xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp (revision d5b0e70f7e04d971691517ce1304d86a1e367e2e)
1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonInstrInfo.h"
14 #include "Hexagon.h"
15 #include "HexagonFrameLowering.h"
16 #include "HexagonHazardRecognizer.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/DFAPacketizer.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCInstBuilder.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCInstrItineraries.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <cassert>
56 #include <cctype>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "hexagon-instrinfo"
66 
67 #define GET_INSTRINFO_CTOR_DTOR
68 #define GET_INSTRMAP_INFO
69 #include "HexagonDepTimingClasses.h"
70 #include "HexagonGenDFAPacketizer.inc"
71 #include "HexagonGenInstrInfo.inc"
72 
73 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
74   cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
75                             "packetization boundary."));
76 
77 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
78   cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
79 
80 static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
81   cl::Hidden, cl::ZeroOrMore, cl::init(false),
82   cl::desc("Disable schedule adjustment for new value stores."));
83 
84 static cl::opt<bool> EnableTimingClassLatency(
85   "enable-timing-class-latency", cl::Hidden, cl::init(false),
86   cl::desc("Enable timing class latency"));
87 
88 static cl::opt<bool> EnableALUForwarding(
89   "enable-alu-forwarding", cl::Hidden, cl::init(true),
90   cl::desc("Enable vec alu forwarding"));
91 
92 static cl::opt<bool> EnableACCForwarding(
93   "enable-acc-forwarding", cl::Hidden, cl::init(true),
94   cl::desc("Enable vec acc forwarding"));
95 
96 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
97   cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
98 
99 static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec",
100   cl::init(true), cl::Hidden, cl::ZeroOrMore,
101   cl::desc("Use the DFA based hazard recognizer."));
102 
103 /// Constants for Hexagon instructions.
104 const int Hexagon_MEMW_OFFSET_MAX = 4095;
105 const int Hexagon_MEMW_OFFSET_MIN = -4096;
106 const int Hexagon_MEMD_OFFSET_MAX = 8191;
107 const int Hexagon_MEMD_OFFSET_MIN = -8192;
108 const int Hexagon_MEMH_OFFSET_MAX = 2047;
109 const int Hexagon_MEMH_OFFSET_MIN = -2048;
110 const int Hexagon_MEMB_OFFSET_MAX = 1023;
111 const int Hexagon_MEMB_OFFSET_MIN = -1024;
112 const int Hexagon_ADDI_OFFSET_MAX = 32767;
113 const int Hexagon_ADDI_OFFSET_MIN = -32768;
114 
115 // Pin the vtable to this file.
116 void HexagonInstrInfo::anchor() {}
117 
118 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
119   : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
120     Subtarget(ST) {}
121 
122 namespace llvm {
123 namespace HexagonFUnits {
124   bool isSlot0Only(unsigned units);
125 }
126 }
127 
128 static bool isIntRegForSubInst(unsigned Reg) {
129   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
130          (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
131 }
132 
133 static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
134   return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
135          isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
136 }
137 
138 /// Calculate number of instructions excluding the debug instructions.
139 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
140                               MachineBasicBlock::const_instr_iterator MIE) {
141   unsigned Count = 0;
142   for (; MIB != MIE; ++MIB) {
143     if (!MIB->isDebugInstr())
144       ++Count;
145   }
146   return Count;
147 }
148 
149 // Check if the A2_tfrsi instruction is cheap or not. If the operand has
150 // to be constant-extendend it is not cheap since it occupies two slots
151 // in a packet.
152 bool HexagonInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
153   // Enable the following steps only at Os/Oz
154   if (!(MI.getMF()->getFunction().hasOptSize()))
155     return MI.isAsCheapAsAMove();
156 
157   if (MI.getOpcode() == Hexagon::A2_tfrsi) {
158     auto Op = MI.getOperand(1);
159     // If the instruction has a global address as operand, it is not cheap
160     // since the operand will be constant extended.
161     if (Op.getType() == MachineOperand::MO_GlobalAddress)
162       return false;
163     // If the instruction has an operand of size > 16bits, its will be
164     // const-extended and hence, it is not cheap.
165     if (Op.isImm()) {
166       int64_t Imm = Op.getImm();
167       if (!isInt<16>(Imm))
168         return false;
169     }
170   }
171   return MI.isAsCheapAsAMove();
172 }
173 
174 // Do not sink floating point instructions that updates USR register.
175 // Example:
176 //    feclearexcept
177 //    F2_conv_w2sf
178 //    fetestexcept
179 // MachineSink sinks F2_conv_w2sf and we are not able to catch exceptions.
180 // TODO: On some of these floating point instructions, USR is marked as Use.
181 // In reality, these instructions also Def the USR. If USR is marked as Def,
182 // some of the assumptions in assembler packetization are broken.
183 bool HexagonInstrInfo::shouldSink(const MachineInstr &MI) const {
184   // Assumption: A floating point instruction that reads the USR will write
185   // the USR as well.
186   if (isFloat(MI) && MI.hasRegisterImplicitUseOperand(Hexagon::USR))
187     return false;
188   return true;
189 }
190 
191 /// Find the hardware loop instruction used to set-up the specified loop.
192 /// On Hexagon, we have two instructions used to set-up the hardware loop
193 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
194 /// to indicate the end of a loop.
195 MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB,
196       unsigned EndLoopOp, MachineBasicBlock *TargetBB,
197       SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
198   unsigned LOOPi;
199   unsigned LOOPr;
200   if (EndLoopOp == Hexagon::ENDLOOP0) {
201     LOOPi = Hexagon::J2_loop0i;
202     LOOPr = Hexagon::J2_loop0r;
203   } else { // EndLoopOp == Hexagon::EndLOOP1
204     LOOPi = Hexagon::J2_loop1i;
205     LOOPr = Hexagon::J2_loop1r;
206   }
207 
208   // The loop set-up instruction will be in a predecessor block
209   for (MachineBasicBlock *PB : BB->predecessors()) {
210     // If this has been visited, already skip it.
211     if (!Visited.insert(PB).second)
212       continue;
213     if (PB == BB)
214       continue;
215     for (MachineInstr &I : llvm::reverse(PB->instrs())) {
216       unsigned Opc = I.getOpcode();
217       if (Opc == LOOPi || Opc == LOOPr)
218         return &I;
219       // We've reached a different loop, which means the loop01 has been
220       // removed.
221       if (Opc == EndLoopOp && I.getOperand(0).getMBB() != TargetBB)
222         return nullptr;
223     }
224     // Check the predecessors for the LOOP instruction.
225     if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
226       return Loop;
227   }
228   return nullptr;
229 }
230 
231 /// Gather register def/uses from MI.
232 /// This treats possible (predicated) defs as actually happening ones
233 /// (conservatively).
234 static inline void parseOperands(const MachineInstr &MI,
235       SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
236   Defs.clear();
237   Uses.clear();
238 
239   for (const MachineOperand &MO : MI.operands()) {
240     if (!MO.isReg())
241       continue;
242 
243     Register Reg = MO.getReg();
244     if (!Reg)
245       continue;
246 
247     if (MO.isUse())
248       Uses.push_back(MO.getReg());
249 
250     if (MO.isDef())
251       Defs.push_back(MO.getReg());
252   }
253 }
254 
255 // Position dependent, so check twice for swap.
256 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
257   switch (Ga) {
258   case HexagonII::HSIG_None:
259   default:
260     return false;
261   case HexagonII::HSIG_L1:
262     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
263   case HexagonII::HSIG_L2:
264     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
265             Gb == HexagonII::HSIG_A);
266   case HexagonII::HSIG_S1:
267     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
268             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
269   case HexagonII::HSIG_S2:
270     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
271             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
272             Gb == HexagonII::HSIG_A);
273   case HexagonII::HSIG_A:
274     return (Gb == HexagonII::HSIG_A);
275   case HexagonII::HSIG_Compound:
276     return (Gb == HexagonII::HSIG_Compound);
277   }
278   return false;
279 }
280 
281 /// isLoadFromStackSlot - If the specified machine instruction is a direct
282 /// load from a stack slot, return the virtual or physical register number of
283 /// the destination along with the FrameIndex of the loaded stack slot.  If
284 /// not, return 0.  This predicate must return 0 if the instruction has
285 /// any side effects other than loading from the stack slot.
286 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
287                                                int &FrameIndex) const {
288   switch (MI.getOpcode()) {
289     default:
290       break;
291     case Hexagon::L2_loadri_io:
292     case Hexagon::L2_loadrd_io:
293     case Hexagon::V6_vL32b_ai:
294     case Hexagon::V6_vL32b_nt_ai:
295     case Hexagon::V6_vL32Ub_ai:
296     case Hexagon::LDriw_pred:
297     case Hexagon::LDriw_ctr:
298     case Hexagon::PS_vloadrq_ai:
299     case Hexagon::PS_vloadrw_ai:
300     case Hexagon::PS_vloadrw_nt_ai: {
301       const MachineOperand OpFI = MI.getOperand(1);
302       if (!OpFI.isFI())
303         return 0;
304       const MachineOperand OpOff = MI.getOperand(2);
305       if (!OpOff.isImm() || OpOff.getImm() != 0)
306         return 0;
307       FrameIndex = OpFI.getIndex();
308       return MI.getOperand(0).getReg();
309     }
310 
311     case Hexagon::L2_ploadrit_io:
312     case Hexagon::L2_ploadrif_io:
313     case Hexagon::L2_ploadrdt_io:
314     case Hexagon::L2_ploadrdf_io: {
315       const MachineOperand OpFI = MI.getOperand(2);
316       if (!OpFI.isFI())
317         return 0;
318       const MachineOperand OpOff = MI.getOperand(3);
319       if (!OpOff.isImm() || OpOff.getImm() != 0)
320         return 0;
321       FrameIndex = OpFI.getIndex();
322       return MI.getOperand(0).getReg();
323     }
324   }
325 
326   return 0;
327 }
328 
329 /// isStoreToStackSlot - If the specified machine instruction is a direct
330 /// store to a stack slot, return the virtual or physical register number of
331 /// the source reg along with the FrameIndex of the loaded stack slot.  If
332 /// not, return 0.  This predicate must return 0 if the instruction has
333 /// any side effects other than storing to the stack slot.
334 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
335                                               int &FrameIndex) const {
336   switch (MI.getOpcode()) {
337     default:
338       break;
339     case Hexagon::S2_storerb_io:
340     case Hexagon::S2_storerh_io:
341     case Hexagon::S2_storeri_io:
342     case Hexagon::S2_storerd_io:
343     case Hexagon::V6_vS32b_ai:
344     case Hexagon::V6_vS32Ub_ai:
345     case Hexagon::STriw_pred:
346     case Hexagon::STriw_ctr:
347     case Hexagon::PS_vstorerq_ai:
348     case Hexagon::PS_vstorerw_ai: {
349       const MachineOperand &OpFI = MI.getOperand(0);
350       if (!OpFI.isFI())
351         return 0;
352       const MachineOperand &OpOff = MI.getOperand(1);
353       if (!OpOff.isImm() || OpOff.getImm() != 0)
354         return 0;
355       FrameIndex = OpFI.getIndex();
356       return MI.getOperand(2).getReg();
357     }
358 
359     case Hexagon::S2_pstorerbt_io:
360     case Hexagon::S2_pstorerbf_io:
361     case Hexagon::S2_pstorerht_io:
362     case Hexagon::S2_pstorerhf_io:
363     case Hexagon::S2_pstorerit_io:
364     case Hexagon::S2_pstorerif_io:
365     case Hexagon::S2_pstorerdt_io:
366     case Hexagon::S2_pstorerdf_io: {
367       const MachineOperand &OpFI = MI.getOperand(1);
368       if (!OpFI.isFI())
369         return 0;
370       const MachineOperand &OpOff = MI.getOperand(2);
371       if (!OpOff.isImm() || OpOff.getImm() != 0)
372         return 0;
373       FrameIndex = OpFI.getIndex();
374       return MI.getOperand(3).getReg();
375     }
376   }
377 
378   return 0;
379 }
380 
381 /// This function checks if the instruction or bundle of instructions
382 /// has load from stack slot and returns frameindex and machine memory
383 /// operand of that instruction if true.
384 bool HexagonInstrInfo::hasLoadFromStackSlot(
385     const MachineInstr &MI,
386     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
387   if (MI.isBundle()) {
388     const MachineBasicBlock *MBB = MI.getParent();
389     MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
390     for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
391       if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses))
392         return true;
393     return false;
394   }
395 
396   return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses);
397 }
398 
399 /// This function checks if the instruction or bundle of instructions
400 /// has store to stack slot and returns frameindex and machine memory
401 /// operand of that instruction if true.
402 bool HexagonInstrInfo::hasStoreToStackSlot(
403     const MachineInstr &MI,
404     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
405   if (MI.isBundle()) {
406     const MachineBasicBlock *MBB = MI.getParent();
407     MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
408     for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
409       if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses))
410         return true;
411     return false;
412   }
413 
414   return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses);
415 }
416 
417 /// This function can analyze one/two way branching only and should (mostly) be
418 /// called by target independent side.
419 /// First entry is always the opcode of the branching instruction, except when
420 /// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a
421 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
422 /// e.g. Jump_c p will have
423 /// Cond[0] = Jump_c
424 /// Cond[1] = p
425 /// HW-loop ENDLOOP:
426 /// Cond[0] = ENDLOOP
427 /// Cond[1] = MBB
428 /// New value jump:
429 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
430 /// Cond[1] = R
431 /// Cond[2] = Imm
432 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
433                                      MachineBasicBlock *&TBB,
434                                      MachineBasicBlock *&FBB,
435                                      SmallVectorImpl<MachineOperand> &Cond,
436                                      bool AllowModify) const {
437   TBB = nullptr;
438   FBB = nullptr;
439   Cond.clear();
440 
441   // If the block has no terminators, it just falls into the block after it.
442   MachineBasicBlock::instr_iterator I = MBB.instr_end();
443   if (I == MBB.instr_begin())
444     return false;
445 
446   // A basic block may looks like this:
447   //
448   //  [   insn
449   //     EH_LABEL
450   //      insn
451   //      insn
452   //      insn
453   //     EH_LABEL
454   //      insn     ]
455   //
456   // It has two succs but does not have a terminator
457   // Don't know how to handle it.
458   do {
459     --I;
460     if (I->isEHLabel())
461       // Don't analyze EH branches.
462       return true;
463   } while (I != MBB.instr_begin());
464 
465   I = MBB.instr_end();
466   --I;
467 
468   while (I->isDebugInstr()) {
469     if (I == MBB.instr_begin())
470       return false;
471     --I;
472   }
473 
474   bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
475                      I->getOperand(0).isMBB();
476   // Delete the J2_jump if it's equivalent to a fall-through.
477   if (AllowModify && JumpToBlock &&
478       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
479     LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
480     I->eraseFromParent();
481     I = MBB.instr_end();
482     if (I == MBB.instr_begin())
483       return false;
484     --I;
485   }
486   if (!isUnpredicatedTerminator(*I))
487     return false;
488 
489   // Get the last instruction in the block.
490   MachineInstr *LastInst = &*I;
491   MachineInstr *SecondLastInst = nullptr;
492   // Find one more terminator if present.
493   while (true) {
494     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
495       if (!SecondLastInst)
496         SecondLastInst = &*I;
497       else
498         // This is a third branch.
499         return true;
500     }
501     if (I == MBB.instr_begin())
502       break;
503     --I;
504   }
505 
506   int LastOpcode = LastInst->getOpcode();
507   int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
508   // If the branch target is not a basic block, it could be a tail call.
509   // (It is, if the target is a function.)
510   if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
511     return true;
512   if (SecLastOpcode == Hexagon::J2_jump &&
513       !SecondLastInst->getOperand(0).isMBB())
514     return true;
515 
516   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
517   bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
518 
519   if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
520     return true;
521 
522   // If there is only one terminator instruction, process it.
523   if (LastInst && !SecondLastInst) {
524     if (LastOpcode == Hexagon::J2_jump) {
525       TBB = LastInst->getOperand(0).getMBB();
526       return false;
527     }
528     if (isEndLoopN(LastOpcode)) {
529       TBB = LastInst->getOperand(0).getMBB();
530       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
531       Cond.push_back(LastInst->getOperand(0));
532       return false;
533     }
534     if (LastOpcodeHasJMP_c) {
535       TBB = LastInst->getOperand(1).getMBB();
536       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
537       Cond.push_back(LastInst->getOperand(0));
538       return false;
539     }
540     // Only supporting rr/ri versions of new-value jumps.
541     if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
542       TBB = LastInst->getOperand(2).getMBB();
543       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
544       Cond.push_back(LastInst->getOperand(0));
545       Cond.push_back(LastInst->getOperand(1));
546       return false;
547     }
548     LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
549                       << " with one jump\n";);
550     // Otherwise, don't know what this is.
551     return true;
552   }
553 
554   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
555   bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
556   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
557     if (!SecondLastInst->getOperand(1).isMBB())
558       return true;
559     TBB =  SecondLastInst->getOperand(1).getMBB();
560     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
561     Cond.push_back(SecondLastInst->getOperand(0));
562     FBB = LastInst->getOperand(0).getMBB();
563     return false;
564   }
565 
566   // Only supporting rr/ri versions of new-value jumps.
567   if (SecLastOpcodeHasNVJump &&
568       (SecondLastInst->getNumExplicitOperands() == 3) &&
569       (LastOpcode == Hexagon::J2_jump)) {
570     TBB = SecondLastInst->getOperand(2).getMBB();
571     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
572     Cond.push_back(SecondLastInst->getOperand(0));
573     Cond.push_back(SecondLastInst->getOperand(1));
574     FBB = LastInst->getOperand(0).getMBB();
575     return false;
576   }
577 
578   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
579   // executed, so remove it.
580   if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
581     TBB = SecondLastInst->getOperand(0).getMBB();
582     I = LastInst->getIterator();
583     if (AllowModify)
584       I->eraseFromParent();
585     return false;
586   }
587 
588   // If the block ends with an ENDLOOP, and J2_jump, handle it.
589   if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
590     TBB = SecondLastInst->getOperand(0).getMBB();
591     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
592     Cond.push_back(SecondLastInst->getOperand(0));
593     FBB = LastInst->getOperand(0).getMBB();
594     return false;
595   }
596   LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
597                     << " with two jumps";);
598   // Otherwise, can't handle this.
599   return true;
600 }
601 
602 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB,
603                                         int *BytesRemoved) const {
604   assert(!BytesRemoved && "code size not handled");
605 
606   LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
607   MachineBasicBlock::iterator I = MBB.end();
608   unsigned Count = 0;
609   while (I != MBB.begin()) {
610     --I;
611     if (I->isDebugInstr())
612       continue;
613     // Only removing branches from end of MBB.
614     if (!I->isBranch())
615       return Count;
616     if (Count && (I->getOpcode() == Hexagon::J2_jump))
617       llvm_unreachable("Malformed basic block: unconditional branch not last");
618     MBB.erase(&MBB.back());
619     I = MBB.end();
620     ++Count;
621   }
622   return Count;
623 }
624 
625 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB,
626                                         MachineBasicBlock *TBB,
627                                         MachineBasicBlock *FBB,
628                                         ArrayRef<MachineOperand> Cond,
629                                         const DebugLoc &DL,
630                                         int *BytesAdded) const {
631   unsigned BOpc   = Hexagon::J2_jump;
632   unsigned BccOpc = Hexagon::J2_jumpt;
633   assert(validateBranchCond(Cond) && "Invalid branching condition");
634   assert(TBB && "insertBranch must not be told to insert a fallthrough");
635   assert(!BytesAdded && "code size not handled");
636 
637   // Check if reverseBranchCondition has asked to reverse this branch
638   // If we want to reverse the branch an odd number of times, we want
639   // J2_jumpf.
640   if (!Cond.empty() && Cond[0].isImm())
641     BccOpc = Cond[0].getImm();
642 
643   if (!FBB) {
644     if (Cond.empty()) {
645       // Due to a bug in TailMerging/CFG Optimization, we need to add a
646       // special case handling of a predicated jump followed by an
647       // unconditional jump. If not, Tail Merging and CFG Optimization go
648       // into an infinite loop.
649       MachineBasicBlock *NewTBB, *NewFBB;
650       SmallVector<MachineOperand, 4> Cond;
651       auto Term = MBB.getFirstTerminator();
652       if (Term != MBB.end() && isPredicated(*Term) &&
653           !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
654           MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
655         reverseBranchCondition(Cond);
656         removeBranch(MBB);
657         return insertBranch(MBB, TBB, nullptr, Cond, DL);
658       }
659       BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
660     } else if (isEndLoopN(Cond[0].getImm())) {
661       int EndLoopOp = Cond[0].getImm();
662       assert(Cond[1].isMBB());
663       // Since we're adding an ENDLOOP, there better be a LOOP instruction.
664       // Check for it, and change the BB target if needed.
665       SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
666       MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
667                                          VisitedBBs);
668       assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
669       Loop->getOperand(0).setMBB(TBB);
670       // Add the ENDLOOP after the finding the LOOP0.
671       BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
672     } else if (isNewValueJump(Cond[0].getImm())) {
673       assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
674       // New value jump
675       // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
676       // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
677       unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
678       LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
679                         << printMBBReference(MBB););
680       if (Cond[2].isReg()) {
681         unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
682         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
683           addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
684       } else if(Cond[2].isImm()) {
685         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
686           addImm(Cond[2].getImm()).addMBB(TBB);
687       } else
688         llvm_unreachable("Invalid condition for branching");
689     } else {
690       assert((Cond.size() == 2) && "Malformed cond vector");
691       const MachineOperand &RO = Cond[1];
692       unsigned Flags = getUndefRegState(RO.isUndef());
693       BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
694     }
695     return 1;
696   }
697   assert((!Cond.empty()) &&
698          "Cond. cannot be empty when multiple branchings are required");
699   assert((!isNewValueJump(Cond[0].getImm())) &&
700          "NV-jump cannot be inserted with another branch");
701   // Special case for hardware loops.  The condition is a basic block.
702   if (isEndLoopN(Cond[0].getImm())) {
703     int EndLoopOp = Cond[0].getImm();
704     assert(Cond[1].isMBB());
705     // Since we're adding an ENDLOOP, there better be a LOOP instruction.
706     // Check for it, and change the BB target if needed.
707     SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
708     MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
709                                        VisitedBBs);
710     assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
711     Loop->getOperand(0).setMBB(TBB);
712     // Add the ENDLOOP after the finding the LOOP0.
713     BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
714   } else {
715     const MachineOperand &RO = Cond[1];
716     unsigned Flags = getUndefRegState(RO.isUndef());
717     BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
718   }
719   BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
720 
721   return 2;
722 }
723 
724 namespace {
725 class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
726   MachineInstr *Loop, *EndLoop;
727   MachineFunction *MF;
728   const HexagonInstrInfo *TII;
729   int64_t TripCount;
730   Register LoopCount;
731   DebugLoc DL;
732 
733 public:
734   HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop)
735       : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()),
736         TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()),
737         DL(Loop->getDebugLoc()) {
738     // Inspect the Loop instruction up-front, as it may be deleted when we call
739     // createTripCountGreaterCondition.
740     TripCount = Loop->getOpcode() == Hexagon::J2_loop0r
741                     ? -1
742                     : Loop->getOperand(1).getImm();
743     if (TripCount == -1)
744       LoopCount = Loop->getOperand(1).getReg();
745   }
746 
747   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
748     // Only ignore the terminator.
749     return MI == EndLoop;
750   }
751 
752   Optional<bool>
753   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
754                                   SmallVectorImpl<MachineOperand> &Cond) override {
755     if (TripCount == -1) {
756       // Check if we're done with the loop.
757       unsigned Done = TII->createVR(MF, MVT::i1);
758       MachineInstr *NewCmp = BuildMI(&MBB, DL,
759                                      TII->get(Hexagon::C2_cmpgtui), Done)
760                                  .addReg(LoopCount)
761                                  .addImm(TC);
762       Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
763       Cond.push_back(NewCmp->getOperand(0));
764       return {};
765     }
766 
767     return TripCount > TC;
768   }
769 
770   void setPreheader(MachineBasicBlock *NewPreheader) override {
771     NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(),
772                          Loop);
773   }
774 
775   void adjustTripCount(int TripCountAdjust) override {
776     // If the loop trip count is a compile-time value, then just change the
777     // value.
778     if (Loop->getOpcode() == Hexagon::J2_loop0i ||
779         Loop->getOpcode() == Hexagon::J2_loop1i) {
780       int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust;
781       assert(TripCount > 0 && "Can't create an empty or negative loop!");
782       Loop->getOperand(1).setImm(TripCount);
783       return;
784     }
785 
786     // The loop trip count is a run-time value. We generate code to subtract
787     // one from the trip count, and update the loop instruction.
788     Register LoopCount = Loop->getOperand(1).getReg();
789     Register NewLoopCount = TII->createVR(MF, MVT::i32);
790     BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(),
791             TII->get(Hexagon::A2_addi), NewLoopCount)
792         .addReg(LoopCount)
793         .addImm(TripCountAdjust);
794     Loop->getOperand(1).setReg(NewLoopCount);
795   }
796 
797   void disposed() override { Loop->eraseFromParent(); }
798 };
799 } // namespace
800 
801 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
802 HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
803   // We really "analyze" only hardware loops right now.
804   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
805 
806   if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) {
807     SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
808     MachineInstr *LoopInst = findLoopInstr(
809         LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs);
810     if (LoopInst)
811       return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I);
812   }
813   return nullptr;
814 }
815 
816 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
817       unsigned NumCycles, unsigned ExtraPredCycles,
818       BranchProbability Probability) const {
819   return nonDbgBBSize(&MBB) <= 3;
820 }
821 
822 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
823       unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
824       unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
825       const {
826   return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
827 }
828 
829 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
830       unsigned NumInstrs, BranchProbability Probability) const {
831   return NumInstrs <= 4;
832 }
833 
834 static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
835   SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
836   const MachineBasicBlock &B = *MI.getParent();
837   Regs.addLiveIns(B);
838   auto E = MachineBasicBlock::const_iterator(MI.getIterator());
839   for (auto I = B.begin(); I != E; ++I) {
840     Clobbers.clear();
841     Regs.stepForward(*I, Clobbers);
842   }
843 }
844 
845 static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
846   const MachineBasicBlock &B = *MI.getParent();
847   Regs.addLiveOuts(B);
848   auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
849   for (auto I = B.rbegin(); I != E; ++I)
850     Regs.stepBackward(*I);
851 }
852 
853 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
854                                    MachineBasicBlock::iterator I,
855                                    const DebugLoc &DL, MCRegister DestReg,
856                                    MCRegister SrcReg, bool KillSrc) const {
857   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
858   unsigned KillFlag = getKillRegState(KillSrc);
859 
860   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
861     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
862       .addReg(SrcReg, KillFlag);
863     return;
864   }
865   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
866     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
867       .addReg(SrcReg, KillFlag);
868     return;
869   }
870   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
871     // Map Pd = Ps to Pd = or(Ps, Ps).
872     BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
873       .addReg(SrcReg).addReg(SrcReg, KillFlag);
874     return;
875   }
876   if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
877       Hexagon::IntRegsRegClass.contains(SrcReg)) {
878     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
879       .addReg(SrcReg, KillFlag);
880     return;
881   }
882   if (Hexagon::IntRegsRegClass.contains(DestReg) &&
883       Hexagon::CtrRegsRegClass.contains(SrcReg)) {
884     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
885       .addReg(SrcReg, KillFlag);
886     return;
887   }
888   if (Hexagon::ModRegsRegClass.contains(DestReg) &&
889       Hexagon::IntRegsRegClass.contains(SrcReg)) {
890     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
891       .addReg(SrcReg, KillFlag);
892     return;
893   }
894   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
895       Hexagon::IntRegsRegClass.contains(DestReg)) {
896     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
897       .addReg(SrcReg, KillFlag);
898     return;
899   }
900   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
901       Hexagon::PredRegsRegClass.contains(DestReg)) {
902     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
903       .addReg(SrcReg, KillFlag);
904     return;
905   }
906   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
907       Hexagon::IntRegsRegClass.contains(DestReg)) {
908     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
909       .addReg(SrcReg, KillFlag);
910     return;
911   }
912   if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
913     BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
914       addReg(SrcReg, KillFlag);
915     return;
916   }
917   if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
918     LivePhysRegs LiveAtMI(HRI);
919     getLiveInRegsAt(LiveAtMI, *I);
920     Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
921     Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
922     unsigned UndefLo = getUndefRegState(!LiveAtMI.contains(SrcLo));
923     unsigned UndefHi = getUndefRegState(!LiveAtMI.contains(SrcHi));
924     BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
925       .addReg(SrcHi, KillFlag | UndefHi)
926       .addReg(SrcLo, KillFlag | UndefLo);
927     return;
928   }
929   if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
930     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
931       .addReg(SrcReg)
932       .addReg(SrcReg, KillFlag);
933     return;
934   }
935   if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
936       Hexagon::HvxVRRegClass.contains(DestReg)) {
937     llvm_unreachable("Unimplemented pred to vec");
938     return;
939   }
940   if (Hexagon::HvxQRRegClass.contains(DestReg) &&
941       Hexagon::HvxVRRegClass.contains(SrcReg)) {
942     llvm_unreachable("Unimplemented vec to pred");
943     return;
944   }
945 
946 #ifndef NDEBUG
947   // Show the invalid registers to ease debugging.
948   dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
949          << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
950 #endif
951   llvm_unreachable("Unimplemented");
952 }
953 
954 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
955       MachineBasicBlock::iterator I, Register SrcReg, bool isKill, int FI,
956       const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
957   DebugLoc DL = MBB.findDebugLoc(I);
958   MachineFunction &MF = *MBB.getParent();
959   MachineFrameInfo &MFI = MF.getFrameInfo();
960   unsigned KillFlag = getKillRegState(isKill);
961 
962   MachineMemOperand *MMO = MF.getMachineMemOperand(
963       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
964       MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
965 
966   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
967     BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
968       .addFrameIndex(FI).addImm(0)
969       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
970   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
971     BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
972       .addFrameIndex(FI).addImm(0)
973       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
974   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
975     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
976       .addFrameIndex(FI).addImm(0)
977       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
978   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
979     BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
980       .addFrameIndex(FI).addImm(0)
981       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
982   } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
983     BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
984       .addFrameIndex(FI).addImm(0)
985       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
986   } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
987     BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerv_ai))
988       .addFrameIndex(FI).addImm(0)
989       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
990   } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
991     BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerw_ai))
992       .addFrameIndex(FI).addImm(0)
993       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
994   } else {
995     llvm_unreachable("Unimplemented");
996   }
997 }
998 
999 void HexagonInstrInfo::loadRegFromStackSlot(
1000     MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg,
1001     int FI, const TargetRegisterClass *RC,
1002     const TargetRegisterInfo *TRI) const {
1003   DebugLoc DL = MBB.findDebugLoc(I);
1004   MachineFunction &MF = *MBB.getParent();
1005   MachineFrameInfo &MFI = MF.getFrameInfo();
1006 
1007   MachineMemOperand *MMO = MF.getMachineMemOperand(
1008       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1009       MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
1010 
1011   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
1012     BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
1013       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1014   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
1015     BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
1016       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1017   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
1018     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
1019       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1020   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
1021     BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
1022       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1023   } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
1024     BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
1025       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1026   } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
1027     BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrv_ai), DestReg)
1028       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1029   } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
1030     BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrw_ai), DestReg)
1031       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1032   } else {
1033     llvm_unreachable("Can't store this register to stack slot");
1034   }
1035 }
1036 
1037 /// expandPostRAPseudo - This function is called for all pseudo instructions
1038 /// that remain after register allocation. Many pseudo instructions are
1039 /// created to help register allocation. This is the place to convert them
1040 /// into real instructions. The target can edit MI in place, or it can insert
1041 /// new instructions and erase MI. The function should return true if
1042 /// anything was changed.
1043 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1044   MachineBasicBlock &MBB = *MI.getParent();
1045   MachineFunction &MF = *MBB.getParent();
1046   MachineRegisterInfo &MRI = MF.getRegInfo();
1047   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1048   LivePhysRegs LiveIn(HRI), LiveOut(HRI);
1049   DebugLoc DL = MI.getDebugLoc();
1050   unsigned Opc = MI.getOpcode();
1051 
1052   auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
1053     Register Mx = MI.getOperand(MxOp).getReg();
1054     unsigned CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
1055     BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
1056         .add(MI.getOperand((HasImm ? 5 : 4)));
1057     auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
1058         .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
1059     if (HasImm)
1060       MIB.add(MI.getOperand(4));
1061     MIB.addReg(CSx, RegState::Implicit);
1062     MBB.erase(MI);
1063     return true;
1064   };
1065 
1066   auto UseAligned = [&](const MachineInstr &MI, Align NeedAlign) {
1067     if (MI.memoperands().empty())
1068       return false;
1069     return all_of(MI.memoperands(), [NeedAlign](const MachineMemOperand *MMO) {
1070       return MMO->getAlign() >= NeedAlign;
1071     });
1072   };
1073 
1074   switch (Opc) {
1075     case TargetOpcode::COPY: {
1076       MachineOperand &MD = MI.getOperand(0);
1077       MachineOperand &MS = MI.getOperand(1);
1078       MachineBasicBlock::iterator MBBI = MI.getIterator();
1079       if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1080         copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1081         std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1082       }
1083       MBB.erase(MBBI);
1084       return true;
1085     }
1086     case Hexagon::PS_aligna:
1087       BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1088           .addReg(HRI.getFrameRegister())
1089           .addImm(-MI.getOperand(1).getImm());
1090       MBB.erase(MI);
1091       return true;
1092     case Hexagon::V6_vassignp: {
1093       Register SrcReg = MI.getOperand(1).getReg();
1094       Register DstReg = MI.getOperand(0).getReg();
1095       Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1096       Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1097       getLiveInRegsAt(LiveIn, MI);
1098       unsigned UndefLo = getUndefRegState(!LiveIn.contains(SrcLo));
1099       unsigned UndefHi = getUndefRegState(!LiveIn.contains(SrcHi));
1100       unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1101       BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1102           .addReg(SrcHi, UndefHi)
1103           .addReg(SrcLo, Kill | UndefLo);
1104       MBB.erase(MI);
1105       return true;
1106     }
1107     case Hexagon::V6_lo: {
1108       Register SrcReg = MI.getOperand(1).getReg();
1109       Register DstReg = MI.getOperand(0).getReg();
1110       Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1111       copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1112       MBB.erase(MI);
1113       MRI.clearKillFlags(SrcSubLo);
1114       return true;
1115     }
1116     case Hexagon::V6_hi: {
1117       Register SrcReg = MI.getOperand(1).getReg();
1118       Register DstReg = MI.getOperand(0).getReg();
1119       Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1120       copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1121       MBB.erase(MI);
1122       MRI.clearKillFlags(SrcSubHi);
1123       return true;
1124     }
1125     case Hexagon::PS_vloadrv_ai: {
1126       Register DstReg = MI.getOperand(0).getReg();
1127       const MachineOperand &BaseOp = MI.getOperand(1);
1128       assert(BaseOp.getSubReg() == 0);
1129       int Offset = MI.getOperand(2).getImm();
1130       Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1131       unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1132                                                   : Hexagon::V6_vL32Ub_ai;
1133       BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
1134           .addReg(BaseOp.getReg(), getRegState(BaseOp))
1135           .addImm(Offset)
1136           .cloneMemRefs(MI);
1137       MBB.erase(MI);
1138       return true;
1139     }
1140     case Hexagon::PS_vloadrw_ai: {
1141       Register DstReg = MI.getOperand(0).getReg();
1142       const MachineOperand &BaseOp = MI.getOperand(1);
1143       assert(BaseOp.getSubReg() == 0);
1144       int Offset = MI.getOperand(2).getImm();
1145       unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1146       Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1147       unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1148                                                   : Hexagon::V6_vL32Ub_ai;
1149       BuildMI(MBB, MI, DL, get(NewOpc),
1150               HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1151           .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1152           .addImm(Offset)
1153           .cloneMemRefs(MI);
1154       BuildMI(MBB, MI, DL, get(NewOpc),
1155               HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1156           .addReg(BaseOp.getReg(), getRegState(BaseOp))
1157           .addImm(Offset + VecOffset)
1158           .cloneMemRefs(MI);
1159       MBB.erase(MI);
1160       return true;
1161     }
1162     case Hexagon::PS_vstorerv_ai: {
1163       const MachineOperand &SrcOp = MI.getOperand(2);
1164       assert(SrcOp.getSubReg() == 0);
1165       const MachineOperand &BaseOp = MI.getOperand(0);
1166       assert(BaseOp.getSubReg() == 0);
1167       int Offset = MI.getOperand(1).getImm();
1168       Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1169       unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1170                                                   : Hexagon::V6_vS32Ub_ai;
1171       BuildMI(MBB, MI, DL, get(NewOpc))
1172           .addReg(BaseOp.getReg(), getRegState(BaseOp))
1173           .addImm(Offset)
1174           .addReg(SrcOp.getReg(), getRegState(SrcOp))
1175           .cloneMemRefs(MI);
1176       MBB.erase(MI);
1177       return true;
1178     }
1179     case Hexagon::PS_vstorerw_ai: {
1180       Register SrcReg = MI.getOperand(2).getReg();
1181       const MachineOperand &BaseOp = MI.getOperand(0);
1182       assert(BaseOp.getSubReg() == 0);
1183       int Offset = MI.getOperand(1).getImm();
1184       unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1185       Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1186       unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1187                                                   : Hexagon::V6_vS32Ub_ai;
1188       BuildMI(MBB, MI, DL, get(NewOpc))
1189           .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1190           .addImm(Offset)
1191           .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo))
1192           .cloneMemRefs(MI);
1193       BuildMI(MBB, MI, DL, get(NewOpc))
1194           .addReg(BaseOp.getReg(), getRegState(BaseOp))
1195           .addImm(Offset + VecOffset)
1196           .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi))
1197           .cloneMemRefs(MI);
1198       MBB.erase(MI);
1199       return true;
1200     }
1201     case Hexagon::PS_true: {
1202       Register Reg = MI.getOperand(0).getReg();
1203       BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1204         .addReg(Reg, RegState::Undef)
1205         .addReg(Reg, RegState::Undef);
1206       MBB.erase(MI);
1207       return true;
1208     }
1209     case Hexagon::PS_false: {
1210       Register Reg = MI.getOperand(0).getReg();
1211       BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1212         .addReg(Reg, RegState::Undef)
1213         .addReg(Reg, RegState::Undef);
1214       MBB.erase(MI);
1215       return true;
1216     }
1217     case Hexagon::PS_qtrue: {
1218       BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1219         .addReg(Hexagon::V0, RegState::Undef)
1220         .addReg(Hexagon::V0, RegState::Undef);
1221       MBB.erase(MI);
1222       return true;
1223     }
1224     case Hexagon::PS_qfalse: {
1225       BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1226         .addReg(Hexagon::V0, RegState::Undef)
1227         .addReg(Hexagon::V0, RegState::Undef);
1228       MBB.erase(MI);
1229       return true;
1230     }
1231     case Hexagon::PS_vdd0: {
1232       Register Vd = MI.getOperand(0).getReg();
1233       BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1234         .addReg(Vd, RegState::Undef)
1235         .addReg(Vd, RegState::Undef);
1236       MBB.erase(MI);
1237       return true;
1238     }
1239     case Hexagon::PS_vmulw: {
1240       // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1241       Register DstReg = MI.getOperand(0).getReg();
1242       Register Src1Reg = MI.getOperand(1).getReg();
1243       Register Src2Reg = MI.getOperand(2).getReg();
1244       Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1245       Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1246       Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1247       Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1248       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1249               HRI.getSubReg(DstReg, Hexagon::isub_hi))
1250           .addReg(Src1SubHi)
1251           .addReg(Src2SubHi);
1252       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1253               HRI.getSubReg(DstReg, Hexagon::isub_lo))
1254           .addReg(Src1SubLo)
1255           .addReg(Src2SubLo);
1256       MBB.erase(MI);
1257       MRI.clearKillFlags(Src1SubHi);
1258       MRI.clearKillFlags(Src1SubLo);
1259       MRI.clearKillFlags(Src2SubHi);
1260       MRI.clearKillFlags(Src2SubLo);
1261       return true;
1262     }
1263     case Hexagon::PS_vmulw_acc: {
1264       // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1265       Register DstReg = MI.getOperand(0).getReg();
1266       Register Src1Reg = MI.getOperand(1).getReg();
1267       Register Src2Reg = MI.getOperand(2).getReg();
1268       Register Src3Reg = MI.getOperand(3).getReg();
1269       Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1270       Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1271       Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1272       Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1273       Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1274       Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1275       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1276               HRI.getSubReg(DstReg, Hexagon::isub_hi))
1277           .addReg(Src1SubHi)
1278           .addReg(Src2SubHi)
1279           .addReg(Src3SubHi);
1280       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1281               HRI.getSubReg(DstReg, Hexagon::isub_lo))
1282           .addReg(Src1SubLo)
1283           .addReg(Src2SubLo)
1284           .addReg(Src3SubLo);
1285       MBB.erase(MI);
1286       MRI.clearKillFlags(Src1SubHi);
1287       MRI.clearKillFlags(Src1SubLo);
1288       MRI.clearKillFlags(Src2SubHi);
1289       MRI.clearKillFlags(Src2SubLo);
1290       MRI.clearKillFlags(Src3SubHi);
1291       MRI.clearKillFlags(Src3SubLo);
1292       return true;
1293     }
1294     case Hexagon::PS_pselect: {
1295       const MachineOperand &Op0 = MI.getOperand(0);
1296       const MachineOperand &Op1 = MI.getOperand(1);
1297       const MachineOperand &Op2 = MI.getOperand(2);
1298       const MachineOperand &Op3 = MI.getOperand(3);
1299       Register Rd = Op0.getReg();
1300       Register Pu = Op1.getReg();
1301       Register Rs = Op2.getReg();
1302       Register Rt = Op3.getReg();
1303       DebugLoc DL = MI.getDebugLoc();
1304       unsigned K1 = getKillRegState(Op1.isKill());
1305       unsigned K2 = getKillRegState(Op2.isKill());
1306       unsigned K3 = getKillRegState(Op3.isKill());
1307       if (Rd != Rs)
1308         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1309           .addReg(Pu, (Rd == Rt) ? K1 : 0)
1310           .addReg(Rs, K2);
1311       if (Rd != Rt)
1312         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1313           .addReg(Pu, K1)
1314           .addReg(Rt, K3);
1315       MBB.erase(MI);
1316       return true;
1317     }
1318     case Hexagon::PS_vselect: {
1319       const MachineOperand &Op0 = MI.getOperand(0);
1320       const MachineOperand &Op1 = MI.getOperand(1);
1321       const MachineOperand &Op2 = MI.getOperand(2);
1322       const MachineOperand &Op3 = MI.getOperand(3);
1323       getLiveOutRegsAt(LiveOut, MI);
1324       bool IsDestLive = !LiveOut.available(MRI, Op0.getReg());
1325       Register PReg = Op1.getReg();
1326       assert(Op1.getSubReg() == 0);
1327       unsigned PState = getRegState(Op1);
1328 
1329       if (Op0.getReg() != Op2.getReg()) {
1330         unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1331                                                   : PState;
1332         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1333                      .add(Op0)
1334                      .addReg(PReg, S)
1335                      .add(Op2);
1336         if (IsDestLive)
1337           T.addReg(Op0.getReg(), RegState::Implicit);
1338         IsDestLive = true;
1339       }
1340       if (Op0.getReg() != Op3.getReg()) {
1341         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1342                      .add(Op0)
1343                      .addReg(PReg, PState)
1344                      .add(Op3);
1345         if (IsDestLive)
1346           T.addReg(Op0.getReg(), RegState::Implicit);
1347       }
1348       MBB.erase(MI);
1349       return true;
1350     }
1351     case Hexagon::PS_wselect: {
1352       MachineOperand &Op0 = MI.getOperand(0);
1353       MachineOperand &Op1 = MI.getOperand(1);
1354       MachineOperand &Op2 = MI.getOperand(2);
1355       MachineOperand &Op3 = MI.getOperand(3);
1356       getLiveOutRegsAt(LiveOut, MI);
1357       bool IsDestLive = !LiveOut.available(MRI, Op0.getReg());
1358       Register PReg = Op1.getReg();
1359       assert(Op1.getSubReg() == 0);
1360       unsigned PState = getRegState(Op1);
1361 
1362       if (Op0.getReg() != Op2.getReg()) {
1363         unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1364                                                   : PState;
1365         Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1366         Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1367         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1368                      .add(Op0)
1369                      .addReg(PReg, S)
1370                      .addReg(SrcHi)
1371                      .addReg(SrcLo);
1372         if (IsDestLive)
1373           T.addReg(Op0.getReg(), RegState::Implicit);
1374         IsDestLive = true;
1375       }
1376       if (Op0.getReg() != Op3.getReg()) {
1377         Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1378         Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1379         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1380                      .add(Op0)
1381                      .addReg(PReg, PState)
1382                      .addReg(SrcHi)
1383                      .addReg(SrcLo);
1384         if (IsDestLive)
1385           T.addReg(Op0.getReg(), RegState::Implicit);
1386       }
1387       MBB.erase(MI);
1388       return true;
1389     }
1390 
1391     case Hexagon::PS_crash: {
1392       // Generate a misaligned load that is guaranteed to cause a crash.
1393       class CrashPseudoSourceValue : public PseudoSourceValue {
1394       public:
1395         CrashPseudoSourceValue(const TargetInstrInfo &TII)
1396           : PseudoSourceValue(TargetCustom, TII) {}
1397 
1398         bool isConstant(const MachineFrameInfo *) const override {
1399           return false;
1400         }
1401         bool isAliased(const MachineFrameInfo *) const override {
1402           return false;
1403         }
1404         bool mayAlias(const MachineFrameInfo *) const override {
1405           return false;
1406         }
1407         void printCustom(raw_ostream &OS) const override {
1408           OS << "MisalignedCrash";
1409         }
1410       };
1411 
1412       static const CrashPseudoSourceValue CrashPSV(*this);
1413       MachineMemOperand *MMO = MF.getMachineMemOperand(
1414           MachinePointerInfo(&CrashPSV),
1415           MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8,
1416           Align(1));
1417       BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13)
1418         .addImm(0xBADC0FEE)  // Misaligned load.
1419         .addMemOperand(MMO);
1420       MBB.erase(MI);
1421       return true;
1422     }
1423 
1424     case Hexagon::PS_tailcall_i:
1425       MI.setDesc(get(Hexagon::J2_jump));
1426       return true;
1427     case Hexagon::PS_tailcall_r:
1428     case Hexagon::PS_jmpret:
1429       MI.setDesc(get(Hexagon::J2_jumpr));
1430       return true;
1431     case Hexagon::PS_jmprett:
1432       MI.setDesc(get(Hexagon::J2_jumprt));
1433       return true;
1434     case Hexagon::PS_jmpretf:
1435       MI.setDesc(get(Hexagon::J2_jumprf));
1436       return true;
1437     case Hexagon::PS_jmprettnewpt:
1438       MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1439       return true;
1440     case Hexagon::PS_jmpretfnewpt:
1441       MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1442       return true;
1443     case Hexagon::PS_jmprettnew:
1444       MI.setDesc(get(Hexagon::J2_jumprtnew));
1445       return true;
1446     case Hexagon::PS_jmpretfnew:
1447       MI.setDesc(get(Hexagon::J2_jumprfnew));
1448       return true;
1449 
1450     case Hexagon::PS_loadrub_pci:
1451       return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true,  /*MxOp*/4);
1452     case Hexagon::PS_loadrb_pci:
1453       return RealCirc(Hexagon::L2_loadrb_pci,  /*HasImm*/true,  /*MxOp*/4);
1454     case Hexagon::PS_loadruh_pci:
1455       return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true,  /*MxOp*/4);
1456     case Hexagon::PS_loadrh_pci:
1457       return RealCirc(Hexagon::L2_loadrh_pci,  /*HasImm*/true,  /*MxOp*/4);
1458     case Hexagon::PS_loadri_pci:
1459       return RealCirc(Hexagon::L2_loadri_pci,  /*HasImm*/true,  /*MxOp*/4);
1460     case Hexagon::PS_loadrd_pci:
1461       return RealCirc(Hexagon::L2_loadrd_pci,  /*HasImm*/true,  /*MxOp*/4);
1462     case Hexagon::PS_loadrub_pcr:
1463       return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1464     case Hexagon::PS_loadrb_pcr:
1465       return RealCirc(Hexagon::L2_loadrb_pcr,  /*HasImm*/false, /*MxOp*/3);
1466     case Hexagon::PS_loadruh_pcr:
1467       return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1468     case Hexagon::PS_loadrh_pcr:
1469       return RealCirc(Hexagon::L2_loadrh_pcr,  /*HasImm*/false, /*MxOp*/3);
1470     case Hexagon::PS_loadri_pcr:
1471       return RealCirc(Hexagon::L2_loadri_pcr,  /*HasImm*/false, /*MxOp*/3);
1472     case Hexagon::PS_loadrd_pcr:
1473       return RealCirc(Hexagon::L2_loadrd_pcr,  /*HasImm*/false, /*MxOp*/3);
1474     case Hexagon::PS_storerb_pci:
1475       return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true,  /*MxOp*/3);
1476     case Hexagon::PS_storerh_pci:
1477       return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true,  /*MxOp*/3);
1478     case Hexagon::PS_storerf_pci:
1479       return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true,  /*MxOp*/3);
1480     case Hexagon::PS_storeri_pci:
1481       return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true,  /*MxOp*/3);
1482     case Hexagon::PS_storerd_pci:
1483       return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true,  /*MxOp*/3);
1484     case Hexagon::PS_storerb_pcr:
1485       return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1486     case Hexagon::PS_storerh_pcr:
1487       return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1488     case Hexagon::PS_storerf_pcr:
1489       return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1490     case Hexagon::PS_storeri_pcr:
1491       return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1492     case Hexagon::PS_storerd_pcr:
1493       return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1494   }
1495 
1496   return false;
1497 }
1498 
1499 MachineBasicBlock::instr_iterator
1500 HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const {
1501   MachineBasicBlock &MBB = *MI.getParent();
1502   const DebugLoc &DL = MI.getDebugLoc();
1503   unsigned Opc = MI.getOpcode();
1504   MachineBasicBlock::iterator First;
1505 
1506   switch (Opc) {
1507     case Hexagon::V6_vgathermh_pseudo:
1508       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1509                   .add(MI.getOperand(2))
1510                   .add(MI.getOperand(3))
1511                   .add(MI.getOperand(4));
1512       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1513           .add(MI.getOperand(0))
1514           .addImm(MI.getOperand(1).getImm())
1515           .addReg(Hexagon::VTMP);
1516       MBB.erase(MI);
1517       return First.getInstrIterator();
1518 
1519     case Hexagon::V6_vgathermw_pseudo:
1520       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1521                   .add(MI.getOperand(2))
1522                   .add(MI.getOperand(3))
1523                   .add(MI.getOperand(4));
1524       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1525           .add(MI.getOperand(0))
1526           .addImm(MI.getOperand(1).getImm())
1527           .addReg(Hexagon::VTMP);
1528       MBB.erase(MI);
1529       return First.getInstrIterator();
1530 
1531     case Hexagon::V6_vgathermhw_pseudo:
1532       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1533                   .add(MI.getOperand(2))
1534                   .add(MI.getOperand(3))
1535                   .add(MI.getOperand(4));
1536       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1537           .add(MI.getOperand(0))
1538           .addImm(MI.getOperand(1).getImm())
1539           .addReg(Hexagon::VTMP);
1540       MBB.erase(MI);
1541       return First.getInstrIterator();
1542 
1543     case Hexagon::V6_vgathermhq_pseudo:
1544       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1545                   .add(MI.getOperand(2))
1546                   .add(MI.getOperand(3))
1547                   .add(MI.getOperand(4))
1548                   .add(MI.getOperand(5));
1549       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1550           .add(MI.getOperand(0))
1551           .addImm(MI.getOperand(1).getImm())
1552           .addReg(Hexagon::VTMP);
1553       MBB.erase(MI);
1554       return First.getInstrIterator();
1555 
1556     case Hexagon::V6_vgathermwq_pseudo:
1557       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1558                   .add(MI.getOperand(2))
1559                   .add(MI.getOperand(3))
1560                   .add(MI.getOperand(4))
1561                   .add(MI.getOperand(5));
1562       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1563           .add(MI.getOperand(0))
1564           .addImm(MI.getOperand(1).getImm())
1565           .addReg(Hexagon::VTMP);
1566       MBB.erase(MI);
1567       return First.getInstrIterator();
1568 
1569     case Hexagon::V6_vgathermhwq_pseudo:
1570       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1571                   .add(MI.getOperand(2))
1572                   .add(MI.getOperand(3))
1573                   .add(MI.getOperand(4))
1574                   .add(MI.getOperand(5));
1575       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1576           .add(MI.getOperand(0))
1577           .addImm(MI.getOperand(1).getImm())
1578           .addReg(Hexagon::VTMP);
1579       MBB.erase(MI);
1580       return First.getInstrIterator();
1581   }
1582 
1583   return MI.getIterator();
1584 }
1585 
1586 // We indicate that we want to reverse the branch by
1587 // inserting the reversed branching opcode.
1588 bool HexagonInstrInfo::reverseBranchCondition(
1589       SmallVectorImpl<MachineOperand> &Cond) const {
1590   if (Cond.empty())
1591     return true;
1592   assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1593   unsigned opcode = Cond[0].getImm();
1594   //unsigned temp;
1595   assert(get(opcode).isBranch() && "Should be a branching condition.");
1596   if (isEndLoopN(opcode))
1597     return true;
1598   unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1599   Cond[0].setImm(NewOpcode);
1600   return false;
1601 }
1602 
1603 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1604       MachineBasicBlock::iterator MI) const {
1605   DebugLoc DL;
1606   BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1607 }
1608 
1609 bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const {
1610   return getAddrMode(MI) == HexagonII::PostInc;
1611 }
1612 
1613 // Returns true if an instruction is predicated irrespective of the predicate
1614 // sense. For example, all of the following will return true.
1615 // if (p0) R1 = add(R2, R3)
1616 // if (!p0) R1 = add(R2, R3)
1617 // if (p0.new) R1 = add(R2, R3)
1618 // if (!p0.new) R1 = add(R2, R3)
1619 // Note: New-value stores are not included here as in the current
1620 // implementation, we don't need to check their predicate sense.
1621 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
1622   const uint64_t F = MI.getDesc().TSFlags;
1623   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
1624 }
1625 
1626 bool HexagonInstrInfo::PredicateInstruction(
1627     MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
1628   if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1629       isEndLoopN(Cond[0].getImm())) {
1630     LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1631     return false;
1632   }
1633   int Opc = MI.getOpcode();
1634   assert (isPredicable(MI) && "Expected predicable instruction");
1635   bool invertJump = predOpcodeHasNot(Cond);
1636 
1637   // We have to predicate MI "in place", i.e. after this function returns,
1638   // MI will need to be transformed into a predicated form. To avoid com-
1639   // plicated manipulations with the operands (handling tied operands,
1640   // etc.), build a new temporary instruction, then overwrite MI with it.
1641 
1642   MachineBasicBlock &B = *MI.getParent();
1643   DebugLoc DL = MI.getDebugLoc();
1644   unsigned PredOpc = getCondOpcode(Opc, invertJump);
1645   MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1646   unsigned NOp = 0, NumOps = MI.getNumOperands();
1647   while (NOp < NumOps) {
1648     MachineOperand &Op = MI.getOperand(NOp);
1649     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1650       break;
1651     T.add(Op);
1652     NOp++;
1653   }
1654 
1655   unsigned PredReg, PredRegPos, PredRegFlags;
1656   bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1657   (void)GotPredReg;
1658   assert(GotPredReg);
1659   T.addReg(PredReg, PredRegFlags);
1660   while (NOp < NumOps)
1661     T.add(MI.getOperand(NOp++));
1662 
1663   MI.setDesc(get(PredOpc));
1664   while (unsigned n = MI.getNumOperands())
1665     MI.RemoveOperand(n-1);
1666   for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1667     MI.addOperand(T->getOperand(i));
1668 
1669   MachineBasicBlock::instr_iterator TI = T->getIterator();
1670   B.erase(TI);
1671 
1672   MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1673   MRI.clearKillFlags(PredReg);
1674   return true;
1675 }
1676 
1677 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1678       ArrayRef<MachineOperand> Pred2) const {
1679   // TODO: Fix this
1680   return false;
1681 }
1682 
1683 bool HexagonInstrInfo::ClobbersPredicate(MachineInstr &MI,
1684                                          std::vector<MachineOperand> &Pred,
1685                                          bool SkipDead) const {
1686   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1687 
1688   for (const MachineOperand &MO : MI.operands()) {
1689     if (MO.isReg()) {
1690       if (!MO.isDef())
1691         continue;
1692       const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1693       if (RC == &Hexagon::PredRegsRegClass) {
1694         Pred.push_back(MO);
1695         return true;
1696       }
1697       continue;
1698     } else if (MO.isRegMask()) {
1699       for (unsigned PR : Hexagon::PredRegsRegClass) {
1700         if (!MI.modifiesRegister(PR, &HRI))
1701           continue;
1702         Pred.push_back(MO);
1703         return true;
1704       }
1705     }
1706   }
1707   return false;
1708 }
1709 
1710 bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const {
1711   if (!MI.getDesc().isPredicable())
1712     return false;
1713 
1714   if (MI.isCall() || isTailCall(MI)) {
1715     if (!Subtarget.usePredicatedCalls())
1716       return false;
1717   }
1718 
1719   // HVX loads are not predicable on v60, but are on v62.
1720   if (!Subtarget.hasV62Ops()) {
1721     switch (MI.getOpcode()) {
1722       case Hexagon::V6_vL32b_ai:
1723       case Hexagon::V6_vL32b_pi:
1724       case Hexagon::V6_vL32b_ppu:
1725       case Hexagon::V6_vL32b_cur_ai:
1726       case Hexagon::V6_vL32b_cur_pi:
1727       case Hexagon::V6_vL32b_cur_ppu:
1728       case Hexagon::V6_vL32b_nt_ai:
1729       case Hexagon::V6_vL32b_nt_pi:
1730       case Hexagon::V6_vL32b_nt_ppu:
1731       case Hexagon::V6_vL32b_tmp_ai:
1732       case Hexagon::V6_vL32b_tmp_pi:
1733       case Hexagon::V6_vL32b_tmp_ppu:
1734       case Hexagon::V6_vL32b_nt_cur_ai:
1735       case Hexagon::V6_vL32b_nt_cur_pi:
1736       case Hexagon::V6_vL32b_nt_cur_ppu:
1737       case Hexagon::V6_vL32b_nt_tmp_ai:
1738       case Hexagon::V6_vL32b_nt_tmp_pi:
1739       case Hexagon::V6_vL32b_nt_tmp_ppu:
1740         return false;
1741     }
1742   }
1743   return true;
1744 }
1745 
1746 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1747                                             const MachineBasicBlock *MBB,
1748                                             const MachineFunction &MF) const {
1749   // Debug info is never a scheduling boundary. It's necessary to be explicit
1750   // due to the special treatment of IT instructions below, otherwise a
1751   // dbg_value followed by an IT will result in the IT instruction being
1752   // considered a scheduling hazard, which is wrong. It should be the actual
1753   // instruction preceding the dbg_value instruction(s), just like it is
1754   // when debug info is not present.
1755   if (MI.isDebugInstr())
1756     return false;
1757 
1758   // Throwing call is a boundary.
1759   if (MI.isCall()) {
1760     // Don't mess around with no return calls.
1761     if (doesNotReturn(MI))
1762       return true;
1763     // If any of the block's successors is a landing pad, this could be a
1764     // throwing call.
1765     for (auto I : MBB->successors())
1766       if (I->isEHPad())
1767         return true;
1768   }
1769 
1770   // Terminators and labels can't be scheduled around.
1771   if (MI.getDesc().isTerminator() || MI.isPosition())
1772     return true;
1773 
1774   // INLINEASM_BR can jump to another block
1775   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1776     return true;
1777 
1778   if (MI.isInlineAsm() && !ScheduleInlineAsm)
1779     return true;
1780 
1781   return false;
1782 }
1783 
1784 /// Measure the specified inline asm to determine an approximation of its
1785 /// length.
1786 /// Comments (which run till the next SeparatorString or newline) do not
1787 /// count as an instruction.
1788 /// Any other non-whitespace text is considered an instruction, with
1789 /// multiple instructions separated by SeparatorString or newlines.
1790 /// Variable-length instructions are not handled here; this function
1791 /// may be overloaded in the target code to do that.
1792 /// Hexagon counts the number of ##'s and adjust for that many
1793 /// constant exenders.
1794 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1795                                               const MCAsmInfo &MAI,
1796                                               const TargetSubtargetInfo *STI) const {
1797   StringRef AStr(Str);
1798   // Count the number of instructions in the asm.
1799   bool atInsnStart = true;
1800   unsigned Length = 0;
1801   const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
1802   for (; *Str; ++Str) {
1803     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1804                                 strlen(MAI.getSeparatorString())) == 0)
1805       atInsnStart = true;
1806     if (atInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
1807       Length += MaxInstLength;
1808       atInsnStart = false;
1809     }
1810     if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1811                                MAI.getCommentString().size()) == 0)
1812       atInsnStart = false;
1813   }
1814 
1815   // Add to size number of constant extenders seen * 4.
1816   StringRef Occ("##");
1817   Length += AStr.count(Occ)*4;
1818   return Length;
1819 }
1820 
1821 ScheduleHazardRecognizer*
1822 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1823       const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1824   if (UseDFAHazardRec)
1825     return new HexagonHazardRecognizer(II, this, Subtarget);
1826   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1827 }
1828 
1829 /// For a comparison instruction, return the source registers in
1830 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1831 /// compares against in CmpValue. Return true if the comparison instruction
1832 /// can be analyzed.
1833 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1834                                       Register &SrcReg2, int64_t &Mask,
1835                                       int64_t &Value) const {
1836   unsigned Opc = MI.getOpcode();
1837 
1838   // Set mask and the first source register.
1839   switch (Opc) {
1840     case Hexagon::C2_cmpeq:
1841     case Hexagon::C2_cmpeqp:
1842     case Hexagon::C2_cmpgt:
1843     case Hexagon::C2_cmpgtp:
1844     case Hexagon::C2_cmpgtu:
1845     case Hexagon::C2_cmpgtup:
1846     case Hexagon::C4_cmpneq:
1847     case Hexagon::C4_cmplte:
1848     case Hexagon::C4_cmplteu:
1849     case Hexagon::C2_cmpeqi:
1850     case Hexagon::C2_cmpgti:
1851     case Hexagon::C2_cmpgtui:
1852     case Hexagon::C4_cmpneqi:
1853     case Hexagon::C4_cmplteui:
1854     case Hexagon::C4_cmpltei:
1855       SrcReg = MI.getOperand(1).getReg();
1856       Mask = ~0;
1857       break;
1858     case Hexagon::A4_cmpbeq:
1859     case Hexagon::A4_cmpbgt:
1860     case Hexagon::A4_cmpbgtu:
1861     case Hexagon::A4_cmpbeqi:
1862     case Hexagon::A4_cmpbgti:
1863     case Hexagon::A4_cmpbgtui:
1864       SrcReg = MI.getOperand(1).getReg();
1865       Mask = 0xFF;
1866       break;
1867     case Hexagon::A4_cmpheq:
1868     case Hexagon::A4_cmphgt:
1869     case Hexagon::A4_cmphgtu:
1870     case Hexagon::A4_cmpheqi:
1871     case Hexagon::A4_cmphgti:
1872     case Hexagon::A4_cmphgtui:
1873       SrcReg = MI.getOperand(1).getReg();
1874       Mask = 0xFFFF;
1875       break;
1876   }
1877 
1878   // Set the value/second source register.
1879   switch (Opc) {
1880     case Hexagon::C2_cmpeq:
1881     case Hexagon::C2_cmpeqp:
1882     case Hexagon::C2_cmpgt:
1883     case Hexagon::C2_cmpgtp:
1884     case Hexagon::C2_cmpgtu:
1885     case Hexagon::C2_cmpgtup:
1886     case Hexagon::A4_cmpbeq:
1887     case Hexagon::A4_cmpbgt:
1888     case Hexagon::A4_cmpbgtu:
1889     case Hexagon::A4_cmpheq:
1890     case Hexagon::A4_cmphgt:
1891     case Hexagon::A4_cmphgtu:
1892     case Hexagon::C4_cmpneq:
1893     case Hexagon::C4_cmplte:
1894     case Hexagon::C4_cmplteu:
1895       SrcReg2 = MI.getOperand(2).getReg();
1896       Value = 0;
1897       return true;
1898 
1899     case Hexagon::C2_cmpeqi:
1900     case Hexagon::C2_cmpgtui:
1901     case Hexagon::C2_cmpgti:
1902     case Hexagon::C4_cmpneqi:
1903     case Hexagon::C4_cmplteui:
1904     case Hexagon::C4_cmpltei:
1905     case Hexagon::A4_cmpbeqi:
1906     case Hexagon::A4_cmpbgti:
1907     case Hexagon::A4_cmpbgtui:
1908     case Hexagon::A4_cmpheqi:
1909     case Hexagon::A4_cmphgti:
1910     case Hexagon::A4_cmphgtui: {
1911       SrcReg2 = 0;
1912       const MachineOperand &Op2 = MI.getOperand(2);
1913       if (!Op2.isImm())
1914         return false;
1915       Value = MI.getOperand(2).getImm();
1916       return true;
1917     }
1918   }
1919 
1920   return false;
1921 }
1922 
1923 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1924                                            const MachineInstr &MI,
1925                                            unsigned *PredCost) const {
1926   return getInstrTimingClassLatency(ItinData, MI);
1927 }
1928 
1929 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1930     const TargetSubtargetInfo &STI) const {
1931   const InstrItineraryData *II = STI.getInstrItineraryData();
1932   return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1933 }
1934 
1935 // Inspired by this pair:
1936 //  %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1937 //  S2_storeri_io %r29, 132, killed %r1; flags:  mem:ST4[FixedStack1]
1938 // Currently AA considers the addresses in these instructions to be aliasing.
1939 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1940     const MachineInstr &MIa, const MachineInstr &MIb) const {
1941   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1942       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1943     return false;
1944 
1945   // Instructions that are pure loads, not loads and stores like memops are not
1946   // dependent.
1947   if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
1948     return true;
1949 
1950   // Get the base register in MIa.
1951   unsigned BasePosA, OffsetPosA;
1952   if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
1953     return false;
1954   const MachineOperand &BaseA = MIa.getOperand(BasePosA);
1955   Register BaseRegA = BaseA.getReg();
1956   unsigned BaseSubA = BaseA.getSubReg();
1957 
1958   // Get the base register in MIb.
1959   unsigned BasePosB, OffsetPosB;
1960   if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
1961     return false;
1962   const MachineOperand &BaseB = MIb.getOperand(BasePosB);
1963   Register BaseRegB = BaseB.getReg();
1964   unsigned BaseSubB = BaseB.getSubReg();
1965 
1966   if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
1967     return false;
1968 
1969   // Get the access sizes.
1970   unsigned SizeA = getMemAccessSize(MIa);
1971   unsigned SizeB = getMemAccessSize(MIb);
1972 
1973   // Get the offsets. Handle immediates only for now.
1974   const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
1975   const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
1976   if (!MIa.getOperand(OffsetPosA).isImm() ||
1977       !MIb.getOperand(OffsetPosB).isImm())
1978     return false;
1979   int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
1980   int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
1981 
1982   // This is a mem access with the same base register and known offsets from it.
1983   // Reason about it.
1984   if (OffsetA > OffsetB) {
1985     uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1986     return SizeB <= OffDiff;
1987   }
1988   if (OffsetA < OffsetB) {
1989     uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1990     return SizeA <= OffDiff;
1991   }
1992 
1993   return false;
1994 }
1995 
1996 /// If the instruction is an increment of a constant value, return the amount.
1997 bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI,
1998       int &Value) const {
1999   if (isPostIncrement(MI)) {
2000     unsigned BasePos = 0, OffsetPos = 0;
2001     if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
2002       return false;
2003     const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
2004     if (OffsetOp.isImm()) {
2005       Value = OffsetOp.getImm();
2006       return true;
2007     }
2008   } else if (MI.getOpcode() == Hexagon::A2_addi) {
2009     const MachineOperand &AddOp = MI.getOperand(2);
2010     if (AddOp.isImm()) {
2011       Value = AddOp.getImm();
2012       return true;
2013     }
2014   }
2015 
2016   return false;
2017 }
2018 
2019 std::pair<unsigned, unsigned>
2020 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2021   return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
2022                         TF & HexagonII::MO_Bitmasks);
2023 }
2024 
2025 ArrayRef<std::pair<unsigned, const char*>>
2026 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2027   using namespace HexagonII;
2028 
2029   static const std::pair<unsigned, const char*> Flags[] = {
2030     {MO_PCREL,  "hexagon-pcrel"},
2031     {MO_GOT,    "hexagon-got"},
2032     {MO_LO16,   "hexagon-lo16"},
2033     {MO_HI16,   "hexagon-hi16"},
2034     {MO_GPREL,  "hexagon-gprel"},
2035     {MO_GDGOT,  "hexagon-gdgot"},
2036     {MO_GDPLT,  "hexagon-gdplt"},
2037     {MO_IE,     "hexagon-ie"},
2038     {MO_IEGOT,  "hexagon-iegot"},
2039     {MO_TPREL,  "hexagon-tprel"}
2040   };
2041   return makeArrayRef(Flags);
2042 }
2043 
2044 ArrayRef<std::pair<unsigned, const char*>>
2045 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2046   using namespace HexagonII;
2047 
2048   static const std::pair<unsigned, const char*> Flags[] = {
2049     {HMOTF_ConstExtended, "hexagon-ext"}
2050   };
2051   return makeArrayRef(Flags);
2052 }
2053 
2054 unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const {
2055   MachineRegisterInfo &MRI = MF->getRegInfo();
2056   const TargetRegisterClass *TRC;
2057   if (VT == MVT::i1) {
2058     TRC = &Hexagon::PredRegsRegClass;
2059   } else if (VT == MVT::i32 || VT == MVT::f32) {
2060     TRC = &Hexagon::IntRegsRegClass;
2061   } else if (VT == MVT::i64 || VT == MVT::f64) {
2062     TRC = &Hexagon::DoubleRegsRegClass;
2063   } else {
2064     llvm_unreachable("Cannot handle this register class");
2065   }
2066 
2067   Register NewReg = MRI.createVirtualRegister(TRC);
2068   return NewReg;
2069 }
2070 
2071 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const {
2072   return (getAddrMode(MI) == HexagonII::AbsoluteSet);
2073 }
2074 
2075 bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const {
2076   const uint64_t F = MI.getDesc().TSFlags;
2077   return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
2078 }
2079 
2080 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const {
2081   return getAddrMode(MI) == HexagonII::BaseImmOffset;
2082 }
2083 
2084 bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const {
2085   return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
2086          !MI.getDesc().mayStore() &&
2087          MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
2088          MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
2089          !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
2090 }
2091 
2092 // Return true if the instruction is a compund branch instruction.
2093 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const {
2094   return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
2095 }
2096 
2097 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2098 // isFPImm and later getFPImm as well.
2099 bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const {
2100   const uint64_t F = MI.getDesc().TSFlags;
2101   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
2102   if (isExtended) // Instruction must be extended.
2103     return true;
2104 
2105   unsigned isExtendable =
2106     (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
2107   if (!isExtendable)
2108     return false;
2109 
2110   if (MI.isCall())
2111     return false;
2112 
2113   short ExtOpNum = getCExtOpNum(MI);
2114   const MachineOperand &MO = MI.getOperand(ExtOpNum);
2115   // Use MO operand flags to determine if MO
2116   // has the HMOTF_ConstExtended flag set.
2117   if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2118     return true;
2119   // If this is a Machine BB address we are talking about, and it is
2120   // not marked as extended, say so.
2121   if (MO.isMBB())
2122     return false;
2123 
2124   // We could be using an instruction with an extendable immediate and shoehorn
2125   // a global address into it. If it is a global address it will be constant
2126   // extended. We do this for COMBINE.
2127   if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2128       MO.isJTI() || MO.isCPI() || MO.isFPImm())
2129     return true;
2130 
2131   // If the extendable operand is not 'Immediate' type, the instruction should
2132   // have 'isExtended' flag set.
2133   assert(MO.isImm() && "Extendable operand must be Immediate type");
2134 
2135   int MinValue = getMinValue(MI);
2136   int MaxValue = getMaxValue(MI);
2137   int ImmValue = MO.getImm();
2138 
2139   return (ImmValue < MinValue || ImmValue > MaxValue);
2140 }
2141 
2142 bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const {
2143   switch (MI.getOpcode()) {
2144   case Hexagon::L4_return:
2145   case Hexagon::L4_return_t:
2146   case Hexagon::L4_return_f:
2147   case Hexagon::L4_return_tnew_pnt:
2148   case Hexagon::L4_return_fnew_pnt:
2149   case Hexagon::L4_return_tnew_pt:
2150   case Hexagon::L4_return_fnew_pt:
2151     return true;
2152   }
2153   return false;
2154 }
2155 
2156 // Return true when ConsMI uses a register defined by ProdMI.
2157 bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI,
2158       const MachineInstr &ConsMI) const {
2159   if (!ProdMI.getDesc().getNumDefs())
2160     return false;
2161   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2162 
2163   SmallVector<unsigned, 4> DefsA;
2164   SmallVector<unsigned, 4> DefsB;
2165   SmallVector<unsigned, 8> UsesA;
2166   SmallVector<unsigned, 8> UsesB;
2167 
2168   parseOperands(ProdMI, DefsA, UsesA);
2169   parseOperands(ConsMI, DefsB, UsesB);
2170 
2171   for (auto &RegA : DefsA)
2172     for (auto &RegB : UsesB) {
2173       // True data dependency.
2174       if (RegA == RegB)
2175         return true;
2176 
2177       if (Register::isPhysicalRegister(RegA))
2178         for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
2179           if (RegB == *SubRegs)
2180             return true;
2181 
2182       if (Register::isPhysicalRegister(RegB))
2183         for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
2184           if (RegA == *SubRegs)
2185             return true;
2186     }
2187 
2188   return false;
2189 }
2190 
2191 // Returns true if the instruction is alread a .cur.
2192 bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const {
2193   switch (MI.getOpcode()) {
2194   case Hexagon::V6_vL32b_cur_pi:
2195   case Hexagon::V6_vL32b_cur_ai:
2196     return true;
2197   }
2198   return false;
2199 }
2200 
2201 // Returns true, if any one of the operands is a dot new
2202 // insn, whether it is predicated dot new or register dot new.
2203 bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const {
2204   if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI)))
2205     return true;
2206 
2207   return false;
2208 }
2209 
2210 /// Symmetrical. See if these two instructions are fit for duplex pair.
2211 bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa,
2212       const MachineInstr &MIb) const {
2213   HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
2214   HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
2215   return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2216 }
2217 
2218 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const {
2219   if (MI.mayLoadOrStore() || MI.isCompare())
2220     return true;
2221 
2222   // Multiply
2223   unsigned SchedClass = MI.getDesc().getSchedClass();
2224   return is_TC4x(SchedClass) || is_TC3x(SchedClass);
2225 }
2226 
2227 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2228   return (Opcode == Hexagon::ENDLOOP0 ||
2229           Opcode == Hexagon::ENDLOOP1);
2230 }
2231 
2232 bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2233   switch(OpType) {
2234   case MachineOperand::MO_MachineBasicBlock:
2235   case MachineOperand::MO_GlobalAddress:
2236   case MachineOperand::MO_ExternalSymbol:
2237   case MachineOperand::MO_JumpTableIndex:
2238   case MachineOperand::MO_ConstantPoolIndex:
2239   case MachineOperand::MO_BlockAddress:
2240     return true;
2241   default:
2242     return false;
2243   }
2244 }
2245 
2246 bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const {
2247   const MCInstrDesc &MID = MI.getDesc();
2248   const uint64_t F = MID.TSFlags;
2249   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
2250     return true;
2251 
2252   // TODO: This is largely obsolete now. Will need to be removed
2253   // in consecutive patches.
2254   switch (MI.getOpcode()) {
2255     // PS_fi and PS_fia remain special cases.
2256     case Hexagon::PS_fi:
2257     case Hexagon::PS_fia:
2258       return true;
2259     default:
2260       return false;
2261   }
2262   return  false;
2263 }
2264 
2265 // This returns true in two cases:
2266 // - The OP code itself indicates that this is an extended instruction.
2267 // - One of MOs has been marked with HMOTF_ConstExtended flag.
2268 bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const {
2269   // First check if this is permanently extended op code.
2270   const uint64_t F = MI.getDesc().TSFlags;
2271   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
2272     return true;
2273   // Use MO operand flags to determine if one of MI's operands
2274   // has HMOTF_ConstExtended flag set.
2275   for (const MachineOperand &MO : MI.operands())
2276     if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2277       return true;
2278   return  false;
2279 }
2280 
2281 bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const {
2282   unsigned Opcode = MI.getOpcode();
2283   const uint64_t F = get(Opcode).TSFlags;
2284   return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2285 }
2286 
2287 // No V60 HVX VMEM with A_INDIRECT.
2288 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I,
2289       const MachineInstr &J) const {
2290   if (!isHVXVec(I))
2291     return false;
2292   if (!I.mayLoad() && !I.mayStore())
2293     return false;
2294   return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2295 }
2296 
2297 bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const {
2298   switch (MI.getOpcode()) {
2299   case Hexagon::J2_callr:
2300   case Hexagon::J2_callrf:
2301   case Hexagon::J2_callrt:
2302   case Hexagon::PS_call_nr:
2303     return true;
2304   }
2305   return false;
2306 }
2307 
2308 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const {
2309   switch (MI.getOpcode()) {
2310   case Hexagon::L4_return:
2311   case Hexagon::L4_return_t:
2312   case Hexagon::L4_return_f:
2313   case Hexagon::L4_return_fnew_pnt:
2314   case Hexagon::L4_return_fnew_pt:
2315   case Hexagon::L4_return_tnew_pnt:
2316   case Hexagon::L4_return_tnew_pt:
2317     return true;
2318   }
2319   return false;
2320 }
2321 
2322 bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const {
2323   switch (MI.getOpcode()) {
2324   case Hexagon::J2_jumpr:
2325   case Hexagon::J2_jumprt:
2326   case Hexagon::J2_jumprf:
2327   case Hexagon::J2_jumprtnewpt:
2328   case Hexagon::J2_jumprfnewpt:
2329   case Hexagon::J2_jumprtnew:
2330   case Hexagon::J2_jumprfnew:
2331     return true;
2332   }
2333   return false;
2334 }
2335 
2336 // Return true if a given MI can accommodate given offset.
2337 // Use abs estimate as oppose to the exact number.
2338 // TODO: This will need to be changed to use MC level
2339 // definition of instruction extendable field size.
2340 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI,
2341       unsigned offset) const {
2342   // This selection of jump instructions matches to that what
2343   // analyzeBranch can parse, plus NVJ.
2344   if (isNewValueJump(MI)) // r9:2
2345     return isInt<11>(offset);
2346 
2347   switch (MI.getOpcode()) {
2348   // Still missing Jump to address condition on register value.
2349   default:
2350     return false;
2351   case Hexagon::J2_jump: // bits<24> dst; // r22:2
2352   case Hexagon::J2_call:
2353   case Hexagon::PS_call_nr:
2354     return isInt<24>(offset);
2355   case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2356   case Hexagon::J2_jumpf:
2357   case Hexagon::J2_jumptnew:
2358   case Hexagon::J2_jumptnewpt:
2359   case Hexagon::J2_jumpfnew:
2360   case Hexagon::J2_jumpfnewpt:
2361   case Hexagon::J2_callt:
2362   case Hexagon::J2_callf:
2363     return isInt<17>(offset);
2364   case Hexagon::J2_loop0i:
2365   case Hexagon::J2_loop0iext:
2366   case Hexagon::J2_loop0r:
2367   case Hexagon::J2_loop0rext:
2368   case Hexagon::J2_loop1i:
2369   case Hexagon::J2_loop1iext:
2370   case Hexagon::J2_loop1r:
2371   case Hexagon::J2_loop1rext:
2372     return isInt<9>(offset);
2373   // TODO: Add all the compound branches here. Can we do this in Relation model?
2374   case Hexagon::J4_cmpeqi_tp0_jump_nt:
2375   case Hexagon::J4_cmpeqi_tp1_jump_nt:
2376   case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2377   case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2378     return isInt<11>(offset);
2379   }
2380 }
2381 
2382 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
2383       const MachineInstr &ESMI) const {
2384   bool isLate = isLateResultInstr(LRMI);
2385   bool isEarly = isEarlySourceInstr(ESMI);
2386 
2387   LLVM_DEBUG(dbgs() << "V60" << (isLate ? "-LR  " : " --  "));
2388   LLVM_DEBUG(LRMI.dump());
2389   LLVM_DEBUG(dbgs() << "V60" << (isEarly ? "-ES  " : " --  "));
2390   LLVM_DEBUG(ESMI.dump());
2391 
2392   if (isLate && isEarly) {
2393     LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2394     return true;
2395   }
2396 
2397   return false;
2398 }
2399 
2400 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const {
2401   switch (MI.getOpcode()) {
2402   case TargetOpcode::EXTRACT_SUBREG:
2403   case TargetOpcode::INSERT_SUBREG:
2404   case TargetOpcode::SUBREG_TO_REG:
2405   case TargetOpcode::REG_SEQUENCE:
2406   case TargetOpcode::IMPLICIT_DEF:
2407   case TargetOpcode::COPY:
2408   case TargetOpcode::INLINEASM:
2409   case TargetOpcode::PHI:
2410     return false;
2411   default:
2412     break;
2413   }
2414 
2415   unsigned SchedClass = MI.getDesc().getSchedClass();
2416   return !is_TC1(SchedClass);
2417 }
2418 
2419 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const {
2420   // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2421   // resource, but all operands can be received late like an ALU instruction.
2422   return getType(MI) == HexagonII::TypeCVI_VX_LATE;
2423 }
2424 
2425 bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const {
2426   unsigned Opcode = MI.getOpcode();
2427   return Opcode == Hexagon::J2_loop0i    ||
2428          Opcode == Hexagon::J2_loop0r    ||
2429          Opcode == Hexagon::J2_loop0iext ||
2430          Opcode == Hexagon::J2_loop0rext ||
2431          Opcode == Hexagon::J2_loop1i    ||
2432          Opcode == Hexagon::J2_loop1r    ||
2433          Opcode == Hexagon::J2_loop1iext ||
2434          Opcode == Hexagon::J2_loop1rext;
2435 }
2436 
2437 bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const {
2438   switch (MI.getOpcode()) {
2439     default: return false;
2440     case Hexagon::L4_iadd_memopw_io:
2441     case Hexagon::L4_isub_memopw_io:
2442     case Hexagon::L4_add_memopw_io:
2443     case Hexagon::L4_sub_memopw_io:
2444     case Hexagon::L4_and_memopw_io:
2445     case Hexagon::L4_or_memopw_io:
2446     case Hexagon::L4_iadd_memoph_io:
2447     case Hexagon::L4_isub_memoph_io:
2448     case Hexagon::L4_add_memoph_io:
2449     case Hexagon::L4_sub_memoph_io:
2450     case Hexagon::L4_and_memoph_io:
2451     case Hexagon::L4_or_memoph_io:
2452     case Hexagon::L4_iadd_memopb_io:
2453     case Hexagon::L4_isub_memopb_io:
2454     case Hexagon::L4_add_memopb_io:
2455     case Hexagon::L4_sub_memopb_io:
2456     case Hexagon::L4_and_memopb_io:
2457     case Hexagon::L4_or_memopb_io:
2458     case Hexagon::L4_ior_memopb_io:
2459     case Hexagon::L4_ior_memoph_io:
2460     case Hexagon::L4_ior_memopw_io:
2461     case Hexagon::L4_iand_memopb_io:
2462     case Hexagon::L4_iand_memoph_io:
2463     case Hexagon::L4_iand_memopw_io:
2464     return true;
2465   }
2466   return false;
2467 }
2468 
2469 bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const {
2470   const uint64_t F = MI.getDesc().TSFlags;
2471   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2472 }
2473 
2474 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2475   const uint64_t F = get(Opcode).TSFlags;
2476   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2477 }
2478 
2479 bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const {
2480   return isNewValueJump(MI) || isNewValueStore(MI);
2481 }
2482 
2483 bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const {
2484   return isNewValue(MI) && MI.isBranch();
2485 }
2486 
2487 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2488   return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2489 }
2490 
2491 bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const {
2492   const uint64_t F = MI.getDesc().TSFlags;
2493   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2494 }
2495 
2496 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2497   const uint64_t F = get(Opcode).TSFlags;
2498   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2499 }
2500 
2501 // Returns true if a particular operand is extendable for an instruction.
2502 bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI,
2503     unsigned OperandNum) const {
2504   const uint64_t F = MI.getDesc().TSFlags;
2505   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2506           == OperandNum;
2507 }
2508 
2509 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
2510   const uint64_t F = MI.getDesc().TSFlags;
2511   assert(isPredicated(MI));
2512   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2513 }
2514 
2515 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2516   const uint64_t F = get(Opcode).TSFlags;
2517   assert(isPredicated(Opcode));
2518   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2519 }
2520 
2521 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
2522   const uint64_t F = MI.getDesc().TSFlags;
2523   return !((F >> HexagonII::PredicatedFalsePos) &
2524            HexagonII::PredicatedFalseMask);
2525 }
2526 
2527 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2528   const uint64_t F = get(Opcode).TSFlags;
2529   // Make sure that the instruction is predicated.
2530   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2531   return !((F >> HexagonII::PredicatedFalsePos) &
2532            HexagonII::PredicatedFalseMask);
2533 }
2534 
2535 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2536   const uint64_t F = get(Opcode).TSFlags;
2537   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2538 }
2539 
2540 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2541   const uint64_t F = get(Opcode).TSFlags;
2542   return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2543 }
2544 
2545 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2546   const uint64_t F = get(Opcode).TSFlags;
2547   assert(get(Opcode).isBranch() &&
2548          (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2549   return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2550 }
2551 
2552 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const {
2553   return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2554          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2555          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2556          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2557 }
2558 
2559 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
2560   switch (MI.getOpcode()) {
2561   // Byte
2562   case Hexagon::L2_loadrb_io:
2563   case Hexagon::L4_loadrb_ur:
2564   case Hexagon::L4_loadrb_ap:
2565   case Hexagon::L2_loadrb_pr:
2566   case Hexagon::L2_loadrb_pbr:
2567   case Hexagon::L2_loadrb_pi:
2568   case Hexagon::L2_loadrb_pci:
2569   case Hexagon::L2_loadrb_pcr:
2570   case Hexagon::L2_loadbsw2_io:
2571   case Hexagon::L4_loadbsw2_ur:
2572   case Hexagon::L4_loadbsw2_ap:
2573   case Hexagon::L2_loadbsw2_pr:
2574   case Hexagon::L2_loadbsw2_pbr:
2575   case Hexagon::L2_loadbsw2_pi:
2576   case Hexagon::L2_loadbsw2_pci:
2577   case Hexagon::L2_loadbsw2_pcr:
2578   case Hexagon::L2_loadbsw4_io:
2579   case Hexagon::L4_loadbsw4_ur:
2580   case Hexagon::L4_loadbsw4_ap:
2581   case Hexagon::L2_loadbsw4_pr:
2582   case Hexagon::L2_loadbsw4_pbr:
2583   case Hexagon::L2_loadbsw4_pi:
2584   case Hexagon::L2_loadbsw4_pci:
2585   case Hexagon::L2_loadbsw4_pcr:
2586   case Hexagon::L4_loadrb_rr:
2587   case Hexagon::L2_ploadrbt_io:
2588   case Hexagon::L2_ploadrbt_pi:
2589   case Hexagon::L2_ploadrbf_io:
2590   case Hexagon::L2_ploadrbf_pi:
2591   case Hexagon::L2_ploadrbtnew_io:
2592   case Hexagon::L2_ploadrbfnew_io:
2593   case Hexagon::L4_ploadrbt_rr:
2594   case Hexagon::L4_ploadrbf_rr:
2595   case Hexagon::L4_ploadrbtnew_rr:
2596   case Hexagon::L4_ploadrbfnew_rr:
2597   case Hexagon::L2_ploadrbtnew_pi:
2598   case Hexagon::L2_ploadrbfnew_pi:
2599   case Hexagon::L4_ploadrbt_abs:
2600   case Hexagon::L4_ploadrbf_abs:
2601   case Hexagon::L4_ploadrbtnew_abs:
2602   case Hexagon::L4_ploadrbfnew_abs:
2603   case Hexagon::L2_loadrbgp:
2604   // Half
2605   case Hexagon::L2_loadrh_io:
2606   case Hexagon::L4_loadrh_ur:
2607   case Hexagon::L4_loadrh_ap:
2608   case Hexagon::L2_loadrh_pr:
2609   case Hexagon::L2_loadrh_pbr:
2610   case Hexagon::L2_loadrh_pi:
2611   case Hexagon::L2_loadrh_pci:
2612   case Hexagon::L2_loadrh_pcr:
2613   case Hexagon::L4_loadrh_rr:
2614   case Hexagon::L2_ploadrht_io:
2615   case Hexagon::L2_ploadrht_pi:
2616   case Hexagon::L2_ploadrhf_io:
2617   case Hexagon::L2_ploadrhf_pi:
2618   case Hexagon::L2_ploadrhtnew_io:
2619   case Hexagon::L2_ploadrhfnew_io:
2620   case Hexagon::L4_ploadrht_rr:
2621   case Hexagon::L4_ploadrhf_rr:
2622   case Hexagon::L4_ploadrhtnew_rr:
2623   case Hexagon::L4_ploadrhfnew_rr:
2624   case Hexagon::L2_ploadrhtnew_pi:
2625   case Hexagon::L2_ploadrhfnew_pi:
2626   case Hexagon::L4_ploadrht_abs:
2627   case Hexagon::L4_ploadrhf_abs:
2628   case Hexagon::L4_ploadrhtnew_abs:
2629   case Hexagon::L4_ploadrhfnew_abs:
2630   case Hexagon::L2_loadrhgp:
2631     return true;
2632   default:
2633     return false;
2634   }
2635 }
2636 
2637 bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const {
2638   const uint64_t F = MI.getDesc().TSFlags;
2639   return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2640 }
2641 
2642 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const {
2643   switch (MI.getOpcode()) {
2644   case Hexagon::STriw_pred:
2645   case Hexagon::LDriw_pred:
2646     return true;
2647   default:
2648     return false;
2649   }
2650 }
2651 
2652 bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const {
2653   if (!MI.isBranch())
2654     return false;
2655 
2656   for (auto &Op : MI.operands())
2657     if (Op.isGlobal() || Op.isSymbol())
2658       return true;
2659   return false;
2660 }
2661 
2662 // Returns true when SU has a timing class TC1.
2663 bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const {
2664   unsigned SchedClass = MI.getDesc().getSchedClass();
2665   return is_TC1(SchedClass);
2666 }
2667 
2668 bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const {
2669   unsigned SchedClass = MI.getDesc().getSchedClass();
2670   return is_TC2(SchedClass);
2671 }
2672 
2673 bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const {
2674   unsigned SchedClass = MI.getDesc().getSchedClass();
2675   return is_TC2early(SchedClass);
2676 }
2677 
2678 bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const {
2679   unsigned SchedClass = MI.getDesc().getSchedClass();
2680   return is_TC4x(SchedClass);
2681 }
2682 
2683 // Schedule this ASAP.
2684 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1,
2685       const MachineInstr &MI2) const {
2686   if (mayBeCurLoad(MI1)) {
2687     // if (result of SU is used in Next) return true;
2688     Register DstReg = MI1.getOperand(0).getReg();
2689     int N = MI2.getNumOperands();
2690     for (int I = 0; I < N; I++)
2691       if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2692         return true;
2693   }
2694   if (mayBeNewStore(MI2))
2695     if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2696       if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2697           MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2698         return true;
2699   return false;
2700 }
2701 
2702 bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const {
2703   const uint64_t V = getType(MI);
2704   return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2705 }
2706 
2707 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2708 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const {
2709   int Size = VT.getSizeInBits() / 8;
2710   if (Offset % Size != 0)
2711     return false;
2712   int Count = Offset / Size;
2713 
2714   switch (VT.getSimpleVT().SimpleTy) {
2715     // For scalars the auto-inc is s4
2716     case MVT::i8:
2717     case MVT::i16:
2718     case MVT::i32:
2719     case MVT::i64:
2720     case MVT::f32:
2721     case MVT::f64:
2722     case MVT::v2i16:
2723     case MVT::v2i32:
2724     case MVT::v4i8:
2725     case MVT::v4i16:
2726     case MVT::v8i8:
2727       return isInt<4>(Count);
2728     // For HVX vectors the auto-inc is s3
2729     case MVT::v64i8:
2730     case MVT::v32i16:
2731     case MVT::v16i32:
2732     case MVT::v8i64:
2733     case MVT::v128i8:
2734     case MVT::v64i16:
2735     case MVT::v32i32:
2736     case MVT::v16i64:
2737       return isInt<3>(Count);
2738     default:
2739       break;
2740   }
2741 
2742   llvm_unreachable("Not an valid type!");
2743 }
2744 
2745 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2746       const TargetRegisterInfo *TRI, bool Extend) const {
2747   // This function is to check whether the "Offset" is in the correct range of
2748   // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2749   // inserted to calculate the final address. Due to this reason, the function
2750   // assumes that the "Offset" has correct alignment.
2751   // We used to assert if the offset was not properly aligned, however,
2752   // there are cases where a misaligned pointer recast can cause this
2753   // problem, and we need to allow for it. The front end warns of such
2754   // misaligns with respect to load size.
2755   switch (Opcode) {
2756   case Hexagon::PS_vstorerq_ai:
2757   case Hexagon::PS_vstorerv_ai:
2758   case Hexagon::PS_vstorerw_ai:
2759   case Hexagon::PS_vstorerw_nt_ai:
2760   case Hexagon::PS_vloadrq_ai:
2761   case Hexagon::PS_vloadrv_ai:
2762   case Hexagon::PS_vloadrw_ai:
2763   case Hexagon::PS_vloadrw_nt_ai:
2764   case Hexagon::V6_vL32b_ai:
2765   case Hexagon::V6_vS32b_ai:
2766   case Hexagon::V6_vS32b_qpred_ai:
2767   case Hexagon::V6_vS32b_nqpred_ai:
2768   case Hexagon::V6_vL32b_nt_ai:
2769   case Hexagon::V6_vS32b_nt_ai:
2770   case Hexagon::V6_vL32Ub_ai:
2771   case Hexagon::V6_vS32Ub_ai:
2772   case Hexagon::V6_vgathermh_pseudo:
2773   case Hexagon::V6_vgathermw_pseudo:
2774   case Hexagon::V6_vgathermhw_pseudo:
2775   case Hexagon::V6_vgathermhq_pseudo:
2776   case Hexagon::V6_vgathermwq_pseudo:
2777   case Hexagon::V6_vgathermhwq_pseudo: {
2778     unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2779     assert(isPowerOf2_32(VectorSize));
2780     if (Offset & (VectorSize-1))
2781       return false;
2782     return isInt<4>(Offset >> Log2_32(VectorSize));
2783   }
2784 
2785   case Hexagon::J2_loop0i:
2786   case Hexagon::J2_loop1i:
2787     return isUInt<10>(Offset);
2788 
2789   case Hexagon::S4_storeirb_io:
2790   case Hexagon::S4_storeirbt_io:
2791   case Hexagon::S4_storeirbf_io:
2792     return isUInt<6>(Offset);
2793 
2794   case Hexagon::S4_storeirh_io:
2795   case Hexagon::S4_storeirht_io:
2796   case Hexagon::S4_storeirhf_io:
2797     return isShiftedUInt<6,1>(Offset);
2798 
2799   case Hexagon::S4_storeiri_io:
2800   case Hexagon::S4_storeirit_io:
2801   case Hexagon::S4_storeirif_io:
2802     return isShiftedUInt<6,2>(Offset);
2803   // Handle these two compare instructions that are not extendable.
2804   case Hexagon::A4_cmpbeqi:
2805     return isUInt<8>(Offset);
2806   case Hexagon::A4_cmpbgti:
2807     return isInt<8>(Offset);
2808   }
2809 
2810   if (Extend)
2811     return true;
2812 
2813   switch (Opcode) {
2814   case Hexagon::L2_loadri_io:
2815   case Hexagon::S2_storeri_io:
2816     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2817       (Offset <= Hexagon_MEMW_OFFSET_MAX);
2818 
2819   case Hexagon::L2_loadrd_io:
2820   case Hexagon::S2_storerd_io:
2821     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2822       (Offset <= Hexagon_MEMD_OFFSET_MAX);
2823 
2824   case Hexagon::L2_loadrh_io:
2825   case Hexagon::L2_loadruh_io:
2826   case Hexagon::S2_storerh_io:
2827   case Hexagon::S2_storerf_io:
2828     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2829       (Offset <= Hexagon_MEMH_OFFSET_MAX);
2830 
2831   case Hexagon::L2_loadrb_io:
2832   case Hexagon::L2_loadrub_io:
2833   case Hexagon::S2_storerb_io:
2834     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2835       (Offset <= Hexagon_MEMB_OFFSET_MAX);
2836 
2837   case Hexagon::A2_addi:
2838     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2839       (Offset <= Hexagon_ADDI_OFFSET_MAX);
2840 
2841   case Hexagon::L4_iadd_memopw_io:
2842   case Hexagon::L4_isub_memopw_io:
2843   case Hexagon::L4_add_memopw_io:
2844   case Hexagon::L4_sub_memopw_io:
2845   case Hexagon::L4_iand_memopw_io:
2846   case Hexagon::L4_ior_memopw_io:
2847   case Hexagon::L4_and_memopw_io:
2848   case Hexagon::L4_or_memopw_io:
2849     return (0 <= Offset && Offset <= 255);
2850 
2851   case Hexagon::L4_iadd_memoph_io:
2852   case Hexagon::L4_isub_memoph_io:
2853   case Hexagon::L4_add_memoph_io:
2854   case Hexagon::L4_sub_memoph_io:
2855   case Hexagon::L4_iand_memoph_io:
2856   case Hexagon::L4_ior_memoph_io:
2857   case Hexagon::L4_and_memoph_io:
2858   case Hexagon::L4_or_memoph_io:
2859     return (0 <= Offset && Offset <= 127);
2860 
2861   case Hexagon::L4_iadd_memopb_io:
2862   case Hexagon::L4_isub_memopb_io:
2863   case Hexagon::L4_add_memopb_io:
2864   case Hexagon::L4_sub_memopb_io:
2865   case Hexagon::L4_iand_memopb_io:
2866   case Hexagon::L4_ior_memopb_io:
2867   case Hexagon::L4_and_memopb_io:
2868   case Hexagon::L4_or_memopb_io:
2869     return (0 <= Offset && Offset <= 63);
2870 
2871   // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2872   // any size. Later pass knows how to handle it.
2873   case Hexagon::STriw_pred:
2874   case Hexagon::LDriw_pred:
2875   case Hexagon::STriw_ctr:
2876   case Hexagon::LDriw_ctr:
2877     return true;
2878 
2879   case Hexagon::PS_fi:
2880   case Hexagon::PS_fia:
2881   case Hexagon::INLINEASM:
2882     return true;
2883 
2884   case Hexagon::L2_ploadrbt_io:
2885   case Hexagon::L2_ploadrbf_io:
2886   case Hexagon::L2_ploadrubt_io:
2887   case Hexagon::L2_ploadrubf_io:
2888   case Hexagon::S2_pstorerbt_io:
2889   case Hexagon::S2_pstorerbf_io:
2890     return isUInt<6>(Offset);
2891 
2892   case Hexagon::L2_ploadrht_io:
2893   case Hexagon::L2_ploadrhf_io:
2894   case Hexagon::L2_ploadruht_io:
2895   case Hexagon::L2_ploadruhf_io:
2896   case Hexagon::S2_pstorerht_io:
2897   case Hexagon::S2_pstorerhf_io:
2898     return isShiftedUInt<6,1>(Offset);
2899 
2900   case Hexagon::L2_ploadrit_io:
2901   case Hexagon::L2_ploadrif_io:
2902   case Hexagon::S2_pstorerit_io:
2903   case Hexagon::S2_pstorerif_io:
2904     return isShiftedUInt<6,2>(Offset);
2905 
2906   case Hexagon::L2_ploadrdt_io:
2907   case Hexagon::L2_ploadrdf_io:
2908   case Hexagon::S2_pstorerdt_io:
2909   case Hexagon::S2_pstorerdf_io:
2910     return isShiftedUInt<6,3>(Offset);
2911 
2912   case Hexagon::L2_loadbsw2_io:
2913   case Hexagon::L2_loadbzw2_io:
2914     return isShiftedInt<11,1>(Offset);
2915 
2916   case Hexagon::L2_loadbsw4_io:
2917   case Hexagon::L2_loadbzw4_io:
2918     return isShiftedInt<11,2>(Offset);
2919   } // switch
2920 
2921   dbgs() << "Failed Opcode is : " << Opcode << " (" << getName(Opcode)
2922          << ")\n";
2923   llvm_unreachable("No offset range is defined for this opcode. "
2924                    "Please define it in the above switch statement!");
2925 }
2926 
2927 bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const {
2928   return isHVXVec(MI) && isAccumulator(MI);
2929 }
2930 
2931 bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const {
2932   const uint64_t F = get(MI.getOpcode()).TSFlags;
2933   const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2934   return
2935     V == HexagonII::TypeCVI_VA         ||
2936     V == HexagonII::TypeCVI_VA_DV;
2937 }
2938 
2939 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI,
2940       const MachineInstr &ConsMI) const {
2941   if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2942     return true;
2943 
2944   if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2945     return true;
2946 
2947   if (mayBeNewStore(ConsMI))
2948     return true;
2949 
2950   return false;
2951 }
2952 
2953 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
2954   switch (MI.getOpcode()) {
2955   // Byte
2956   case Hexagon::L2_loadrub_io:
2957   case Hexagon::L4_loadrub_ur:
2958   case Hexagon::L4_loadrub_ap:
2959   case Hexagon::L2_loadrub_pr:
2960   case Hexagon::L2_loadrub_pbr:
2961   case Hexagon::L2_loadrub_pi:
2962   case Hexagon::L2_loadrub_pci:
2963   case Hexagon::L2_loadrub_pcr:
2964   case Hexagon::L2_loadbzw2_io:
2965   case Hexagon::L4_loadbzw2_ur:
2966   case Hexagon::L4_loadbzw2_ap:
2967   case Hexagon::L2_loadbzw2_pr:
2968   case Hexagon::L2_loadbzw2_pbr:
2969   case Hexagon::L2_loadbzw2_pi:
2970   case Hexagon::L2_loadbzw2_pci:
2971   case Hexagon::L2_loadbzw2_pcr:
2972   case Hexagon::L2_loadbzw4_io:
2973   case Hexagon::L4_loadbzw4_ur:
2974   case Hexagon::L4_loadbzw4_ap:
2975   case Hexagon::L2_loadbzw4_pr:
2976   case Hexagon::L2_loadbzw4_pbr:
2977   case Hexagon::L2_loadbzw4_pi:
2978   case Hexagon::L2_loadbzw4_pci:
2979   case Hexagon::L2_loadbzw4_pcr:
2980   case Hexagon::L4_loadrub_rr:
2981   case Hexagon::L2_ploadrubt_io:
2982   case Hexagon::L2_ploadrubt_pi:
2983   case Hexagon::L2_ploadrubf_io:
2984   case Hexagon::L2_ploadrubf_pi:
2985   case Hexagon::L2_ploadrubtnew_io:
2986   case Hexagon::L2_ploadrubfnew_io:
2987   case Hexagon::L4_ploadrubt_rr:
2988   case Hexagon::L4_ploadrubf_rr:
2989   case Hexagon::L4_ploadrubtnew_rr:
2990   case Hexagon::L4_ploadrubfnew_rr:
2991   case Hexagon::L2_ploadrubtnew_pi:
2992   case Hexagon::L2_ploadrubfnew_pi:
2993   case Hexagon::L4_ploadrubt_abs:
2994   case Hexagon::L4_ploadrubf_abs:
2995   case Hexagon::L4_ploadrubtnew_abs:
2996   case Hexagon::L4_ploadrubfnew_abs:
2997   case Hexagon::L2_loadrubgp:
2998   // Half
2999   case Hexagon::L2_loadruh_io:
3000   case Hexagon::L4_loadruh_ur:
3001   case Hexagon::L4_loadruh_ap:
3002   case Hexagon::L2_loadruh_pr:
3003   case Hexagon::L2_loadruh_pbr:
3004   case Hexagon::L2_loadruh_pi:
3005   case Hexagon::L2_loadruh_pci:
3006   case Hexagon::L2_loadruh_pcr:
3007   case Hexagon::L4_loadruh_rr:
3008   case Hexagon::L2_ploadruht_io:
3009   case Hexagon::L2_ploadruht_pi:
3010   case Hexagon::L2_ploadruhf_io:
3011   case Hexagon::L2_ploadruhf_pi:
3012   case Hexagon::L2_ploadruhtnew_io:
3013   case Hexagon::L2_ploadruhfnew_io:
3014   case Hexagon::L4_ploadruht_rr:
3015   case Hexagon::L4_ploadruhf_rr:
3016   case Hexagon::L4_ploadruhtnew_rr:
3017   case Hexagon::L4_ploadruhfnew_rr:
3018   case Hexagon::L2_ploadruhtnew_pi:
3019   case Hexagon::L2_ploadruhfnew_pi:
3020   case Hexagon::L4_ploadruht_abs:
3021   case Hexagon::L4_ploadruhf_abs:
3022   case Hexagon::L4_ploadruhtnew_abs:
3023   case Hexagon::L4_ploadruhfnew_abs:
3024   case Hexagon::L2_loadruhgp:
3025     return true;
3026   default:
3027     return false;
3028   }
3029 }
3030 
3031 // Add latency to instruction.
3032 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1,
3033       const MachineInstr &MI2) const {
3034   if (isHVXVec(MI1) && isHVXVec(MI2))
3035     if (!isVecUsableNextPacket(MI1, MI2))
3036       return true;
3037   return false;
3038 }
3039 
3040 /// Get the base register and byte offset of a load/store instr.
3041 bool HexagonInstrInfo::getMemOperandsWithOffsetWidth(
3042     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
3043     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3044     const TargetRegisterInfo *TRI) const {
3045   OffsetIsScalable = false;
3046   const MachineOperand *BaseOp = getBaseAndOffset(LdSt, Offset, Width);
3047   if (!BaseOp || !BaseOp->isReg())
3048     return false;
3049   BaseOps.push_back(BaseOp);
3050   return true;
3051 }
3052 
3053 /// Can these instructions execute at the same time in a bundle.
3054 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First,
3055       const MachineInstr &Second) const {
3056   if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
3057     const MachineOperand &Op = Second.getOperand(0);
3058     if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
3059       return true;
3060   }
3061   if (DisableNVSchedule)
3062     return false;
3063   if (mayBeNewStore(Second)) {
3064     // Make sure the definition of the first instruction is the value being
3065     // stored.
3066     const MachineOperand &Stored =
3067       Second.getOperand(Second.getNumOperands() - 1);
3068     if (!Stored.isReg())
3069       return false;
3070     for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
3071       const MachineOperand &Op = First.getOperand(i);
3072       if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
3073         return true;
3074     }
3075   }
3076   return false;
3077 }
3078 
3079 bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const {
3080   unsigned Opc = CallMI.getOpcode();
3081   return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
3082 }
3083 
3084 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
3085   for (auto &I : *B)
3086     if (I.isEHLabel())
3087       return true;
3088   return false;
3089 }
3090 
3091 // Returns true if an instruction can be converted into a non-extended
3092 // equivalent instruction.
3093 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const {
3094   short NonExtOpcode;
3095   // Check if the instruction has a register form that uses register in place
3096   // of the extended operand, if so return that as the non-extended form.
3097   if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
3098     return true;
3099 
3100   if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
3101     // Check addressing mode and retrieve non-ext equivalent instruction.
3102 
3103     switch (getAddrMode(MI)) {
3104     case HexagonII::Absolute:
3105       // Load/store with absolute addressing mode can be converted into
3106       // base+offset mode.
3107       NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
3108       break;
3109     case HexagonII::BaseImmOffset:
3110       // Load/store with base+offset addressing mode can be converted into
3111       // base+register offset addressing mode. However left shift operand should
3112       // be set to 0.
3113       NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
3114       break;
3115     case HexagonII::BaseLongOffset:
3116       NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
3117       break;
3118     default:
3119       return false;
3120     }
3121     if (NonExtOpcode < 0)
3122       return false;
3123     return true;
3124   }
3125   return false;
3126 }
3127 
3128 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const {
3129   return Hexagon::getRealHWInstr(MI.getOpcode(),
3130                                  Hexagon::InstrType_Pseudo) >= 0;
3131 }
3132 
3133 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
3134       const {
3135   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
3136   while (I != E) {
3137     if (I->isBarrier())
3138       return true;
3139     ++I;
3140   }
3141   return false;
3142 }
3143 
3144 // Returns true, if a LD insn can be promoted to a cur load.
3145 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const {
3146   const uint64_t F = MI.getDesc().TSFlags;
3147   return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
3148          Subtarget.hasV60Ops();
3149 }
3150 
3151 // Returns true, if a ST insn can be promoted to a new-value store.
3152 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const {
3153   if (MI.mayStore() && !Subtarget.useNewValueStores())
3154     return false;
3155 
3156   const uint64_t F = MI.getDesc().TSFlags;
3157   return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
3158 }
3159 
3160 bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI,
3161       const MachineInstr &ConsMI) const {
3162   // There is no stall when ProdMI is not a V60 vector.
3163   if (!isHVXVec(ProdMI))
3164     return false;
3165 
3166   // There is no stall when ProdMI and ConsMI are not dependent.
3167   if (!isDependent(ProdMI, ConsMI))
3168     return false;
3169 
3170   // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3171   // are scheduled in consecutive packets.
3172   if (isVecUsableNextPacket(ProdMI, ConsMI))
3173     return false;
3174 
3175   return true;
3176 }
3177 
3178 bool HexagonInstrInfo::producesStall(const MachineInstr &MI,
3179       MachineBasicBlock::const_instr_iterator BII) const {
3180   // There is no stall when I is not a V60 vector.
3181   if (!isHVXVec(MI))
3182     return false;
3183 
3184   MachineBasicBlock::const_instr_iterator MII = BII;
3185   MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3186 
3187   if (!MII->isBundle())
3188     return producesStall(*MII, MI);
3189 
3190   for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3191     const MachineInstr &J = *MII;
3192     if (producesStall(J, MI))
3193       return true;
3194   }
3195   return false;
3196 }
3197 
3198 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI,
3199       unsigned PredReg) const {
3200   for (const MachineOperand &MO : MI.operands()) {
3201     // Predicate register must be explicitly defined.
3202     if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3203       return false;
3204     if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3205       return false;
3206   }
3207 
3208   // Instruction that produce late predicate cannot be used as sources of
3209   // dot-new.
3210   switch (MI.getOpcode()) {
3211     case Hexagon::A4_addp_c:
3212     case Hexagon::A4_subp_c:
3213     case Hexagon::A4_tlbmatch:
3214     case Hexagon::A5_ACS:
3215     case Hexagon::F2_sfinvsqrta:
3216     case Hexagon::F2_sfrecipa:
3217     case Hexagon::J2_endloop0:
3218     case Hexagon::J2_endloop01:
3219     case Hexagon::J2_ploop1si:
3220     case Hexagon::J2_ploop1sr:
3221     case Hexagon::J2_ploop2si:
3222     case Hexagon::J2_ploop2sr:
3223     case Hexagon::J2_ploop3si:
3224     case Hexagon::J2_ploop3sr:
3225     case Hexagon::S2_cabacdecbin:
3226     case Hexagon::S2_storew_locked:
3227     case Hexagon::S4_stored_locked:
3228       return false;
3229   }
3230   return true;
3231 }
3232 
3233 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3234   return Opcode == Hexagon::J2_jumpt      ||
3235          Opcode == Hexagon::J2_jumptpt    ||
3236          Opcode == Hexagon::J2_jumpf      ||
3237          Opcode == Hexagon::J2_jumpfpt    ||
3238          Opcode == Hexagon::J2_jumptnew   ||
3239          Opcode == Hexagon::J2_jumpfnew   ||
3240          Opcode == Hexagon::J2_jumptnewpt ||
3241          Opcode == Hexagon::J2_jumpfnewpt;
3242 }
3243 
3244 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
3245   if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3246     return false;
3247   return !isPredicatedTrue(Cond[0].getImm());
3248 }
3249 
3250 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const {
3251   const uint64_t F = MI.getDesc().TSFlags;
3252   return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
3253 }
3254 
3255 // Returns the base register in a memory access (load/store). The offset is
3256 // returned in Offset and the access size is returned in AccessSize.
3257 // If the base operand has a subregister or the offset field does not contain
3258 // an immediate value, return nullptr.
3259 MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI,
3260                                                    int64_t &Offset,
3261                                                    unsigned &AccessSize) const {
3262   // Return if it is not a base+offset type instruction or a MemOp.
3263   if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
3264       getAddrMode(MI) != HexagonII::BaseLongOffset &&
3265       !isMemOp(MI) && !isPostIncrement(MI))
3266     return nullptr;
3267 
3268   AccessSize = getMemAccessSize(MI);
3269 
3270   unsigned BasePos = 0, OffsetPos = 0;
3271   if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3272     return nullptr;
3273 
3274   // Post increment updates its EA after the mem access,
3275   // so we need to treat its offset as zero.
3276   if (isPostIncrement(MI)) {
3277     Offset = 0;
3278   } else {
3279     const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3280     if (!OffsetOp.isImm())
3281       return nullptr;
3282     Offset = OffsetOp.getImm();
3283   }
3284 
3285   const MachineOperand &BaseOp = MI.getOperand(BasePos);
3286   if (BaseOp.getSubReg() != 0)
3287     return nullptr;
3288   return &const_cast<MachineOperand&>(BaseOp);
3289 }
3290 
3291 /// Return the position of the base and offset operands for this instruction.
3292 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
3293       unsigned &BasePos, unsigned &OffsetPos) const {
3294   if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI))
3295     return false;
3296 
3297   // Deal with memops first.
3298   if (isMemOp(MI)) {
3299     BasePos = 0;
3300     OffsetPos = 1;
3301   } else if (MI.mayStore()) {
3302     BasePos = 0;
3303     OffsetPos = 1;
3304   } else if (MI.mayLoad()) {
3305     BasePos = 1;
3306     OffsetPos = 2;
3307   } else
3308     return false;
3309 
3310   if (isPredicated(MI)) {
3311     BasePos++;
3312     OffsetPos++;
3313   }
3314   if (isPostIncrement(MI)) {
3315     BasePos++;
3316     OffsetPos++;
3317   }
3318 
3319   if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3320     return false;
3321 
3322   return true;
3323 }
3324 
3325 // Inserts branching instructions in reverse order of their occurrence.
3326 // e.g. jump_t t1 (i1)
3327 // jump t2        (i2)
3328 // Jumpers = {i2, i1}
3329 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
3330       MachineBasicBlock& MBB) const {
3331   SmallVector<MachineInstr*, 2> Jumpers;
3332   // If the block has no terminators, it just falls into the block after it.
3333   MachineBasicBlock::instr_iterator I = MBB.instr_end();
3334   if (I == MBB.instr_begin())
3335     return Jumpers;
3336 
3337   // A basic block may looks like this:
3338   //
3339   //  [   insn
3340   //     EH_LABEL
3341   //      insn
3342   //      insn
3343   //      insn
3344   //     EH_LABEL
3345   //      insn     ]
3346   //
3347   // It has two succs but does not have a terminator
3348   // Don't know how to handle it.
3349   do {
3350     --I;
3351     if (I->isEHLabel())
3352       return Jumpers;
3353   } while (I != MBB.instr_begin());
3354 
3355   I = MBB.instr_end();
3356   --I;
3357 
3358   while (I->isDebugInstr()) {
3359     if (I == MBB.instr_begin())
3360       return Jumpers;
3361     --I;
3362   }
3363   if (!isUnpredicatedTerminator(*I))
3364     return Jumpers;
3365 
3366   // Get the last instruction in the block.
3367   MachineInstr *LastInst = &*I;
3368   Jumpers.push_back(LastInst);
3369   MachineInstr *SecondLastInst = nullptr;
3370   // Find one more terminator if present.
3371   do {
3372     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3373       if (!SecondLastInst) {
3374         SecondLastInst = &*I;
3375         Jumpers.push_back(SecondLastInst);
3376       } else // This is a third branch.
3377         return Jumpers;
3378     }
3379     if (I == MBB.instr_begin())
3380       break;
3381     --I;
3382   } while (true);
3383   return Jumpers;
3384 }
3385 
3386 // Returns Operand Index for the constant extended instruction.
3387 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const {
3388   const uint64_t F = MI.getDesc().TSFlags;
3389   return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
3390 }
3391 
3392 // See if instruction could potentially be a duplex candidate.
3393 // If so, return its group. Zero otherwise.
3394 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
3395       const MachineInstr &MI) const {
3396   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3397 
3398   switch (MI.getOpcode()) {
3399   default:
3400     return HexagonII::HCG_None;
3401   //
3402   // Compound pairs.
3403   // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3404   // "Rd16=#U6 ; jump #r9:2"
3405   // "Rd16=Rs16 ; jump #r9:2"
3406   //
3407   case Hexagon::C2_cmpeq:
3408   case Hexagon::C2_cmpgt:
3409   case Hexagon::C2_cmpgtu:
3410     DstReg = MI.getOperand(0).getReg();
3411     Src1Reg = MI.getOperand(1).getReg();
3412     Src2Reg = MI.getOperand(2).getReg();
3413     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3414         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3415         isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3416       return HexagonII::HCG_A;
3417     break;
3418   case Hexagon::C2_cmpeqi:
3419   case Hexagon::C2_cmpgti:
3420   case Hexagon::C2_cmpgtui:
3421     // P0 = cmp.eq(Rs,#u2)
3422     DstReg = MI.getOperand(0).getReg();
3423     SrcReg = MI.getOperand(1).getReg();
3424     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3425         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3426         isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3427         ((isUInt<5>(MI.getOperand(2).getImm())) ||
3428          (MI.getOperand(2).getImm() == -1)))
3429       return HexagonII::HCG_A;
3430     break;
3431   case Hexagon::A2_tfr:
3432     // Rd = Rs
3433     DstReg = MI.getOperand(0).getReg();
3434     SrcReg = MI.getOperand(1).getReg();
3435     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3436       return HexagonII::HCG_A;
3437     break;
3438   case Hexagon::A2_tfrsi:
3439     // Rd = #u6
3440     // Do not test for #u6 size since the const is getting extended
3441     // regardless and compound could be formed.
3442     DstReg = MI.getOperand(0).getReg();
3443     if (isIntRegForSubInst(DstReg))
3444       return HexagonII::HCG_A;
3445     break;
3446   case Hexagon::S2_tstbit_i:
3447     DstReg = MI.getOperand(0).getReg();
3448     Src1Reg = MI.getOperand(1).getReg();
3449     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3450         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3451         MI.getOperand(2).isImm() &&
3452         isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3453       return HexagonII::HCG_A;
3454     break;
3455   // The fact that .new form is used pretty much guarantees
3456   // that predicate register will match. Nevertheless,
3457   // there could be some false positives without additional
3458   // checking.
3459   case Hexagon::J2_jumptnew:
3460   case Hexagon::J2_jumpfnew:
3461   case Hexagon::J2_jumptnewpt:
3462   case Hexagon::J2_jumpfnewpt:
3463     Src1Reg = MI.getOperand(0).getReg();
3464     if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3465         (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3466       return HexagonII::HCG_B;
3467     break;
3468   // Transfer and jump:
3469   // Rd=#U6 ; jump #r9:2
3470   // Rd=Rs ; jump #r9:2
3471   // Do not test for jump range here.
3472   case Hexagon::J2_jump:
3473   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3474   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3475     return HexagonII::HCG_C;
3476   }
3477 
3478   return HexagonII::HCG_None;
3479 }
3480 
3481 // Returns -1 when there is no opcode found.
3482 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA,
3483       const MachineInstr &GB) const {
3484   assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
3485   assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
3486   if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3487       (GB.getOpcode() != Hexagon::J2_jumptnew))
3488     return -1u;
3489   Register DestReg = GA.getOperand(0).getReg();
3490   if (!GB.readsRegister(DestReg))
3491     return -1u;
3492   if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3493     return -1u;
3494   // The value compared against must be either u5 or -1.
3495   const MachineOperand &CmpOp = GA.getOperand(2);
3496   if (!CmpOp.isImm())
3497     return -1u;
3498   int V = CmpOp.getImm();
3499   if (V == -1)
3500     return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3501                                   : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3502   if (!isUInt<5>(V))
3503     return -1u;
3504   return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3505                                 : Hexagon::J4_cmpeqi_tp1_jump_nt;
3506 }
3507 
3508 // Returns -1 if there is no opcode found.
3509 int HexagonInstrInfo::getDuplexOpcode(const MachineInstr &MI,
3510                                       bool ForBigCore) const {
3511   // Static table to switch the opcodes across Tiny Core and Big Core.
3512   // dup_ opcodes are Big core opcodes.
3513   // NOTE: There are special instructions that need to handled later.
3514   // L4_return* instructions, they will only occupy SLOT0 (on big core too).
3515   // PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2.
3516   // The compiler need to base the root instruction to L6_return_map_to_raw
3517   // which can go any slot.
3518   static const std::map<unsigned, unsigned> DupMap = {
3519       {Hexagon::A2_add, Hexagon::dup_A2_add},
3520       {Hexagon::A2_addi, Hexagon::dup_A2_addi},
3521       {Hexagon::A2_andir, Hexagon::dup_A2_andir},
3522       {Hexagon::A2_combineii, Hexagon::dup_A2_combineii},
3523       {Hexagon::A2_sxtb, Hexagon::dup_A2_sxtb},
3524       {Hexagon::A2_sxth, Hexagon::dup_A2_sxth},
3525       {Hexagon::A2_tfr, Hexagon::dup_A2_tfr},
3526       {Hexagon::A2_tfrsi, Hexagon::dup_A2_tfrsi},
3527       {Hexagon::A2_zxtb, Hexagon::dup_A2_zxtb},
3528       {Hexagon::A2_zxth, Hexagon::dup_A2_zxth},
3529       {Hexagon::A4_combineii, Hexagon::dup_A4_combineii},
3530       {Hexagon::A4_combineir, Hexagon::dup_A4_combineir},
3531       {Hexagon::A4_combineri, Hexagon::dup_A4_combineri},
3532       {Hexagon::C2_cmoveif, Hexagon::dup_C2_cmoveif},
3533       {Hexagon::C2_cmoveit, Hexagon::dup_C2_cmoveit},
3534       {Hexagon::C2_cmovenewif, Hexagon::dup_C2_cmovenewif},
3535       {Hexagon::C2_cmovenewit, Hexagon::dup_C2_cmovenewit},
3536       {Hexagon::C2_cmpeqi, Hexagon::dup_C2_cmpeqi},
3537       {Hexagon::L2_deallocframe, Hexagon::dup_L2_deallocframe},
3538       {Hexagon::L2_loadrb_io, Hexagon::dup_L2_loadrb_io},
3539       {Hexagon::L2_loadrd_io, Hexagon::dup_L2_loadrd_io},
3540       {Hexagon::L2_loadrh_io, Hexagon::dup_L2_loadrh_io},
3541       {Hexagon::L2_loadri_io, Hexagon::dup_L2_loadri_io},
3542       {Hexagon::L2_loadrub_io, Hexagon::dup_L2_loadrub_io},
3543       {Hexagon::L2_loadruh_io, Hexagon::dup_L2_loadruh_io},
3544       {Hexagon::S2_allocframe, Hexagon::dup_S2_allocframe},
3545       {Hexagon::S2_storerb_io, Hexagon::dup_S2_storerb_io},
3546       {Hexagon::S2_storerd_io, Hexagon::dup_S2_storerd_io},
3547       {Hexagon::S2_storerh_io, Hexagon::dup_S2_storerh_io},
3548       {Hexagon::S2_storeri_io, Hexagon::dup_S2_storeri_io},
3549       {Hexagon::S4_storeirb_io, Hexagon::dup_S4_storeirb_io},
3550       {Hexagon::S4_storeiri_io, Hexagon::dup_S4_storeiri_io},
3551   };
3552   unsigned OpNum = MI.getOpcode();
3553   // Conversion to Big core.
3554   if (ForBigCore) {
3555     auto Iter = DupMap.find(OpNum);
3556     if (Iter != DupMap.end())
3557       return Iter->second;
3558   } else { // Conversion to Tiny core.
3559     for (const auto &Iter : DupMap)
3560       if (Iter.second == OpNum)
3561         return Iter.first;
3562   }
3563   return -1;
3564 }
3565 
3566 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3567   enum Hexagon::PredSense inPredSense;
3568   inPredSense = invertPredicate ? Hexagon::PredSense_false :
3569                                   Hexagon::PredSense_true;
3570   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3571   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3572     return CondOpcode;
3573 
3574   llvm_unreachable("Unexpected predicable instruction");
3575 }
3576 
3577 // Return the cur value instruction for a given store.
3578 int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const {
3579   switch (MI.getOpcode()) {
3580   default: llvm_unreachable("Unknown .cur type");
3581   case Hexagon::V6_vL32b_pi:
3582     return Hexagon::V6_vL32b_cur_pi;
3583   case Hexagon::V6_vL32b_ai:
3584     return Hexagon::V6_vL32b_cur_ai;
3585   case Hexagon::V6_vL32b_nt_pi:
3586     return Hexagon::V6_vL32b_nt_cur_pi;
3587   case Hexagon::V6_vL32b_nt_ai:
3588     return Hexagon::V6_vL32b_nt_cur_ai;
3589   case Hexagon::V6_vL32b_ppu:
3590     return Hexagon::V6_vL32b_cur_ppu;
3591   case Hexagon::V6_vL32b_nt_ppu:
3592     return Hexagon::V6_vL32b_nt_cur_ppu;
3593   }
3594   return 0;
3595 }
3596 
3597 // Return the regular version of the .cur instruction.
3598 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const {
3599   switch (MI.getOpcode()) {
3600   default: llvm_unreachable("Unknown .cur type");
3601   case Hexagon::V6_vL32b_cur_pi:
3602     return Hexagon::V6_vL32b_pi;
3603   case Hexagon::V6_vL32b_cur_ai:
3604     return Hexagon::V6_vL32b_ai;
3605   case Hexagon::V6_vL32b_nt_cur_pi:
3606     return Hexagon::V6_vL32b_nt_pi;
3607   case Hexagon::V6_vL32b_nt_cur_ai:
3608     return Hexagon::V6_vL32b_nt_ai;
3609   case Hexagon::V6_vL32b_cur_ppu:
3610     return Hexagon::V6_vL32b_ppu;
3611   case Hexagon::V6_vL32b_nt_cur_ppu:
3612     return Hexagon::V6_vL32b_nt_ppu;
3613   }
3614   return 0;
3615 }
3616 
3617 // The diagram below shows the steps involved in the conversion of a predicated
3618 // store instruction to its .new predicated new-value form.
3619 //
3620 // Note: It doesn't include conditional new-value stores as they can't be
3621 // converted to .new predicate.
3622 //
3623 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3624 //                ^           ^
3625 //               /             \ (not OK. it will cause new-value store to be
3626 //              /               X conditional on p0.new while R2 producer is
3627 //             /                 \ on p0)
3628 //            /                   \.
3629 //     p.new store                 p.old NV store
3630 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
3631 //            ^                  ^
3632 //             \                /
3633 //              \              /
3634 //               \            /
3635 //                 p.old store
3636 //             [if (p0)memw(R0+#0)=R2]
3637 //
3638 // The following set of instructions further explains the scenario where
3639 // conditional new-value store becomes invalid when promoted to .new predicate
3640 // form.
3641 //
3642 // { 1) if (p0) r0 = add(r1, r2)
3643 //   2) p0 = cmp.eq(r3, #0) }
3644 //
3645 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
3646 // the first two instructions because in instr 1, r0 is conditional on old value
3647 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3648 // is not valid for new-value stores.
3649 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3650 // from the "Conditional Store" list. Because a predicated new value store
3651 // would NOT be promoted to a double dot new store. See diagram below:
3652 // This function returns yes for those stores that are predicated but not
3653 // yet promoted to predicate dot new instructions.
3654 //
3655 //                          +---------------------+
3656 //                    /-----| if (p0) memw(..)=r0 |---------\~
3657 //                   ||     +---------------------+         ||
3658 //          promote  ||       /\       /\                   ||  promote
3659 //                   ||      /||\     /||\                  ||
3660 //                  \||/    demote     ||                  \||/
3661 //                   \/       ||       ||                   \/
3662 //       +-------------------------+   ||   +-------------------------+
3663 //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
3664 //       +-------------------------+   ||   +-------------------------+
3665 //                        ||           ||         ||
3666 //                        ||         demote      \||/
3667 //                      promote        ||         \/ NOT possible
3668 //                        ||           ||         /\~
3669 //                       \||/          ||        /||\~
3670 //                        \/           ||         ||
3671 //                      +-----------------------------+
3672 //                      | if (p0.new) memw(..)=r0.new |
3673 //                      +-----------------------------+
3674 //                           Double Dot New Store
3675 //
3676 // Returns the most basic instruction for the .new predicated instructions and
3677 // new-value stores.
3678 // For example, all of the following instructions will be converted back to the
3679 // same instruction:
3680 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
3681 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
3682 // 3) if (p0.new) memw(R0+#0) = R1      --->
3683 //
3684 // To understand the translation of instruction 1 to its original form, consider
3685 // a packet with 3 instructions.
3686 // { p0 = cmp.eq(R0,R1)
3687 //   if (p0.new) R2 = add(R3, R4)
3688 //   R5 = add (R3, R1)
3689 // }
3690 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3691 //
3692 // This instruction can be part of the previous packet only if both p0 and R2
3693 // are promoted to .new values. This promotion happens in steps, first
3694 // predicate register is promoted to .new and in the next iteration R2 is
3695 // promoted. Therefore, in case of dependence check failure (due to R5) during
3696 // next iteration, it should be converted back to its most basic form.
3697 
3698 // Return the new value instruction for a given store.
3699 int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const {
3700   int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3701   if (NVOpcode >= 0) // Valid new-value store instruction.
3702     return NVOpcode;
3703 
3704   switch (MI.getOpcode()) {
3705   default:
3706     report_fatal_error(Twine("Unknown .new type: ") +
3707                        std::to_string(MI.getOpcode()));
3708   case Hexagon::S4_storerb_ur:
3709     return Hexagon::S4_storerbnew_ur;
3710 
3711   case Hexagon::S2_storerb_pci:
3712     return Hexagon::S2_storerb_pci;
3713 
3714   case Hexagon::S2_storeri_pci:
3715     return Hexagon::S2_storeri_pci;
3716 
3717   case Hexagon::S2_storerh_pci:
3718     return Hexagon::S2_storerh_pci;
3719 
3720   case Hexagon::S2_storerd_pci:
3721     return Hexagon::S2_storerd_pci;
3722 
3723   case Hexagon::S2_storerf_pci:
3724     return Hexagon::S2_storerf_pci;
3725 
3726   case Hexagon::V6_vS32b_ai:
3727     return Hexagon::V6_vS32b_new_ai;
3728 
3729   case Hexagon::V6_vS32b_pi:
3730     return Hexagon::V6_vS32b_new_pi;
3731   }
3732   return 0;
3733 }
3734 
3735 // Returns the opcode to use when converting MI, which is a conditional jump,
3736 // into a conditional instruction which uses the .new value of the predicate.
3737 // We also use branch probabilities to add a hint to the jump.
3738 // If MBPI is null, all edges will be treated as equally likely for the
3739 // purposes of establishing a predication hint.
3740 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI,
3741       const MachineBranchProbabilityInfo *MBPI) const {
3742   // We assume that block can have at most two successors.
3743   const MachineBasicBlock *Src = MI.getParent();
3744   const MachineOperand &BrTarget = MI.getOperand(1);
3745   bool Taken = false;
3746   const BranchProbability OneHalf(1, 2);
3747 
3748   auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3749                                     const MachineBasicBlock *Dst) {
3750     if (MBPI)
3751       return MBPI->getEdgeProbability(Src, Dst);
3752     return BranchProbability(1, Src->succ_size());
3753   };
3754 
3755   if (BrTarget.isMBB()) {
3756     const MachineBasicBlock *Dst = BrTarget.getMBB();
3757     Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3758   } else {
3759     // The branch target is not a basic block (most likely a function).
3760     // Since BPI only gives probabilities for targets that are basic blocks,
3761     // try to identify another target of this branch (potentially a fall-
3762     // -through) and check the probability of that target.
3763     //
3764     // The only handled branch combinations are:
3765     // - one conditional branch,
3766     // - one conditional branch followed by one unconditional branch.
3767     // Otherwise, assume not-taken.
3768     assert(MI.isConditionalBranch());
3769     const MachineBasicBlock &B = *MI.getParent();
3770     bool SawCond = false, Bad = false;
3771     for (const MachineInstr &I : B) {
3772       if (!I.isBranch())
3773         continue;
3774       if (I.isConditionalBranch()) {
3775         SawCond = true;
3776         if (&I != &MI) {
3777           Bad = true;
3778           break;
3779         }
3780       }
3781       if (I.isUnconditionalBranch() && !SawCond) {
3782         Bad = true;
3783         break;
3784       }
3785     }
3786     if (!Bad) {
3787       MachineBasicBlock::const_instr_iterator It(MI);
3788       MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3789       if (NextIt == B.instr_end()) {
3790         // If this branch is the last, look for the fall-through block.
3791         for (const MachineBasicBlock *SB : B.successors()) {
3792           if (!B.isLayoutSuccessor(SB))
3793             continue;
3794           Taken = getEdgeProbability(Src, SB) < OneHalf;
3795           break;
3796         }
3797       } else {
3798         assert(NextIt->isUnconditionalBranch());
3799         // Find the first MBB operand and assume it's the target.
3800         const MachineBasicBlock *BT = nullptr;
3801         for (const MachineOperand &Op : NextIt->operands()) {
3802           if (!Op.isMBB())
3803             continue;
3804           BT = Op.getMBB();
3805           break;
3806         }
3807         Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3808       }
3809     } // if (!Bad)
3810   }
3811 
3812   // The Taken flag should be set to something reasonable by this point.
3813 
3814   switch (MI.getOpcode()) {
3815   case Hexagon::J2_jumpt:
3816     return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3817   case Hexagon::J2_jumpf:
3818     return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3819 
3820   default:
3821     llvm_unreachable("Unexpected jump instruction.");
3822   }
3823 }
3824 
3825 // Return .new predicate version for an instruction.
3826 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI,
3827       const MachineBranchProbabilityInfo *MBPI) const {
3828   switch (MI.getOpcode()) {
3829   // Condtional Jumps
3830   case Hexagon::J2_jumpt:
3831   case Hexagon::J2_jumpf:
3832     return getDotNewPredJumpOp(MI, MBPI);
3833   }
3834 
3835   int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3836   if (NewOpcode >= 0)
3837     return NewOpcode;
3838   return 0;
3839 }
3840 
3841 int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const {
3842   int NewOp = MI.getOpcode();
3843   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3844     NewOp = Hexagon::getPredOldOpcode(NewOp);
3845     // All Hexagon architectures have prediction bits on dot-new branches,
3846     // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3847     // to pick the right opcode when converting back to dot-old.
3848     if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) {
3849       switch (NewOp) {
3850       case Hexagon::J2_jumptpt:
3851         NewOp = Hexagon::J2_jumpt;
3852         break;
3853       case Hexagon::J2_jumpfpt:
3854         NewOp = Hexagon::J2_jumpf;
3855         break;
3856       case Hexagon::J2_jumprtpt:
3857         NewOp = Hexagon::J2_jumprt;
3858         break;
3859       case Hexagon::J2_jumprfpt:
3860         NewOp = Hexagon::J2_jumprf;
3861         break;
3862       }
3863     }
3864     assert(NewOp >= 0 &&
3865            "Couldn't change predicate new instruction to its old form.");
3866   }
3867 
3868   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3869     NewOp = Hexagon::getNonNVStore(NewOp);
3870     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3871   }
3872 
3873   if (Subtarget.hasV60Ops())
3874     return NewOp;
3875 
3876   // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3877   switch (NewOp) {
3878   case Hexagon::J2_jumpfpt:
3879     return Hexagon::J2_jumpf;
3880   case Hexagon::J2_jumptpt:
3881     return Hexagon::J2_jumpt;
3882   case Hexagon::J2_jumprfpt:
3883     return Hexagon::J2_jumprf;
3884   case Hexagon::J2_jumprtpt:
3885     return Hexagon::J2_jumprt;
3886   }
3887   return NewOp;
3888 }
3889 
3890 // See if instruction could potentially be a duplex candidate.
3891 // If so, return its group. Zero otherwise.
3892 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3893       const MachineInstr &MI) const {
3894   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3895   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3896 
3897   switch (MI.getOpcode()) {
3898   default:
3899     return HexagonII::HSIG_None;
3900   //
3901   // Group L1:
3902   //
3903   // Rd = memw(Rs+#u4:2)
3904   // Rd = memub(Rs+#u4:0)
3905   case Hexagon::L2_loadri_io:
3906   case Hexagon::dup_L2_loadri_io:
3907     DstReg = MI.getOperand(0).getReg();
3908     SrcReg = MI.getOperand(1).getReg();
3909     // Special case this one from Group L2.
3910     // Rd = memw(r29+#u5:2)
3911     if (isIntRegForSubInst(DstReg)) {
3912       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3913           HRI.getStackRegister() == SrcReg &&
3914           MI.getOperand(2).isImm() &&
3915           isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3916         return HexagonII::HSIG_L2;
3917       // Rd = memw(Rs+#u4:2)
3918       if (isIntRegForSubInst(SrcReg) &&
3919           (MI.getOperand(2).isImm() &&
3920           isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3921         return HexagonII::HSIG_L1;
3922     }
3923     break;
3924   case Hexagon::L2_loadrub_io:
3925   case Hexagon::dup_L2_loadrub_io:
3926     // Rd = memub(Rs+#u4:0)
3927     DstReg = MI.getOperand(0).getReg();
3928     SrcReg = MI.getOperand(1).getReg();
3929     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3930         MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3931       return HexagonII::HSIG_L1;
3932     break;
3933   //
3934   // Group L2:
3935   //
3936   // Rd = memh/memuh(Rs+#u3:1)
3937   // Rd = memb(Rs+#u3:0)
3938   // Rd = memw(r29+#u5:2) - Handled above.
3939   // Rdd = memd(r29+#u5:3)
3940   // deallocframe
3941   // [if ([!]p0[.new])] dealloc_return
3942   // [if ([!]p0[.new])] jumpr r31
3943   case Hexagon::L2_loadrh_io:
3944   case Hexagon::L2_loadruh_io:
3945   case Hexagon::dup_L2_loadrh_io:
3946   case Hexagon::dup_L2_loadruh_io:
3947     // Rd = memh/memuh(Rs+#u3:1)
3948     DstReg = MI.getOperand(0).getReg();
3949     SrcReg = MI.getOperand(1).getReg();
3950     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3951         MI.getOperand(2).isImm() &&
3952         isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
3953       return HexagonII::HSIG_L2;
3954     break;
3955   case Hexagon::L2_loadrb_io:
3956   case Hexagon::dup_L2_loadrb_io:
3957     // Rd = memb(Rs+#u3:0)
3958     DstReg = MI.getOperand(0).getReg();
3959     SrcReg = MI.getOperand(1).getReg();
3960     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3961         MI.getOperand(2).isImm() &&
3962         isUInt<3>(MI.getOperand(2).getImm()))
3963       return HexagonII::HSIG_L2;
3964     break;
3965   case Hexagon::L2_loadrd_io:
3966   case Hexagon::dup_L2_loadrd_io:
3967     // Rdd = memd(r29+#u5:3)
3968     DstReg = MI.getOperand(0).getReg();
3969     SrcReg = MI.getOperand(1).getReg();
3970     if (isDblRegForSubInst(DstReg, HRI) &&
3971         Hexagon::IntRegsRegClass.contains(SrcReg) &&
3972         HRI.getStackRegister() == SrcReg &&
3973         MI.getOperand(2).isImm() &&
3974         isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3975       return HexagonII::HSIG_L2;
3976     break;
3977   // dealloc_return is not documented in Hexagon Manual, but marked
3978   // with A_SUBINSN attribute in iset_v4classic.py.
3979   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3980   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3981   case Hexagon::L4_return:
3982   case Hexagon::L2_deallocframe:
3983   case Hexagon::dup_L2_deallocframe:
3984     return HexagonII::HSIG_L2;
3985   case Hexagon::EH_RETURN_JMPR:
3986   case Hexagon::PS_jmpret:
3987   case Hexagon::SL2_jumpr31:
3988     // jumpr r31
3989     // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3990     DstReg = MI.getOperand(0).getReg();
3991     if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3992       return HexagonII::HSIG_L2;
3993     break;
3994   case Hexagon::PS_jmprett:
3995   case Hexagon::PS_jmpretf:
3996   case Hexagon::PS_jmprettnewpt:
3997   case Hexagon::PS_jmpretfnewpt:
3998   case Hexagon::PS_jmprettnew:
3999   case Hexagon::PS_jmpretfnew:
4000   case Hexagon::SL2_jumpr31_t:
4001   case Hexagon::SL2_jumpr31_f:
4002   case Hexagon::SL2_jumpr31_tnew:
4003   case Hexagon::SL2_jumpr31_fnew:
4004     DstReg = MI.getOperand(1).getReg();
4005     SrcReg = MI.getOperand(0).getReg();
4006     // [if ([!]p0[.new])] jumpr r31
4007     if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
4008         (Hexagon::P0 == SrcReg)) &&
4009         (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
4010       return HexagonII::HSIG_L2;
4011     break;
4012   case Hexagon::L4_return_t:
4013   case Hexagon::L4_return_f:
4014   case Hexagon::L4_return_tnew_pnt:
4015   case Hexagon::L4_return_fnew_pnt:
4016   case Hexagon::L4_return_tnew_pt:
4017   case Hexagon::L4_return_fnew_pt:
4018     // [if ([!]p0[.new])] dealloc_return
4019     SrcReg = MI.getOperand(0).getReg();
4020     if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
4021       return HexagonII::HSIG_L2;
4022     break;
4023   //
4024   // Group S1:
4025   //
4026   // memw(Rs+#u4:2) = Rt
4027   // memb(Rs+#u4:0) = Rt
4028   case Hexagon::S2_storeri_io:
4029   case Hexagon::dup_S2_storeri_io:
4030     // Special case this one from Group S2.
4031     // memw(r29+#u5:2) = Rt
4032     Src1Reg = MI.getOperand(0).getReg();
4033     Src2Reg = MI.getOperand(2).getReg();
4034     if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
4035         isIntRegForSubInst(Src2Reg) &&
4036         HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
4037         isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
4038       return HexagonII::HSIG_S2;
4039     // memw(Rs+#u4:2) = Rt
4040     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4041         MI.getOperand(1).isImm() &&
4042         isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
4043       return HexagonII::HSIG_S1;
4044     break;
4045   case Hexagon::S2_storerb_io:
4046   case Hexagon::dup_S2_storerb_io:
4047     // memb(Rs+#u4:0) = Rt
4048     Src1Reg = MI.getOperand(0).getReg();
4049     Src2Reg = MI.getOperand(2).getReg();
4050     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4051         MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
4052       return HexagonII::HSIG_S1;
4053     break;
4054   //
4055   // Group S2:
4056   //
4057   // memh(Rs+#u3:1) = Rt
4058   // memw(r29+#u5:2) = Rt
4059   // memd(r29+#s6:3) = Rtt
4060   // memw(Rs+#u4:2) = #U1
4061   // memb(Rs+#u4) = #U1
4062   // allocframe(#u5:3)
4063   case Hexagon::S2_storerh_io:
4064   case Hexagon::dup_S2_storerh_io:
4065     // memh(Rs+#u3:1) = Rt
4066     Src1Reg = MI.getOperand(0).getReg();
4067     Src2Reg = MI.getOperand(2).getReg();
4068     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4069         MI.getOperand(1).isImm() &&
4070         isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
4071       return HexagonII::HSIG_S1;
4072     break;
4073   case Hexagon::S2_storerd_io:
4074   case Hexagon::dup_S2_storerd_io:
4075     // memd(r29+#s6:3) = Rtt
4076     Src1Reg = MI.getOperand(0).getReg();
4077     Src2Reg = MI.getOperand(2).getReg();
4078     if (isDblRegForSubInst(Src2Reg, HRI) &&
4079         Hexagon::IntRegsRegClass.contains(Src1Reg) &&
4080         HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
4081         isShiftedInt<6,3>(MI.getOperand(1).getImm()))
4082       return HexagonII::HSIG_S2;
4083     break;
4084   case Hexagon::S4_storeiri_io:
4085   case Hexagon::dup_S4_storeiri_io:
4086     // memw(Rs+#u4:2) = #U1
4087     Src1Reg = MI.getOperand(0).getReg();
4088     if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
4089         isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
4090         MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
4091       return HexagonII::HSIG_S2;
4092     break;
4093   case Hexagon::S4_storeirb_io:
4094   case Hexagon::dup_S4_storeirb_io:
4095     // memb(Rs+#u4) = #U1
4096     Src1Reg = MI.getOperand(0).getReg();
4097     if (isIntRegForSubInst(Src1Reg) &&
4098         MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
4099         MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
4100       return HexagonII::HSIG_S2;
4101     break;
4102   case Hexagon::S2_allocframe:
4103   case Hexagon::dup_S2_allocframe:
4104     if (MI.getOperand(2).isImm() &&
4105         isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
4106       return HexagonII::HSIG_S1;
4107     break;
4108   //
4109   // Group A:
4110   //
4111   // Rx = add(Rx,#s7)
4112   // Rd = Rs
4113   // Rd = #u6
4114   // Rd = #-1
4115   // if ([!]P0[.new]) Rd = #0
4116   // Rd = add(r29,#u6:2)
4117   // Rx = add(Rx,Rs)
4118   // P0 = cmp.eq(Rs,#u2)
4119   // Rdd = combine(#0,Rs)
4120   // Rdd = combine(Rs,#0)
4121   // Rdd = combine(#u2,#U2)
4122   // Rd = add(Rs,#1)
4123   // Rd = add(Rs,#-1)
4124   // Rd = sxth/sxtb/zxtb/zxth(Rs)
4125   // Rd = and(Rs,#1)
4126   case Hexagon::A2_addi:
4127   case Hexagon::dup_A2_addi:
4128     DstReg = MI.getOperand(0).getReg();
4129     SrcReg = MI.getOperand(1).getReg();
4130     if (isIntRegForSubInst(DstReg)) {
4131       // Rd = add(r29,#u6:2)
4132       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
4133         HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
4134         isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
4135         return HexagonII::HSIG_A;
4136       // Rx = add(Rx,#s7)
4137       if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
4138           isInt<7>(MI.getOperand(2).getImm()))
4139         return HexagonII::HSIG_A;
4140       // Rd = add(Rs,#1)
4141       // Rd = add(Rs,#-1)
4142       if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
4143           ((MI.getOperand(2).getImm() == 1) ||
4144           (MI.getOperand(2).getImm() == -1)))
4145         return HexagonII::HSIG_A;
4146     }
4147     break;
4148   case Hexagon::A2_add:
4149   case Hexagon::dup_A2_add:
4150     // Rx = add(Rx,Rs)
4151     DstReg = MI.getOperand(0).getReg();
4152     Src1Reg = MI.getOperand(1).getReg();
4153     Src2Reg = MI.getOperand(2).getReg();
4154     if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
4155         isIntRegForSubInst(Src2Reg))
4156       return HexagonII::HSIG_A;
4157     break;
4158   case Hexagon::A2_andir:
4159   case Hexagon::dup_A2_andir:
4160     // Same as zxtb.
4161     // Rd16=and(Rs16,#255)
4162     // Rd16=and(Rs16,#1)
4163     DstReg = MI.getOperand(0).getReg();
4164     SrcReg = MI.getOperand(1).getReg();
4165     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
4166         MI.getOperand(2).isImm() &&
4167         ((MI.getOperand(2).getImm() == 1) ||
4168         (MI.getOperand(2).getImm() == 255)))
4169       return HexagonII::HSIG_A;
4170     break;
4171   case Hexagon::A2_tfr:
4172   case Hexagon::dup_A2_tfr:
4173     // Rd = Rs
4174     DstReg = MI.getOperand(0).getReg();
4175     SrcReg = MI.getOperand(1).getReg();
4176     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4177       return HexagonII::HSIG_A;
4178     break;
4179   case Hexagon::A2_tfrsi:
4180   case Hexagon::dup_A2_tfrsi:
4181     // Rd = #u6
4182     // Do not test for #u6 size since the const is getting extended
4183     // regardless and compound could be formed.
4184     // Rd = #-1
4185     DstReg = MI.getOperand(0).getReg();
4186     if (isIntRegForSubInst(DstReg))
4187       return HexagonII::HSIG_A;
4188     break;
4189   case Hexagon::C2_cmoveit:
4190   case Hexagon::C2_cmovenewit:
4191   case Hexagon::C2_cmoveif:
4192   case Hexagon::C2_cmovenewif:
4193   case Hexagon::dup_C2_cmoveit:
4194   case Hexagon::dup_C2_cmovenewit:
4195   case Hexagon::dup_C2_cmoveif:
4196   case Hexagon::dup_C2_cmovenewif:
4197     // if ([!]P0[.new]) Rd = #0
4198     // Actual form:
4199     // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
4200     DstReg = MI.getOperand(0).getReg();
4201     SrcReg = MI.getOperand(1).getReg();
4202     if (isIntRegForSubInst(DstReg) &&
4203         Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
4204         MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
4205       return HexagonII::HSIG_A;
4206     break;
4207   case Hexagon::C2_cmpeqi:
4208   case Hexagon::dup_C2_cmpeqi:
4209     // P0 = cmp.eq(Rs,#u2)
4210     DstReg = MI.getOperand(0).getReg();
4211     SrcReg = MI.getOperand(1).getReg();
4212     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
4213         Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
4214         MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
4215       return HexagonII::HSIG_A;
4216     break;
4217   case Hexagon::A2_combineii:
4218   case Hexagon::A4_combineii:
4219   case Hexagon::dup_A2_combineii:
4220   case Hexagon::dup_A4_combineii:
4221     // Rdd = combine(#u2,#U2)
4222     DstReg = MI.getOperand(0).getReg();
4223     if (isDblRegForSubInst(DstReg, HRI) &&
4224         ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
4225         (MI.getOperand(1).isGlobal() &&
4226         isUInt<2>(MI.getOperand(1).getOffset()))) &&
4227         ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
4228         (MI.getOperand(2).isGlobal() &&
4229         isUInt<2>(MI.getOperand(2).getOffset()))))
4230       return HexagonII::HSIG_A;
4231     break;
4232   case Hexagon::A4_combineri:
4233   case Hexagon::dup_A4_combineri:
4234     // Rdd = combine(Rs,#0)
4235     // Rdd = combine(Rs,#0)
4236     DstReg = MI.getOperand(0).getReg();
4237     SrcReg = MI.getOperand(1).getReg();
4238     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4239         ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
4240         (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
4241       return HexagonII::HSIG_A;
4242     break;
4243   case Hexagon::A4_combineir:
4244   case Hexagon::dup_A4_combineir:
4245     // Rdd = combine(#0,Rs)
4246     DstReg = MI.getOperand(0).getReg();
4247     SrcReg = MI.getOperand(2).getReg();
4248     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4249         ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
4250         (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
4251       return HexagonII::HSIG_A;
4252     break;
4253   case Hexagon::A2_sxtb:
4254   case Hexagon::A2_sxth:
4255   case Hexagon::A2_zxtb:
4256   case Hexagon::A2_zxth:
4257   case Hexagon::dup_A2_sxtb:
4258   case Hexagon::dup_A2_sxth:
4259   case Hexagon::dup_A2_zxtb:
4260   case Hexagon::dup_A2_zxth:
4261     // Rd = sxth/sxtb/zxtb/zxth(Rs)
4262     DstReg = MI.getOperand(0).getReg();
4263     SrcReg = MI.getOperand(1).getReg();
4264     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4265       return HexagonII::HSIG_A;
4266     break;
4267   }
4268 
4269   return HexagonII::HSIG_None;
4270 }
4271 
4272 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const {
4273   return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4274 }
4275 
4276 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4277       const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4278   // Default to one cycle for no itinerary. However, an "empty" itinerary may
4279   // still have a MinLatency property, which getStageLatency checks.
4280   if (!ItinData)
4281     return getInstrLatency(ItinData, MI);
4282 
4283   if (MI.isTransient())
4284     return 0;
4285   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4286 }
4287 
4288 /// getOperandLatency - Compute and return the use operand latency of a given
4289 /// pair of def and use.
4290 /// In most cases, the static scheduling itinerary was enough to determine the
4291 /// operand latency. But it may not be possible for instructions with variable
4292 /// number of defs / uses.
4293 ///
4294 /// This is a raw interface to the itinerary that may be directly overriden by
4295 /// a target. Use computeOperandLatency to get the best estimate of latency.
4296 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4297                                         const MachineInstr &DefMI,
4298                                         unsigned DefIdx,
4299                                         const MachineInstr &UseMI,
4300                                         unsigned UseIdx) const {
4301   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4302 
4303   // Get DefIdx and UseIdx for super registers.
4304   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4305 
4306   if (DefMO.isReg() && Register::isPhysicalRegister(DefMO.getReg())) {
4307     if (DefMO.isImplicit()) {
4308       for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) {
4309         int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI);
4310         if (Idx != -1) {
4311           DefIdx = Idx;
4312           break;
4313         }
4314       }
4315     }
4316 
4317     const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4318     if (UseMO.isImplicit()) {
4319       for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) {
4320         int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI);
4321         if (Idx != -1) {
4322           UseIdx = Idx;
4323           break;
4324         }
4325       }
4326     }
4327   }
4328 
4329   int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
4330                                                    UseMI, UseIdx);
4331   if (!Latency)
4332     // We should never have 0 cycle latency between two instructions unless
4333     // they can be packetized together. However, this decision can't be made
4334     // here.
4335     Latency = 1;
4336   return Latency;
4337 }
4338 
4339 // inverts the predication logic.
4340 // p -> NotP
4341 // NotP -> P
4342 bool HexagonInstrInfo::getInvertedPredSense(
4343       SmallVectorImpl<MachineOperand> &Cond) const {
4344   if (Cond.empty())
4345     return false;
4346   unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4347   Cond[0].setImm(Opc);
4348   return true;
4349 }
4350 
4351 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
4352   int InvPredOpcode;
4353   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4354                                         : Hexagon::getTruePredOpcode(Opc);
4355   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4356     return InvPredOpcode;
4357 
4358   llvm_unreachable("Unexpected predicated instruction");
4359 }
4360 
4361 // Returns the max value that doesn't need to be extended.
4362 int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const {
4363   const uint64_t F = MI.getDesc().TSFlags;
4364   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4365                     & HexagonII::ExtentSignedMask;
4366   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4367                     & HexagonII::ExtentBitsMask;
4368 
4369   if (isSigned) // if value is signed
4370     return ~(-1U << (bits - 1));
4371   else
4372     return ~(-1U << bits);
4373 }
4374 
4375 
4376 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const {
4377   switch (MI.getOpcode()) {
4378   case Hexagon::L2_loadrbgp:
4379   case Hexagon::L2_loadrdgp:
4380   case Hexagon::L2_loadrhgp:
4381   case Hexagon::L2_loadrigp:
4382   case Hexagon::L2_loadrubgp:
4383   case Hexagon::L2_loadruhgp:
4384   case Hexagon::S2_storerbgp:
4385   case Hexagon::S2_storerbnewgp:
4386   case Hexagon::S2_storerhgp:
4387   case Hexagon::S2_storerhnewgp:
4388   case Hexagon::S2_storerigp:
4389   case Hexagon::S2_storerinewgp:
4390   case Hexagon::S2_storerdgp:
4391   case Hexagon::S2_storerfgp:
4392     return true;
4393   }
4394   const uint64_t F = MI.getDesc().TSFlags;
4395   unsigned addrMode =
4396     ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
4397   // Disallow any base+offset instruction. The assembler does not yet reorder
4398   // based up any zero offset instruction.
4399   return (addrMode == HexagonII::BaseRegOffset ||
4400           addrMode == HexagonII::BaseImmOffset ||
4401           addrMode == HexagonII::BaseLongOffset);
4402 }
4403 
4404 bool HexagonInstrInfo::isPureSlot0(const MachineInstr &MI) const {
4405   // Workaround for the Global Scheduler. Sometimes, it creates
4406   // A4_ext as a Pseudo instruction and calls this function to see if
4407   // it can be added to an existing bundle. Since the instruction doesn't
4408   // belong to any BB yet, we can't use getUnits API.
4409   if (MI.getOpcode() == Hexagon::A4_ext)
4410     return false;
4411 
4412   unsigned FuncUnits = getUnits(MI);
4413   return HexagonFUnits::isSlot0Only(FuncUnits);
4414 }
4415 
4416 bool HexagonInstrInfo::isRestrictNoSlot1Store(const MachineInstr &MI) const {
4417   const uint64_t F = MI.getDesc().TSFlags;
4418   return ((F >> HexagonII::RestrictNoSlot1StorePos) &
4419           HexagonII::RestrictNoSlot1StoreMask);
4420 }
4421 
4422 void HexagonInstrInfo::changeDuplexOpcode(MachineBasicBlock::instr_iterator MII,
4423                                           bool ToBigInstrs) const {
4424   int Opcode = -1;
4425   if (ToBigInstrs) { // To BigCore Instr.
4426     // Check if the instruction can form a Duplex.
4427     if (getDuplexCandidateGroup(*MII))
4428       // Get the opcode marked "dup_*" tag.
4429       Opcode = getDuplexOpcode(*MII, ToBigInstrs);
4430   } else // To TinyCore Instr.
4431     Opcode = getDuplexOpcode(*MII, ToBigInstrs);
4432 
4433   // Change the opcode of the instruction.
4434   if (Opcode >= 0)
4435     MII->setDesc(get(Opcode));
4436 }
4437 
4438 // This function is used to translate instructions to facilitate generating
4439 // Duplexes on TinyCore.
4440 void HexagonInstrInfo::translateInstrsForDup(MachineFunction &MF,
4441                                              bool ToBigInstrs) const {
4442   for (auto &MB : MF)
4443     for (MachineBasicBlock::instr_iterator Instr = MB.instr_begin(),
4444                                            End = MB.instr_end();
4445          Instr != End; ++Instr)
4446       changeDuplexOpcode(Instr, ToBigInstrs);
4447 }
4448 
4449 // This is a specialized form of above function.
4450 void HexagonInstrInfo::translateInstrsForDup(
4451     MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const {
4452   MachineBasicBlock *MBB = MII->getParent();
4453   while ((MII != MBB->instr_end()) && MII->isInsideBundle()) {
4454     changeDuplexOpcode(MII, ToBigInstrs);
4455     ++MII;
4456   }
4457 }
4458 
4459 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const {
4460   using namespace HexagonII;
4461 
4462   const uint64_t F = MI.getDesc().TSFlags;
4463   unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4464   unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4465   if (Size != 0)
4466     return Size;
4467 
4468   // Handle vector access sizes.
4469   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4470   switch (S) {
4471     case HexagonII::HVXVectorAccess:
4472       return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4473     default:
4474       llvm_unreachable("Unexpected instruction");
4475   }
4476 }
4477 
4478 // Returns the min value that doesn't need to be extended.
4479 int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const {
4480   const uint64_t F = MI.getDesc().TSFlags;
4481   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4482                     & HexagonII::ExtentSignedMask;
4483   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4484                     & HexagonII::ExtentBitsMask;
4485 
4486   if (isSigned) // if value is signed
4487     return -1U << (bits - 1);
4488   else
4489     return 0;
4490 }
4491 
4492 // Returns opcode of the non-extended equivalent instruction.
4493 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const {
4494   // Check if the instruction has a register form that uses register in place
4495   // of the extended operand, if so return that as the non-extended form.
4496   short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4497     if (NonExtOpcode >= 0)
4498       return NonExtOpcode;
4499 
4500   if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4501     // Check addressing mode and retrieve non-ext equivalent instruction.
4502     switch (getAddrMode(MI)) {
4503     case HexagonII::Absolute:
4504       return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4505     case HexagonII::BaseImmOffset:
4506       return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4507     case HexagonII::BaseLongOffset:
4508       return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4509 
4510     default:
4511       return -1;
4512     }
4513   }
4514   return -1;
4515 }
4516 
4517 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
4518       unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4519   if (Cond.empty())
4520     return false;
4521   assert(Cond.size() == 2);
4522   if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4523     LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4524     return false;
4525   }
4526   PredReg = Cond[1].getReg();
4527   PredRegPos = 1;
4528   // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4529   PredRegFlags = 0;
4530   if (Cond[1].isImplicit())
4531     PredRegFlags = RegState::Implicit;
4532   if (Cond[1].isUndef())
4533     PredRegFlags |= RegState::Undef;
4534   return true;
4535 }
4536 
4537 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const {
4538   return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4539 }
4540 
4541 short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const {
4542   return Hexagon::getRegForm(MI.getOpcode());
4543 }
4544 
4545 // Return the number of bytes required to encode the instruction.
4546 // Hexagon instructions are fixed length, 4 bytes, unless they
4547 // use a constant extender, which requires another 4 bytes.
4548 // For debug instructions and prolog labels, return 0.
4549 unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const {
4550   if (MI.isDebugInstr() || MI.isPosition())
4551     return 0;
4552 
4553   unsigned Size = MI.getDesc().getSize();
4554   if (!Size)
4555     // Assume the default insn size in case it cannot be determined
4556     // for whatever reason.
4557     Size = HEXAGON_INSTR_SIZE;
4558 
4559   if (isConstExtended(MI) || isExtended(MI))
4560     Size += HEXAGON_INSTR_SIZE;
4561 
4562   // Try and compute number of instructions in asm.
4563   if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4564     const MachineBasicBlock &MBB = *MI.getParent();
4565     const MachineFunction *MF = MBB.getParent();
4566     const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4567 
4568     // Count the number of register definitions to find the asm string.
4569     unsigned NumDefs = 0;
4570     for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4571          ++NumDefs)
4572       assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4573 
4574     assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4575     // Disassemble the AsmStr and approximate number of instructions.
4576     const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4577     Size = getInlineAsmLength(AsmStr, *MAI);
4578   }
4579 
4580   return Size;
4581 }
4582 
4583 uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const {
4584   const uint64_t F = MI.getDesc().TSFlags;
4585   return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
4586 }
4587 
4588 InstrStage::FuncUnits HexagonInstrInfo::getUnits(const MachineInstr &MI) const {
4589   const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4590   const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4591 
4592   return IS.getUnits();
4593 }
4594 
4595 // Calculate size of the basic block without debug instructions.
4596 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
4597   return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4598 }
4599 
4600 unsigned HexagonInstrInfo::nonDbgBundleSize(
4601       MachineBasicBlock::const_iterator BundleHead) const {
4602   assert(BundleHead->isBundle() && "Not a bundle header");
4603   auto MII = BundleHead.getInstrIterator();
4604   // Skip the bundle header.
4605   return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4606 }
4607 
4608 /// immediateExtend - Changes the instruction in place to one using an immediate
4609 /// extender.
4610 void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const {
4611   assert((isExtendable(MI)||isConstExtended(MI)) &&
4612                                "Instruction must be extendable");
4613   // Find which operand is extendable.
4614   short ExtOpNum = getCExtOpNum(MI);
4615   MachineOperand &MO = MI.getOperand(ExtOpNum);
4616   // This needs to be something we understand.
4617   assert((MO.isMBB() || MO.isImm()) &&
4618          "Branch with unknown extendable field type");
4619   // Mark given operand as extended.
4620   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
4621 }
4622 
4623 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4624       MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4625   LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4626                     << printMBBReference(*NewTarget);
4627              MI.dump(););
4628   assert(MI.isBranch());
4629   unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4630   int TargetPos = MI.getNumOperands() - 1;
4631   // In general branch target is the last operand,
4632   // but some implicit defs added at the end might change it.
4633   while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4634     --TargetPos;
4635   assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4636   MI.getOperand(TargetPos).setMBB(NewTarget);
4637   if (EnableBranchPrediction && isPredicatedNew(MI)) {
4638     NewOpcode = reversePrediction(NewOpcode);
4639   }
4640   MI.setDesc(get(NewOpcode));
4641   return true;
4642 }
4643 
4644 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
4645   /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4646   MachineFunction::iterator A = MF.begin();
4647   MachineBasicBlock &B = *A;
4648   MachineBasicBlock::iterator I = B.begin();
4649   DebugLoc DL = I->getDebugLoc();
4650   MachineInstr *NewMI;
4651 
4652   for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4653        insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4654     NewMI = BuildMI(B, I, DL, get(insn));
4655     LLVM_DEBUG(dbgs() << "\n"
4656                       << getName(NewMI->getOpcode())
4657                       << "  Class: " << NewMI->getDesc().getSchedClass());
4658     NewMI->eraseFromParent();
4659   }
4660   /* --- The code above is used to generate complete set of Hexagon Insn --- */
4661 }
4662 
4663 // inverts the predication logic.
4664 // p -> NotP
4665 // NotP -> P
4666 bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const {
4667   LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4668   MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4669   return true;
4670 }
4671 
4672 // Reverse the branch prediction.
4673 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4674   int PredRevOpcode = -1;
4675   if (isPredictedTaken(Opcode))
4676     PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4677   else
4678     PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4679   assert(PredRevOpcode > 0);
4680   return PredRevOpcode;
4681 }
4682 
4683 // TODO: Add more rigorous validation.
4684 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
4685       const {
4686   return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4687 }
4688 
4689 void HexagonInstrInfo::
4690 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const {
4691   assert(MIB->isBundle());
4692   MachineOperand &Operand = MIB->getOperand(0);
4693   if (Operand.isImm())
4694     Operand.setImm(Operand.getImm() | memShufDisabledMask);
4695   else
4696     MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4697 }
4698 
4699 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const {
4700   assert(MIB.isBundle());
4701   const MachineOperand &Operand = MIB.getOperand(0);
4702   return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4703 }
4704 
4705 // Addressing mode relations.
4706 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const {
4707   return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4708 }
4709 
4710 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const {
4711   return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4712 }
4713 
4714 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const {
4715   return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4716 }
4717 
4718 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const {
4719   return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4720 }
4721 
4722 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const {
4723   return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4724 }
4725 
4726 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const {
4727   return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4728 }
4729 
4730 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const {
4731   return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4732 }
4733 
4734 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const {
4735   return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
4736 }
4737 
4738 MCInst HexagonInstrInfo::getNop() const {
4739   static const MCInst Nop = MCInstBuilder(Hexagon::A2_nop);
4740 
4741   return MCInstBuilder(Hexagon::BUNDLE)
4742     .addImm(0)
4743     .addInst(&Nop);
4744 }
4745