1 //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Hexagon implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H 14 #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H 15 16 #include "MCTargetDesc/HexagonBaseInfo.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineValueType.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/ValueTypes.h" 23 #include <cstdint> 24 #include <vector> 25 26 #define GET_INSTRINFO_HEADER 27 #include "HexagonGenInstrInfo.inc" 28 29 namespace llvm { 30 31 class HexagonSubtarget; 32 class MachineBranchProbabilityInfo; 33 class MachineFunction; 34 class MachineInstr; 35 class MachineOperand; 36 class TargetRegisterInfo; 37 38 class HexagonInstrInfo : public HexagonGenInstrInfo { 39 const HexagonSubtarget &Subtarget; 40 41 enum BundleAttribute { 42 memShufDisabledMask = 0x4 43 }; 44 45 virtual void anchor(); 46 47 public: 48 explicit HexagonInstrInfo(HexagonSubtarget &ST); 49 50 /// TargetInstrInfo overrides. 51 52 /// If the specified machine instruction is a direct 53 /// load from a stack slot, return the virtual or physical register number of 54 /// the destination along with the FrameIndex of the loaded stack slot. If 55 /// not, return 0. This predicate must return 0 if the instruction has 56 /// any side effects other than loading from the stack slot. 57 unsigned isLoadFromStackSlot(const MachineInstr &MI, 58 int &FrameIndex) const override; 59 60 /// If the specified machine instruction is a direct 61 /// store to a stack slot, return the virtual or physical register number of 62 /// the source reg along with the FrameIndex of the loaded stack slot. If 63 /// not, return 0. This predicate must return 0 if the instruction has 64 /// any side effects other than storing to the stack slot. 65 unsigned isStoreToStackSlot(const MachineInstr &MI, 66 int &FrameIndex) const override; 67 68 /// Check if the instruction or the bundle of instructions has 69 /// load from stack slots. Return the frameindex and machine memory operand 70 /// if true. 71 bool hasLoadFromStackSlot( 72 const MachineInstr &MI, 73 SmallVectorImpl<const MachineMemOperand *> &Accesses) const override; 74 75 /// Check if the instruction or the bundle of instructions has 76 /// store to stack slots. Return the frameindex and machine memory operand 77 /// if true. 78 bool hasStoreToStackSlot( 79 const MachineInstr &MI, 80 SmallVectorImpl<const MachineMemOperand *> &Accesses) const override; 81 82 /// Analyze the branching code at the end of MBB, returning 83 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't 84 /// implemented for a target). Upon success, this returns false and returns 85 /// with the following information in various cases: 86 /// 87 /// 1. If this block ends with no branches (it just falls through to its succ) 88 /// just return false, leaving TBB/FBB null. 89 /// 2. If this block ends with only an unconditional branch, it sets TBB to be 90 /// the destination block. 91 /// 3. If this block ends with a conditional branch and it falls through to a 92 /// successor block, it sets TBB to be the branch destination block and a 93 /// list of operands that evaluate the condition. These operands can be 94 /// passed to other TargetInstrInfo methods to create new branches. 95 /// 4. If this block ends with a conditional branch followed by an 96 /// unconditional branch, it returns the 'true' destination in TBB, the 97 /// 'false' destination in FBB, and a list of operands that evaluate the 98 /// condition. These operands can be passed to other TargetInstrInfo 99 /// methods to create new branches. 100 /// 101 /// Note that removeBranch and insertBranch must be implemented to support 102 /// cases where this method returns success. 103 /// 104 /// If AllowModify is true, then this routine is allowed to modify the basic 105 /// block (e.g. delete instructions after the unconditional branch). 106 bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 107 MachineBasicBlock *&FBB, 108 SmallVectorImpl<MachineOperand> &Cond, 109 bool AllowModify) const override; 110 111 /// Remove the branching code at the end of the specific MBB. 112 /// This is only invoked in cases where analyzeBranch returns success. It 113 /// returns the number of instructions that were removed. 114 unsigned removeBranch(MachineBasicBlock &MBB, 115 int *BytesRemoved = nullptr) const override; 116 117 /// Insert branch code into the end of the specified MachineBasicBlock. 118 /// The operands to this method are the same as those 119 /// returned by analyzeBranch. This is only invoked in cases where 120 /// analyzeBranch returns success. It returns the number of instructions 121 /// inserted. 122 /// 123 /// It is also invoked by tail merging to add unconditional branches in 124 /// cases where analyzeBranch doesn't apply because there was no original 125 /// branch to analyze. At least this much must be implemented, else tail 126 /// merging needs to be disabled. 127 unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 128 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, 129 const DebugLoc &DL, 130 int *BytesAdded = nullptr) const override; 131 132 /// Analyze loop L, which must be a single-basic-block loop, and if the 133 /// conditions can be understood enough produce a PipelinerLoopInfo object. 134 std::unique_ptr<PipelinerLoopInfo> 135 analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override; 136 137 /// Return true if it's profitable to predicate 138 /// instructions with accumulated instruction latency of "NumCycles" 139 /// of the specified basic block, where the probability of the instructions 140 /// being executed is given by Probability, and Confidence is a measure 141 /// of our confidence that it will be properly predicted. 142 bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 143 unsigned ExtraPredCycles, 144 BranchProbability Probability) const override; 145 146 /// Second variant of isProfitableToIfCvt. This one 147 /// checks for the case where two basic blocks from true and false path 148 /// of a if-then-else (diamond) are predicated on mutally exclusive 149 /// predicates, where the probability of the true path being taken is given 150 /// by Probability, and Confidence is a measure of our confidence that it 151 /// will be properly predicted. 152 bool isProfitableToIfCvt(MachineBasicBlock &TMBB, 153 unsigned NumTCycles, unsigned ExtraTCycles, 154 MachineBasicBlock &FMBB, 155 unsigned NumFCycles, unsigned ExtraFCycles, 156 BranchProbability Probability) const override; 157 158 /// Return true if it's profitable for if-converter to duplicate instructions 159 /// of specified accumulated instruction latencies in the specified MBB to 160 /// enable if-conversion. 161 /// The probability of the instructions being executed is given by 162 /// Probability, and Confidence is a measure of our confidence that it 163 /// will be properly predicted. 164 bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 165 BranchProbability Probability) const override; 166 167 /// Emit instructions to copy a pair of physical registers. 168 /// 169 /// This function should support copies within any legal register class as 170 /// well as any cross-class copies created during instruction selection. 171 /// 172 /// The source and destination registers may overlap, which may require a 173 /// careful implementation when multiple copy instructions are required for 174 /// large registers. See for example the ARM target. 175 void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 176 const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, 177 bool KillSrc) const override; 178 179 /// Store the specified register of the given register class to the specified 180 /// stack frame index. The store instruction is to be added to the given 181 /// machine basic block before the specified machine instruction. If isKill 182 /// is true, the register operand is the last use and must be marked kill. 183 void storeRegToStackSlot(MachineBasicBlock &MBB, 184 MachineBasicBlock::iterator MBBI, Register SrcReg, 185 bool isKill, int FrameIndex, 186 const TargetRegisterClass *RC, 187 const TargetRegisterInfo *TRI, 188 Register VReg) const override; 189 190 /// Load the specified register of the given register class from the specified 191 /// stack frame index. The load instruction is to be added to the given 192 /// machine basic block before the specified machine instruction. 193 void loadRegFromStackSlot(MachineBasicBlock &MBB, 194 MachineBasicBlock::iterator MBBI, Register DestReg, 195 int FrameIndex, const TargetRegisterClass *RC, 196 const TargetRegisterInfo *TRI, 197 Register VReg) const override; 198 199 /// This function is called for all pseudo instructions 200 /// that remain after register allocation. Many pseudo instructions are 201 /// created to help register allocation. This is the place to convert them 202 /// into real instructions. The target can edit MI in place, or it can insert 203 /// new instructions and erase MI. The function should return true if 204 /// anything was changed. 205 bool expandPostRAPseudo(MachineInstr &MI) const override; 206 207 /// Get the base register and byte offset of a load/store instr. 208 bool getMemOperandsWithOffsetWidth( 209 const MachineInstr &LdSt, 210 SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset, 211 bool &OffsetIsScalable, unsigned &Width, 212 const TargetRegisterInfo *TRI) const override; 213 214 /// Reverses the branch condition of the specified condition list, 215 /// returning false on success and true if it cannot be reversed. 216 bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) 217 const override; 218 219 /// Insert a noop into the instruction stream at the specified point. 220 void insertNoop(MachineBasicBlock &MBB, 221 MachineBasicBlock::iterator MI) const override; 222 223 /// Returns true if the instruction is already predicated. 224 bool isPredicated(const MachineInstr &MI) const override; 225 226 /// Return true for post-incremented instructions. 227 bool isPostIncrement(const MachineInstr &MI) const override; 228 229 /// Convert the instruction into a predicated instruction. 230 /// It returns true if the operation was successful. 231 bool PredicateInstruction(MachineInstr &MI, 232 ArrayRef<MachineOperand> Cond) const override; 233 234 /// Returns true if the first specified predicate 235 /// subsumes the second, e.g. GE subsumes GT. 236 bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 237 ArrayRef<MachineOperand> Pred2) const override; 238 239 /// If the specified instruction defines any predicate 240 /// or condition code register(s) used for predication, returns true as well 241 /// as the definition predicate(s) by reference. 242 bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred, 243 bool SkipDead) const override; 244 245 /// Return true if the specified instruction can be predicated. 246 /// By default, this returns true for every instruction with a 247 /// PredicateOperand. 248 bool isPredicable(const MachineInstr &MI) const override; 249 250 /// Test if the given instruction should be considered a scheduling boundary. 251 /// This primarily includes labels and terminators. 252 bool isSchedulingBoundary(const MachineInstr &MI, 253 const MachineBasicBlock *MBB, 254 const MachineFunction &MF) const override; 255 256 /// Measure the specified inline asm to determine an approximation of its 257 /// length. 258 unsigned getInlineAsmLength( 259 const char *Str, 260 const MCAsmInfo &MAI, 261 const TargetSubtargetInfo *STI = nullptr) const override; 262 263 /// Allocate and return a hazard recognizer to use for this target when 264 /// scheduling the machine instructions after register allocation. 265 ScheduleHazardRecognizer* 266 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 267 const ScheduleDAG *DAG) const override; 268 269 /// For a comparison instruction, return the source registers 270 /// in SrcReg and SrcReg2 if having two register operands, and the value it 271 /// compares against in CmpValue. Return true if the comparison instruction 272 /// can be analyzed. 273 bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, 274 Register &SrcReg2, int64_t &Mask, 275 int64_t &Value) const override; 276 277 /// Compute the instruction latency of a given instruction. 278 /// If the instruction has higher cost when predicated, it's returned via 279 /// PredCost. 280 unsigned getInstrLatency(const InstrItineraryData *ItinData, 281 const MachineInstr &MI, 282 unsigned *PredCost = nullptr) const override; 283 284 /// Create machine specific model for scheduling. 285 DFAPacketizer * 286 CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override; 287 288 // Sometimes, it is possible for the target 289 // to tell, even without aliasing information, that two MIs access different 290 // memory addresses. This function returns true if two MIs access different 291 // memory addresses and false otherwise. 292 bool 293 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 294 const MachineInstr &MIb) const override; 295 296 /// For instructions with a base and offset, return the position of the 297 /// base register and offset operands. 298 bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, 299 unsigned &OffsetPos) const override; 300 301 /// If the instruction is an increment of a constant value, return the amount. 302 bool getIncrementValue(const MachineInstr &MI, int &Value) const override; 303 304 /// getOperandLatency - Compute and return the use operand latency of a given 305 /// pair of def and use. 306 /// In most cases, the static scheduling itinerary was enough to determine the 307 /// operand latency. But it may not be possible for instructions with variable 308 /// number of defs / uses. 309 /// 310 /// This is a raw interface to the itinerary that may be directly overriden by 311 /// a target. Use computeOperandLatency to get the best estimate of latency. 312 std::optional<unsigned> getOperandLatency(const InstrItineraryData *ItinData, 313 const MachineInstr &DefMI, 314 unsigned DefIdx, 315 const MachineInstr &UseMI, 316 unsigned UseIdx) const override; 317 318 /// Decompose the machine operand's target flags into two values - the direct 319 /// target flag value and any of bit flags that are applied. 320 std::pair<unsigned, unsigned> 321 decomposeMachineOperandsTargetFlags(unsigned TF) const override; 322 323 /// Return an array that contains the direct target flag values and their 324 /// names. 325 /// 326 /// MIR Serialization is able to serialize only the target flags that are 327 /// defined by this method. 328 ArrayRef<std::pair<unsigned, const char *>> 329 getSerializableDirectMachineOperandTargetFlags() const override; 330 331 /// Return an array that contains the bitmask target flag values and their 332 /// names. 333 /// 334 /// MIR Serialization is able to serialize only the target flags that are 335 /// defined by this method. 336 ArrayRef<std::pair<unsigned, const char *>> 337 getSerializableBitmaskMachineOperandTargetFlags() const override; 338 339 bool isTailCall(const MachineInstr &MI) const override; 340 bool isAsCheapAsAMove(const MachineInstr &MI) const override; 341 342 // Return true if the instruction should be sunk by MachineSink. 343 // MachineSink determines on its own whether the instruction is safe to sink; 344 // this gives the target a hook to override the default behavior with regards 345 // to which instructions should be sunk. 346 bool shouldSink(const MachineInstr &MI) const override; 347 348 /// HexagonInstrInfo specifics. 349 350 Register createVR(MachineFunction *MF, MVT VT) const; 351 MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp, 352 MachineBasicBlock *TargetBB, 353 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const; 354 355 bool isAbsoluteSet(const MachineInstr &MI) const; 356 bool isAccumulator(const MachineInstr &MI) const; 357 bool isAddrModeWithOffset(const MachineInstr &MI) const; 358 bool isBaseImmOffset(const MachineInstr &MI) const; 359 bool isComplex(const MachineInstr &MI) const; 360 bool isCompoundBranchInstr(const MachineInstr &MI) const; 361 bool isConstExtended(const MachineInstr &MI) const; 362 bool isDeallocRet(const MachineInstr &MI) const; 363 bool isDependent(const MachineInstr &ProdMI, 364 const MachineInstr &ConsMI) const; 365 bool isDotCurInst(const MachineInstr &MI) const; 366 bool isDotNewInst(const MachineInstr &MI) const; 367 bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const; 368 bool isEndLoopN(unsigned Opcode) const; 369 bool isExpr(unsigned OpType) const; 370 bool isExtendable(const MachineInstr &MI) const; 371 bool isExtended(const MachineInstr &MI) const; 372 bool isFloat(const MachineInstr &MI) const; 373 bool isHVXMemWithAIndirect(const MachineInstr &I, 374 const MachineInstr &J) const; 375 bool isIndirectCall(const MachineInstr &MI) const; 376 bool isIndirectL4Return(const MachineInstr &MI) const; 377 bool isJumpR(const MachineInstr &MI) const; 378 bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const; 379 bool isLateSourceInstr(const MachineInstr &MI) const; 380 bool isLoopN(const MachineInstr &MI) const; 381 bool isMemOp(const MachineInstr &MI) const; 382 bool isNewValue(const MachineInstr &MI) const; 383 bool isNewValue(unsigned Opcode) const; 384 bool isNewValueInst(const MachineInstr &MI) const; 385 bool isNewValueJump(const MachineInstr &MI) const; 386 bool isNewValueJump(unsigned Opcode) const; 387 bool isNewValueStore(const MachineInstr &MI) const; 388 bool isNewValueStore(unsigned Opcode) const; 389 bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const; 390 bool isPredicatedNew(const MachineInstr &MI) const; 391 bool isPredicatedNew(unsigned Opcode) const; 392 bool isPredicatedTrue(const MachineInstr &MI) const; 393 bool isPredicatedTrue(unsigned Opcode) const; 394 bool isPredicated(unsigned Opcode) const; 395 bool isPredicateLate(unsigned Opcode) const; 396 bool isPredictedTaken(unsigned Opcode) const; 397 bool isPureSlot0(const MachineInstr &MI) const; 398 bool isRestrictNoSlot1Store(const MachineInstr &MI) const; 399 bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const; 400 bool isSignExtendingLoad(const MachineInstr &MI) const; 401 bool isSolo(const MachineInstr &MI) const; 402 bool isSpillPredRegOp(const MachineInstr &MI) const; 403 bool isTC1(const MachineInstr &MI) const; 404 bool isTC2(const MachineInstr &MI) const; 405 bool isTC2Early(const MachineInstr &MI) const; 406 bool isTC4x(const MachineInstr &MI) const; 407 bool isToBeScheduledASAP(const MachineInstr &MI1, 408 const MachineInstr &MI2) const; 409 bool isHVXVec(const MachineInstr &MI) const; 410 bool isValidAutoIncImm(const EVT VT, const int Offset) const; 411 bool isValidOffset(unsigned Opcode, int Offset, 412 const TargetRegisterInfo *TRI, bool Extend = true) const; 413 bool isVecAcc(const MachineInstr &MI) const; 414 bool isVecALU(const MachineInstr &MI) const; 415 bool isVecUsableNextPacket(const MachineInstr &ProdMI, 416 const MachineInstr &ConsMI) const; 417 bool isZeroExtendingLoad(const MachineInstr &MI) const; 418 419 bool addLatencyToSchedule(const MachineInstr &MI1, 420 const MachineInstr &MI2) const; 421 bool canExecuteInBundle(const MachineInstr &First, 422 const MachineInstr &Second) const; 423 bool doesNotReturn(const MachineInstr &CallMI) const; 424 bool hasEHLabel(const MachineBasicBlock *B) const; 425 bool hasNonExtEquivalent(const MachineInstr &MI) const; 426 bool hasPseudoInstrPair(const MachineInstr &MI) const; 427 bool hasUncondBranch(const MachineBasicBlock *B) const; 428 bool mayBeCurLoad(const MachineInstr &MI) const; 429 bool mayBeNewStore(const MachineInstr &MI) const; 430 bool producesStall(const MachineInstr &ProdMI, 431 const MachineInstr &ConsMI) const; 432 bool producesStall(const MachineInstr &MI, 433 MachineBasicBlock::const_instr_iterator MII) const; 434 bool predCanBeUsedAsDotNew(const MachineInstr &MI, Register PredReg) const; 435 bool PredOpcodeHasJMP_c(unsigned Opcode) const; 436 bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const; 437 438 unsigned getAddrMode(const MachineInstr &MI) const; 439 MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset, 440 unsigned &AccessSize) const; 441 SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const; 442 unsigned getCExtOpNum(const MachineInstr &MI) const; 443 HexagonII::CompoundGroup 444 getCompoundCandidateGroup(const MachineInstr &MI) const; 445 unsigned getCompoundOpcode(const MachineInstr &GA, 446 const MachineInstr &GB) const; 447 int getDuplexOpcode(const MachineInstr &MI, bool ForBigCore = true) const; 448 int getCondOpcode(int Opc, bool sense) const; 449 int getDotCurOp(const MachineInstr &MI) const; 450 int getNonDotCurOp(const MachineInstr &MI) const; 451 int getDotNewOp(const MachineInstr &MI) const; 452 int getDotNewPredJumpOp(const MachineInstr &MI, 453 const MachineBranchProbabilityInfo *MBPI) const; 454 int getDotNewPredOp(const MachineInstr &MI, 455 const MachineBranchProbabilityInfo *MBPI) const; 456 int getDotOldOp(const MachineInstr &MI) const; 457 HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI) 458 const; 459 short getEquivalentHWInstr(const MachineInstr &MI) const; 460 unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData, 461 const MachineInstr &MI) const; 462 bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const; 463 unsigned getInvertedPredicatedOpcode(const int Opc) const; 464 int getMaxValue(const MachineInstr &MI) const; 465 unsigned getMemAccessSize(const MachineInstr &MI) const; 466 int getMinValue(const MachineInstr &MI) const; 467 short getNonExtOpcode(const MachineInstr &MI) const; 468 bool getPredReg(ArrayRef<MachineOperand> Cond, Register &PredReg, 469 unsigned &PredRegPos, unsigned &PredRegFlags) const; 470 short getPseudoInstrPair(const MachineInstr &MI) const; 471 short getRegForm(const MachineInstr &MI) const; 472 unsigned getSize(const MachineInstr &MI) const; 473 uint64_t getType(const MachineInstr &MI) const; 474 InstrStage::FuncUnits getUnits(const MachineInstr &MI) const; 475 476 MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const; 477 478 /// getInstrTimingClassLatency - Compute the instruction latency of a given 479 /// instruction using Timing Class information, if available. 480 unsigned nonDbgBBSize(const MachineBasicBlock *BB) const; 481 unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const; 482 483 void immediateExtend(MachineInstr &MI) const; 484 bool invertAndChangeJumpTarget(MachineInstr &MI, 485 MachineBasicBlock *NewTarget) const; 486 void genAllInsnTimingClasses(MachineFunction &MF) const; 487 bool reversePredSense(MachineInstr &MI) const; 488 unsigned reversePrediction(unsigned Opcode) const; 489 bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const; 490 491 void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const; 492 bool getBundleNoShuf(const MachineInstr &MIB) const; 493 494 // When TinyCore with Duplexes is enabled, this function is used to translate 495 // tiny-instructions to big-instructions and vice versa to get the slot 496 // consumption. 497 void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, 498 bool ToBigInstrs) const; 499 void translateInstrsForDup(MachineFunction &MF, 500 bool ToBigInstrs = true) const; 501 void translateInstrsForDup(MachineBasicBlock::instr_iterator MII, 502 bool ToBigInstrs) const; 503 504 // Addressing mode relations. 505 short changeAddrMode_abs_io(short Opc) const; 506 short changeAddrMode_io_abs(short Opc) const; 507 short changeAddrMode_io_pi(short Opc) const; 508 short changeAddrMode_io_rr(short Opc) const; 509 short changeAddrMode_pi_io(short Opc) const; 510 short changeAddrMode_rr_io(short Opc) const; 511 short changeAddrMode_rr_ur(short Opc) const; 512 short changeAddrMode_ur_rr(short Opc) const; 513 514 short changeAddrMode_abs_io(const MachineInstr &MI) const { 515 return changeAddrMode_abs_io(MI.getOpcode()); 516 } 517 short changeAddrMode_io_abs(const MachineInstr &MI) const { 518 return changeAddrMode_io_abs(MI.getOpcode()); 519 } 520 short changeAddrMode_io_rr(const MachineInstr &MI) const { 521 return changeAddrMode_io_rr(MI.getOpcode()); 522 } 523 short changeAddrMode_rr_io(const MachineInstr &MI) const { 524 return changeAddrMode_rr_io(MI.getOpcode()); 525 } 526 short changeAddrMode_rr_ur(const MachineInstr &MI) const { 527 return changeAddrMode_rr_ur(MI.getOpcode()); 528 } 529 short changeAddrMode_ur_rr(const MachineInstr &MI) const { 530 return changeAddrMode_ur_rr(MI.getOpcode()); 531 } 532 533 MCInst getNop() const override; 534 }; 535 536 } // end namespace llvm 537 538 #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H 539