10b57cec5SDimitry Andric //===- HexagonLoopIdiomRecognition.cpp ------------------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric 90b57cec5SDimitry Andric #define DEBUG_TYPE "hexagon-lir" 100b57cec5SDimitry Andric 110b57cec5SDimitry Andric #include "llvm/ADT/APInt.h" 120b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h" 130b57cec5SDimitry Andric #include "llvm/ADT/SetVector.h" 140b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 150b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h" 160b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 170b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h" 180b57cec5SDimitry Andric #include "llvm/ADT/Triple.h" 190b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h" 200b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 210b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h" 220b57cec5SDimitry Andric #include "llvm/Analysis/LoopPass.h" 230b57cec5SDimitry Andric #include "llvm/Analysis/MemoryLocation.h" 240b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h" 250b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolutionExpander.h" 260b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolutionExpressions.h" 270b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h" 280b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 290b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 300b57cec5SDimitry Andric #include "llvm/IR/Attributes.h" 310b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 320b57cec5SDimitry Andric #include "llvm/IR/Constant.h" 330b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 340b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 350b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h" 360b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 370b57cec5SDimitry Andric #include "llvm/IR/Dominators.h" 380b57cec5SDimitry Andric #include "llvm/IR/Function.h" 390b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 400b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 410b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 420b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 430b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 440b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 450b57cec5SDimitry Andric #include "llvm/IR/Module.h" 460b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h" 470b57cec5SDimitry Andric #include "llvm/IR/Type.h" 480b57cec5SDimitry Andric #include "llvm/IR/User.h" 490b57cec5SDimitry Andric #include "llvm/IR/Value.h" 500b57cec5SDimitry Andric #include "llvm/Pass.h" 510b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 520b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 530b57cec5SDimitry Andric #include "llvm/Support/Compiler.h" 540b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 550b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 560b57cec5SDimitry Andric #include "llvm/Support/KnownBits.h" 570b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 580b57cec5SDimitry Andric #include "llvm/Transforms/Scalar.h" 590b57cec5SDimitry Andric #include "llvm/Transforms/Utils.h" 600b57cec5SDimitry Andric #include <algorithm> 610b57cec5SDimitry Andric #include <array> 620b57cec5SDimitry Andric #include <cassert> 630b57cec5SDimitry Andric #include <cstdint> 640b57cec5SDimitry Andric #include <cstdlib> 650b57cec5SDimitry Andric #include <deque> 660b57cec5SDimitry Andric #include <functional> 670b57cec5SDimitry Andric #include <iterator> 680b57cec5SDimitry Andric #include <map> 690b57cec5SDimitry Andric #include <set> 700b57cec5SDimitry Andric #include <utility> 710b57cec5SDimitry Andric #include <vector> 720b57cec5SDimitry Andric 730b57cec5SDimitry Andric using namespace llvm; 740b57cec5SDimitry Andric 750b57cec5SDimitry Andric static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom", 760b57cec5SDimitry Andric cl::Hidden, cl::init(false), 770b57cec5SDimitry Andric cl::desc("Disable generation of memcpy in loop idiom recognition")); 780b57cec5SDimitry Andric 790b57cec5SDimitry Andric static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom", 800b57cec5SDimitry Andric cl::Hidden, cl::init(false), 810b57cec5SDimitry Andric cl::desc("Disable generation of memmove in loop idiom recognition")); 820b57cec5SDimitry Andric 830b57cec5SDimitry Andric static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold", 840b57cec5SDimitry Andric cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime " 850b57cec5SDimitry Andric "check guarding the memmove.")); 860b57cec5SDimitry Andric 870b57cec5SDimitry Andric static cl::opt<unsigned> CompileTimeMemSizeThreshold( 880b57cec5SDimitry Andric "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64), 890b57cec5SDimitry Andric cl::desc("Threshold (in bytes) to perform the transformation, if the " 900b57cec5SDimitry Andric "runtime loop count (mem transfer size) is known at compile-time.")); 910b57cec5SDimitry Andric 920b57cec5SDimitry Andric static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom", 930b57cec5SDimitry Andric cl::Hidden, cl::init(true), 940b57cec5SDimitry Andric cl::desc("Only enable generating memmove in non-nested loops")); 950b57cec5SDimitry Andric 96*8bcb0991SDimitry Andric static cl::opt<bool> HexagonVolatileMemcpy( 97*8bcb0991SDimitry Andric "disable-hexagon-volatile-memcpy", cl::Hidden, cl::init(false), 980b57cec5SDimitry Andric cl::desc("Enable Hexagon-specific memcpy for volatile destination.")); 990b57cec5SDimitry Andric 1000b57cec5SDimitry Andric static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000), 1010b57cec5SDimitry Andric cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR")); 1020b57cec5SDimitry Andric 1030b57cec5SDimitry Andric static const char *HexagonVolatileMemcpyName 1040b57cec5SDimitry Andric = "hexagon_memcpy_forward_vp4cp4n2"; 1050b57cec5SDimitry Andric 1060b57cec5SDimitry Andric 1070b57cec5SDimitry Andric namespace llvm { 1080b57cec5SDimitry Andric 1090b57cec5SDimitry Andric void initializeHexagonLoopIdiomRecognizePass(PassRegistry&); 1100b57cec5SDimitry Andric Pass *createHexagonLoopIdiomPass(); 1110b57cec5SDimitry Andric 1120b57cec5SDimitry Andric } // end namespace llvm 1130b57cec5SDimitry Andric 1140b57cec5SDimitry Andric namespace { 1150b57cec5SDimitry Andric 1160b57cec5SDimitry Andric class HexagonLoopIdiomRecognize : public LoopPass { 1170b57cec5SDimitry Andric public: 1180b57cec5SDimitry Andric static char ID; 1190b57cec5SDimitry Andric 1200b57cec5SDimitry Andric explicit HexagonLoopIdiomRecognize() : LoopPass(ID) { 1210b57cec5SDimitry Andric initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); 1220b57cec5SDimitry Andric } 1230b57cec5SDimitry Andric 1240b57cec5SDimitry Andric StringRef getPassName() const override { 1250b57cec5SDimitry Andric return "Recognize Hexagon-specific loop idioms"; 1260b57cec5SDimitry Andric } 1270b57cec5SDimitry Andric 1280b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 1290b57cec5SDimitry Andric AU.addRequired<LoopInfoWrapperPass>(); 1300b57cec5SDimitry Andric AU.addRequiredID(LoopSimplifyID); 1310b57cec5SDimitry Andric AU.addRequiredID(LCSSAID); 1320b57cec5SDimitry Andric AU.addRequired<AAResultsWrapperPass>(); 1330b57cec5SDimitry Andric AU.addPreserved<AAResultsWrapperPass>(); 1340b57cec5SDimitry Andric AU.addRequired<ScalarEvolutionWrapperPass>(); 1350b57cec5SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 1360b57cec5SDimitry Andric AU.addRequired<TargetLibraryInfoWrapperPass>(); 1370b57cec5SDimitry Andric AU.addPreserved<TargetLibraryInfoWrapperPass>(); 1380b57cec5SDimitry Andric } 1390b57cec5SDimitry Andric 1400b57cec5SDimitry Andric bool runOnLoop(Loop *L, LPPassManager &LPM) override; 1410b57cec5SDimitry Andric 1420b57cec5SDimitry Andric private: 1430b57cec5SDimitry Andric int getSCEVStride(const SCEVAddRecExpr *StoreEv); 1440b57cec5SDimitry Andric bool isLegalStore(Loop *CurLoop, StoreInst *SI); 1450b57cec5SDimitry Andric void collectStores(Loop *CurLoop, BasicBlock *BB, 1460b57cec5SDimitry Andric SmallVectorImpl<StoreInst*> &Stores); 1470b57cec5SDimitry Andric bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount); 1480b57cec5SDimitry Andric bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const; 1490b57cec5SDimitry Andric bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount, 1500b57cec5SDimitry Andric SmallVectorImpl<BasicBlock*> &ExitBlocks); 1510b57cec5SDimitry Andric bool runOnCountableLoop(Loop *L); 1520b57cec5SDimitry Andric 1530b57cec5SDimitry Andric AliasAnalysis *AA; 1540b57cec5SDimitry Andric const DataLayout *DL; 1550b57cec5SDimitry Andric DominatorTree *DT; 1560b57cec5SDimitry Andric LoopInfo *LF; 1570b57cec5SDimitry Andric const TargetLibraryInfo *TLI; 1580b57cec5SDimitry Andric ScalarEvolution *SE; 1590b57cec5SDimitry Andric bool HasMemcpy, HasMemmove; 1600b57cec5SDimitry Andric }; 1610b57cec5SDimitry Andric 1620b57cec5SDimitry Andric struct Simplifier { 1630b57cec5SDimitry Andric struct Rule { 1640b57cec5SDimitry Andric using FuncType = std::function<Value* (Instruction*, LLVMContext&)>; 1650b57cec5SDimitry Andric Rule(StringRef N, FuncType F) : Name(N), Fn(F) {} 1660b57cec5SDimitry Andric StringRef Name; // For debugging. 1670b57cec5SDimitry Andric FuncType Fn; 1680b57cec5SDimitry Andric }; 1690b57cec5SDimitry Andric 1700b57cec5SDimitry Andric void addRule(StringRef N, const Rule::FuncType &F) { 1710b57cec5SDimitry Andric Rules.push_back(Rule(N, F)); 1720b57cec5SDimitry Andric } 1730b57cec5SDimitry Andric 1740b57cec5SDimitry Andric private: 1750b57cec5SDimitry Andric struct WorkListType { 1760b57cec5SDimitry Andric WorkListType() = default; 1770b57cec5SDimitry Andric 1780b57cec5SDimitry Andric void push_back(Value* V) { 1790b57cec5SDimitry Andric // Do not push back duplicates. 1800b57cec5SDimitry Andric if (!S.count(V)) { Q.push_back(V); S.insert(V); } 1810b57cec5SDimitry Andric } 1820b57cec5SDimitry Andric 1830b57cec5SDimitry Andric Value *pop_front_val() { 1840b57cec5SDimitry Andric Value *V = Q.front(); Q.pop_front(); S.erase(V); 1850b57cec5SDimitry Andric return V; 1860b57cec5SDimitry Andric } 1870b57cec5SDimitry Andric 1880b57cec5SDimitry Andric bool empty() const { return Q.empty(); } 1890b57cec5SDimitry Andric 1900b57cec5SDimitry Andric private: 1910b57cec5SDimitry Andric std::deque<Value*> Q; 1920b57cec5SDimitry Andric std::set<Value*> S; 1930b57cec5SDimitry Andric }; 1940b57cec5SDimitry Andric 1950b57cec5SDimitry Andric using ValueSetType = std::set<Value *>; 1960b57cec5SDimitry Andric 1970b57cec5SDimitry Andric std::vector<Rule> Rules; 1980b57cec5SDimitry Andric 1990b57cec5SDimitry Andric public: 2000b57cec5SDimitry Andric struct Context { 2010b57cec5SDimitry Andric using ValueMapType = DenseMap<Value *, Value *>; 2020b57cec5SDimitry Andric 2030b57cec5SDimitry Andric Value *Root; 2040b57cec5SDimitry Andric ValueSetType Used; // The set of all cloned values used by Root. 2050b57cec5SDimitry Andric ValueSetType Clones; // The set of all cloned values. 2060b57cec5SDimitry Andric LLVMContext &Ctx; 2070b57cec5SDimitry Andric 2080b57cec5SDimitry Andric Context(Instruction *Exp) 2090b57cec5SDimitry Andric : Ctx(Exp->getParent()->getParent()->getContext()) { 2100b57cec5SDimitry Andric initialize(Exp); 2110b57cec5SDimitry Andric } 2120b57cec5SDimitry Andric 2130b57cec5SDimitry Andric ~Context() { cleanup(); } 2140b57cec5SDimitry Andric 2150b57cec5SDimitry Andric void print(raw_ostream &OS, const Value *V) const; 2160b57cec5SDimitry Andric Value *materialize(BasicBlock *B, BasicBlock::iterator At); 2170b57cec5SDimitry Andric 2180b57cec5SDimitry Andric private: 2190b57cec5SDimitry Andric friend struct Simplifier; 2200b57cec5SDimitry Andric 2210b57cec5SDimitry Andric void initialize(Instruction *Exp); 2220b57cec5SDimitry Andric void cleanup(); 2230b57cec5SDimitry Andric 2240b57cec5SDimitry Andric template <typename FuncT> void traverse(Value *V, FuncT F); 2250b57cec5SDimitry Andric void record(Value *V); 2260b57cec5SDimitry Andric void use(Value *V); 2270b57cec5SDimitry Andric void unuse(Value *V); 2280b57cec5SDimitry Andric 2290b57cec5SDimitry Andric bool equal(const Instruction *I, const Instruction *J) const; 2300b57cec5SDimitry Andric Value *find(Value *Tree, Value *Sub) const; 2310b57cec5SDimitry Andric Value *subst(Value *Tree, Value *OldV, Value *NewV); 2320b57cec5SDimitry Andric void replace(Value *OldV, Value *NewV); 2330b57cec5SDimitry Andric void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At); 2340b57cec5SDimitry Andric }; 2350b57cec5SDimitry Andric 2360b57cec5SDimitry Andric Value *simplify(Context &C); 2370b57cec5SDimitry Andric }; 2380b57cec5SDimitry Andric 2390b57cec5SDimitry Andric struct PE { 2400b57cec5SDimitry Andric PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {} 2410b57cec5SDimitry Andric 2420b57cec5SDimitry Andric const Simplifier::Context &C; 2430b57cec5SDimitry Andric const Value *V; 2440b57cec5SDimitry Andric }; 2450b57cec5SDimitry Andric 2460b57cec5SDimitry Andric LLVM_ATTRIBUTE_USED 2470b57cec5SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const PE &P) { 2480b57cec5SDimitry Andric P.C.print(OS, P.V ? P.V : P.C.Root); 2490b57cec5SDimitry Andric return OS; 2500b57cec5SDimitry Andric } 2510b57cec5SDimitry Andric 2520b57cec5SDimitry Andric } // end anonymous namespace 2530b57cec5SDimitry Andric 2540b57cec5SDimitry Andric char HexagonLoopIdiomRecognize::ID = 0; 2550b57cec5SDimitry Andric 2560b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom", 2570b57cec5SDimitry Andric "Recognize Hexagon-specific loop idioms", false, false) 2580b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2590b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 2600b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 2610b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2620b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2630b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2640b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2650b57cec5SDimitry Andric INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom", 2660b57cec5SDimitry Andric "Recognize Hexagon-specific loop idioms", false, false) 2670b57cec5SDimitry Andric 2680b57cec5SDimitry Andric template <typename FuncT> 2690b57cec5SDimitry Andric void Simplifier::Context::traverse(Value *V, FuncT F) { 2700b57cec5SDimitry Andric WorkListType Q; 2710b57cec5SDimitry Andric Q.push_back(V); 2720b57cec5SDimitry Andric 2730b57cec5SDimitry Andric while (!Q.empty()) { 2740b57cec5SDimitry Andric Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); 2750b57cec5SDimitry Andric if (!U || U->getParent()) 2760b57cec5SDimitry Andric continue; 2770b57cec5SDimitry Andric if (!F(U)) 2780b57cec5SDimitry Andric continue; 2790b57cec5SDimitry Andric for (Value *Op : U->operands()) 2800b57cec5SDimitry Andric Q.push_back(Op); 2810b57cec5SDimitry Andric } 2820b57cec5SDimitry Andric } 2830b57cec5SDimitry Andric 2840b57cec5SDimitry Andric void Simplifier::Context::print(raw_ostream &OS, const Value *V) const { 2850b57cec5SDimitry Andric const auto *U = dyn_cast<const Instruction>(V); 2860b57cec5SDimitry Andric if (!U) { 2870b57cec5SDimitry Andric OS << V << '(' << *V << ')'; 2880b57cec5SDimitry Andric return; 2890b57cec5SDimitry Andric } 2900b57cec5SDimitry Andric 2910b57cec5SDimitry Andric if (U->getParent()) { 2920b57cec5SDimitry Andric OS << U << '('; 2930b57cec5SDimitry Andric U->printAsOperand(OS, true); 2940b57cec5SDimitry Andric OS << ')'; 2950b57cec5SDimitry Andric return; 2960b57cec5SDimitry Andric } 2970b57cec5SDimitry Andric 2980b57cec5SDimitry Andric unsigned N = U->getNumOperands(); 2990b57cec5SDimitry Andric if (N != 0) 3000b57cec5SDimitry Andric OS << U << '('; 3010b57cec5SDimitry Andric OS << U->getOpcodeName(); 3020b57cec5SDimitry Andric for (const Value *Op : U->operands()) { 3030b57cec5SDimitry Andric OS << ' '; 3040b57cec5SDimitry Andric print(OS, Op); 3050b57cec5SDimitry Andric } 3060b57cec5SDimitry Andric if (N != 0) 3070b57cec5SDimitry Andric OS << ')'; 3080b57cec5SDimitry Andric } 3090b57cec5SDimitry Andric 3100b57cec5SDimitry Andric void Simplifier::Context::initialize(Instruction *Exp) { 3110b57cec5SDimitry Andric // Perform a deep clone of the expression, set Root to the root 3120b57cec5SDimitry Andric // of the clone, and build a map from the cloned values to the 3130b57cec5SDimitry Andric // original ones. 3140b57cec5SDimitry Andric ValueMapType M; 3150b57cec5SDimitry Andric BasicBlock *Block = Exp->getParent(); 3160b57cec5SDimitry Andric WorkListType Q; 3170b57cec5SDimitry Andric Q.push_back(Exp); 3180b57cec5SDimitry Andric 3190b57cec5SDimitry Andric while (!Q.empty()) { 3200b57cec5SDimitry Andric Value *V = Q.pop_front_val(); 3210b57cec5SDimitry Andric if (M.find(V) != M.end()) 3220b57cec5SDimitry Andric continue; 3230b57cec5SDimitry Andric if (Instruction *U = dyn_cast<Instruction>(V)) { 3240b57cec5SDimitry Andric if (isa<PHINode>(U) || U->getParent() != Block) 3250b57cec5SDimitry Andric continue; 3260b57cec5SDimitry Andric for (Value *Op : U->operands()) 3270b57cec5SDimitry Andric Q.push_back(Op); 3280b57cec5SDimitry Andric M.insert({U, U->clone()}); 3290b57cec5SDimitry Andric } 3300b57cec5SDimitry Andric } 3310b57cec5SDimitry Andric 3320b57cec5SDimitry Andric for (std::pair<Value*,Value*> P : M) { 3330b57cec5SDimitry Andric Instruction *U = cast<Instruction>(P.second); 3340b57cec5SDimitry Andric for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) { 3350b57cec5SDimitry Andric auto F = M.find(U->getOperand(i)); 3360b57cec5SDimitry Andric if (F != M.end()) 3370b57cec5SDimitry Andric U->setOperand(i, F->second); 3380b57cec5SDimitry Andric } 3390b57cec5SDimitry Andric } 3400b57cec5SDimitry Andric 3410b57cec5SDimitry Andric auto R = M.find(Exp); 3420b57cec5SDimitry Andric assert(R != M.end()); 3430b57cec5SDimitry Andric Root = R->second; 3440b57cec5SDimitry Andric 3450b57cec5SDimitry Andric record(Root); 3460b57cec5SDimitry Andric use(Root); 3470b57cec5SDimitry Andric } 3480b57cec5SDimitry Andric 3490b57cec5SDimitry Andric void Simplifier::Context::record(Value *V) { 3500b57cec5SDimitry Andric auto Record = [this](Instruction *U) -> bool { 3510b57cec5SDimitry Andric Clones.insert(U); 3520b57cec5SDimitry Andric return true; 3530b57cec5SDimitry Andric }; 3540b57cec5SDimitry Andric traverse(V, Record); 3550b57cec5SDimitry Andric } 3560b57cec5SDimitry Andric 3570b57cec5SDimitry Andric void Simplifier::Context::use(Value *V) { 3580b57cec5SDimitry Andric auto Use = [this](Instruction *U) -> bool { 3590b57cec5SDimitry Andric Used.insert(U); 3600b57cec5SDimitry Andric return true; 3610b57cec5SDimitry Andric }; 3620b57cec5SDimitry Andric traverse(V, Use); 3630b57cec5SDimitry Andric } 3640b57cec5SDimitry Andric 3650b57cec5SDimitry Andric void Simplifier::Context::unuse(Value *V) { 3660b57cec5SDimitry Andric if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr) 3670b57cec5SDimitry Andric return; 3680b57cec5SDimitry Andric 3690b57cec5SDimitry Andric auto Unuse = [this](Instruction *U) -> bool { 3700b57cec5SDimitry Andric if (!U->use_empty()) 3710b57cec5SDimitry Andric return false; 3720b57cec5SDimitry Andric Used.erase(U); 3730b57cec5SDimitry Andric return true; 3740b57cec5SDimitry Andric }; 3750b57cec5SDimitry Andric traverse(V, Unuse); 3760b57cec5SDimitry Andric } 3770b57cec5SDimitry Andric 3780b57cec5SDimitry Andric Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) { 3790b57cec5SDimitry Andric if (Tree == OldV) 3800b57cec5SDimitry Andric return NewV; 3810b57cec5SDimitry Andric if (OldV == NewV) 3820b57cec5SDimitry Andric return Tree; 3830b57cec5SDimitry Andric 3840b57cec5SDimitry Andric WorkListType Q; 3850b57cec5SDimitry Andric Q.push_back(Tree); 3860b57cec5SDimitry Andric while (!Q.empty()) { 3870b57cec5SDimitry Andric Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); 3880b57cec5SDimitry Andric // If U is not an instruction, or it's not a clone, skip it. 3890b57cec5SDimitry Andric if (!U || U->getParent()) 3900b57cec5SDimitry Andric continue; 3910b57cec5SDimitry Andric for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) { 3920b57cec5SDimitry Andric Value *Op = U->getOperand(i); 3930b57cec5SDimitry Andric if (Op == OldV) { 3940b57cec5SDimitry Andric U->setOperand(i, NewV); 3950b57cec5SDimitry Andric unuse(OldV); 3960b57cec5SDimitry Andric } else { 3970b57cec5SDimitry Andric Q.push_back(Op); 3980b57cec5SDimitry Andric } 3990b57cec5SDimitry Andric } 4000b57cec5SDimitry Andric } 4010b57cec5SDimitry Andric return Tree; 4020b57cec5SDimitry Andric } 4030b57cec5SDimitry Andric 4040b57cec5SDimitry Andric void Simplifier::Context::replace(Value *OldV, Value *NewV) { 4050b57cec5SDimitry Andric if (Root == OldV) { 4060b57cec5SDimitry Andric Root = NewV; 4070b57cec5SDimitry Andric use(Root); 4080b57cec5SDimitry Andric return; 4090b57cec5SDimitry Andric } 4100b57cec5SDimitry Andric 4110b57cec5SDimitry Andric // NewV may be a complex tree that has just been created by one of the 4120b57cec5SDimitry Andric // transformation rules. We need to make sure that it is commoned with 4130b57cec5SDimitry Andric // the existing Root to the maximum extent possible. 4140b57cec5SDimitry Andric // Identify all subtrees of NewV (including NewV itself) that have 4150b57cec5SDimitry Andric // equivalent counterparts in Root, and replace those subtrees with 4160b57cec5SDimitry Andric // these counterparts. 4170b57cec5SDimitry Andric WorkListType Q; 4180b57cec5SDimitry Andric Q.push_back(NewV); 4190b57cec5SDimitry Andric while (!Q.empty()) { 4200b57cec5SDimitry Andric Value *V = Q.pop_front_val(); 4210b57cec5SDimitry Andric Instruction *U = dyn_cast<Instruction>(V); 4220b57cec5SDimitry Andric if (!U || U->getParent()) 4230b57cec5SDimitry Andric continue; 4240b57cec5SDimitry Andric if (Value *DupV = find(Root, V)) { 4250b57cec5SDimitry Andric if (DupV != V) 4260b57cec5SDimitry Andric NewV = subst(NewV, V, DupV); 4270b57cec5SDimitry Andric } else { 4280b57cec5SDimitry Andric for (Value *Op : U->operands()) 4290b57cec5SDimitry Andric Q.push_back(Op); 4300b57cec5SDimitry Andric } 4310b57cec5SDimitry Andric } 4320b57cec5SDimitry Andric 4330b57cec5SDimitry Andric // Now, simply replace OldV with NewV in Root. 4340b57cec5SDimitry Andric Root = subst(Root, OldV, NewV); 4350b57cec5SDimitry Andric use(Root); 4360b57cec5SDimitry Andric } 4370b57cec5SDimitry Andric 4380b57cec5SDimitry Andric void Simplifier::Context::cleanup() { 4390b57cec5SDimitry Andric for (Value *V : Clones) { 4400b57cec5SDimitry Andric Instruction *U = cast<Instruction>(V); 4410b57cec5SDimitry Andric if (!U->getParent()) 4420b57cec5SDimitry Andric U->dropAllReferences(); 4430b57cec5SDimitry Andric } 4440b57cec5SDimitry Andric 4450b57cec5SDimitry Andric for (Value *V : Clones) { 4460b57cec5SDimitry Andric Instruction *U = cast<Instruction>(V); 4470b57cec5SDimitry Andric if (!U->getParent()) 4480b57cec5SDimitry Andric U->deleteValue(); 4490b57cec5SDimitry Andric } 4500b57cec5SDimitry Andric } 4510b57cec5SDimitry Andric 4520b57cec5SDimitry Andric bool Simplifier::Context::equal(const Instruction *I, 4530b57cec5SDimitry Andric const Instruction *J) const { 4540b57cec5SDimitry Andric if (I == J) 4550b57cec5SDimitry Andric return true; 4560b57cec5SDimitry Andric if (!I->isSameOperationAs(J)) 4570b57cec5SDimitry Andric return false; 4580b57cec5SDimitry Andric if (isa<PHINode>(I)) 4590b57cec5SDimitry Andric return I->isIdenticalTo(J); 4600b57cec5SDimitry Andric 4610b57cec5SDimitry Andric for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) { 4620b57cec5SDimitry Andric Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i); 4630b57cec5SDimitry Andric if (OpI == OpJ) 4640b57cec5SDimitry Andric continue; 4650b57cec5SDimitry Andric auto *InI = dyn_cast<const Instruction>(OpI); 4660b57cec5SDimitry Andric auto *InJ = dyn_cast<const Instruction>(OpJ); 4670b57cec5SDimitry Andric if (InI && InJ) { 4680b57cec5SDimitry Andric if (!equal(InI, InJ)) 4690b57cec5SDimitry Andric return false; 4700b57cec5SDimitry Andric } else if (InI != InJ || !InI) 4710b57cec5SDimitry Andric return false; 4720b57cec5SDimitry Andric } 4730b57cec5SDimitry Andric return true; 4740b57cec5SDimitry Andric } 4750b57cec5SDimitry Andric 4760b57cec5SDimitry Andric Value *Simplifier::Context::find(Value *Tree, Value *Sub) const { 4770b57cec5SDimitry Andric Instruction *SubI = dyn_cast<Instruction>(Sub); 4780b57cec5SDimitry Andric WorkListType Q; 4790b57cec5SDimitry Andric Q.push_back(Tree); 4800b57cec5SDimitry Andric 4810b57cec5SDimitry Andric while (!Q.empty()) { 4820b57cec5SDimitry Andric Value *V = Q.pop_front_val(); 4830b57cec5SDimitry Andric if (V == Sub) 4840b57cec5SDimitry Andric return V; 4850b57cec5SDimitry Andric Instruction *U = dyn_cast<Instruction>(V); 4860b57cec5SDimitry Andric if (!U || U->getParent()) 4870b57cec5SDimitry Andric continue; 4880b57cec5SDimitry Andric if (SubI && equal(SubI, U)) 4890b57cec5SDimitry Andric return U; 4900b57cec5SDimitry Andric assert(!isa<PHINode>(U)); 4910b57cec5SDimitry Andric for (Value *Op : U->operands()) 4920b57cec5SDimitry Andric Q.push_back(Op); 4930b57cec5SDimitry Andric } 4940b57cec5SDimitry Andric return nullptr; 4950b57cec5SDimitry Andric } 4960b57cec5SDimitry Andric 4970b57cec5SDimitry Andric void Simplifier::Context::link(Instruction *I, BasicBlock *B, 4980b57cec5SDimitry Andric BasicBlock::iterator At) { 4990b57cec5SDimitry Andric if (I->getParent()) 5000b57cec5SDimitry Andric return; 5010b57cec5SDimitry Andric 5020b57cec5SDimitry Andric for (Value *Op : I->operands()) { 5030b57cec5SDimitry Andric if (Instruction *OpI = dyn_cast<Instruction>(Op)) 5040b57cec5SDimitry Andric link(OpI, B, At); 5050b57cec5SDimitry Andric } 5060b57cec5SDimitry Andric 5070b57cec5SDimitry Andric B->getInstList().insert(At, I); 5080b57cec5SDimitry Andric } 5090b57cec5SDimitry Andric 5100b57cec5SDimitry Andric Value *Simplifier::Context::materialize(BasicBlock *B, 5110b57cec5SDimitry Andric BasicBlock::iterator At) { 5120b57cec5SDimitry Andric if (Instruction *RootI = dyn_cast<Instruction>(Root)) 5130b57cec5SDimitry Andric link(RootI, B, At); 5140b57cec5SDimitry Andric return Root; 5150b57cec5SDimitry Andric } 5160b57cec5SDimitry Andric 5170b57cec5SDimitry Andric Value *Simplifier::simplify(Context &C) { 5180b57cec5SDimitry Andric WorkListType Q; 5190b57cec5SDimitry Andric Q.push_back(C.Root); 5200b57cec5SDimitry Andric unsigned Count = 0; 5210b57cec5SDimitry Andric const unsigned Limit = SimplifyLimit; 5220b57cec5SDimitry Andric 5230b57cec5SDimitry Andric while (!Q.empty()) { 5240b57cec5SDimitry Andric if (Count++ >= Limit) 5250b57cec5SDimitry Andric break; 5260b57cec5SDimitry Andric Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); 5270b57cec5SDimitry Andric if (!U || U->getParent() || !C.Used.count(U)) 5280b57cec5SDimitry Andric continue; 5290b57cec5SDimitry Andric bool Changed = false; 5300b57cec5SDimitry Andric for (Rule &R : Rules) { 5310b57cec5SDimitry Andric Value *W = R.Fn(U, C.Ctx); 5320b57cec5SDimitry Andric if (!W) 5330b57cec5SDimitry Andric continue; 5340b57cec5SDimitry Andric Changed = true; 5350b57cec5SDimitry Andric C.record(W); 5360b57cec5SDimitry Andric C.replace(U, W); 5370b57cec5SDimitry Andric Q.push_back(C.Root); 5380b57cec5SDimitry Andric break; 5390b57cec5SDimitry Andric } 5400b57cec5SDimitry Andric if (!Changed) { 5410b57cec5SDimitry Andric for (Value *Op : U->operands()) 5420b57cec5SDimitry Andric Q.push_back(Op); 5430b57cec5SDimitry Andric } 5440b57cec5SDimitry Andric } 5450b57cec5SDimitry Andric return Count < Limit ? C.Root : nullptr; 5460b57cec5SDimitry Andric } 5470b57cec5SDimitry Andric 5480b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 5490b57cec5SDimitry Andric // 5500b57cec5SDimitry Andric // Implementation of PolynomialMultiplyRecognize 5510b57cec5SDimitry Andric // 5520b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 5530b57cec5SDimitry Andric 5540b57cec5SDimitry Andric namespace { 5550b57cec5SDimitry Andric 5560b57cec5SDimitry Andric class PolynomialMultiplyRecognize { 5570b57cec5SDimitry Andric public: 5580b57cec5SDimitry Andric explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl, 5590b57cec5SDimitry Andric const DominatorTree &dt, const TargetLibraryInfo &tli, 5600b57cec5SDimitry Andric ScalarEvolution &se) 5610b57cec5SDimitry Andric : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {} 5620b57cec5SDimitry Andric 5630b57cec5SDimitry Andric bool recognize(); 5640b57cec5SDimitry Andric 5650b57cec5SDimitry Andric private: 5660b57cec5SDimitry Andric using ValueSeq = SetVector<Value *>; 5670b57cec5SDimitry Andric 5680b57cec5SDimitry Andric IntegerType *getPmpyType() const { 5690b57cec5SDimitry Andric LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext(); 5700b57cec5SDimitry Andric return IntegerType::get(Ctx, 32); 5710b57cec5SDimitry Andric } 5720b57cec5SDimitry Andric 5730b57cec5SDimitry Andric bool isPromotableTo(Value *V, IntegerType *Ty); 5740b57cec5SDimitry Andric void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB); 5750b57cec5SDimitry Andric bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB); 5760b57cec5SDimitry Andric 5770b57cec5SDimitry Andric Value *getCountIV(BasicBlock *BB); 5780b57cec5SDimitry Andric bool findCycle(Value *Out, Value *In, ValueSeq &Cycle); 5790b57cec5SDimitry Andric void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early, 5800b57cec5SDimitry Andric ValueSeq &Late); 5810b57cec5SDimitry Andric bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late); 5820b57cec5SDimitry Andric bool commutesWithShift(Instruction *I); 5830b57cec5SDimitry Andric bool highBitsAreZero(Value *V, unsigned IterCount); 5840b57cec5SDimitry Andric bool keepsHighBitsZero(Value *V, unsigned IterCount); 5850b57cec5SDimitry Andric bool isOperandShifted(Instruction *I, Value *Op); 5860b57cec5SDimitry Andric bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB, 5870b57cec5SDimitry Andric unsigned IterCount); 5880b57cec5SDimitry Andric void cleanupLoopBody(BasicBlock *LoopB); 5890b57cec5SDimitry Andric 5900b57cec5SDimitry Andric struct ParsedValues { 5910b57cec5SDimitry Andric ParsedValues() = default; 5920b57cec5SDimitry Andric 5930b57cec5SDimitry Andric Value *M = nullptr; 5940b57cec5SDimitry Andric Value *P = nullptr; 5950b57cec5SDimitry Andric Value *Q = nullptr; 5960b57cec5SDimitry Andric Value *R = nullptr; 5970b57cec5SDimitry Andric Value *X = nullptr; 5980b57cec5SDimitry Andric Instruction *Res = nullptr; 5990b57cec5SDimitry Andric unsigned IterCount = 0; 6000b57cec5SDimitry Andric bool Left = false; 6010b57cec5SDimitry Andric bool Inv = false; 6020b57cec5SDimitry Andric }; 6030b57cec5SDimitry Andric 6040b57cec5SDimitry Andric bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV); 6050b57cec5SDimitry Andric bool matchRightShift(SelectInst *SelI, ParsedValues &PV); 6060b57cec5SDimitry Andric bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB, 6070b57cec5SDimitry Andric Value *CIV, ParsedValues &PV, bool PreScan); 6080b57cec5SDimitry Andric unsigned getInverseMxN(unsigned QP); 6090b57cec5SDimitry Andric Value *generate(BasicBlock::iterator At, ParsedValues &PV); 6100b57cec5SDimitry Andric 6110b57cec5SDimitry Andric void setupPreSimplifier(Simplifier &S); 6120b57cec5SDimitry Andric void setupPostSimplifier(Simplifier &S); 6130b57cec5SDimitry Andric 6140b57cec5SDimitry Andric Loop *CurLoop; 6150b57cec5SDimitry Andric const DataLayout &DL; 6160b57cec5SDimitry Andric const DominatorTree &DT; 6170b57cec5SDimitry Andric const TargetLibraryInfo &TLI; 6180b57cec5SDimitry Andric ScalarEvolution &SE; 6190b57cec5SDimitry Andric }; 6200b57cec5SDimitry Andric 6210b57cec5SDimitry Andric } // end anonymous namespace 6220b57cec5SDimitry Andric 6230b57cec5SDimitry Andric Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) { 6240b57cec5SDimitry Andric pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 6250b57cec5SDimitry Andric if (std::distance(PI, PE) != 2) 6260b57cec5SDimitry Andric return nullptr; 6270b57cec5SDimitry Andric BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI; 6280b57cec5SDimitry Andric 6290b57cec5SDimitry Andric for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) { 6300b57cec5SDimitry Andric auto *PN = cast<PHINode>(I); 6310b57cec5SDimitry Andric Value *InitV = PN->getIncomingValueForBlock(PB); 6320b57cec5SDimitry Andric if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero()) 6330b57cec5SDimitry Andric continue; 6340b57cec5SDimitry Andric Value *IterV = PN->getIncomingValueForBlock(BB); 6350b57cec5SDimitry Andric auto *BO = dyn_cast<BinaryOperator>(IterV); 636*8bcb0991SDimitry Andric if (!BO) 637*8bcb0991SDimitry Andric continue; 6380b57cec5SDimitry Andric if (BO->getOpcode() != Instruction::Add) 6390b57cec5SDimitry Andric continue; 6400b57cec5SDimitry Andric Value *IncV = nullptr; 6410b57cec5SDimitry Andric if (BO->getOperand(0) == PN) 6420b57cec5SDimitry Andric IncV = BO->getOperand(1); 6430b57cec5SDimitry Andric else if (BO->getOperand(1) == PN) 6440b57cec5SDimitry Andric IncV = BO->getOperand(0); 6450b57cec5SDimitry Andric if (IncV == nullptr) 6460b57cec5SDimitry Andric continue; 6470b57cec5SDimitry Andric 6480b57cec5SDimitry Andric if (auto *T = dyn_cast<ConstantInt>(IncV)) 6490b57cec5SDimitry Andric if (T->getZExtValue() == 1) 6500b57cec5SDimitry Andric return PN; 6510b57cec5SDimitry Andric } 6520b57cec5SDimitry Andric return nullptr; 6530b57cec5SDimitry Andric } 6540b57cec5SDimitry Andric 6550b57cec5SDimitry Andric static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) { 6560b57cec5SDimitry Andric for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) { 6570b57cec5SDimitry Andric Use &TheUse = UI.getUse(); 6580b57cec5SDimitry Andric ++UI; 6590b57cec5SDimitry Andric if (auto *II = dyn_cast<Instruction>(TheUse.getUser())) 6600b57cec5SDimitry Andric if (BB == II->getParent()) 6610b57cec5SDimitry Andric II->replaceUsesOfWith(I, J); 6620b57cec5SDimitry Andric } 6630b57cec5SDimitry Andric } 6640b57cec5SDimitry Andric 6650b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI, 6660b57cec5SDimitry Andric Value *CIV, ParsedValues &PV) { 6670b57cec5SDimitry Andric // Match the following: 6680b57cec5SDimitry Andric // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R 6690b57cec5SDimitry Andric // select (X & (1 << i)) == 0 ? R : R ^ (Q << i) 6700b57cec5SDimitry Andric // The condition may also check for equality with the masked value, i.e 6710b57cec5SDimitry Andric // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R 6720b57cec5SDimitry Andric // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i); 6730b57cec5SDimitry Andric 6740b57cec5SDimitry Andric Value *CondV = SelI->getCondition(); 6750b57cec5SDimitry Andric Value *TrueV = SelI->getTrueValue(); 6760b57cec5SDimitry Andric Value *FalseV = SelI->getFalseValue(); 6770b57cec5SDimitry Andric 6780b57cec5SDimitry Andric using namespace PatternMatch; 6790b57cec5SDimitry Andric 6800b57cec5SDimitry Andric CmpInst::Predicate P; 6810b57cec5SDimitry Andric Value *A = nullptr, *B = nullptr, *C = nullptr; 6820b57cec5SDimitry Andric 6830b57cec5SDimitry Andric if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) && 6840b57cec5SDimitry Andric !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B))))) 6850b57cec5SDimitry Andric return false; 6860b57cec5SDimitry Andric if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) 6870b57cec5SDimitry Andric return false; 6880b57cec5SDimitry Andric // Matched: select (A & B) == C ? ... : ... 6890b57cec5SDimitry Andric // select (A & B) != C ? ... : ... 6900b57cec5SDimitry Andric 6910b57cec5SDimitry Andric Value *X = nullptr, *Sh1 = nullptr; 6920b57cec5SDimitry Andric // Check (A & B) for (X & (1 << i)): 6930b57cec5SDimitry Andric if (match(A, m_Shl(m_One(), m_Specific(CIV)))) { 6940b57cec5SDimitry Andric Sh1 = A; 6950b57cec5SDimitry Andric X = B; 6960b57cec5SDimitry Andric } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) { 6970b57cec5SDimitry Andric Sh1 = B; 6980b57cec5SDimitry Andric X = A; 6990b57cec5SDimitry Andric } else { 7000b57cec5SDimitry Andric // TODO: Could also check for an induction variable containing single 7010b57cec5SDimitry Andric // bit shifted left by 1 in each iteration. 7020b57cec5SDimitry Andric return false; 7030b57cec5SDimitry Andric } 7040b57cec5SDimitry Andric 7050b57cec5SDimitry Andric bool TrueIfZero; 7060b57cec5SDimitry Andric 7070b57cec5SDimitry Andric // Check C against the possible values for comparison: 0 and (1 << i): 7080b57cec5SDimitry Andric if (match(C, m_Zero())) 7090b57cec5SDimitry Andric TrueIfZero = (P == CmpInst::ICMP_EQ); 7100b57cec5SDimitry Andric else if (C == Sh1) 7110b57cec5SDimitry Andric TrueIfZero = (P == CmpInst::ICMP_NE); 7120b57cec5SDimitry Andric else 7130b57cec5SDimitry Andric return false; 7140b57cec5SDimitry Andric 7150b57cec5SDimitry Andric // So far, matched: 7160b57cec5SDimitry Andric // select (X & (1 << i)) ? ... : ... 7170b57cec5SDimitry Andric // including variations of the check against zero/non-zero value. 7180b57cec5SDimitry Andric 7190b57cec5SDimitry Andric Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr; 7200b57cec5SDimitry Andric if (TrueIfZero) { 7210b57cec5SDimitry Andric ShouldSameV = TrueV; 7220b57cec5SDimitry Andric ShouldXoredV = FalseV; 7230b57cec5SDimitry Andric } else { 7240b57cec5SDimitry Andric ShouldSameV = FalseV; 7250b57cec5SDimitry Andric ShouldXoredV = TrueV; 7260b57cec5SDimitry Andric } 7270b57cec5SDimitry Andric 7280b57cec5SDimitry Andric Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr; 7290b57cec5SDimitry Andric Value *T = nullptr; 7300b57cec5SDimitry Andric if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) { 7310b57cec5SDimitry Andric // Matched: select +++ ? ... : Y ^ Z 7320b57cec5SDimitry Andric // select +++ ? Y ^ Z : ... 7330b57cec5SDimitry Andric // where +++ denotes previously checked matches. 7340b57cec5SDimitry Andric if (ShouldSameV == Y) 7350b57cec5SDimitry Andric T = Z; 7360b57cec5SDimitry Andric else if (ShouldSameV == Z) 7370b57cec5SDimitry Andric T = Y; 7380b57cec5SDimitry Andric else 7390b57cec5SDimitry Andric return false; 7400b57cec5SDimitry Andric R = ShouldSameV; 7410b57cec5SDimitry Andric // Matched: select +++ ? R : R ^ T 7420b57cec5SDimitry Andric // select +++ ? R ^ T : R 7430b57cec5SDimitry Andric // depending on TrueIfZero. 7440b57cec5SDimitry Andric 7450b57cec5SDimitry Andric } else if (match(ShouldSameV, m_Zero())) { 7460b57cec5SDimitry Andric // Matched: select +++ ? 0 : ... 7470b57cec5SDimitry Andric // select +++ ? ... : 0 7480b57cec5SDimitry Andric if (!SelI->hasOneUse()) 7490b57cec5SDimitry Andric return false; 7500b57cec5SDimitry Andric T = ShouldXoredV; 7510b57cec5SDimitry Andric // Matched: select +++ ? 0 : T 7520b57cec5SDimitry Andric // select +++ ? T : 0 7530b57cec5SDimitry Andric 7540b57cec5SDimitry Andric Value *U = *SelI->user_begin(); 7550b57cec5SDimitry Andric if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) && 7560b57cec5SDimitry Andric !match(U, m_Xor(m_Value(R), m_Specific(SelI)))) 7570b57cec5SDimitry Andric return false; 7580b57cec5SDimitry Andric // Matched: xor (select +++ ? 0 : T), R 7590b57cec5SDimitry Andric // xor (select +++ ? T : 0), R 7600b57cec5SDimitry Andric } else 7610b57cec5SDimitry Andric return false; 7620b57cec5SDimitry Andric 7630b57cec5SDimitry Andric // The xor input value T is isolated into its own match so that it could 7640b57cec5SDimitry Andric // be checked against an induction variable containing a shifted bit 7650b57cec5SDimitry Andric // (todo). 7660b57cec5SDimitry Andric // For now, check against (Q << i). 7670b57cec5SDimitry Andric if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) && 7680b57cec5SDimitry Andric !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV))))) 7690b57cec5SDimitry Andric return false; 7700b57cec5SDimitry Andric // Matched: select +++ ? R : R ^ (Q << i) 7710b57cec5SDimitry Andric // select +++ ? R ^ (Q << i) : R 7720b57cec5SDimitry Andric 7730b57cec5SDimitry Andric PV.X = X; 7740b57cec5SDimitry Andric PV.Q = Q; 7750b57cec5SDimitry Andric PV.R = R; 7760b57cec5SDimitry Andric PV.Left = true; 7770b57cec5SDimitry Andric return true; 7780b57cec5SDimitry Andric } 7790b57cec5SDimitry Andric 7800b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI, 7810b57cec5SDimitry Andric ParsedValues &PV) { 7820b57cec5SDimitry Andric // Match the following: 7830b57cec5SDimitry Andric // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1) 7840b57cec5SDimitry Andric // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q 7850b57cec5SDimitry Andric // The condition may also check for equality with the masked value, i.e 7860b57cec5SDimitry Andric // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1) 7870b57cec5SDimitry Andric // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q 7880b57cec5SDimitry Andric 7890b57cec5SDimitry Andric Value *CondV = SelI->getCondition(); 7900b57cec5SDimitry Andric Value *TrueV = SelI->getTrueValue(); 7910b57cec5SDimitry Andric Value *FalseV = SelI->getFalseValue(); 7920b57cec5SDimitry Andric 7930b57cec5SDimitry Andric using namespace PatternMatch; 7940b57cec5SDimitry Andric 7950b57cec5SDimitry Andric Value *C = nullptr; 7960b57cec5SDimitry Andric CmpInst::Predicate P; 7970b57cec5SDimitry Andric bool TrueIfZero; 7980b57cec5SDimitry Andric 7990b57cec5SDimitry Andric if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) || 8000b57cec5SDimitry Andric match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) { 8010b57cec5SDimitry Andric if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) 8020b57cec5SDimitry Andric return false; 8030b57cec5SDimitry Andric // Matched: select C == 0 ? ... : ... 8040b57cec5SDimitry Andric // select C != 0 ? ... : ... 8050b57cec5SDimitry Andric TrueIfZero = (P == CmpInst::ICMP_EQ); 8060b57cec5SDimitry Andric } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) || 8070b57cec5SDimitry Andric match(CondV, m_ICmp(P, m_One(), m_Value(C)))) { 8080b57cec5SDimitry Andric if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) 8090b57cec5SDimitry Andric return false; 8100b57cec5SDimitry Andric // Matched: select C == 1 ? ... : ... 8110b57cec5SDimitry Andric // select C != 1 ? ... : ... 8120b57cec5SDimitry Andric TrueIfZero = (P == CmpInst::ICMP_NE); 8130b57cec5SDimitry Andric } else 8140b57cec5SDimitry Andric return false; 8150b57cec5SDimitry Andric 8160b57cec5SDimitry Andric Value *X = nullptr; 8170b57cec5SDimitry Andric if (!match(C, m_And(m_Value(X), m_One())) && 8180b57cec5SDimitry Andric !match(C, m_And(m_One(), m_Value(X)))) 8190b57cec5SDimitry Andric return false; 8200b57cec5SDimitry Andric // Matched: select (X & 1) == +++ ? ... : ... 8210b57cec5SDimitry Andric // select (X & 1) != +++ ? ... : ... 8220b57cec5SDimitry Andric 8230b57cec5SDimitry Andric Value *R = nullptr, *Q = nullptr; 8240b57cec5SDimitry Andric if (TrueIfZero) { 8250b57cec5SDimitry Andric // The select's condition is true if the tested bit is 0. 8260b57cec5SDimitry Andric // TrueV must be the shift, FalseV must be the xor. 8270b57cec5SDimitry Andric if (!match(TrueV, m_LShr(m_Value(R), m_One()))) 8280b57cec5SDimitry Andric return false; 8290b57cec5SDimitry Andric // Matched: select +++ ? (R >> 1) : ... 8300b57cec5SDimitry Andric if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) && 8310b57cec5SDimitry Andric !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV)))) 8320b57cec5SDimitry Andric return false; 8330b57cec5SDimitry Andric // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q 8340b57cec5SDimitry Andric // with commuting ^. 8350b57cec5SDimitry Andric } else { 8360b57cec5SDimitry Andric // The select's condition is true if the tested bit is 1. 8370b57cec5SDimitry Andric // TrueV must be the xor, FalseV must be the shift. 8380b57cec5SDimitry Andric if (!match(FalseV, m_LShr(m_Value(R), m_One()))) 8390b57cec5SDimitry Andric return false; 8400b57cec5SDimitry Andric // Matched: select +++ ? ... : (R >> 1) 8410b57cec5SDimitry Andric if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) && 8420b57cec5SDimitry Andric !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV)))) 8430b57cec5SDimitry Andric return false; 8440b57cec5SDimitry Andric // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1) 8450b57cec5SDimitry Andric // with commuting ^. 8460b57cec5SDimitry Andric } 8470b57cec5SDimitry Andric 8480b57cec5SDimitry Andric PV.X = X; 8490b57cec5SDimitry Andric PV.Q = Q; 8500b57cec5SDimitry Andric PV.R = R; 8510b57cec5SDimitry Andric PV.Left = false; 8520b57cec5SDimitry Andric return true; 8530b57cec5SDimitry Andric } 8540b57cec5SDimitry Andric 8550b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI, 8560b57cec5SDimitry Andric BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV, 8570b57cec5SDimitry Andric bool PreScan) { 8580b57cec5SDimitry Andric using namespace PatternMatch; 8590b57cec5SDimitry Andric 8600b57cec5SDimitry Andric // The basic pattern for R = P.Q is: 8610b57cec5SDimitry Andric // for i = 0..31 8620b57cec5SDimitry Andric // R = phi (0, R') 8630b57cec5SDimitry Andric // if (P & (1 << i)) ; test-bit(P, i) 8640b57cec5SDimitry Andric // R' = R ^ (Q << i) 8650b57cec5SDimitry Andric // 8660b57cec5SDimitry Andric // Similarly, the basic pattern for R = (P/Q).Q - P 8670b57cec5SDimitry Andric // for i = 0..31 8680b57cec5SDimitry Andric // R = phi(P, R') 8690b57cec5SDimitry Andric // if (R & (1 << i)) 8700b57cec5SDimitry Andric // R' = R ^ (Q << i) 8710b57cec5SDimitry Andric 8720b57cec5SDimitry Andric // There exist idioms, where instead of Q being shifted left, P is shifted 8730b57cec5SDimitry Andric // right. This produces a result that is shifted right by 32 bits (the 8740b57cec5SDimitry Andric // non-shifted result is 64-bit). 8750b57cec5SDimitry Andric // 8760b57cec5SDimitry Andric // For R = P.Q, this would be: 8770b57cec5SDimitry Andric // for i = 0..31 8780b57cec5SDimitry Andric // R = phi (0, R') 8790b57cec5SDimitry Andric // if ((P >> i) & 1) 8800b57cec5SDimitry Andric // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must 8810b57cec5SDimitry Andric // else ; be shifted by 1, not i. 8820b57cec5SDimitry Andric // R' = R >> 1 8830b57cec5SDimitry Andric // 8840b57cec5SDimitry Andric // And for the inverse: 8850b57cec5SDimitry Andric // for i = 0..31 8860b57cec5SDimitry Andric // R = phi (P, R') 8870b57cec5SDimitry Andric // if (R & 1) 8880b57cec5SDimitry Andric // R' = (R >> 1) ^ Q 8890b57cec5SDimitry Andric // else 8900b57cec5SDimitry Andric // R' = R >> 1 8910b57cec5SDimitry Andric 8920b57cec5SDimitry Andric // The left-shifting idioms share the same pattern: 8930b57cec5SDimitry Andric // select (X & (1 << i)) ? R ^ (Q << i) : R 8940b57cec5SDimitry Andric // Similarly for right-shifting idioms: 8950b57cec5SDimitry Andric // select (X & 1) ? (R >> 1) ^ Q 8960b57cec5SDimitry Andric 8970b57cec5SDimitry Andric if (matchLeftShift(SelI, CIV, PV)) { 8980b57cec5SDimitry Andric // If this is a pre-scan, getting this far is sufficient. 8990b57cec5SDimitry Andric if (PreScan) 9000b57cec5SDimitry Andric return true; 9010b57cec5SDimitry Andric 9020b57cec5SDimitry Andric // Need to make sure that the SelI goes back into R. 9030b57cec5SDimitry Andric auto *RPhi = dyn_cast<PHINode>(PV.R); 9040b57cec5SDimitry Andric if (!RPhi) 9050b57cec5SDimitry Andric return false; 9060b57cec5SDimitry Andric if (SelI != RPhi->getIncomingValueForBlock(LoopB)) 9070b57cec5SDimitry Andric return false; 9080b57cec5SDimitry Andric PV.Res = SelI; 9090b57cec5SDimitry Andric 9100b57cec5SDimitry Andric // If X is loop invariant, it must be the input polynomial, and the 9110b57cec5SDimitry Andric // idiom is the basic polynomial multiply. 9120b57cec5SDimitry Andric if (CurLoop->isLoopInvariant(PV.X)) { 9130b57cec5SDimitry Andric PV.P = PV.X; 9140b57cec5SDimitry Andric PV.Inv = false; 9150b57cec5SDimitry Andric } else { 9160b57cec5SDimitry Andric // X is not loop invariant. If X == R, this is the inverse pmpy. 9170b57cec5SDimitry Andric // Otherwise, check for an xor with an invariant value. If the 9180b57cec5SDimitry Andric // variable argument to the xor is R, then this is still a valid 9190b57cec5SDimitry Andric // inverse pmpy. 9200b57cec5SDimitry Andric PV.Inv = true; 9210b57cec5SDimitry Andric if (PV.X != PV.R) { 9220b57cec5SDimitry Andric Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr; 9230b57cec5SDimitry Andric if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2)))) 9240b57cec5SDimitry Andric return false; 9250b57cec5SDimitry Andric auto *I1 = dyn_cast<Instruction>(X1); 9260b57cec5SDimitry Andric auto *I2 = dyn_cast<Instruction>(X2); 9270b57cec5SDimitry Andric if (!I1 || I1->getParent() != LoopB) { 9280b57cec5SDimitry Andric Var = X2; 9290b57cec5SDimitry Andric Inv = X1; 9300b57cec5SDimitry Andric } else if (!I2 || I2->getParent() != LoopB) { 9310b57cec5SDimitry Andric Var = X1; 9320b57cec5SDimitry Andric Inv = X2; 9330b57cec5SDimitry Andric } else 9340b57cec5SDimitry Andric return false; 9350b57cec5SDimitry Andric if (Var != PV.R) 9360b57cec5SDimitry Andric return false; 9370b57cec5SDimitry Andric PV.M = Inv; 9380b57cec5SDimitry Andric } 9390b57cec5SDimitry Andric // The input polynomial P still needs to be determined. It will be 9400b57cec5SDimitry Andric // the entry value of R. 9410b57cec5SDimitry Andric Value *EntryP = RPhi->getIncomingValueForBlock(PrehB); 9420b57cec5SDimitry Andric PV.P = EntryP; 9430b57cec5SDimitry Andric } 9440b57cec5SDimitry Andric 9450b57cec5SDimitry Andric return true; 9460b57cec5SDimitry Andric } 9470b57cec5SDimitry Andric 9480b57cec5SDimitry Andric if (matchRightShift(SelI, PV)) { 9490b57cec5SDimitry Andric // If this is an inverse pattern, the Q polynomial must be known at 9500b57cec5SDimitry Andric // compile time. 9510b57cec5SDimitry Andric if (PV.Inv && !isa<ConstantInt>(PV.Q)) 9520b57cec5SDimitry Andric return false; 9530b57cec5SDimitry Andric if (PreScan) 9540b57cec5SDimitry Andric return true; 9550b57cec5SDimitry Andric // There is no exact matching of right-shift pmpy. 9560b57cec5SDimitry Andric return false; 9570b57cec5SDimitry Andric } 9580b57cec5SDimitry Andric 9590b57cec5SDimitry Andric return false; 9600b57cec5SDimitry Andric } 9610b57cec5SDimitry Andric 9620b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val, 9630b57cec5SDimitry Andric IntegerType *DestTy) { 9640b57cec5SDimitry Andric IntegerType *T = dyn_cast<IntegerType>(Val->getType()); 9650b57cec5SDimitry Andric if (!T || T->getBitWidth() > DestTy->getBitWidth()) 9660b57cec5SDimitry Andric return false; 9670b57cec5SDimitry Andric if (T->getBitWidth() == DestTy->getBitWidth()) 9680b57cec5SDimitry Andric return true; 9690b57cec5SDimitry Andric // Non-instructions are promotable. The reason why an instruction may not 9700b57cec5SDimitry Andric // be promotable is that it may produce a different result if its operands 9710b57cec5SDimitry Andric // and the result are promoted, for example, it may produce more non-zero 9720b57cec5SDimitry Andric // bits. While it would still be possible to represent the proper result 9730b57cec5SDimitry Andric // in a wider type, it may require adding additional instructions (which 9740b57cec5SDimitry Andric // we don't want to do). 9750b57cec5SDimitry Andric Instruction *In = dyn_cast<Instruction>(Val); 9760b57cec5SDimitry Andric if (!In) 9770b57cec5SDimitry Andric return true; 9780b57cec5SDimitry Andric // The bitwidth of the source type is smaller than the destination. 9790b57cec5SDimitry Andric // Check if the individual operation can be promoted. 9800b57cec5SDimitry Andric switch (In->getOpcode()) { 9810b57cec5SDimitry Andric case Instruction::PHI: 9820b57cec5SDimitry Andric case Instruction::ZExt: 9830b57cec5SDimitry Andric case Instruction::And: 9840b57cec5SDimitry Andric case Instruction::Or: 9850b57cec5SDimitry Andric case Instruction::Xor: 9860b57cec5SDimitry Andric case Instruction::LShr: // Shift right is ok. 9870b57cec5SDimitry Andric case Instruction::Select: 9880b57cec5SDimitry Andric case Instruction::Trunc: 9890b57cec5SDimitry Andric return true; 9900b57cec5SDimitry Andric case Instruction::ICmp: 9910b57cec5SDimitry Andric if (CmpInst *CI = cast<CmpInst>(In)) 9920b57cec5SDimitry Andric return CI->isEquality() || CI->isUnsigned(); 9930b57cec5SDimitry Andric llvm_unreachable("Cast failed unexpectedly"); 9940b57cec5SDimitry Andric case Instruction::Add: 9950b57cec5SDimitry Andric return In->hasNoSignedWrap() && In->hasNoUnsignedWrap(); 9960b57cec5SDimitry Andric } 9970b57cec5SDimitry Andric return false; 9980b57cec5SDimitry Andric } 9990b57cec5SDimitry Andric 10000b57cec5SDimitry Andric void PolynomialMultiplyRecognize::promoteTo(Instruction *In, 10010b57cec5SDimitry Andric IntegerType *DestTy, BasicBlock *LoopB) { 10020b57cec5SDimitry Andric Type *OrigTy = In->getType(); 10030b57cec5SDimitry Andric assert(!OrigTy->isVoidTy() && "Invalid instruction to promote"); 10040b57cec5SDimitry Andric 10050b57cec5SDimitry Andric // Leave boolean values alone. 10060b57cec5SDimitry Andric if (!In->getType()->isIntegerTy(1)) 10070b57cec5SDimitry Andric In->mutateType(DestTy); 10080b57cec5SDimitry Andric unsigned DestBW = DestTy->getBitWidth(); 10090b57cec5SDimitry Andric 10100b57cec5SDimitry Andric // Handle PHIs. 10110b57cec5SDimitry Andric if (PHINode *P = dyn_cast<PHINode>(In)) { 10120b57cec5SDimitry Andric unsigned N = P->getNumIncomingValues(); 10130b57cec5SDimitry Andric for (unsigned i = 0; i != N; ++i) { 10140b57cec5SDimitry Andric BasicBlock *InB = P->getIncomingBlock(i); 10150b57cec5SDimitry Andric if (InB == LoopB) 10160b57cec5SDimitry Andric continue; 10170b57cec5SDimitry Andric Value *InV = P->getIncomingValue(i); 10180b57cec5SDimitry Andric IntegerType *Ty = cast<IntegerType>(InV->getType()); 10190b57cec5SDimitry Andric // Do not promote values in PHI nodes of type i1. 10200b57cec5SDimitry Andric if (Ty != P->getType()) { 10210b57cec5SDimitry Andric // If the value type does not match the PHI type, the PHI type 10220b57cec5SDimitry Andric // must have been promoted. 10230b57cec5SDimitry Andric assert(Ty->getBitWidth() < DestBW); 10240b57cec5SDimitry Andric InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy); 10250b57cec5SDimitry Andric P->setIncomingValue(i, InV); 10260b57cec5SDimitry Andric } 10270b57cec5SDimitry Andric } 10280b57cec5SDimitry Andric } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) { 10290b57cec5SDimitry Andric Value *Op = Z->getOperand(0); 10300b57cec5SDimitry Andric if (Op->getType() == Z->getType()) 10310b57cec5SDimitry Andric Z->replaceAllUsesWith(Op); 10320b57cec5SDimitry Andric Z->eraseFromParent(); 10330b57cec5SDimitry Andric return; 10340b57cec5SDimitry Andric } 10350b57cec5SDimitry Andric if (TruncInst *T = dyn_cast<TruncInst>(In)) { 10360b57cec5SDimitry Andric IntegerType *TruncTy = cast<IntegerType>(OrigTy); 10370b57cec5SDimitry Andric Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1); 10380b57cec5SDimitry Andric Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask); 10390b57cec5SDimitry Andric T->replaceAllUsesWith(And); 10400b57cec5SDimitry Andric T->eraseFromParent(); 10410b57cec5SDimitry Andric return; 10420b57cec5SDimitry Andric } 10430b57cec5SDimitry Andric 10440b57cec5SDimitry Andric // Promote immediates. 10450b57cec5SDimitry Andric for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) { 10460b57cec5SDimitry Andric if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i))) 10470b57cec5SDimitry Andric if (CI->getType()->getBitWidth() < DestBW) 10480b57cec5SDimitry Andric In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue())); 10490b57cec5SDimitry Andric } 10500b57cec5SDimitry Andric } 10510b57cec5SDimitry Andric 10520b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB, 10530b57cec5SDimitry Andric BasicBlock *ExitB) { 10540b57cec5SDimitry Andric assert(LoopB); 10550b57cec5SDimitry Andric // Skip loops where the exit block has more than one predecessor. The values 10560b57cec5SDimitry Andric // coming from the loop block will be promoted to another type, and so the 10570b57cec5SDimitry Andric // values coming into the exit block from other predecessors would also have 10580b57cec5SDimitry Andric // to be promoted. 10590b57cec5SDimitry Andric if (!ExitB || (ExitB->getSinglePredecessor() != LoopB)) 10600b57cec5SDimitry Andric return false; 10610b57cec5SDimitry Andric IntegerType *DestTy = getPmpyType(); 10620b57cec5SDimitry Andric // Check if the exit values have types that are no wider than the type 10630b57cec5SDimitry Andric // that we want to promote to. 10640b57cec5SDimitry Andric unsigned DestBW = DestTy->getBitWidth(); 10650b57cec5SDimitry Andric for (PHINode &P : ExitB->phis()) { 10660b57cec5SDimitry Andric if (P.getNumIncomingValues() != 1) 10670b57cec5SDimitry Andric return false; 10680b57cec5SDimitry Andric assert(P.getIncomingBlock(0) == LoopB); 10690b57cec5SDimitry Andric IntegerType *T = dyn_cast<IntegerType>(P.getType()); 10700b57cec5SDimitry Andric if (!T || T->getBitWidth() > DestBW) 10710b57cec5SDimitry Andric return false; 10720b57cec5SDimitry Andric } 10730b57cec5SDimitry Andric 10740b57cec5SDimitry Andric // Check all instructions in the loop. 10750b57cec5SDimitry Andric for (Instruction &In : *LoopB) 10760b57cec5SDimitry Andric if (!In.isTerminator() && !isPromotableTo(&In, DestTy)) 10770b57cec5SDimitry Andric return false; 10780b57cec5SDimitry Andric 10790b57cec5SDimitry Andric // Perform the promotion. 10800b57cec5SDimitry Andric std::vector<Instruction*> LoopIns; 10810b57cec5SDimitry Andric std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns), 10820b57cec5SDimitry Andric [](Instruction &In) { return &In; }); 10830b57cec5SDimitry Andric for (Instruction *In : LoopIns) 10840b57cec5SDimitry Andric if (!In->isTerminator()) 10850b57cec5SDimitry Andric promoteTo(In, DestTy, LoopB); 10860b57cec5SDimitry Andric 10870b57cec5SDimitry Andric // Fix up the PHI nodes in the exit block. 10880b57cec5SDimitry Andric Instruction *EndI = ExitB->getFirstNonPHI(); 10890b57cec5SDimitry Andric BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end(); 10900b57cec5SDimitry Andric for (auto I = ExitB->begin(); I != End; ++I) { 10910b57cec5SDimitry Andric PHINode *P = dyn_cast<PHINode>(I); 10920b57cec5SDimitry Andric if (!P) 10930b57cec5SDimitry Andric break; 10940b57cec5SDimitry Andric Type *Ty0 = P->getIncomingValue(0)->getType(); 10950b57cec5SDimitry Andric Type *PTy = P->getType(); 10960b57cec5SDimitry Andric if (PTy != Ty0) { 10970b57cec5SDimitry Andric assert(Ty0 == DestTy); 10980b57cec5SDimitry Andric // In order to create the trunc, P must have the promoted type. 10990b57cec5SDimitry Andric P->mutateType(Ty0); 11000b57cec5SDimitry Andric Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy); 11010b57cec5SDimitry Andric // In order for the RAUW to work, the types of P and T must match. 11020b57cec5SDimitry Andric P->mutateType(PTy); 11030b57cec5SDimitry Andric P->replaceAllUsesWith(T); 11040b57cec5SDimitry Andric // Final update of the P's type. 11050b57cec5SDimitry Andric P->mutateType(Ty0); 11060b57cec5SDimitry Andric cast<Instruction>(T)->setOperand(0, P); 11070b57cec5SDimitry Andric } 11080b57cec5SDimitry Andric } 11090b57cec5SDimitry Andric 11100b57cec5SDimitry Andric return true; 11110b57cec5SDimitry Andric } 11120b57cec5SDimitry Andric 11130b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In, 11140b57cec5SDimitry Andric ValueSeq &Cycle) { 11150b57cec5SDimitry Andric // Out = ..., In, ... 11160b57cec5SDimitry Andric if (Out == In) 11170b57cec5SDimitry Andric return true; 11180b57cec5SDimitry Andric 11190b57cec5SDimitry Andric auto *BB = cast<Instruction>(Out)->getParent(); 11200b57cec5SDimitry Andric bool HadPhi = false; 11210b57cec5SDimitry Andric 11220b57cec5SDimitry Andric for (auto U : Out->users()) { 11230b57cec5SDimitry Andric auto *I = dyn_cast<Instruction>(&*U); 11240b57cec5SDimitry Andric if (I == nullptr || I->getParent() != BB) 11250b57cec5SDimitry Andric continue; 11260b57cec5SDimitry Andric // Make sure that there are no multi-iteration cycles, e.g. 11270b57cec5SDimitry Andric // p1 = phi(p2) 11280b57cec5SDimitry Andric // p2 = phi(p1) 11290b57cec5SDimitry Andric // The cycle p1->p2->p1 would span two loop iterations. 11300b57cec5SDimitry Andric // Check that there is only one phi in the cycle. 11310b57cec5SDimitry Andric bool IsPhi = isa<PHINode>(I); 11320b57cec5SDimitry Andric if (IsPhi && HadPhi) 11330b57cec5SDimitry Andric return false; 11340b57cec5SDimitry Andric HadPhi |= IsPhi; 11350b57cec5SDimitry Andric if (Cycle.count(I)) 11360b57cec5SDimitry Andric return false; 11370b57cec5SDimitry Andric Cycle.insert(I); 11380b57cec5SDimitry Andric if (findCycle(I, In, Cycle)) 11390b57cec5SDimitry Andric break; 11400b57cec5SDimitry Andric Cycle.remove(I); 11410b57cec5SDimitry Andric } 11420b57cec5SDimitry Andric return !Cycle.empty(); 11430b57cec5SDimitry Andric } 11440b57cec5SDimitry Andric 11450b57cec5SDimitry Andric void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI, 11460b57cec5SDimitry Andric ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) { 11470b57cec5SDimitry Andric // All the values in the cycle that are between the phi node and the 11480b57cec5SDimitry Andric // divider instruction will be classified as "early", all other values 11490b57cec5SDimitry Andric // will be "late". 11500b57cec5SDimitry Andric 11510b57cec5SDimitry Andric bool IsE = true; 11520b57cec5SDimitry Andric unsigned I, N = Cycle.size(); 11530b57cec5SDimitry Andric for (I = 0; I < N; ++I) { 11540b57cec5SDimitry Andric Value *V = Cycle[I]; 11550b57cec5SDimitry Andric if (DivI == V) 11560b57cec5SDimitry Andric IsE = false; 11570b57cec5SDimitry Andric else if (!isa<PHINode>(V)) 11580b57cec5SDimitry Andric continue; 11590b57cec5SDimitry Andric // Stop if found either. 11600b57cec5SDimitry Andric break; 11610b57cec5SDimitry Andric } 11620b57cec5SDimitry Andric // "I" is the index of either DivI or the phi node, whichever was first. 11630b57cec5SDimitry Andric // "E" is "false" or "true" respectively. 11640b57cec5SDimitry Andric ValueSeq &First = !IsE ? Early : Late; 11650b57cec5SDimitry Andric for (unsigned J = 0; J < I; ++J) 11660b57cec5SDimitry Andric First.insert(Cycle[J]); 11670b57cec5SDimitry Andric 11680b57cec5SDimitry Andric ValueSeq &Second = IsE ? Early : Late; 11690b57cec5SDimitry Andric Second.insert(Cycle[I]); 11700b57cec5SDimitry Andric for (++I; I < N; ++I) { 11710b57cec5SDimitry Andric Value *V = Cycle[I]; 11720b57cec5SDimitry Andric if (DivI == V || isa<PHINode>(V)) 11730b57cec5SDimitry Andric break; 11740b57cec5SDimitry Andric Second.insert(V); 11750b57cec5SDimitry Andric } 11760b57cec5SDimitry Andric 11770b57cec5SDimitry Andric for (; I < N; ++I) 11780b57cec5SDimitry Andric First.insert(Cycle[I]); 11790b57cec5SDimitry Andric } 11800b57cec5SDimitry Andric 11810b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI, 11820b57cec5SDimitry Andric ValueSeq &Early, ValueSeq &Late) { 11830b57cec5SDimitry Andric // Select is an exception, since the condition value does not have to be 11840b57cec5SDimitry Andric // classified in the same way as the true/false values. The true/false 11850b57cec5SDimitry Andric // values do have to be both early or both late. 11860b57cec5SDimitry Andric if (UseI->getOpcode() == Instruction::Select) { 11870b57cec5SDimitry Andric Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2); 11880b57cec5SDimitry Andric if (Early.count(TV) || Early.count(FV)) { 11890b57cec5SDimitry Andric if (Late.count(TV) || Late.count(FV)) 11900b57cec5SDimitry Andric return false; 11910b57cec5SDimitry Andric Early.insert(UseI); 11920b57cec5SDimitry Andric } else if (Late.count(TV) || Late.count(FV)) { 11930b57cec5SDimitry Andric if (Early.count(TV) || Early.count(FV)) 11940b57cec5SDimitry Andric return false; 11950b57cec5SDimitry Andric Late.insert(UseI); 11960b57cec5SDimitry Andric } 11970b57cec5SDimitry Andric return true; 11980b57cec5SDimitry Andric } 11990b57cec5SDimitry Andric 12000b57cec5SDimitry Andric // Not sure what would be the example of this, but the code below relies 12010b57cec5SDimitry Andric // on having at least one operand. 12020b57cec5SDimitry Andric if (UseI->getNumOperands() == 0) 12030b57cec5SDimitry Andric return true; 12040b57cec5SDimitry Andric 12050b57cec5SDimitry Andric bool AE = true, AL = true; 12060b57cec5SDimitry Andric for (auto &I : UseI->operands()) { 12070b57cec5SDimitry Andric if (Early.count(&*I)) 12080b57cec5SDimitry Andric AL = false; 12090b57cec5SDimitry Andric else if (Late.count(&*I)) 12100b57cec5SDimitry Andric AE = false; 12110b57cec5SDimitry Andric } 12120b57cec5SDimitry Andric // If the operands appear "all early" and "all late" at the same time, 12130b57cec5SDimitry Andric // then it means that none of them are actually classified as either. 12140b57cec5SDimitry Andric // This is harmless. 12150b57cec5SDimitry Andric if (AE && AL) 12160b57cec5SDimitry Andric return true; 12170b57cec5SDimitry Andric // Conversely, if they are neither "all early" nor "all late", then 12180b57cec5SDimitry Andric // we have a mixture of early and late operands that is not a known 12190b57cec5SDimitry Andric // exception. 12200b57cec5SDimitry Andric if (!AE && !AL) 12210b57cec5SDimitry Andric return false; 12220b57cec5SDimitry Andric 12230b57cec5SDimitry Andric // Check that we have covered the two special cases. 12240b57cec5SDimitry Andric assert(AE != AL); 12250b57cec5SDimitry Andric 12260b57cec5SDimitry Andric if (AE) 12270b57cec5SDimitry Andric Early.insert(UseI); 12280b57cec5SDimitry Andric else 12290b57cec5SDimitry Andric Late.insert(UseI); 12300b57cec5SDimitry Andric return true; 12310b57cec5SDimitry Andric } 12320b57cec5SDimitry Andric 12330b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) { 12340b57cec5SDimitry Andric switch (I->getOpcode()) { 12350b57cec5SDimitry Andric case Instruction::And: 12360b57cec5SDimitry Andric case Instruction::Or: 12370b57cec5SDimitry Andric case Instruction::Xor: 12380b57cec5SDimitry Andric case Instruction::LShr: 12390b57cec5SDimitry Andric case Instruction::Shl: 12400b57cec5SDimitry Andric case Instruction::Select: 12410b57cec5SDimitry Andric case Instruction::ICmp: 12420b57cec5SDimitry Andric case Instruction::PHI: 12430b57cec5SDimitry Andric break; 12440b57cec5SDimitry Andric default: 12450b57cec5SDimitry Andric return false; 12460b57cec5SDimitry Andric } 12470b57cec5SDimitry Andric return true; 12480b57cec5SDimitry Andric } 12490b57cec5SDimitry Andric 12500b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V, 12510b57cec5SDimitry Andric unsigned IterCount) { 12520b57cec5SDimitry Andric auto *T = dyn_cast<IntegerType>(V->getType()); 12530b57cec5SDimitry Andric if (!T) 12540b57cec5SDimitry Andric return false; 12550b57cec5SDimitry Andric 12560b57cec5SDimitry Andric KnownBits Known(T->getBitWidth()); 12570b57cec5SDimitry Andric computeKnownBits(V, Known, DL); 12580b57cec5SDimitry Andric return Known.countMinLeadingZeros() >= IterCount; 12590b57cec5SDimitry Andric } 12600b57cec5SDimitry Andric 12610b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V, 12620b57cec5SDimitry Andric unsigned IterCount) { 12630b57cec5SDimitry Andric // Assume that all inputs to the value have the high bits zero. 12640b57cec5SDimitry Andric // Check if the value itself preserves the zeros in the high bits. 12650b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(V)) 12660b57cec5SDimitry Andric return C->getValue().countLeadingZeros() >= IterCount; 12670b57cec5SDimitry Andric 12680b57cec5SDimitry Andric if (auto *I = dyn_cast<Instruction>(V)) { 12690b57cec5SDimitry Andric switch (I->getOpcode()) { 12700b57cec5SDimitry Andric case Instruction::And: 12710b57cec5SDimitry Andric case Instruction::Or: 12720b57cec5SDimitry Andric case Instruction::Xor: 12730b57cec5SDimitry Andric case Instruction::LShr: 12740b57cec5SDimitry Andric case Instruction::Select: 12750b57cec5SDimitry Andric case Instruction::ICmp: 12760b57cec5SDimitry Andric case Instruction::PHI: 12770b57cec5SDimitry Andric case Instruction::ZExt: 12780b57cec5SDimitry Andric return true; 12790b57cec5SDimitry Andric } 12800b57cec5SDimitry Andric } 12810b57cec5SDimitry Andric 12820b57cec5SDimitry Andric return false; 12830b57cec5SDimitry Andric } 12840b57cec5SDimitry Andric 12850b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) { 12860b57cec5SDimitry Andric unsigned Opc = I->getOpcode(); 12870b57cec5SDimitry Andric if (Opc == Instruction::Shl || Opc == Instruction::LShr) 12880b57cec5SDimitry Andric return Op != I->getOperand(1); 12890b57cec5SDimitry Andric return true; 12900b57cec5SDimitry Andric } 12910b57cec5SDimitry Andric 12920b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB, 12930b57cec5SDimitry Andric BasicBlock *ExitB, unsigned IterCount) { 12940b57cec5SDimitry Andric Value *CIV = getCountIV(LoopB); 12950b57cec5SDimitry Andric if (CIV == nullptr) 12960b57cec5SDimitry Andric return false; 12970b57cec5SDimitry Andric auto *CIVTy = dyn_cast<IntegerType>(CIV->getType()); 12980b57cec5SDimitry Andric if (CIVTy == nullptr) 12990b57cec5SDimitry Andric return false; 13000b57cec5SDimitry Andric 13010b57cec5SDimitry Andric ValueSeq RShifts; 13020b57cec5SDimitry Andric ValueSeq Early, Late, Cycled; 13030b57cec5SDimitry Andric 13040b57cec5SDimitry Andric // Find all value cycles that contain logical right shifts by 1. 13050b57cec5SDimitry Andric for (Instruction &I : *LoopB) { 13060b57cec5SDimitry Andric using namespace PatternMatch; 13070b57cec5SDimitry Andric 13080b57cec5SDimitry Andric Value *V = nullptr; 13090b57cec5SDimitry Andric if (!match(&I, m_LShr(m_Value(V), m_One()))) 13100b57cec5SDimitry Andric continue; 13110b57cec5SDimitry Andric ValueSeq C; 13120b57cec5SDimitry Andric if (!findCycle(&I, V, C)) 13130b57cec5SDimitry Andric continue; 13140b57cec5SDimitry Andric 13150b57cec5SDimitry Andric // Found a cycle. 13160b57cec5SDimitry Andric C.insert(&I); 13170b57cec5SDimitry Andric classifyCycle(&I, C, Early, Late); 13180b57cec5SDimitry Andric Cycled.insert(C.begin(), C.end()); 13190b57cec5SDimitry Andric RShifts.insert(&I); 13200b57cec5SDimitry Andric } 13210b57cec5SDimitry Andric 13220b57cec5SDimitry Andric // Find the set of all values affected by the shift cycles, i.e. all 13230b57cec5SDimitry Andric // cycled values, and (recursively) all their users. 13240b57cec5SDimitry Andric ValueSeq Users(Cycled.begin(), Cycled.end()); 13250b57cec5SDimitry Andric for (unsigned i = 0; i < Users.size(); ++i) { 13260b57cec5SDimitry Andric Value *V = Users[i]; 13270b57cec5SDimitry Andric if (!isa<IntegerType>(V->getType())) 13280b57cec5SDimitry Andric return false; 13290b57cec5SDimitry Andric auto *R = cast<Instruction>(V); 13300b57cec5SDimitry Andric // If the instruction does not commute with shifts, the loop cannot 13310b57cec5SDimitry Andric // be unshifted. 13320b57cec5SDimitry Andric if (!commutesWithShift(R)) 13330b57cec5SDimitry Andric return false; 13340b57cec5SDimitry Andric for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) { 13350b57cec5SDimitry Andric auto *T = cast<Instruction>(*I); 13360b57cec5SDimitry Andric // Skip users from outside of the loop. They will be handled later. 13370b57cec5SDimitry Andric // Also, skip the right-shifts and phi nodes, since they mix early 13380b57cec5SDimitry Andric // and late values. 13390b57cec5SDimitry Andric if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T)) 13400b57cec5SDimitry Andric continue; 13410b57cec5SDimitry Andric 13420b57cec5SDimitry Andric Users.insert(T); 13430b57cec5SDimitry Andric if (!classifyInst(T, Early, Late)) 13440b57cec5SDimitry Andric return false; 13450b57cec5SDimitry Andric } 13460b57cec5SDimitry Andric } 13470b57cec5SDimitry Andric 13480b57cec5SDimitry Andric if (Users.empty()) 13490b57cec5SDimitry Andric return false; 13500b57cec5SDimitry Andric 13510b57cec5SDimitry Andric // Verify that high bits remain zero. 13520b57cec5SDimitry Andric ValueSeq Internal(Users.begin(), Users.end()); 13530b57cec5SDimitry Andric ValueSeq Inputs; 13540b57cec5SDimitry Andric for (unsigned i = 0; i < Internal.size(); ++i) { 13550b57cec5SDimitry Andric auto *R = dyn_cast<Instruction>(Internal[i]); 13560b57cec5SDimitry Andric if (!R) 13570b57cec5SDimitry Andric continue; 13580b57cec5SDimitry Andric for (Value *Op : R->operands()) { 13590b57cec5SDimitry Andric auto *T = dyn_cast<Instruction>(Op); 13600b57cec5SDimitry Andric if (T && T->getParent() != LoopB) 13610b57cec5SDimitry Andric Inputs.insert(Op); 13620b57cec5SDimitry Andric else 13630b57cec5SDimitry Andric Internal.insert(Op); 13640b57cec5SDimitry Andric } 13650b57cec5SDimitry Andric } 13660b57cec5SDimitry Andric for (Value *V : Inputs) 13670b57cec5SDimitry Andric if (!highBitsAreZero(V, IterCount)) 13680b57cec5SDimitry Andric return false; 13690b57cec5SDimitry Andric for (Value *V : Internal) 13700b57cec5SDimitry Andric if (!keepsHighBitsZero(V, IterCount)) 13710b57cec5SDimitry Andric return false; 13720b57cec5SDimitry Andric 13730b57cec5SDimitry Andric // Finally, the work can be done. Unshift each user. 13740b57cec5SDimitry Andric IRBuilder<> IRB(LoopB); 13750b57cec5SDimitry Andric std::map<Value*,Value*> ShiftMap; 13760b57cec5SDimitry Andric 13770b57cec5SDimitry Andric using CastMapType = std::map<std::pair<Value *, Type *>, Value *>; 13780b57cec5SDimitry Andric 13790b57cec5SDimitry Andric CastMapType CastMap; 13800b57cec5SDimitry Andric 13810b57cec5SDimitry Andric auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V, 13820b57cec5SDimitry Andric IntegerType *Ty) -> Value* { 13830b57cec5SDimitry Andric auto H = CM.find(std::make_pair(V, Ty)); 13840b57cec5SDimitry Andric if (H != CM.end()) 13850b57cec5SDimitry Andric return H->second; 13860b57cec5SDimitry Andric Value *CV = IRB.CreateIntCast(V, Ty, false); 13870b57cec5SDimitry Andric CM.insert(std::make_pair(std::make_pair(V, Ty), CV)); 13880b57cec5SDimitry Andric return CV; 13890b57cec5SDimitry Andric }; 13900b57cec5SDimitry Andric 13910b57cec5SDimitry Andric for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) { 13920b57cec5SDimitry Andric using namespace PatternMatch; 13930b57cec5SDimitry Andric 13940b57cec5SDimitry Andric if (isa<PHINode>(I) || !Users.count(&*I)) 13950b57cec5SDimitry Andric continue; 13960b57cec5SDimitry Andric 13970b57cec5SDimitry Andric // Match lshr x, 1. 13980b57cec5SDimitry Andric Value *V = nullptr; 13990b57cec5SDimitry Andric if (match(&*I, m_LShr(m_Value(V), m_One()))) { 14000b57cec5SDimitry Andric replaceAllUsesOfWithIn(&*I, V, LoopB); 14010b57cec5SDimitry Andric continue; 14020b57cec5SDimitry Andric } 14030b57cec5SDimitry Andric // For each non-cycled operand, replace it with the corresponding 14040b57cec5SDimitry Andric // value shifted left. 14050b57cec5SDimitry Andric for (auto &J : I->operands()) { 14060b57cec5SDimitry Andric Value *Op = J.get(); 14070b57cec5SDimitry Andric if (!isOperandShifted(&*I, Op)) 14080b57cec5SDimitry Andric continue; 14090b57cec5SDimitry Andric if (Users.count(Op)) 14100b57cec5SDimitry Andric continue; 14110b57cec5SDimitry Andric // Skip shifting zeros. 14120b57cec5SDimitry Andric if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 14130b57cec5SDimitry Andric continue; 14140b57cec5SDimitry Andric // Check if we have already generated a shift for this value. 14150b57cec5SDimitry Andric auto F = ShiftMap.find(Op); 14160b57cec5SDimitry Andric Value *W = (F != ShiftMap.end()) ? F->second : nullptr; 14170b57cec5SDimitry Andric if (W == nullptr) { 14180b57cec5SDimitry Andric IRB.SetInsertPoint(&*I); 14190b57cec5SDimitry Andric // First, the shift amount will be CIV or CIV+1, depending on 14200b57cec5SDimitry Andric // whether the value is early or late. Instead of creating CIV+1, 14210b57cec5SDimitry Andric // do a single shift of the value. 14220b57cec5SDimitry Andric Value *ShAmt = CIV, *ShVal = Op; 14230b57cec5SDimitry Andric auto *VTy = cast<IntegerType>(ShVal->getType()); 14240b57cec5SDimitry Andric auto *ATy = cast<IntegerType>(ShAmt->getType()); 14250b57cec5SDimitry Andric if (Late.count(&*I)) 14260b57cec5SDimitry Andric ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1)); 14270b57cec5SDimitry Andric // Second, the types of the shifted value and the shift amount 14280b57cec5SDimitry Andric // must match. 14290b57cec5SDimitry Andric if (VTy != ATy) { 14300b57cec5SDimitry Andric if (VTy->getBitWidth() < ATy->getBitWidth()) 14310b57cec5SDimitry Andric ShVal = upcast(CastMap, IRB, ShVal, ATy); 14320b57cec5SDimitry Andric else 14330b57cec5SDimitry Andric ShAmt = upcast(CastMap, IRB, ShAmt, VTy); 14340b57cec5SDimitry Andric } 14350b57cec5SDimitry Andric // Ready to generate the shift and memoize it. 14360b57cec5SDimitry Andric W = IRB.CreateShl(ShVal, ShAmt); 14370b57cec5SDimitry Andric ShiftMap.insert(std::make_pair(Op, W)); 14380b57cec5SDimitry Andric } 14390b57cec5SDimitry Andric I->replaceUsesOfWith(Op, W); 14400b57cec5SDimitry Andric } 14410b57cec5SDimitry Andric } 14420b57cec5SDimitry Andric 14430b57cec5SDimitry Andric // Update the users outside of the loop to account for having left 14440b57cec5SDimitry Andric // shifts. They would normally be shifted right in the loop, so shift 14450b57cec5SDimitry Andric // them right after the loop exit. 14460b57cec5SDimitry Andric // Take advantage of the loop-closed SSA form, which has all the post- 14470b57cec5SDimitry Andric // loop values in phi nodes. 14480b57cec5SDimitry Andric IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt()); 14490b57cec5SDimitry Andric for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) { 14500b57cec5SDimitry Andric if (!isa<PHINode>(P)) 14510b57cec5SDimitry Andric break; 14520b57cec5SDimitry Andric auto *PN = cast<PHINode>(P); 14530b57cec5SDimitry Andric Value *U = PN->getIncomingValueForBlock(LoopB); 14540b57cec5SDimitry Andric if (!Users.count(U)) 14550b57cec5SDimitry Andric continue; 14560b57cec5SDimitry Andric Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount)); 14570b57cec5SDimitry Andric PN->replaceAllUsesWith(S); 14580b57cec5SDimitry Andric // The above RAUW will create 14590b57cec5SDimitry Andric // S = lshr S, IterCount 14600b57cec5SDimitry Andric // so we need to fix it back into 14610b57cec5SDimitry Andric // S = lshr PN, IterCount 14620b57cec5SDimitry Andric cast<User>(S)->replaceUsesOfWith(S, PN); 14630b57cec5SDimitry Andric } 14640b57cec5SDimitry Andric 14650b57cec5SDimitry Andric return true; 14660b57cec5SDimitry Andric } 14670b57cec5SDimitry Andric 14680b57cec5SDimitry Andric void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) { 14690b57cec5SDimitry Andric for (auto &I : *LoopB) 14700b57cec5SDimitry Andric if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT})) 14710b57cec5SDimitry Andric I.replaceAllUsesWith(SV); 14720b57cec5SDimitry Andric 14730b57cec5SDimitry Andric for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) { 14740b57cec5SDimitry Andric N = std::next(I); 14750b57cec5SDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI); 14760b57cec5SDimitry Andric } 14770b57cec5SDimitry Andric } 14780b57cec5SDimitry Andric 14790b57cec5SDimitry Andric unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) { 14800b57cec5SDimitry Andric // Arrays of coefficients of Q and the inverse, C. 14810b57cec5SDimitry Andric // Q[i] = coefficient at x^i. 14820b57cec5SDimitry Andric std::array<char,32> Q, C; 14830b57cec5SDimitry Andric 14840b57cec5SDimitry Andric for (unsigned i = 0; i < 32; ++i) { 14850b57cec5SDimitry Andric Q[i] = QP & 1; 14860b57cec5SDimitry Andric QP >>= 1; 14870b57cec5SDimitry Andric } 14880b57cec5SDimitry Andric assert(Q[0] == 1); 14890b57cec5SDimitry Andric 14900b57cec5SDimitry Andric // Find C, such that 14910b57cec5SDimitry Andric // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1 14920b57cec5SDimitry Andric // 14930b57cec5SDimitry Andric // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the 14940b57cec5SDimitry Andric // operations * and + are & and ^ respectively. 14950b57cec5SDimitry Andric // 14960b57cec5SDimitry Andric // Find C[i] recursively, by comparing i-th coefficient in the product 14970b57cec5SDimitry Andric // with 0 (or 1 for i=0). 14980b57cec5SDimitry Andric // 14990b57cec5SDimitry Andric // C[0] = 1, since C[0] = Q[0], and Q[0] = 1. 15000b57cec5SDimitry Andric C[0] = 1; 15010b57cec5SDimitry Andric for (unsigned i = 1; i < 32; ++i) { 15020b57cec5SDimitry Andric // Solve for C[i] in: 15030b57cec5SDimitry Andric // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0 15040b57cec5SDimitry Andric // This is equivalent to 15050b57cec5SDimitry Andric // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0 15060b57cec5SDimitry Andric // which is 15070b57cec5SDimitry Andric // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i] 15080b57cec5SDimitry Andric unsigned T = 0; 15090b57cec5SDimitry Andric for (unsigned j = 0; j < i; ++j) 15100b57cec5SDimitry Andric T = T ^ (C[j] & Q[i-j]); 15110b57cec5SDimitry Andric C[i] = T; 15120b57cec5SDimitry Andric } 15130b57cec5SDimitry Andric 15140b57cec5SDimitry Andric unsigned QV = 0; 15150b57cec5SDimitry Andric for (unsigned i = 0; i < 32; ++i) 15160b57cec5SDimitry Andric if (C[i]) 15170b57cec5SDimitry Andric QV |= (1 << i); 15180b57cec5SDimitry Andric 15190b57cec5SDimitry Andric return QV; 15200b57cec5SDimitry Andric } 15210b57cec5SDimitry Andric 15220b57cec5SDimitry Andric Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At, 15230b57cec5SDimitry Andric ParsedValues &PV) { 15240b57cec5SDimitry Andric IRBuilder<> B(&*At); 15250b57cec5SDimitry Andric Module *M = At->getParent()->getParent()->getParent(); 15260b57cec5SDimitry Andric Function *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw); 15270b57cec5SDimitry Andric 15280b57cec5SDimitry Andric Value *P = PV.P, *Q = PV.Q, *P0 = P; 15290b57cec5SDimitry Andric unsigned IC = PV.IterCount; 15300b57cec5SDimitry Andric 15310b57cec5SDimitry Andric if (PV.M != nullptr) 15320b57cec5SDimitry Andric P0 = P = B.CreateXor(P, PV.M); 15330b57cec5SDimitry Andric 15340b57cec5SDimitry Andric // Create a bit mask to clear the high bits beyond IterCount. 15350b57cec5SDimitry Andric auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC)); 15360b57cec5SDimitry Andric 15370b57cec5SDimitry Andric if (PV.IterCount != 32) 15380b57cec5SDimitry Andric P = B.CreateAnd(P, BMI); 15390b57cec5SDimitry Andric 15400b57cec5SDimitry Andric if (PV.Inv) { 15410b57cec5SDimitry Andric auto *QI = dyn_cast<ConstantInt>(PV.Q); 15420b57cec5SDimitry Andric assert(QI && QI->getBitWidth() <= 32); 15430b57cec5SDimitry Andric 15440b57cec5SDimitry Andric // Again, clearing bits beyond IterCount. 15450b57cec5SDimitry Andric unsigned M = (1 << PV.IterCount) - 1; 15460b57cec5SDimitry Andric unsigned Tmp = (QI->getZExtValue() | 1) & M; 15470b57cec5SDimitry Andric unsigned QV = getInverseMxN(Tmp) & M; 15480b57cec5SDimitry Andric auto *QVI = ConstantInt::get(QI->getType(), QV); 15490b57cec5SDimitry Andric P = B.CreateCall(PMF, {P, QVI}); 15500b57cec5SDimitry Andric P = B.CreateTrunc(P, QI->getType()); 15510b57cec5SDimitry Andric if (IC != 32) 15520b57cec5SDimitry Andric P = B.CreateAnd(P, BMI); 15530b57cec5SDimitry Andric } 15540b57cec5SDimitry Andric 15550b57cec5SDimitry Andric Value *R = B.CreateCall(PMF, {P, Q}); 15560b57cec5SDimitry Andric 15570b57cec5SDimitry Andric if (PV.M != nullptr) 15580b57cec5SDimitry Andric R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false)); 15590b57cec5SDimitry Andric 15600b57cec5SDimitry Andric return R; 15610b57cec5SDimitry Andric } 15620b57cec5SDimitry Andric 15630b57cec5SDimitry Andric static bool hasZeroSignBit(const Value *V) { 15640b57cec5SDimitry Andric if (const auto *CI = dyn_cast<const ConstantInt>(V)) 15650b57cec5SDimitry Andric return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0; 15660b57cec5SDimitry Andric const Instruction *I = dyn_cast<const Instruction>(V); 15670b57cec5SDimitry Andric if (!I) 15680b57cec5SDimitry Andric return false; 15690b57cec5SDimitry Andric switch (I->getOpcode()) { 15700b57cec5SDimitry Andric case Instruction::LShr: 15710b57cec5SDimitry Andric if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1))) 15720b57cec5SDimitry Andric return SI->getZExtValue() > 0; 15730b57cec5SDimitry Andric return false; 15740b57cec5SDimitry Andric case Instruction::Or: 15750b57cec5SDimitry Andric case Instruction::Xor: 15760b57cec5SDimitry Andric return hasZeroSignBit(I->getOperand(0)) && 15770b57cec5SDimitry Andric hasZeroSignBit(I->getOperand(1)); 15780b57cec5SDimitry Andric case Instruction::And: 15790b57cec5SDimitry Andric return hasZeroSignBit(I->getOperand(0)) || 15800b57cec5SDimitry Andric hasZeroSignBit(I->getOperand(1)); 15810b57cec5SDimitry Andric } 15820b57cec5SDimitry Andric return false; 15830b57cec5SDimitry Andric } 15840b57cec5SDimitry Andric 15850b57cec5SDimitry Andric void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) { 15860b57cec5SDimitry Andric S.addRule("sink-zext", 15870b57cec5SDimitry Andric // Sink zext past bitwise operations. 15880b57cec5SDimitry Andric [](Instruction *I, LLVMContext &Ctx) -> Value* { 15890b57cec5SDimitry Andric if (I->getOpcode() != Instruction::ZExt) 15900b57cec5SDimitry Andric return nullptr; 15910b57cec5SDimitry Andric Instruction *T = dyn_cast<Instruction>(I->getOperand(0)); 15920b57cec5SDimitry Andric if (!T) 15930b57cec5SDimitry Andric return nullptr; 15940b57cec5SDimitry Andric switch (T->getOpcode()) { 15950b57cec5SDimitry Andric case Instruction::And: 15960b57cec5SDimitry Andric case Instruction::Or: 15970b57cec5SDimitry Andric case Instruction::Xor: 15980b57cec5SDimitry Andric break; 15990b57cec5SDimitry Andric default: 16000b57cec5SDimitry Andric return nullptr; 16010b57cec5SDimitry Andric } 16020b57cec5SDimitry Andric IRBuilder<> B(Ctx); 16030b57cec5SDimitry Andric return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(), 16040b57cec5SDimitry Andric B.CreateZExt(T->getOperand(0), I->getType()), 16050b57cec5SDimitry Andric B.CreateZExt(T->getOperand(1), I->getType())); 16060b57cec5SDimitry Andric }); 16070b57cec5SDimitry Andric S.addRule("xor/and -> and/xor", 16080b57cec5SDimitry Andric // (xor (and x a) (and y a)) -> (and (xor x y) a) 16090b57cec5SDimitry Andric [](Instruction *I, LLVMContext &Ctx) -> Value* { 16100b57cec5SDimitry Andric if (I->getOpcode() != Instruction::Xor) 16110b57cec5SDimitry Andric return nullptr; 16120b57cec5SDimitry Andric Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0)); 16130b57cec5SDimitry Andric Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1)); 16140b57cec5SDimitry Andric if (!And0 || !And1) 16150b57cec5SDimitry Andric return nullptr; 16160b57cec5SDimitry Andric if (And0->getOpcode() != Instruction::And || 16170b57cec5SDimitry Andric And1->getOpcode() != Instruction::And) 16180b57cec5SDimitry Andric return nullptr; 16190b57cec5SDimitry Andric if (And0->getOperand(1) != And1->getOperand(1)) 16200b57cec5SDimitry Andric return nullptr; 16210b57cec5SDimitry Andric IRBuilder<> B(Ctx); 16220b57cec5SDimitry Andric return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)), 16230b57cec5SDimitry Andric And0->getOperand(1)); 16240b57cec5SDimitry Andric }); 16250b57cec5SDimitry Andric S.addRule("sink binop into select", 16260b57cec5SDimitry Andric // (Op (select c x y) z) -> (select c (Op x z) (Op y z)) 16270b57cec5SDimitry Andric // (Op x (select c y z)) -> (select c (Op x y) (Op x z)) 16280b57cec5SDimitry Andric [](Instruction *I, LLVMContext &Ctx) -> Value* { 16290b57cec5SDimitry Andric BinaryOperator *BO = dyn_cast<BinaryOperator>(I); 16300b57cec5SDimitry Andric if (!BO) 16310b57cec5SDimitry Andric return nullptr; 16320b57cec5SDimitry Andric Instruction::BinaryOps Op = BO->getOpcode(); 16330b57cec5SDimitry Andric if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) { 16340b57cec5SDimitry Andric IRBuilder<> B(Ctx); 16350b57cec5SDimitry Andric Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue(); 16360b57cec5SDimitry Andric Value *Z = BO->getOperand(1); 16370b57cec5SDimitry Andric return B.CreateSelect(Sel->getCondition(), 16380b57cec5SDimitry Andric B.CreateBinOp(Op, X, Z), 16390b57cec5SDimitry Andric B.CreateBinOp(Op, Y, Z)); 16400b57cec5SDimitry Andric } 16410b57cec5SDimitry Andric if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) { 16420b57cec5SDimitry Andric IRBuilder<> B(Ctx); 16430b57cec5SDimitry Andric Value *X = BO->getOperand(0); 16440b57cec5SDimitry Andric Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue(); 16450b57cec5SDimitry Andric return B.CreateSelect(Sel->getCondition(), 16460b57cec5SDimitry Andric B.CreateBinOp(Op, X, Y), 16470b57cec5SDimitry Andric B.CreateBinOp(Op, X, Z)); 16480b57cec5SDimitry Andric } 16490b57cec5SDimitry Andric return nullptr; 16500b57cec5SDimitry Andric }); 16510b57cec5SDimitry Andric S.addRule("fold select-select", 16520b57cec5SDimitry Andric // (select c (select c x y) z) -> (select c x z) 16530b57cec5SDimitry Andric // (select c x (select c y z)) -> (select c x z) 16540b57cec5SDimitry Andric [](Instruction *I, LLVMContext &Ctx) -> Value* { 16550b57cec5SDimitry Andric SelectInst *Sel = dyn_cast<SelectInst>(I); 16560b57cec5SDimitry Andric if (!Sel) 16570b57cec5SDimitry Andric return nullptr; 16580b57cec5SDimitry Andric IRBuilder<> B(Ctx); 16590b57cec5SDimitry Andric Value *C = Sel->getCondition(); 16600b57cec5SDimitry Andric if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) { 16610b57cec5SDimitry Andric if (Sel0->getCondition() == C) 16620b57cec5SDimitry Andric return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue()); 16630b57cec5SDimitry Andric } 16640b57cec5SDimitry Andric if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) { 16650b57cec5SDimitry Andric if (Sel1->getCondition() == C) 16660b57cec5SDimitry Andric return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue()); 16670b57cec5SDimitry Andric } 16680b57cec5SDimitry Andric return nullptr; 16690b57cec5SDimitry Andric }); 16700b57cec5SDimitry Andric S.addRule("or-signbit -> xor-signbit", 16710b57cec5SDimitry Andric // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0) 16720b57cec5SDimitry Andric [](Instruction *I, LLVMContext &Ctx) -> Value* { 16730b57cec5SDimitry Andric if (I->getOpcode() != Instruction::Or) 16740b57cec5SDimitry Andric return nullptr; 16750b57cec5SDimitry Andric ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1)); 16760b57cec5SDimitry Andric if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit()) 16770b57cec5SDimitry Andric return nullptr; 16780b57cec5SDimitry Andric if (!hasZeroSignBit(I->getOperand(0))) 16790b57cec5SDimitry Andric return nullptr; 16800b57cec5SDimitry Andric return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb); 16810b57cec5SDimitry Andric }); 16820b57cec5SDimitry Andric S.addRule("sink lshr into binop", 16830b57cec5SDimitry Andric // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c)) 16840b57cec5SDimitry Andric [](Instruction *I, LLVMContext &Ctx) -> Value* { 16850b57cec5SDimitry Andric if (I->getOpcode() != Instruction::LShr) 16860b57cec5SDimitry Andric return nullptr; 16870b57cec5SDimitry Andric BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0)); 16880b57cec5SDimitry Andric if (!BitOp) 16890b57cec5SDimitry Andric return nullptr; 16900b57cec5SDimitry Andric switch (BitOp->getOpcode()) { 16910b57cec5SDimitry Andric case Instruction::And: 16920b57cec5SDimitry Andric case Instruction::Or: 16930b57cec5SDimitry Andric case Instruction::Xor: 16940b57cec5SDimitry Andric break; 16950b57cec5SDimitry Andric default: 16960b57cec5SDimitry Andric return nullptr; 16970b57cec5SDimitry Andric } 16980b57cec5SDimitry Andric IRBuilder<> B(Ctx); 16990b57cec5SDimitry Andric Value *S = I->getOperand(1); 17000b57cec5SDimitry Andric return B.CreateBinOp(BitOp->getOpcode(), 17010b57cec5SDimitry Andric B.CreateLShr(BitOp->getOperand(0), S), 17020b57cec5SDimitry Andric B.CreateLShr(BitOp->getOperand(1), S)); 17030b57cec5SDimitry Andric }); 17040b57cec5SDimitry Andric S.addRule("expose bitop-const", 17050b57cec5SDimitry Andric // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b)) 17060b57cec5SDimitry Andric [](Instruction *I, LLVMContext &Ctx) -> Value* { 17070b57cec5SDimitry Andric auto IsBitOp = [](unsigned Op) -> bool { 17080b57cec5SDimitry Andric switch (Op) { 17090b57cec5SDimitry Andric case Instruction::And: 17100b57cec5SDimitry Andric case Instruction::Or: 17110b57cec5SDimitry Andric case Instruction::Xor: 17120b57cec5SDimitry Andric return true; 17130b57cec5SDimitry Andric } 17140b57cec5SDimitry Andric return false; 17150b57cec5SDimitry Andric }; 17160b57cec5SDimitry Andric BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I); 17170b57cec5SDimitry Andric if (!BitOp1 || !IsBitOp(BitOp1->getOpcode())) 17180b57cec5SDimitry Andric return nullptr; 17190b57cec5SDimitry Andric BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0)); 17200b57cec5SDimitry Andric if (!BitOp2 || !IsBitOp(BitOp2->getOpcode())) 17210b57cec5SDimitry Andric return nullptr; 17220b57cec5SDimitry Andric ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1)); 17230b57cec5SDimitry Andric ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1)); 17240b57cec5SDimitry Andric if (!CA || !CB) 17250b57cec5SDimitry Andric return nullptr; 17260b57cec5SDimitry Andric IRBuilder<> B(Ctx); 17270b57cec5SDimitry Andric Value *X = BitOp2->getOperand(0); 17280b57cec5SDimitry Andric return B.CreateBinOp(BitOp2->getOpcode(), X, 17290b57cec5SDimitry Andric B.CreateBinOp(BitOp1->getOpcode(), CA, CB)); 17300b57cec5SDimitry Andric }); 17310b57cec5SDimitry Andric } 17320b57cec5SDimitry Andric 17330b57cec5SDimitry Andric void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) { 17340b57cec5SDimitry Andric S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a", 17350b57cec5SDimitry Andric [](Instruction *I, LLVMContext &Ctx) -> Value* { 17360b57cec5SDimitry Andric if (I->getOpcode() != Instruction::And) 17370b57cec5SDimitry Andric return nullptr; 17380b57cec5SDimitry Andric Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0)); 17390b57cec5SDimitry Andric ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1)); 17400b57cec5SDimitry Andric if (!Xor || !C0) 17410b57cec5SDimitry Andric return nullptr; 17420b57cec5SDimitry Andric if (Xor->getOpcode() != Instruction::Xor) 17430b57cec5SDimitry Andric return nullptr; 17440b57cec5SDimitry Andric Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0)); 17450b57cec5SDimitry Andric Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1)); 17460b57cec5SDimitry Andric // Pick the first non-null and. 17470b57cec5SDimitry Andric if (!And0 || And0->getOpcode() != Instruction::And) 17480b57cec5SDimitry Andric std::swap(And0, And1); 17490b57cec5SDimitry Andric ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1)); 17500b57cec5SDimitry Andric if (!C1) 17510b57cec5SDimitry Andric return nullptr; 17520b57cec5SDimitry Andric uint32_t V0 = C0->getZExtValue(); 17530b57cec5SDimitry Andric uint32_t V1 = C1->getZExtValue(); 17540b57cec5SDimitry Andric if (V0 != (V0 & V1)) 17550b57cec5SDimitry Andric return nullptr; 17560b57cec5SDimitry Andric IRBuilder<> B(Ctx); 17570b57cec5SDimitry Andric return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0); 17580b57cec5SDimitry Andric }); 17590b57cec5SDimitry Andric } 17600b57cec5SDimitry Andric 17610b57cec5SDimitry Andric bool PolynomialMultiplyRecognize::recognize() { 17620b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n" 17630b57cec5SDimitry Andric << *CurLoop << '\n'); 17640b57cec5SDimitry Andric // Restrictions: 17650b57cec5SDimitry Andric // - The loop must consist of a single block. 17660b57cec5SDimitry Andric // - The iteration count must be known at compile-time. 17670b57cec5SDimitry Andric // - The loop must have an induction variable starting from 0, and 17680b57cec5SDimitry Andric // incremented in each iteration of the loop. 17690b57cec5SDimitry Andric BasicBlock *LoopB = CurLoop->getHeader(); 17700b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB); 17710b57cec5SDimitry Andric 17720b57cec5SDimitry Andric if (LoopB != CurLoop->getLoopLatch()) 17730b57cec5SDimitry Andric return false; 17740b57cec5SDimitry Andric BasicBlock *ExitB = CurLoop->getExitBlock(); 17750b57cec5SDimitry Andric if (ExitB == nullptr) 17760b57cec5SDimitry Andric return false; 17770b57cec5SDimitry Andric BasicBlock *EntryB = CurLoop->getLoopPreheader(); 17780b57cec5SDimitry Andric if (EntryB == nullptr) 17790b57cec5SDimitry Andric return false; 17800b57cec5SDimitry Andric 17810b57cec5SDimitry Andric unsigned IterCount = 0; 17820b57cec5SDimitry Andric const SCEV *CT = SE.getBackedgeTakenCount(CurLoop); 17830b57cec5SDimitry Andric if (isa<SCEVCouldNotCompute>(CT)) 17840b57cec5SDimitry Andric return false; 17850b57cec5SDimitry Andric if (auto *CV = dyn_cast<SCEVConstant>(CT)) 17860b57cec5SDimitry Andric IterCount = CV->getValue()->getZExtValue() + 1; 17870b57cec5SDimitry Andric 17880b57cec5SDimitry Andric Value *CIV = getCountIV(LoopB); 17890b57cec5SDimitry Andric ParsedValues PV; 17900b57cec5SDimitry Andric Simplifier PreSimp; 17910b57cec5SDimitry Andric PV.IterCount = IterCount; 17920b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount 17930b57cec5SDimitry Andric << '\n'); 17940b57cec5SDimitry Andric 17950b57cec5SDimitry Andric setupPreSimplifier(PreSimp); 17960b57cec5SDimitry Andric 17970b57cec5SDimitry Andric // Perform a preliminary scan of select instructions to see if any of them 17980b57cec5SDimitry Andric // looks like a generator of the polynomial multiply steps. Assume that a 17990b57cec5SDimitry Andric // loop can only contain a single transformable operation, so stop the 18000b57cec5SDimitry Andric // traversal after the first reasonable candidate was found. 18010b57cec5SDimitry Andric // XXX: Currently this approach can modify the loop before being 100% sure 18020b57cec5SDimitry Andric // that the transformation can be carried out. 18030b57cec5SDimitry Andric bool FoundPreScan = false; 18040b57cec5SDimitry Andric auto FeedsPHI = [LoopB](const Value *V) -> bool { 18050b57cec5SDimitry Andric for (const Value *U : V->users()) { 18060b57cec5SDimitry Andric if (const auto *P = dyn_cast<const PHINode>(U)) 18070b57cec5SDimitry Andric if (P->getParent() == LoopB) 18080b57cec5SDimitry Andric return true; 18090b57cec5SDimitry Andric } 18100b57cec5SDimitry Andric return false; 18110b57cec5SDimitry Andric }; 18120b57cec5SDimitry Andric for (Instruction &In : *LoopB) { 18130b57cec5SDimitry Andric SelectInst *SI = dyn_cast<SelectInst>(&In); 18140b57cec5SDimitry Andric if (!SI || !FeedsPHI(SI)) 18150b57cec5SDimitry Andric continue; 18160b57cec5SDimitry Andric 18170b57cec5SDimitry Andric Simplifier::Context C(SI); 18180b57cec5SDimitry Andric Value *T = PreSimp.simplify(C); 18190b57cec5SDimitry Andric SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI; 18200b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n'); 18210b57cec5SDimitry Andric if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) { 18220b57cec5SDimitry Andric FoundPreScan = true; 18230b57cec5SDimitry Andric if (SelI != SI) { 18240b57cec5SDimitry Andric Value *NewSel = C.materialize(LoopB, SI->getIterator()); 18250b57cec5SDimitry Andric SI->replaceAllUsesWith(NewSel); 18260b57cec5SDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI); 18270b57cec5SDimitry Andric } 18280b57cec5SDimitry Andric break; 18290b57cec5SDimitry Andric } 18300b57cec5SDimitry Andric } 18310b57cec5SDimitry Andric 18320b57cec5SDimitry Andric if (!FoundPreScan) { 18330b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n"); 18340b57cec5SDimitry Andric return false; 18350b57cec5SDimitry Andric } 18360b57cec5SDimitry Andric 18370b57cec5SDimitry Andric if (!PV.Left) { 18380b57cec5SDimitry Andric // The right shift version actually only returns the higher bits of 18390b57cec5SDimitry Andric // the result (each iteration discards the LSB). If we want to convert it 18400b57cec5SDimitry Andric // to a left-shifting loop, the working data type must be at least as 18410b57cec5SDimitry Andric // wide as the target's pmpy instruction. 18420b57cec5SDimitry Andric if (!promoteTypes(LoopB, ExitB)) 18430b57cec5SDimitry Andric return false; 18440b57cec5SDimitry Andric // Run post-promotion simplifications. 18450b57cec5SDimitry Andric Simplifier PostSimp; 18460b57cec5SDimitry Andric setupPostSimplifier(PostSimp); 18470b57cec5SDimitry Andric for (Instruction &In : *LoopB) { 18480b57cec5SDimitry Andric SelectInst *SI = dyn_cast<SelectInst>(&In); 18490b57cec5SDimitry Andric if (!SI || !FeedsPHI(SI)) 18500b57cec5SDimitry Andric continue; 18510b57cec5SDimitry Andric Simplifier::Context C(SI); 18520b57cec5SDimitry Andric Value *T = PostSimp.simplify(C); 18530b57cec5SDimitry Andric SelectInst *SelI = dyn_cast_or_null<SelectInst>(T); 18540b57cec5SDimitry Andric if (SelI != SI) { 18550b57cec5SDimitry Andric Value *NewSel = C.materialize(LoopB, SI->getIterator()); 18560b57cec5SDimitry Andric SI->replaceAllUsesWith(NewSel); 18570b57cec5SDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI); 18580b57cec5SDimitry Andric } 18590b57cec5SDimitry Andric break; 18600b57cec5SDimitry Andric } 18610b57cec5SDimitry Andric 18620b57cec5SDimitry Andric if (!convertShiftsToLeft(LoopB, ExitB, IterCount)) 18630b57cec5SDimitry Andric return false; 18640b57cec5SDimitry Andric cleanupLoopBody(LoopB); 18650b57cec5SDimitry Andric } 18660b57cec5SDimitry Andric 18670b57cec5SDimitry Andric // Scan the loop again, find the generating select instruction. 18680b57cec5SDimitry Andric bool FoundScan = false; 18690b57cec5SDimitry Andric for (Instruction &In : *LoopB) { 18700b57cec5SDimitry Andric SelectInst *SelI = dyn_cast<SelectInst>(&In); 18710b57cec5SDimitry Andric if (!SelI) 18720b57cec5SDimitry Andric continue; 18730b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n'); 18740b57cec5SDimitry Andric FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false); 18750b57cec5SDimitry Andric if (FoundScan) 18760b57cec5SDimitry Andric break; 18770b57cec5SDimitry Andric } 18780b57cec5SDimitry Andric assert(FoundScan); 18790b57cec5SDimitry Andric 18800b57cec5SDimitry Andric LLVM_DEBUG({ 18810b57cec5SDimitry Andric StringRef PP = (PV.M ? "(P+M)" : "P"); 18820b57cec5SDimitry Andric if (!PV.Inv) 18830b57cec5SDimitry Andric dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n"; 18840b57cec5SDimitry Andric else 18850b57cec5SDimitry Andric dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + " 18860b57cec5SDimitry Andric << PP << "\n"; 18870b57cec5SDimitry Andric dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n"; 18880b57cec5SDimitry Andric if (PV.M) 18890b57cec5SDimitry Andric dbgs() << " M:" << *PV.M << "\n"; 18900b57cec5SDimitry Andric dbgs() << " Q:" << *PV.Q << "\n"; 18910b57cec5SDimitry Andric dbgs() << " Iteration count:" << PV.IterCount << "\n"; 18920b57cec5SDimitry Andric }); 18930b57cec5SDimitry Andric 18940b57cec5SDimitry Andric BasicBlock::iterator At(EntryB->getTerminator()); 18950b57cec5SDimitry Andric Value *PM = generate(At, PV); 18960b57cec5SDimitry Andric if (PM == nullptr) 18970b57cec5SDimitry Andric return false; 18980b57cec5SDimitry Andric 18990b57cec5SDimitry Andric if (PM->getType() != PV.Res->getType()) 19000b57cec5SDimitry Andric PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false); 19010b57cec5SDimitry Andric 19020b57cec5SDimitry Andric PV.Res->replaceAllUsesWith(PM); 19030b57cec5SDimitry Andric PV.Res->eraseFromParent(); 19040b57cec5SDimitry Andric return true; 19050b57cec5SDimitry Andric } 19060b57cec5SDimitry Andric 19070b57cec5SDimitry Andric int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) { 19080b57cec5SDimitry Andric if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 19090b57cec5SDimitry Andric return SC->getAPInt().getSExtValue(); 19100b57cec5SDimitry Andric return 0; 19110b57cec5SDimitry Andric } 19120b57cec5SDimitry Andric 19130b57cec5SDimitry Andric bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) { 19140b57cec5SDimitry Andric // Allow volatile stores if HexagonVolatileMemcpy is enabled. 19150b57cec5SDimitry Andric if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple()) 19160b57cec5SDimitry Andric return false; 19170b57cec5SDimitry Andric 19180b57cec5SDimitry Andric Value *StoredVal = SI->getValueOperand(); 19190b57cec5SDimitry Andric Value *StorePtr = SI->getPointerOperand(); 19200b57cec5SDimitry Andric 19210b57cec5SDimitry Andric // Reject stores that are so large that they overflow an unsigned. 19220b57cec5SDimitry Andric uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 19230b57cec5SDimitry Andric if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 19240b57cec5SDimitry Andric return false; 19250b57cec5SDimitry Andric 19260b57cec5SDimitry Andric // See if the pointer expression is an AddRec like {base,+,1} on the current 19270b57cec5SDimitry Andric // loop, which indicates a strided store. If we have something else, it's a 19280b57cec5SDimitry Andric // random store we can't handle. 19290b57cec5SDimitry Andric auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 19300b57cec5SDimitry Andric if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 19310b57cec5SDimitry Andric return false; 19320b57cec5SDimitry Andric 19330b57cec5SDimitry Andric // Check to see if the stride matches the size of the store. If so, then we 19340b57cec5SDimitry Andric // know that every byte is touched in the loop. 19350b57cec5SDimitry Andric int Stride = getSCEVStride(StoreEv); 19360b57cec5SDimitry Andric if (Stride == 0) 19370b57cec5SDimitry Andric return false; 19380b57cec5SDimitry Andric unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 19390b57cec5SDimitry Andric if (StoreSize != unsigned(std::abs(Stride))) 19400b57cec5SDimitry Andric return false; 19410b57cec5SDimitry Andric 19420b57cec5SDimitry Andric // The store must be feeding a non-volatile load. 19430b57cec5SDimitry Andric LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 19440b57cec5SDimitry Andric if (!LI || !LI->isSimple()) 19450b57cec5SDimitry Andric return false; 19460b57cec5SDimitry Andric 19470b57cec5SDimitry Andric // See if the pointer expression is an AddRec like {base,+,1} on the current 19480b57cec5SDimitry Andric // loop, which indicates a strided load. If we have something else, it's a 19490b57cec5SDimitry Andric // random load we can't handle. 19500b57cec5SDimitry Andric Value *LoadPtr = LI->getPointerOperand(); 19510b57cec5SDimitry Andric auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); 19520b57cec5SDimitry Andric if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 19530b57cec5SDimitry Andric return false; 19540b57cec5SDimitry Andric 19550b57cec5SDimitry Andric // The store and load must share the same stride. 19560b57cec5SDimitry Andric if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 19570b57cec5SDimitry Andric return false; 19580b57cec5SDimitry Andric 19590b57cec5SDimitry Andric // Success. This store can be converted into a memcpy. 19600b57cec5SDimitry Andric return true; 19610b57cec5SDimitry Andric } 19620b57cec5SDimitry Andric 19630b57cec5SDimitry Andric /// mayLoopAccessLocation - Return true if the specified loop might access the 19640b57cec5SDimitry Andric /// specified pointer location, which is a loop-strided access. The 'Access' 19650b57cec5SDimitry Andric /// argument specifies what the verboten forms of access are (read or write). 19660b57cec5SDimitry Andric static bool 19670b57cec5SDimitry Andric mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 19680b57cec5SDimitry Andric const SCEV *BECount, unsigned StoreSize, 19690b57cec5SDimitry Andric AliasAnalysis &AA, 19700b57cec5SDimitry Andric SmallPtrSetImpl<Instruction *> &Ignored) { 19710b57cec5SDimitry Andric // Get the location that may be stored across the loop. Since the access 19720b57cec5SDimitry Andric // is strided positively through memory, we say that the modified location 19730b57cec5SDimitry Andric // starts at the pointer and has infinite size. 19740b57cec5SDimitry Andric LocationSize AccessSize = LocationSize::unknown(); 19750b57cec5SDimitry Andric 19760b57cec5SDimitry Andric // If the loop iterates a fixed number of times, we can refine the access 19770b57cec5SDimitry Andric // size to be exactly the size of the memset, which is (BECount+1)*StoreSize 19780b57cec5SDimitry Andric if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 19790b57cec5SDimitry Andric AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 19800b57cec5SDimitry Andric StoreSize); 19810b57cec5SDimitry Andric 19820b57cec5SDimitry Andric // TODO: For this to be really effective, we have to dive into the pointer 19830b57cec5SDimitry Andric // operand in the store. Store to &A[i] of 100 will always return may alias 19840b57cec5SDimitry Andric // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 19850b57cec5SDimitry Andric // which will then no-alias a store to &A[100]. 19860b57cec5SDimitry Andric MemoryLocation StoreLoc(Ptr, AccessSize); 19870b57cec5SDimitry Andric 19880b57cec5SDimitry Andric for (auto *B : L->blocks()) 19890b57cec5SDimitry Andric for (auto &I : *B) 19900b57cec5SDimitry Andric if (Ignored.count(&I) == 0 && 19910b57cec5SDimitry Andric isModOrRefSet( 19920b57cec5SDimitry Andric intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 19930b57cec5SDimitry Andric return true; 19940b57cec5SDimitry Andric 19950b57cec5SDimitry Andric return false; 19960b57cec5SDimitry Andric } 19970b57cec5SDimitry Andric 19980b57cec5SDimitry Andric void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB, 19990b57cec5SDimitry Andric SmallVectorImpl<StoreInst*> &Stores) { 20000b57cec5SDimitry Andric Stores.clear(); 20010b57cec5SDimitry Andric for (Instruction &I : *BB) 20020b57cec5SDimitry Andric if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 20030b57cec5SDimitry Andric if (isLegalStore(CurLoop, SI)) 20040b57cec5SDimitry Andric Stores.push_back(SI); 20050b57cec5SDimitry Andric } 20060b57cec5SDimitry Andric 20070b57cec5SDimitry Andric bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop, 20080b57cec5SDimitry Andric StoreInst *SI, const SCEV *BECount) { 20090b57cec5SDimitry Andric assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) && 20100b57cec5SDimitry Andric "Expected only non-volatile stores, or Hexagon-specific memcpy" 20110b57cec5SDimitry Andric "to volatile destination."); 20120b57cec5SDimitry Andric 20130b57cec5SDimitry Andric Value *StorePtr = SI->getPointerOperand(); 20140b57cec5SDimitry Andric auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 20150b57cec5SDimitry Andric unsigned Stride = getSCEVStride(StoreEv); 20160b57cec5SDimitry Andric unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 20170b57cec5SDimitry Andric if (Stride != StoreSize) 20180b57cec5SDimitry Andric return false; 20190b57cec5SDimitry Andric 20200b57cec5SDimitry Andric // See if the pointer expression is an AddRec like {base,+,1} on the current 20210b57cec5SDimitry Andric // loop, which indicates a strided load. If we have something else, it's a 20220b57cec5SDimitry Andric // random load we can't handle. 2023*8bcb0991SDimitry Andric auto *LI = cast<LoadInst>(SI->getValueOperand()); 20240b57cec5SDimitry Andric auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 20250b57cec5SDimitry Andric 20260b57cec5SDimitry Andric // The trip count of the loop and the base pointer of the addrec SCEV is 20270b57cec5SDimitry Andric // guaranteed to be loop invariant, which means that it should dominate the 20280b57cec5SDimitry Andric // header. This allows us to insert code for it in the preheader. 20290b57cec5SDimitry Andric BasicBlock *Preheader = CurLoop->getLoopPreheader(); 20300b57cec5SDimitry Andric Instruction *ExpPt = Preheader->getTerminator(); 20310b57cec5SDimitry Andric IRBuilder<> Builder(ExpPt); 20320b57cec5SDimitry Andric SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom"); 20330b57cec5SDimitry Andric 20340b57cec5SDimitry Andric Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace()); 20350b57cec5SDimitry Andric 20360b57cec5SDimitry Andric // Okay, we have a strided store "p[i]" of a loaded value. We can turn 20370b57cec5SDimitry Andric // this into a memcpy/memmove in the loop preheader now if we want. However, 20380b57cec5SDimitry Andric // this would be unsafe to do if there is anything else in the loop that may 20390b57cec5SDimitry Andric // read or write the memory region we're storing to. For memcpy, this 20400b57cec5SDimitry Andric // includes the load that feeds the stores. Check for an alias by generating 20410b57cec5SDimitry Andric // the base address and checking everything. 20420b57cec5SDimitry Andric Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(), 20430b57cec5SDimitry Andric Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt); 20440b57cec5SDimitry Andric Value *LoadBasePtr = nullptr; 20450b57cec5SDimitry Andric 20460b57cec5SDimitry Andric bool Overlap = false; 20470b57cec5SDimitry Andric bool DestVolatile = SI->isVolatile(); 20480b57cec5SDimitry Andric Type *BECountTy = BECount->getType(); 20490b57cec5SDimitry Andric 20500b57cec5SDimitry Andric if (DestVolatile) { 20510b57cec5SDimitry Andric // The trip count must fit in i32, since it is the type of the "num_words" 20520b57cec5SDimitry Andric // argument to hexagon_memcpy_forward_vp4cp4n2. 20530b57cec5SDimitry Andric if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) { 20540b57cec5SDimitry Andric CleanupAndExit: 20550b57cec5SDimitry Andric // If we generated new code for the base pointer, clean up. 20560b57cec5SDimitry Andric Expander.clear(); 20570b57cec5SDimitry Andric if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) { 20580b57cec5SDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 20590b57cec5SDimitry Andric StoreBasePtr = nullptr; 20600b57cec5SDimitry Andric } 20610b57cec5SDimitry Andric if (LoadBasePtr) { 20620b57cec5SDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); 20630b57cec5SDimitry Andric LoadBasePtr = nullptr; 20640b57cec5SDimitry Andric } 20650b57cec5SDimitry Andric return false; 20660b57cec5SDimitry Andric } 20670b57cec5SDimitry Andric } 20680b57cec5SDimitry Andric 20690b57cec5SDimitry Andric SmallPtrSet<Instruction*, 2> Ignore1; 20700b57cec5SDimitry Andric Ignore1.insert(SI); 20710b57cec5SDimitry Andric if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 20720b57cec5SDimitry Andric StoreSize, *AA, Ignore1)) { 20730b57cec5SDimitry Andric // Check if the load is the offending instruction. 20740b57cec5SDimitry Andric Ignore1.insert(LI); 20750b57cec5SDimitry Andric if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, 20760b57cec5SDimitry Andric BECount, StoreSize, *AA, Ignore1)) { 20770b57cec5SDimitry Andric // Still bad. Nothing we can do. 20780b57cec5SDimitry Andric goto CleanupAndExit; 20790b57cec5SDimitry Andric } 20800b57cec5SDimitry Andric // It worked with the load ignored. 20810b57cec5SDimitry Andric Overlap = true; 20820b57cec5SDimitry Andric } 20830b57cec5SDimitry Andric 20840b57cec5SDimitry Andric if (!Overlap) { 20850b57cec5SDimitry Andric if (DisableMemcpyIdiom || !HasMemcpy) 20860b57cec5SDimitry Andric goto CleanupAndExit; 20870b57cec5SDimitry Andric } else { 20880b57cec5SDimitry Andric // Don't generate memmove if this function will be inlined. This is 20890b57cec5SDimitry Andric // because the caller will undergo this transformation after inlining. 20900b57cec5SDimitry Andric Function *Func = CurLoop->getHeader()->getParent(); 20910b57cec5SDimitry Andric if (Func->hasFnAttribute(Attribute::AlwaysInline)) 20920b57cec5SDimitry Andric goto CleanupAndExit; 20930b57cec5SDimitry Andric 20940b57cec5SDimitry Andric // In case of a memmove, the call to memmove will be executed instead 20950b57cec5SDimitry Andric // of the loop, so we need to make sure that there is nothing else in 20960b57cec5SDimitry Andric // the loop than the load, store and instructions that these two depend 20970b57cec5SDimitry Andric // on. 20980b57cec5SDimitry Andric SmallVector<Instruction*,2> Insts; 20990b57cec5SDimitry Andric Insts.push_back(SI); 21000b57cec5SDimitry Andric Insts.push_back(LI); 21010b57cec5SDimitry Andric if (!coverLoop(CurLoop, Insts)) 21020b57cec5SDimitry Andric goto CleanupAndExit; 21030b57cec5SDimitry Andric 21040b57cec5SDimitry Andric if (DisableMemmoveIdiom || !HasMemmove) 21050b57cec5SDimitry Andric goto CleanupAndExit; 21060b57cec5SDimitry Andric bool IsNested = CurLoop->getParentLoop() != nullptr; 21070b57cec5SDimitry Andric if (IsNested && OnlyNonNestedMemmove) 21080b57cec5SDimitry Andric goto CleanupAndExit; 21090b57cec5SDimitry Andric } 21100b57cec5SDimitry Andric 21110b57cec5SDimitry Andric // For a memcpy, we have to make sure that the input array is not being 21120b57cec5SDimitry Andric // mutated by the loop. 21130b57cec5SDimitry Andric LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(), 21140b57cec5SDimitry Andric Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt); 21150b57cec5SDimitry Andric 21160b57cec5SDimitry Andric SmallPtrSet<Instruction*, 2> Ignore2; 21170b57cec5SDimitry Andric Ignore2.insert(SI); 21180b57cec5SDimitry Andric if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 21190b57cec5SDimitry Andric StoreSize, *AA, Ignore2)) 21200b57cec5SDimitry Andric goto CleanupAndExit; 21210b57cec5SDimitry Andric 21220b57cec5SDimitry Andric // Check the stride. 21230b57cec5SDimitry Andric bool StridePos = getSCEVStride(LoadEv) >= 0; 21240b57cec5SDimitry Andric 21250b57cec5SDimitry Andric // Currently, the volatile memcpy only emulates traversing memory forward. 21260b57cec5SDimitry Andric if (!StridePos && DestVolatile) 21270b57cec5SDimitry Andric goto CleanupAndExit; 21280b57cec5SDimitry Andric 21290b57cec5SDimitry Andric bool RuntimeCheck = (Overlap || DestVolatile); 21300b57cec5SDimitry Andric 21310b57cec5SDimitry Andric BasicBlock *ExitB; 21320b57cec5SDimitry Andric if (RuntimeCheck) { 21330b57cec5SDimitry Andric // The runtime check needs a single exit block. 21340b57cec5SDimitry Andric SmallVector<BasicBlock*, 8> ExitBlocks; 21350b57cec5SDimitry Andric CurLoop->getUniqueExitBlocks(ExitBlocks); 21360b57cec5SDimitry Andric if (ExitBlocks.size() != 1) 21370b57cec5SDimitry Andric goto CleanupAndExit; 21380b57cec5SDimitry Andric ExitB = ExitBlocks[0]; 21390b57cec5SDimitry Andric } 21400b57cec5SDimitry Andric 21410b57cec5SDimitry Andric // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 21420b57cec5SDimitry Andric // pointer size if it isn't already. 21430b57cec5SDimitry Andric LLVMContext &Ctx = SI->getContext(); 21440b57cec5SDimitry Andric BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); 21450b57cec5SDimitry Andric DebugLoc DLoc = SI->getDebugLoc(); 21460b57cec5SDimitry Andric 21470b57cec5SDimitry Andric const SCEV *NumBytesS = 21480b57cec5SDimitry Andric SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW); 21490b57cec5SDimitry Andric if (StoreSize != 1) 21500b57cec5SDimitry Andric NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), 21510b57cec5SDimitry Andric SCEV::FlagNUW); 21520b57cec5SDimitry Andric Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt); 21530b57cec5SDimitry Andric if (Instruction *In = dyn_cast<Instruction>(NumBytes)) 21540b57cec5SDimitry Andric if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT})) 21550b57cec5SDimitry Andric NumBytes = Simp; 21560b57cec5SDimitry Andric 21570b57cec5SDimitry Andric CallInst *NewCall; 21580b57cec5SDimitry Andric 21590b57cec5SDimitry Andric if (RuntimeCheck) { 21600b57cec5SDimitry Andric unsigned Threshold = RuntimeMemSizeThreshold; 21610b57cec5SDimitry Andric if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) { 21620b57cec5SDimitry Andric uint64_t C = CI->getZExtValue(); 21630b57cec5SDimitry Andric if (Threshold != 0 && C < Threshold) 21640b57cec5SDimitry Andric goto CleanupAndExit; 21650b57cec5SDimitry Andric if (C < CompileTimeMemSizeThreshold) 21660b57cec5SDimitry Andric goto CleanupAndExit; 21670b57cec5SDimitry Andric } 21680b57cec5SDimitry Andric 21690b57cec5SDimitry Andric BasicBlock *Header = CurLoop->getHeader(); 21700b57cec5SDimitry Andric Function *Func = Header->getParent(); 21710b57cec5SDimitry Andric Loop *ParentL = LF->getLoopFor(Preheader); 21720b57cec5SDimitry Andric StringRef HeaderName = Header->getName(); 21730b57cec5SDimitry Andric 21740b57cec5SDimitry Andric // Create a new (empty) preheader, and update the PHI nodes in the 21750b57cec5SDimitry Andric // header to use the new preheader. 21760b57cec5SDimitry Andric BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph", 21770b57cec5SDimitry Andric Func, Header); 21780b57cec5SDimitry Andric if (ParentL) 21790b57cec5SDimitry Andric ParentL->addBasicBlockToLoop(NewPreheader, *LF); 21800b57cec5SDimitry Andric IRBuilder<>(NewPreheader).CreateBr(Header); 21810b57cec5SDimitry Andric for (auto &In : *Header) { 21820b57cec5SDimitry Andric PHINode *PN = dyn_cast<PHINode>(&In); 21830b57cec5SDimitry Andric if (!PN) 21840b57cec5SDimitry Andric break; 21850b57cec5SDimitry Andric int bx = PN->getBasicBlockIndex(Preheader); 21860b57cec5SDimitry Andric if (bx >= 0) 21870b57cec5SDimitry Andric PN->setIncomingBlock(bx, NewPreheader); 21880b57cec5SDimitry Andric } 21890b57cec5SDimitry Andric DT->addNewBlock(NewPreheader, Preheader); 21900b57cec5SDimitry Andric DT->changeImmediateDominator(Header, NewPreheader); 21910b57cec5SDimitry Andric 21920b57cec5SDimitry Andric // Check for safe conditions to execute memmove. 21930b57cec5SDimitry Andric // If stride is positive, copying things from higher to lower addresses 21940b57cec5SDimitry Andric // is equivalent to memmove. For negative stride, it's the other way 21950b57cec5SDimitry Andric // around. Copying forward in memory with positive stride may not be 21960b57cec5SDimitry Andric // same as memmove since we may be copying values that we just stored 21970b57cec5SDimitry Andric // in some previous iteration. 21980b57cec5SDimitry Andric Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy); 21990b57cec5SDimitry Andric Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy); 22000b57cec5SDimitry Andric Value *LowA = StridePos ? SA : LA; 22010b57cec5SDimitry Andric Value *HighA = StridePos ? LA : SA; 22020b57cec5SDimitry Andric Value *CmpA = Builder.CreateICmpULT(LowA, HighA); 22030b57cec5SDimitry Andric Value *Cond = CmpA; 22040b57cec5SDimitry Andric 22050b57cec5SDimitry Andric // Check for distance between pointers. Since the case LowA < HighA 22060b57cec5SDimitry Andric // is checked for above, assume LowA >= HighA. 22070b57cec5SDimitry Andric Value *Dist = Builder.CreateSub(LowA, HighA); 22080b57cec5SDimitry Andric Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist); 22090b57cec5SDimitry Andric Value *CmpEither = Builder.CreateOr(Cond, CmpD); 22100b57cec5SDimitry Andric Cond = CmpEither; 22110b57cec5SDimitry Andric 22120b57cec5SDimitry Andric if (Threshold != 0) { 22130b57cec5SDimitry Andric Type *Ty = NumBytes->getType(); 22140b57cec5SDimitry Andric Value *Thr = ConstantInt::get(Ty, Threshold); 22150b57cec5SDimitry Andric Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes); 22160b57cec5SDimitry Andric Value *CmpBoth = Builder.CreateAnd(Cond, CmpB); 22170b57cec5SDimitry Andric Cond = CmpBoth; 22180b57cec5SDimitry Andric } 22190b57cec5SDimitry Andric BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli", 22200b57cec5SDimitry Andric Func, NewPreheader); 22210b57cec5SDimitry Andric if (ParentL) 22220b57cec5SDimitry Andric ParentL->addBasicBlockToLoop(MemmoveB, *LF); 22230b57cec5SDimitry Andric Instruction *OldT = Preheader->getTerminator(); 22240b57cec5SDimitry Andric Builder.CreateCondBr(Cond, MemmoveB, NewPreheader); 22250b57cec5SDimitry Andric OldT->eraseFromParent(); 22260b57cec5SDimitry Andric Preheader->setName(Preheader->getName()+".old"); 22270b57cec5SDimitry Andric DT->addNewBlock(MemmoveB, Preheader); 22280b57cec5SDimitry Andric // Find the new immediate dominator of the exit block. 22290b57cec5SDimitry Andric BasicBlock *ExitD = Preheader; 22300b57cec5SDimitry Andric for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) { 22310b57cec5SDimitry Andric BasicBlock *PB = *PI; 22320b57cec5SDimitry Andric ExitD = DT->findNearestCommonDominator(ExitD, PB); 22330b57cec5SDimitry Andric if (!ExitD) 22340b57cec5SDimitry Andric break; 22350b57cec5SDimitry Andric } 22360b57cec5SDimitry Andric // If the prior immediate dominator of ExitB was dominated by the 22370b57cec5SDimitry Andric // old preheader, then the old preheader becomes the new immediate 22380b57cec5SDimitry Andric // dominator. Otherwise don't change anything (because the newly 22390b57cec5SDimitry Andric // added blocks are dominated by the old preheader). 22400b57cec5SDimitry Andric if (ExitD && DT->dominates(Preheader, ExitD)) { 22410b57cec5SDimitry Andric DomTreeNode *BN = DT->getNode(ExitB); 22420b57cec5SDimitry Andric DomTreeNode *DN = DT->getNode(ExitD); 22430b57cec5SDimitry Andric BN->setIDom(DN); 22440b57cec5SDimitry Andric } 22450b57cec5SDimitry Andric 22460b57cec5SDimitry Andric // Add a call to memmove to the conditional block. 22470b57cec5SDimitry Andric IRBuilder<> CondBuilder(MemmoveB); 22480b57cec5SDimitry Andric CondBuilder.CreateBr(ExitB); 22490b57cec5SDimitry Andric CondBuilder.SetInsertPoint(MemmoveB->getTerminator()); 22500b57cec5SDimitry Andric 22510b57cec5SDimitry Andric if (DestVolatile) { 22520b57cec5SDimitry Andric Type *Int32Ty = Type::getInt32Ty(Ctx); 22530b57cec5SDimitry Andric Type *Int32PtrTy = Type::getInt32PtrTy(Ctx); 22540b57cec5SDimitry Andric Type *VoidTy = Type::getVoidTy(Ctx); 22550b57cec5SDimitry Andric Module *M = Func->getParent(); 22560b57cec5SDimitry Andric FunctionCallee Fn = M->getOrInsertFunction( 22570b57cec5SDimitry Andric HexagonVolatileMemcpyName, VoidTy, Int32PtrTy, Int32PtrTy, Int32Ty); 22580b57cec5SDimitry Andric 22590b57cec5SDimitry Andric const SCEV *OneS = SE->getConstant(Int32Ty, 1); 22600b57cec5SDimitry Andric const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty); 22610b57cec5SDimitry Andric const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW); 22620b57cec5SDimitry Andric Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty, 22630b57cec5SDimitry Andric MemmoveB->getTerminator()); 22640b57cec5SDimitry Andric if (Instruction *In = dyn_cast<Instruction>(NumWords)) 22650b57cec5SDimitry Andric if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT})) 22660b57cec5SDimitry Andric NumWords = Simp; 22670b57cec5SDimitry Andric 22680b57cec5SDimitry Andric Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy) 22690b57cec5SDimitry Andric ? StoreBasePtr 22700b57cec5SDimitry Andric : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy); 22710b57cec5SDimitry Andric Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy) 22720b57cec5SDimitry Andric ? LoadBasePtr 22730b57cec5SDimitry Andric : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy); 22740b57cec5SDimitry Andric NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords}); 22750b57cec5SDimitry Andric } else { 22760b57cec5SDimitry Andric NewCall = CondBuilder.CreateMemMove(StoreBasePtr, SI->getAlignment(), 22770b57cec5SDimitry Andric LoadBasePtr, LI->getAlignment(), 22780b57cec5SDimitry Andric NumBytes); 22790b57cec5SDimitry Andric } 22800b57cec5SDimitry Andric } else { 22810b57cec5SDimitry Andric NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), 22820b57cec5SDimitry Andric LoadBasePtr, LI->getAlignment(), 22830b57cec5SDimitry Andric NumBytes); 22840b57cec5SDimitry Andric // Okay, the memcpy has been formed. Zap the original store and 22850b57cec5SDimitry Andric // anything that feeds into it. 22860b57cec5SDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(SI, TLI); 22870b57cec5SDimitry Andric } 22880b57cec5SDimitry Andric 22890b57cec5SDimitry Andric NewCall->setDebugLoc(DLoc); 22900b57cec5SDimitry Andric 22910b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ") 22920b57cec5SDimitry Andric << *NewCall << "\n" 22930b57cec5SDimitry Andric << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 22940b57cec5SDimitry Andric << " from store ptr=" << *StoreEv << " at: " << *SI 22950b57cec5SDimitry Andric << "\n"); 22960b57cec5SDimitry Andric 22970b57cec5SDimitry Andric return true; 22980b57cec5SDimitry Andric } 22990b57cec5SDimitry Andric 23000b57cec5SDimitry Andric // Check if the instructions in Insts, together with their dependencies 23010b57cec5SDimitry Andric // cover the loop in the sense that the loop could be safely eliminated once 23020b57cec5SDimitry Andric // the instructions in Insts are removed. 23030b57cec5SDimitry Andric bool HexagonLoopIdiomRecognize::coverLoop(Loop *L, 23040b57cec5SDimitry Andric SmallVectorImpl<Instruction*> &Insts) const { 23050b57cec5SDimitry Andric SmallSet<BasicBlock*,8> LoopBlocks; 23060b57cec5SDimitry Andric for (auto *B : L->blocks()) 23070b57cec5SDimitry Andric LoopBlocks.insert(B); 23080b57cec5SDimitry Andric 23090b57cec5SDimitry Andric SetVector<Instruction*> Worklist(Insts.begin(), Insts.end()); 23100b57cec5SDimitry Andric 23110b57cec5SDimitry Andric // Collect all instructions from the loop that the instructions in Insts 23120b57cec5SDimitry Andric // depend on (plus their dependencies, etc.). These instructions will 23130b57cec5SDimitry Andric // constitute the expression trees that feed those in Insts, but the trees 23140b57cec5SDimitry Andric // will be limited only to instructions contained in the loop. 23150b57cec5SDimitry Andric for (unsigned i = 0; i < Worklist.size(); ++i) { 23160b57cec5SDimitry Andric Instruction *In = Worklist[i]; 23170b57cec5SDimitry Andric for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) { 23180b57cec5SDimitry Andric Instruction *OpI = dyn_cast<Instruction>(I); 23190b57cec5SDimitry Andric if (!OpI) 23200b57cec5SDimitry Andric continue; 23210b57cec5SDimitry Andric BasicBlock *PB = OpI->getParent(); 23220b57cec5SDimitry Andric if (!LoopBlocks.count(PB)) 23230b57cec5SDimitry Andric continue; 23240b57cec5SDimitry Andric Worklist.insert(OpI); 23250b57cec5SDimitry Andric } 23260b57cec5SDimitry Andric } 23270b57cec5SDimitry Andric 23280b57cec5SDimitry Andric // Scan all instructions in the loop, if any of them have a user outside 23290b57cec5SDimitry Andric // of the loop, or outside of the expressions collected above, then either 23300b57cec5SDimitry Andric // the loop has a side-effect visible outside of it, or there are 23310b57cec5SDimitry Andric // instructions in it that are not involved in the original set Insts. 23320b57cec5SDimitry Andric for (auto *B : L->blocks()) { 23330b57cec5SDimitry Andric for (auto &In : *B) { 23340b57cec5SDimitry Andric if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In)) 23350b57cec5SDimitry Andric continue; 23360b57cec5SDimitry Andric if (!Worklist.count(&In) && In.mayHaveSideEffects()) 23370b57cec5SDimitry Andric return false; 23380b57cec5SDimitry Andric for (const auto &K : In.users()) { 23390b57cec5SDimitry Andric Instruction *UseI = dyn_cast<Instruction>(K); 23400b57cec5SDimitry Andric if (!UseI) 23410b57cec5SDimitry Andric continue; 23420b57cec5SDimitry Andric BasicBlock *UseB = UseI->getParent(); 23430b57cec5SDimitry Andric if (LF->getLoopFor(UseB) != L) 23440b57cec5SDimitry Andric return false; 23450b57cec5SDimitry Andric } 23460b57cec5SDimitry Andric } 23470b57cec5SDimitry Andric } 23480b57cec5SDimitry Andric 23490b57cec5SDimitry Andric return true; 23500b57cec5SDimitry Andric } 23510b57cec5SDimitry Andric 23520b57cec5SDimitry Andric /// runOnLoopBlock - Process the specified block, which lives in a counted loop 23530b57cec5SDimitry Andric /// with the specified backedge count. This block is known to be in the current 23540b57cec5SDimitry Andric /// loop and not in any subloops. 23550b57cec5SDimitry Andric bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, 23560b57cec5SDimitry Andric const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) { 23570b57cec5SDimitry Andric // We can only promote stores in this block if they are unconditionally 23580b57cec5SDimitry Andric // executed in the loop. For a block to be unconditionally executed, it has 23590b57cec5SDimitry Andric // to dominate all the exit blocks of the loop. Verify this now. 23600b57cec5SDimitry Andric auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool { 23610b57cec5SDimitry Andric return DT->dominates(BB, EB); 23620b57cec5SDimitry Andric }; 23630b57cec5SDimitry Andric if (!all_of(ExitBlocks, DominatedByBB)) 23640b57cec5SDimitry Andric return false; 23650b57cec5SDimitry Andric 23660b57cec5SDimitry Andric bool MadeChange = false; 23670b57cec5SDimitry Andric // Look for store instructions, which may be optimized to memset/memcpy. 23680b57cec5SDimitry Andric SmallVector<StoreInst*,8> Stores; 23690b57cec5SDimitry Andric collectStores(CurLoop, BB, Stores); 23700b57cec5SDimitry Andric 23710b57cec5SDimitry Andric // Optimize the store into a memcpy, if it feeds an similarly strided load. 23720b57cec5SDimitry Andric for (auto &SI : Stores) 23730b57cec5SDimitry Andric MadeChange |= processCopyingStore(CurLoop, SI, BECount); 23740b57cec5SDimitry Andric 23750b57cec5SDimitry Andric return MadeChange; 23760b57cec5SDimitry Andric } 23770b57cec5SDimitry Andric 23780b57cec5SDimitry Andric bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) { 23790b57cec5SDimitry Andric PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE); 23800b57cec5SDimitry Andric if (PMR.recognize()) 23810b57cec5SDimitry Andric return true; 23820b57cec5SDimitry Andric 23830b57cec5SDimitry Andric if (!HasMemcpy && !HasMemmove) 23840b57cec5SDimitry Andric return false; 23850b57cec5SDimitry Andric 23860b57cec5SDimitry Andric const SCEV *BECount = SE->getBackedgeTakenCount(L); 23870b57cec5SDimitry Andric assert(!isa<SCEVCouldNotCompute>(BECount) && 23880b57cec5SDimitry Andric "runOnCountableLoop() called on a loop without a predictable" 23890b57cec5SDimitry Andric "backedge-taken count"); 23900b57cec5SDimitry Andric 23910b57cec5SDimitry Andric SmallVector<BasicBlock *, 8> ExitBlocks; 23920b57cec5SDimitry Andric L->getUniqueExitBlocks(ExitBlocks); 23930b57cec5SDimitry Andric 23940b57cec5SDimitry Andric bool Changed = false; 23950b57cec5SDimitry Andric 23960b57cec5SDimitry Andric // Scan all the blocks in the loop that are not in subloops. 23970b57cec5SDimitry Andric for (auto *BB : L->getBlocks()) { 23980b57cec5SDimitry Andric // Ignore blocks in subloops. 23990b57cec5SDimitry Andric if (LF->getLoopFor(BB) != L) 24000b57cec5SDimitry Andric continue; 24010b57cec5SDimitry Andric Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks); 24020b57cec5SDimitry Andric } 24030b57cec5SDimitry Andric 24040b57cec5SDimitry Andric return Changed; 24050b57cec5SDimitry Andric } 24060b57cec5SDimitry Andric 24070b57cec5SDimitry Andric bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { 24080b57cec5SDimitry Andric const Module &M = *L->getHeader()->getParent()->getParent(); 24090b57cec5SDimitry Andric if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon) 24100b57cec5SDimitry Andric return false; 24110b57cec5SDimitry Andric 24120b57cec5SDimitry Andric if (skipLoop(L)) 24130b57cec5SDimitry Andric return false; 24140b57cec5SDimitry Andric 24150b57cec5SDimitry Andric // If the loop could not be converted to canonical form, it must have an 24160b57cec5SDimitry Andric // indirectbr in it, just give up. 24170b57cec5SDimitry Andric if (!L->getLoopPreheader()) 24180b57cec5SDimitry Andric return false; 24190b57cec5SDimitry Andric 24200b57cec5SDimitry Andric // Disable loop idiom recognition if the function's name is a common idiom. 24210b57cec5SDimitry Andric StringRef Name = L->getHeader()->getParent()->getName(); 24220b57cec5SDimitry Andric if (Name == "memset" || Name == "memcpy" || Name == "memmove") 24230b57cec5SDimitry Andric return false; 24240b57cec5SDimitry Andric 24250b57cec5SDimitry Andric AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 24260b57cec5SDimitry Andric DL = &L->getHeader()->getModule()->getDataLayout(); 24270b57cec5SDimitry Andric DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 24280b57cec5SDimitry Andric LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2429*8bcb0991SDimitry Andric TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 2430*8bcb0991SDimitry Andric *L->getHeader()->getParent()); 24310b57cec5SDimitry Andric SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 24320b57cec5SDimitry Andric 24330b57cec5SDimitry Andric HasMemcpy = TLI->has(LibFunc_memcpy); 24340b57cec5SDimitry Andric HasMemmove = TLI->has(LibFunc_memmove); 24350b57cec5SDimitry Andric 24360b57cec5SDimitry Andric if (SE->hasLoopInvariantBackedgeTakenCount(L)) 24370b57cec5SDimitry Andric return runOnCountableLoop(L); 24380b57cec5SDimitry Andric return false; 24390b57cec5SDimitry Andric } 24400b57cec5SDimitry Andric 24410b57cec5SDimitry Andric Pass *llvm::createHexagonLoopIdiomPass() { 24420b57cec5SDimitry Andric return new HexagonLoopIdiomRecognize(); 24430b57cec5SDimitry Andric } 2444