xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #define DEBUG_TYPE "hexagon-lir"
10 
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/KnownBits.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils.h"
60 #include <algorithm>
61 #include <array>
62 #include <cassert>
63 #include <cstdint>
64 #include <cstdlib>
65 #include <deque>
66 #include <functional>
67 #include <iterator>
68 #include <map>
69 #include <set>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
76   cl::Hidden, cl::init(false),
77   cl::desc("Disable generation of memcpy in loop idiom recognition"));
78 
79 static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
80   cl::Hidden, cl::init(false),
81   cl::desc("Disable generation of memmove in loop idiom recognition"));
82 
83 static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
84   cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
85   "check guarding the memmove."));
86 
87 static cl::opt<unsigned> CompileTimeMemSizeThreshold(
88   "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
89   cl::desc("Threshold (in bytes) to perform the transformation, if the "
90     "runtime loop count (mem transfer size) is known at compile-time."));
91 
92 static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
93   cl::Hidden, cl::init(true),
94   cl::desc("Only enable generating memmove in non-nested loops"));
95 
96 static cl::opt<bool> HexagonVolatileMemcpy(
97     "disable-hexagon-volatile-memcpy", cl::Hidden, cl::init(false),
98     cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
99 
100 static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
101   cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
102 
103 static const char *HexagonVolatileMemcpyName
104   = "hexagon_memcpy_forward_vp4cp4n2";
105 
106 
107 namespace llvm {
108 
109   void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
110   Pass *createHexagonLoopIdiomPass();
111 
112 } // end namespace llvm
113 
114 namespace {
115 
116   class HexagonLoopIdiomRecognize : public LoopPass {
117   public:
118     static char ID;
119 
120     explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
121       initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
122     }
123 
124     StringRef getPassName() const override {
125       return "Recognize Hexagon-specific loop idioms";
126     }
127 
128    void getAnalysisUsage(AnalysisUsage &AU) const override {
129       AU.addRequired<LoopInfoWrapperPass>();
130       AU.addRequiredID(LoopSimplifyID);
131       AU.addRequiredID(LCSSAID);
132       AU.addRequired<AAResultsWrapperPass>();
133       AU.addPreserved<AAResultsWrapperPass>();
134       AU.addRequired<ScalarEvolutionWrapperPass>();
135       AU.addRequired<DominatorTreeWrapperPass>();
136       AU.addRequired<TargetLibraryInfoWrapperPass>();
137       AU.addPreserved<TargetLibraryInfoWrapperPass>();
138     }
139 
140     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
141 
142   private:
143     int getSCEVStride(const SCEVAddRecExpr *StoreEv);
144     bool isLegalStore(Loop *CurLoop, StoreInst *SI);
145     void collectStores(Loop *CurLoop, BasicBlock *BB,
146         SmallVectorImpl<StoreInst*> &Stores);
147     bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
148     bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
149     bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
150         SmallVectorImpl<BasicBlock*> &ExitBlocks);
151     bool runOnCountableLoop(Loop *L);
152 
153     AliasAnalysis *AA;
154     const DataLayout *DL;
155     DominatorTree *DT;
156     LoopInfo *LF;
157     const TargetLibraryInfo *TLI;
158     ScalarEvolution *SE;
159     bool HasMemcpy, HasMemmove;
160   };
161 
162   struct Simplifier {
163     struct Rule {
164       using FuncType = std::function<Value* (Instruction*, LLVMContext&)>;
165       Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
166       StringRef Name;   // For debugging.
167       FuncType Fn;
168     };
169 
170     void addRule(StringRef N, const Rule::FuncType &F) {
171       Rules.push_back(Rule(N, F));
172     }
173 
174   private:
175     struct WorkListType {
176       WorkListType() = default;
177 
178       void push_back(Value* V) {
179         // Do not push back duplicates.
180         if (!S.count(V)) { Q.push_back(V); S.insert(V); }
181       }
182 
183       Value *pop_front_val() {
184         Value *V = Q.front(); Q.pop_front(); S.erase(V);
185         return V;
186       }
187 
188       bool empty() const { return Q.empty(); }
189 
190     private:
191       std::deque<Value*> Q;
192       std::set<Value*> S;
193     };
194 
195     using ValueSetType = std::set<Value *>;
196 
197     std::vector<Rule> Rules;
198 
199   public:
200     struct Context {
201       using ValueMapType = DenseMap<Value *, Value *>;
202 
203       Value *Root;
204       ValueSetType Used;    // The set of all cloned values used by Root.
205       ValueSetType Clones;  // The set of all cloned values.
206       LLVMContext &Ctx;
207 
208       Context(Instruction *Exp)
209         : Ctx(Exp->getParent()->getParent()->getContext()) {
210         initialize(Exp);
211       }
212 
213       ~Context() { cleanup(); }
214 
215       void print(raw_ostream &OS, const Value *V) const;
216       Value *materialize(BasicBlock *B, BasicBlock::iterator At);
217 
218     private:
219       friend struct Simplifier;
220 
221       void initialize(Instruction *Exp);
222       void cleanup();
223 
224       template <typename FuncT> void traverse(Value *V, FuncT F);
225       void record(Value *V);
226       void use(Value *V);
227       void unuse(Value *V);
228 
229       bool equal(const Instruction *I, const Instruction *J) const;
230       Value *find(Value *Tree, Value *Sub) const;
231       Value *subst(Value *Tree, Value *OldV, Value *NewV);
232       void replace(Value *OldV, Value *NewV);
233       void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
234     };
235 
236     Value *simplify(Context &C);
237   };
238 
239   struct PE {
240     PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
241 
242     const Simplifier::Context &C;
243     const Value *V;
244   };
245 
246   LLVM_ATTRIBUTE_USED
247   raw_ostream &operator<<(raw_ostream &OS, const PE &P) {
248     P.C.print(OS, P.V ? P.V : P.C.Root);
249     return OS;
250   }
251 
252 } // end anonymous namespace
253 
254 char HexagonLoopIdiomRecognize::ID = 0;
255 
256 INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
257     "Recognize Hexagon-specific loop idioms", false, false)
258 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
259 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
260 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
261 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
262 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
263 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
264 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
265 INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
266     "Recognize Hexagon-specific loop idioms", false, false)
267 
268 template <typename FuncT>
269 void Simplifier::Context::traverse(Value *V, FuncT F) {
270   WorkListType Q;
271   Q.push_back(V);
272 
273   while (!Q.empty()) {
274     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
275     if (!U || U->getParent())
276       continue;
277     if (!F(U))
278       continue;
279     for (Value *Op : U->operands())
280       Q.push_back(Op);
281   }
282 }
283 
284 void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
285   const auto *U = dyn_cast<const Instruction>(V);
286   if (!U) {
287     OS << V << '(' << *V << ')';
288     return;
289   }
290 
291   if (U->getParent()) {
292     OS << U << '(';
293     U->printAsOperand(OS, true);
294     OS << ')';
295     return;
296   }
297 
298   unsigned N = U->getNumOperands();
299   if (N != 0)
300     OS << U << '(';
301   OS << U->getOpcodeName();
302   for (const Value *Op : U->operands()) {
303     OS << ' ';
304     print(OS, Op);
305   }
306   if (N != 0)
307     OS << ')';
308 }
309 
310 void Simplifier::Context::initialize(Instruction *Exp) {
311   // Perform a deep clone of the expression, set Root to the root
312   // of the clone, and build a map from the cloned values to the
313   // original ones.
314   ValueMapType M;
315   BasicBlock *Block = Exp->getParent();
316   WorkListType Q;
317   Q.push_back(Exp);
318 
319   while (!Q.empty()) {
320     Value *V = Q.pop_front_val();
321     if (M.find(V) != M.end())
322       continue;
323     if (Instruction *U = dyn_cast<Instruction>(V)) {
324       if (isa<PHINode>(U) || U->getParent() != Block)
325         continue;
326       for (Value *Op : U->operands())
327         Q.push_back(Op);
328       M.insert({U, U->clone()});
329     }
330   }
331 
332   for (std::pair<Value*,Value*> P : M) {
333     Instruction *U = cast<Instruction>(P.second);
334     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
335       auto F = M.find(U->getOperand(i));
336       if (F != M.end())
337         U->setOperand(i, F->second);
338     }
339   }
340 
341   auto R = M.find(Exp);
342   assert(R != M.end());
343   Root = R->second;
344 
345   record(Root);
346   use(Root);
347 }
348 
349 void Simplifier::Context::record(Value *V) {
350   auto Record = [this](Instruction *U) -> bool {
351     Clones.insert(U);
352     return true;
353   };
354   traverse(V, Record);
355 }
356 
357 void Simplifier::Context::use(Value *V) {
358   auto Use = [this](Instruction *U) -> bool {
359     Used.insert(U);
360     return true;
361   };
362   traverse(V, Use);
363 }
364 
365 void Simplifier::Context::unuse(Value *V) {
366   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
367     return;
368 
369   auto Unuse = [this](Instruction *U) -> bool {
370     if (!U->use_empty())
371       return false;
372     Used.erase(U);
373     return true;
374   };
375   traverse(V, Unuse);
376 }
377 
378 Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
379   if (Tree == OldV)
380     return NewV;
381   if (OldV == NewV)
382     return Tree;
383 
384   WorkListType Q;
385   Q.push_back(Tree);
386   while (!Q.empty()) {
387     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
388     // If U is not an instruction, or it's not a clone, skip it.
389     if (!U || U->getParent())
390       continue;
391     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
392       Value *Op = U->getOperand(i);
393       if (Op == OldV) {
394         U->setOperand(i, NewV);
395         unuse(OldV);
396       } else {
397         Q.push_back(Op);
398       }
399     }
400   }
401   return Tree;
402 }
403 
404 void Simplifier::Context::replace(Value *OldV, Value *NewV) {
405   if (Root == OldV) {
406     Root = NewV;
407     use(Root);
408     return;
409   }
410 
411   // NewV may be a complex tree that has just been created by one of the
412   // transformation rules. We need to make sure that it is commoned with
413   // the existing Root to the maximum extent possible.
414   // Identify all subtrees of NewV (including NewV itself) that have
415   // equivalent counterparts in Root, and replace those subtrees with
416   // these counterparts.
417   WorkListType Q;
418   Q.push_back(NewV);
419   while (!Q.empty()) {
420     Value *V = Q.pop_front_val();
421     Instruction *U = dyn_cast<Instruction>(V);
422     if (!U || U->getParent())
423       continue;
424     if (Value *DupV = find(Root, V)) {
425       if (DupV != V)
426         NewV = subst(NewV, V, DupV);
427     } else {
428       for (Value *Op : U->operands())
429         Q.push_back(Op);
430     }
431   }
432 
433   // Now, simply replace OldV with NewV in Root.
434   Root = subst(Root, OldV, NewV);
435   use(Root);
436 }
437 
438 void Simplifier::Context::cleanup() {
439   for (Value *V : Clones) {
440     Instruction *U = cast<Instruction>(V);
441     if (!U->getParent())
442       U->dropAllReferences();
443   }
444 
445   for (Value *V : Clones) {
446     Instruction *U = cast<Instruction>(V);
447     if (!U->getParent())
448       U->deleteValue();
449   }
450 }
451 
452 bool Simplifier::Context::equal(const Instruction *I,
453                                 const Instruction *J) const {
454   if (I == J)
455     return true;
456   if (!I->isSameOperationAs(J))
457     return false;
458   if (isa<PHINode>(I))
459     return I->isIdenticalTo(J);
460 
461   for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
462     Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
463     if (OpI == OpJ)
464       continue;
465     auto *InI = dyn_cast<const Instruction>(OpI);
466     auto *InJ = dyn_cast<const Instruction>(OpJ);
467     if (InI && InJ) {
468       if (!equal(InI, InJ))
469         return false;
470     } else if (InI != InJ || !InI)
471       return false;
472   }
473   return true;
474 }
475 
476 Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
477   Instruction *SubI = dyn_cast<Instruction>(Sub);
478   WorkListType Q;
479   Q.push_back(Tree);
480 
481   while (!Q.empty()) {
482     Value *V = Q.pop_front_val();
483     if (V == Sub)
484       return V;
485     Instruction *U = dyn_cast<Instruction>(V);
486     if (!U || U->getParent())
487       continue;
488     if (SubI && equal(SubI, U))
489       return U;
490     assert(!isa<PHINode>(U));
491     for (Value *Op : U->operands())
492       Q.push_back(Op);
493   }
494   return nullptr;
495 }
496 
497 void Simplifier::Context::link(Instruction *I, BasicBlock *B,
498       BasicBlock::iterator At) {
499   if (I->getParent())
500     return;
501 
502   for (Value *Op : I->operands()) {
503     if (Instruction *OpI = dyn_cast<Instruction>(Op))
504       link(OpI, B, At);
505   }
506 
507   B->getInstList().insert(At, I);
508 }
509 
510 Value *Simplifier::Context::materialize(BasicBlock *B,
511       BasicBlock::iterator At) {
512   if (Instruction *RootI = dyn_cast<Instruction>(Root))
513     link(RootI, B, At);
514   return Root;
515 }
516 
517 Value *Simplifier::simplify(Context &C) {
518   WorkListType Q;
519   Q.push_back(C.Root);
520   unsigned Count = 0;
521   const unsigned Limit = SimplifyLimit;
522 
523   while (!Q.empty()) {
524     if (Count++ >= Limit)
525       break;
526     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
527     if (!U || U->getParent() || !C.Used.count(U))
528       continue;
529     bool Changed = false;
530     for (Rule &R : Rules) {
531       Value *W = R.Fn(U, C.Ctx);
532       if (!W)
533         continue;
534       Changed = true;
535       C.record(W);
536       C.replace(U, W);
537       Q.push_back(C.Root);
538       break;
539     }
540     if (!Changed) {
541       for (Value *Op : U->operands())
542         Q.push_back(Op);
543     }
544   }
545   return Count < Limit ? C.Root : nullptr;
546 }
547 
548 //===----------------------------------------------------------------------===//
549 //
550 //          Implementation of PolynomialMultiplyRecognize
551 //
552 //===----------------------------------------------------------------------===//
553 
554 namespace {
555 
556   class PolynomialMultiplyRecognize {
557   public:
558     explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
559         const DominatorTree &dt, const TargetLibraryInfo &tli,
560         ScalarEvolution &se)
561       : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
562 
563     bool recognize();
564 
565   private:
566     using ValueSeq = SetVector<Value *>;
567 
568     IntegerType *getPmpyType() const {
569       LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
570       return IntegerType::get(Ctx, 32);
571     }
572 
573     bool isPromotableTo(Value *V, IntegerType *Ty);
574     void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
575     bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
576 
577     Value *getCountIV(BasicBlock *BB);
578     bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
579     void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
580           ValueSeq &Late);
581     bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
582     bool commutesWithShift(Instruction *I);
583     bool highBitsAreZero(Value *V, unsigned IterCount);
584     bool keepsHighBitsZero(Value *V, unsigned IterCount);
585     bool isOperandShifted(Instruction *I, Value *Op);
586     bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
587           unsigned IterCount);
588     void cleanupLoopBody(BasicBlock *LoopB);
589 
590     struct ParsedValues {
591       ParsedValues() = default;
592 
593       Value *M = nullptr;
594       Value *P = nullptr;
595       Value *Q = nullptr;
596       Value *R = nullptr;
597       Value *X = nullptr;
598       Instruction *Res = nullptr;
599       unsigned IterCount = 0;
600       bool Left = false;
601       bool Inv = false;
602     };
603 
604     bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
605     bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
606     bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
607           Value *CIV, ParsedValues &PV, bool PreScan);
608     unsigned getInverseMxN(unsigned QP);
609     Value *generate(BasicBlock::iterator At, ParsedValues &PV);
610 
611     void setupPreSimplifier(Simplifier &S);
612     void setupPostSimplifier(Simplifier &S);
613 
614     Loop *CurLoop;
615     const DataLayout &DL;
616     const DominatorTree &DT;
617     const TargetLibraryInfo &TLI;
618     ScalarEvolution &SE;
619   };
620 
621 } // end anonymous namespace
622 
623 Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
624   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
625   if (std::distance(PI, PE) != 2)
626     return nullptr;
627   BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
628 
629   for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
630     auto *PN = cast<PHINode>(I);
631     Value *InitV = PN->getIncomingValueForBlock(PB);
632     if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
633       continue;
634     Value *IterV = PN->getIncomingValueForBlock(BB);
635     auto *BO = dyn_cast<BinaryOperator>(IterV);
636     if (!BO)
637       continue;
638     if (BO->getOpcode() != Instruction::Add)
639       continue;
640     Value *IncV = nullptr;
641     if (BO->getOperand(0) == PN)
642       IncV = BO->getOperand(1);
643     else if (BO->getOperand(1) == PN)
644       IncV = BO->getOperand(0);
645     if (IncV == nullptr)
646       continue;
647 
648     if (auto *T = dyn_cast<ConstantInt>(IncV))
649       if (T->getZExtValue() == 1)
650         return PN;
651   }
652   return nullptr;
653 }
654 
655 static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
656   for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
657     Use &TheUse = UI.getUse();
658     ++UI;
659     if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
660       if (BB == II->getParent())
661         II->replaceUsesOfWith(I, J);
662   }
663 }
664 
665 bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
666       Value *CIV, ParsedValues &PV) {
667   // Match the following:
668   //   select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
669   //   select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
670   // The condition may also check for equality with the masked value, i.e
671   //   select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
672   //   select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
673 
674   Value *CondV = SelI->getCondition();
675   Value *TrueV = SelI->getTrueValue();
676   Value *FalseV = SelI->getFalseValue();
677 
678   using namespace PatternMatch;
679 
680   CmpInst::Predicate P;
681   Value *A = nullptr, *B = nullptr, *C = nullptr;
682 
683   if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
684       !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
685     return false;
686   if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
687     return false;
688   // Matched: select (A & B) == C ? ... : ...
689   //          select (A & B) != C ? ... : ...
690 
691   Value *X = nullptr, *Sh1 = nullptr;
692   // Check (A & B) for (X & (1 << i)):
693   if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
694     Sh1 = A;
695     X = B;
696   } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
697     Sh1 = B;
698     X = A;
699   } else {
700     // TODO: Could also check for an induction variable containing single
701     // bit shifted left by 1 in each iteration.
702     return false;
703   }
704 
705   bool TrueIfZero;
706 
707   // Check C against the possible values for comparison: 0 and (1 << i):
708   if (match(C, m_Zero()))
709     TrueIfZero = (P == CmpInst::ICMP_EQ);
710   else if (C == Sh1)
711     TrueIfZero = (P == CmpInst::ICMP_NE);
712   else
713     return false;
714 
715   // So far, matched:
716   //   select (X & (1 << i)) ? ... : ...
717   // including variations of the check against zero/non-zero value.
718 
719   Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
720   if (TrueIfZero) {
721     ShouldSameV = TrueV;
722     ShouldXoredV = FalseV;
723   } else {
724     ShouldSameV = FalseV;
725     ShouldXoredV = TrueV;
726   }
727 
728   Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
729   Value *T = nullptr;
730   if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
731     // Matched: select +++ ? ... : Y ^ Z
732     //          select +++ ? Y ^ Z : ...
733     // where +++ denotes previously checked matches.
734     if (ShouldSameV == Y)
735       T = Z;
736     else if (ShouldSameV == Z)
737       T = Y;
738     else
739       return false;
740     R = ShouldSameV;
741     // Matched: select +++ ? R : R ^ T
742     //          select +++ ? R ^ T : R
743     // depending on TrueIfZero.
744 
745   } else if (match(ShouldSameV, m_Zero())) {
746     // Matched: select +++ ? 0 : ...
747     //          select +++ ? ... : 0
748     if (!SelI->hasOneUse())
749       return false;
750     T = ShouldXoredV;
751     // Matched: select +++ ? 0 : T
752     //          select +++ ? T : 0
753 
754     Value *U = *SelI->user_begin();
755     if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
756         !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
757       return false;
758     // Matched: xor (select +++ ? 0 : T), R
759     //          xor (select +++ ? T : 0), R
760   } else
761     return false;
762 
763   // The xor input value T is isolated into its own match so that it could
764   // be checked against an induction variable containing a shifted bit
765   // (todo).
766   // For now, check against (Q << i).
767   if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
768       !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
769     return false;
770   // Matched: select +++ ? R : R ^ (Q << i)
771   //          select +++ ? R ^ (Q << i) : R
772 
773   PV.X = X;
774   PV.Q = Q;
775   PV.R = R;
776   PV.Left = true;
777   return true;
778 }
779 
780 bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
781       ParsedValues &PV) {
782   // Match the following:
783   //   select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
784   //   select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
785   // The condition may also check for equality with the masked value, i.e
786   //   select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
787   //   select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
788 
789   Value *CondV = SelI->getCondition();
790   Value *TrueV = SelI->getTrueValue();
791   Value *FalseV = SelI->getFalseValue();
792 
793   using namespace PatternMatch;
794 
795   Value *C = nullptr;
796   CmpInst::Predicate P;
797   bool TrueIfZero;
798 
799   if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
800       match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
801     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
802       return false;
803     // Matched: select C == 0 ? ... : ...
804     //          select C != 0 ? ... : ...
805     TrueIfZero = (P == CmpInst::ICMP_EQ);
806   } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
807              match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
808     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
809       return false;
810     // Matched: select C == 1 ? ... : ...
811     //          select C != 1 ? ... : ...
812     TrueIfZero = (P == CmpInst::ICMP_NE);
813   } else
814     return false;
815 
816   Value *X = nullptr;
817   if (!match(C, m_And(m_Value(X), m_One())) &&
818       !match(C, m_And(m_One(), m_Value(X))))
819     return false;
820   // Matched: select (X & 1) == +++ ? ... : ...
821   //          select (X & 1) != +++ ? ... : ...
822 
823   Value *R = nullptr, *Q = nullptr;
824   if (TrueIfZero) {
825     // The select's condition is true if the tested bit is 0.
826     // TrueV must be the shift, FalseV must be the xor.
827     if (!match(TrueV, m_LShr(m_Value(R), m_One())))
828       return false;
829     // Matched: select +++ ? (R >> 1) : ...
830     if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
831         !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
832       return false;
833     // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
834     // with commuting ^.
835   } else {
836     // The select's condition is true if the tested bit is 1.
837     // TrueV must be the xor, FalseV must be the shift.
838     if (!match(FalseV, m_LShr(m_Value(R), m_One())))
839       return false;
840     // Matched: select +++ ? ... : (R >> 1)
841     if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
842         !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
843       return false;
844     // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
845     // with commuting ^.
846   }
847 
848   PV.X = X;
849   PV.Q = Q;
850   PV.R = R;
851   PV.Left = false;
852   return true;
853 }
854 
855 bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
856       BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
857       bool PreScan) {
858   using namespace PatternMatch;
859 
860   // The basic pattern for R = P.Q is:
861   // for i = 0..31
862   //   R = phi (0, R')
863   //   if (P & (1 << i))        ; test-bit(P, i)
864   //     R' = R ^ (Q << i)
865   //
866   // Similarly, the basic pattern for R = (P/Q).Q - P
867   // for i = 0..31
868   //   R = phi(P, R')
869   //   if (R & (1 << i))
870   //     R' = R ^ (Q << i)
871 
872   // There exist idioms, where instead of Q being shifted left, P is shifted
873   // right. This produces a result that is shifted right by 32 bits (the
874   // non-shifted result is 64-bit).
875   //
876   // For R = P.Q, this would be:
877   // for i = 0..31
878   //   R = phi (0, R')
879   //   if ((P >> i) & 1)
880   //     R' = (R >> 1) ^ Q      ; R is cycled through the loop, so it must
881   //   else                     ; be shifted by 1, not i.
882   //     R' = R >> 1
883   //
884   // And for the inverse:
885   // for i = 0..31
886   //   R = phi (P, R')
887   //   if (R & 1)
888   //     R' = (R >> 1) ^ Q
889   //   else
890   //     R' = R >> 1
891 
892   // The left-shifting idioms share the same pattern:
893   //   select (X & (1 << i)) ? R ^ (Q << i) : R
894   // Similarly for right-shifting idioms:
895   //   select (X & 1) ? (R >> 1) ^ Q
896 
897   if (matchLeftShift(SelI, CIV, PV)) {
898     // If this is a pre-scan, getting this far is sufficient.
899     if (PreScan)
900       return true;
901 
902     // Need to make sure that the SelI goes back into R.
903     auto *RPhi = dyn_cast<PHINode>(PV.R);
904     if (!RPhi)
905       return false;
906     if (SelI != RPhi->getIncomingValueForBlock(LoopB))
907       return false;
908     PV.Res = SelI;
909 
910     // If X is loop invariant, it must be the input polynomial, and the
911     // idiom is the basic polynomial multiply.
912     if (CurLoop->isLoopInvariant(PV.X)) {
913       PV.P = PV.X;
914       PV.Inv = false;
915     } else {
916       // X is not loop invariant. If X == R, this is the inverse pmpy.
917       // Otherwise, check for an xor with an invariant value. If the
918       // variable argument to the xor is R, then this is still a valid
919       // inverse pmpy.
920       PV.Inv = true;
921       if (PV.X != PV.R) {
922         Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
923         if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
924           return false;
925         auto *I1 = dyn_cast<Instruction>(X1);
926         auto *I2 = dyn_cast<Instruction>(X2);
927         if (!I1 || I1->getParent() != LoopB) {
928           Var = X2;
929           Inv = X1;
930         } else if (!I2 || I2->getParent() != LoopB) {
931           Var = X1;
932           Inv = X2;
933         } else
934           return false;
935         if (Var != PV.R)
936           return false;
937         PV.M = Inv;
938       }
939       // The input polynomial P still needs to be determined. It will be
940       // the entry value of R.
941       Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
942       PV.P = EntryP;
943     }
944 
945     return true;
946   }
947 
948   if (matchRightShift(SelI, PV)) {
949     // If this is an inverse pattern, the Q polynomial must be known at
950     // compile time.
951     if (PV.Inv && !isa<ConstantInt>(PV.Q))
952       return false;
953     if (PreScan)
954       return true;
955     // There is no exact matching of right-shift pmpy.
956     return false;
957   }
958 
959   return false;
960 }
961 
962 bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
963       IntegerType *DestTy) {
964   IntegerType *T = dyn_cast<IntegerType>(Val->getType());
965   if (!T || T->getBitWidth() > DestTy->getBitWidth())
966     return false;
967   if (T->getBitWidth() == DestTy->getBitWidth())
968     return true;
969   // Non-instructions are promotable. The reason why an instruction may not
970   // be promotable is that it may produce a different result if its operands
971   // and the result are promoted, for example, it may produce more non-zero
972   // bits. While it would still be possible to represent the proper result
973   // in a wider type, it may require adding additional instructions (which
974   // we don't want to do).
975   Instruction *In = dyn_cast<Instruction>(Val);
976   if (!In)
977     return true;
978   // The bitwidth of the source type is smaller than the destination.
979   // Check if the individual operation can be promoted.
980   switch (In->getOpcode()) {
981     case Instruction::PHI:
982     case Instruction::ZExt:
983     case Instruction::And:
984     case Instruction::Or:
985     case Instruction::Xor:
986     case Instruction::LShr: // Shift right is ok.
987     case Instruction::Select:
988     case Instruction::Trunc:
989       return true;
990     case Instruction::ICmp:
991       if (CmpInst *CI = cast<CmpInst>(In))
992         return CI->isEquality() || CI->isUnsigned();
993       llvm_unreachable("Cast failed unexpectedly");
994     case Instruction::Add:
995       return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
996   }
997   return false;
998 }
999 
1000 void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
1001       IntegerType *DestTy, BasicBlock *LoopB) {
1002   Type *OrigTy = In->getType();
1003   assert(!OrigTy->isVoidTy() && "Invalid instruction to promote");
1004 
1005   // Leave boolean values alone.
1006   if (!In->getType()->isIntegerTy(1))
1007     In->mutateType(DestTy);
1008   unsigned DestBW = DestTy->getBitWidth();
1009 
1010   // Handle PHIs.
1011   if (PHINode *P = dyn_cast<PHINode>(In)) {
1012     unsigned N = P->getNumIncomingValues();
1013     for (unsigned i = 0; i != N; ++i) {
1014       BasicBlock *InB = P->getIncomingBlock(i);
1015       if (InB == LoopB)
1016         continue;
1017       Value *InV = P->getIncomingValue(i);
1018       IntegerType *Ty = cast<IntegerType>(InV->getType());
1019       // Do not promote values in PHI nodes of type i1.
1020       if (Ty != P->getType()) {
1021         // If the value type does not match the PHI type, the PHI type
1022         // must have been promoted.
1023         assert(Ty->getBitWidth() < DestBW);
1024         InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
1025         P->setIncomingValue(i, InV);
1026       }
1027     }
1028   } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
1029     Value *Op = Z->getOperand(0);
1030     if (Op->getType() == Z->getType())
1031       Z->replaceAllUsesWith(Op);
1032     Z->eraseFromParent();
1033     return;
1034   }
1035   if (TruncInst *T = dyn_cast<TruncInst>(In)) {
1036     IntegerType *TruncTy = cast<IntegerType>(OrigTy);
1037     Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1);
1038     Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask);
1039     T->replaceAllUsesWith(And);
1040     T->eraseFromParent();
1041     return;
1042   }
1043 
1044   // Promote immediates.
1045   for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
1046     if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
1047       if (CI->getType()->getBitWidth() < DestBW)
1048         In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
1049   }
1050 }
1051 
1052 bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
1053       BasicBlock *ExitB) {
1054   assert(LoopB);
1055   // Skip loops where the exit block has more than one predecessor. The values
1056   // coming from the loop block will be promoted to another type, and so the
1057   // values coming into the exit block from other predecessors would also have
1058   // to be promoted.
1059   if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
1060     return false;
1061   IntegerType *DestTy = getPmpyType();
1062   // Check if the exit values have types that are no wider than the type
1063   // that we want to promote to.
1064   unsigned DestBW = DestTy->getBitWidth();
1065   for (PHINode &P : ExitB->phis()) {
1066     if (P.getNumIncomingValues() != 1)
1067       return false;
1068     assert(P.getIncomingBlock(0) == LoopB);
1069     IntegerType *T = dyn_cast<IntegerType>(P.getType());
1070     if (!T || T->getBitWidth() > DestBW)
1071       return false;
1072   }
1073 
1074   // Check all instructions in the loop.
1075   for (Instruction &In : *LoopB)
1076     if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
1077       return false;
1078 
1079   // Perform the promotion.
1080   std::vector<Instruction*> LoopIns;
1081   std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
1082                  [](Instruction &In) { return &In; });
1083   for (Instruction *In : LoopIns)
1084     if (!In->isTerminator())
1085       promoteTo(In, DestTy, LoopB);
1086 
1087   // Fix up the PHI nodes in the exit block.
1088   Instruction *EndI = ExitB->getFirstNonPHI();
1089   BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
1090   for (auto I = ExitB->begin(); I != End; ++I) {
1091     PHINode *P = dyn_cast<PHINode>(I);
1092     if (!P)
1093       break;
1094     Type *Ty0 = P->getIncomingValue(0)->getType();
1095     Type *PTy = P->getType();
1096     if (PTy != Ty0) {
1097       assert(Ty0 == DestTy);
1098       // In order to create the trunc, P must have the promoted type.
1099       P->mutateType(Ty0);
1100       Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
1101       // In order for the RAUW to work, the types of P and T must match.
1102       P->mutateType(PTy);
1103       P->replaceAllUsesWith(T);
1104       // Final update of the P's type.
1105       P->mutateType(Ty0);
1106       cast<Instruction>(T)->setOperand(0, P);
1107     }
1108   }
1109 
1110   return true;
1111 }
1112 
1113 bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
1114       ValueSeq &Cycle) {
1115   // Out = ..., In, ...
1116   if (Out == In)
1117     return true;
1118 
1119   auto *BB = cast<Instruction>(Out)->getParent();
1120   bool HadPhi = false;
1121 
1122   for (auto U : Out->users()) {
1123     auto *I = dyn_cast<Instruction>(&*U);
1124     if (I == nullptr || I->getParent() != BB)
1125       continue;
1126     // Make sure that there are no multi-iteration cycles, e.g.
1127     //   p1 = phi(p2)
1128     //   p2 = phi(p1)
1129     // The cycle p1->p2->p1 would span two loop iterations.
1130     // Check that there is only one phi in the cycle.
1131     bool IsPhi = isa<PHINode>(I);
1132     if (IsPhi && HadPhi)
1133       return false;
1134     HadPhi |= IsPhi;
1135     if (Cycle.count(I))
1136       return false;
1137     Cycle.insert(I);
1138     if (findCycle(I, In, Cycle))
1139       break;
1140     Cycle.remove(I);
1141   }
1142   return !Cycle.empty();
1143 }
1144 
1145 void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
1146       ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
1147   // All the values in the cycle that are between the phi node and the
1148   // divider instruction will be classified as "early", all other values
1149   // will be "late".
1150 
1151   bool IsE = true;
1152   unsigned I, N = Cycle.size();
1153   for (I = 0; I < N; ++I) {
1154     Value *V = Cycle[I];
1155     if (DivI == V)
1156       IsE = false;
1157     else if (!isa<PHINode>(V))
1158       continue;
1159     // Stop if found either.
1160     break;
1161   }
1162   // "I" is the index of either DivI or the phi node, whichever was first.
1163   // "E" is "false" or "true" respectively.
1164   ValueSeq &First = !IsE ? Early : Late;
1165   for (unsigned J = 0; J < I; ++J)
1166     First.insert(Cycle[J]);
1167 
1168   ValueSeq &Second = IsE ? Early : Late;
1169   Second.insert(Cycle[I]);
1170   for (++I; I < N; ++I) {
1171     Value *V = Cycle[I];
1172     if (DivI == V || isa<PHINode>(V))
1173       break;
1174     Second.insert(V);
1175   }
1176 
1177   for (; I < N; ++I)
1178     First.insert(Cycle[I]);
1179 }
1180 
1181 bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
1182       ValueSeq &Early, ValueSeq &Late) {
1183   // Select is an exception, since the condition value does not have to be
1184   // classified in the same way as the true/false values. The true/false
1185   // values do have to be both early or both late.
1186   if (UseI->getOpcode() == Instruction::Select) {
1187     Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
1188     if (Early.count(TV) || Early.count(FV)) {
1189       if (Late.count(TV) || Late.count(FV))
1190         return false;
1191       Early.insert(UseI);
1192     } else if (Late.count(TV) || Late.count(FV)) {
1193       if (Early.count(TV) || Early.count(FV))
1194         return false;
1195       Late.insert(UseI);
1196     }
1197     return true;
1198   }
1199 
1200   // Not sure what would be the example of this, but the code below relies
1201   // on having at least one operand.
1202   if (UseI->getNumOperands() == 0)
1203     return true;
1204 
1205   bool AE = true, AL = true;
1206   for (auto &I : UseI->operands()) {
1207     if (Early.count(&*I))
1208       AL = false;
1209     else if (Late.count(&*I))
1210       AE = false;
1211   }
1212   // If the operands appear "all early" and "all late" at the same time,
1213   // then it means that none of them are actually classified as either.
1214   // This is harmless.
1215   if (AE && AL)
1216     return true;
1217   // Conversely, if they are neither "all early" nor "all late", then
1218   // we have a mixture of early and late operands that is not a known
1219   // exception.
1220   if (!AE && !AL)
1221     return false;
1222 
1223   // Check that we have covered the two special cases.
1224   assert(AE != AL);
1225 
1226   if (AE)
1227     Early.insert(UseI);
1228   else
1229     Late.insert(UseI);
1230   return true;
1231 }
1232 
1233 bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
1234   switch (I->getOpcode()) {
1235     case Instruction::And:
1236     case Instruction::Or:
1237     case Instruction::Xor:
1238     case Instruction::LShr:
1239     case Instruction::Shl:
1240     case Instruction::Select:
1241     case Instruction::ICmp:
1242     case Instruction::PHI:
1243       break;
1244     default:
1245       return false;
1246   }
1247   return true;
1248 }
1249 
1250 bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
1251       unsigned IterCount) {
1252   auto *T = dyn_cast<IntegerType>(V->getType());
1253   if (!T)
1254     return false;
1255 
1256   KnownBits Known(T->getBitWidth());
1257   computeKnownBits(V, Known, DL);
1258   return Known.countMinLeadingZeros() >= IterCount;
1259 }
1260 
1261 bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
1262       unsigned IterCount) {
1263   // Assume that all inputs to the value have the high bits zero.
1264   // Check if the value itself preserves the zeros in the high bits.
1265   if (auto *C = dyn_cast<ConstantInt>(V))
1266     return C->getValue().countLeadingZeros() >= IterCount;
1267 
1268   if (auto *I = dyn_cast<Instruction>(V)) {
1269     switch (I->getOpcode()) {
1270       case Instruction::And:
1271       case Instruction::Or:
1272       case Instruction::Xor:
1273       case Instruction::LShr:
1274       case Instruction::Select:
1275       case Instruction::ICmp:
1276       case Instruction::PHI:
1277       case Instruction::ZExt:
1278         return true;
1279     }
1280   }
1281 
1282   return false;
1283 }
1284 
1285 bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
1286   unsigned Opc = I->getOpcode();
1287   if (Opc == Instruction::Shl || Opc == Instruction::LShr)
1288     return Op != I->getOperand(1);
1289   return true;
1290 }
1291 
1292 bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
1293       BasicBlock *ExitB, unsigned IterCount) {
1294   Value *CIV = getCountIV(LoopB);
1295   if (CIV == nullptr)
1296     return false;
1297   auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
1298   if (CIVTy == nullptr)
1299     return false;
1300 
1301   ValueSeq RShifts;
1302   ValueSeq Early, Late, Cycled;
1303 
1304   // Find all value cycles that contain logical right shifts by 1.
1305   for (Instruction &I : *LoopB) {
1306     using namespace PatternMatch;
1307 
1308     Value *V = nullptr;
1309     if (!match(&I, m_LShr(m_Value(V), m_One())))
1310       continue;
1311     ValueSeq C;
1312     if (!findCycle(&I, V, C))
1313       continue;
1314 
1315     // Found a cycle.
1316     C.insert(&I);
1317     classifyCycle(&I, C, Early, Late);
1318     Cycled.insert(C.begin(), C.end());
1319     RShifts.insert(&I);
1320   }
1321 
1322   // Find the set of all values affected by the shift cycles, i.e. all
1323   // cycled values, and (recursively) all their users.
1324   ValueSeq Users(Cycled.begin(), Cycled.end());
1325   for (unsigned i = 0; i < Users.size(); ++i) {
1326     Value *V = Users[i];
1327     if (!isa<IntegerType>(V->getType()))
1328       return false;
1329     auto *R = cast<Instruction>(V);
1330     // If the instruction does not commute with shifts, the loop cannot
1331     // be unshifted.
1332     if (!commutesWithShift(R))
1333       return false;
1334     for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
1335       auto *T = cast<Instruction>(*I);
1336       // Skip users from outside of the loop. They will be handled later.
1337       // Also, skip the right-shifts and phi nodes, since they mix early
1338       // and late values.
1339       if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
1340         continue;
1341 
1342       Users.insert(T);
1343       if (!classifyInst(T, Early, Late))
1344         return false;
1345     }
1346   }
1347 
1348   if (Users.empty())
1349     return false;
1350 
1351   // Verify that high bits remain zero.
1352   ValueSeq Internal(Users.begin(), Users.end());
1353   ValueSeq Inputs;
1354   for (unsigned i = 0; i < Internal.size(); ++i) {
1355     auto *R = dyn_cast<Instruction>(Internal[i]);
1356     if (!R)
1357       continue;
1358     for (Value *Op : R->operands()) {
1359       auto *T = dyn_cast<Instruction>(Op);
1360       if (T && T->getParent() != LoopB)
1361         Inputs.insert(Op);
1362       else
1363         Internal.insert(Op);
1364     }
1365   }
1366   for (Value *V : Inputs)
1367     if (!highBitsAreZero(V, IterCount))
1368       return false;
1369   for (Value *V : Internal)
1370     if (!keepsHighBitsZero(V, IterCount))
1371       return false;
1372 
1373   // Finally, the work can be done. Unshift each user.
1374   IRBuilder<> IRB(LoopB);
1375   std::map<Value*,Value*> ShiftMap;
1376 
1377   using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
1378 
1379   CastMapType CastMap;
1380 
1381   auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
1382         IntegerType *Ty) -> Value* {
1383     auto H = CM.find(std::make_pair(V, Ty));
1384     if (H != CM.end())
1385       return H->second;
1386     Value *CV = IRB.CreateIntCast(V, Ty, false);
1387     CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
1388     return CV;
1389   };
1390 
1391   for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
1392     using namespace PatternMatch;
1393 
1394     if (isa<PHINode>(I) || !Users.count(&*I))
1395       continue;
1396 
1397     // Match lshr x, 1.
1398     Value *V = nullptr;
1399     if (match(&*I, m_LShr(m_Value(V), m_One()))) {
1400       replaceAllUsesOfWithIn(&*I, V, LoopB);
1401       continue;
1402     }
1403     // For each non-cycled operand, replace it with the corresponding
1404     // value shifted left.
1405     for (auto &J : I->operands()) {
1406       Value *Op = J.get();
1407       if (!isOperandShifted(&*I, Op))
1408         continue;
1409       if (Users.count(Op))
1410         continue;
1411       // Skip shifting zeros.
1412       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
1413         continue;
1414       // Check if we have already generated a shift for this value.
1415       auto F = ShiftMap.find(Op);
1416       Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
1417       if (W == nullptr) {
1418         IRB.SetInsertPoint(&*I);
1419         // First, the shift amount will be CIV or CIV+1, depending on
1420         // whether the value is early or late. Instead of creating CIV+1,
1421         // do a single shift of the value.
1422         Value *ShAmt = CIV, *ShVal = Op;
1423         auto *VTy = cast<IntegerType>(ShVal->getType());
1424         auto *ATy = cast<IntegerType>(ShAmt->getType());
1425         if (Late.count(&*I))
1426           ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
1427         // Second, the types of the shifted value and the shift amount
1428         // must match.
1429         if (VTy != ATy) {
1430           if (VTy->getBitWidth() < ATy->getBitWidth())
1431             ShVal = upcast(CastMap, IRB, ShVal, ATy);
1432           else
1433             ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
1434         }
1435         // Ready to generate the shift and memoize it.
1436         W = IRB.CreateShl(ShVal, ShAmt);
1437         ShiftMap.insert(std::make_pair(Op, W));
1438       }
1439       I->replaceUsesOfWith(Op, W);
1440     }
1441   }
1442 
1443   // Update the users outside of the loop to account for having left
1444   // shifts. They would normally be shifted right in the loop, so shift
1445   // them right after the loop exit.
1446   // Take advantage of the loop-closed SSA form, which has all the post-
1447   // loop values in phi nodes.
1448   IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
1449   for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
1450     if (!isa<PHINode>(P))
1451       break;
1452     auto *PN = cast<PHINode>(P);
1453     Value *U = PN->getIncomingValueForBlock(LoopB);
1454     if (!Users.count(U))
1455       continue;
1456     Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
1457     PN->replaceAllUsesWith(S);
1458     // The above RAUW will create
1459     //   S = lshr S, IterCount
1460     // so we need to fix it back into
1461     //   S = lshr PN, IterCount
1462     cast<User>(S)->replaceUsesOfWith(S, PN);
1463   }
1464 
1465   return true;
1466 }
1467 
1468 void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
1469   for (auto &I : *LoopB)
1470     if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
1471       I.replaceAllUsesWith(SV);
1472 
1473   for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
1474     N = std::next(I);
1475     RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
1476   }
1477 }
1478 
1479 unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
1480   // Arrays of coefficients of Q and the inverse, C.
1481   // Q[i] = coefficient at x^i.
1482   std::array<char,32> Q, C;
1483 
1484   for (unsigned i = 0; i < 32; ++i) {
1485     Q[i] = QP & 1;
1486     QP >>= 1;
1487   }
1488   assert(Q[0] == 1);
1489 
1490   // Find C, such that
1491   // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
1492   //
1493   // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
1494   // operations * and + are & and ^ respectively.
1495   //
1496   // Find C[i] recursively, by comparing i-th coefficient in the product
1497   // with 0 (or 1 for i=0).
1498   //
1499   // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
1500   C[0] = 1;
1501   for (unsigned i = 1; i < 32; ++i) {
1502     // Solve for C[i] in:
1503     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
1504     // This is equivalent to
1505     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
1506     // which is
1507     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
1508     unsigned T = 0;
1509     for (unsigned j = 0; j < i; ++j)
1510       T = T ^ (C[j] & Q[i-j]);
1511     C[i] = T;
1512   }
1513 
1514   unsigned QV = 0;
1515   for (unsigned i = 0; i < 32; ++i)
1516     if (C[i])
1517       QV |= (1 << i);
1518 
1519   return QV;
1520 }
1521 
1522 Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
1523       ParsedValues &PV) {
1524   IRBuilder<> B(&*At);
1525   Module *M = At->getParent()->getParent()->getParent();
1526   Function *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
1527 
1528   Value *P = PV.P, *Q = PV.Q, *P0 = P;
1529   unsigned IC = PV.IterCount;
1530 
1531   if (PV.M != nullptr)
1532     P0 = P = B.CreateXor(P, PV.M);
1533 
1534   // Create a bit mask to clear the high bits beyond IterCount.
1535   auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
1536 
1537   if (PV.IterCount != 32)
1538     P = B.CreateAnd(P, BMI);
1539 
1540   if (PV.Inv) {
1541     auto *QI = dyn_cast<ConstantInt>(PV.Q);
1542     assert(QI && QI->getBitWidth() <= 32);
1543 
1544     // Again, clearing bits beyond IterCount.
1545     unsigned M = (1 << PV.IterCount) - 1;
1546     unsigned Tmp = (QI->getZExtValue() | 1) & M;
1547     unsigned QV = getInverseMxN(Tmp) & M;
1548     auto *QVI = ConstantInt::get(QI->getType(), QV);
1549     P = B.CreateCall(PMF, {P, QVI});
1550     P = B.CreateTrunc(P, QI->getType());
1551     if (IC != 32)
1552       P = B.CreateAnd(P, BMI);
1553   }
1554 
1555   Value *R = B.CreateCall(PMF, {P, Q});
1556 
1557   if (PV.M != nullptr)
1558     R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
1559 
1560   return R;
1561 }
1562 
1563 static bool hasZeroSignBit(const Value *V) {
1564   if (const auto *CI = dyn_cast<const ConstantInt>(V))
1565     return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
1566   const Instruction *I = dyn_cast<const Instruction>(V);
1567   if (!I)
1568     return false;
1569   switch (I->getOpcode()) {
1570     case Instruction::LShr:
1571       if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
1572         return SI->getZExtValue() > 0;
1573       return false;
1574     case Instruction::Or:
1575     case Instruction::Xor:
1576       return hasZeroSignBit(I->getOperand(0)) &&
1577              hasZeroSignBit(I->getOperand(1));
1578     case Instruction::And:
1579       return hasZeroSignBit(I->getOperand(0)) ||
1580              hasZeroSignBit(I->getOperand(1));
1581   }
1582   return false;
1583 }
1584 
1585 void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) {
1586   S.addRule("sink-zext",
1587     // Sink zext past bitwise operations.
1588     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1589       if (I->getOpcode() != Instruction::ZExt)
1590         return nullptr;
1591       Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
1592       if (!T)
1593         return nullptr;
1594       switch (T->getOpcode()) {
1595         case Instruction::And:
1596         case Instruction::Or:
1597         case Instruction::Xor:
1598           break;
1599         default:
1600           return nullptr;
1601       }
1602       IRBuilder<> B(Ctx);
1603       return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
1604                            B.CreateZExt(T->getOperand(0), I->getType()),
1605                            B.CreateZExt(T->getOperand(1), I->getType()));
1606     });
1607   S.addRule("xor/and -> and/xor",
1608     // (xor (and x a) (and y a)) -> (and (xor x y) a)
1609     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1610       if (I->getOpcode() != Instruction::Xor)
1611         return nullptr;
1612       Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
1613       Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
1614       if (!And0 || !And1)
1615         return nullptr;
1616       if (And0->getOpcode() != Instruction::And ||
1617           And1->getOpcode() != Instruction::And)
1618         return nullptr;
1619       if (And0->getOperand(1) != And1->getOperand(1))
1620         return nullptr;
1621       IRBuilder<> B(Ctx);
1622       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
1623                          And0->getOperand(1));
1624     });
1625   S.addRule("sink binop into select",
1626     // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
1627     // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
1628     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1629       BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
1630       if (!BO)
1631         return nullptr;
1632       Instruction::BinaryOps Op = BO->getOpcode();
1633       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
1634         IRBuilder<> B(Ctx);
1635         Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
1636         Value *Z = BO->getOperand(1);
1637         return B.CreateSelect(Sel->getCondition(),
1638                               B.CreateBinOp(Op, X, Z),
1639                               B.CreateBinOp(Op, Y, Z));
1640       }
1641       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
1642         IRBuilder<> B(Ctx);
1643         Value *X = BO->getOperand(0);
1644         Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
1645         return B.CreateSelect(Sel->getCondition(),
1646                               B.CreateBinOp(Op, X, Y),
1647                               B.CreateBinOp(Op, X, Z));
1648       }
1649       return nullptr;
1650     });
1651   S.addRule("fold select-select",
1652     // (select c (select c x y) z) -> (select c x z)
1653     // (select c x (select c y z)) -> (select c x z)
1654     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1655       SelectInst *Sel = dyn_cast<SelectInst>(I);
1656       if (!Sel)
1657         return nullptr;
1658       IRBuilder<> B(Ctx);
1659       Value *C = Sel->getCondition();
1660       if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
1661         if (Sel0->getCondition() == C)
1662           return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
1663       }
1664       if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
1665         if (Sel1->getCondition() == C)
1666           return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
1667       }
1668       return nullptr;
1669     });
1670   S.addRule("or-signbit -> xor-signbit",
1671     // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
1672     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1673       if (I->getOpcode() != Instruction::Or)
1674         return nullptr;
1675       ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
1676       if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
1677         return nullptr;
1678       if (!hasZeroSignBit(I->getOperand(0)))
1679         return nullptr;
1680       return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
1681     });
1682   S.addRule("sink lshr into binop",
1683     // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
1684     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1685       if (I->getOpcode() != Instruction::LShr)
1686         return nullptr;
1687       BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
1688       if (!BitOp)
1689         return nullptr;
1690       switch (BitOp->getOpcode()) {
1691         case Instruction::And:
1692         case Instruction::Or:
1693         case Instruction::Xor:
1694           break;
1695         default:
1696           return nullptr;
1697       }
1698       IRBuilder<> B(Ctx);
1699       Value *S = I->getOperand(1);
1700       return B.CreateBinOp(BitOp->getOpcode(),
1701                 B.CreateLShr(BitOp->getOperand(0), S),
1702                 B.CreateLShr(BitOp->getOperand(1), S));
1703     });
1704   S.addRule("expose bitop-const",
1705     // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
1706     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1707       auto IsBitOp = [](unsigned Op) -> bool {
1708         switch (Op) {
1709           case Instruction::And:
1710           case Instruction::Or:
1711           case Instruction::Xor:
1712             return true;
1713         }
1714         return false;
1715       };
1716       BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
1717       if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
1718         return nullptr;
1719       BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
1720       if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
1721         return nullptr;
1722       ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
1723       ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
1724       if (!CA || !CB)
1725         return nullptr;
1726       IRBuilder<> B(Ctx);
1727       Value *X = BitOp2->getOperand(0);
1728       return B.CreateBinOp(BitOp2->getOpcode(), X,
1729                 B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
1730     });
1731 }
1732 
1733 void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) {
1734   S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a",
1735     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1736       if (I->getOpcode() != Instruction::And)
1737         return nullptr;
1738       Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0));
1739       ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1));
1740       if (!Xor || !C0)
1741         return nullptr;
1742       if (Xor->getOpcode() != Instruction::Xor)
1743         return nullptr;
1744       Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0));
1745       Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1));
1746       // Pick the first non-null and.
1747       if (!And0 || And0->getOpcode() != Instruction::And)
1748         std::swap(And0, And1);
1749       ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1));
1750       if (!C1)
1751         return nullptr;
1752       uint32_t V0 = C0->getZExtValue();
1753       uint32_t V1 = C1->getZExtValue();
1754       if (V0 != (V0 & V1))
1755         return nullptr;
1756       IRBuilder<> B(Ctx);
1757       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0);
1758     });
1759 }
1760 
1761 bool PolynomialMultiplyRecognize::recognize() {
1762   LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
1763                     << *CurLoop << '\n');
1764   // Restrictions:
1765   // - The loop must consist of a single block.
1766   // - The iteration count must be known at compile-time.
1767   // - The loop must have an induction variable starting from 0, and
1768   //   incremented in each iteration of the loop.
1769   BasicBlock *LoopB = CurLoop->getHeader();
1770   LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB);
1771 
1772   if (LoopB != CurLoop->getLoopLatch())
1773     return false;
1774   BasicBlock *ExitB = CurLoop->getExitBlock();
1775   if (ExitB == nullptr)
1776     return false;
1777   BasicBlock *EntryB = CurLoop->getLoopPreheader();
1778   if (EntryB == nullptr)
1779     return false;
1780 
1781   unsigned IterCount = 0;
1782   const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
1783   if (isa<SCEVCouldNotCompute>(CT))
1784     return false;
1785   if (auto *CV = dyn_cast<SCEVConstant>(CT))
1786     IterCount = CV->getValue()->getZExtValue() + 1;
1787 
1788   Value *CIV = getCountIV(LoopB);
1789   ParsedValues PV;
1790   Simplifier PreSimp;
1791   PV.IterCount = IterCount;
1792   LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount
1793                     << '\n');
1794 
1795   setupPreSimplifier(PreSimp);
1796 
1797   // Perform a preliminary scan of select instructions to see if any of them
1798   // looks like a generator of the polynomial multiply steps. Assume that a
1799   // loop can only contain a single transformable operation, so stop the
1800   // traversal after the first reasonable candidate was found.
1801   // XXX: Currently this approach can modify the loop before being 100% sure
1802   // that the transformation can be carried out.
1803   bool FoundPreScan = false;
1804   auto FeedsPHI = [LoopB](const Value *V) -> bool {
1805     for (const Value *U : V->users()) {
1806       if (const auto *P = dyn_cast<const PHINode>(U))
1807         if (P->getParent() == LoopB)
1808           return true;
1809     }
1810     return false;
1811   };
1812   for (Instruction &In : *LoopB) {
1813     SelectInst *SI = dyn_cast<SelectInst>(&In);
1814     if (!SI || !FeedsPHI(SI))
1815       continue;
1816 
1817     Simplifier::Context C(SI);
1818     Value *T = PreSimp.simplify(C);
1819     SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
1820     LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
1821     if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
1822       FoundPreScan = true;
1823       if (SelI != SI) {
1824         Value *NewSel = C.materialize(LoopB, SI->getIterator());
1825         SI->replaceAllUsesWith(NewSel);
1826         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1827       }
1828       break;
1829     }
1830   }
1831 
1832   if (!FoundPreScan) {
1833     LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n");
1834     return false;
1835   }
1836 
1837   if (!PV.Left) {
1838     // The right shift version actually only returns the higher bits of
1839     // the result (each iteration discards the LSB). If we want to convert it
1840     // to a left-shifting loop, the working data type must be at least as
1841     // wide as the target's pmpy instruction.
1842     if (!promoteTypes(LoopB, ExitB))
1843       return false;
1844     // Run post-promotion simplifications.
1845     Simplifier PostSimp;
1846     setupPostSimplifier(PostSimp);
1847     for (Instruction &In : *LoopB) {
1848       SelectInst *SI = dyn_cast<SelectInst>(&In);
1849       if (!SI || !FeedsPHI(SI))
1850         continue;
1851       Simplifier::Context C(SI);
1852       Value *T = PostSimp.simplify(C);
1853       SelectInst *SelI = dyn_cast_or_null<SelectInst>(T);
1854       if (SelI != SI) {
1855         Value *NewSel = C.materialize(LoopB, SI->getIterator());
1856         SI->replaceAllUsesWith(NewSel);
1857         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1858       }
1859       break;
1860     }
1861 
1862     if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
1863       return false;
1864     cleanupLoopBody(LoopB);
1865   }
1866 
1867   // Scan the loop again, find the generating select instruction.
1868   bool FoundScan = false;
1869   for (Instruction &In : *LoopB) {
1870     SelectInst *SelI = dyn_cast<SelectInst>(&In);
1871     if (!SelI)
1872       continue;
1873     LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
1874     FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
1875     if (FoundScan)
1876       break;
1877   }
1878   assert(FoundScan);
1879 
1880   LLVM_DEBUG({
1881     StringRef PP = (PV.M ? "(P+M)" : "P");
1882     if (!PV.Inv)
1883       dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
1884     else
1885       dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
1886              << PP << "\n";
1887     dbgs() << "  Res:" << *PV.Res << "\n  P:" << *PV.P << "\n";
1888     if (PV.M)
1889       dbgs() << "  M:" << *PV.M << "\n";
1890     dbgs() << "  Q:" << *PV.Q << "\n";
1891     dbgs() << "  Iteration count:" << PV.IterCount << "\n";
1892   });
1893 
1894   BasicBlock::iterator At(EntryB->getTerminator());
1895   Value *PM = generate(At, PV);
1896   if (PM == nullptr)
1897     return false;
1898 
1899   if (PM->getType() != PV.Res->getType())
1900     PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
1901 
1902   PV.Res->replaceAllUsesWith(PM);
1903   PV.Res->eraseFromParent();
1904   return true;
1905 }
1906 
1907 int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
1908   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1909     return SC->getAPInt().getSExtValue();
1910   return 0;
1911 }
1912 
1913 bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
1914   // Allow volatile stores if HexagonVolatileMemcpy is enabled.
1915   if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
1916     return false;
1917 
1918   Value *StoredVal = SI->getValueOperand();
1919   Value *StorePtr = SI->getPointerOperand();
1920 
1921   // Reject stores that are so large that they overflow an unsigned.
1922   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
1923   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
1924     return false;
1925 
1926   // See if the pointer expression is an AddRec like {base,+,1} on the current
1927   // loop, which indicates a strided store.  If we have something else, it's a
1928   // random store we can't handle.
1929   auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1930   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
1931     return false;
1932 
1933   // Check to see if the stride matches the size of the store.  If so, then we
1934   // know that every byte is touched in the loop.
1935   int Stride = getSCEVStride(StoreEv);
1936   if (Stride == 0)
1937     return false;
1938   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1939   if (StoreSize != unsigned(std::abs(Stride)))
1940     return false;
1941 
1942   // The store must be feeding a non-volatile load.
1943   LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1944   if (!LI || !LI->isSimple())
1945     return false;
1946 
1947   // See if the pointer expression is an AddRec like {base,+,1} on the current
1948   // loop, which indicates a strided load.  If we have something else, it's a
1949   // random load we can't handle.
1950   Value *LoadPtr = LI->getPointerOperand();
1951   auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1952   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
1953     return false;
1954 
1955   // The store and load must share the same stride.
1956   if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
1957     return false;
1958 
1959   // Success.  This store can be converted into a memcpy.
1960   return true;
1961 }
1962 
1963 /// mayLoopAccessLocation - Return true if the specified loop might access the
1964 /// specified pointer location, which is a loop-strided access.  The 'Access'
1965 /// argument specifies what the verboten forms of access are (read or write).
1966 static bool
1967 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1968                       const SCEV *BECount, unsigned StoreSize,
1969                       AliasAnalysis &AA,
1970                       SmallPtrSetImpl<Instruction *> &Ignored) {
1971   // Get the location that may be stored across the loop.  Since the access
1972   // is strided positively through memory, we say that the modified location
1973   // starts at the pointer and has infinite size.
1974   LocationSize AccessSize = LocationSize::unknown();
1975 
1976   // If the loop iterates a fixed number of times, we can refine the access
1977   // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
1978   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
1979     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
1980                                        StoreSize);
1981 
1982   // TODO: For this to be really effective, we have to dive into the pointer
1983   // operand in the store.  Store to &A[i] of 100 will always return may alias
1984   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1985   // which will then no-alias a store to &A[100].
1986   MemoryLocation StoreLoc(Ptr, AccessSize);
1987 
1988   for (auto *B : L->blocks())
1989     for (auto &I : *B)
1990       if (Ignored.count(&I) == 0 &&
1991           isModOrRefSet(
1992               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
1993         return true;
1994 
1995   return false;
1996 }
1997 
1998 void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
1999       SmallVectorImpl<StoreInst*> &Stores) {
2000   Stores.clear();
2001   for (Instruction &I : *BB)
2002     if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2003       if (isLegalStore(CurLoop, SI))
2004         Stores.push_back(SI);
2005 }
2006 
2007 bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
2008       StoreInst *SI, const SCEV *BECount) {
2009   assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
2010          "Expected only non-volatile stores, or Hexagon-specific memcpy"
2011          "to volatile destination.");
2012 
2013   Value *StorePtr = SI->getPointerOperand();
2014   auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
2015   unsigned Stride = getSCEVStride(StoreEv);
2016   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
2017   if (Stride != StoreSize)
2018     return false;
2019 
2020   // See if the pointer expression is an AddRec like {base,+,1} on the current
2021   // loop, which indicates a strided load.  If we have something else, it's a
2022   // random load we can't handle.
2023   auto *LI = cast<LoadInst>(SI->getValueOperand());
2024   auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
2025 
2026   // The trip count of the loop and the base pointer of the addrec SCEV is
2027   // guaranteed to be loop invariant, which means that it should dominate the
2028   // header.  This allows us to insert code for it in the preheader.
2029   BasicBlock *Preheader = CurLoop->getLoopPreheader();
2030   Instruction *ExpPt = Preheader->getTerminator();
2031   IRBuilder<> Builder(ExpPt);
2032   SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
2033 
2034   Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
2035 
2036   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
2037   // this into a memcpy/memmove in the loop preheader now if we want.  However,
2038   // this would be unsafe to do if there is anything else in the loop that may
2039   // read or write the memory region we're storing to.  For memcpy, this
2040   // includes the load that feeds the stores.  Check for an alias by generating
2041   // the base address and checking everything.
2042   Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
2043       Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
2044   Value *LoadBasePtr = nullptr;
2045 
2046   bool Overlap = false;
2047   bool DestVolatile = SI->isVolatile();
2048   Type *BECountTy = BECount->getType();
2049 
2050   if (DestVolatile) {
2051     // The trip count must fit in i32, since it is the type of the "num_words"
2052     // argument to hexagon_memcpy_forward_vp4cp4n2.
2053     if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
2054 CleanupAndExit:
2055       // If we generated new code for the base pointer, clean up.
2056       Expander.clear();
2057       if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
2058         RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
2059         StoreBasePtr = nullptr;
2060       }
2061       if (LoadBasePtr) {
2062         RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
2063         LoadBasePtr = nullptr;
2064       }
2065       return false;
2066     }
2067   }
2068 
2069   SmallPtrSet<Instruction*, 2> Ignore1;
2070   Ignore1.insert(SI);
2071   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
2072                             StoreSize, *AA, Ignore1)) {
2073     // Check if the load is the offending instruction.
2074     Ignore1.insert(LI);
2075     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
2076                               BECount, StoreSize, *AA, Ignore1)) {
2077       // Still bad. Nothing we can do.
2078       goto CleanupAndExit;
2079     }
2080     // It worked with the load ignored.
2081     Overlap = true;
2082   }
2083 
2084   if (!Overlap) {
2085     if (DisableMemcpyIdiom || !HasMemcpy)
2086       goto CleanupAndExit;
2087   } else {
2088     // Don't generate memmove if this function will be inlined. This is
2089     // because the caller will undergo this transformation after inlining.
2090     Function *Func = CurLoop->getHeader()->getParent();
2091     if (Func->hasFnAttribute(Attribute::AlwaysInline))
2092       goto CleanupAndExit;
2093 
2094     // In case of a memmove, the call to memmove will be executed instead
2095     // of the loop, so we need to make sure that there is nothing else in
2096     // the loop than the load, store and instructions that these two depend
2097     // on.
2098     SmallVector<Instruction*,2> Insts;
2099     Insts.push_back(SI);
2100     Insts.push_back(LI);
2101     if (!coverLoop(CurLoop, Insts))
2102       goto CleanupAndExit;
2103 
2104     if (DisableMemmoveIdiom || !HasMemmove)
2105       goto CleanupAndExit;
2106     bool IsNested = CurLoop->getParentLoop() != nullptr;
2107     if (IsNested && OnlyNonNestedMemmove)
2108       goto CleanupAndExit;
2109   }
2110 
2111   // For a memcpy, we have to make sure that the input array is not being
2112   // mutated by the loop.
2113   LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
2114       Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
2115 
2116   SmallPtrSet<Instruction*, 2> Ignore2;
2117   Ignore2.insert(SI);
2118   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
2119                             StoreSize, *AA, Ignore2))
2120     goto CleanupAndExit;
2121 
2122   // Check the stride.
2123   bool StridePos = getSCEVStride(LoadEv) >= 0;
2124 
2125   // Currently, the volatile memcpy only emulates traversing memory forward.
2126   if (!StridePos && DestVolatile)
2127     goto CleanupAndExit;
2128 
2129   bool RuntimeCheck = (Overlap || DestVolatile);
2130 
2131   BasicBlock *ExitB;
2132   if (RuntimeCheck) {
2133     // The runtime check needs a single exit block.
2134     SmallVector<BasicBlock*, 8> ExitBlocks;
2135     CurLoop->getUniqueExitBlocks(ExitBlocks);
2136     if (ExitBlocks.size() != 1)
2137       goto CleanupAndExit;
2138     ExitB = ExitBlocks[0];
2139   }
2140 
2141   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
2142   // pointer size if it isn't already.
2143   LLVMContext &Ctx = SI->getContext();
2144   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
2145   DebugLoc DLoc = SI->getDebugLoc();
2146 
2147   const SCEV *NumBytesS =
2148       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
2149   if (StoreSize != 1)
2150     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
2151                                SCEV::FlagNUW);
2152   Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
2153   if (Instruction *In = dyn_cast<Instruction>(NumBytes))
2154     if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2155       NumBytes = Simp;
2156 
2157   CallInst *NewCall;
2158 
2159   if (RuntimeCheck) {
2160     unsigned Threshold = RuntimeMemSizeThreshold;
2161     if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
2162       uint64_t C = CI->getZExtValue();
2163       if (Threshold != 0 && C < Threshold)
2164         goto CleanupAndExit;
2165       if (C < CompileTimeMemSizeThreshold)
2166         goto CleanupAndExit;
2167     }
2168 
2169     BasicBlock *Header = CurLoop->getHeader();
2170     Function *Func = Header->getParent();
2171     Loop *ParentL = LF->getLoopFor(Preheader);
2172     StringRef HeaderName = Header->getName();
2173 
2174     // Create a new (empty) preheader, and update the PHI nodes in the
2175     // header to use the new preheader.
2176     BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
2177                                                   Func, Header);
2178     if (ParentL)
2179       ParentL->addBasicBlockToLoop(NewPreheader, *LF);
2180     IRBuilder<>(NewPreheader).CreateBr(Header);
2181     for (auto &In : *Header) {
2182       PHINode *PN = dyn_cast<PHINode>(&In);
2183       if (!PN)
2184         break;
2185       int bx = PN->getBasicBlockIndex(Preheader);
2186       if (bx >= 0)
2187         PN->setIncomingBlock(bx, NewPreheader);
2188     }
2189     DT->addNewBlock(NewPreheader, Preheader);
2190     DT->changeImmediateDominator(Header, NewPreheader);
2191 
2192     // Check for safe conditions to execute memmove.
2193     // If stride is positive, copying things from higher to lower addresses
2194     // is equivalent to memmove.  For negative stride, it's the other way
2195     // around.  Copying forward in memory with positive stride may not be
2196     // same as memmove since we may be copying values that we just stored
2197     // in some previous iteration.
2198     Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
2199     Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
2200     Value *LowA = StridePos ? SA : LA;
2201     Value *HighA = StridePos ? LA : SA;
2202     Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
2203     Value *Cond = CmpA;
2204 
2205     // Check for distance between pointers. Since the case LowA < HighA
2206     // is checked for above, assume LowA >= HighA.
2207     Value *Dist = Builder.CreateSub(LowA, HighA);
2208     Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
2209     Value *CmpEither = Builder.CreateOr(Cond, CmpD);
2210     Cond = CmpEither;
2211 
2212     if (Threshold != 0) {
2213       Type *Ty = NumBytes->getType();
2214       Value *Thr = ConstantInt::get(Ty, Threshold);
2215       Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
2216       Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
2217       Cond = CmpBoth;
2218     }
2219     BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
2220                                               Func, NewPreheader);
2221     if (ParentL)
2222       ParentL->addBasicBlockToLoop(MemmoveB, *LF);
2223     Instruction *OldT = Preheader->getTerminator();
2224     Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
2225     OldT->eraseFromParent();
2226     Preheader->setName(Preheader->getName()+".old");
2227     DT->addNewBlock(MemmoveB, Preheader);
2228     // Find the new immediate dominator of the exit block.
2229     BasicBlock *ExitD = Preheader;
2230     for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
2231       BasicBlock *PB = *PI;
2232       ExitD = DT->findNearestCommonDominator(ExitD, PB);
2233       if (!ExitD)
2234         break;
2235     }
2236     // If the prior immediate dominator of ExitB was dominated by the
2237     // old preheader, then the old preheader becomes the new immediate
2238     // dominator.  Otherwise don't change anything (because the newly
2239     // added blocks are dominated by the old preheader).
2240     if (ExitD && DT->dominates(Preheader, ExitD)) {
2241       DomTreeNode *BN = DT->getNode(ExitB);
2242       DomTreeNode *DN = DT->getNode(ExitD);
2243       BN->setIDom(DN);
2244     }
2245 
2246     // Add a call to memmove to the conditional block.
2247     IRBuilder<> CondBuilder(MemmoveB);
2248     CondBuilder.CreateBr(ExitB);
2249     CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
2250 
2251     if (DestVolatile) {
2252       Type *Int32Ty = Type::getInt32Ty(Ctx);
2253       Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
2254       Type *VoidTy = Type::getVoidTy(Ctx);
2255       Module *M = Func->getParent();
2256       FunctionCallee Fn = M->getOrInsertFunction(
2257           HexagonVolatileMemcpyName, VoidTy, Int32PtrTy, Int32PtrTy, Int32Ty);
2258 
2259       const SCEV *OneS = SE->getConstant(Int32Ty, 1);
2260       const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
2261       const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
2262       Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
2263                                                MemmoveB->getTerminator());
2264       if (Instruction *In = dyn_cast<Instruction>(NumWords))
2265         if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2266           NumWords = Simp;
2267 
2268       Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
2269                       ? StoreBasePtr
2270                       : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
2271       Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
2272                       ? LoadBasePtr
2273                       : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
2274       NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
2275     } else {
2276       NewCall = CondBuilder.CreateMemMove(StoreBasePtr, SI->getAlignment(),
2277                                           LoadBasePtr, LI->getAlignment(),
2278                                           NumBytes);
2279     }
2280   } else {
2281     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
2282                                    LoadBasePtr, LI->getAlignment(),
2283                                    NumBytes);
2284     // Okay, the memcpy has been formed.  Zap the original store and
2285     // anything that feeds into it.
2286     RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
2287   }
2288 
2289   NewCall->setDebugLoc(DLoc);
2290 
2291   LLVM_DEBUG(dbgs() << "  Formed " << (Overlap ? "memmove: " : "memcpy: ")
2292                     << *NewCall << "\n"
2293                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
2294                     << "    from store ptr=" << *StoreEv << " at: " << *SI
2295                     << "\n");
2296 
2297   return true;
2298 }
2299 
2300 // Check if the instructions in Insts, together with their dependencies
2301 // cover the loop in the sense that the loop could be safely eliminated once
2302 // the instructions in Insts are removed.
2303 bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
2304       SmallVectorImpl<Instruction*> &Insts) const {
2305   SmallSet<BasicBlock*,8> LoopBlocks;
2306   for (auto *B : L->blocks())
2307     LoopBlocks.insert(B);
2308 
2309   SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
2310 
2311   // Collect all instructions from the loop that the instructions in Insts
2312   // depend on (plus their dependencies, etc.).  These instructions will
2313   // constitute the expression trees that feed those in Insts, but the trees
2314   // will be limited only to instructions contained in the loop.
2315   for (unsigned i = 0; i < Worklist.size(); ++i) {
2316     Instruction *In = Worklist[i];
2317     for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
2318       Instruction *OpI = dyn_cast<Instruction>(I);
2319       if (!OpI)
2320         continue;
2321       BasicBlock *PB = OpI->getParent();
2322       if (!LoopBlocks.count(PB))
2323         continue;
2324       Worklist.insert(OpI);
2325     }
2326   }
2327 
2328   // Scan all instructions in the loop, if any of them have a user outside
2329   // of the loop, or outside of the expressions collected above, then either
2330   // the loop has a side-effect visible outside of it, or there are
2331   // instructions in it that are not involved in the original set Insts.
2332   for (auto *B : L->blocks()) {
2333     for (auto &In : *B) {
2334       if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
2335         continue;
2336       if (!Worklist.count(&In) && In.mayHaveSideEffects())
2337         return false;
2338       for (const auto &K : In.users()) {
2339         Instruction *UseI = dyn_cast<Instruction>(K);
2340         if (!UseI)
2341           continue;
2342         BasicBlock *UseB = UseI->getParent();
2343         if (LF->getLoopFor(UseB) != L)
2344           return false;
2345       }
2346     }
2347   }
2348 
2349   return true;
2350 }
2351 
2352 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
2353 /// with the specified backedge count.  This block is known to be in the current
2354 /// loop and not in any subloops.
2355 bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
2356       const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
2357   // We can only promote stores in this block if they are unconditionally
2358   // executed in the loop.  For a block to be unconditionally executed, it has
2359   // to dominate all the exit blocks of the loop.  Verify this now.
2360   auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
2361     return DT->dominates(BB, EB);
2362   };
2363   if (!all_of(ExitBlocks, DominatedByBB))
2364     return false;
2365 
2366   bool MadeChange = false;
2367   // Look for store instructions, which may be optimized to memset/memcpy.
2368   SmallVector<StoreInst*,8> Stores;
2369   collectStores(CurLoop, BB, Stores);
2370 
2371   // Optimize the store into a memcpy, if it feeds an similarly strided load.
2372   for (auto &SI : Stores)
2373     MadeChange |= processCopyingStore(CurLoop, SI, BECount);
2374 
2375   return MadeChange;
2376 }
2377 
2378 bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
2379   PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
2380   if (PMR.recognize())
2381     return true;
2382 
2383   if (!HasMemcpy && !HasMemmove)
2384     return false;
2385 
2386   const SCEV *BECount = SE->getBackedgeTakenCount(L);
2387   assert(!isa<SCEVCouldNotCompute>(BECount) &&
2388          "runOnCountableLoop() called on a loop without a predictable"
2389          "backedge-taken count");
2390 
2391   SmallVector<BasicBlock *, 8> ExitBlocks;
2392   L->getUniqueExitBlocks(ExitBlocks);
2393 
2394   bool Changed = false;
2395 
2396   // Scan all the blocks in the loop that are not in subloops.
2397   for (auto *BB : L->getBlocks()) {
2398     // Ignore blocks in subloops.
2399     if (LF->getLoopFor(BB) != L)
2400       continue;
2401     Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
2402   }
2403 
2404   return Changed;
2405 }
2406 
2407 bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
2408   const Module &M = *L->getHeader()->getParent()->getParent();
2409   if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
2410     return false;
2411 
2412   if (skipLoop(L))
2413     return false;
2414 
2415   // If the loop could not be converted to canonical form, it must have an
2416   // indirectbr in it, just give up.
2417   if (!L->getLoopPreheader())
2418     return false;
2419 
2420   // Disable loop idiom recognition if the function's name is a common idiom.
2421   StringRef Name = L->getHeader()->getParent()->getName();
2422   if (Name == "memset" || Name == "memcpy" || Name == "memmove")
2423     return false;
2424 
2425   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2426   DL = &L->getHeader()->getModule()->getDataLayout();
2427   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2428   LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2429   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
2430       *L->getHeader()->getParent());
2431   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2432 
2433   HasMemcpy = TLI->has(LibFunc_memcpy);
2434   HasMemmove = TLI->has(LibFunc_memmove);
2435 
2436   if (SE->hasLoopInvariantBackedgeTakenCount(L))
2437     return runOnCountableLoop(L);
2438   return false;
2439 }
2440 
2441 Pass *llvm::createHexagonLoopIdiomPass() {
2442   return new HexagonLoopIdiomRecognize();
2443 }
2444