xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonInstrInfo.h (revision 162ae9c834f6d9f9cb443bd62cceb23e0b5fef48)
1 //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
14 #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
15 
16 #include "MCTargetDesc/HexagonBaseInfo.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/ValueTypes.h"
22 #include "llvm/Support/MachineValueType.h"
23 #include <cstdint>
24 #include <vector>
25 
26 #define GET_INSTRINFO_HEADER
27 #include "HexagonGenInstrInfo.inc"
28 
29 namespace llvm {
30 
31 class HexagonSubtarget;
32 class MachineBranchProbabilityInfo;
33 class MachineFunction;
34 class MachineInstr;
35 class MachineOperand;
36 class TargetRegisterInfo;
37 
38 class HexagonInstrInfo : public HexagonGenInstrInfo {
39   const HexagonSubtarget &Subtarget;
40 
41   enum BundleAttribute {
42     memShufDisabledMask = 0x4
43   };
44 
45   virtual void anchor();
46 
47 public:
48   explicit HexagonInstrInfo(HexagonSubtarget &ST);
49 
50   /// TargetInstrInfo overrides.
51 
52   /// If the specified machine instruction is a direct
53   /// load from a stack slot, return the virtual or physical register number of
54   /// the destination along with the FrameIndex of the loaded stack slot.  If
55   /// not, return 0.  This predicate must return 0 if the instruction has
56   /// any side effects other than loading from the stack slot.
57   unsigned isLoadFromStackSlot(const MachineInstr &MI,
58                                int &FrameIndex) const override;
59 
60   /// If the specified machine instruction is a direct
61   /// store to a stack slot, return the virtual or physical register number of
62   /// the source reg along with the FrameIndex of the loaded stack slot.  If
63   /// not, return 0.  This predicate must return 0 if the instruction has
64   /// any side effects other than storing to the stack slot.
65   unsigned isStoreToStackSlot(const MachineInstr &MI,
66                               int &FrameIndex) const override;
67 
68   /// Check if the instruction or the bundle of instructions has
69   /// load from stack slots. Return the frameindex and machine memory operand
70   /// if true.
71   bool hasLoadFromStackSlot(
72       const MachineInstr &MI,
73       SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;
74 
75   /// Check if the instruction or the bundle of instructions has
76   /// store to stack slots. Return the frameindex and machine memory operand
77   /// if true.
78   bool hasStoreToStackSlot(
79       const MachineInstr &MI,
80       SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;
81 
82   /// Analyze the branching code at the end of MBB, returning
83   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
84   /// implemented for a target).  Upon success, this returns false and returns
85   /// with the following information in various cases:
86   ///
87   /// 1. If this block ends with no branches (it just falls through to its succ)
88   ///    just return false, leaving TBB/FBB null.
89   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
90   ///    the destination block.
91   /// 3. If this block ends with a conditional branch and it falls through to a
92   ///    successor block, it sets TBB to be the branch destination block and a
93   ///    list of operands that evaluate the condition. These operands can be
94   ///    passed to other TargetInstrInfo methods to create new branches.
95   /// 4. If this block ends with a conditional branch followed by an
96   ///    unconditional branch, it returns the 'true' destination in TBB, the
97   ///    'false' destination in FBB, and a list of operands that evaluate the
98   ///    condition.  These operands can be passed to other TargetInstrInfo
99   ///    methods to create new branches.
100   ///
101   /// Note that removeBranch and insertBranch must be implemented to support
102   /// cases where this method returns success.
103   ///
104   /// If AllowModify is true, then this routine is allowed to modify the basic
105   /// block (e.g. delete instructions after the unconditional branch).
106   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
107                      MachineBasicBlock *&FBB,
108                      SmallVectorImpl<MachineOperand> &Cond,
109                      bool AllowModify) const override;
110 
111   /// Remove the branching code at the end of the specific MBB.
112   /// This is only invoked in cases where AnalyzeBranch returns success. It
113   /// returns the number of instructions that were removed.
114   unsigned removeBranch(MachineBasicBlock &MBB,
115                         int *BytesRemoved = nullptr) const override;
116 
117   /// Insert branch code into the end of the specified MachineBasicBlock.
118   /// The operands to this method are the same as those
119   /// returned by AnalyzeBranch.  This is only invoked in cases where
120   /// AnalyzeBranch returns success. It returns the number of instructions
121   /// inserted.
122   ///
123   /// It is also invoked by tail merging to add unconditional branches in
124   /// cases where AnalyzeBranch doesn't apply because there was no original
125   /// branch to analyze.  At least this much must be implemented, else tail
126   /// merging needs to be disabled.
127   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
128                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
129                         const DebugLoc &DL,
130                         int *BytesAdded = nullptr) const override;
131 
132   /// Analyze the loop code, return true if it cannot be understood. Upon
133   /// success, this function returns false and returns information about the
134   /// induction variable and compare instruction used at the end.
135   bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
136                    MachineInstr *&CmpInst) const override;
137 
138   /// Generate code to reduce the loop iteration by one and check if the loop
139   /// is finished.  Return the value/register of the new loop count.  We need
140   /// this function when peeling off one or more iterations of a loop. This
141   /// function assumes the nth iteration is peeled first.
142   unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineBasicBlock &PreHeader,
143                            MachineInstr *IndVar, MachineInstr &Cmp,
144                            SmallVectorImpl<MachineOperand> &Cond,
145                            SmallVectorImpl<MachineInstr *> &PrevInsts,
146                            unsigned Iter, unsigned MaxIter) const override;
147 
148   /// Return true if it's profitable to predicate
149   /// instructions with accumulated instruction latency of "NumCycles"
150   /// of the specified basic block, where the probability of the instructions
151   /// being executed is given by Probability, and Confidence is a measure
152   /// of our confidence that it will be properly predicted.
153   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
154                            unsigned ExtraPredCycles,
155                            BranchProbability Probability) const override;
156 
157   /// Second variant of isProfitableToIfCvt. This one
158   /// checks for the case where two basic blocks from true and false path
159   /// of a if-then-else (diamond) are predicated on mutally exclusive
160   /// predicates, where the probability of the true path being taken is given
161   /// by Probability, and Confidence is a measure of our confidence that it
162   /// will be properly predicted.
163   bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
164                            unsigned NumTCycles, unsigned ExtraTCycles,
165                            MachineBasicBlock &FMBB,
166                            unsigned NumFCycles, unsigned ExtraFCycles,
167                            BranchProbability Probability) const override;
168 
169   /// Return true if it's profitable for if-converter to duplicate instructions
170   /// of specified accumulated instruction latencies in the specified MBB to
171   /// enable if-conversion.
172   /// The probability of the instructions being executed is given by
173   /// Probability, and Confidence is a measure of our confidence that it
174   /// will be properly predicted.
175   bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
176                                  BranchProbability Probability) const override;
177 
178   /// Emit instructions to copy a pair of physical registers.
179   ///
180   /// This function should support copies within any legal register class as
181   /// well as any cross-class copies created during instruction selection.
182   ///
183   /// The source and destination registers may overlap, which may require a
184   /// careful implementation when multiple copy instructions are required for
185   /// large registers. See for example the ARM target.
186   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
187                    const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
188                    bool KillSrc) const override;
189 
190   /// Store the specified register of the given register class to the specified
191   /// stack frame index. The store instruction is to be added to the given
192   /// machine basic block before the specified machine instruction. If isKill
193   /// is true, the register operand is the last use and must be marked kill.
194   void storeRegToStackSlot(MachineBasicBlock &MBB,
195                            MachineBasicBlock::iterator MBBI,
196                            unsigned SrcReg, bool isKill, int FrameIndex,
197                            const TargetRegisterClass *RC,
198                            const TargetRegisterInfo *TRI) const override;
199 
200   /// Load the specified register of the given register class from the specified
201   /// stack frame index. The load instruction is to be added to the given
202   /// machine basic block before the specified machine instruction.
203   void loadRegFromStackSlot(MachineBasicBlock &MBB,
204                             MachineBasicBlock::iterator MBBI,
205                             unsigned DestReg, int FrameIndex,
206                             const TargetRegisterClass *RC,
207                             const TargetRegisterInfo *TRI) const override;
208 
209   /// This function is called for all pseudo instructions
210   /// that remain after register allocation. Many pseudo instructions are
211   /// created to help register allocation. This is the place to convert them
212   /// into real instructions. The target can edit MI in place, or it can insert
213   /// new instructions and erase MI. The function should return true if
214   /// anything was changed.
215   bool expandPostRAPseudo(MachineInstr &MI) const override;
216 
217   /// Get the base register and byte offset of a load/store instr.
218   bool getMemOperandWithOffset(const MachineInstr &LdSt,
219                                const MachineOperand *&BaseOp,
220                                int64_t &Offset,
221                                const TargetRegisterInfo *TRI) const override;
222 
223   /// Reverses the branch condition of the specified condition list,
224   /// returning false on success and true if it cannot be reversed.
225   bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
226         const override;
227 
228   /// Insert a noop into the instruction stream at the specified point.
229   void insertNoop(MachineBasicBlock &MBB,
230                   MachineBasicBlock::iterator MI) const override;
231 
232   /// Returns true if the instruction is already predicated.
233   bool isPredicated(const MachineInstr &MI) const override;
234 
235   /// Return true for post-incremented instructions.
236   bool isPostIncrement(const MachineInstr &MI) const override;
237 
238   /// Convert the instruction into a predicated instruction.
239   /// It returns true if the operation was successful.
240   bool PredicateInstruction(MachineInstr &MI,
241                             ArrayRef<MachineOperand> Cond) const override;
242 
243   /// Returns true if the first specified predicate
244   /// subsumes the second, e.g. GE subsumes GT.
245   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
246                          ArrayRef<MachineOperand> Pred2) const override;
247 
248   /// If the specified instruction defines any predicate
249   /// or condition code register(s) used for predication, returns true as well
250   /// as the definition predicate(s) by reference.
251   bool DefinesPredicate(MachineInstr &MI,
252                         std::vector<MachineOperand> &Pred) const override;
253 
254   /// Return true if the specified instruction can be predicated.
255   /// By default, this returns true for every instruction with a
256   /// PredicateOperand.
257   bool isPredicable(const MachineInstr &MI) const override;
258 
259   /// Test if the given instruction should be considered a scheduling boundary.
260   /// This primarily includes labels and terminators.
261   bool isSchedulingBoundary(const MachineInstr &MI,
262                             const MachineBasicBlock *MBB,
263                             const MachineFunction &MF) const override;
264 
265   /// Measure the specified inline asm to determine an approximation of its
266   /// length.
267   unsigned getInlineAsmLength(
268     const char *Str,
269     const MCAsmInfo &MAI,
270     const TargetSubtargetInfo *STI = nullptr) const override;
271 
272   /// Allocate and return a hazard recognizer to use for this target when
273   /// scheduling the machine instructions after register allocation.
274   ScheduleHazardRecognizer*
275   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
276                                      const ScheduleDAG *DAG) const override;
277 
278   /// For a comparison instruction, return the source registers
279   /// in SrcReg and SrcReg2 if having two register operands, and the value it
280   /// compares against in CmpValue. Return true if the comparison instruction
281   /// can be analyzed.
282   bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
283                       unsigned &SrcReg2, int &Mask, int &Value) const override;
284 
285   /// Compute the instruction latency of a given instruction.
286   /// If the instruction has higher cost when predicated, it's returned via
287   /// PredCost.
288   unsigned getInstrLatency(const InstrItineraryData *ItinData,
289                            const MachineInstr &MI,
290                            unsigned *PredCost = nullptr) const override;
291 
292   /// Create machine specific model for scheduling.
293   DFAPacketizer *
294   CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;
295 
296   // Sometimes, it is possible for the target
297   // to tell, even without aliasing information, that two MIs access different
298   // memory addresses. This function returns true if two MIs access different
299   // memory addresses and false otherwise.
300   bool
301   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
302                                   const MachineInstr &MIb,
303                                   AliasAnalysis *AA = nullptr) const override;
304 
305   /// For instructions with a base and offset, return the position of the
306   /// base register and offset operands.
307   bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos,
308                                 unsigned &OffsetPos) const override;
309 
310   /// If the instruction is an increment of a constant value, return the amount.
311   bool getIncrementValue(const MachineInstr &MI, int &Value) const override;
312 
313   /// getOperandLatency - Compute and return the use operand latency of a given
314   /// pair of def and use.
315   /// In most cases, the static scheduling itinerary was enough to determine the
316   /// operand latency. But it may not be possible for instructions with variable
317   /// number of defs / uses.
318   ///
319   /// This is a raw interface to the itinerary that may be directly overriden by
320   /// a target. Use computeOperandLatency to get the best estimate of latency.
321   int getOperandLatency(const InstrItineraryData *ItinData,
322                         const MachineInstr &DefMI, unsigned DefIdx,
323                         const MachineInstr &UseMI,
324                         unsigned UseIdx) const override;
325 
326   /// Decompose the machine operand's target flags into two values - the direct
327   /// target flag value and any of bit flags that are applied.
328   std::pair<unsigned, unsigned>
329   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
330 
331   /// Return an array that contains the direct target flag values and their
332   /// names.
333   ///
334   /// MIR Serialization is able to serialize only the target flags that are
335   /// defined by this method.
336   ArrayRef<std::pair<unsigned, const char *>>
337   getSerializableDirectMachineOperandTargetFlags() const override;
338 
339   /// Return an array that contains the bitmask target flag values and their
340   /// names.
341   ///
342   /// MIR Serialization is able to serialize only the target flags that are
343   /// defined by this method.
344   ArrayRef<std::pair<unsigned, const char *>>
345   getSerializableBitmaskMachineOperandTargetFlags() const override;
346 
347   bool isTailCall(const MachineInstr &MI) const override;
348 
349   /// HexagonInstrInfo specifics.
350 
351   unsigned createVR(MachineFunction *MF, MVT VT) const;
352   MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp,
353                               MachineBasicBlock *TargetBB,
354                               SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
355 
356   bool isBaseImmOffset(const MachineInstr &MI) const;
357   bool isAbsoluteSet(const MachineInstr &MI) const;
358   bool isAccumulator(const MachineInstr &MI) const;
359   bool isAddrModeWithOffset(const MachineInstr &MI) const;
360   bool isComplex(const MachineInstr &MI) const;
361   bool isCompoundBranchInstr(const MachineInstr &MI) const;
362   bool isConstExtended(const MachineInstr &MI) const;
363   bool isDeallocRet(const MachineInstr &MI) const;
364   bool isDependent(const MachineInstr &ProdMI,
365                    const MachineInstr &ConsMI) const;
366   bool isDotCurInst(const MachineInstr &MI) const;
367   bool isDotNewInst(const MachineInstr &MI) const;
368   bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const;
369   bool isEarlySourceInstr(const MachineInstr &MI) const;
370   bool isEndLoopN(unsigned Opcode) const;
371   bool isExpr(unsigned OpType) const;
372   bool isExtendable(const MachineInstr &MI) const;
373   bool isExtended(const MachineInstr &MI) const;
374   bool isFloat(const MachineInstr &MI) const;
375   bool isHVXMemWithAIndirect(const MachineInstr &I,
376                              const MachineInstr &J) const;
377   bool isIndirectCall(const MachineInstr &MI) const;
378   bool isIndirectL4Return(const MachineInstr &MI) const;
379   bool isJumpR(const MachineInstr &MI) const;
380   bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const;
381   bool isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
382                                   const MachineInstr &ESMI) const;
383   bool isLateResultInstr(const MachineInstr &MI) const;
384   bool isLateSourceInstr(const MachineInstr &MI) const;
385   bool isLoopN(const MachineInstr &MI) const;
386   bool isMemOp(const MachineInstr &MI) const;
387   bool isNewValue(const MachineInstr &MI) const;
388   bool isNewValue(unsigned Opcode) const;
389   bool isNewValueInst(const MachineInstr &MI) const;
390   bool isNewValueJump(const MachineInstr &MI) const;
391   bool isNewValueJump(unsigned Opcode) const;
392   bool isNewValueStore(const MachineInstr &MI) const;
393   bool isNewValueStore(unsigned Opcode) const;
394   bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const;
395   bool isPredicatedNew(const MachineInstr &MI) const;
396   bool isPredicatedNew(unsigned Opcode) const;
397   bool isPredicatedTrue(const MachineInstr &MI) const;
398   bool isPredicatedTrue(unsigned Opcode) const;
399   bool isPredicated(unsigned Opcode) const;
400   bool isPredicateLate(unsigned Opcode) const;
401   bool isPredictedTaken(unsigned Opcode) const;
402   bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const;
403   bool isSignExtendingLoad(const MachineInstr &MI) const;
404   bool isSolo(const MachineInstr &MI) const;
405   bool isSpillPredRegOp(const MachineInstr &MI) const;
406   bool isTC1(const MachineInstr &MI) const;
407   bool isTC2(const MachineInstr &MI) const;
408   bool isTC2Early(const MachineInstr &MI) const;
409   bool isTC4x(const MachineInstr &MI) const;
410   bool isToBeScheduledASAP(const MachineInstr &MI1,
411                            const MachineInstr &MI2) const;
412   bool isHVXVec(const MachineInstr &MI) const;
413   bool isValidAutoIncImm(const EVT VT, const int Offset) const;
414   bool isValidOffset(unsigned Opcode, int Offset,
415                      const TargetRegisterInfo *TRI, bool Extend = true) const;
416   bool isVecAcc(const MachineInstr &MI) const;
417   bool isVecALU(const MachineInstr &MI) const;
418   bool isVecUsableNextPacket(const MachineInstr &ProdMI,
419                              const MachineInstr &ConsMI) const;
420   bool isZeroExtendingLoad(const MachineInstr &MI) const;
421 
422   bool addLatencyToSchedule(const MachineInstr &MI1,
423                             const MachineInstr &MI2) const;
424   bool canExecuteInBundle(const MachineInstr &First,
425                           const MachineInstr &Second) const;
426   bool doesNotReturn(const MachineInstr &CallMI) const;
427   bool hasEHLabel(const MachineBasicBlock *B) const;
428   bool hasNonExtEquivalent(const MachineInstr &MI) const;
429   bool hasPseudoInstrPair(const MachineInstr &MI) const;
430   bool hasUncondBranch(const MachineBasicBlock *B) const;
431   bool mayBeCurLoad(const MachineInstr &MI) const;
432   bool mayBeNewStore(const MachineInstr &MI) const;
433   bool producesStall(const MachineInstr &ProdMI,
434                      const MachineInstr &ConsMI) const;
435   bool producesStall(const MachineInstr &MI,
436                      MachineBasicBlock::const_instr_iterator MII) const;
437   bool predCanBeUsedAsDotNew(const MachineInstr &MI, unsigned PredReg) const;
438   bool PredOpcodeHasJMP_c(unsigned Opcode) const;
439   bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;
440 
441   unsigned getAddrMode(const MachineInstr &MI) const;
442   MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset,
443                                    unsigned &AccessSize) const;
444   SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const;
445   unsigned getCExtOpNum(const MachineInstr &MI) const;
446   HexagonII::CompoundGroup
447   getCompoundCandidateGroup(const MachineInstr &MI) const;
448   unsigned getCompoundOpcode(const MachineInstr &GA,
449                              const MachineInstr &GB) const;
450   int getCondOpcode(int Opc, bool sense) const;
451   int getDotCurOp(const MachineInstr &MI) const;
452   int getNonDotCurOp(const MachineInstr &MI) const;
453   int getDotNewOp(const MachineInstr &MI) const;
454   int getDotNewPredJumpOp(const MachineInstr &MI,
455                           const MachineBranchProbabilityInfo *MBPI) const;
456   int getDotNewPredOp(const MachineInstr &MI,
457                       const MachineBranchProbabilityInfo *MBPI) const;
458   int getDotOldOp(const MachineInstr &MI) const;
459   HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI)
460                                                          const;
461   short getEquivalentHWInstr(const MachineInstr &MI) const;
462   unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData,
463                                       const MachineInstr &MI) const;
464   bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const;
465   unsigned getInvertedPredicatedOpcode(const int Opc) const;
466   int getMaxValue(const MachineInstr &MI) const;
467   unsigned getMemAccessSize(const MachineInstr &MI) const;
468   int getMinValue(const MachineInstr &MI) const;
469   short getNonExtOpcode(const MachineInstr &MI) const;
470   bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg,
471                   unsigned &PredRegPos, unsigned &PredRegFlags) const;
472   short getPseudoInstrPair(const MachineInstr &MI) const;
473   short getRegForm(const MachineInstr &MI) const;
474   unsigned getSize(const MachineInstr &MI) const;
475   uint64_t getType(const MachineInstr &MI) const;
476   unsigned getUnits(const MachineInstr &MI) const;
477 
478   MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const;
479 
480   /// getInstrTimingClassLatency - Compute the instruction latency of a given
481   /// instruction using Timing Class information, if available.
482   unsigned nonDbgBBSize(const MachineBasicBlock *BB) const;
483   unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const;
484 
485   void immediateExtend(MachineInstr &MI) const;
486   bool invertAndChangeJumpTarget(MachineInstr &MI,
487                                  MachineBasicBlock *NewTarget) const;
488   void genAllInsnTimingClasses(MachineFunction &MF) const;
489   bool reversePredSense(MachineInstr &MI) const;
490   unsigned reversePrediction(unsigned Opcode) const;
491   bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const;
492 
493   void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const;
494   bool getBundleNoShuf(const MachineInstr &MIB) const;
495   // Addressing mode relations.
496   short changeAddrMode_abs_io(short Opc) const;
497   short changeAddrMode_io_abs(short Opc) const;
498   short changeAddrMode_io_pi(short Opc) const;
499   short changeAddrMode_io_rr(short Opc) const;
500   short changeAddrMode_pi_io(short Opc) const;
501   short changeAddrMode_rr_io(short Opc) const;
502   short changeAddrMode_rr_ur(short Opc) const;
503   short changeAddrMode_ur_rr(short Opc) const;
504 
505   short changeAddrMode_abs_io(const MachineInstr &MI) const {
506     return changeAddrMode_abs_io(MI.getOpcode());
507   }
508   short changeAddrMode_io_abs(const MachineInstr &MI) const {
509     return changeAddrMode_io_abs(MI.getOpcode());
510   }
511   short changeAddrMode_io_rr(const MachineInstr &MI) const {
512     return changeAddrMode_io_rr(MI.getOpcode());
513   }
514   short changeAddrMode_rr_io(const MachineInstr &MI) const {
515     return changeAddrMode_rr_io(MI.getOpcode());
516   }
517   short changeAddrMode_rr_ur(const MachineInstr &MI) const {
518     return changeAddrMode_rr_ur(MI.getOpcode());
519   }
520   short changeAddrMode_ur_rr(const MachineInstr &MI) const {
521     return changeAddrMode_ur_rr(MI.getOpcode());
522   }
523 };
524 
525 } // end namespace llvm
526 
527 #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
528