xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "HexagonLoopIdiomRecognition.h"
10 #include "llvm/ADT/APInt.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopAnalysisManager.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicsHexagon.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
63 #include <algorithm>
64 #include <array>
65 #include <cassert>
66 #include <cstdint>
67 #include <cstdlib>
68 #include <deque>
69 #include <functional>
70 #include <iterator>
71 #include <map>
72 #include <set>
73 #include <utility>
74 #include <vector>
75 
76 #define DEBUG_TYPE "hexagon-lir"
77 
78 using namespace llvm;
79 
80 static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
81   cl::Hidden, cl::init(false),
82   cl::desc("Disable generation of memcpy in loop idiom recognition"));
83 
84 static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
85   cl::Hidden, cl::init(false),
86   cl::desc("Disable generation of memmove in loop idiom recognition"));
87 
88 static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
89   cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
90   "check guarding the memmove."));
91 
92 static cl::opt<unsigned> CompileTimeMemSizeThreshold(
93   "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
94   cl::desc("Threshold (in bytes) to perform the transformation, if the "
95     "runtime loop count (mem transfer size) is known at compile-time."));
96 
97 static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
98   cl::Hidden, cl::init(true),
99   cl::desc("Only enable generating memmove in non-nested loops"));
100 
101 static cl::opt<bool> HexagonVolatileMemcpy(
102     "disable-hexagon-volatile-memcpy", cl::Hidden, cl::init(false),
103     cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
104 
105 static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
106   cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
107 
108 static const char *HexagonVolatileMemcpyName
109   = "hexagon_memcpy_forward_vp4cp4n2";
110 
111 
112 namespace llvm {
113 
114 void initializeHexagonLoopIdiomRecognizeLegacyPassPass(PassRegistry &);
115 Pass *createHexagonLoopIdiomPass();
116 
117 } // end namespace llvm
118 
119 namespace {
120 
121 class HexagonLoopIdiomRecognize {
122 public:
123   explicit HexagonLoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
124                                      LoopInfo *LF, const TargetLibraryInfo *TLI,
125                                      ScalarEvolution *SE)
126       : AA(AA), DT(DT), LF(LF), TLI(TLI), SE(SE) {}
127 
128   bool run(Loop *L);
129 
130 private:
131   int getSCEVStride(const SCEVAddRecExpr *StoreEv);
132   bool isLegalStore(Loop *CurLoop, StoreInst *SI);
133   void collectStores(Loop *CurLoop, BasicBlock *BB,
134                      SmallVectorImpl<StoreInst *> &Stores);
135   bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
136   bool coverLoop(Loop *L, SmallVectorImpl<Instruction *> &Insts) const;
137   bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
138                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
139   bool runOnCountableLoop(Loop *L);
140 
141   AliasAnalysis *AA;
142   const DataLayout *DL;
143   DominatorTree *DT;
144   LoopInfo *LF;
145   const TargetLibraryInfo *TLI;
146   ScalarEvolution *SE;
147   bool HasMemcpy, HasMemmove;
148 };
149 
150 class HexagonLoopIdiomRecognizeLegacyPass : public LoopPass {
151 public:
152   static char ID;
153 
154   explicit HexagonLoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
155     initializeHexagonLoopIdiomRecognizeLegacyPassPass(
156         *PassRegistry::getPassRegistry());
157   }
158 
159   StringRef getPassName() const override {
160     return "Recognize Hexagon-specific loop idioms";
161   }
162 
163   void getAnalysisUsage(AnalysisUsage &AU) const override {
164     AU.addRequired<LoopInfoWrapperPass>();
165     AU.addRequiredID(LoopSimplifyID);
166     AU.addRequiredID(LCSSAID);
167     AU.addRequired<AAResultsWrapperPass>();
168     AU.addRequired<ScalarEvolutionWrapperPass>();
169     AU.addRequired<DominatorTreeWrapperPass>();
170     AU.addRequired<TargetLibraryInfoWrapperPass>();
171     AU.addPreserved<TargetLibraryInfoWrapperPass>();
172   }
173 
174   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
175 };
176 
177 struct Simplifier {
178   struct Rule {
179     using FuncType = std::function<Value *(Instruction *, LLVMContext &)>;
180     Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
181     StringRef Name; // For debugging.
182     FuncType Fn;
183   };
184 
185   void addRule(StringRef N, const Rule::FuncType &F) {
186     Rules.push_back(Rule(N, F));
187   }
188 
189 private:
190   struct WorkListType {
191     WorkListType() = default;
192 
193     void push_back(Value *V) {
194       // Do not push back duplicates.
195       if (!S.count(V)) {
196         Q.push_back(V);
197         S.insert(V);
198       }
199     }
200 
201     Value *pop_front_val() {
202       Value *V = Q.front();
203       Q.pop_front();
204       S.erase(V);
205       return V;
206     }
207 
208     bool empty() const { return Q.empty(); }
209 
210   private:
211     std::deque<Value *> Q;
212     std::set<Value *> S;
213   };
214 
215   using ValueSetType = std::set<Value *>;
216 
217   std::vector<Rule> Rules;
218 
219 public:
220   struct Context {
221     using ValueMapType = DenseMap<Value *, Value *>;
222 
223     Value *Root;
224     ValueSetType Used;   // The set of all cloned values used by Root.
225     ValueSetType Clones; // The set of all cloned values.
226     LLVMContext &Ctx;
227 
228     Context(Instruction *Exp)
229         : Ctx(Exp->getParent()->getParent()->getContext()) {
230       initialize(Exp);
231     }
232 
233     ~Context() { cleanup(); }
234 
235     void print(raw_ostream &OS, const Value *V) const;
236     Value *materialize(BasicBlock *B, BasicBlock::iterator At);
237 
238   private:
239     friend struct Simplifier;
240 
241     void initialize(Instruction *Exp);
242     void cleanup();
243 
244     template <typename FuncT> void traverse(Value *V, FuncT F);
245     void record(Value *V);
246     void use(Value *V);
247     void unuse(Value *V);
248 
249     bool equal(const Instruction *I, const Instruction *J) const;
250     Value *find(Value *Tree, Value *Sub) const;
251     Value *subst(Value *Tree, Value *OldV, Value *NewV);
252     void replace(Value *OldV, Value *NewV);
253     void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
254   };
255 
256   Value *simplify(Context &C);
257 };
258 
259   struct PE {
260     PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
261 
262     const Simplifier::Context &C;
263     const Value *V;
264   };
265 
266   LLVM_ATTRIBUTE_USED
267   raw_ostream &operator<<(raw_ostream &OS, const PE &P) {
268     P.C.print(OS, P.V ? P.V : P.C.Root);
269     return OS;
270   }
271 
272 } // end anonymous namespace
273 
274 char HexagonLoopIdiomRecognizeLegacyPass::ID = 0;
275 
276 INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognizeLegacyPass, "hexagon-loop-idiom",
277                       "Recognize Hexagon-specific loop idioms", false, false)
278 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
279 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
280 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
281 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
282 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
283 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
284 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
285 INITIALIZE_PASS_END(HexagonLoopIdiomRecognizeLegacyPass, "hexagon-loop-idiom",
286                     "Recognize Hexagon-specific loop idioms", false, false)
287 
288 template <typename FuncT>
289 void Simplifier::Context::traverse(Value *V, FuncT F) {
290   WorkListType Q;
291   Q.push_back(V);
292 
293   while (!Q.empty()) {
294     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
295     if (!U || U->getParent())
296       continue;
297     if (!F(U))
298       continue;
299     for (Value *Op : U->operands())
300       Q.push_back(Op);
301   }
302 }
303 
304 void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
305   const auto *U = dyn_cast<const Instruction>(V);
306   if (!U) {
307     OS << V << '(' << *V << ')';
308     return;
309   }
310 
311   if (U->getParent()) {
312     OS << U << '(';
313     U->printAsOperand(OS, true);
314     OS << ')';
315     return;
316   }
317 
318   unsigned N = U->getNumOperands();
319   if (N != 0)
320     OS << U << '(';
321   OS << U->getOpcodeName();
322   for (const Value *Op : U->operands()) {
323     OS << ' ';
324     print(OS, Op);
325   }
326   if (N != 0)
327     OS << ')';
328 }
329 
330 void Simplifier::Context::initialize(Instruction *Exp) {
331   // Perform a deep clone of the expression, set Root to the root
332   // of the clone, and build a map from the cloned values to the
333   // original ones.
334   ValueMapType M;
335   BasicBlock *Block = Exp->getParent();
336   WorkListType Q;
337   Q.push_back(Exp);
338 
339   while (!Q.empty()) {
340     Value *V = Q.pop_front_val();
341     if (M.find(V) != M.end())
342       continue;
343     if (Instruction *U = dyn_cast<Instruction>(V)) {
344       if (isa<PHINode>(U) || U->getParent() != Block)
345         continue;
346       for (Value *Op : U->operands())
347         Q.push_back(Op);
348       M.insert({U, U->clone()});
349     }
350   }
351 
352   for (std::pair<Value*,Value*> P : M) {
353     Instruction *U = cast<Instruction>(P.second);
354     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
355       auto F = M.find(U->getOperand(i));
356       if (F != M.end())
357         U->setOperand(i, F->second);
358     }
359   }
360 
361   auto R = M.find(Exp);
362   assert(R != M.end());
363   Root = R->second;
364 
365   record(Root);
366   use(Root);
367 }
368 
369 void Simplifier::Context::record(Value *V) {
370   auto Record = [this](Instruction *U) -> bool {
371     Clones.insert(U);
372     return true;
373   };
374   traverse(V, Record);
375 }
376 
377 void Simplifier::Context::use(Value *V) {
378   auto Use = [this](Instruction *U) -> bool {
379     Used.insert(U);
380     return true;
381   };
382   traverse(V, Use);
383 }
384 
385 void Simplifier::Context::unuse(Value *V) {
386   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
387     return;
388 
389   auto Unuse = [this](Instruction *U) -> bool {
390     if (!U->use_empty())
391       return false;
392     Used.erase(U);
393     return true;
394   };
395   traverse(V, Unuse);
396 }
397 
398 Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
399   if (Tree == OldV)
400     return NewV;
401   if (OldV == NewV)
402     return Tree;
403 
404   WorkListType Q;
405   Q.push_back(Tree);
406   while (!Q.empty()) {
407     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
408     // If U is not an instruction, or it's not a clone, skip it.
409     if (!U || U->getParent())
410       continue;
411     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
412       Value *Op = U->getOperand(i);
413       if (Op == OldV) {
414         U->setOperand(i, NewV);
415         unuse(OldV);
416       } else {
417         Q.push_back(Op);
418       }
419     }
420   }
421   return Tree;
422 }
423 
424 void Simplifier::Context::replace(Value *OldV, Value *NewV) {
425   if (Root == OldV) {
426     Root = NewV;
427     use(Root);
428     return;
429   }
430 
431   // NewV may be a complex tree that has just been created by one of the
432   // transformation rules. We need to make sure that it is commoned with
433   // the existing Root to the maximum extent possible.
434   // Identify all subtrees of NewV (including NewV itself) that have
435   // equivalent counterparts in Root, and replace those subtrees with
436   // these counterparts.
437   WorkListType Q;
438   Q.push_back(NewV);
439   while (!Q.empty()) {
440     Value *V = Q.pop_front_val();
441     Instruction *U = dyn_cast<Instruction>(V);
442     if (!U || U->getParent())
443       continue;
444     if (Value *DupV = find(Root, V)) {
445       if (DupV != V)
446         NewV = subst(NewV, V, DupV);
447     } else {
448       for (Value *Op : U->operands())
449         Q.push_back(Op);
450     }
451   }
452 
453   // Now, simply replace OldV with NewV in Root.
454   Root = subst(Root, OldV, NewV);
455   use(Root);
456 }
457 
458 void Simplifier::Context::cleanup() {
459   for (Value *V : Clones) {
460     Instruction *U = cast<Instruction>(V);
461     if (!U->getParent())
462       U->dropAllReferences();
463   }
464 
465   for (Value *V : Clones) {
466     Instruction *U = cast<Instruction>(V);
467     if (!U->getParent())
468       U->deleteValue();
469   }
470 }
471 
472 bool Simplifier::Context::equal(const Instruction *I,
473                                 const Instruction *J) const {
474   if (I == J)
475     return true;
476   if (!I->isSameOperationAs(J))
477     return false;
478   if (isa<PHINode>(I))
479     return I->isIdenticalTo(J);
480 
481   for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
482     Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
483     if (OpI == OpJ)
484       continue;
485     auto *InI = dyn_cast<const Instruction>(OpI);
486     auto *InJ = dyn_cast<const Instruction>(OpJ);
487     if (InI && InJ) {
488       if (!equal(InI, InJ))
489         return false;
490     } else if (InI != InJ || !InI)
491       return false;
492   }
493   return true;
494 }
495 
496 Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
497   Instruction *SubI = dyn_cast<Instruction>(Sub);
498   WorkListType Q;
499   Q.push_back(Tree);
500 
501   while (!Q.empty()) {
502     Value *V = Q.pop_front_val();
503     if (V == Sub)
504       return V;
505     Instruction *U = dyn_cast<Instruction>(V);
506     if (!U || U->getParent())
507       continue;
508     if (SubI && equal(SubI, U))
509       return U;
510     assert(!isa<PHINode>(U));
511     for (Value *Op : U->operands())
512       Q.push_back(Op);
513   }
514   return nullptr;
515 }
516 
517 void Simplifier::Context::link(Instruction *I, BasicBlock *B,
518       BasicBlock::iterator At) {
519   if (I->getParent())
520     return;
521 
522   for (Value *Op : I->operands()) {
523     if (Instruction *OpI = dyn_cast<Instruction>(Op))
524       link(OpI, B, At);
525   }
526 
527   B->getInstList().insert(At, I);
528 }
529 
530 Value *Simplifier::Context::materialize(BasicBlock *B,
531       BasicBlock::iterator At) {
532   if (Instruction *RootI = dyn_cast<Instruction>(Root))
533     link(RootI, B, At);
534   return Root;
535 }
536 
537 Value *Simplifier::simplify(Context &C) {
538   WorkListType Q;
539   Q.push_back(C.Root);
540   unsigned Count = 0;
541   const unsigned Limit = SimplifyLimit;
542 
543   while (!Q.empty()) {
544     if (Count++ >= Limit)
545       break;
546     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
547     if (!U || U->getParent() || !C.Used.count(U))
548       continue;
549     bool Changed = false;
550     for (Rule &R : Rules) {
551       Value *W = R.Fn(U, C.Ctx);
552       if (!W)
553         continue;
554       Changed = true;
555       C.record(W);
556       C.replace(U, W);
557       Q.push_back(C.Root);
558       break;
559     }
560     if (!Changed) {
561       for (Value *Op : U->operands())
562         Q.push_back(Op);
563     }
564   }
565   return Count < Limit ? C.Root : nullptr;
566 }
567 
568 //===----------------------------------------------------------------------===//
569 //
570 //          Implementation of PolynomialMultiplyRecognize
571 //
572 //===----------------------------------------------------------------------===//
573 
574 namespace {
575 
576   class PolynomialMultiplyRecognize {
577   public:
578     explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
579         const DominatorTree &dt, const TargetLibraryInfo &tli,
580         ScalarEvolution &se)
581       : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
582 
583     bool recognize();
584 
585   private:
586     using ValueSeq = SetVector<Value *>;
587 
588     IntegerType *getPmpyType() const {
589       LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
590       return IntegerType::get(Ctx, 32);
591     }
592 
593     bool isPromotableTo(Value *V, IntegerType *Ty);
594     void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
595     bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
596 
597     Value *getCountIV(BasicBlock *BB);
598     bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
599     void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
600           ValueSeq &Late);
601     bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
602     bool commutesWithShift(Instruction *I);
603     bool highBitsAreZero(Value *V, unsigned IterCount);
604     bool keepsHighBitsZero(Value *V, unsigned IterCount);
605     bool isOperandShifted(Instruction *I, Value *Op);
606     bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
607           unsigned IterCount);
608     void cleanupLoopBody(BasicBlock *LoopB);
609 
610     struct ParsedValues {
611       ParsedValues() = default;
612 
613       Value *M = nullptr;
614       Value *P = nullptr;
615       Value *Q = nullptr;
616       Value *R = nullptr;
617       Value *X = nullptr;
618       Instruction *Res = nullptr;
619       unsigned IterCount = 0;
620       bool Left = false;
621       bool Inv = false;
622     };
623 
624     bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
625     bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
626     bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
627           Value *CIV, ParsedValues &PV, bool PreScan);
628     unsigned getInverseMxN(unsigned QP);
629     Value *generate(BasicBlock::iterator At, ParsedValues &PV);
630 
631     void setupPreSimplifier(Simplifier &S);
632     void setupPostSimplifier(Simplifier &S);
633 
634     Loop *CurLoop;
635     const DataLayout &DL;
636     const DominatorTree &DT;
637     const TargetLibraryInfo &TLI;
638     ScalarEvolution &SE;
639   };
640 
641 } // end anonymous namespace
642 
643 Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
644   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
645   if (std::distance(PI, PE) != 2)
646     return nullptr;
647   BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
648 
649   for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
650     auto *PN = cast<PHINode>(I);
651     Value *InitV = PN->getIncomingValueForBlock(PB);
652     if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
653       continue;
654     Value *IterV = PN->getIncomingValueForBlock(BB);
655     auto *BO = dyn_cast<BinaryOperator>(IterV);
656     if (!BO)
657       continue;
658     if (BO->getOpcode() != Instruction::Add)
659       continue;
660     Value *IncV = nullptr;
661     if (BO->getOperand(0) == PN)
662       IncV = BO->getOperand(1);
663     else if (BO->getOperand(1) == PN)
664       IncV = BO->getOperand(0);
665     if (IncV == nullptr)
666       continue;
667 
668     if (auto *T = dyn_cast<ConstantInt>(IncV))
669       if (T->getZExtValue() == 1)
670         return PN;
671   }
672   return nullptr;
673 }
674 
675 static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
676   for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
677     Use &TheUse = UI.getUse();
678     ++UI;
679     if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
680       if (BB == II->getParent())
681         II->replaceUsesOfWith(I, J);
682   }
683 }
684 
685 bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
686       Value *CIV, ParsedValues &PV) {
687   // Match the following:
688   //   select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
689   //   select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
690   // The condition may also check for equality with the masked value, i.e
691   //   select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
692   //   select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
693 
694   Value *CondV = SelI->getCondition();
695   Value *TrueV = SelI->getTrueValue();
696   Value *FalseV = SelI->getFalseValue();
697 
698   using namespace PatternMatch;
699 
700   CmpInst::Predicate P;
701   Value *A = nullptr, *B = nullptr, *C = nullptr;
702 
703   if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
704       !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
705     return false;
706   if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
707     return false;
708   // Matched: select (A & B) == C ? ... : ...
709   //          select (A & B) != C ? ... : ...
710 
711   Value *X = nullptr, *Sh1 = nullptr;
712   // Check (A & B) for (X & (1 << i)):
713   if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
714     Sh1 = A;
715     X = B;
716   } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
717     Sh1 = B;
718     X = A;
719   } else {
720     // TODO: Could also check for an induction variable containing single
721     // bit shifted left by 1 in each iteration.
722     return false;
723   }
724 
725   bool TrueIfZero;
726 
727   // Check C against the possible values for comparison: 0 and (1 << i):
728   if (match(C, m_Zero()))
729     TrueIfZero = (P == CmpInst::ICMP_EQ);
730   else if (C == Sh1)
731     TrueIfZero = (P == CmpInst::ICMP_NE);
732   else
733     return false;
734 
735   // So far, matched:
736   //   select (X & (1 << i)) ? ... : ...
737   // including variations of the check against zero/non-zero value.
738 
739   Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
740   if (TrueIfZero) {
741     ShouldSameV = TrueV;
742     ShouldXoredV = FalseV;
743   } else {
744     ShouldSameV = FalseV;
745     ShouldXoredV = TrueV;
746   }
747 
748   Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
749   Value *T = nullptr;
750   if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
751     // Matched: select +++ ? ... : Y ^ Z
752     //          select +++ ? Y ^ Z : ...
753     // where +++ denotes previously checked matches.
754     if (ShouldSameV == Y)
755       T = Z;
756     else if (ShouldSameV == Z)
757       T = Y;
758     else
759       return false;
760     R = ShouldSameV;
761     // Matched: select +++ ? R : R ^ T
762     //          select +++ ? R ^ T : R
763     // depending on TrueIfZero.
764 
765   } else if (match(ShouldSameV, m_Zero())) {
766     // Matched: select +++ ? 0 : ...
767     //          select +++ ? ... : 0
768     if (!SelI->hasOneUse())
769       return false;
770     T = ShouldXoredV;
771     // Matched: select +++ ? 0 : T
772     //          select +++ ? T : 0
773 
774     Value *U = *SelI->user_begin();
775     if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
776         !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
777       return false;
778     // Matched: xor (select +++ ? 0 : T), R
779     //          xor (select +++ ? T : 0), R
780   } else
781     return false;
782 
783   // The xor input value T is isolated into its own match so that it could
784   // be checked against an induction variable containing a shifted bit
785   // (todo).
786   // For now, check against (Q << i).
787   if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
788       !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
789     return false;
790   // Matched: select +++ ? R : R ^ (Q << i)
791   //          select +++ ? R ^ (Q << i) : R
792 
793   PV.X = X;
794   PV.Q = Q;
795   PV.R = R;
796   PV.Left = true;
797   return true;
798 }
799 
800 bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
801       ParsedValues &PV) {
802   // Match the following:
803   //   select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
804   //   select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
805   // The condition may also check for equality with the masked value, i.e
806   //   select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
807   //   select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
808 
809   Value *CondV = SelI->getCondition();
810   Value *TrueV = SelI->getTrueValue();
811   Value *FalseV = SelI->getFalseValue();
812 
813   using namespace PatternMatch;
814 
815   Value *C = nullptr;
816   CmpInst::Predicate P;
817   bool TrueIfZero;
818 
819   if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
820       match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
821     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
822       return false;
823     // Matched: select C == 0 ? ... : ...
824     //          select C != 0 ? ... : ...
825     TrueIfZero = (P == CmpInst::ICMP_EQ);
826   } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
827              match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
828     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
829       return false;
830     // Matched: select C == 1 ? ... : ...
831     //          select C != 1 ? ... : ...
832     TrueIfZero = (P == CmpInst::ICMP_NE);
833   } else
834     return false;
835 
836   Value *X = nullptr;
837   if (!match(C, m_And(m_Value(X), m_One())) &&
838       !match(C, m_And(m_One(), m_Value(X))))
839     return false;
840   // Matched: select (X & 1) == +++ ? ... : ...
841   //          select (X & 1) != +++ ? ... : ...
842 
843   Value *R = nullptr, *Q = nullptr;
844   if (TrueIfZero) {
845     // The select's condition is true if the tested bit is 0.
846     // TrueV must be the shift, FalseV must be the xor.
847     if (!match(TrueV, m_LShr(m_Value(R), m_One())))
848       return false;
849     // Matched: select +++ ? (R >> 1) : ...
850     if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
851         !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
852       return false;
853     // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
854     // with commuting ^.
855   } else {
856     // The select's condition is true if the tested bit is 1.
857     // TrueV must be the xor, FalseV must be the shift.
858     if (!match(FalseV, m_LShr(m_Value(R), m_One())))
859       return false;
860     // Matched: select +++ ? ... : (R >> 1)
861     if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
862         !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
863       return false;
864     // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
865     // with commuting ^.
866   }
867 
868   PV.X = X;
869   PV.Q = Q;
870   PV.R = R;
871   PV.Left = false;
872   return true;
873 }
874 
875 bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
876       BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
877       bool PreScan) {
878   using namespace PatternMatch;
879 
880   // The basic pattern for R = P.Q is:
881   // for i = 0..31
882   //   R = phi (0, R')
883   //   if (P & (1 << i))        ; test-bit(P, i)
884   //     R' = R ^ (Q << i)
885   //
886   // Similarly, the basic pattern for R = (P/Q).Q - P
887   // for i = 0..31
888   //   R = phi(P, R')
889   //   if (R & (1 << i))
890   //     R' = R ^ (Q << i)
891 
892   // There exist idioms, where instead of Q being shifted left, P is shifted
893   // right. This produces a result that is shifted right by 32 bits (the
894   // non-shifted result is 64-bit).
895   //
896   // For R = P.Q, this would be:
897   // for i = 0..31
898   //   R = phi (0, R')
899   //   if ((P >> i) & 1)
900   //     R' = (R >> 1) ^ Q      ; R is cycled through the loop, so it must
901   //   else                     ; be shifted by 1, not i.
902   //     R' = R >> 1
903   //
904   // And for the inverse:
905   // for i = 0..31
906   //   R = phi (P, R')
907   //   if (R & 1)
908   //     R' = (R >> 1) ^ Q
909   //   else
910   //     R' = R >> 1
911 
912   // The left-shifting idioms share the same pattern:
913   //   select (X & (1 << i)) ? R ^ (Q << i) : R
914   // Similarly for right-shifting idioms:
915   //   select (X & 1) ? (R >> 1) ^ Q
916 
917   if (matchLeftShift(SelI, CIV, PV)) {
918     // If this is a pre-scan, getting this far is sufficient.
919     if (PreScan)
920       return true;
921 
922     // Need to make sure that the SelI goes back into R.
923     auto *RPhi = dyn_cast<PHINode>(PV.R);
924     if (!RPhi)
925       return false;
926     if (SelI != RPhi->getIncomingValueForBlock(LoopB))
927       return false;
928     PV.Res = SelI;
929 
930     // If X is loop invariant, it must be the input polynomial, and the
931     // idiom is the basic polynomial multiply.
932     if (CurLoop->isLoopInvariant(PV.X)) {
933       PV.P = PV.X;
934       PV.Inv = false;
935     } else {
936       // X is not loop invariant. If X == R, this is the inverse pmpy.
937       // Otherwise, check for an xor with an invariant value. If the
938       // variable argument to the xor is R, then this is still a valid
939       // inverse pmpy.
940       PV.Inv = true;
941       if (PV.X != PV.R) {
942         Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
943         if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
944           return false;
945         auto *I1 = dyn_cast<Instruction>(X1);
946         auto *I2 = dyn_cast<Instruction>(X2);
947         if (!I1 || I1->getParent() != LoopB) {
948           Var = X2;
949           Inv = X1;
950         } else if (!I2 || I2->getParent() != LoopB) {
951           Var = X1;
952           Inv = X2;
953         } else
954           return false;
955         if (Var != PV.R)
956           return false;
957         PV.M = Inv;
958       }
959       // The input polynomial P still needs to be determined. It will be
960       // the entry value of R.
961       Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
962       PV.P = EntryP;
963     }
964 
965     return true;
966   }
967 
968   if (matchRightShift(SelI, PV)) {
969     // If this is an inverse pattern, the Q polynomial must be known at
970     // compile time.
971     if (PV.Inv && !isa<ConstantInt>(PV.Q))
972       return false;
973     if (PreScan)
974       return true;
975     // There is no exact matching of right-shift pmpy.
976     return false;
977   }
978 
979   return false;
980 }
981 
982 bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
983       IntegerType *DestTy) {
984   IntegerType *T = dyn_cast<IntegerType>(Val->getType());
985   if (!T || T->getBitWidth() > DestTy->getBitWidth())
986     return false;
987   if (T->getBitWidth() == DestTy->getBitWidth())
988     return true;
989   // Non-instructions are promotable. The reason why an instruction may not
990   // be promotable is that it may produce a different result if its operands
991   // and the result are promoted, for example, it may produce more non-zero
992   // bits. While it would still be possible to represent the proper result
993   // in a wider type, it may require adding additional instructions (which
994   // we don't want to do).
995   Instruction *In = dyn_cast<Instruction>(Val);
996   if (!In)
997     return true;
998   // The bitwidth of the source type is smaller than the destination.
999   // Check if the individual operation can be promoted.
1000   switch (In->getOpcode()) {
1001     case Instruction::PHI:
1002     case Instruction::ZExt:
1003     case Instruction::And:
1004     case Instruction::Or:
1005     case Instruction::Xor:
1006     case Instruction::LShr: // Shift right is ok.
1007     case Instruction::Select:
1008     case Instruction::Trunc:
1009       return true;
1010     case Instruction::ICmp:
1011       if (CmpInst *CI = cast<CmpInst>(In))
1012         return CI->isEquality() || CI->isUnsigned();
1013       llvm_unreachable("Cast failed unexpectedly");
1014     case Instruction::Add:
1015       return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
1016   }
1017   return false;
1018 }
1019 
1020 void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
1021       IntegerType *DestTy, BasicBlock *LoopB) {
1022   Type *OrigTy = In->getType();
1023   assert(!OrigTy->isVoidTy() && "Invalid instruction to promote");
1024 
1025   // Leave boolean values alone.
1026   if (!In->getType()->isIntegerTy(1))
1027     In->mutateType(DestTy);
1028   unsigned DestBW = DestTy->getBitWidth();
1029 
1030   // Handle PHIs.
1031   if (PHINode *P = dyn_cast<PHINode>(In)) {
1032     unsigned N = P->getNumIncomingValues();
1033     for (unsigned i = 0; i != N; ++i) {
1034       BasicBlock *InB = P->getIncomingBlock(i);
1035       if (InB == LoopB)
1036         continue;
1037       Value *InV = P->getIncomingValue(i);
1038       IntegerType *Ty = cast<IntegerType>(InV->getType());
1039       // Do not promote values in PHI nodes of type i1.
1040       if (Ty != P->getType()) {
1041         // If the value type does not match the PHI type, the PHI type
1042         // must have been promoted.
1043         assert(Ty->getBitWidth() < DestBW);
1044         InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
1045         P->setIncomingValue(i, InV);
1046       }
1047     }
1048   } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
1049     Value *Op = Z->getOperand(0);
1050     if (Op->getType() == Z->getType())
1051       Z->replaceAllUsesWith(Op);
1052     Z->eraseFromParent();
1053     return;
1054   }
1055   if (TruncInst *T = dyn_cast<TruncInst>(In)) {
1056     IntegerType *TruncTy = cast<IntegerType>(OrigTy);
1057     Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1);
1058     Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask);
1059     T->replaceAllUsesWith(And);
1060     T->eraseFromParent();
1061     return;
1062   }
1063 
1064   // Promote immediates.
1065   for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
1066     if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
1067       if (CI->getType()->getBitWidth() < DestBW)
1068         In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
1069   }
1070 }
1071 
1072 bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
1073       BasicBlock *ExitB) {
1074   assert(LoopB);
1075   // Skip loops where the exit block has more than one predecessor. The values
1076   // coming from the loop block will be promoted to another type, and so the
1077   // values coming into the exit block from other predecessors would also have
1078   // to be promoted.
1079   if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
1080     return false;
1081   IntegerType *DestTy = getPmpyType();
1082   // Check if the exit values have types that are no wider than the type
1083   // that we want to promote to.
1084   unsigned DestBW = DestTy->getBitWidth();
1085   for (PHINode &P : ExitB->phis()) {
1086     if (P.getNumIncomingValues() != 1)
1087       return false;
1088     assert(P.getIncomingBlock(0) == LoopB);
1089     IntegerType *T = dyn_cast<IntegerType>(P.getType());
1090     if (!T || T->getBitWidth() > DestBW)
1091       return false;
1092   }
1093 
1094   // Check all instructions in the loop.
1095   for (Instruction &In : *LoopB)
1096     if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
1097       return false;
1098 
1099   // Perform the promotion.
1100   std::vector<Instruction*> LoopIns;
1101   std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
1102                  [](Instruction &In) { return &In; });
1103   for (Instruction *In : LoopIns)
1104     if (!In->isTerminator())
1105       promoteTo(In, DestTy, LoopB);
1106 
1107   // Fix up the PHI nodes in the exit block.
1108   Instruction *EndI = ExitB->getFirstNonPHI();
1109   BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
1110   for (auto I = ExitB->begin(); I != End; ++I) {
1111     PHINode *P = dyn_cast<PHINode>(I);
1112     if (!P)
1113       break;
1114     Type *Ty0 = P->getIncomingValue(0)->getType();
1115     Type *PTy = P->getType();
1116     if (PTy != Ty0) {
1117       assert(Ty0 == DestTy);
1118       // In order to create the trunc, P must have the promoted type.
1119       P->mutateType(Ty0);
1120       Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
1121       // In order for the RAUW to work, the types of P and T must match.
1122       P->mutateType(PTy);
1123       P->replaceAllUsesWith(T);
1124       // Final update of the P's type.
1125       P->mutateType(Ty0);
1126       cast<Instruction>(T)->setOperand(0, P);
1127     }
1128   }
1129 
1130   return true;
1131 }
1132 
1133 bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
1134       ValueSeq &Cycle) {
1135   // Out = ..., In, ...
1136   if (Out == In)
1137     return true;
1138 
1139   auto *BB = cast<Instruction>(Out)->getParent();
1140   bool HadPhi = false;
1141 
1142   for (auto U : Out->users()) {
1143     auto *I = dyn_cast<Instruction>(&*U);
1144     if (I == nullptr || I->getParent() != BB)
1145       continue;
1146     // Make sure that there are no multi-iteration cycles, e.g.
1147     //   p1 = phi(p2)
1148     //   p2 = phi(p1)
1149     // The cycle p1->p2->p1 would span two loop iterations.
1150     // Check that there is only one phi in the cycle.
1151     bool IsPhi = isa<PHINode>(I);
1152     if (IsPhi && HadPhi)
1153       return false;
1154     HadPhi |= IsPhi;
1155     if (Cycle.count(I))
1156       return false;
1157     Cycle.insert(I);
1158     if (findCycle(I, In, Cycle))
1159       break;
1160     Cycle.remove(I);
1161   }
1162   return !Cycle.empty();
1163 }
1164 
1165 void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
1166       ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
1167   // All the values in the cycle that are between the phi node and the
1168   // divider instruction will be classified as "early", all other values
1169   // will be "late".
1170 
1171   bool IsE = true;
1172   unsigned I, N = Cycle.size();
1173   for (I = 0; I < N; ++I) {
1174     Value *V = Cycle[I];
1175     if (DivI == V)
1176       IsE = false;
1177     else if (!isa<PHINode>(V))
1178       continue;
1179     // Stop if found either.
1180     break;
1181   }
1182   // "I" is the index of either DivI or the phi node, whichever was first.
1183   // "E" is "false" or "true" respectively.
1184   ValueSeq &First = !IsE ? Early : Late;
1185   for (unsigned J = 0; J < I; ++J)
1186     First.insert(Cycle[J]);
1187 
1188   ValueSeq &Second = IsE ? Early : Late;
1189   Second.insert(Cycle[I]);
1190   for (++I; I < N; ++I) {
1191     Value *V = Cycle[I];
1192     if (DivI == V || isa<PHINode>(V))
1193       break;
1194     Second.insert(V);
1195   }
1196 
1197   for (; I < N; ++I)
1198     First.insert(Cycle[I]);
1199 }
1200 
1201 bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
1202       ValueSeq &Early, ValueSeq &Late) {
1203   // Select is an exception, since the condition value does not have to be
1204   // classified in the same way as the true/false values. The true/false
1205   // values do have to be both early or both late.
1206   if (UseI->getOpcode() == Instruction::Select) {
1207     Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
1208     if (Early.count(TV) || Early.count(FV)) {
1209       if (Late.count(TV) || Late.count(FV))
1210         return false;
1211       Early.insert(UseI);
1212     } else if (Late.count(TV) || Late.count(FV)) {
1213       if (Early.count(TV) || Early.count(FV))
1214         return false;
1215       Late.insert(UseI);
1216     }
1217     return true;
1218   }
1219 
1220   // Not sure what would be the example of this, but the code below relies
1221   // on having at least one operand.
1222   if (UseI->getNumOperands() == 0)
1223     return true;
1224 
1225   bool AE = true, AL = true;
1226   for (auto &I : UseI->operands()) {
1227     if (Early.count(&*I))
1228       AL = false;
1229     else if (Late.count(&*I))
1230       AE = false;
1231   }
1232   // If the operands appear "all early" and "all late" at the same time,
1233   // then it means that none of them are actually classified as either.
1234   // This is harmless.
1235   if (AE && AL)
1236     return true;
1237   // Conversely, if they are neither "all early" nor "all late", then
1238   // we have a mixture of early and late operands that is not a known
1239   // exception.
1240   if (!AE && !AL)
1241     return false;
1242 
1243   // Check that we have covered the two special cases.
1244   assert(AE != AL);
1245 
1246   if (AE)
1247     Early.insert(UseI);
1248   else
1249     Late.insert(UseI);
1250   return true;
1251 }
1252 
1253 bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
1254   switch (I->getOpcode()) {
1255     case Instruction::And:
1256     case Instruction::Or:
1257     case Instruction::Xor:
1258     case Instruction::LShr:
1259     case Instruction::Shl:
1260     case Instruction::Select:
1261     case Instruction::ICmp:
1262     case Instruction::PHI:
1263       break;
1264     default:
1265       return false;
1266   }
1267   return true;
1268 }
1269 
1270 bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
1271       unsigned IterCount) {
1272   auto *T = dyn_cast<IntegerType>(V->getType());
1273   if (!T)
1274     return false;
1275 
1276   KnownBits Known(T->getBitWidth());
1277   computeKnownBits(V, Known, DL);
1278   return Known.countMinLeadingZeros() >= IterCount;
1279 }
1280 
1281 bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
1282       unsigned IterCount) {
1283   // Assume that all inputs to the value have the high bits zero.
1284   // Check if the value itself preserves the zeros in the high bits.
1285   if (auto *C = dyn_cast<ConstantInt>(V))
1286     return C->getValue().countLeadingZeros() >= IterCount;
1287 
1288   if (auto *I = dyn_cast<Instruction>(V)) {
1289     switch (I->getOpcode()) {
1290       case Instruction::And:
1291       case Instruction::Or:
1292       case Instruction::Xor:
1293       case Instruction::LShr:
1294       case Instruction::Select:
1295       case Instruction::ICmp:
1296       case Instruction::PHI:
1297       case Instruction::ZExt:
1298         return true;
1299     }
1300   }
1301 
1302   return false;
1303 }
1304 
1305 bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
1306   unsigned Opc = I->getOpcode();
1307   if (Opc == Instruction::Shl || Opc == Instruction::LShr)
1308     return Op != I->getOperand(1);
1309   return true;
1310 }
1311 
1312 bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
1313       BasicBlock *ExitB, unsigned IterCount) {
1314   Value *CIV = getCountIV(LoopB);
1315   if (CIV == nullptr)
1316     return false;
1317   auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
1318   if (CIVTy == nullptr)
1319     return false;
1320 
1321   ValueSeq RShifts;
1322   ValueSeq Early, Late, Cycled;
1323 
1324   // Find all value cycles that contain logical right shifts by 1.
1325   for (Instruction &I : *LoopB) {
1326     using namespace PatternMatch;
1327 
1328     Value *V = nullptr;
1329     if (!match(&I, m_LShr(m_Value(V), m_One())))
1330       continue;
1331     ValueSeq C;
1332     if (!findCycle(&I, V, C))
1333       continue;
1334 
1335     // Found a cycle.
1336     C.insert(&I);
1337     classifyCycle(&I, C, Early, Late);
1338     Cycled.insert(C.begin(), C.end());
1339     RShifts.insert(&I);
1340   }
1341 
1342   // Find the set of all values affected by the shift cycles, i.e. all
1343   // cycled values, and (recursively) all their users.
1344   ValueSeq Users(Cycled.begin(), Cycled.end());
1345   for (unsigned i = 0; i < Users.size(); ++i) {
1346     Value *V = Users[i];
1347     if (!isa<IntegerType>(V->getType()))
1348       return false;
1349     auto *R = cast<Instruction>(V);
1350     // If the instruction does not commute with shifts, the loop cannot
1351     // be unshifted.
1352     if (!commutesWithShift(R))
1353       return false;
1354     for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
1355       auto *T = cast<Instruction>(*I);
1356       // Skip users from outside of the loop. They will be handled later.
1357       // Also, skip the right-shifts and phi nodes, since they mix early
1358       // and late values.
1359       if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
1360         continue;
1361 
1362       Users.insert(T);
1363       if (!classifyInst(T, Early, Late))
1364         return false;
1365     }
1366   }
1367 
1368   if (Users.empty())
1369     return false;
1370 
1371   // Verify that high bits remain zero.
1372   ValueSeq Internal(Users.begin(), Users.end());
1373   ValueSeq Inputs;
1374   for (unsigned i = 0; i < Internal.size(); ++i) {
1375     auto *R = dyn_cast<Instruction>(Internal[i]);
1376     if (!R)
1377       continue;
1378     for (Value *Op : R->operands()) {
1379       auto *T = dyn_cast<Instruction>(Op);
1380       if (T && T->getParent() != LoopB)
1381         Inputs.insert(Op);
1382       else
1383         Internal.insert(Op);
1384     }
1385   }
1386   for (Value *V : Inputs)
1387     if (!highBitsAreZero(V, IterCount))
1388       return false;
1389   for (Value *V : Internal)
1390     if (!keepsHighBitsZero(V, IterCount))
1391       return false;
1392 
1393   // Finally, the work can be done. Unshift each user.
1394   IRBuilder<> IRB(LoopB);
1395   std::map<Value*,Value*> ShiftMap;
1396 
1397   using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
1398 
1399   CastMapType CastMap;
1400 
1401   auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
1402         IntegerType *Ty) -> Value* {
1403     auto H = CM.find(std::make_pair(V, Ty));
1404     if (H != CM.end())
1405       return H->second;
1406     Value *CV = IRB.CreateIntCast(V, Ty, false);
1407     CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
1408     return CV;
1409   };
1410 
1411   for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
1412     using namespace PatternMatch;
1413 
1414     if (isa<PHINode>(I) || !Users.count(&*I))
1415       continue;
1416 
1417     // Match lshr x, 1.
1418     Value *V = nullptr;
1419     if (match(&*I, m_LShr(m_Value(V), m_One()))) {
1420       replaceAllUsesOfWithIn(&*I, V, LoopB);
1421       continue;
1422     }
1423     // For each non-cycled operand, replace it with the corresponding
1424     // value shifted left.
1425     for (auto &J : I->operands()) {
1426       Value *Op = J.get();
1427       if (!isOperandShifted(&*I, Op))
1428         continue;
1429       if (Users.count(Op))
1430         continue;
1431       // Skip shifting zeros.
1432       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
1433         continue;
1434       // Check if we have already generated a shift for this value.
1435       auto F = ShiftMap.find(Op);
1436       Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
1437       if (W == nullptr) {
1438         IRB.SetInsertPoint(&*I);
1439         // First, the shift amount will be CIV or CIV+1, depending on
1440         // whether the value is early or late. Instead of creating CIV+1,
1441         // do a single shift of the value.
1442         Value *ShAmt = CIV, *ShVal = Op;
1443         auto *VTy = cast<IntegerType>(ShVal->getType());
1444         auto *ATy = cast<IntegerType>(ShAmt->getType());
1445         if (Late.count(&*I))
1446           ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
1447         // Second, the types of the shifted value and the shift amount
1448         // must match.
1449         if (VTy != ATy) {
1450           if (VTy->getBitWidth() < ATy->getBitWidth())
1451             ShVal = upcast(CastMap, IRB, ShVal, ATy);
1452           else
1453             ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
1454         }
1455         // Ready to generate the shift and memoize it.
1456         W = IRB.CreateShl(ShVal, ShAmt);
1457         ShiftMap.insert(std::make_pair(Op, W));
1458       }
1459       I->replaceUsesOfWith(Op, W);
1460     }
1461   }
1462 
1463   // Update the users outside of the loop to account for having left
1464   // shifts. They would normally be shifted right in the loop, so shift
1465   // them right after the loop exit.
1466   // Take advantage of the loop-closed SSA form, which has all the post-
1467   // loop values in phi nodes.
1468   IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
1469   for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
1470     if (!isa<PHINode>(P))
1471       break;
1472     auto *PN = cast<PHINode>(P);
1473     Value *U = PN->getIncomingValueForBlock(LoopB);
1474     if (!Users.count(U))
1475       continue;
1476     Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
1477     PN->replaceAllUsesWith(S);
1478     // The above RAUW will create
1479     //   S = lshr S, IterCount
1480     // so we need to fix it back into
1481     //   S = lshr PN, IterCount
1482     cast<User>(S)->replaceUsesOfWith(S, PN);
1483   }
1484 
1485   return true;
1486 }
1487 
1488 void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
1489   for (auto &I : *LoopB)
1490     if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
1491       I.replaceAllUsesWith(SV);
1492 
1493   for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
1494     N = std::next(I);
1495     RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
1496   }
1497 }
1498 
1499 unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
1500   // Arrays of coefficients of Q and the inverse, C.
1501   // Q[i] = coefficient at x^i.
1502   std::array<char,32> Q, C;
1503 
1504   for (unsigned i = 0; i < 32; ++i) {
1505     Q[i] = QP & 1;
1506     QP >>= 1;
1507   }
1508   assert(Q[0] == 1);
1509 
1510   // Find C, such that
1511   // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
1512   //
1513   // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
1514   // operations * and + are & and ^ respectively.
1515   //
1516   // Find C[i] recursively, by comparing i-th coefficient in the product
1517   // with 0 (or 1 for i=0).
1518   //
1519   // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
1520   C[0] = 1;
1521   for (unsigned i = 1; i < 32; ++i) {
1522     // Solve for C[i] in:
1523     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
1524     // This is equivalent to
1525     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
1526     // which is
1527     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
1528     unsigned T = 0;
1529     for (unsigned j = 0; j < i; ++j)
1530       T = T ^ (C[j] & Q[i-j]);
1531     C[i] = T;
1532   }
1533 
1534   unsigned QV = 0;
1535   for (unsigned i = 0; i < 32; ++i)
1536     if (C[i])
1537       QV |= (1 << i);
1538 
1539   return QV;
1540 }
1541 
1542 Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
1543       ParsedValues &PV) {
1544   IRBuilder<> B(&*At);
1545   Module *M = At->getParent()->getParent()->getParent();
1546   Function *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
1547 
1548   Value *P = PV.P, *Q = PV.Q, *P0 = P;
1549   unsigned IC = PV.IterCount;
1550 
1551   if (PV.M != nullptr)
1552     P0 = P = B.CreateXor(P, PV.M);
1553 
1554   // Create a bit mask to clear the high bits beyond IterCount.
1555   auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
1556 
1557   if (PV.IterCount != 32)
1558     P = B.CreateAnd(P, BMI);
1559 
1560   if (PV.Inv) {
1561     auto *QI = dyn_cast<ConstantInt>(PV.Q);
1562     assert(QI && QI->getBitWidth() <= 32);
1563 
1564     // Again, clearing bits beyond IterCount.
1565     unsigned M = (1 << PV.IterCount) - 1;
1566     unsigned Tmp = (QI->getZExtValue() | 1) & M;
1567     unsigned QV = getInverseMxN(Tmp) & M;
1568     auto *QVI = ConstantInt::get(QI->getType(), QV);
1569     P = B.CreateCall(PMF, {P, QVI});
1570     P = B.CreateTrunc(P, QI->getType());
1571     if (IC != 32)
1572       P = B.CreateAnd(P, BMI);
1573   }
1574 
1575   Value *R = B.CreateCall(PMF, {P, Q});
1576 
1577   if (PV.M != nullptr)
1578     R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
1579 
1580   return R;
1581 }
1582 
1583 static bool hasZeroSignBit(const Value *V) {
1584   if (const auto *CI = dyn_cast<const ConstantInt>(V))
1585     return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
1586   const Instruction *I = dyn_cast<const Instruction>(V);
1587   if (!I)
1588     return false;
1589   switch (I->getOpcode()) {
1590     case Instruction::LShr:
1591       if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
1592         return SI->getZExtValue() > 0;
1593       return false;
1594     case Instruction::Or:
1595     case Instruction::Xor:
1596       return hasZeroSignBit(I->getOperand(0)) &&
1597              hasZeroSignBit(I->getOperand(1));
1598     case Instruction::And:
1599       return hasZeroSignBit(I->getOperand(0)) ||
1600              hasZeroSignBit(I->getOperand(1));
1601   }
1602   return false;
1603 }
1604 
1605 void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) {
1606   S.addRule("sink-zext",
1607     // Sink zext past bitwise operations.
1608     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1609       if (I->getOpcode() != Instruction::ZExt)
1610         return nullptr;
1611       Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
1612       if (!T)
1613         return nullptr;
1614       switch (T->getOpcode()) {
1615         case Instruction::And:
1616         case Instruction::Or:
1617         case Instruction::Xor:
1618           break;
1619         default:
1620           return nullptr;
1621       }
1622       IRBuilder<> B(Ctx);
1623       return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
1624                            B.CreateZExt(T->getOperand(0), I->getType()),
1625                            B.CreateZExt(T->getOperand(1), I->getType()));
1626     });
1627   S.addRule("xor/and -> and/xor",
1628     // (xor (and x a) (and y a)) -> (and (xor x y) a)
1629     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1630       if (I->getOpcode() != Instruction::Xor)
1631         return nullptr;
1632       Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
1633       Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
1634       if (!And0 || !And1)
1635         return nullptr;
1636       if (And0->getOpcode() != Instruction::And ||
1637           And1->getOpcode() != Instruction::And)
1638         return nullptr;
1639       if (And0->getOperand(1) != And1->getOperand(1))
1640         return nullptr;
1641       IRBuilder<> B(Ctx);
1642       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
1643                          And0->getOperand(1));
1644     });
1645   S.addRule("sink binop into select",
1646     // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
1647     // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
1648     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1649       BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
1650       if (!BO)
1651         return nullptr;
1652       Instruction::BinaryOps Op = BO->getOpcode();
1653       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
1654         IRBuilder<> B(Ctx);
1655         Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
1656         Value *Z = BO->getOperand(1);
1657         return B.CreateSelect(Sel->getCondition(),
1658                               B.CreateBinOp(Op, X, Z),
1659                               B.CreateBinOp(Op, Y, Z));
1660       }
1661       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
1662         IRBuilder<> B(Ctx);
1663         Value *X = BO->getOperand(0);
1664         Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
1665         return B.CreateSelect(Sel->getCondition(),
1666                               B.CreateBinOp(Op, X, Y),
1667                               B.CreateBinOp(Op, X, Z));
1668       }
1669       return nullptr;
1670     });
1671   S.addRule("fold select-select",
1672     // (select c (select c x y) z) -> (select c x z)
1673     // (select c x (select c y z)) -> (select c x z)
1674     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1675       SelectInst *Sel = dyn_cast<SelectInst>(I);
1676       if (!Sel)
1677         return nullptr;
1678       IRBuilder<> B(Ctx);
1679       Value *C = Sel->getCondition();
1680       if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
1681         if (Sel0->getCondition() == C)
1682           return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
1683       }
1684       if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
1685         if (Sel1->getCondition() == C)
1686           return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
1687       }
1688       return nullptr;
1689     });
1690   S.addRule("or-signbit -> xor-signbit",
1691     // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
1692     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1693       if (I->getOpcode() != Instruction::Or)
1694         return nullptr;
1695       ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
1696       if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
1697         return nullptr;
1698       if (!hasZeroSignBit(I->getOperand(0)))
1699         return nullptr;
1700       return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
1701     });
1702   S.addRule("sink lshr into binop",
1703     // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
1704     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1705       if (I->getOpcode() != Instruction::LShr)
1706         return nullptr;
1707       BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
1708       if (!BitOp)
1709         return nullptr;
1710       switch (BitOp->getOpcode()) {
1711         case Instruction::And:
1712         case Instruction::Or:
1713         case Instruction::Xor:
1714           break;
1715         default:
1716           return nullptr;
1717       }
1718       IRBuilder<> B(Ctx);
1719       Value *S = I->getOperand(1);
1720       return B.CreateBinOp(BitOp->getOpcode(),
1721                 B.CreateLShr(BitOp->getOperand(0), S),
1722                 B.CreateLShr(BitOp->getOperand(1), S));
1723     });
1724   S.addRule("expose bitop-const",
1725     // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
1726     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1727       auto IsBitOp = [](unsigned Op) -> bool {
1728         switch (Op) {
1729           case Instruction::And:
1730           case Instruction::Or:
1731           case Instruction::Xor:
1732             return true;
1733         }
1734         return false;
1735       };
1736       BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
1737       if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
1738         return nullptr;
1739       BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
1740       if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
1741         return nullptr;
1742       ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
1743       ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
1744       if (!CA || !CB)
1745         return nullptr;
1746       IRBuilder<> B(Ctx);
1747       Value *X = BitOp2->getOperand(0);
1748       return B.CreateBinOp(BitOp2->getOpcode(), X,
1749                 B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
1750     });
1751 }
1752 
1753 void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) {
1754   S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a",
1755     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1756       if (I->getOpcode() != Instruction::And)
1757         return nullptr;
1758       Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0));
1759       ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1));
1760       if (!Xor || !C0)
1761         return nullptr;
1762       if (Xor->getOpcode() != Instruction::Xor)
1763         return nullptr;
1764       Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0));
1765       Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1));
1766       // Pick the first non-null and.
1767       if (!And0 || And0->getOpcode() != Instruction::And)
1768         std::swap(And0, And1);
1769       ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1));
1770       if (!C1)
1771         return nullptr;
1772       uint32_t V0 = C0->getZExtValue();
1773       uint32_t V1 = C1->getZExtValue();
1774       if (V0 != (V0 & V1))
1775         return nullptr;
1776       IRBuilder<> B(Ctx);
1777       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0);
1778     });
1779 }
1780 
1781 bool PolynomialMultiplyRecognize::recognize() {
1782   LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
1783                     << *CurLoop << '\n');
1784   // Restrictions:
1785   // - The loop must consist of a single block.
1786   // - The iteration count must be known at compile-time.
1787   // - The loop must have an induction variable starting from 0, and
1788   //   incremented in each iteration of the loop.
1789   BasicBlock *LoopB = CurLoop->getHeader();
1790   LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB);
1791 
1792   if (LoopB != CurLoop->getLoopLatch())
1793     return false;
1794   BasicBlock *ExitB = CurLoop->getExitBlock();
1795   if (ExitB == nullptr)
1796     return false;
1797   BasicBlock *EntryB = CurLoop->getLoopPreheader();
1798   if (EntryB == nullptr)
1799     return false;
1800 
1801   unsigned IterCount = 0;
1802   const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
1803   if (isa<SCEVCouldNotCompute>(CT))
1804     return false;
1805   if (auto *CV = dyn_cast<SCEVConstant>(CT))
1806     IterCount = CV->getValue()->getZExtValue() + 1;
1807 
1808   Value *CIV = getCountIV(LoopB);
1809   ParsedValues PV;
1810   Simplifier PreSimp;
1811   PV.IterCount = IterCount;
1812   LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount
1813                     << '\n');
1814 
1815   setupPreSimplifier(PreSimp);
1816 
1817   // Perform a preliminary scan of select instructions to see if any of them
1818   // looks like a generator of the polynomial multiply steps. Assume that a
1819   // loop can only contain a single transformable operation, so stop the
1820   // traversal after the first reasonable candidate was found.
1821   // XXX: Currently this approach can modify the loop before being 100% sure
1822   // that the transformation can be carried out.
1823   bool FoundPreScan = false;
1824   auto FeedsPHI = [LoopB](const Value *V) -> bool {
1825     for (const Value *U : V->users()) {
1826       if (const auto *P = dyn_cast<const PHINode>(U))
1827         if (P->getParent() == LoopB)
1828           return true;
1829     }
1830     return false;
1831   };
1832   for (Instruction &In : *LoopB) {
1833     SelectInst *SI = dyn_cast<SelectInst>(&In);
1834     if (!SI || !FeedsPHI(SI))
1835       continue;
1836 
1837     Simplifier::Context C(SI);
1838     Value *T = PreSimp.simplify(C);
1839     SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
1840     LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
1841     if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
1842       FoundPreScan = true;
1843       if (SelI != SI) {
1844         Value *NewSel = C.materialize(LoopB, SI->getIterator());
1845         SI->replaceAllUsesWith(NewSel);
1846         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1847       }
1848       break;
1849     }
1850   }
1851 
1852   if (!FoundPreScan) {
1853     LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n");
1854     return false;
1855   }
1856 
1857   if (!PV.Left) {
1858     // The right shift version actually only returns the higher bits of
1859     // the result (each iteration discards the LSB). If we want to convert it
1860     // to a left-shifting loop, the working data type must be at least as
1861     // wide as the target's pmpy instruction.
1862     if (!promoteTypes(LoopB, ExitB))
1863       return false;
1864     // Run post-promotion simplifications.
1865     Simplifier PostSimp;
1866     setupPostSimplifier(PostSimp);
1867     for (Instruction &In : *LoopB) {
1868       SelectInst *SI = dyn_cast<SelectInst>(&In);
1869       if (!SI || !FeedsPHI(SI))
1870         continue;
1871       Simplifier::Context C(SI);
1872       Value *T = PostSimp.simplify(C);
1873       SelectInst *SelI = dyn_cast_or_null<SelectInst>(T);
1874       if (SelI != SI) {
1875         Value *NewSel = C.materialize(LoopB, SI->getIterator());
1876         SI->replaceAllUsesWith(NewSel);
1877         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1878       }
1879       break;
1880     }
1881 
1882     if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
1883       return false;
1884     cleanupLoopBody(LoopB);
1885   }
1886 
1887   // Scan the loop again, find the generating select instruction.
1888   bool FoundScan = false;
1889   for (Instruction &In : *LoopB) {
1890     SelectInst *SelI = dyn_cast<SelectInst>(&In);
1891     if (!SelI)
1892       continue;
1893     LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
1894     FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
1895     if (FoundScan)
1896       break;
1897   }
1898   assert(FoundScan);
1899 
1900   LLVM_DEBUG({
1901     StringRef PP = (PV.M ? "(P+M)" : "P");
1902     if (!PV.Inv)
1903       dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
1904     else
1905       dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
1906              << PP << "\n";
1907     dbgs() << "  Res:" << *PV.Res << "\n  P:" << *PV.P << "\n";
1908     if (PV.M)
1909       dbgs() << "  M:" << *PV.M << "\n";
1910     dbgs() << "  Q:" << *PV.Q << "\n";
1911     dbgs() << "  Iteration count:" << PV.IterCount << "\n";
1912   });
1913 
1914   BasicBlock::iterator At(EntryB->getTerminator());
1915   Value *PM = generate(At, PV);
1916   if (PM == nullptr)
1917     return false;
1918 
1919   if (PM->getType() != PV.Res->getType())
1920     PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
1921 
1922   PV.Res->replaceAllUsesWith(PM);
1923   PV.Res->eraseFromParent();
1924   return true;
1925 }
1926 
1927 int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
1928   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1929     return SC->getAPInt().getSExtValue();
1930   return 0;
1931 }
1932 
1933 bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
1934   // Allow volatile stores if HexagonVolatileMemcpy is enabled.
1935   if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
1936     return false;
1937 
1938   Value *StoredVal = SI->getValueOperand();
1939   Value *StorePtr = SI->getPointerOperand();
1940 
1941   // Reject stores that are so large that they overflow an unsigned.
1942   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
1943   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
1944     return false;
1945 
1946   // See if the pointer expression is an AddRec like {base,+,1} on the current
1947   // loop, which indicates a strided store.  If we have something else, it's a
1948   // random store we can't handle.
1949   auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1950   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
1951     return false;
1952 
1953   // Check to see if the stride matches the size of the store.  If so, then we
1954   // know that every byte is touched in the loop.
1955   int Stride = getSCEVStride(StoreEv);
1956   if (Stride == 0)
1957     return false;
1958   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1959   if (StoreSize != unsigned(std::abs(Stride)))
1960     return false;
1961 
1962   // The store must be feeding a non-volatile load.
1963   LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1964   if (!LI || !LI->isSimple())
1965     return false;
1966 
1967   // See if the pointer expression is an AddRec like {base,+,1} on the current
1968   // loop, which indicates a strided load.  If we have something else, it's a
1969   // random load we can't handle.
1970   Value *LoadPtr = LI->getPointerOperand();
1971   auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1972   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
1973     return false;
1974 
1975   // The store and load must share the same stride.
1976   if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
1977     return false;
1978 
1979   // Success.  This store can be converted into a memcpy.
1980   return true;
1981 }
1982 
1983 /// mayLoopAccessLocation - Return true if the specified loop might access the
1984 /// specified pointer location, which is a loop-strided access.  The 'Access'
1985 /// argument specifies what the verboten forms of access are (read or write).
1986 static bool
1987 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1988                       const SCEV *BECount, unsigned StoreSize,
1989                       AliasAnalysis &AA,
1990                       SmallPtrSetImpl<Instruction *> &Ignored) {
1991   // Get the location that may be stored across the loop.  Since the access
1992   // is strided positively through memory, we say that the modified location
1993   // starts at the pointer and has infinite size.
1994   LocationSize AccessSize = LocationSize::afterPointer();
1995 
1996   // If the loop iterates a fixed number of times, we can refine the access
1997   // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
1998   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
1999     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
2000                                        StoreSize);
2001 
2002   // TODO: For this to be really effective, we have to dive into the pointer
2003   // operand in the store.  Store to &A[i] of 100 will always return may alias
2004   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
2005   // which will then no-alias a store to &A[100].
2006   MemoryLocation StoreLoc(Ptr, AccessSize);
2007 
2008   for (auto *B : L->blocks())
2009     for (auto &I : *B)
2010       if (Ignored.count(&I) == 0 &&
2011           isModOrRefSet(
2012               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
2013         return true;
2014 
2015   return false;
2016 }
2017 
2018 void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
2019       SmallVectorImpl<StoreInst*> &Stores) {
2020   Stores.clear();
2021   for (Instruction &I : *BB)
2022     if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2023       if (isLegalStore(CurLoop, SI))
2024         Stores.push_back(SI);
2025 }
2026 
2027 bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
2028       StoreInst *SI, const SCEV *BECount) {
2029   assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
2030          "Expected only non-volatile stores, or Hexagon-specific memcpy"
2031          "to volatile destination.");
2032 
2033   Value *StorePtr = SI->getPointerOperand();
2034   auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
2035   unsigned Stride = getSCEVStride(StoreEv);
2036   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
2037   if (Stride != StoreSize)
2038     return false;
2039 
2040   // See if the pointer expression is an AddRec like {base,+,1} on the current
2041   // loop, which indicates a strided load.  If we have something else, it's a
2042   // random load we can't handle.
2043   auto *LI = cast<LoadInst>(SI->getValueOperand());
2044   auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
2045 
2046   // The trip count of the loop and the base pointer of the addrec SCEV is
2047   // guaranteed to be loop invariant, which means that it should dominate the
2048   // header.  This allows us to insert code for it in the preheader.
2049   BasicBlock *Preheader = CurLoop->getLoopPreheader();
2050   Instruction *ExpPt = Preheader->getTerminator();
2051   IRBuilder<> Builder(ExpPt);
2052   SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
2053 
2054   Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
2055 
2056   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
2057   // this into a memcpy/memmove in the loop preheader now if we want.  However,
2058   // this would be unsafe to do if there is anything else in the loop that may
2059   // read or write the memory region we're storing to.  For memcpy, this
2060   // includes the load that feeds the stores.  Check for an alias by generating
2061   // the base address and checking everything.
2062   Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
2063       Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
2064   Value *LoadBasePtr = nullptr;
2065 
2066   bool Overlap = false;
2067   bool DestVolatile = SI->isVolatile();
2068   Type *BECountTy = BECount->getType();
2069 
2070   if (DestVolatile) {
2071     // The trip count must fit in i32, since it is the type of the "num_words"
2072     // argument to hexagon_memcpy_forward_vp4cp4n2.
2073     if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
2074 CleanupAndExit:
2075       // If we generated new code for the base pointer, clean up.
2076       Expander.clear();
2077       if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
2078         RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
2079         StoreBasePtr = nullptr;
2080       }
2081       if (LoadBasePtr) {
2082         RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
2083         LoadBasePtr = nullptr;
2084       }
2085       return false;
2086     }
2087   }
2088 
2089   SmallPtrSet<Instruction*, 2> Ignore1;
2090   Ignore1.insert(SI);
2091   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
2092                             StoreSize, *AA, Ignore1)) {
2093     // Check if the load is the offending instruction.
2094     Ignore1.insert(LI);
2095     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
2096                               BECount, StoreSize, *AA, Ignore1)) {
2097       // Still bad. Nothing we can do.
2098       goto CleanupAndExit;
2099     }
2100     // It worked with the load ignored.
2101     Overlap = true;
2102   }
2103 
2104   if (!Overlap) {
2105     if (DisableMemcpyIdiom || !HasMemcpy)
2106       goto CleanupAndExit;
2107   } else {
2108     // Don't generate memmove if this function will be inlined. This is
2109     // because the caller will undergo this transformation after inlining.
2110     Function *Func = CurLoop->getHeader()->getParent();
2111     if (Func->hasFnAttribute(Attribute::AlwaysInline))
2112       goto CleanupAndExit;
2113 
2114     // In case of a memmove, the call to memmove will be executed instead
2115     // of the loop, so we need to make sure that there is nothing else in
2116     // the loop than the load, store and instructions that these two depend
2117     // on.
2118     SmallVector<Instruction*,2> Insts;
2119     Insts.push_back(SI);
2120     Insts.push_back(LI);
2121     if (!coverLoop(CurLoop, Insts))
2122       goto CleanupAndExit;
2123 
2124     if (DisableMemmoveIdiom || !HasMemmove)
2125       goto CleanupAndExit;
2126     bool IsNested = CurLoop->getParentLoop() != nullptr;
2127     if (IsNested && OnlyNonNestedMemmove)
2128       goto CleanupAndExit;
2129   }
2130 
2131   // For a memcpy, we have to make sure that the input array is not being
2132   // mutated by the loop.
2133   LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
2134       Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
2135 
2136   SmallPtrSet<Instruction*, 2> Ignore2;
2137   Ignore2.insert(SI);
2138   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
2139                             StoreSize, *AA, Ignore2))
2140     goto CleanupAndExit;
2141 
2142   // Check the stride.
2143   bool StridePos = getSCEVStride(LoadEv) >= 0;
2144 
2145   // Currently, the volatile memcpy only emulates traversing memory forward.
2146   if (!StridePos && DestVolatile)
2147     goto CleanupAndExit;
2148 
2149   bool RuntimeCheck = (Overlap || DestVolatile);
2150 
2151   BasicBlock *ExitB;
2152   if (RuntimeCheck) {
2153     // The runtime check needs a single exit block.
2154     SmallVector<BasicBlock*, 8> ExitBlocks;
2155     CurLoop->getUniqueExitBlocks(ExitBlocks);
2156     if (ExitBlocks.size() != 1)
2157       goto CleanupAndExit;
2158     ExitB = ExitBlocks[0];
2159   }
2160 
2161   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
2162   // pointer size if it isn't already.
2163   LLVMContext &Ctx = SI->getContext();
2164   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
2165   DebugLoc DLoc = SI->getDebugLoc();
2166 
2167   const SCEV *NumBytesS =
2168       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
2169   if (StoreSize != 1)
2170     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
2171                                SCEV::FlagNUW);
2172   Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
2173   if (Instruction *In = dyn_cast<Instruction>(NumBytes))
2174     if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2175       NumBytes = Simp;
2176 
2177   CallInst *NewCall;
2178 
2179   if (RuntimeCheck) {
2180     unsigned Threshold = RuntimeMemSizeThreshold;
2181     if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
2182       uint64_t C = CI->getZExtValue();
2183       if (Threshold != 0 && C < Threshold)
2184         goto CleanupAndExit;
2185       if (C < CompileTimeMemSizeThreshold)
2186         goto CleanupAndExit;
2187     }
2188 
2189     BasicBlock *Header = CurLoop->getHeader();
2190     Function *Func = Header->getParent();
2191     Loop *ParentL = LF->getLoopFor(Preheader);
2192     StringRef HeaderName = Header->getName();
2193 
2194     // Create a new (empty) preheader, and update the PHI nodes in the
2195     // header to use the new preheader.
2196     BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
2197                                                   Func, Header);
2198     if (ParentL)
2199       ParentL->addBasicBlockToLoop(NewPreheader, *LF);
2200     IRBuilder<>(NewPreheader).CreateBr(Header);
2201     for (auto &In : *Header) {
2202       PHINode *PN = dyn_cast<PHINode>(&In);
2203       if (!PN)
2204         break;
2205       int bx = PN->getBasicBlockIndex(Preheader);
2206       if (bx >= 0)
2207         PN->setIncomingBlock(bx, NewPreheader);
2208     }
2209     DT->addNewBlock(NewPreheader, Preheader);
2210     DT->changeImmediateDominator(Header, NewPreheader);
2211 
2212     // Check for safe conditions to execute memmove.
2213     // If stride is positive, copying things from higher to lower addresses
2214     // is equivalent to memmove.  For negative stride, it's the other way
2215     // around.  Copying forward in memory with positive stride may not be
2216     // same as memmove since we may be copying values that we just stored
2217     // in some previous iteration.
2218     Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
2219     Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
2220     Value *LowA = StridePos ? SA : LA;
2221     Value *HighA = StridePos ? LA : SA;
2222     Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
2223     Value *Cond = CmpA;
2224 
2225     // Check for distance between pointers. Since the case LowA < HighA
2226     // is checked for above, assume LowA >= HighA.
2227     Value *Dist = Builder.CreateSub(LowA, HighA);
2228     Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
2229     Value *CmpEither = Builder.CreateOr(Cond, CmpD);
2230     Cond = CmpEither;
2231 
2232     if (Threshold != 0) {
2233       Type *Ty = NumBytes->getType();
2234       Value *Thr = ConstantInt::get(Ty, Threshold);
2235       Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
2236       Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
2237       Cond = CmpBoth;
2238     }
2239     BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
2240                                               Func, NewPreheader);
2241     if (ParentL)
2242       ParentL->addBasicBlockToLoop(MemmoveB, *LF);
2243     Instruction *OldT = Preheader->getTerminator();
2244     Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
2245     OldT->eraseFromParent();
2246     Preheader->setName(Preheader->getName()+".old");
2247     DT->addNewBlock(MemmoveB, Preheader);
2248     // Find the new immediate dominator of the exit block.
2249     BasicBlock *ExitD = Preheader;
2250     for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
2251       BasicBlock *PB = *PI;
2252       ExitD = DT->findNearestCommonDominator(ExitD, PB);
2253       if (!ExitD)
2254         break;
2255     }
2256     // If the prior immediate dominator of ExitB was dominated by the
2257     // old preheader, then the old preheader becomes the new immediate
2258     // dominator.  Otherwise don't change anything (because the newly
2259     // added blocks are dominated by the old preheader).
2260     if (ExitD && DT->dominates(Preheader, ExitD)) {
2261       DomTreeNode *BN = DT->getNode(ExitB);
2262       DomTreeNode *DN = DT->getNode(ExitD);
2263       BN->setIDom(DN);
2264     }
2265 
2266     // Add a call to memmove to the conditional block.
2267     IRBuilder<> CondBuilder(MemmoveB);
2268     CondBuilder.CreateBr(ExitB);
2269     CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
2270 
2271     if (DestVolatile) {
2272       Type *Int32Ty = Type::getInt32Ty(Ctx);
2273       Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
2274       Type *VoidTy = Type::getVoidTy(Ctx);
2275       Module *M = Func->getParent();
2276       FunctionCallee Fn = M->getOrInsertFunction(
2277           HexagonVolatileMemcpyName, VoidTy, Int32PtrTy, Int32PtrTy, Int32Ty);
2278 
2279       const SCEV *OneS = SE->getConstant(Int32Ty, 1);
2280       const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
2281       const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
2282       Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
2283                                                MemmoveB->getTerminator());
2284       if (Instruction *In = dyn_cast<Instruction>(NumWords))
2285         if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2286           NumWords = Simp;
2287 
2288       Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
2289                       ? StoreBasePtr
2290                       : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
2291       Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
2292                       ? LoadBasePtr
2293                       : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
2294       NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
2295     } else {
2296       NewCall = CondBuilder.CreateMemMove(
2297           StoreBasePtr, SI->getAlign(), LoadBasePtr, LI->getAlign(), NumBytes);
2298     }
2299   } else {
2300     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
2301                                    LI->getAlign(), NumBytes);
2302     // Okay, the memcpy has been formed.  Zap the original store and
2303     // anything that feeds into it.
2304     RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
2305   }
2306 
2307   NewCall->setDebugLoc(DLoc);
2308 
2309   LLVM_DEBUG(dbgs() << "  Formed " << (Overlap ? "memmove: " : "memcpy: ")
2310                     << *NewCall << "\n"
2311                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
2312                     << "    from store ptr=" << *StoreEv << " at: " << *SI
2313                     << "\n");
2314 
2315   return true;
2316 }
2317 
2318 // Check if the instructions in Insts, together with their dependencies
2319 // cover the loop in the sense that the loop could be safely eliminated once
2320 // the instructions in Insts are removed.
2321 bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
2322       SmallVectorImpl<Instruction*> &Insts) const {
2323   SmallSet<BasicBlock*,8> LoopBlocks;
2324   for (auto *B : L->blocks())
2325     LoopBlocks.insert(B);
2326 
2327   SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
2328 
2329   // Collect all instructions from the loop that the instructions in Insts
2330   // depend on (plus their dependencies, etc.).  These instructions will
2331   // constitute the expression trees that feed those in Insts, but the trees
2332   // will be limited only to instructions contained in the loop.
2333   for (unsigned i = 0; i < Worklist.size(); ++i) {
2334     Instruction *In = Worklist[i];
2335     for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
2336       Instruction *OpI = dyn_cast<Instruction>(I);
2337       if (!OpI)
2338         continue;
2339       BasicBlock *PB = OpI->getParent();
2340       if (!LoopBlocks.count(PB))
2341         continue;
2342       Worklist.insert(OpI);
2343     }
2344   }
2345 
2346   // Scan all instructions in the loop, if any of them have a user outside
2347   // of the loop, or outside of the expressions collected above, then either
2348   // the loop has a side-effect visible outside of it, or there are
2349   // instructions in it that are not involved in the original set Insts.
2350   for (auto *B : L->blocks()) {
2351     for (auto &In : *B) {
2352       if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
2353         continue;
2354       if (!Worklist.count(&In) && In.mayHaveSideEffects())
2355         return false;
2356       for (auto K : In.users()) {
2357         Instruction *UseI = dyn_cast<Instruction>(K);
2358         if (!UseI)
2359           continue;
2360         BasicBlock *UseB = UseI->getParent();
2361         if (LF->getLoopFor(UseB) != L)
2362           return false;
2363       }
2364     }
2365   }
2366 
2367   return true;
2368 }
2369 
2370 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
2371 /// with the specified backedge count.  This block is known to be in the current
2372 /// loop and not in any subloops.
2373 bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
2374       const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
2375   // We can only promote stores in this block if they are unconditionally
2376   // executed in the loop.  For a block to be unconditionally executed, it has
2377   // to dominate all the exit blocks of the loop.  Verify this now.
2378   auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
2379     return DT->dominates(BB, EB);
2380   };
2381   if (!all_of(ExitBlocks, DominatedByBB))
2382     return false;
2383 
2384   bool MadeChange = false;
2385   // Look for store instructions, which may be optimized to memset/memcpy.
2386   SmallVector<StoreInst*,8> Stores;
2387   collectStores(CurLoop, BB, Stores);
2388 
2389   // Optimize the store into a memcpy, if it feeds an similarly strided load.
2390   for (auto &SI : Stores)
2391     MadeChange |= processCopyingStore(CurLoop, SI, BECount);
2392 
2393   return MadeChange;
2394 }
2395 
2396 bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
2397   PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
2398   if (PMR.recognize())
2399     return true;
2400 
2401   if (!HasMemcpy && !HasMemmove)
2402     return false;
2403 
2404   const SCEV *BECount = SE->getBackedgeTakenCount(L);
2405   assert(!isa<SCEVCouldNotCompute>(BECount) &&
2406          "runOnCountableLoop() called on a loop without a predictable"
2407          "backedge-taken count");
2408 
2409   SmallVector<BasicBlock *, 8> ExitBlocks;
2410   L->getUniqueExitBlocks(ExitBlocks);
2411 
2412   bool Changed = false;
2413 
2414   // Scan all the blocks in the loop that are not in subloops.
2415   for (auto *BB : L->getBlocks()) {
2416     // Ignore blocks in subloops.
2417     if (LF->getLoopFor(BB) != L)
2418       continue;
2419     Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
2420   }
2421 
2422   return Changed;
2423 }
2424 
2425 bool HexagonLoopIdiomRecognize::run(Loop *L) {
2426   const Module &M = *L->getHeader()->getParent()->getParent();
2427   if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
2428     return false;
2429 
2430   // If the loop could not be converted to canonical form, it must have an
2431   // indirectbr in it, just give up.
2432   if (!L->getLoopPreheader())
2433     return false;
2434 
2435   // Disable loop idiom recognition if the function's name is a common idiom.
2436   StringRef Name = L->getHeader()->getParent()->getName();
2437   if (Name == "memset" || Name == "memcpy" || Name == "memmove")
2438     return false;
2439 
2440   DL = &L->getHeader()->getModule()->getDataLayout();
2441 
2442   HasMemcpy = TLI->has(LibFunc_memcpy);
2443   HasMemmove = TLI->has(LibFunc_memmove);
2444 
2445   if (SE->hasLoopInvariantBackedgeTakenCount(L))
2446     return runOnCountableLoop(L);
2447   return false;
2448 }
2449 
2450 bool HexagonLoopIdiomRecognizeLegacyPass::runOnLoop(Loop *L,
2451                                                     LPPassManager &LPM) {
2452   if (skipLoop(L))
2453     return false;
2454 
2455   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2456   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2457   auto *LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2458   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
2459       *L->getHeader()->getParent());
2460   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2461   return HexagonLoopIdiomRecognize(AA, DT, LF, TLI, SE).run(L);
2462 }
2463 
2464 Pass *llvm::createHexagonLoopIdiomPass() {
2465   return new HexagonLoopIdiomRecognizeLegacyPass();
2466 }
2467 
2468 PreservedAnalyses
2469 HexagonLoopIdiomRecognitionPass::run(Loop &L, LoopAnalysisManager &AM,
2470                                      LoopStandardAnalysisResults &AR,
2471                                      LPMUpdater &U) {
2472   return HexagonLoopIdiomRecognize(&AR.AA, &AR.DT, &AR.LI, &AR.TLI, &AR.SE)
2473                  .run(&L)
2474              ? getLoopPassPreservedAnalyses()
2475              : PreservedAnalyses::all();
2476 }
2477