0 = KILL %r0, implicit killed %d0
135   //    %p0 = CMPEQri killed %r0, 0
136   // Hence, we need to check if it's a KILL instruction.
137   if (II->getOpcode() == TargetOpcode::KILL)
138     return false;
139 
140   if (II->isImplicitDef())
141     return false;
142 
143   if (QII->isSolo(*II))
144     return false;
145 
146   if (QII->isFloat(*II))
147     return false;
148 
149   // Make sure that the (unique) def operand is a register from IntRegs.
150   bool HadDef = false;
151   for (const MachineOperand &Op : II->operands()) {
152     if (!Op.isReg() || !Op.isDef())
153       continue;
154     if (HadDef)
155       return false;
156     HadDef = true;
157     if (!Hexagon::IntRegsRegClass.contains(Op.getReg()))
158       return false;
159   }
160   assert(HadDef);
161 
162   // Make sure there is no 'def' or 'use' of any of the uses of
163   // feeder insn between its definition, this MI and jump, jmpInst
164   // skipping compare, cmpInst.
165   // Here's the example.
166   //    r21=memub(r22+r24<<#0)
167   //    p0 = cmp.eq(r21, #0)
168   //    r4=memub(r3+r21<<#0)
169   //    if (p0.new) jump:t .LBB29_45
170   // Without this check, it will be converted into
171   //    r4=memub(r3+r21<<#0)
172   //    r21=memub(r22+r24<<#0)
173   //    p0 = cmp.eq(r21, #0)
174   //    if (p0.new) jump:t .LBB29_45
175   // and result WAR hazards if converted to New Value Jump.
176   for (unsigned i = 0; i < II->getNumOperands(); ++i) {
177     if (II->getOperand(i).isReg() &&
178         (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
179       MachineBasicBlock::iterator localII = II;
180       ++localII;
181       Register Reg = II->getOperand(i).getReg();
182       for (MachineBasicBlock::iterator localBegin = localII; localBegin != end;
183            ++localBegin) {
184         if (localBegin == skip)
185           continue;
186         // Check for Subregisters too.
187         if (localBegin->modifiesRegister(Reg, TRI) ||
188             localBegin->readsRegister(Reg, TRI))
189           return false;
190       }
191     }
192   }
193   return true;
194 }
195 
196 // These are the common checks that need to performed
197 // to determine if
198 // 1. compare instruction can be moved before jump.
199 // 2. feeder to the compare instruction can be moved before jump.
200 static bool commonChecksToProhibitNewValueJump(bool afterRA,
201                           MachineBasicBlock::iterator MII) {
202   // If store in path, bail out.
203   if (MII->mayStore())
204     return false;
205 
206   // if call in path, bail out.
207   if (MII->isCall())
208     return false;
209 
210   // if NVJ is running prior to RA, do the following checks.
211   if (!afterRA) {
212     // The following Target Opcode instructions are spurious
213     // to new value jump. If they are in the path, bail out.
214     // KILL sets kill flag on the opcode. It also sets up a
215     // single register, out of pair.
216     //    %d0 = S2_lsr_r_p killed %d0, killed %r2
217     //    %r0 = KILL %r0, implicit killed %d0
218     //    %p0 = C2_cmpeqi killed %r0, 0
219     // PHI can be anything after RA.
220     // COPY can remateriaze things in between feeder, compare and nvj.
221     if (MII->getOpcode() == TargetOpcode::KILL ||
222         MII->getOpcode() == TargetOpcode::PHI ||
223         MII->getOpcode() == TargetOpcode::COPY)
224       return false;
225 
226     // The following pseudo Hexagon instructions sets "use" and "def"
227     // of registers by individual passes in the backend. At this time,
228     // we don't know the scope of usage and definitions of these
229     // instructions.
230     if (MII->getOpcode() == Hexagon::LDriw_pred ||
231         MII->getOpcode() == Hexagon::STriw_pred)
232       return false;
233   }
234 
235   return true;
236 }
237 
238 static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
239                                      const TargetRegisterInfo *TRI,
240                                      MachineBasicBlock::iterator II,
241                                      unsigned pReg,
242                                      bool secondReg,
243                                      bool optLocation,
244                                      MachineBasicBlock::iterator end,
245                                      MachineFunction &MF) {
246   MachineInstr &MI = *II;
247 
248   // If the second operand of the compare is an imm, make sure it's in the
249   // range specified by the arch.
250   if (!secondReg) {
251     const MachineOperand &Op2 = MI.getOperand(2);
252     if (!Op2.isImm())
253       return false;
254 
255     int64_t v = Op2.getImm();
256     bool Valid = false;
257 
258     switch (MI.getOpcode()) {
259       case Hexagon::C2_cmpeqi:
260       case Hexagon::C4_cmpneqi:
261       case Hexagon::C2_cmpgti:
262       case Hexagon::C4_cmpltei:
263         Valid = (isUInt<5>(v) || v == -1);
264         break;
265       case Hexagon::C2_cmpgtui:
266       case Hexagon::C4_cmplteui:
267         Valid = isUInt<5>(v);
268         break;
269       case Hexagon::S2_tstbit_i:
270       case Hexagon::S4_ntstbit_i:
271         Valid = (v == 0);
272         break;
273     }
274 
275     if (!Valid)
276       return false;
277   }
278 
279   unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
280   cmpReg1 = MI.getOperand(1).getReg();
281 
282   if (secondReg) {
283     cmpOp2 = MI.getOperand(2).getReg();
284 
285     // If the same register appears as both operands, we cannot generate a new
286     // value compare. Only one operand may use the .new suffix.
287     if (cmpReg1 == cmpOp2)
288       return false;
289 
290     // Make sure that the second register is not from COPY
291     // at machine code level, we don't need this, but if we decide
292     // to move new value jump prior to RA, we would be needing this.
293     MachineRegisterInfo &MRI = MF.getRegInfo();
294     if (!Register::isPhysicalRegister(cmpOp2)) {
295       MachineInstr *def = MRI.getVRegDef(cmpOp2);
296       if (def->getOpcode() == TargetOpcode::COPY)
297         return false;
298     }
299   }
300 
301   // Walk the instructions after the compare (predicate def) to the jump,
302   // and satisfy the following conditions.
303   ++II;
304   for (MachineBasicBlock::iterator localII = II; localII != end; ++localII) {
305     if (localII->isDebugInstr())
306       continue;
307 
308     // Check 1.
309     // If "common" checks fail, bail out.
310     if (!commonChecksToProhibitNewValueJump(optLocation, localII))
311       return false;
312 
313     // Check 2.
314     // If there is a def or use of predicate (result of compare), bail out.
315     if (localII->modifiesRegister(pReg, TRI) ||
316         localII->readsRegister(pReg, TRI))
317       return false;
318 
319     // Check 3.
320     // If there is a def of any of the use of the compare (operands of compare),
321     // bail out.
322     // Eg.
323     //    p0 = cmp.eq(r2, r0)
324     //    r2 = r4
325     //    if (p0.new) jump:t .LBB28_3
326     if (localII->modifiesRegister(cmpReg1, TRI) ||
327         (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
328       return false;
329   }
330   return true;
331 }
332 
333 // Given a compare operator, return a matching New Value Jump compare operator.
334 // Make sure that MI here is included in isNewValueJumpCandidate.
335 static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
336                                       bool secondRegNewified,
337                                       MachineBasicBlock *jmpTarget,
338                                       const MachineBranchProbabilityInfo
339                                       *MBPI) {
340   bool taken = false;
341   MachineBasicBlock *Src = MI->getParent();
342   const BranchProbability Prediction =
343     MBPI->getEdgeProbability(Src, jmpTarget);
344 
345   if (Prediction >= BranchProbability(1,2))
346     taken = true;
347 
348   switch (MI->getOpcode()) {
349     case Hexagon::C2_cmpeq:
350       return taken ? Hexagon::J4_cmpeq_t_jumpnv_t
351                    : Hexagon::J4_cmpeq_t_jumpnv_nt;
352 
353     case Hexagon::C2_cmpeqi:
354       if (reg >= 0)
355         return taken ? Hexagon::J4_cmpeqi_t_jumpnv_t
356                      : Hexagon::J4_cmpeqi_t_jumpnv_nt;
357       return taken ? Hexagon::J4_cmpeqn1_t_jumpnv_t
358                    : Hexagon::J4_cmpeqn1_t_jumpnv_nt;
359 
360     case Hexagon::C4_cmpneqi:
361       if (reg >= 0)
362         return taken ? Hexagon::J4_cmpeqi_f_jumpnv_t
363                      : Hexagon::J4_cmpeqi_f_jumpnv_nt;
364       return taken ? Hexagon::J4_cmpeqn1_f_jumpnv_t :
365                      Hexagon::J4_cmpeqn1_f_jumpnv_nt;
366 
367     case Hexagon::C2_cmpgt:
368       if (secondRegNewified)
369         return taken ? Hexagon::J4_cmplt_t_jumpnv_t
370                      : Hexagon::J4_cmplt_t_jumpnv_nt;
371       return taken ? Hexagon::J4_cmpgt_t_jumpnv_t
372                    : Hexagon::J4_cmpgt_t_jumpnv_nt;
373 
374     case Hexagon::C2_cmpgti:
375       if (reg >= 0)
376         return taken ? Hexagon::J4_cmpgti_t_jumpnv_t
377                      : Hexagon::J4_cmpgti_t_jumpnv_nt;
378       return taken ? Hexagon::J4_cmpgtn1_t_jumpnv_t
379                    : Hexagon::J4_cmpgtn1_t_jumpnv_nt;
380 
381     case Hexagon::C2_cmpgtu:
382       if (secondRegNewified)
383         return taken ? Hexagon::J4_cmpltu_t_jumpnv_t
384                      : Hexagon::J4_cmpltu_t_jumpnv_nt;
385       return taken ? Hexagon::J4_cmpgtu_t_jumpnv_t
386                    : Hexagon::J4_cmpgtu_t_jumpnv_nt;
387 
388     case Hexagon::C2_cmpgtui:
389       return taken ? Hexagon::J4_cmpgtui_t_jumpnv_t
390                    : Hexagon::J4_cmpgtui_t_jumpnv_nt;
391 
392     case Hexagon::C4_cmpneq:
393       return taken ? Hexagon::J4_cmpeq_f_jumpnv_t
394                    : Hexagon::J4_cmpeq_f_jumpnv_nt;
395 
396     case Hexagon::C4_cmplte:
397       if (secondRegNewified)
398         return taken ? Hexagon::J4_cmplt_f_jumpnv_t
399                      : Hexagon::J4_cmplt_f_jumpnv_nt;
400       return taken ? Hexagon::J4_cmpgt_f_jumpnv_t
401                    : Hexagon::J4_cmpgt_f_jumpnv_nt;
402 
403     case Hexagon::C4_cmplteu:
404       if (secondRegNewified)
405         return taken ? Hexagon::J4_cmpltu_f_jumpnv_t
406                      : Hexagon::J4_cmpltu_f_jumpnv_nt;
407       return taken ? Hexagon::J4_cmpgtu_f_jumpnv_t
408                    : Hexagon::J4_cmpgtu_f_jumpnv_nt;
409 
410     case Hexagon::C4_cmpltei:
411       if (reg >= 0)
412         return taken ? Hexagon::J4_cmpgti_f_jumpnv_t
413                      : Hexagon::J4_cmpgti_f_jumpnv_nt;
414       return taken ? Hexagon::J4_cmpgtn1_f_jumpnv_t
415                    : Hexagon::J4_cmpgtn1_f_jumpnv_nt;
416 
417     case Hexagon::C4_cmplteui:
418       return taken ? Hexagon::J4_cmpgtui_f_jumpnv_t
419                    : Hexagon::J4_cmpgtui_f_jumpnv_nt;
420 
421     default:
422        llvm_unreachable("Could not find matching New Value Jump instruction.");
423   }
424   // return *some value* to avoid compiler warning
425   return 0;
426 }
427 
428 bool HexagonNewValueJump::isNewValueJumpCandidate(
429     const MachineInstr &MI) const {
430   switch (MI.getOpcode()) {
431   case Hexagon::C2_cmpeq:
432   case Hexagon::C2_cmpeqi:
433   case Hexagon::C2_cmpgt:
434   case Hexagon::C2_cmpgti:
435   case Hexagon::C2_cmpgtu:
436   case Hexagon::C2_cmpgtui:
437   case Hexagon::C4_cmpneq:
438   case Hexagon::C4_cmpneqi:
439   case Hexagon::C4_cmplte:
440   case Hexagon::C4_cmplteu:
441   case Hexagon::C4_cmpltei:
442   case Hexagon::C4_cmplteui:
443     return true;
444 
445   default:
446     return false;
447   }
448 }
449 
450 bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
451   LLVM_DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
452                     << "********** Function: " << MF.getName() << "\n");
453 
454   if (skipFunction(MF.getFunction()))
455     return false;
456 
457   // If we move NewValueJump before register allocation we'll need live variable
458   // analysis here too.
459 
460   QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
461   QRI = static_cast<const HexagonRegisterInfo *>(
462       MF.getSubtarget().getRegisterInfo());
463   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
464 
465   if (DisableNewValueJumps ||
466       !MF.getSubtarget<HexagonSubtarget>().useNewValueJumps())
467     return false;
468 
469   int nvjCount = DbgNVJCount;
470   int nvjGenerated = 0;
471 
472   // Loop through all the bb's of the function
473   for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
474        MBBb != MBBe; ++MBBb) {
475     MachineBasicBlock *MBB = &*MBBb;
476 
477     LLVM_DEBUG(dbgs() << "** dumping bb ** " << MBB->getNumber() << "\n");
478     LLVM_DEBUG(MBB->dump());
479     LLVM_DEBUG(dbgs() << "\n"
480                       << "********** dumping instr bottom up **********\n");
481     bool foundJump    = false;
482     bool foundCompare = false;
483     bool invertPredicate = false;
484     unsigned predReg = 0; // predicate reg of the jump.
485     unsigned cmpReg1 = 0;
486     int cmpOp2 = 0;
487     MachineBasicBlock::iterator jmpPos;
488     MachineBasicBlock::iterator cmpPos;
489     MachineInstr *cmpInstr = nullptr, *jmpInstr = nullptr;
490     MachineBasicBlock *jmpTarget = nullptr;
491     bool afterRA = false;
492     bool isSecondOpReg = false;
493     bool isSecondOpNewified = false;
494     // Traverse the basic block - bottom up
495     for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
496          MII != E;) {
497       MachineInstr &MI = *--MII;
498       if (MI.isDebugInstr()) {
499         continue;
500       }
501 
502       if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
503         break;
504 
505       LLVM_DEBUG(dbgs() << "Instr: "; MI.dump(); dbgs() << "\n");
506 
507       if (!foundJump && (MI.getOpcode() == Hexagon::J2_jumpt ||
508                          MI.getOpcode() == Hexagon::J2_jumptpt ||
509                          MI.getOpcode() == Hexagon::J2_jumpf ||
510                          MI.getOpcode() == Hexagon::J2_jumpfpt ||
511                          MI.getOpcode() == Hexagon::J2_jumptnewpt ||
512                          MI.getOpcode() == Hexagon::J2_jumptnew ||
513                          MI.getOpcode() == Hexagon::J2_jumpfnewpt ||
514                          MI.getOpcode() == Hexagon::J2_jumpfnew)) {
515         // This is where you would insert your compare and
516         // instr that feeds compare
517         jmpPos = MII;
518         jmpInstr = &MI;
519         predReg = MI.getOperand(0).getReg();
520         afterRA = Register::isPhysicalRegister(predReg);
521 
522         // If ifconverter had not messed up with the kill flags of the
523         // operands, the following check on the kill flag would suffice.
524         // if(!jmpInstr->getOperand(0).isKill()) break;
525 
526         // This predicate register is live out of BB
527         // this would only work if we can actually use Live
528         // variable analysis on phy regs - but LLVM does not
529         // provide LV analysis on phys regs.
530         //if(LVs.isLiveOut(predReg, *MBB)) break;
531 
532         // Get all the successors of this block - which will always
533         // be 2. Check if the predicate register is live-in in those
534         // successor. If yes, we can not delete the predicate -
535         // I am doing this only because LLVM does not provide LiveOut
536         // at the BB level.
537         bool predLive = false;
538         for (const MachineBasicBlock *SuccMBB : MBB->successors())
539           if (SuccMBB->isLiveIn(predReg))
540             predLive = true;
541         if (predLive)
542           break;
543 
544         if (!MI.getOperand(1).isMBB())
545           continue;
546         jmpTarget = MI.getOperand(1).getMBB();
547         foundJump = true;
548         if (MI.getOpcode() == Hexagon::J2_jumpf ||
549             MI.getOpcode() == Hexagon::J2_jumpfnewpt ||
550             MI.getOpcode() == Hexagon::J2_jumpfnew) {
551           invertPredicate = true;
552         }
553         continue;
554       }
555 
556       // No new value jump if there is a barrier. A barrier has to be in its
557       // own packet. A barrier has zero operands. We conservatively bail out
558       // here if we see any instruction with zero operands.
559       if (foundJump && MI.getNumOperands() == 0)
560         break;
561 
562       if (foundJump && !foundCompare && MI.getOperand(0).isReg() &&
563           MI.getOperand(0).getReg() == predReg) {
564         // Not all compares can be new value compare. Arch Spec: 7.6.1.1
565         if (isNewValueJumpCandidate(MI)) {
566           assert(
567               (MI.getDesc().isCompare()) &&
568               "Only compare instruction can be collapsed into New Value Jump");
569           isSecondOpReg = MI.getOperand(2).isReg();
570 
571           if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
572                                         afterRA, jmpPos, MF))
573             break;
574 
575           cmpInstr = &MI;
576           cmpPos = MII;
577           foundCompare = true;
578 
579           // We need cmpReg1 and cmpOp2(imm or reg) while building
580           // new value jump instruction.
581           cmpReg1 = MI.getOperand(1).getReg();
582 
583           if (isSecondOpReg)
584             cmpOp2 = MI.getOperand(2).getReg();
585           else
586             cmpOp2 = MI.getOperand(2).getImm();
587           continue;
588         }
589       }
590 
591       if (foundCompare && foundJump) {
592         // If "common" checks fail, bail out on this BB.
593         if (!commonChecksToProhibitNewValueJump(afterRA, MII))
594           break;
595 
596         bool foundFeeder = false;
597         MachineBasicBlock::iterator feederPos = MII;
598         if (MI.getOperand(0).isReg() && MI.getOperand(0).isDef() &&
599             (MI.getOperand(0).getReg() == cmpReg1 ||
600              (isSecondOpReg &&
601               MI.getOperand(0).getReg() == (unsigned)cmpOp2))) {
602 
603           Register feederReg = MI.getOperand(0).getReg();
604 
605           // First try to see if we can get the feeder from the first operand
606           // of the compare. If we can not, and if secondOpReg is true
607           // (second operand of the compare is also register), try that one.
608           // TODO: Try to come up with some heuristic to figure out which
609           // feeder would benefit.
610 
611           if (feederReg == cmpReg1) {
612             if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
613               if (!isSecondOpReg)
614                 break;
615               else
616                 continue;
617             } else
618               foundFeeder = true;
619           }
620 
621           if (!foundFeeder && isSecondOpReg && feederReg == (unsigned)cmpOp2)
622             if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
623               break;
624 
625           if (isSecondOpReg) {
626             // In case of CMPLT, or CMPLTU, or EQ with the second register
627             // to newify, swap the operands.
628             unsigned COp = cmpInstr->getOpcode();
629             if ((COp == Hexagon::C2_cmpeq || COp == Hexagon::C4_cmpneq) &&
630                 (feederReg == (unsigned)cmpOp2)) {
631               unsigned tmp = cmpReg1;
632               cmpReg1 = cmpOp2;
633               cmpOp2 = tmp;
634             }
635 
636             // Now we have swapped the operands, all we need to check is,
637             // if the second operand (after swap) is the feeder.
638             // And if it is, make a note.
639             if (feederReg == (unsigned)cmpOp2)
640               isSecondOpNewified = true;
641           }
642 
643           // Now that we are moving feeder close the jump,
644           // make sure we are respecting the kill values of
645           // the operands of the feeder.
646 
647           auto TransferKills = [jmpPos,cmpPos] (MachineInstr &MI) {
648             for (MachineOperand &MO : MI.operands()) {
649               if (!MO.isReg() || !MO.isUse())
650                 continue;
651               Register UseR = MO.getReg();
652               for (auto I = std::next(MI.getIterator()); I != jmpPos; ++I) {
653                 if (I == cmpPos)
654                   continue;
655                 for (MachineOperand &Op : I->operands()) {
656                   if (!Op.isReg() || !Op.isUse() || !Op.isKill())
657                     continue;
658                   if (Op.getReg() != UseR)
659                     continue;
660                   // We found that there is kill of a use register
661                   // Set up a kill flag on the register
662                   Op.setIsKill(false);
663                   MO.setIsKill(true);
664                   return;
665                 }
666               }
667             }
668           };
669 
670           TransferKills(*feederPos);
671           TransferKills(*cmpPos);
672           bool MO1IsKill = cmpPos->killsRegister(cmpReg1, QRI);
673           bool MO2IsKill = isSecondOpReg && cmpPos->killsRegister(cmpOp2, QRI);
674 
675           MBB->splice(jmpPos, MI.getParent(), MI);
676           MBB->splice(jmpPos, MI.getParent(), cmpInstr);
677           DebugLoc dl = MI.getDebugLoc();
678           MachineInstr *NewMI;
679 
680           assert((isNewValueJumpCandidate(*cmpInstr)) &&
681                  "This compare is not a New Value Jump candidate.");
682           unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
683                                                isSecondOpNewified,
684                                                jmpTarget, MBPI);
685           if (invertPredicate)
686             opc = QII->getInvertedPredicatedOpcode(opc);
687 
688           if (isSecondOpReg)
689             NewMI = BuildMI(*MBB, jmpPos, dl, QII->get(opc))
690                         .addReg(cmpReg1, getKillRegState(MO1IsKill))
691                         .addReg(cmpOp2, getKillRegState(MO2IsKill))
692                         .addMBB(jmpTarget);
693 
694           else
695             NewMI = BuildMI(*MBB, jmpPos, dl, QII->get(opc))
696                         .addReg(cmpReg1, getKillRegState(MO1IsKill))
697                         .addImm(cmpOp2)
698                         .addMBB(jmpTarget);
699 
700           assert(NewMI && "New Value Jump Instruction Not created!");
701           (void)NewMI;
702           if (cmpInstr->getOperand(0).isReg() &&
703               cmpInstr->getOperand(0).isKill())
704             cmpInstr->getOperand(0).setIsKill(false);
705           if (cmpInstr->getOperand(1).isReg() &&
706               cmpInstr->getOperand(1).isKill())
707             cmpInstr->getOperand(1).setIsKill(false);
708           cmpInstr->eraseFromParent();
709           jmpInstr->eraseFromParent();
710           ++nvjGenerated;
711           ++NumNVJGenerated;
712           break;
713         }
714       }
715     }
716   }
717 
718   return true;
719 }
720 
721 FunctionPass *llvm::createHexagonNewValueJump() {
722   return new HexagonNewValueJump();
723 }
724