xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/APInt.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ScalarEvolutionExpander.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/IntrinsicsHexagon.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <array>
62 #include <cassert>
63 #include <cstdint>
64 #include <cstdlib>
65 #include <deque>
66 #include <functional>
67 #include <iterator>
68 #include <map>
69 #include <set>
70 #include <utility>
71 #include <vector>
72 
73 #define DEBUG_TYPE "hexagon-lir"
74 
75 using namespace llvm;
76 
77 static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
78   cl::Hidden, cl::init(false),
79   cl::desc("Disable generation of memcpy in loop idiom recognition"));
80 
81 static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
82   cl::Hidden, cl::init(false),
83   cl::desc("Disable generation of memmove in loop idiom recognition"));
84 
85 static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
86   cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
87   "check guarding the memmove."));
88 
89 static cl::opt<unsigned> CompileTimeMemSizeThreshold(
90   "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
91   cl::desc("Threshold (in bytes) to perform the transformation, if the "
92     "runtime loop count (mem transfer size) is known at compile-time."));
93 
94 static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
95   cl::Hidden, cl::init(true),
96   cl::desc("Only enable generating memmove in non-nested loops"));
97 
98 static cl::opt<bool> HexagonVolatileMemcpy(
99     "disable-hexagon-volatile-memcpy", cl::Hidden, cl::init(false),
100     cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
101 
102 static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
103   cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
104 
105 static const char *HexagonVolatileMemcpyName
106   = "hexagon_memcpy_forward_vp4cp4n2";
107 
108 
109 namespace llvm {
110 
111   void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
112   Pass *createHexagonLoopIdiomPass();
113 
114 } // end namespace llvm
115 
116 namespace {
117 
118   class HexagonLoopIdiomRecognize : public LoopPass {
119   public:
120     static char ID;
121 
122     explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
123       initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
124     }
125 
126     StringRef getPassName() const override {
127       return "Recognize Hexagon-specific loop idioms";
128     }
129 
130    void getAnalysisUsage(AnalysisUsage &AU) const override {
131       AU.addRequired<LoopInfoWrapperPass>();
132       AU.addRequiredID(LoopSimplifyID);
133       AU.addRequiredID(LCSSAID);
134       AU.addRequired<AAResultsWrapperPass>();
135       AU.addPreserved<AAResultsWrapperPass>();
136       AU.addRequired<ScalarEvolutionWrapperPass>();
137       AU.addRequired<DominatorTreeWrapperPass>();
138       AU.addRequired<TargetLibraryInfoWrapperPass>();
139       AU.addPreserved<TargetLibraryInfoWrapperPass>();
140     }
141 
142     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
143 
144   private:
145     int getSCEVStride(const SCEVAddRecExpr *StoreEv);
146     bool isLegalStore(Loop *CurLoop, StoreInst *SI);
147     void collectStores(Loop *CurLoop, BasicBlock *BB,
148         SmallVectorImpl<StoreInst*> &Stores);
149     bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
150     bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
151     bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
152         SmallVectorImpl<BasicBlock*> &ExitBlocks);
153     bool runOnCountableLoop(Loop *L);
154 
155     AliasAnalysis *AA;
156     const DataLayout *DL;
157     DominatorTree *DT;
158     LoopInfo *LF;
159     const TargetLibraryInfo *TLI;
160     ScalarEvolution *SE;
161     bool HasMemcpy, HasMemmove;
162   };
163 
164   struct Simplifier {
165     struct Rule {
166       using FuncType = std::function<Value* (Instruction*, LLVMContext&)>;
167       Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
168       StringRef Name;   // For debugging.
169       FuncType Fn;
170     };
171 
172     void addRule(StringRef N, const Rule::FuncType &F) {
173       Rules.push_back(Rule(N, F));
174     }
175 
176   private:
177     struct WorkListType {
178       WorkListType() = default;
179 
180       void push_back(Value* V) {
181         // Do not push back duplicates.
182         if (!S.count(V)) { Q.push_back(V); S.insert(V); }
183       }
184 
185       Value *pop_front_val() {
186         Value *V = Q.front(); Q.pop_front(); S.erase(V);
187         return V;
188       }
189 
190       bool empty() const { return Q.empty(); }
191 
192     private:
193       std::deque<Value*> Q;
194       std::set<Value*> S;
195     };
196 
197     using ValueSetType = std::set<Value *>;
198 
199     std::vector<Rule> Rules;
200 
201   public:
202     struct Context {
203       using ValueMapType = DenseMap<Value *, Value *>;
204 
205       Value *Root;
206       ValueSetType Used;    // The set of all cloned values used by Root.
207       ValueSetType Clones;  // The set of all cloned values.
208       LLVMContext &Ctx;
209 
210       Context(Instruction *Exp)
211         : Ctx(Exp->getParent()->getParent()->getContext()) {
212         initialize(Exp);
213       }
214 
215       ~Context() { cleanup(); }
216 
217       void print(raw_ostream &OS, const Value *V) const;
218       Value *materialize(BasicBlock *B, BasicBlock::iterator At);
219 
220     private:
221       friend struct Simplifier;
222 
223       void initialize(Instruction *Exp);
224       void cleanup();
225 
226       template <typename FuncT> void traverse(Value *V, FuncT F);
227       void record(Value *V);
228       void use(Value *V);
229       void unuse(Value *V);
230 
231       bool equal(const Instruction *I, const Instruction *J) const;
232       Value *find(Value *Tree, Value *Sub) const;
233       Value *subst(Value *Tree, Value *OldV, Value *NewV);
234       void replace(Value *OldV, Value *NewV);
235       void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
236     };
237 
238     Value *simplify(Context &C);
239   };
240 
241   struct PE {
242     PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
243 
244     const Simplifier::Context &C;
245     const Value *V;
246   };
247 
248   LLVM_ATTRIBUTE_USED
249   raw_ostream &operator<<(raw_ostream &OS, const PE &P) {
250     P.C.print(OS, P.V ? P.V : P.C.Root);
251     return OS;
252   }
253 
254 } // end anonymous namespace
255 
256 char HexagonLoopIdiomRecognize::ID = 0;
257 
258 INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
259     "Recognize Hexagon-specific loop idioms", false, false)
260 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
261 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
262 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
263 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
264 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
265 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
266 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
267 INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
268     "Recognize Hexagon-specific loop idioms", false, false)
269 
270 template <typename FuncT>
271 void Simplifier::Context::traverse(Value *V, FuncT F) {
272   WorkListType Q;
273   Q.push_back(V);
274 
275   while (!Q.empty()) {
276     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
277     if (!U || U->getParent())
278       continue;
279     if (!F(U))
280       continue;
281     for (Value *Op : U->operands())
282       Q.push_back(Op);
283   }
284 }
285 
286 void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
287   const auto *U = dyn_cast<const Instruction>(V);
288   if (!U) {
289     OS << V << '(' << *V << ')';
290     return;
291   }
292 
293   if (U->getParent()) {
294     OS << U << '(';
295     U->printAsOperand(OS, true);
296     OS << ')';
297     return;
298   }
299 
300   unsigned N = U->getNumOperands();
301   if (N != 0)
302     OS << U << '(';
303   OS << U->getOpcodeName();
304   for (const Value *Op : U->operands()) {
305     OS << ' ';
306     print(OS, Op);
307   }
308   if (N != 0)
309     OS << ')';
310 }
311 
312 void Simplifier::Context::initialize(Instruction *Exp) {
313   // Perform a deep clone of the expression, set Root to the root
314   // of the clone, and build a map from the cloned values to the
315   // original ones.
316   ValueMapType M;
317   BasicBlock *Block = Exp->getParent();
318   WorkListType Q;
319   Q.push_back(Exp);
320 
321   while (!Q.empty()) {
322     Value *V = Q.pop_front_val();
323     if (M.find(V) != M.end())
324       continue;
325     if (Instruction *U = dyn_cast<Instruction>(V)) {
326       if (isa<PHINode>(U) || U->getParent() != Block)
327         continue;
328       for (Value *Op : U->operands())
329         Q.push_back(Op);
330       M.insert({U, U->clone()});
331     }
332   }
333 
334   for (std::pair<Value*,Value*> P : M) {
335     Instruction *U = cast<Instruction>(P.second);
336     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
337       auto F = M.find(U->getOperand(i));
338       if (F != M.end())
339         U->setOperand(i, F->second);
340     }
341   }
342 
343   auto R = M.find(Exp);
344   assert(R != M.end());
345   Root = R->second;
346 
347   record(Root);
348   use(Root);
349 }
350 
351 void Simplifier::Context::record(Value *V) {
352   auto Record = [this](Instruction *U) -> bool {
353     Clones.insert(U);
354     return true;
355   };
356   traverse(V, Record);
357 }
358 
359 void Simplifier::Context::use(Value *V) {
360   auto Use = [this](Instruction *U) -> bool {
361     Used.insert(U);
362     return true;
363   };
364   traverse(V, Use);
365 }
366 
367 void Simplifier::Context::unuse(Value *V) {
368   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
369     return;
370 
371   auto Unuse = [this](Instruction *U) -> bool {
372     if (!U->use_empty())
373       return false;
374     Used.erase(U);
375     return true;
376   };
377   traverse(V, Unuse);
378 }
379 
380 Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
381   if (Tree == OldV)
382     return NewV;
383   if (OldV == NewV)
384     return Tree;
385 
386   WorkListType Q;
387   Q.push_back(Tree);
388   while (!Q.empty()) {
389     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
390     // If U is not an instruction, or it's not a clone, skip it.
391     if (!U || U->getParent())
392       continue;
393     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
394       Value *Op = U->getOperand(i);
395       if (Op == OldV) {
396         U->setOperand(i, NewV);
397         unuse(OldV);
398       } else {
399         Q.push_back(Op);
400       }
401     }
402   }
403   return Tree;
404 }
405 
406 void Simplifier::Context::replace(Value *OldV, Value *NewV) {
407   if (Root == OldV) {
408     Root = NewV;
409     use(Root);
410     return;
411   }
412 
413   // NewV may be a complex tree that has just been created by one of the
414   // transformation rules. We need to make sure that it is commoned with
415   // the existing Root to the maximum extent possible.
416   // Identify all subtrees of NewV (including NewV itself) that have
417   // equivalent counterparts in Root, and replace those subtrees with
418   // these counterparts.
419   WorkListType Q;
420   Q.push_back(NewV);
421   while (!Q.empty()) {
422     Value *V = Q.pop_front_val();
423     Instruction *U = dyn_cast<Instruction>(V);
424     if (!U || U->getParent())
425       continue;
426     if (Value *DupV = find(Root, V)) {
427       if (DupV != V)
428         NewV = subst(NewV, V, DupV);
429     } else {
430       for (Value *Op : U->operands())
431         Q.push_back(Op);
432     }
433   }
434 
435   // Now, simply replace OldV with NewV in Root.
436   Root = subst(Root, OldV, NewV);
437   use(Root);
438 }
439 
440 void Simplifier::Context::cleanup() {
441   for (Value *V : Clones) {
442     Instruction *U = cast<Instruction>(V);
443     if (!U->getParent())
444       U->dropAllReferences();
445   }
446 
447   for (Value *V : Clones) {
448     Instruction *U = cast<Instruction>(V);
449     if (!U->getParent())
450       U->deleteValue();
451   }
452 }
453 
454 bool Simplifier::Context::equal(const Instruction *I,
455                                 const Instruction *J) const {
456   if (I == J)
457     return true;
458   if (!I->isSameOperationAs(J))
459     return false;
460   if (isa<PHINode>(I))
461     return I->isIdenticalTo(J);
462 
463   for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
464     Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
465     if (OpI == OpJ)
466       continue;
467     auto *InI = dyn_cast<const Instruction>(OpI);
468     auto *InJ = dyn_cast<const Instruction>(OpJ);
469     if (InI && InJ) {
470       if (!equal(InI, InJ))
471         return false;
472     } else if (InI != InJ || !InI)
473       return false;
474   }
475   return true;
476 }
477 
478 Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
479   Instruction *SubI = dyn_cast<Instruction>(Sub);
480   WorkListType Q;
481   Q.push_back(Tree);
482 
483   while (!Q.empty()) {
484     Value *V = Q.pop_front_val();
485     if (V == Sub)
486       return V;
487     Instruction *U = dyn_cast<Instruction>(V);
488     if (!U || U->getParent())
489       continue;
490     if (SubI && equal(SubI, U))
491       return U;
492     assert(!isa<PHINode>(U));
493     for (Value *Op : U->operands())
494       Q.push_back(Op);
495   }
496   return nullptr;
497 }
498 
499 void Simplifier::Context::link(Instruction *I, BasicBlock *B,
500       BasicBlock::iterator At) {
501   if (I->getParent())
502     return;
503 
504   for (Value *Op : I->operands()) {
505     if (Instruction *OpI = dyn_cast<Instruction>(Op))
506       link(OpI, B, At);
507   }
508 
509   B->getInstList().insert(At, I);
510 }
511 
512 Value *Simplifier::Context::materialize(BasicBlock *B,
513       BasicBlock::iterator At) {
514   if (Instruction *RootI = dyn_cast<Instruction>(Root))
515     link(RootI, B, At);
516   return Root;
517 }
518 
519 Value *Simplifier::simplify(Context &C) {
520   WorkListType Q;
521   Q.push_back(C.Root);
522   unsigned Count = 0;
523   const unsigned Limit = SimplifyLimit;
524 
525   while (!Q.empty()) {
526     if (Count++ >= Limit)
527       break;
528     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
529     if (!U || U->getParent() || !C.Used.count(U))
530       continue;
531     bool Changed = false;
532     for (Rule &R : Rules) {
533       Value *W = R.Fn(U, C.Ctx);
534       if (!W)
535         continue;
536       Changed = true;
537       C.record(W);
538       C.replace(U, W);
539       Q.push_back(C.Root);
540       break;
541     }
542     if (!Changed) {
543       for (Value *Op : U->operands())
544         Q.push_back(Op);
545     }
546   }
547   return Count < Limit ? C.Root : nullptr;
548 }
549 
550 //===----------------------------------------------------------------------===//
551 //
552 //          Implementation of PolynomialMultiplyRecognize
553 //
554 //===----------------------------------------------------------------------===//
555 
556 namespace {
557 
558   class PolynomialMultiplyRecognize {
559   public:
560     explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
561         const DominatorTree &dt, const TargetLibraryInfo &tli,
562         ScalarEvolution &se)
563       : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
564 
565     bool recognize();
566 
567   private:
568     using ValueSeq = SetVector<Value *>;
569 
570     IntegerType *getPmpyType() const {
571       LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
572       return IntegerType::get(Ctx, 32);
573     }
574 
575     bool isPromotableTo(Value *V, IntegerType *Ty);
576     void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
577     bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
578 
579     Value *getCountIV(BasicBlock *BB);
580     bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
581     void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
582           ValueSeq &Late);
583     bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
584     bool commutesWithShift(Instruction *I);
585     bool highBitsAreZero(Value *V, unsigned IterCount);
586     bool keepsHighBitsZero(Value *V, unsigned IterCount);
587     bool isOperandShifted(Instruction *I, Value *Op);
588     bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
589           unsigned IterCount);
590     void cleanupLoopBody(BasicBlock *LoopB);
591 
592     struct ParsedValues {
593       ParsedValues() = default;
594 
595       Value *M = nullptr;
596       Value *P = nullptr;
597       Value *Q = nullptr;
598       Value *R = nullptr;
599       Value *X = nullptr;
600       Instruction *Res = nullptr;
601       unsigned IterCount = 0;
602       bool Left = false;
603       bool Inv = false;
604     };
605 
606     bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
607     bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
608     bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
609           Value *CIV, ParsedValues &PV, bool PreScan);
610     unsigned getInverseMxN(unsigned QP);
611     Value *generate(BasicBlock::iterator At, ParsedValues &PV);
612 
613     void setupPreSimplifier(Simplifier &S);
614     void setupPostSimplifier(Simplifier &S);
615 
616     Loop *CurLoop;
617     const DataLayout &DL;
618     const DominatorTree &DT;
619     const TargetLibraryInfo &TLI;
620     ScalarEvolution &SE;
621   };
622 
623 } // end anonymous namespace
624 
625 Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
626   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
627   if (std::distance(PI, PE) != 2)
628     return nullptr;
629   BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
630 
631   for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
632     auto *PN = cast<PHINode>(I);
633     Value *InitV = PN->getIncomingValueForBlock(PB);
634     if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
635       continue;
636     Value *IterV = PN->getIncomingValueForBlock(BB);
637     auto *BO = dyn_cast<BinaryOperator>(IterV);
638     if (!BO)
639       continue;
640     if (BO->getOpcode() != Instruction::Add)
641       continue;
642     Value *IncV = nullptr;
643     if (BO->getOperand(0) == PN)
644       IncV = BO->getOperand(1);
645     else if (BO->getOperand(1) == PN)
646       IncV = BO->getOperand(0);
647     if (IncV == nullptr)
648       continue;
649 
650     if (auto *T = dyn_cast<ConstantInt>(IncV))
651       if (T->getZExtValue() == 1)
652         return PN;
653   }
654   return nullptr;
655 }
656 
657 static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
658   for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
659     Use &TheUse = UI.getUse();
660     ++UI;
661     if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
662       if (BB == II->getParent())
663         II->replaceUsesOfWith(I, J);
664   }
665 }
666 
667 bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
668       Value *CIV, ParsedValues &PV) {
669   // Match the following:
670   //   select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
671   //   select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
672   // The condition may also check for equality with the masked value, i.e
673   //   select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
674   //   select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
675 
676   Value *CondV = SelI->getCondition();
677   Value *TrueV = SelI->getTrueValue();
678   Value *FalseV = SelI->getFalseValue();
679 
680   using namespace PatternMatch;
681 
682   CmpInst::Predicate P;
683   Value *A = nullptr, *B = nullptr, *C = nullptr;
684 
685   if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
686       !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
687     return false;
688   if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
689     return false;
690   // Matched: select (A & B) == C ? ... : ...
691   //          select (A & B) != C ? ... : ...
692 
693   Value *X = nullptr, *Sh1 = nullptr;
694   // Check (A & B) for (X & (1 << i)):
695   if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
696     Sh1 = A;
697     X = B;
698   } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
699     Sh1 = B;
700     X = A;
701   } else {
702     // TODO: Could also check for an induction variable containing single
703     // bit shifted left by 1 in each iteration.
704     return false;
705   }
706 
707   bool TrueIfZero;
708 
709   // Check C against the possible values for comparison: 0 and (1 << i):
710   if (match(C, m_Zero()))
711     TrueIfZero = (P == CmpInst::ICMP_EQ);
712   else if (C == Sh1)
713     TrueIfZero = (P == CmpInst::ICMP_NE);
714   else
715     return false;
716 
717   // So far, matched:
718   //   select (X & (1 << i)) ? ... : ...
719   // including variations of the check against zero/non-zero value.
720 
721   Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
722   if (TrueIfZero) {
723     ShouldSameV = TrueV;
724     ShouldXoredV = FalseV;
725   } else {
726     ShouldSameV = FalseV;
727     ShouldXoredV = TrueV;
728   }
729 
730   Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
731   Value *T = nullptr;
732   if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
733     // Matched: select +++ ? ... : Y ^ Z
734     //          select +++ ? Y ^ Z : ...
735     // where +++ denotes previously checked matches.
736     if (ShouldSameV == Y)
737       T = Z;
738     else if (ShouldSameV == Z)
739       T = Y;
740     else
741       return false;
742     R = ShouldSameV;
743     // Matched: select +++ ? R : R ^ T
744     //          select +++ ? R ^ T : R
745     // depending on TrueIfZero.
746 
747   } else if (match(ShouldSameV, m_Zero())) {
748     // Matched: select +++ ? 0 : ...
749     //          select +++ ? ... : 0
750     if (!SelI->hasOneUse())
751       return false;
752     T = ShouldXoredV;
753     // Matched: select +++ ? 0 : T
754     //          select +++ ? T : 0
755 
756     Value *U = *SelI->user_begin();
757     if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
758         !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
759       return false;
760     // Matched: xor (select +++ ? 0 : T), R
761     //          xor (select +++ ? T : 0), R
762   } else
763     return false;
764 
765   // The xor input value T is isolated into its own match so that it could
766   // be checked against an induction variable containing a shifted bit
767   // (todo).
768   // For now, check against (Q << i).
769   if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
770       !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
771     return false;
772   // Matched: select +++ ? R : R ^ (Q << i)
773   //          select +++ ? R ^ (Q << i) : R
774 
775   PV.X = X;
776   PV.Q = Q;
777   PV.R = R;
778   PV.Left = true;
779   return true;
780 }
781 
782 bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
783       ParsedValues &PV) {
784   // Match the following:
785   //   select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
786   //   select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
787   // The condition may also check for equality with the masked value, i.e
788   //   select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
789   //   select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
790 
791   Value *CondV = SelI->getCondition();
792   Value *TrueV = SelI->getTrueValue();
793   Value *FalseV = SelI->getFalseValue();
794 
795   using namespace PatternMatch;
796 
797   Value *C = nullptr;
798   CmpInst::Predicate P;
799   bool TrueIfZero;
800 
801   if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
802       match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
803     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
804       return false;
805     // Matched: select C == 0 ? ... : ...
806     //          select C != 0 ? ... : ...
807     TrueIfZero = (P == CmpInst::ICMP_EQ);
808   } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
809              match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
810     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
811       return false;
812     // Matched: select C == 1 ? ... : ...
813     //          select C != 1 ? ... : ...
814     TrueIfZero = (P == CmpInst::ICMP_NE);
815   } else
816     return false;
817 
818   Value *X = nullptr;
819   if (!match(C, m_And(m_Value(X), m_One())) &&
820       !match(C, m_And(m_One(), m_Value(X))))
821     return false;
822   // Matched: select (X & 1) == +++ ? ... : ...
823   //          select (X & 1) != +++ ? ... : ...
824 
825   Value *R = nullptr, *Q = nullptr;
826   if (TrueIfZero) {
827     // The select's condition is true if the tested bit is 0.
828     // TrueV must be the shift, FalseV must be the xor.
829     if (!match(TrueV, m_LShr(m_Value(R), m_One())))
830       return false;
831     // Matched: select +++ ? (R >> 1) : ...
832     if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
833         !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
834       return false;
835     // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
836     // with commuting ^.
837   } else {
838     // The select's condition is true if the tested bit is 1.
839     // TrueV must be the xor, FalseV must be the shift.
840     if (!match(FalseV, m_LShr(m_Value(R), m_One())))
841       return false;
842     // Matched: select +++ ? ... : (R >> 1)
843     if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
844         !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
845       return false;
846     // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
847     // with commuting ^.
848   }
849 
850   PV.X = X;
851   PV.Q = Q;
852   PV.R = R;
853   PV.Left = false;
854   return true;
855 }
856 
857 bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
858       BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
859       bool PreScan) {
860   using namespace PatternMatch;
861 
862   // The basic pattern for R = P.Q is:
863   // for i = 0..31
864   //   R = phi (0, R')
865   //   if (P & (1 << i))        ; test-bit(P, i)
866   //     R' = R ^ (Q << i)
867   //
868   // Similarly, the basic pattern for R = (P/Q).Q - P
869   // for i = 0..31
870   //   R = phi(P, R')
871   //   if (R & (1 << i))
872   //     R' = R ^ (Q << i)
873 
874   // There exist idioms, where instead of Q being shifted left, P is shifted
875   // right. This produces a result that is shifted right by 32 bits (the
876   // non-shifted result is 64-bit).
877   //
878   // For R = P.Q, this would be:
879   // for i = 0..31
880   //   R = phi (0, R')
881   //   if ((P >> i) & 1)
882   //     R' = (R >> 1) ^ Q      ; R is cycled through the loop, so it must
883   //   else                     ; be shifted by 1, not i.
884   //     R' = R >> 1
885   //
886   // And for the inverse:
887   // for i = 0..31
888   //   R = phi (P, R')
889   //   if (R & 1)
890   //     R' = (R >> 1) ^ Q
891   //   else
892   //     R' = R >> 1
893 
894   // The left-shifting idioms share the same pattern:
895   //   select (X & (1 << i)) ? R ^ (Q << i) : R
896   // Similarly for right-shifting idioms:
897   //   select (X & 1) ? (R >> 1) ^ Q
898 
899   if (matchLeftShift(SelI, CIV, PV)) {
900     // If this is a pre-scan, getting this far is sufficient.
901     if (PreScan)
902       return true;
903 
904     // Need to make sure that the SelI goes back into R.
905     auto *RPhi = dyn_cast<PHINode>(PV.R);
906     if (!RPhi)
907       return false;
908     if (SelI != RPhi->getIncomingValueForBlock(LoopB))
909       return false;
910     PV.Res = SelI;
911 
912     // If X is loop invariant, it must be the input polynomial, and the
913     // idiom is the basic polynomial multiply.
914     if (CurLoop->isLoopInvariant(PV.X)) {
915       PV.P = PV.X;
916       PV.Inv = false;
917     } else {
918       // X is not loop invariant. If X == R, this is the inverse pmpy.
919       // Otherwise, check for an xor with an invariant value. If the
920       // variable argument to the xor is R, then this is still a valid
921       // inverse pmpy.
922       PV.Inv = true;
923       if (PV.X != PV.R) {
924         Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
925         if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
926           return false;
927         auto *I1 = dyn_cast<Instruction>(X1);
928         auto *I2 = dyn_cast<Instruction>(X2);
929         if (!I1 || I1->getParent() != LoopB) {
930           Var = X2;
931           Inv = X1;
932         } else if (!I2 || I2->getParent() != LoopB) {
933           Var = X1;
934           Inv = X2;
935         } else
936           return false;
937         if (Var != PV.R)
938           return false;
939         PV.M = Inv;
940       }
941       // The input polynomial P still needs to be determined. It will be
942       // the entry value of R.
943       Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
944       PV.P = EntryP;
945     }
946 
947     return true;
948   }
949 
950   if (matchRightShift(SelI, PV)) {
951     // If this is an inverse pattern, the Q polynomial must be known at
952     // compile time.
953     if (PV.Inv && !isa<ConstantInt>(PV.Q))
954       return false;
955     if (PreScan)
956       return true;
957     // There is no exact matching of right-shift pmpy.
958     return false;
959   }
960 
961   return false;
962 }
963 
964 bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
965       IntegerType *DestTy) {
966   IntegerType *T = dyn_cast<IntegerType>(Val->getType());
967   if (!T || T->getBitWidth() > DestTy->getBitWidth())
968     return false;
969   if (T->getBitWidth() == DestTy->getBitWidth())
970     return true;
971   // Non-instructions are promotable. The reason why an instruction may not
972   // be promotable is that it may produce a different result if its operands
973   // and the result are promoted, for example, it may produce more non-zero
974   // bits. While it would still be possible to represent the proper result
975   // in a wider type, it may require adding additional instructions (which
976   // we don't want to do).
977   Instruction *In = dyn_cast<Instruction>(Val);
978   if (!In)
979     return true;
980   // The bitwidth of the source type is smaller than the destination.
981   // Check if the individual operation can be promoted.
982   switch (In->getOpcode()) {
983     case Instruction::PHI:
984     case Instruction::ZExt:
985     case Instruction::And:
986     case Instruction::Or:
987     case Instruction::Xor:
988     case Instruction::LShr: // Shift right is ok.
989     case Instruction::Select:
990     case Instruction::Trunc:
991       return true;
992     case Instruction::ICmp:
993       if (CmpInst *CI = cast<CmpInst>(In))
994         return CI->isEquality() || CI->isUnsigned();
995       llvm_unreachable("Cast failed unexpectedly");
996     case Instruction::Add:
997       return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
998   }
999   return false;
1000 }
1001 
1002 void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
1003       IntegerType *DestTy, BasicBlock *LoopB) {
1004   Type *OrigTy = In->getType();
1005   assert(!OrigTy->isVoidTy() && "Invalid instruction to promote");
1006 
1007   // Leave boolean values alone.
1008   if (!In->getType()->isIntegerTy(1))
1009     In->mutateType(DestTy);
1010   unsigned DestBW = DestTy->getBitWidth();
1011 
1012   // Handle PHIs.
1013   if (PHINode *P = dyn_cast<PHINode>(In)) {
1014     unsigned N = P->getNumIncomingValues();
1015     for (unsigned i = 0; i != N; ++i) {
1016       BasicBlock *InB = P->getIncomingBlock(i);
1017       if (InB == LoopB)
1018         continue;
1019       Value *InV = P->getIncomingValue(i);
1020       IntegerType *Ty = cast<IntegerType>(InV->getType());
1021       // Do not promote values in PHI nodes of type i1.
1022       if (Ty != P->getType()) {
1023         // If the value type does not match the PHI type, the PHI type
1024         // must have been promoted.
1025         assert(Ty->getBitWidth() < DestBW);
1026         InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
1027         P->setIncomingValue(i, InV);
1028       }
1029     }
1030   } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
1031     Value *Op = Z->getOperand(0);
1032     if (Op->getType() == Z->getType())
1033       Z->replaceAllUsesWith(Op);
1034     Z->eraseFromParent();
1035     return;
1036   }
1037   if (TruncInst *T = dyn_cast<TruncInst>(In)) {
1038     IntegerType *TruncTy = cast<IntegerType>(OrigTy);
1039     Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1);
1040     Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask);
1041     T->replaceAllUsesWith(And);
1042     T->eraseFromParent();
1043     return;
1044   }
1045 
1046   // Promote immediates.
1047   for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
1048     if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
1049       if (CI->getType()->getBitWidth() < DestBW)
1050         In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
1051   }
1052 }
1053 
1054 bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
1055       BasicBlock *ExitB) {
1056   assert(LoopB);
1057   // Skip loops where the exit block has more than one predecessor. The values
1058   // coming from the loop block will be promoted to another type, and so the
1059   // values coming into the exit block from other predecessors would also have
1060   // to be promoted.
1061   if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
1062     return false;
1063   IntegerType *DestTy = getPmpyType();
1064   // Check if the exit values have types that are no wider than the type
1065   // that we want to promote to.
1066   unsigned DestBW = DestTy->getBitWidth();
1067   for (PHINode &P : ExitB->phis()) {
1068     if (P.getNumIncomingValues() != 1)
1069       return false;
1070     assert(P.getIncomingBlock(0) == LoopB);
1071     IntegerType *T = dyn_cast<IntegerType>(P.getType());
1072     if (!T || T->getBitWidth() > DestBW)
1073       return false;
1074   }
1075 
1076   // Check all instructions in the loop.
1077   for (Instruction &In : *LoopB)
1078     if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
1079       return false;
1080 
1081   // Perform the promotion.
1082   std::vector<Instruction*> LoopIns;
1083   std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
1084                  [](Instruction &In) { return &In; });
1085   for (Instruction *In : LoopIns)
1086     if (!In->isTerminator())
1087       promoteTo(In, DestTy, LoopB);
1088 
1089   // Fix up the PHI nodes in the exit block.
1090   Instruction *EndI = ExitB->getFirstNonPHI();
1091   BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
1092   for (auto I = ExitB->begin(); I != End; ++I) {
1093     PHINode *P = dyn_cast<PHINode>(I);
1094     if (!P)
1095       break;
1096     Type *Ty0 = P->getIncomingValue(0)->getType();
1097     Type *PTy = P->getType();
1098     if (PTy != Ty0) {
1099       assert(Ty0 == DestTy);
1100       // In order to create the trunc, P must have the promoted type.
1101       P->mutateType(Ty0);
1102       Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
1103       // In order for the RAUW to work, the types of P and T must match.
1104       P->mutateType(PTy);
1105       P->replaceAllUsesWith(T);
1106       // Final update of the P's type.
1107       P->mutateType(Ty0);
1108       cast<Instruction>(T)->setOperand(0, P);
1109     }
1110   }
1111 
1112   return true;
1113 }
1114 
1115 bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
1116       ValueSeq &Cycle) {
1117   // Out = ..., In, ...
1118   if (Out == In)
1119     return true;
1120 
1121   auto *BB = cast<Instruction>(Out)->getParent();
1122   bool HadPhi = false;
1123 
1124   for (auto U : Out->users()) {
1125     auto *I = dyn_cast<Instruction>(&*U);
1126     if (I == nullptr || I->getParent() != BB)
1127       continue;
1128     // Make sure that there are no multi-iteration cycles, e.g.
1129     //   p1 = phi(p2)
1130     //   p2 = phi(p1)
1131     // The cycle p1->p2->p1 would span two loop iterations.
1132     // Check that there is only one phi in the cycle.
1133     bool IsPhi = isa<PHINode>(I);
1134     if (IsPhi && HadPhi)
1135       return false;
1136     HadPhi |= IsPhi;
1137     if (Cycle.count(I))
1138       return false;
1139     Cycle.insert(I);
1140     if (findCycle(I, In, Cycle))
1141       break;
1142     Cycle.remove(I);
1143   }
1144   return !Cycle.empty();
1145 }
1146 
1147 void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
1148       ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
1149   // All the values in the cycle that are between the phi node and the
1150   // divider instruction will be classified as "early", all other values
1151   // will be "late".
1152 
1153   bool IsE = true;
1154   unsigned I, N = Cycle.size();
1155   for (I = 0; I < N; ++I) {
1156     Value *V = Cycle[I];
1157     if (DivI == V)
1158       IsE = false;
1159     else if (!isa<PHINode>(V))
1160       continue;
1161     // Stop if found either.
1162     break;
1163   }
1164   // "I" is the index of either DivI or the phi node, whichever was first.
1165   // "E" is "false" or "true" respectively.
1166   ValueSeq &First = !IsE ? Early : Late;
1167   for (unsigned J = 0; J < I; ++J)
1168     First.insert(Cycle[J]);
1169 
1170   ValueSeq &Second = IsE ? Early : Late;
1171   Second.insert(Cycle[I]);
1172   for (++I; I < N; ++I) {
1173     Value *V = Cycle[I];
1174     if (DivI == V || isa<PHINode>(V))
1175       break;
1176     Second.insert(V);
1177   }
1178 
1179   for (; I < N; ++I)
1180     First.insert(Cycle[I]);
1181 }
1182 
1183 bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
1184       ValueSeq &Early, ValueSeq &Late) {
1185   // Select is an exception, since the condition value does not have to be
1186   // classified in the same way as the true/false values. The true/false
1187   // values do have to be both early or both late.
1188   if (UseI->getOpcode() == Instruction::Select) {
1189     Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
1190     if (Early.count(TV) || Early.count(FV)) {
1191       if (Late.count(TV) || Late.count(FV))
1192         return false;
1193       Early.insert(UseI);
1194     } else if (Late.count(TV) || Late.count(FV)) {
1195       if (Early.count(TV) || Early.count(FV))
1196         return false;
1197       Late.insert(UseI);
1198     }
1199     return true;
1200   }
1201 
1202   // Not sure what would be the example of this, but the code below relies
1203   // on having at least one operand.
1204   if (UseI->getNumOperands() == 0)
1205     return true;
1206 
1207   bool AE = true, AL = true;
1208   for (auto &I : UseI->operands()) {
1209     if (Early.count(&*I))
1210       AL = false;
1211     else if (Late.count(&*I))
1212       AE = false;
1213   }
1214   // If the operands appear "all early" and "all late" at the same time,
1215   // then it means that none of them are actually classified as either.
1216   // This is harmless.
1217   if (AE && AL)
1218     return true;
1219   // Conversely, if they are neither "all early" nor "all late", then
1220   // we have a mixture of early and late operands that is not a known
1221   // exception.
1222   if (!AE && !AL)
1223     return false;
1224 
1225   // Check that we have covered the two special cases.
1226   assert(AE != AL);
1227 
1228   if (AE)
1229     Early.insert(UseI);
1230   else
1231     Late.insert(UseI);
1232   return true;
1233 }
1234 
1235 bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
1236   switch (I->getOpcode()) {
1237     case Instruction::And:
1238     case Instruction::Or:
1239     case Instruction::Xor:
1240     case Instruction::LShr:
1241     case Instruction::Shl:
1242     case Instruction::Select:
1243     case Instruction::ICmp:
1244     case Instruction::PHI:
1245       break;
1246     default:
1247       return false;
1248   }
1249   return true;
1250 }
1251 
1252 bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
1253       unsigned IterCount) {
1254   auto *T = dyn_cast<IntegerType>(V->getType());
1255   if (!T)
1256     return false;
1257 
1258   KnownBits Known(T->getBitWidth());
1259   computeKnownBits(V, Known, DL);
1260   return Known.countMinLeadingZeros() >= IterCount;
1261 }
1262 
1263 bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
1264       unsigned IterCount) {
1265   // Assume that all inputs to the value have the high bits zero.
1266   // Check if the value itself preserves the zeros in the high bits.
1267   if (auto *C = dyn_cast<ConstantInt>(V))
1268     return C->getValue().countLeadingZeros() >= IterCount;
1269 
1270   if (auto *I = dyn_cast<Instruction>(V)) {
1271     switch (I->getOpcode()) {
1272       case Instruction::And:
1273       case Instruction::Or:
1274       case Instruction::Xor:
1275       case Instruction::LShr:
1276       case Instruction::Select:
1277       case Instruction::ICmp:
1278       case Instruction::PHI:
1279       case Instruction::ZExt:
1280         return true;
1281     }
1282   }
1283 
1284   return false;
1285 }
1286 
1287 bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
1288   unsigned Opc = I->getOpcode();
1289   if (Opc == Instruction::Shl || Opc == Instruction::LShr)
1290     return Op != I->getOperand(1);
1291   return true;
1292 }
1293 
1294 bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
1295       BasicBlock *ExitB, unsigned IterCount) {
1296   Value *CIV = getCountIV(LoopB);
1297   if (CIV == nullptr)
1298     return false;
1299   auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
1300   if (CIVTy == nullptr)
1301     return false;
1302 
1303   ValueSeq RShifts;
1304   ValueSeq Early, Late, Cycled;
1305 
1306   // Find all value cycles that contain logical right shifts by 1.
1307   for (Instruction &I : *LoopB) {
1308     using namespace PatternMatch;
1309 
1310     Value *V = nullptr;
1311     if (!match(&I, m_LShr(m_Value(V), m_One())))
1312       continue;
1313     ValueSeq C;
1314     if (!findCycle(&I, V, C))
1315       continue;
1316 
1317     // Found a cycle.
1318     C.insert(&I);
1319     classifyCycle(&I, C, Early, Late);
1320     Cycled.insert(C.begin(), C.end());
1321     RShifts.insert(&I);
1322   }
1323 
1324   // Find the set of all values affected by the shift cycles, i.e. all
1325   // cycled values, and (recursively) all their users.
1326   ValueSeq Users(Cycled.begin(), Cycled.end());
1327   for (unsigned i = 0; i < Users.size(); ++i) {
1328     Value *V = Users[i];
1329     if (!isa<IntegerType>(V->getType()))
1330       return false;
1331     auto *R = cast<Instruction>(V);
1332     // If the instruction does not commute with shifts, the loop cannot
1333     // be unshifted.
1334     if (!commutesWithShift(R))
1335       return false;
1336     for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
1337       auto *T = cast<Instruction>(*I);
1338       // Skip users from outside of the loop. They will be handled later.
1339       // Also, skip the right-shifts and phi nodes, since they mix early
1340       // and late values.
1341       if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
1342         continue;
1343 
1344       Users.insert(T);
1345       if (!classifyInst(T, Early, Late))
1346         return false;
1347     }
1348   }
1349 
1350   if (Users.empty())
1351     return false;
1352 
1353   // Verify that high bits remain zero.
1354   ValueSeq Internal(Users.begin(), Users.end());
1355   ValueSeq Inputs;
1356   for (unsigned i = 0; i < Internal.size(); ++i) {
1357     auto *R = dyn_cast<Instruction>(Internal[i]);
1358     if (!R)
1359       continue;
1360     for (Value *Op : R->operands()) {
1361       auto *T = dyn_cast<Instruction>(Op);
1362       if (T && T->getParent() != LoopB)
1363         Inputs.insert(Op);
1364       else
1365         Internal.insert(Op);
1366     }
1367   }
1368   for (Value *V : Inputs)
1369     if (!highBitsAreZero(V, IterCount))
1370       return false;
1371   for (Value *V : Internal)
1372     if (!keepsHighBitsZero(V, IterCount))
1373       return false;
1374 
1375   // Finally, the work can be done. Unshift each user.
1376   IRBuilder<> IRB(LoopB);
1377   std::map<Value*,Value*> ShiftMap;
1378 
1379   using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
1380 
1381   CastMapType CastMap;
1382 
1383   auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
1384         IntegerType *Ty) -> Value* {
1385     auto H = CM.find(std::make_pair(V, Ty));
1386     if (H != CM.end())
1387       return H->second;
1388     Value *CV = IRB.CreateIntCast(V, Ty, false);
1389     CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
1390     return CV;
1391   };
1392 
1393   for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
1394     using namespace PatternMatch;
1395 
1396     if (isa<PHINode>(I) || !Users.count(&*I))
1397       continue;
1398 
1399     // Match lshr x, 1.
1400     Value *V = nullptr;
1401     if (match(&*I, m_LShr(m_Value(V), m_One()))) {
1402       replaceAllUsesOfWithIn(&*I, V, LoopB);
1403       continue;
1404     }
1405     // For each non-cycled operand, replace it with the corresponding
1406     // value shifted left.
1407     for (auto &J : I->operands()) {
1408       Value *Op = J.get();
1409       if (!isOperandShifted(&*I, Op))
1410         continue;
1411       if (Users.count(Op))
1412         continue;
1413       // Skip shifting zeros.
1414       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
1415         continue;
1416       // Check if we have already generated a shift for this value.
1417       auto F = ShiftMap.find(Op);
1418       Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
1419       if (W == nullptr) {
1420         IRB.SetInsertPoint(&*I);
1421         // First, the shift amount will be CIV or CIV+1, depending on
1422         // whether the value is early or late. Instead of creating CIV+1,
1423         // do a single shift of the value.
1424         Value *ShAmt = CIV, *ShVal = Op;
1425         auto *VTy = cast<IntegerType>(ShVal->getType());
1426         auto *ATy = cast<IntegerType>(ShAmt->getType());
1427         if (Late.count(&*I))
1428           ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
1429         // Second, the types of the shifted value and the shift amount
1430         // must match.
1431         if (VTy != ATy) {
1432           if (VTy->getBitWidth() < ATy->getBitWidth())
1433             ShVal = upcast(CastMap, IRB, ShVal, ATy);
1434           else
1435             ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
1436         }
1437         // Ready to generate the shift and memoize it.
1438         W = IRB.CreateShl(ShVal, ShAmt);
1439         ShiftMap.insert(std::make_pair(Op, W));
1440       }
1441       I->replaceUsesOfWith(Op, W);
1442     }
1443   }
1444 
1445   // Update the users outside of the loop to account for having left
1446   // shifts. They would normally be shifted right in the loop, so shift
1447   // them right after the loop exit.
1448   // Take advantage of the loop-closed SSA form, which has all the post-
1449   // loop values in phi nodes.
1450   IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
1451   for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
1452     if (!isa<PHINode>(P))
1453       break;
1454     auto *PN = cast<PHINode>(P);
1455     Value *U = PN->getIncomingValueForBlock(LoopB);
1456     if (!Users.count(U))
1457       continue;
1458     Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
1459     PN->replaceAllUsesWith(S);
1460     // The above RAUW will create
1461     //   S = lshr S, IterCount
1462     // so we need to fix it back into
1463     //   S = lshr PN, IterCount
1464     cast<User>(S)->replaceUsesOfWith(S, PN);
1465   }
1466 
1467   return true;
1468 }
1469 
1470 void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
1471   for (auto &I : *LoopB)
1472     if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
1473       I.replaceAllUsesWith(SV);
1474 
1475   for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
1476     N = std::next(I);
1477     RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
1478   }
1479 }
1480 
1481 unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
1482   // Arrays of coefficients of Q and the inverse, C.
1483   // Q[i] = coefficient at x^i.
1484   std::array<char,32> Q, C;
1485 
1486   for (unsigned i = 0; i < 32; ++i) {
1487     Q[i] = QP & 1;
1488     QP >>= 1;
1489   }
1490   assert(Q[0] == 1);
1491 
1492   // Find C, such that
1493   // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
1494   //
1495   // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
1496   // operations * and + are & and ^ respectively.
1497   //
1498   // Find C[i] recursively, by comparing i-th coefficient in the product
1499   // with 0 (or 1 for i=0).
1500   //
1501   // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
1502   C[0] = 1;
1503   for (unsigned i = 1; i < 32; ++i) {
1504     // Solve for C[i] in:
1505     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
1506     // This is equivalent to
1507     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
1508     // which is
1509     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
1510     unsigned T = 0;
1511     for (unsigned j = 0; j < i; ++j)
1512       T = T ^ (C[j] & Q[i-j]);
1513     C[i] = T;
1514   }
1515 
1516   unsigned QV = 0;
1517   for (unsigned i = 0; i < 32; ++i)
1518     if (C[i])
1519       QV |= (1 << i);
1520 
1521   return QV;
1522 }
1523 
1524 Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
1525       ParsedValues &PV) {
1526   IRBuilder<> B(&*At);
1527   Module *M = At->getParent()->getParent()->getParent();
1528   Function *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
1529 
1530   Value *P = PV.P, *Q = PV.Q, *P0 = P;
1531   unsigned IC = PV.IterCount;
1532 
1533   if (PV.M != nullptr)
1534     P0 = P = B.CreateXor(P, PV.M);
1535 
1536   // Create a bit mask to clear the high bits beyond IterCount.
1537   auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
1538 
1539   if (PV.IterCount != 32)
1540     P = B.CreateAnd(P, BMI);
1541 
1542   if (PV.Inv) {
1543     auto *QI = dyn_cast<ConstantInt>(PV.Q);
1544     assert(QI && QI->getBitWidth() <= 32);
1545 
1546     // Again, clearing bits beyond IterCount.
1547     unsigned M = (1 << PV.IterCount) - 1;
1548     unsigned Tmp = (QI->getZExtValue() | 1) & M;
1549     unsigned QV = getInverseMxN(Tmp) & M;
1550     auto *QVI = ConstantInt::get(QI->getType(), QV);
1551     P = B.CreateCall(PMF, {P, QVI});
1552     P = B.CreateTrunc(P, QI->getType());
1553     if (IC != 32)
1554       P = B.CreateAnd(P, BMI);
1555   }
1556 
1557   Value *R = B.CreateCall(PMF, {P, Q});
1558 
1559   if (PV.M != nullptr)
1560     R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
1561 
1562   return R;
1563 }
1564 
1565 static bool hasZeroSignBit(const Value *V) {
1566   if (const auto *CI = dyn_cast<const ConstantInt>(V))
1567     return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
1568   const Instruction *I = dyn_cast<const Instruction>(V);
1569   if (!I)
1570     return false;
1571   switch (I->getOpcode()) {
1572     case Instruction::LShr:
1573       if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
1574         return SI->getZExtValue() > 0;
1575       return false;
1576     case Instruction::Or:
1577     case Instruction::Xor:
1578       return hasZeroSignBit(I->getOperand(0)) &&
1579              hasZeroSignBit(I->getOperand(1));
1580     case Instruction::And:
1581       return hasZeroSignBit(I->getOperand(0)) ||
1582              hasZeroSignBit(I->getOperand(1));
1583   }
1584   return false;
1585 }
1586 
1587 void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) {
1588   S.addRule("sink-zext",
1589     // Sink zext past bitwise operations.
1590     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1591       if (I->getOpcode() != Instruction::ZExt)
1592         return nullptr;
1593       Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
1594       if (!T)
1595         return nullptr;
1596       switch (T->getOpcode()) {
1597         case Instruction::And:
1598         case Instruction::Or:
1599         case Instruction::Xor:
1600           break;
1601         default:
1602           return nullptr;
1603       }
1604       IRBuilder<> B(Ctx);
1605       return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
1606                            B.CreateZExt(T->getOperand(0), I->getType()),
1607                            B.CreateZExt(T->getOperand(1), I->getType()));
1608     });
1609   S.addRule("xor/and -> and/xor",
1610     // (xor (and x a) (and y a)) -> (and (xor x y) a)
1611     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1612       if (I->getOpcode() != Instruction::Xor)
1613         return nullptr;
1614       Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
1615       Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
1616       if (!And0 || !And1)
1617         return nullptr;
1618       if (And0->getOpcode() != Instruction::And ||
1619           And1->getOpcode() != Instruction::And)
1620         return nullptr;
1621       if (And0->getOperand(1) != And1->getOperand(1))
1622         return nullptr;
1623       IRBuilder<> B(Ctx);
1624       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
1625                          And0->getOperand(1));
1626     });
1627   S.addRule("sink binop into select",
1628     // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
1629     // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
1630     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1631       BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
1632       if (!BO)
1633         return nullptr;
1634       Instruction::BinaryOps Op = BO->getOpcode();
1635       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
1636         IRBuilder<> B(Ctx);
1637         Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
1638         Value *Z = BO->getOperand(1);
1639         return B.CreateSelect(Sel->getCondition(),
1640                               B.CreateBinOp(Op, X, Z),
1641                               B.CreateBinOp(Op, Y, Z));
1642       }
1643       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
1644         IRBuilder<> B(Ctx);
1645         Value *X = BO->getOperand(0);
1646         Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
1647         return B.CreateSelect(Sel->getCondition(),
1648                               B.CreateBinOp(Op, X, Y),
1649                               B.CreateBinOp(Op, X, Z));
1650       }
1651       return nullptr;
1652     });
1653   S.addRule("fold select-select",
1654     // (select c (select c x y) z) -> (select c x z)
1655     // (select c x (select c y z)) -> (select c x z)
1656     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1657       SelectInst *Sel = dyn_cast<SelectInst>(I);
1658       if (!Sel)
1659         return nullptr;
1660       IRBuilder<> B(Ctx);
1661       Value *C = Sel->getCondition();
1662       if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
1663         if (Sel0->getCondition() == C)
1664           return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
1665       }
1666       if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
1667         if (Sel1->getCondition() == C)
1668           return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
1669       }
1670       return nullptr;
1671     });
1672   S.addRule("or-signbit -> xor-signbit",
1673     // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
1674     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1675       if (I->getOpcode() != Instruction::Or)
1676         return nullptr;
1677       ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
1678       if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
1679         return nullptr;
1680       if (!hasZeroSignBit(I->getOperand(0)))
1681         return nullptr;
1682       return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
1683     });
1684   S.addRule("sink lshr into binop",
1685     // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
1686     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1687       if (I->getOpcode() != Instruction::LShr)
1688         return nullptr;
1689       BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
1690       if (!BitOp)
1691         return nullptr;
1692       switch (BitOp->getOpcode()) {
1693         case Instruction::And:
1694         case Instruction::Or:
1695         case Instruction::Xor:
1696           break;
1697         default:
1698           return nullptr;
1699       }
1700       IRBuilder<> B(Ctx);
1701       Value *S = I->getOperand(1);
1702       return B.CreateBinOp(BitOp->getOpcode(),
1703                 B.CreateLShr(BitOp->getOperand(0), S),
1704                 B.CreateLShr(BitOp->getOperand(1), S));
1705     });
1706   S.addRule("expose bitop-const",
1707     // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
1708     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1709       auto IsBitOp = [](unsigned Op) -> bool {
1710         switch (Op) {
1711           case Instruction::And:
1712           case Instruction::Or:
1713           case Instruction::Xor:
1714             return true;
1715         }
1716         return false;
1717       };
1718       BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
1719       if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
1720         return nullptr;
1721       BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
1722       if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
1723         return nullptr;
1724       ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
1725       ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
1726       if (!CA || !CB)
1727         return nullptr;
1728       IRBuilder<> B(Ctx);
1729       Value *X = BitOp2->getOperand(0);
1730       return B.CreateBinOp(BitOp2->getOpcode(), X,
1731                 B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
1732     });
1733 }
1734 
1735 void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) {
1736   S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a",
1737     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1738       if (I->getOpcode() != Instruction::And)
1739         return nullptr;
1740       Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0));
1741       ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1));
1742       if (!Xor || !C0)
1743         return nullptr;
1744       if (Xor->getOpcode() != Instruction::Xor)
1745         return nullptr;
1746       Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0));
1747       Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1));
1748       // Pick the first non-null and.
1749       if (!And0 || And0->getOpcode() != Instruction::And)
1750         std::swap(And0, And1);
1751       ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1));
1752       if (!C1)
1753         return nullptr;
1754       uint32_t V0 = C0->getZExtValue();
1755       uint32_t V1 = C1->getZExtValue();
1756       if (V0 != (V0 & V1))
1757         return nullptr;
1758       IRBuilder<> B(Ctx);
1759       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0);
1760     });
1761 }
1762 
1763 bool PolynomialMultiplyRecognize::recognize() {
1764   LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
1765                     << *CurLoop << '\n');
1766   // Restrictions:
1767   // - The loop must consist of a single block.
1768   // - The iteration count must be known at compile-time.
1769   // - The loop must have an induction variable starting from 0, and
1770   //   incremented in each iteration of the loop.
1771   BasicBlock *LoopB = CurLoop->getHeader();
1772   LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB);
1773 
1774   if (LoopB != CurLoop->getLoopLatch())
1775     return false;
1776   BasicBlock *ExitB = CurLoop->getExitBlock();
1777   if (ExitB == nullptr)
1778     return false;
1779   BasicBlock *EntryB = CurLoop->getLoopPreheader();
1780   if (EntryB == nullptr)
1781     return false;
1782 
1783   unsigned IterCount = 0;
1784   const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
1785   if (isa<SCEVCouldNotCompute>(CT))
1786     return false;
1787   if (auto *CV = dyn_cast<SCEVConstant>(CT))
1788     IterCount = CV->getValue()->getZExtValue() + 1;
1789 
1790   Value *CIV = getCountIV(LoopB);
1791   ParsedValues PV;
1792   Simplifier PreSimp;
1793   PV.IterCount = IterCount;
1794   LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount
1795                     << '\n');
1796 
1797   setupPreSimplifier(PreSimp);
1798 
1799   // Perform a preliminary scan of select instructions to see if any of them
1800   // looks like a generator of the polynomial multiply steps. Assume that a
1801   // loop can only contain a single transformable operation, so stop the
1802   // traversal after the first reasonable candidate was found.
1803   // XXX: Currently this approach can modify the loop before being 100% sure
1804   // that the transformation can be carried out.
1805   bool FoundPreScan = false;
1806   auto FeedsPHI = [LoopB](const Value *V) -> bool {
1807     for (const Value *U : V->users()) {
1808       if (const auto *P = dyn_cast<const PHINode>(U))
1809         if (P->getParent() == LoopB)
1810           return true;
1811     }
1812     return false;
1813   };
1814   for (Instruction &In : *LoopB) {
1815     SelectInst *SI = dyn_cast<SelectInst>(&In);
1816     if (!SI || !FeedsPHI(SI))
1817       continue;
1818 
1819     Simplifier::Context C(SI);
1820     Value *T = PreSimp.simplify(C);
1821     SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
1822     LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
1823     if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
1824       FoundPreScan = true;
1825       if (SelI != SI) {
1826         Value *NewSel = C.materialize(LoopB, SI->getIterator());
1827         SI->replaceAllUsesWith(NewSel);
1828         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1829       }
1830       break;
1831     }
1832   }
1833 
1834   if (!FoundPreScan) {
1835     LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n");
1836     return false;
1837   }
1838 
1839   if (!PV.Left) {
1840     // The right shift version actually only returns the higher bits of
1841     // the result (each iteration discards the LSB). If we want to convert it
1842     // to a left-shifting loop, the working data type must be at least as
1843     // wide as the target's pmpy instruction.
1844     if (!promoteTypes(LoopB, ExitB))
1845       return false;
1846     // Run post-promotion simplifications.
1847     Simplifier PostSimp;
1848     setupPostSimplifier(PostSimp);
1849     for (Instruction &In : *LoopB) {
1850       SelectInst *SI = dyn_cast<SelectInst>(&In);
1851       if (!SI || !FeedsPHI(SI))
1852         continue;
1853       Simplifier::Context C(SI);
1854       Value *T = PostSimp.simplify(C);
1855       SelectInst *SelI = dyn_cast_or_null<SelectInst>(T);
1856       if (SelI != SI) {
1857         Value *NewSel = C.materialize(LoopB, SI->getIterator());
1858         SI->replaceAllUsesWith(NewSel);
1859         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1860       }
1861       break;
1862     }
1863 
1864     if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
1865       return false;
1866     cleanupLoopBody(LoopB);
1867   }
1868 
1869   // Scan the loop again, find the generating select instruction.
1870   bool FoundScan = false;
1871   for (Instruction &In : *LoopB) {
1872     SelectInst *SelI = dyn_cast<SelectInst>(&In);
1873     if (!SelI)
1874       continue;
1875     LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
1876     FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
1877     if (FoundScan)
1878       break;
1879   }
1880   assert(FoundScan);
1881 
1882   LLVM_DEBUG({
1883     StringRef PP = (PV.M ? "(P+M)" : "P");
1884     if (!PV.Inv)
1885       dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
1886     else
1887       dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
1888              << PP << "\n";
1889     dbgs() << "  Res:" << *PV.Res << "\n  P:" << *PV.P << "\n";
1890     if (PV.M)
1891       dbgs() << "  M:" << *PV.M << "\n";
1892     dbgs() << "  Q:" << *PV.Q << "\n";
1893     dbgs() << "  Iteration count:" << PV.IterCount << "\n";
1894   });
1895 
1896   BasicBlock::iterator At(EntryB->getTerminator());
1897   Value *PM = generate(At, PV);
1898   if (PM == nullptr)
1899     return false;
1900 
1901   if (PM->getType() != PV.Res->getType())
1902     PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
1903 
1904   PV.Res->replaceAllUsesWith(PM);
1905   PV.Res->eraseFromParent();
1906   return true;
1907 }
1908 
1909 int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
1910   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1911     return SC->getAPInt().getSExtValue();
1912   return 0;
1913 }
1914 
1915 bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
1916   // Allow volatile stores if HexagonVolatileMemcpy is enabled.
1917   if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
1918     return false;
1919 
1920   Value *StoredVal = SI->getValueOperand();
1921   Value *StorePtr = SI->getPointerOperand();
1922 
1923   // Reject stores that are so large that they overflow an unsigned.
1924   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
1925   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
1926     return false;
1927 
1928   // See if the pointer expression is an AddRec like {base,+,1} on the current
1929   // loop, which indicates a strided store.  If we have something else, it's a
1930   // random store we can't handle.
1931   auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1932   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
1933     return false;
1934 
1935   // Check to see if the stride matches the size of the store.  If so, then we
1936   // know that every byte is touched in the loop.
1937   int Stride = getSCEVStride(StoreEv);
1938   if (Stride == 0)
1939     return false;
1940   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1941   if (StoreSize != unsigned(std::abs(Stride)))
1942     return false;
1943 
1944   // The store must be feeding a non-volatile load.
1945   LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1946   if (!LI || !LI->isSimple())
1947     return false;
1948 
1949   // See if the pointer expression is an AddRec like {base,+,1} on the current
1950   // loop, which indicates a strided load.  If we have something else, it's a
1951   // random load we can't handle.
1952   Value *LoadPtr = LI->getPointerOperand();
1953   auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1954   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
1955     return false;
1956 
1957   // The store and load must share the same stride.
1958   if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
1959     return false;
1960 
1961   // Success.  This store can be converted into a memcpy.
1962   return true;
1963 }
1964 
1965 /// mayLoopAccessLocation - Return true if the specified loop might access the
1966 /// specified pointer location, which is a loop-strided access.  The 'Access'
1967 /// argument specifies what the verboten forms of access are (read or write).
1968 static bool
1969 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1970                       const SCEV *BECount, unsigned StoreSize,
1971                       AliasAnalysis &AA,
1972                       SmallPtrSetImpl<Instruction *> &Ignored) {
1973   // Get the location that may be stored across the loop.  Since the access
1974   // is strided positively through memory, we say that the modified location
1975   // starts at the pointer and has infinite size.
1976   LocationSize AccessSize = LocationSize::unknown();
1977 
1978   // If the loop iterates a fixed number of times, we can refine the access
1979   // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
1980   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
1981     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
1982                                        StoreSize);
1983 
1984   // TODO: For this to be really effective, we have to dive into the pointer
1985   // operand in the store.  Store to &A[i] of 100 will always return may alias
1986   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1987   // which will then no-alias a store to &A[100].
1988   MemoryLocation StoreLoc(Ptr, AccessSize);
1989 
1990   for (auto *B : L->blocks())
1991     for (auto &I : *B)
1992       if (Ignored.count(&I) == 0 &&
1993           isModOrRefSet(
1994               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
1995         return true;
1996 
1997   return false;
1998 }
1999 
2000 void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
2001       SmallVectorImpl<StoreInst*> &Stores) {
2002   Stores.clear();
2003   for (Instruction &I : *BB)
2004     if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2005       if (isLegalStore(CurLoop, SI))
2006         Stores.push_back(SI);
2007 }
2008 
2009 bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
2010       StoreInst *SI, const SCEV *BECount) {
2011   assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
2012          "Expected only non-volatile stores, or Hexagon-specific memcpy"
2013          "to volatile destination.");
2014 
2015   Value *StorePtr = SI->getPointerOperand();
2016   auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
2017   unsigned Stride = getSCEVStride(StoreEv);
2018   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
2019   if (Stride != StoreSize)
2020     return false;
2021 
2022   // See if the pointer expression is an AddRec like {base,+,1} on the current
2023   // loop, which indicates a strided load.  If we have something else, it's a
2024   // random load we can't handle.
2025   auto *LI = cast<LoadInst>(SI->getValueOperand());
2026   auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
2027 
2028   // The trip count of the loop and the base pointer of the addrec SCEV is
2029   // guaranteed to be loop invariant, which means that it should dominate the
2030   // header.  This allows us to insert code for it in the preheader.
2031   BasicBlock *Preheader = CurLoop->getLoopPreheader();
2032   Instruction *ExpPt = Preheader->getTerminator();
2033   IRBuilder<> Builder(ExpPt);
2034   SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
2035 
2036   Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
2037 
2038   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
2039   // this into a memcpy/memmove in the loop preheader now if we want.  However,
2040   // this would be unsafe to do if there is anything else in the loop that may
2041   // read or write the memory region we're storing to.  For memcpy, this
2042   // includes the load that feeds the stores.  Check for an alias by generating
2043   // the base address and checking everything.
2044   Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
2045       Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
2046   Value *LoadBasePtr = nullptr;
2047 
2048   bool Overlap = false;
2049   bool DestVolatile = SI->isVolatile();
2050   Type *BECountTy = BECount->getType();
2051 
2052   if (DestVolatile) {
2053     // The trip count must fit in i32, since it is the type of the "num_words"
2054     // argument to hexagon_memcpy_forward_vp4cp4n2.
2055     if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
2056 CleanupAndExit:
2057       // If we generated new code for the base pointer, clean up.
2058       Expander.clear();
2059       if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
2060         RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
2061         StoreBasePtr = nullptr;
2062       }
2063       if (LoadBasePtr) {
2064         RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
2065         LoadBasePtr = nullptr;
2066       }
2067       return false;
2068     }
2069   }
2070 
2071   SmallPtrSet<Instruction*, 2> Ignore1;
2072   Ignore1.insert(SI);
2073   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
2074                             StoreSize, *AA, Ignore1)) {
2075     // Check if the load is the offending instruction.
2076     Ignore1.insert(LI);
2077     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
2078                               BECount, StoreSize, *AA, Ignore1)) {
2079       // Still bad. Nothing we can do.
2080       goto CleanupAndExit;
2081     }
2082     // It worked with the load ignored.
2083     Overlap = true;
2084   }
2085 
2086   if (!Overlap) {
2087     if (DisableMemcpyIdiom || !HasMemcpy)
2088       goto CleanupAndExit;
2089   } else {
2090     // Don't generate memmove if this function will be inlined. This is
2091     // because the caller will undergo this transformation after inlining.
2092     Function *Func = CurLoop->getHeader()->getParent();
2093     if (Func->hasFnAttribute(Attribute::AlwaysInline))
2094       goto CleanupAndExit;
2095 
2096     // In case of a memmove, the call to memmove will be executed instead
2097     // of the loop, so we need to make sure that there is nothing else in
2098     // the loop than the load, store and instructions that these two depend
2099     // on.
2100     SmallVector<Instruction*,2> Insts;
2101     Insts.push_back(SI);
2102     Insts.push_back(LI);
2103     if (!coverLoop(CurLoop, Insts))
2104       goto CleanupAndExit;
2105 
2106     if (DisableMemmoveIdiom || !HasMemmove)
2107       goto CleanupAndExit;
2108     bool IsNested = CurLoop->getParentLoop() != nullptr;
2109     if (IsNested && OnlyNonNestedMemmove)
2110       goto CleanupAndExit;
2111   }
2112 
2113   // For a memcpy, we have to make sure that the input array is not being
2114   // mutated by the loop.
2115   LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
2116       Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
2117 
2118   SmallPtrSet<Instruction*, 2> Ignore2;
2119   Ignore2.insert(SI);
2120   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
2121                             StoreSize, *AA, Ignore2))
2122     goto CleanupAndExit;
2123 
2124   // Check the stride.
2125   bool StridePos = getSCEVStride(LoadEv) >= 0;
2126 
2127   // Currently, the volatile memcpy only emulates traversing memory forward.
2128   if (!StridePos && DestVolatile)
2129     goto CleanupAndExit;
2130 
2131   bool RuntimeCheck = (Overlap || DestVolatile);
2132 
2133   BasicBlock *ExitB;
2134   if (RuntimeCheck) {
2135     // The runtime check needs a single exit block.
2136     SmallVector<BasicBlock*, 8> ExitBlocks;
2137     CurLoop->getUniqueExitBlocks(ExitBlocks);
2138     if (ExitBlocks.size() != 1)
2139       goto CleanupAndExit;
2140     ExitB = ExitBlocks[0];
2141   }
2142 
2143   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
2144   // pointer size if it isn't already.
2145   LLVMContext &Ctx = SI->getContext();
2146   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
2147   DebugLoc DLoc = SI->getDebugLoc();
2148 
2149   const SCEV *NumBytesS =
2150       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
2151   if (StoreSize != 1)
2152     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
2153                                SCEV::FlagNUW);
2154   Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
2155   if (Instruction *In = dyn_cast<Instruction>(NumBytes))
2156     if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2157       NumBytes = Simp;
2158 
2159   CallInst *NewCall;
2160 
2161   if (RuntimeCheck) {
2162     unsigned Threshold = RuntimeMemSizeThreshold;
2163     if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
2164       uint64_t C = CI->getZExtValue();
2165       if (Threshold != 0 && C < Threshold)
2166         goto CleanupAndExit;
2167       if (C < CompileTimeMemSizeThreshold)
2168         goto CleanupAndExit;
2169     }
2170 
2171     BasicBlock *Header = CurLoop->getHeader();
2172     Function *Func = Header->getParent();
2173     Loop *ParentL = LF->getLoopFor(Preheader);
2174     StringRef HeaderName = Header->getName();
2175 
2176     // Create a new (empty) preheader, and update the PHI nodes in the
2177     // header to use the new preheader.
2178     BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
2179                                                   Func, Header);
2180     if (ParentL)
2181       ParentL->addBasicBlockToLoop(NewPreheader, *LF);
2182     IRBuilder<>(NewPreheader).CreateBr(Header);
2183     for (auto &In : *Header) {
2184       PHINode *PN = dyn_cast<PHINode>(&In);
2185       if (!PN)
2186         break;
2187       int bx = PN->getBasicBlockIndex(Preheader);
2188       if (bx >= 0)
2189         PN->setIncomingBlock(bx, NewPreheader);
2190     }
2191     DT->addNewBlock(NewPreheader, Preheader);
2192     DT->changeImmediateDominator(Header, NewPreheader);
2193 
2194     // Check for safe conditions to execute memmove.
2195     // If stride is positive, copying things from higher to lower addresses
2196     // is equivalent to memmove.  For negative stride, it's the other way
2197     // around.  Copying forward in memory with positive stride may not be
2198     // same as memmove since we may be copying values that we just stored
2199     // in some previous iteration.
2200     Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
2201     Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
2202     Value *LowA = StridePos ? SA : LA;
2203     Value *HighA = StridePos ? LA : SA;
2204     Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
2205     Value *Cond = CmpA;
2206 
2207     // Check for distance between pointers. Since the case LowA < HighA
2208     // is checked for above, assume LowA >= HighA.
2209     Value *Dist = Builder.CreateSub(LowA, HighA);
2210     Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
2211     Value *CmpEither = Builder.CreateOr(Cond, CmpD);
2212     Cond = CmpEither;
2213 
2214     if (Threshold != 0) {
2215       Type *Ty = NumBytes->getType();
2216       Value *Thr = ConstantInt::get(Ty, Threshold);
2217       Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
2218       Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
2219       Cond = CmpBoth;
2220     }
2221     BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
2222                                               Func, NewPreheader);
2223     if (ParentL)
2224       ParentL->addBasicBlockToLoop(MemmoveB, *LF);
2225     Instruction *OldT = Preheader->getTerminator();
2226     Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
2227     OldT->eraseFromParent();
2228     Preheader->setName(Preheader->getName()+".old");
2229     DT->addNewBlock(MemmoveB, Preheader);
2230     // Find the new immediate dominator of the exit block.
2231     BasicBlock *ExitD = Preheader;
2232     for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
2233       BasicBlock *PB = *PI;
2234       ExitD = DT->findNearestCommonDominator(ExitD, PB);
2235       if (!ExitD)
2236         break;
2237     }
2238     // If the prior immediate dominator of ExitB was dominated by the
2239     // old preheader, then the old preheader becomes the new immediate
2240     // dominator.  Otherwise don't change anything (because the newly
2241     // added blocks are dominated by the old preheader).
2242     if (ExitD && DT->dominates(Preheader, ExitD)) {
2243       DomTreeNode *BN = DT->getNode(ExitB);
2244       DomTreeNode *DN = DT->getNode(ExitD);
2245       BN->setIDom(DN);
2246     }
2247 
2248     // Add a call to memmove to the conditional block.
2249     IRBuilder<> CondBuilder(MemmoveB);
2250     CondBuilder.CreateBr(ExitB);
2251     CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
2252 
2253     if (DestVolatile) {
2254       Type *Int32Ty = Type::getInt32Ty(Ctx);
2255       Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
2256       Type *VoidTy = Type::getVoidTy(Ctx);
2257       Module *M = Func->getParent();
2258       FunctionCallee Fn = M->getOrInsertFunction(
2259           HexagonVolatileMemcpyName, VoidTy, Int32PtrTy, Int32PtrTy, Int32Ty);
2260 
2261       const SCEV *OneS = SE->getConstant(Int32Ty, 1);
2262       const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
2263       const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
2264       Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
2265                                                MemmoveB->getTerminator());
2266       if (Instruction *In = dyn_cast<Instruction>(NumWords))
2267         if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2268           NumWords = Simp;
2269 
2270       Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
2271                       ? StoreBasePtr
2272                       : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
2273       Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
2274                       ? LoadBasePtr
2275                       : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
2276       NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
2277     } else {
2278       NewCall = CondBuilder.CreateMemMove(
2279           StoreBasePtr, SI->getAlign(), LoadBasePtr, LI->getAlign(), NumBytes);
2280     }
2281   } else {
2282     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
2283                                    LI->getAlign(), NumBytes);
2284     // Okay, the memcpy has been formed.  Zap the original store and
2285     // anything that feeds into it.
2286     RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
2287   }
2288 
2289   NewCall->setDebugLoc(DLoc);
2290 
2291   LLVM_DEBUG(dbgs() << "  Formed " << (Overlap ? "memmove: " : "memcpy: ")
2292                     << *NewCall << "\n"
2293                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
2294                     << "    from store ptr=" << *StoreEv << " at: " << *SI
2295                     << "\n");
2296 
2297   return true;
2298 }
2299 
2300 // Check if the instructions in Insts, together with their dependencies
2301 // cover the loop in the sense that the loop could be safely eliminated once
2302 // the instructions in Insts are removed.
2303 bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
2304       SmallVectorImpl<Instruction*> &Insts) const {
2305   SmallSet<BasicBlock*,8> LoopBlocks;
2306   for (auto *B : L->blocks())
2307     LoopBlocks.insert(B);
2308 
2309   SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
2310 
2311   // Collect all instructions from the loop that the instructions in Insts
2312   // depend on (plus their dependencies, etc.).  These instructions will
2313   // constitute the expression trees that feed those in Insts, but the trees
2314   // will be limited only to instructions contained in the loop.
2315   for (unsigned i = 0; i < Worklist.size(); ++i) {
2316     Instruction *In = Worklist[i];
2317     for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
2318       Instruction *OpI = dyn_cast<Instruction>(I);
2319       if (!OpI)
2320         continue;
2321       BasicBlock *PB = OpI->getParent();
2322       if (!LoopBlocks.count(PB))
2323         continue;
2324       Worklist.insert(OpI);
2325     }
2326   }
2327 
2328   // Scan all instructions in the loop, if any of them have a user outside
2329   // of the loop, or outside of the expressions collected above, then either
2330   // the loop has a side-effect visible outside of it, or there are
2331   // instructions in it that are not involved in the original set Insts.
2332   for (auto *B : L->blocks()) {
2333     for (auto &In : *B) {
2334       if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
2335         continue;
2336       if (!Worklist.count(&In) && In.mayHaveSideEffects())
2337         return false;
2338       for (auto K : In.users()) {
2339         Instruction *UseI = dyn_cast<Instruction>(K);
2340         if (!UseI)
2341           continue;
2342         BasicBlock *UseB = UseI->getParent();
2343         if (LF->getLoopFor(UseB) != L)
2344           return false;
2345       }
2346     }
2347   }
2348 
2349   return true;
2350 }
2351 
2352 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
2353 /// with the specified backedge count.  This block is known to be in the current
2354 /// loop and not in any subloops.
2355 bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
2356       const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
2357   // We can only promote stores in this block if they are unconditionally
2358   // executed in the loop.  For a block to be unconditionally executed, it has
2359   // to dominate all the exit blocks of the loop.  Verify this now.
2360   auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
2361     return DT->dominates(BB, EB);
2362   };
2363   if (!all_of(ExitBlocks, DominatedByBB))
2364     return false;
2365 
2366   bool MadeChange = false;
2367   // Look for store instructions, which may be optimized to memset/memcpy.
2368   SmallVector<StoreInst*,8> Stores;
2369   collectStores(CurLoop, BB, Stores);
2370 
2371   // Optimize the store into a memcpy, if it feeds an similarly strided load.
2372   for (auto &SI : Stores)
2373     MadeChange |= processCopyingStore(CurLoop, SI, BECount);
2374 
2375   return MadeChange;
2376 }
2377 
2378 bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
2379   PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
2380   if (PMR.recognize())
2381     return true;
2382 
2383   if (!HasMemcpy && !HasMemmove)
2384     return false;
2385 
2386   const SCEV *BECount = SE->getBackedgeTakenCount(L);
2387   assert(!isa<SCEVCouldNotCompute>(BECount) &&
2388          "runOnCountableLoop() called on a loop without a predictable"
2389          "backedge-taken count");
2390 
2391   SmallVector<BasicBlock *, 8> ExitBlocks;
2392   L->getUniqueExitBlocks(ExitBlocks);
2393 
2394   bool Changed = false;
2395 
2396   // Scan all the blocks in the loop that are not in subloops.
2397   for (auto *BB : L->getBlocks()) {
2398     // Ignore blocks in subloops.
2399     if (LF->getLoopFor(BB) != L)
2400       continue;
2401     Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
2402   }
2403 
2404   return Changed;
2405 }
2406 
2407 bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
2408   const Module &M = *L->getHeader()->getParent()->getParent();
2409   if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
2410     return false;
2411 
2412   if (skipLoop(L))
2413     return false;
2414 
2415   // If the loop could not be converted to canonical form, it must have an
2416   // indirectbr in it, just give up.
2417   if (!L->getLoopPreheader())
2418     return false;
2419 
2420   // Disable loop idiom recognition if the function's name is a common idiom.
2421   StringRef Name = L->getHeader()->getParent()->getName();
2422   if (Name == "memset" || Name == "memcpy" || Name == "memmove")
2423     return false;
2424 
2425   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2426   DL = &L->getHeader()->getModule()->getDataLayout();
2427   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2428   LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2429   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
2430       *L->getHeader()->getParent());
2431   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2432 
2433   HasMemcpy = TLI->has(LibFunc_memcpy);
2434   HasMemmove = TLI->has(LibFunc_memmove);
2435 
2436   if (SE->hasLoopInvariantBackedgeTakenCount(L))
2437     return runOnCountableLoop(L);
2438   return false;
2439 }
2440 
2441 Pass *llvm::createHexagonLoopIdiomPass() {
2442   return new HexagonLoopIdiomRecognize();
2443 }
2444