1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Hexagon implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "HexagonInstrInfo.h" 14 #include "Hexagon.h" 15 #include "HexagonFrameLowering.h" 16 #include "HexagonHazardRecognizer.h" 17 #include "HexagonRegisterInfo.h" 18 #include "HexagonSubtarget.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/CodeGen/DFAPacketizer.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/ScheduleDAG.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetOpcodes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/MC/MCInstrItineraries.h" 45 #include "llvm/MC/MCRegisterInfo.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MachineValueType.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <cassert> 55 #include <cctype> 56 #include <cstdint> 57 #include <cstring> 58 #include <iterator> 59 #include <string> 60 #include <utility> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "hexagon-instrinfo" 65 66 #define GET_INSTRINFO_CTOR_DTOR 67 #define GET_INSTRMAP_INFO 68 #include "HexagonDepTimingClasses.h" 69 #include "HexagonGenDFAPacketizer.inc" 70 #include "HexagonGenInstrInfo.inc" 71 72 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden, 73 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/" 74 "packetization boundary.")); 75 76 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction", 77 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction")); 78 79 static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule", 80 cl::Hidden, cl::ZeroOrMore, cl::init(false), 81 cl::desc("Disable schedule adjustment for new value stores.")); 82 83 static cl::opt<bool> EnableTimingClassLatency( 84 "enable-timing-class-latency", cl::Hidden, cl::init(false), 85 cl::desc("Enable timing class latency")); 86 87 static cl::opt<bool> EnableALUForwarding( 88 "enable-alu-forwarding", cl::Hidden, cl::init(true), 89 cl::desc("Enable vec alu forwarding")); 90 91 static cl::opt<bool> EnableACCForwarding( 92 "enable-acc-forwarding", cl::Hidden, cl::init(true), 93 cl::desc("Enable vec acc forwarding")); 94 95 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large", 96 cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm")); 97 98 static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec", 99 cl::init(true), cl::Hidden, cl::ZeroOrMore, 100 cl::desc("Use the DFA based hazard recognizer.")); 101 102 /// Constants for Hexagon instructions. 103 const int Hexagon_MEMW_OFFSET_MAX = 4095; 104 const int Hexagon_MEMW_OFFSET_MIN = -4096; 105 const int Hexagon_MEMD_OFFSET_MAX = 8191; 106 const int Hexagon_MEMD_OFFSET_MIN = -8192; 107 const int Hexagon_MEMH_OFFSET_MAX = 2047; 108 const int Hexagon_MEMH_OFFSET_MIN = -2048; 109 const int Hexagon_MEMB_OFFSET_MAX = 1023; 110 const int Hexagon_MEMB_OFFSET_MIN = -1024; 111 const int Hexagon_ADDI_OFFSET_MAX = 32767; 112 const int Hexagon_ADDI_OFFSET_MIN = -32768; 113 114 // Pin the vtable to this file. 115 void HexagonInstrInfo::anchor() {} 116 117 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) 118 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), 119 Subtarget(ST) {} 120 121 static bool isIntRegForSubInst(unsigned Reg) { 122 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) || 123 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23); 124 } 125 126 static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) { 127 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) && 128 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi)); 129 } 130 131 /// Calculate number of instructions excluding the debug instructions. 132 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB, 133 MachineBasicBlock::const_instr_iterator MIE) { 134 unsigned Count = 0; 135 for (; MIB != MIE; ++MIB) { 136 if (!MIB->isDebugInstr()) 137 ++Count; 138 } 139 return Count; 140 } 141 142 /// Find the hardware loop instruction used to set-up the specified loop. 143 /// On Hexagon, we have two instructions used to set-up the hardware loop 144 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions 145 /// to indicate the end of a loop. 146 MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB, 147 unsigned EndLoopOp, MachineBasicBlock *TargetBB, 148 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 149 unsigned LOOPi; 150 unsigned LOOPr; 151 if (EndLoopOp == Hexagon::ENDLOOP0) { 152 LOOPi = Hexagon::J2_loop0i; 153 LOOPr = Hexagon::J2_loop0r; 154 } else { // EndLoopOp == Hexagon::EndLOOP1 155 LOOPi = Hexagon::J2_loop1i; 156 LOOPr = Hexagon::J2_loop1r; 157 } 158 159 // The loop set-up instruction will be in a predecessor block 160 for (MachineBasicBlock *PB : BB->predecessors()) { 161 // If this has been visited, already skip it. 162 if (!Visited.insert(PB).second) 163 continue; 164 if (PB == BB) 165 continue; 166 for (auto I = PB->instr_rbegin(), E = PB->instr_rend(); I != E; ++I) { 167 unsigned Opc = I->getOpcode(); 168 if (Opc == LOOPi || Opc == LOOPr) 169 return &*I; 170 // We've reached a different loop, which means the loop01 has been 171 // removed. 172 if (Opc == EndLoopOp && I->getOperand(0).getMBB() != TargetBB) 173 return nullptr; 174 } 175 // Check the predecessors for the LOOP instruction. 176 if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited)) 177 return Loop; 178 } 179 return nullptr; 180 } 181 182 /// Gather register def/uses from MI. 183 /// This treats possible (predicated) defs as actually happening ones 184 /// (conservatively). 185 static inline void parseOperands(const MachineInstr &MI, 186 SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) { 187 Defs.clear(); 188 Uses.clear(); 189 190 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 191 const MachineOperand &MO = MI.getOperand(i); 192 193 if (!MO.isReg()) 194 continue; 195 196 Register Reg = MO.getReg(); 197 if (!Reg) 198 continue; 199 200 if (MO.isUse()) 201 Uses.push_back(MO.getReg()); 202 203 if (MO.isDef()) 204 Defs.push_back(MO.getReg()); 205 } 206 } 207 208 // Position dependent, so check twice for swap. 209 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) { 210 switch (Ga) { 211 case HexagonII::HSIG_None: 212 default: 213 return false; 214 case HexagonII::HSIG_L1: 215 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A); 216 case HexagonII::HSIG_L2: 217 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || 218 Gb == HexagonII::HSIG_A); 219 case HexagonII::HSIG_S1: 220 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || 221 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A); 222 case HexagonII::HSIG_S2: 223 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || 224 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 || 225 Gb == HexagonII::HSIG_A); 226 case HexagonII::HSIG_A: 227 return (Gb == HexagonII::HSIG_A); 228 case HexagonII::HSIG_Compound: 229 return (Gb == HexagonII::HSIG_Compound); 230 } 231 return false; 232 } 233 234 /// isLoadFromStackSlot - If the specified machine instruction is a direct 235 /// load from a stack slot, return the virtual or physical register number of 236 /// the destination along with the FrameIndex of the loaded stack slot. If 237 /// not, return 0. This predicate must return 0 if the instruction has 238 /// any side effects other than loading from the stack slot. 239 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 240 int &FrameIndex) const { 241 switch (MI.getOpcode()) { 242 default: 243 break; 244 case Hexagon::L2_loadri_io: 245 case Hexagon::L2_loadrd_io: 246 case Hexagon::V6_vL32b_ai: 247 case Hexagon::V6_vL32b_nt_ai: 248 case Hexagon::V6_vL32Ub_ai: 249 case Hexagon::LDriw_pred: 250 case Hexagon::LDriw_ctr: 251 case Hexagon::PS_vloadrq_ai: 252 case Hexagon::PS_vloadrw_ai: 253 case Hexagon::PS_vloadrw_nt_ai: { 254 const MachineOperand OpFI = MI.getOperand(1); 255 if (!OpFI.isFI()) 256 return 0; 257 const MachineOperand OpOff = MI.getOperand(2); 258 if (!OpOff.isImm() || OpOff.getImm() != 0) 259 return 0; 260 FrameIndex = OpFI.getIndex(); 261 return MI.getOperand(0).getReg(); 262 } 263 264 case Hexagon::L2_ploadrit_io: 265 case Hexagon::L2_ploadrif_io: 266 case Hexagon::L2_ploadrdt_io: 267 case Hexagon::L2_ploadrdf_io: { 268 const MachineOperand OpFI = MI.getOperand(2); 269 if (!OpFI.isFI()) 270 return 0; 271 const MachineOperand OpOff = MI.getOperand(3); 272 if (!OpOff.isImm() || OpOff.getImm() != 0) 273 return 0; 274 FrameIndex = OpFI.getIndex(); 275 return MI.getOperand(0).getReg(); 276 } 277 } 278 279 return 0; 280 } 281 282 /// isStoreToStackSlot - If the specified machine instruction is a direct 283 /// store to a stack slot, return the virtual or physical register number of 284 /// the source reg along with the FrameIndex of the loaded stack slot. If 285 /// not, return 0. This predicate must return 0 if the instruction has 286 /// any side effects other than storing to the stack slot. 287 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 288 int &FrameIndex) const { 289 switch (MI.getOpcode()) { 290 default: 291 break; 292 case Hexagon::S2_storerb_io: 293 case Hexagon::S2_storerh_io: 294 case Hexagon::S2_storeri_io: 295 case Hexagon::S2_storerd_io: 296 case Hexagon::V6_vS32b_ai: 297 case Hexagon::V6_vS32Ub_ai: 298 case Hexagon::STriw_pred: 299 case Hexagon::STriw_ctr: 300 case Hexagon::PS_vstorerq_ai: 301 case Hexagon::PS_vstorerw_ai: { 302 const MachineOperand &OpFI = MI.getOperand(0); 303 if (!OpFI.isFI()) 304 return 0; 305 const MachineOperand &OpOff = MI.getOperand(1); 306 if (!OpOff.isImm() || OpOff.getImm() != 0) 307 return 0; 308 FrameIndex = OpFI.getIndex(); 309 return MI.getOperand(2).getReg(); 310 } 311 312 case Hexagon::S2_pstorerbt_io: 313 case Hexagon::S2_pstorerbf_io: 314 case Hexagon::S2_pstorerht_io: 315 case Hexagon::S2_pstorerhf_io: 316 case Hexagon::S2_pstorerit_io: 317 case Hexagon::S2_pstorerif_io: 318 case Hexagon::S2_pstorerdt_io: 319 case Hexagon::S2_pstorerdf_io: { 320 const MachineOperand &OpFI = MI.getOperand(1); 321 if (!OpFI.isFI()) 322 return 0; 323 const MachineOperand &OpOff = MI.getOperand(2); 324 if (!OpOff.isImm() || OpOff.getImm() != 0) 325 return 0; 326 FrameIndex = OpFI.getIndex(); 327 return MI.getOperand(3).getReg(); 328 } 329 } 330 331 return 0; 332 } 333 334 /// This function checks if the instruction or bundle of instructions 335 /// has load from stack slot and returns frameindex and machine memory 336 /// operand of that instruction if true. 337 bool HexagonInstrInfo::hasLoadFromStackSlot( 338 const MachineInstr &MI, 339 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 340 if (MI.isBundle()) { 341 const MachineBasicBlock *MBB = MI.getParent(); 342 MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); 343 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) 344 if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses)) 345 return true; 346 return false; 347 } 348 349 return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses); 350 } 351 352 /// This function checks if the instruction or bundle of instructions 353 /// has store to stack slot and returns frameindex and machine memory 354 /// operand of that instruction if true. 355 bool HexagonInstrInfo::hasStoreToStackSlot( 356 const MachineInstr &MI, 357 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 358 if (MI.isBundle()) { 359 const MachineBasicBlock *MBB = MI.getParent(); 360 MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); 361 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) 362 if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses)) 363 return true; 364 return false; 365 } 366 367 return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses); 368 } 369 370 /// This function can analyze one/two way branching only and should (mostly) be 371 /// called by target independent side. 372 /// First entry is always the opcode of the branching instruction, except when 373 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a 374 /// BB with only unconditional jump. Subsequent entries depend upon the opcode, 375 /// e.g. Jump_c p will have 376 /// Cond[0] = Jump_c 377 /// Cond[1] = p 378 /// HW-loop ENDLOOP: 379 /// Cond[0] = ENDLOOP 380 /// Cond[1] = MBB 381 /// New value jump: 382 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode 383 /// Cond[1] = R 384 /// Cond[2] = Imm 385 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 386 MachineBasicBlock *&TBB, 387 MachineBasicBlock *&FBB, 388 SmallVectorImpl<MachineOperand> &Cond, 389 bool AllowModify) const { 390 TBB = nullptr; 391 FBB = nullptr; 392 Cond.clear(); 393 394 // If the block has no terminators, it just falls into the block after it. 395 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 396 if (I == MBB.instr_begin()) 397 return false; 398 399 // A basic block may looks like this: 400 // 401 // [ insn 402 // EH_LABEL 403 // insn 404 // insn 405 // insn 406 // EH_LABEL 407 // insn ] 408 // 409 // It has two succs but does not have a terminator 410 // Don't know how to handle it. 411 do { 412 --I; 413 if (I->isEHLabel()) 414 // Don't analyze EH branches. 415 return true; 416 } while (I != MBB.instr_begin()); 417 418 I = MBB.instr_end(); 419 --I; 420 421 while (I->isDebugInstr()) { 422 if (I == MBB.instr_begin()) 423 return false; 424 --I; 425 } 426 427 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump && 428 I->getOperand(0).isMBB(); 429 // Delete the J2_jump if it's equivalent to a fall-through. 430 if (AllowModify && JumpToBlock && 431 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 432 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";); 433 I->eraseFromParent(); 434 I = MBB.instr_end(); 435 if (I == MBB.instr_begin()) 436 return false; 437 --I; 438 } 439 if (!isUnpredicatedTerminator(*I)) 440 return false; 441 442 // Get the last instruction in the block. 443 MachineInstr *LastInst = &*I; 444 MachineInstr *SecondLastInst = nullptr; 445 // Find one more terminator if present. 446 while (true) { 447 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) { 448 if (!SecondLastInst) 449 SecondLastInst = &*I; 450 else 451 // This is a third branch. 452 return true; 453 } 454 if (I == MBB.instr_begin()) 455 break; 456 --I; 457 } 458 459 int LastOpcode = LastInst->getOpcode(); 460 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0; 461 // If the branch target is not a basic block, it could be a tail call. 462 // (It is, if the target is a function.) 463 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB()) 464 return true; 465 if (SecLastOpcode == Hexagon::J2_jump && 466 !SecondLastInst->getOperand(0).isMBB()) 467 return true; 468 469 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode); 470 bool LastOpcodeHasNVJump = isNewValueJump(*LastInst); 471 472 if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB()) 473 return true; 474 475 // If there is only one terminator instruction, process it. 476 if (LastInst && !SecondLastInst) { 477 if (LastOpcode == Hexagon::J2_jump) { 478 TBB = LastInst->getOperand(0).getMBB(); 479 return false; 480 } 481 if (isEndLoopN(LastOpcode)) { 482 TBB = LastInst->getOperand(0).getMBB(); 483 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); 484 Cond.push_back(LastInst->getOperand(0)); 485 return false; 486 } 487 if (LastOpcodeHasJMP_c) { 488 TBB = LastInst->getOperand(1).getMBB(); 489 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); 490 Cond.push_back(LastInst->getOperand(0)); 491 return false; 492 } 493 // Only supporting rr/ri versions of new-value jumps. 494 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) { 495 TBB = LastInst->getOperand(2).getMBB(); 496 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); 497 Cond.push_back(LastInst->getOperand(0)); 498 Cond.push_back(LastInst->getOperand(1)); 499 return false; 500 } 501 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB) 502 << " with one jump\n";); 503 // Otherwise, don't know what this is. 504 return true; 505 } 506 507 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode); 508 bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst); 509 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) { 510 if (!SecondLastInst->getOperand(1).isMBB()) 511 return true; 512 TBB = SecondLastInst->getOperand(1).getMBB(); 513 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); 514 Cond.push_back(SecondLastInst->getOperand(0)); 515 FBB = LastInst->getOperand(0).getMBB(); 516 return false; 517 } 518 519 // Only supporting rr/ri versions of new-value jumps. 520 if (SecLastOpcodeHasNVJump && 521 (SecondLastInst->getNumExplicitOperands() == 3) && 522 (LastOpcode == Hexagon::J2_jump)) { 523 TBB = SecondLastInst->getOperand(2).getMBB(); 524 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); 525 Cond.push_back(SecondLastInst->getOperand(0)); 526 Cond.push_back(SecondLastInst->getOperand(1)); 527 FBB = LastInst->getOperand(0).getMBB(); 528 return false; 529 } 530 531 // If the block ends with two Hexagon:JMPs, handle it. The second one is not 532 // executed, so remove it. 533 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) { 534 TBB = SecondLastInst->getOperand(0).getMBB(); 535 I = LastInst->getIterator(); 536 if (AllowModify) 537 I->eraseFromParent(); 538 return false; 539 } 540 541 // If the block ends with an ENDLOOP, and J2_jump, handle it. 542 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) { 543 TBB = SecondLastInst->getOperand(0).getMBB(); 544 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); 545 Cond.push_back(SecondLastInst->getOperand(0)); 546 FBB = LastInst->getOperand(0).getMBB(); 547 return false; 548 } 549 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB) 550 << " with two jumps";); 551 // Otherwise, can't handle this. 552 return true; 553 } 554 555 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB, 556 int *BytesRemoved) const { 557 assert(!BytesRemoved && "code size not handled"); 558 559 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB)); 560 MachineBasicBlock::iterator I = MBB.end(); 561 unsigned Count = 0; 562 while (I != MBB.begin()) { 563 --I; 564 if (I->isDebugInstr()) 565 continue; 566 // Only removing branches from end of MBB. 567 if (!I->isBranch()) 568 return Count; 569 if (Count && (I->getOpcode() == Hexagon::J2_jump)) 570 llvm_unreachable("Malformed basic block: unconditional branch not last"); 571 MBB.erase(&MBB.back()); 572 I = MBB.end(); 573 ++Count; 574 } 575 return Count; 576 } 577 578 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB, 579 MachineBasicBlock *TBB, 580 MachineBasicBlock *FBB, 581 ArrayRef<MachineOperand> Cond, 582 const DebugLoc &DL, 583 int *BytesAdded) const { 584 unsigned BOpc = Hexagon::J2_jump; 585 unsigned BccOpc = Hexagon::J2_jumpt; 586 assert(validateBranchCond(Cond) && "Invalid branching condition"); 587 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 588 assert(!BytesAdded && "code size not handled"); 589 590 // Check if reverseBranchCondition has asked to reverse this branch 591 // If we want to reverse the branch an odd number of times, we want 592 // J2_jumpf. 593 if (!Cond.empty() && Cond[0].isImm()) 594 BccOpc = Cond[0].getImm(); 595 596 if (!FBB) { 597 if (Cond.empty()) { 598 // Due to a bug in TailMerging/CFG Optimization, we need to add a 599 // special case handling of a predicated jump followed by an 600 // unconditional jump. If not, Tail Merging and CFG Optimization go 601 // into an infinite loop. 602 MachineBasicBlock *NewTBB, *NewFBB; 603 SmallVector<MachineOperand, 4> Cond; 604 auto Term = MBB.getFirstTerminator(); 605 if (Term != MBB.end() && isPredicated(*Term) && 606 !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) && 607 MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) { 608 reverseBranchCondition(Cond); 609 removeBranch(MBB); 610 return insertBranch(MBB, TBB, nullptr, Cond, DL); 611 } 612 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 613 } else if (isEndLoopN(Cond[0].getImm())) { 614 int EndLoopOp = Cond[0].getImm(); 615 assert(Cond[1].isMBB()); 616 // Since we're adding an ENDLOOP, there better be a LOOP instruction. 617 // Check for it, and change the BB target if needed. 618 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; 619 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(), 620 VisitedBBs); 621 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP"); 622 Loop->getOperand(0).setMBB(TBB); 623 // Add the ENDLOOP after the finding the LOOP0. 624 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB); 625 } else if (isNewValueJump(Cond[0].getImm())) { 626 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump"); 627 // New value jump 628 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset) 629 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset) 630 unsigned Flags1 = getUndefRegState(Cond[1].isUndef()); 631 LLVM_DEBUG(dbgs() << "\nInserting NVJump for " 632 << printMBBReference(MBB);); 633 if (Cond[2].isReg()) { 634 unsigned Flags2 = getUndefRegState(Cond[2].isUndef()); 635 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1). 636 addReg(Cond[2].getReg(), Flags2).addMBB(TBB); 637 } else if(Cond[2].isImm()) { 638 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1). 639 addImm(Cond[2].getImm()).addMBB(TBB); 640 } else 641 llvm_unreachable("Invalid condition for branching"); 642 } else { 643 assert((Cond.size() == 2) && "Malformed cond vector"); 644 const MachineOperand &RO = Cond[1]; 645 unsigned Flags = getUndefRegState(RO.isUndef()); 646 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB); 647 } 648 return 1; 649 } 650 assert((!Cond.empty()) && 651 "Cond. cannot be empty when multiple branchings are required"); 652 assert((!isNewValueJump(Cond[0].getImm())) && 653 "NV-jump cannot be inserted with another branch"); 654 // Special case for hardware loops. The condition is a basic block. 655 if (isEndLoopN(Cond[0].getImm())) { 656 int EndLoopOp = Cond[0].getImm(); 657 assert(Cond[1].isMBB()); 658 // Since we're adding an ENDLOOP, there better be a LOOP instruction. 659 // Check for it, and change the BB target if needed. 660 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; 661 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(), 662 VisitedBBs); 663 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP"); 664 Loop->getOperand(0).setMBB(TBB); 665 // Add the ENDLOOP after the finding the LOOP0. 666 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB); 667 } else { 668 const MachineOperand &RO = Cond[1]; 669 unsigned Flags = getUndefRegState(RO.isUndef()); 670 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB); 671 } 672 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 673 674 return 2; 675 } 676 677 namespace { 678 class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 679 MachineInstr *Loop, *EndLoop; 680 MachineFunction *MF; 681 const HexagonInstrInfo *TII; 682 int64_t TripCount; 683 Register LoopCount; 684 DebugLoc DL; 685 686 public: 687 HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop) 688 : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()), 689 TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()), 690 DL(Loop->getDebugLoc()) { 691 // Inspect the Loop instruction up-front, as it may be deleted when we call 692 // createTripCountGreaterCondition. 693 TripCount = Loop->getOpcode() == Hexagon::J2_loop0r 694 ? -1 695 : Loop->getOperand(1).getImm(); 696 if (TripCount == -1) 697 LoopCount = Loop->getOperand(1).getReg(); 698 } 699 700 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 701 // Only ignore the terminator. 702 return MI == EndLoop; 703 } 704 705 Optional<bool> 706 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 707 SmallVectorImpl<MachineOperand> &Cond) override { 708 if (TripCount == -1) { 709 // Check if we're done with the loop. 710 unsigned Done = TII->createVR(MF, MVT::i1); 711 MachineInstr *NewCmp = BuildMI(&MBB, DL, 712 TII->get(Hexagon::C2_cmpgtui), Done) 713 .addReg(LoopCount) 714 .addImm(TC); 715 Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf)); 716 Cond.push_back(NewCmp->getOperand(0)); 717 return {}; 718 } 719 720 return TripCount > TC; 721 } 722 723 void setPreheader(MachineBasicBlock *NewPreheader) override { 724 NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(), 725 Loop); 726 } 727 728 void adjustTripCount(int TripCountAdjust) override { 729 // If the loop trip count is a compile-time value, then just change the 730 // value. 731 if (Loop->getOpcode() == Hexagon::J2_loop0i || 732 Loop->getOpcode() == Hexagon::J2_loop1i) { 733 int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust; 734 assert(TripCount > 0 && "Can't create an empty or negative loop!"); 735 Loop->getOperand(1).setImm(TripCount); 736 return; 737 } 738 739 // The loop trip count is a run-time value. We generate code to subtract 740 // one from the trip count, and update the loop instruction. 741 Register LoopCount = Loop->getOperand(1).getReg(); 742 Register NewLoopCount = TII->createVR(MF, MVT::i32); 743 BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(), 744 TII->get(Hexagon::A2_addi), NewLoopCount) 745 .addReg(LoopCount) 746 .addImm(TripCountAdjust); 747 Loop->getOperand(1).setReg(NewLoopCount); 748 } 749 750 void disposed() override { Loop->eraseFromParent(); } 751 }; 752 } // namespace 753 754 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 755 HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 756 // We really "analyze" only hardware loops right now. 757 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 758 759 if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) { 760 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; 761 MachineInstr *LoopInst = findLoopInstr( 762 LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs); 763 if (LoopInst) 764 return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I); 765 } 766 return nullptr; 767 } 768 769 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB, 770 unsigned NumCycles, unsigned ExtraPredCycles, 771 BranchProbability Probability) const { 772 return nonDbgBBSize(&MBB) <= 3; 773 } 774 775 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 776 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, 777 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) 778 const { 779 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3; 780 } 781 782 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB, 783 unsigned NumInstrs, BranchProbability Probability) const { 784 return NumInstrs <= 4; 785 } 786 787 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 788 MachineBasicBlock::iterator I, 789 const DebugLoc &DL, unsigned DestReg, 790 unsigned SrcReg, bool KillSrc) const { 791 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 792 unsigned KillFlag = getKillRegState(KillSrc); 793 794 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) { 795 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg) 796 .addReg(SrcReg, KillFlag); 797 return; 798 } 799 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) { 800 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg) 801 .addReg(SrcReg, KillFlag); 802 return; 803 } 804 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) { 805 // Map Pd = Ps to Pd = or(Ps, Ps). 806 BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg) 807 .addReg(SrcReg).addReg(SrcReg, KillFlag); 808 return; 809 } 810 if (Hexagon::CtrRegsRegClass.contains(DestReg) && 811 Hexagon::IntRegsRegClass.contains(SrcReg)) { 812 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg) 813 .addReg(SrcReg, KillFlag); 814 return; 815 } 816 if (Hexagon::IntRegsRegClass.contains(DestReg) && 817 Hexagon::CtrRegsRegClass.contains(SrcReg)) { 818 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg) 819 .addReg(SrcReg, KillFlag); 820 return; 821 } 822 if (Hexagon::ModRegsRegClass.contains(DestReg) && 823 Hexagon::IntRegsRegClass.contains(SrcReg)) { 824 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg) 825 .addReg(SrcReg, KillFlag); 826 return; 827 } 828 if (Hexagon::PredRegsRegClass.contains(SrcReg) && 829 Hexagon::IntRegsRegClass.contains(DestReg)) { 830 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg) 831 .addReg(SrcReg, KillFlag); 832 return; 833 } 834 if (Hexagon::IntRegsRegClass.contains(SrcReg) && 835 Hexagon::PredRegsRegClass.contains(DestReg)) { 836 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg) 837 .addReg(SrcReg, KillFlag); 838 return; 839 } 840 if (Hexagon::PredRegsRegClass.contains(SrcReg) && 841 Hexagon::IntRegsRegClass.contains(DestReg)) { 842 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg) 843 .addReg(SrcReg, KillFlag); 844 return; 845 } 846 if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) { 847 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg). 848 addReg(SrcReg, KillFlag); 849 return; 850 } 851 if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) { 852 Register LoSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); 853 Register HiSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); 854 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg) 855 .addReg(HiSrc, KillFlag) 856 .addReg(LoSrc, KillFlag); 857 return; 858 } 859 if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) { 860 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg) 861 .addReg(SrcReg) 862 .addReg(SrcReg, KillFlag); 863 return; 864 } 865 if (Hexagon::HvxQRRegClass.contains(SrcReg) && 866 Hexagon::HvxVRRegClass.contains(DestReg)) { 867 llvm_unreachable("Unimplemented pred to vec"); 868 return; 869 } 870 if (Hexagon::HvxQRRegClass.contains(DestReg) && 871 Hexagon::HvxVRRegClass.contains(SrcReg)) { 872 llvm_unreachable("Unimplemented vec to pred"); 873 return; 874 } 875 876 #ifndef NDEBUG 877 // Show the invalid registers to ease debugging. 878 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": " 879 << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n'; 880 #endif 881 llvm_unreachable("Unimplemented"); 882 } 883 884 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 885 MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, 886 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { 887 DebugLoc DL = MBB.findDebugLoc(I); 888 MachineFunction &MF = *MBB.getParent(); 889 MachineFrameInfo &MFI = MF.getFrameInfo(); 890 unsigned SlotAlign = MFI.getObjectAlignment(FI); 891 unsigned RegAlign = TRI->getSpillAlignment(*RC); 892 unsigned KillFlag = getKillRegState(isKill); 893 bool HasAlloca = MFI.hasVarSizedObjects(); 894 const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering(); 895 896 MachineMemOperand *MMO = MF.getMachineMemOperand( 897 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 898 MFI.getObjectSize(FI), SlotAlign); 899 900 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { 901 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io)) 902 .addFrameIndex(FI).addImm(0) 903 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 904 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { 905 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io)) 906 .addFrameIndex(FI).addImm(0) 907 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 908 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { 909 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred)) 910 .addFrameIndex(FI).addImm(0) 911 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 912 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { 913 BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr)) 914 .addFrameIndex(FI).addImm(0) 915 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 916 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { 917 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai)) 918 .addFrameIndex(FI).addImm(0) 919 .addReg(SrcReg, KillFlag).addMemOperand(MMO); 920 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { 921 // If there are variable-sized objects, spills will not be aligned. 922 if (HasAlloca) 923 SlotAlign = HFI.getStackAlignment(); 924 unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vS32Ub_ai 925 : Hexagon::V6_vS32b_ai; 926 MachineMemOperand *MMOA = MF.getMachineMemOperand( 927 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 928 MFI.getObjectSize(FI), SlotAlign); 929 BuildMI(MBB, I, DL, get(Opc)) 930 .addFrameIndex(FI).addImm(0) 931 .addReg(SrcReg, KillFlag).addMemOperand(MMOA); 932 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { 933 // If there are variable-sized objects, spills will not be aligned. 934 if (HasAlloca) 935 SlotAlign = HFI.getStackAlignment(); 936 unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vstorerwu_ai 937 : Hexagon::PS_vstorerw_ai; 938 MachineMemOperand *MMOA = MF.getMachineMemOperand( 939 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 940 MFI.getObjectSize(FI), SlotAlign); 941 BuildMI(MBB, I, DL, get(Opc)) 942 .addFrameIndex(FI).addImm(0) 943 .addReg(SrcReg, KillFlag).addMemOperand(MMOA); 944 } else { 945 llvm_unreachable("Unimplemented"); 946 } 947 } 948 949 void HexagonInstrInfo::loadRegFromStackSlot( 950 MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, 951 int FI, const TargetRegisterClass *RC, 952 const TargetRegisterInfo *TRI) const { 953 DebugLoc DL = MBB.findDebugLoc(I); 954 MachineFunction &MF = *MBB.getParent(); 955 MachineFrameInfo &MFI = MF.getFrameInfo(); 956 unsigned SlotAlign = MFI.getObjectAlignment(FI); 957 unsigned RegAlign = TRI->getSpillAlignment(*RC); 958 bool HasAlloca = MFI.hasVarSizedObjects(); 959 const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering(); 960 961 MachineMemOperand *MMO = MF.getMachineMemOperand( 962 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 963 MFI.getObjectSize(FI), SlotAlign); 964 965 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { 966 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg) 967 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 968 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { 969 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg) 970 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 971 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { 972 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg) 973 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 974 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { 975 BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg) 976 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 977 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { 978 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg) 979 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 980 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { 981 // If there are variable-sized objects, spills will not be aligned. 982 if (HasAlloca) 983 SlotAlign = HFI.getStackAlignment(); 984 unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vL32Ub_ai 985 : Hexagon::V6_vL32b_ai; 986 MachineMemOperand *MMOA = MF.getMachineMemOperand( 987 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 988 MFI.getObjectSize(FI), SlotAlign); 989 BuildMI(MBB, I, DL, get(Opc), DestReg) 990 .addFrameIndex(FI).addImm(0).addMemOperand(MMOA); 991 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { 992 // If there are variable-sized objects, spills will not be aligned. 993 if (HasAlloca) 994 SlotAlign = HFI.getStackAlignment(); 995 unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vloadrwu_ai 996 : Hexagon::PS_vloadrw_ai; 997 MachineMemOperand *MMOA = MF.getMachineMemOperand( 998 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 999 MFI.getObjectSize(FI), SlotAlign); 1000 BuildMI(MBB, I, DL, get(Opc), DestReg) 1001 .addFrameIndex(FI).addImm(0).addMemOperand(MMOA); 1002 } else { 1003 llvm_unreachable("Can't store this register to stack slot"); 1004 } 1005 } 1006 1007 static void getLiveRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) { 1008 const MachineBasicBlock &B = *MI.getParent(); 1009 Regs.addLiveOuts(B); 1010 auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse(); 1011 for (auto I = B.rbegin(); I != E; ++I) 1012 Regs.stepBackward(*I); 1013 } 1014 1015 /// expandPostRAPseudo - This function is called for all pseudo instructions 1016 /// that remain after register allocation. Many pseudo instructions are 1017 /// created to help register allocation. This is the place to convert them 1018 /// into real instructions. The target can edit MI in place, or it can insert 1019 /// new instructions and erase MI. The function should return true if 1020 /// anything was changed. 1021 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1022 MachineBasicBlock &MBB = *MI.getParent(); 1023 MachineFunction &MF = *MBB.getParent(); 1024 MachineRegisterInfo &MRI = MF.getRegInfo(); 1025 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 1026 DebugLoc DL = MI.getDebugLoc(); 1027 unsigned Opc = MI.getOpcode(); 1028 1029 auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) { 1030 Register Mx = MI.getOperand(MxOp).getReg(); 1031 unsigned CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1); 1032 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx) 1033 .add(MI.getOperand((HasImm ? 5 : 4))); 1034 auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0)) 1035 .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3)); 1036 if (HasImm) 1037 MIB.add(MI.getOperand(4)); 1038 MIB.addReg(CSx, RegState::Implicit); 1039 MBB.erase(MI); 1040 return true; 1041 }; 1042 1043 switch (Opc) { 1044 case TargetOpcode::COPY: { 1045 MachineOperand &MD = MI.getOperand(0); 1046 MachineOperand &MS = MI.getOperand(1); 1047 MachineBasicBlock::iterator MBBI = MI.getIterator(); 1048 if (MD.getReg() != MS.getReg() && !MS.isUndef()) { 1049 copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill()); 1050 std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI); 1051 } 1052 MBB.erase(MBBI); 1053 return true; 1054 } 1055 case Hexagon::PS_aligna: 1056 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg()) 1057 .addReg(HRI.getFrameRegister()) 1058 .addImm(-MI.getOperand(1).getImm()); 1059 MBB.erase(MI); 1060 return true; 1061 case Hexagon::V6_vassignp: { 1062 Register SrcReg = MI.getOperand(1).getReg(); 1063 Register DstReg = MI.getOperand(0).getReg(); 1064 unsigned Kill = getKillRegState(MI.getOperand(1).isKill()); 1065 BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg) 1066 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi), Kill) 1067 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo), Kill); 1068 MBB.erase(MI); 1069 return true; 1070 } 1071 case Hexagon::V6_lo: { 1072 Register SrcReg = MI.getOperand(1).getReg(); 1073 Register DstReg = MI.getOperand(0).getReg(); 1074 Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); 1075 copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill()); 1076 MBB.erase(MI); 1077 MRI.clearKillFlags(SrcSubLo); 1078 return true; 1079 } 1080 case Hexagon::V6_hi: { 1081 Register SrcReg = MI.getOperand(1).getReg(); 1082 Register DstReg = MI.getOperand(0).getReg(); 1083 Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); 1084 copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill()); 1085 MBB.erase(MI); 1086 MRI.clearKillFlags(SrcSubHi); 1087 return true; 1088 } 1089 case Hexagon::PS_vstorerw_ai: 1090 case Hexagon::PS_vstorerwu_ai: { 1091 bool Aligned = Opc == Hexagon::PS_vstorerw_ai; 1092 Register SrcReg = MI.getOperand(2).getReg(); 1093 Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); 1094 Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); 1095 unsigned NewOpc = Aligned ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai; 1096 unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1097 1098 MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc)) 1099 .add(MI.getOperand(0)) 1100 .addImm(MI.getOperand(1).getImm()) 1101 .addReg(SrcSubLo) 1102 .cloneMemRefs(MI); 1103 MI1New->getOperand(0).setIsKill(false); 1104 BuildMI(MBB, MI, DL, get(NewOpc)) 1105 .add(MI.getOperand(0)) 1106 // The Vectors are indexed in multiples of vector size. 1107 .addImm(MI.getOperand(1).getImm() + Offset) 1108 .addReg(SrcSubHi) 1109 .cloneMemRefs(MI); 1110 MBB.erase(MI); 1111 return true; 1112 } 1113 case Hexagon::PS_vloadrw_ai: 1114 case Hexagon::PS_vloadrwu_ai: { 1115 bool Aligned = Opc == Hexagon::PS_vloadrw_ai; 1116 Register DstReg = MI.getOperand(0).getReg(); 1117 unsigned NewOpc = Aligned ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai; 1118 unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1119 1120 MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc), 1121 HRI.getSubReg(DstReg, Hexagon::vsub_lo)) 1122 .add(MI.getOperand(1)) 1123 .addImm(MI.getOperand(2).getImm()) 1124 .cloneMemRefs(MI); 1125 MI1New->getOperand(1).setIsKill(false); 1126 BuildMI(MBB, MI, DL, get(NewOpc), HRI.getSubReg(DstReg, Hexagon::vsub_hi)) 1127 .add(MI.getOperand(1)) 1128 // The Vectors are indexed in multiples of vector size. 1129 .addImm(MI.getOperand(2).getImm() + Offset) 1130 .cloneMemRefs(MI); 1131 MBB.erase(MI); 1132 return true; 1133 } 1134 case Hexagon::PS_true: { 1135 Register Reg = MI.getOperand(0).getReg(); 1136 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg) 1137 .addReg(Reg, RegState::Undef) 1138 .addReg(Reg, RegState::Undef); 1139 MBB.erase(MI); 1140 return true; 1141 } 1142 case Hexagon::PS_false: { 1143 Register Reg = MI.getOperand(0).getReg(); 1144 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg) 1145 .addReg(Reg, RegState::Undef) 1146 .addReg(Reg, RegState::Undef); 1147 MBB.erase(MI); 1148 return true; 1149 } 1150 case Hexagon::PS_qtrue: { 1151 BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg()) 1152 .addReg(Hexagon::V0, RegState::Undef) 1153 .addReg(Hexagon::V0, RegState::Undef); 1154 MBB.erase(MI); 1155 return true; 1156 } 1157 case Hexagon::PS_qfalse: { 1158 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg()) 1159 .addReg(Hexagon::V0, RegState::Undef) 1160 .addReg(Hexagon::V0, RegState::Undef); 1161 MBB.erase(MI); 1162 return true; 1163 } 1164 case Hexagon::PS_vdd0: { 1165 Register Vd = MI.getOperand(0).getReg(); 1166 BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd) 1167 .addReg(Vd, RegState::Undef) 1168 .addReg(Vd, RegState::Undef); 1169 MBB.erase(MI); 1170 return true; 1171 } 1172 case Hexagon::PS_vmulw: { 1173 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies. 1174 Register DstReg = MI.getOperand(0).getReg(); 1175 Register Src1Reg = MI.getOperand(1).getReg(); 1176 Register Src2Reg = MI.getOperand(2).getReg(); 1177 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi); 1178 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo); 1179 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi); 1180 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo); 1181 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi), 1182 HRI.getSubReg(DstReg, Hexagon::isub_hi)) 1183 .addReg(Src1SubHi) 1184 .addReg(Src2SubHi); 1185 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi), 1186 HRI.getSubReg(DstReg, Hexagon::isub_lo)) 1187 .addReg(Src1SubLo) 1188 .addReg(Src2SubLo); 1189 MBB.erase(MI); 1190 MRI.clearKillFlags(Src1SubHi); 1191 MRI.clearKillFlags(Src1SubLo); 1192 MRI.clearKillFlags(Src2SubHi); 1193 MRI.clearKillFlags(Src2SubLo); 1194 return true; 1195 } 1196 case Hexagon::PS_vmulw_acc: { 1197 // Expand 64-bit vector multiply with addition into 2 scalar multiplies. 1198 Register DstReg = MI.getOperand(0).getReg(); 1199 Register Src1Reg = MI.getOperand(1).getReg(); 1200 Register Src2Reg = MI.getOperand(2).getReg(); 1201 Register Src3Reg = MI.getOperand(3).getReg(); 1202 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi); 1203 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo); 1204 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi); 1205 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo); 1206 Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi); 1207 Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo); 1208 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci), 1209 HRI.getSubReg(DstReg, Hexagon::isub_hi)) 1210 .addReg(Src1SubHi) 1211 .addReg(Src2SubHi) 1212 .addReg(Src3SubHi); 1213 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci), 1214 HRI.getSubReg(DstReg, Hexagon::isub_lo)) 1215 .addReg(Src1SubLo) 1216 .addReg(Src2SubLo) 1217 .addReg(Src3SubLo); 1218 MBB.erase(MI); 1219 MRI.clearKillFlags(Src1SubHi); 1220 MRI.clearKillFlags(Src1SubLo); 1221 MRI.clearKillFlags(Src2SubHi); 1222 MRI.clearKillFlags(Src2SubLo); 1223 MRI.clearKillFlags(Src3SubHi); 1224 MRI.clearKillFlags(Src3SubLo); 1225 return true; 1226 } 1227 case Hexagon::PS_pselect: { 1228 const MachineOperand &Op0 = MI.getOperand(0); 1229 const MachineOperand &Op1 = MI.getOperand(1); 1230 const MachineOperand &Op2 = MI.getOperand(2); 1231 const MachineOperand &Op3 = MI.getOperand(3); 1232 Register Rd = Op0.getReg(); 1233 Register Pu = Op1.getReg(); 1234 Register Rs = Op2.getReg(); 1235 Register Rt = Op3.getReg(); 1236 DebugLoc DL = MI.getDebugLoc(); 1237 unsigned K1 = getKillRegState(Op1.isKill()); 1238 unsigned K2 = getKillRegState(Op2.isKill()); 1239 unsigned K3 = getKillRegState(Op3.isKill()); 1240 if (Rd != Rs) 1241 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd) 1242 .addReg(Pu, (Rd == Rt) ? K1 : 0) 1243 .addReg(Rs, K2); 1244 if (Rd != Rt) 1245 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd) 1246 .addReg(Pu, K1) 1247 .addReg(Rt, K3); 1248 MBB.erase(MI); 1249 return true; 1250 } 1251 case Hexagon::PS_vselect: { 1252 const MachineOperand &Op0 = MI.getOperand(0); 1253 const MachineOperand &Op1 = MI.getOperand(1); 1254 const MachineOperand &Op2 = MI.getOperand(2); 1255 const MachineOperand &Op3 = MI.getOperand(3); 1256 LivePhysRegs LiveAtMI(HRI); 1257 getLiveRegsAt(LiveAtMI, MI); 1258 bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg()); 1259 Register PReg = Op1.getReg(); 1260 assert(Op1.getSubReg() == 0); 1261 unsigned PState = getRegState(Op1); 1262 1263 if (Op0.getReg() != Op2.getReg()) { 1264 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill 1265 : PState; 1266 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov)) 1267 .add(Op0) 1268 .addReg(PReg, S) 1269 .add(Op2); 1270 if (IsDestLive) 1271 T.addReg(Op0.getReg(), RegState::Implicit); 1272 IsDestLive = true; 1273 } 1274 if (Op0.getReg() != Op3.getReg()) { 1275 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov)) 1276 .add(Op0) 1277 .addReg(PReg, PState) 1278 .add(Op3); 1279 if (IsDestLive) 1280 T.addReg(Op0.getReg(), RegState::Implicit); 1281 } 1282 MBB.erase(MI); 1283 return true; 1284 } 1285 case Hexagon::PS_wselect: { 1286 MachineOperand &Op0 = MI.getOperand(0); 1287 MachineOperand &Op1 = MI.getOperand(1); 1288 MachineOperand &Op2 = MI.getOperand(2); 1289 MachineOperand &Op3 = MI.getOperand(3); 1290 LivePhysRegs LiveAtMI(HRI); 1291 getLiveRegsAt(LiveAtMI, MI); 1292 bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg()); 1293 Register PReg = Op1.getReg(); 1294 assert(Op1.getSubReg() == 0); 1295 unsigned PState = getRegState(Op1); 1296 1297 if (Op0.getReg() != Op2.getReg()) { 1298 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill 1299 : PState; 1300 Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo); 1301 Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi); 1302 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine)) 1303 .add(Op0) 1304 .addReg(PReg, S) 1305 .addReg(SrcHi) 1306 .addReg(SrcLo); 1307 if (IsDestLive) 1308 T.addReg(Op0.getReg(), RegState::Implicit); 1309 IsDestLive = true; 1310 } 1311 if (Op0.getReg() != Op3.getReg()) { 1312 Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo); 1313 Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi); 1314 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine)) 1315 .add(Op0) 1316 .addReg(PReg, PState) 1317 .addReg(SrcHi) 1318 .addReg(SrcLo); 1319 if (IsDestLive) 1320 T.addReg(Op0.getReg(), RegState::Implicit); 1321 } 1322 MBB.erase(MI); 1323 return true; 1324 } 1325 1326 case Hexagon::PS_crash: { 1327 // Generate a misaligned load that is guaranteed to cause a crash. 1328 class CrashPseudoSourceValue : public PseudoSourceValue { 1329 public: 1330 CrashPseudoSourceValue(const TargetInstrInfo &TII) 1331 : PseudoSourceValue(TargetCustom, TII) {} 1332 1333 bool isConstant(const MachineFrameInfo *) const override { 1334 return false; 1335 } 1336 bool isAliased(const MachineFrameInfo *) const override { 1337 return false; 1338 } 1339 bool mayAlias(const MachineFrameInfo *) const override { 1340 return false; 1341 } 1342 void printCustom(raw_ostream &OS) const override { 1343 OS << "MisalignedCrash"; 1344 } 1345 }; 1346 1347 static const CrashPseudoSourceValue CrashPSV(*this); 1348 MachineMemOperand *MMO = MF.getMachineMemOperand( 1349 MachinePointerInfo(&CrashPSV), 1350 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8, 1); 1351 BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13) 1352 .addImm(0xBADC0FEE) // Misaligned load. 1353 .addMemOperand(MMO); 1354 MBB.erase(MI); 1355 return true; 1356 } 1357 1358 case Hexagon::PS_tailcall_i: 1359 MI.setDesc(get(Hexagon::J2_jump)); 1360 return true; 1361 case Hexagon::PS_tailcall_r: 1362 case Hexagon::PS_jmpret: 1363 MI.setDesc(get(Hexagon::J2_jumpr)); 1364 return true; 1365 case Hexagon::PS_jmprett: 1366 MI.setDesc(get(Hexagon::J2_jumprt)); 1367 return true; 1368 case Hexagon::PS_jmpretf: 1369 MI.setDesc(get(Hexagon::J2_jumprf)); 1370 return true; 1371 case Hexagon::PS_jmprettnewpt: 1372 MI.setDesc(get(Hexagon::J2_jumprtnewpt)); 1373 return true; 1374 case Hexagon::PS_jmpretfnewpt: 1375 MI.setDesc(get(Hexagon::J2_jumprfnewpt)); 1376 return true; 1377 case Hexagon::PS_jmprettnew: 1378 MI.setDesc(get(Hexagon::J2_jumprtnew)); 1379 return true; 1380 case Hexagon::PS_jmpretfnew: 1381 MI.setDesc(get(Hexagon::J2_jumprfnew)); 1382 return true; 1383 1384 case Hexagon::PS_loadrub_pci: 1385 return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4); 1386 case Hexagon::PS_loadrb_pci: 1387 return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4); 1388 case Hexagon::PS_loadruh_pci: 1389 return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4); 1390 case Hexagon::PS_loadrh_pci: 1391 return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4); 1392 case Hexagon::PS_loadri_pci: 1393 return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4); 1394 case Hexagon::PS_loadrd_pci: 1395 return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4); 1396 case Hexagon::PS_loadrub_pcr: 1397 return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3); 1398 case Hexagon::PS_loadrb_pcr: 1399 return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3); 1400 case Hexagon::PS_loadruh_pcr: 1401 return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3); 1402 case Hexagon::PS_loadrh_pcr: 1403 return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3); 1404 case Hexagon::PS_loadri_pcr: 1405 return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3); 1406 case Hexagon::PS_loadrd_pcr: 1407 return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3); 1408 case Hexagon::PS_storerb_pci: 1409 return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3); 1410 case Hexagon::PS_storerh_pci: 1411 return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3); 1412 case Hexagon::PS_storerf_pci: 1413 return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3); 1414 case Hexagon::PS_storeri_pci: 1415 return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3); 1416 case Hexagon::PS_storerd_pci: 1417 return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3); 1418 case Hexagon::PS_storerb_pcr: 1419 return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2); 1420 case Hexagon::PS_storerh_pcr: 1421 return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2); 1422 case Hexagon::PS_storerf_pcr: 1423 return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2); 1424 case Hexagon::PS_storeri_pcr: 1425 return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2); 1426 case Hexagon::PS_storerd_pcr: 1427 return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2); 1428 } 1429 1430 return false; 1431 } 1432 1433 MachineBasicBlock::instr_iterator 1434 HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const { 1435 MachineBasicBlock &MBB = *MI.getParent(); 1436 const DebugLoc &DL = MI.getDebugLoc(); 1437 unsigned Opc = MI.getOpcode(); 1438 MachineBasicBlock::iterator First; 1439 1440 switch (Opc) { 1441 case Hexagon::V6_vgathermh_pseudo: 1442 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh)) 1443 .add(MI.getOperand(1)) 1444 .add(MI.getOperand(2)) 1445 .add(MI.getOperand(3)); 1446 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1447 .add(MI.getOperand(0)) 1448 .addImm(0) 1449 .addReg(Hexagon::VTMP); 1450 MBB.erase(MI); 1451 return First.getInstrIterator(); 1452 1453 case Hexagon::V6_vgathermw_pseudo: 1454 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw)) 1455 .add(MI.getOperand(1)) 1456 .add(MI.getOperand(2)) 1457 .add(MI.getOperand(3)); 1458 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1459 .add(MI.getOperand(0)) 1460 .addImm(0) 1461 .addReg(Hexagon::VTMP); 1462 MBB.erase(MI); 1463 return First.getInstrIterator(); 1464 1465 case Hexagon::V6_vgathermhw_pseudo: 1466 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw)) 1467 .add(MI.getOperand(1)) 1468 .add(MI.getOperand(2)) 1469 .add(MI.getOperand(3)); 1470 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1471 .add(MI.getOperand(0)) 1472 .addImm(0) 1473 .addReg(Hexagon::VTMP); 1474 MBB.erase(MI); 1475 return First.getInstrIterator(); 1476 1477 case Hexagon::V6_vgathermhq_pseudo: 1478 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq)) 1479 .add(MI.getOperand(1)) 1480 .add(MI.getOperand(2)) 1481 .add(MI.getOperand(3)) 1482 .add(MI.getOperand(4)); 1483 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1484 .add(MI.getOperand(0)) 1485 .addImm(0) 1486 .addReg(Hexagon::VTMP); 1487 MBB.erase(MI); 1488 return First.getInstrIterator(); 1489 1490 case Hexagon::V6_vgathermwq_pseudo: 1491 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq)) 1492 .add(MI.getOperand(1)) 1493 .add(MI.getOperand(2)) 1494 .add(MI.getOperand(3)) 1495 .add(MI.getOperand(4)); 1496 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1497 .add(MI.getOperand(0)) 1498 .addImm(0) 1499 .addReg(Hexagon::VTMP); 1500 MBB.erase(MI); 1501 return First.getInstrIterator(); 1502 1503 case Hexagon::V6_vgathermhwq_pseudo: 1504 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq)) 1505 .add(MI.getOperand(1)) 1506 .add(MI.getOperand(2)) 1507 .add(MI.getOperand(3)) 1508 .add(MI.getOperand(4)); 1509 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) 1510 .add(MI.getOperand(0)) 1511 .addImm(0) 1512 .addReg(Hexagon::VTMP); 1513 MBB.erase(MI); 1514 return First.getInstrIterator(); 1515 } 1516 1517 return MI.getIterator(); 1518 } 1519 1520 // We indicate that we want to reverse the branch by 1521 // inserting the reversed branching opcode. 1522 bool HexagonInstrInfo::reverseBranchCondition( 1523 SmallVectorImpl<MachineOperand> &Cond) const { 1524 if (Cond.empty()) 1525 return true; 1526 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val"); 1527 unsigned opcode = Cond[0].getImm(); 1528 //unsigned temp; 1529 assert(get(opcode).isBranch() && "Should be a branching condition."); 1530 if (isEndLoopN(opcode)) 1531 return true; 1532 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode); 1533 Cond[0].setImm(NewOpcode); 1534 return false; 1535 } 1536 1537 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB, 1538 MachineBasicBlock::iterator MI) const { 1539 DebugLoc DL; 1540 BuildMI(MBB, MI, DL, get(Hexagon::A2_nop)); 1541 } 1542 1543 bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const { 1544 return getAddrMode(MI) == HexagonII::PostInc; 1545 } 1546 1547 // Returns true if an instruction is predicated irrespective of the predicate 1548 // sense. For example, all of the following will return true. 1549 // if (p0) R1 = add(R2, R3) 1550 // if (!p0) R1 = add(R2, R3) 1551 // if (p0.new) R1 = add(R2, R3) 1552 // if (!p0.new) R1 = add(R2, R3) 1553 // Note: New-value stores are not included here as in the current 1554 // implementation, we don't need to check their predicate sense. 1555 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const { 1556 const uint64_t F = MI.getDesc().TSFlags; 1557 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; 1558 } 1559 1560 bool HexagonInstrInfo::PredicateInstruction( 1561 MachineInstr &MI, ArrayRef<MachineOperand> Cond) const { 1562 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) || 1563 isEndLoopN(Cond[0].getImm())) { 1564 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump();); 1565 return false; 1566 } 1567 int Opc = MI.getOpcode(); 1568 assert (isPredicable(MI) && "Expected predicable instruction"); 1569 bool invertJump = predOpcodeHasNot(Cond); 1570 1571 // We have to predicate MI "in place", i.e. after this function returns, 1572 // MI will need to be transformed into a predicated form. To avoid com- 1573 // plicated manipulations with the operands (handling tied operands, 1574 // etc.), build a new temporary instruction, then overwrite MI with it. 1575 1576 MachineBasicBlock &B = *MI.getParent(); 1577 DebugLoc DL = MI.getDebugLoc(); 1578 unsigned PredOpc = getCondOpcode(Opc, invertJump); 1579 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc)); 1580 unsigned NOp = 0, NumOps = MI.getNumOperands(); 1581 while (NOp < NumOps) { 1582 MachineOperand &Op = MI.getOperand(NOp); 1583 if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) 1584 break; 1585 T.add(Op); 1586 NOp++; 1587 } 1588 1589 unsigned PredReg, PredRegPos, PredRegFlags; 1590 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags); 1591 (void)GotPredReg; 1592 assert(GotPredReg); 1593 T.addReg(PredReg, PredRegFlags); 1594 while (NOp < NumOps) 1595 T.add(MI.getOperand(NOp++)); 1596 1597 MI.setDesc(get(PredOpc)); 1598 while (unsigned n = MI.getNumOperands()) 1599 MI.RemoveOperand(n-1); 1600 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i) 1601 MI.addOperand(T->getOperand(i)); 1602 1603 MachineBasicBlock::instr_iterator TI = T->getIterator(); 1604 B.erase(TI); 1605 1606 MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); 1607 MRI.clearKillFlags(PredReg); 1608 return true; 1609 } 1610 1611 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1612 ArrayRef<MachineOperand> Pred2) const { 1613 // TODO: Fix this 1614 return false; 1615 } 1616 1617 bool HexagonInstrInfo::DefinesPredicate(MachineInstr &MI, 1618 std::vector<MachineOperand> &Pred) const { 1619 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 1620 1621 for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) { 1622 MachineOperand MO = MI.getOperand(oper); 1623 if (MO.isReg()) { 1624 if (!MO.isDef()) 1625 continue; 1626 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg()); 1627 if (RC == &Hexagon::PredRegsRegClass) { 1628 Pred.push_back(MO); 1629 return true; 1630 } 1631 continue; 1632 } else if (MO.isRegMask()) { 1633 for (unsigned PR : Hexagon::PredRegsRegClass) { 1634 if (!MI.modifiesRegister(PR, &HRI)) 1635 continue; 1636 Pred.push_back(MO); 1637 return true; 1638 } 1639 } 1640 } 1641 return false; 1642 } 1643 1644 bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const { 1645 if (!MI.getDesc().isPredicable()) 1646 return false; 1647 1648 if (MI.isCall() || isTailCall(MI)) { 1649 if (!Subtarget.usePredicatedCalls()) 1650 return false; 1651 } 1652 1653 // HVX loads are not predicable on v60, but are on v62. 1654 if (!Subtarget.hasV62Ops()) { 1655 switch (MI.getOpcode()) { 1656 case Hexagon::V6_vL32b_ai: 1657 case Hexagon::V6_vL32b_pi: 1658 case Hexagon::V6_vL32b_ppu: 1659 case Hexagon::V6_vL32b_cur_ai: 1660 case Hexagon::V6_vL32b_cur_pi: 1661 case Hexagon::V6_vL32b_cur_ppu: 1662 case Hexagon::V6_vL32b_nt_ai: 1663 case Hexagon::V6_vL32b_nt_pi: 1664 case Hexagon::V6_vL32b_nt_ppu: 1665 case Hexagon::V6_vL32b_tmp_ai: 1666 case Hexagon::V6_vL32b_tmp_pi: 1667 case Hexagon::V6_vL32b_tmp_ppu: 1668 case Hexagon::V6_vL32b_nt_cur_ai: 1669 case Hexagon::V6_vL32b_nt_cur_pi: 1670 case Hexagon::V6_vL32b_nt_cur_ppu: 1671 case Hexagon::V6_vL32b_nt_tmp_ai: 1672 case Hexagon::V6_vL32b_nt_tmp_pi: 1673 case Hexagon::V6_vL32b_nt_tmp_ppu: 1674 return false; 1675 } 1676 } 1677 return true; 1678 } 1679 1680 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1681 const MachineBasicBlock *MBB, 1682 const MachineFunction &MF) const { 1683 // Debug info is never a scheduling boundary. It's necessary to be explicit 1684 // due to the special treatment of IT instructions below, otherwise a 1685 // dbg_value followed by an IT will result in the IT instruction being 1686 // considered a scheduling hazard, which is wrong. It should be the actual 1687 // instruction preceding the dbg_value instruction(s), just like it is 1688 // when debug info is not present. 1689 if (MI.isDebugInstr()) 1690 return false; 1691 1692 // Throwing call is a boundary. 1693 if (MI.isCall()) { 1694 // Don't mess around with no return calls. 1695 if (doesNotReturn(MI)) 1696 return true; 1697 // If any of the block's successors is a landing pad, this could be a 1698 // throwing call. 1699 for (auto I : MBB->successors()) 1700 if (I->isEHPad()) 1701 return true; 1702 } 1703 1704 // Terminators and labels can't be scheduled around. 1705 if (MI.getDesc().isTerminator() || MI.isPosition()) 1706 return true; 1707 1708 if (MI.isInlineAsm() && !ScheduleInlineAsm) 1709 return true; 1710 1711 return false; 1712 } 1713 1714 /// Measure the specified inline asm to determine an approximation of its 1715 /// length. 1716 /// Comments (which run till the next SeparatorString or newline) do not 1717 /// count as an instruction. 1718 /// Any other non-whitespace text is considered an instruction, with 1719 /// multiple instructions separated by SeparatorString or newlines. 1720 /// Variable-length instructions are not handled here; this function 1721 /// may be overloaded in the target code to do that. 1722 /// Hexagon counts the number of ##'s and adjust for that many 1723 /// constant exenders. 1724 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str, 1725 const MCAsmInfo &MAI, 1726 const TargetSubtargetInfo *STI) const { 1727 StringRef AStr(Str); 1728 // Count the number of instructions in the asm. 1729 bool atInsnStart = true; 1730 unsigned Length = 0; 1731 const unsigned MaxInstLength = MAI.getMaxInstLength(STI); 1732 for (; *Str; ++Str) { 1733 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 1734 strlen(MAI.getSeparatorString())) == 0) 1735 atInsnStart = true; 1736 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 1737 Length += MaxInstLength; 1738 atInsnStart = false; 1739 } 1740 if (atInsnStart && strncmp(Str, MAI.getCommentString().data(), 1741 MAI.getCommentString().size()) == 0) 1742 atInsnStart = false; 1743 } 1744 1745 // Add to size number of constant extenders seen * 4. 1746 StringRef Occ("##"); 1747 Length += AStr.count(Occ)*4; 1748 return Length; 1749 } 1750 1751 ScheduleHazardRecognizer* 1752 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer( 1753 const InstrItineraryData *II, const ScheduleDAG *DAG) const { 1754 if (UseDFAHazardRec) 1755 return new HexagonHazardRecognizer(II, this, Subtarget); 1756 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 1757 } 1758 1759 /// For a comparison instruction, return the source registers in 1760 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it 1761 /// compares against in CmpValue. Return true if the comparison instruction 1762 /// can be analyzed. 1763 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1764 unsigned &SrcReg2, int &Mask, 1765 int &Value) const { 1766 unsigned Opc = MI.getOpcode(); 1767 1768 // Set mask and the first source register. 1769 switch (Opc) { 1770 case Hexagon::C2_cmpeq: 1771 case Hexagon::C2_cmpeqp: 1772 case Hexagon::C2_cmpgt: 1773 case Hexagon::C2_cmpgtp: 1774 case Hexagon::C2_cmpgtu: 1775 case Hexagon::C2_cmpgtup: 1776 case Hexagon::C4_cmpneq: 1777 case Hexagon::C4_cmplte: 1778 case Hexagon::C4_cmplteu: 1779 case Hexagon::C2_cmpeqi: 1780 case Hexagon::C2_cmpgti: 1781 case Hexagon::C2_cmpgtui: 1782 case Hexagon::C4_cmpneqi: 1783 case Hexagon::C4_cmplteui: 1784 case Hexagon::C4_cmpltei: 1785 SrcReg = MI.getOperand(1).getReg(); 1786 Mask = ~0; 1787 break; 1788 case Hexagon::A4_cmpbeq: 1789 case Hexagon::A4_cmpbgt: 1790 case Hexagon::A4_cmpbgtu: 1791 case Hexagon::A4_cmpbeqi: 1792 case Hexagon::A4_cmpbgti: 1793 case Hexagon::A4_cmpbgtui: 1794 SrcReg = MI.getOperand(1).getReg(); 1795 Mask = 0xFF; 1796 break; 1797 case Hexagon::A4_cmpheq: 1798 case Hexagon::A4_cmphgt: 1799 case Hexagon::A4_cmphgtu: 1800 case Hexagon::A4_cmpheqi: 1801 case Hexagon::A4_cmphgti: 1802 case Hexagon::A4_cmphgtui: 1803 SrcReg = MI.getOperand(1).getReg(); 1804 Mask = 0xFFFF; 1805 break; 1806 } 1807 1808 // Set the value/second source register. 1809 switch (Opc) { 1810 case Hexagon::C2_cmpeq: 1811 case Hexagon::C2_cmpeqp: 1812 case Hexagon::C2_cmpgt: 1813 case Hexagon::C2_cmpgtp: 1814 case Hexagon::C2_cmpgtu: 1815 case Hexagon::C2_cmpgtup: 1816 case Hexagon::A4_cmpbeq: 1817 case Hexagon::A4_cmpbgt: 1818 case Hexagon::A4_cmpbgtu: 1819 case Hexagon::A4_cmpheq: 1820 case Hexagon::A4_cmphgt: 1821 case Hexagon::A4_cmphgtu: 1822 case Hexagon::C4_cmpneq: 1823 case Hexagon::C4_cmplte: 1824 case Hexagon::C4_cmplteu: 1825 SrcReg2 = MI.getOperand(2).getReg(); 1826 return true; 1827 1828 case Hexagon::C2_cmpeqi: 1829 case Hexagon::C2_cmpgtui: 1830 case Hexagon::C2_cmpgti: 1831 case Hexagon::C4_cmpneqi: 1832 case Hexagon::C4_cmplteui: 1833 case Hexagon::C4_cmpltei: 1834 case Hexagon::A4_cmpbeqi: 1835 case Hexagon::A4_cmpbgti: 1836 case Hexagon::A4_cmpbgtui: 1837 case Hexagon::A4_cmpheqi: 1838 case Hexagon::A4_cmphgti: 1839 case Hexagon::A4_cmphgtui: { 1840 SrcReg2 = 0; 1841 const MachineOperand &Op2 = MI.getOperand(2); 1842 if (!Op2.isImm()) 1843 return false; 1844 Value = MI.getOperand(2).getImm(); 1845 return true; 1846 } 1847 } 1848 1849 return false; 1850 } 1851 1852 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1853 const MachineInstr &MI, 1854 unsigned *PredCost) const { 1855 return getInstrTimingClassLatency(ItinData, MI); 1856 } 1857 1858 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState( 1859 const TargetSubtargetInfo &STI) const { 1860 const InstrItineraryData *II = STI.getInstrItineraryData(); 1861 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II); 1862 } 1863 1864 // Inspired by this pair: 1865 // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0] 1866 // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1] 1867 // Currently AA considers the addresses in these instructions to be aliasing. 1868 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint( 1869 const MachineInstr &MIa, const MachineInstr &MIb) const { 1870 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 1871 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 1872 return false; 1873 1874 // Instructions that are pure loads, not loads and stores like memops are not 1875 // dependent. 1876 if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb)) 1877 return true; 1878 1879 // Get the base register in MIa. 1880 unsigned BasePosA, OffsetPosA; 1881 if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA)) 1882 return false; 1883 const MachineOperand &BaseA = MIa.getOperand(BasePosA); 1884 Register BaseRegA = BaseA.getReg(); 1885 unsigned BaseSubA = BaseA.getSubReg(); 1886 1887 // Get the base register in MIb. 1888 unsigned BasePosB, OffsetPosB; 1889 if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB)) 1890 return false; 1891 const MachineOperand &BaseB = MIb.getOperand(BasePosB); 1892 Register BaseRegB = BaseB.getReg(); 1893 unsigned BaseSubB = BaseB.getSubReg(); 1894 1895 if (BaseRegA != BaseRegB || BaseSubA != BaseSubB) 1896 return false; 1897 1898 // Get the access sizes. 1899 unsigned SizeA = getMemAccessSize(MIa); 1900 unsigned SizeB = getMemAccessSize(MIb); 1901 1902 // Get the offsets. Handle immediates only for now. 1903 const MachineOperand &OffA = MIa.getOperand(OffsetPosA); 1904 const MachineOperand &OffB = MIb.getOperand(OffsetPosB); 1905 if (!MIa.getOperand(OffsetPosA).isImm() || 1906 !MIb.getOperand(OffsetPosB).isImm()) 1907 return false; 1908 int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm(); 1909 int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm(); 1910 1911 // This is a mem access with the same base register and known offsets from it. 1912 // Reason about it. 1913 if (OffsetA > OffsetB) { 1914 uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB); 1915 return SizeB <= OffDiff; 1916 } 1917 if (OffsetA < OffsetB) { 1918 uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA); 1919 return SizeA <= OffDiff; 1920 } 1921 1922 return false; 1923 } 1924 1925 /// If the instruction is an increment of a constant value, return the amount. 1926 bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI, 1927 int &Value) const { 1928 if (isPostIncrement(MI)) { 1929 unsigned BasePos = 0, OffsetPos = 0; 1930 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) 1931 return false; 1932 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos); 1933 if (OffsetOp.isImm()) { 1934 Value = OffsetOp.getImm(); 1935 return true; 1936 } 1937 } else if (MI.getOpcode() == Hexagon::A2_addi) { 1938 const MachineOperand &AddOp = MI.getOperand(2); 1939 if (AddOp.isImm()) { 1940 Value = AddOp.getImm(); 1941 return true; 1942 } 1943 } 1944 1945 return false; 1946 } 1947 1948 std::pair<unsigned, unsigned> 1949 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 1950 return std::make_pair(TF & ~HexagonII::MO_Bitmasks, 1951 TF & HexagonII::MO_Bitmasks); 1952 } 1953 1954 ArrayRef<std::pair<unsigned, const char*>> 1955 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 1956 using namespace HexagonII; 1957 1958 static const std::pair<unsigned, const char*> Flags[] = { 1959 {MO_PCREL, "hexagon-pcrel"}, 1960 {MO_GOT, "hexagon-got"}, 1961 {MO_LO16, "hexagon-lo16"}, 1962 {MO_HI16, "hexagon-hi16"}, 1963 {MO_GPREL, "hexagon-gprel"}, 1964 {MO_GDGOT, "hexagon-gdgot"}, 1965 {MO_GDPLT, "hexagon-gdplt"}, 1966 {MO_IE, "hexagon-ie"}, 1967 {MO_IEGOT, "hexagon-iegot"}, 1968 {MO_TPREL, "hexagon-tprel"} 1969 }; 1970 return makeArrayRef(Flags); 1971 } 1972 1973 ArrayRef<std::pair<unsigned, const char*>> 1974 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 1975 using namespace HexagonII; 1976 1977 static const std::pair<unsigned, const char*> Flags[] = { 1978 {HMOTF_ConstExtended, "hexagon-ext"} 1979 }; 1980 return makeArrayRef(Flags); 1981 } 1982 1983 unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const { 1984 MachineRegisterInfo &MRI = MF->getRegInfo(); 1985 const TargetRegisterClass *TRC; 1986 if (VT == MVT::i1) { 1987 TRC = &Hexagon::PredRegsRegClass; 1988 } else if (VT == MVT::i32 || VT == MVT::f32) { 1989 TRC = &Hexagon::IntRegsRegClass; 1990 } else if (VT == MVT::i64 || VT == MVT::f64) { 1991 TRC = &Hexagon::DoubleRegsRegClass; 1992 } else { 1993 llvm_unreachable("Cannot handle this register class"); 1994 } 1995 1996 Register NewReg = MRI.createVirtualRegister(TRC); 1997 return NewReg; 1998 } 1999 2000 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const { 2001 return (getAddrMode(MI) == HexagonII::AbsoluteSet); 2002 } 2003 2004 bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const { 2005 const uint64_t F = MI.getDesc().TSFlags; 2006 return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask); 2007 } 2008 2009 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const { 2010 return getAddrMode(MI) == HexagonII::BaseImmOffset; 2011 } 2012 2013 bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const { 2014 return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() && 2015 !MI.getDesc().mayStore() && 2016 MI.getDesc().getOpcode() != Hexagon::S2_allocframe && 2017 MI.getDesc().getOpcode() != Hexagon::L2_deallocframe && 2018 !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall(); 2019 } 2020 2021 // Return true if the instruction is a compund branch instruction. 2022 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const { 2023 return getType(MI) == HexagonII::TypeCJ && MI.isBranch(); 2024 } 2025 2026 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle 2027 // isFPImm and later getFPImm as well. 2028 bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const { 2029 const uint64_t F = MI.getDesc().TSFlags; 2030 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; 2031 if (isExtended) // Instruction must be extended. 2032 return true; 2033 2034 unsigned isExtendable = 2035 (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; 2036 if (!isExtendable) 2037 return false; 2038 2039 if (MI.isCall()) 2040 return false; 2041 2042 short ExtOpNum = getCExtOpNum(MI); 2043 const MachineOperand &MO = MI.getOperand(ExtOpNum); 2044 // Use MO operand flags to determine if MO 2045 // has the HMOTF_ConstExtended flag set. 2046 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) 2047 return true; 2048 // If this is a Machine BB address we are talking about, and it is 2049 // not marked as extended, say so. 2050 if (MO.isMBB()) 2051 return false; 2052 2053 // We could be using an instruction with an extendable immediate and shoehorn 2054 // a global address into it. If it is a global address it will be constant 2055 // extended. We do this for COMBINE. 2056 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() || 2057 MO.isJTI() || MO.isCPI() || MO.isFPImm()) 2058 return true; 2059 2060 // If the extendable operand is not 'Immediate' type, the instruction should 2061 // have 'isExtended' flag set. 2062 assert(MO.isImm() && "Extendable operand must be Immediate type"); 2063 2064 int MinValue = getMinValue(MI); 2065 int MaxValue = getMaxValue(MI); 2066 int ImmValue = MO.getImm(); 2067 2068 return (ImmValue < MinValue || ImmValue > MaxValue); 2069 } 2070 2071 bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const { 2072 switch (MI.getOpcode()) { 2073 case Hexagon::L4_return: 2074 case Hexagon::L4_return_t: 2075 case Hexagon::L4_return_f: 2076 case Hexagon::L4_return_tnew_pnt: 2077 case Hexagon::L4_return_fnew_pnt: 2078 case Hexagon::L4_return_tnew_pt: 2079 case Hexagon::L4_return_fnew_pt: 2080 return true; 2081 } 2082 return false; 2083 } 2084 2085 // Return true when ConsMI uses a register defined by ProdMI. 2086 bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI, 2087 const MachineInstr &ConsMI) const { 2088 if (!ProdMI.getDesc().getNumDefs()) 2089 return false; 2090 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 2091 2092 SmallVector<unsigned, 4> DefsA; 2093 SmallVector<unsigned, 4> DefsB; 2094 SmallVector<unsigned, 8> UsesA; 2095 SmallVector<unsigned, 8> UsesB; 2096 2097 parseOperands(ProdMI, DefsA, UsesA); 2098 parseOperands(ConsMI, DefsB, UsesB); 2099 2100 for (auto &RegA : DefsA) 2101 for (auto &RegB : UsesB) { 2102 // True data dependency. 2103 if (RegA == RegB) 2104 return true; 2105 2106 if (Register::isPhysicalRegister(RegA)) 2107 for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs) 2108 if (RegB == *SubRegs) 2109 return true; 2110 2111 if (Register::isPhysicalRegister(RegB)) 2112 for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs) 2113 if (RegA == *SubRegs) 2114 return true; 2115 } 2116 2117 return false; 2118 } 2119 2120 // Returns true if the instruction is alread a .cur. 2121 bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const { 2122 switch (MI.getOpcode()) { 2123 case Hexagon::V6_vL32b_cur_pi: 2124 case Hexagon::V6_vL32b_cur_ai: 2125 return true; 2126 } 2127 return false; 2128 } 2129 2130 // Returns true, if any one of the operands is a dot new 2131 // insn, whether it is predicated dot new or register dot new. 2132 bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const { 2133 if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI))) 2134 return true; 2135 2136 return false; 2137 } 2138 2139 /// Symmetrical. See if these two instructions are fit for duplex pair. 2140 bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa, 2141 const MachineInstr &MIb) const { 2142 HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa); 2143 HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb); 2144 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG)); 2145 } 2146 2147 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const { 2148 if (MI.mayLoad() || MI.mayStore() || MI.isCompare()) 2149 return true; 2150 2151 // Multiply 2152 unsigned SchedClass = MI.getDesc().getSchedClass(); 2153 return is_TC4x(SchedClass) || is_TC3x(SchedClass); 2154 } 2155 2156 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const { 2157 return (Opcode == Hexagon::ENDLOOP0 || 2158 Opcode == Hexagon::ENDLOOP1); 2159 } 2160 2161 bool HexagonInstrInfo::isExpr(unsigned OpType) const { 2162 switch(OpType) { 2163 case MachineOperand::MO_MachineBasicBlock: 2164 case MachineOperand::MO_GlobalAddress: 2165 case MachineOperand::MO_ExternalSymbol: 2166 case MachineOperand::MO_JumpTableIndex: 2167 case MachineOperand::MO_ConstantPoolIndex: 2168 case MachineOperand::MO_BlockAddress: 2169 return true; 2170 default: 2171 return false; 2172 } 2173 } 2174 2175 bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const { 2176 const MCInstrDesc &MID = MI.getDesc(); 2177 const uint64_t F = MID.TSFlags; 2178 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) 2179 return true; 2180 2181 // TODO: This is largely obsolete now. Will need to be removed 2182 // in consecutive patches. 2183 switch (MI.getOpcode()) { 2184 // PS_fi and PS_fia remain special cases. 2185 case Hexagon::PS_fi: 2186 case Hexagon::PS_fia: 2187 return true; 2188 default: 2189 return false; 2190 } 2191 return false; 2192 } 2193 2194 // This returns true in two cases: 2195 // - The OP code itself indicates that this is an extended instruction. 2196 // - One of MOs has been marked with HMOTF_ConstExtended flag. 2197 bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const { 2198 // First check if this is permanently extended op code. 2199 const uint64_t F = MI.getDesc().TSFlags; 2200 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) 2201 return true; 2202 // Use MO operand flags to determine if one of MI's operands 2203 // has HMOTF_ConstExtended flag set. 2204 for (const MachineOperand &MO : MI.operands()) 2205 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) 2206 return true; 2207 return false; 2208 } 2209 2210 bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const { 2211 unsigned Opcode = MI.getOpcode(); 2212 const uint64_t F = get(Opcode).TSFlags; 2213 return (F >> HexagonII::FPPos) & HexagonII::FPMask; 2214 } 2215 2216 // No V60 HVX VMEM with A_INDIRECT. 2217 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I, 2218 const MachineInstr &J) const { 2219 if (!isHVXVec(I)) 2220 return false; 2221 if (!I.mayLoad() && !I.mayStore()) 2222 return false; 2223 return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J); 2224 } 2225 2226 bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const { 2227 switch (MI.getOpcode()) { 2228 case Hexagon::J2_callr: 2229 case Hexagon::J2_callrf: 2230 case Hexagon::J2_callrt: 2231 case Hexagon::PS_call_nr: 2232 return true; 2233 } 2234 return false; 2235 } 2236 2237 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const { 2238 switch (MI.getOpcode()) { 2239 case Hexagon::L4_return: 2240 case Hexagon::L4_return_t: 2241 case Hexagon::L4_return_f: 2242 case Hexagon::L4_return_fnew_pnt: 2243 case Hexagon::L4_return_fnew_pt: 2244 case Hexagon::L4_return_tnew_pnt: 2245 case Hexagon::L4_return_tnew_pt: 2246 return true; 2247 } 2248 return false; 2249 } 2250 2251 bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const { 2252 switch (MI.getOpcode()) { 2253 case Hexagon::J2_jumpr: 2254 case Hexagon::J2_jumprt: 2255 case Hexagon::J2_jumprf: 2256 case Hexagon::J2_jumprtnewpt: 2257 case Hexagon::J2_jumprfnewpt: 2258 case Hexagon::J2_jumprtnew: 2259 case Hexagon::J2_jumprfnew: 2260 return true; 2261 } 2262 return false; 2263 } 2264 2265 // Return true if a given MI can accommodate given offset. 2266 // Use abs estimate as oppose to the exact number. 2267 // TODO: This will need to be changed to use MC level 2268 // definition of instruction extendable field size. 2269 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI, 2270 unsigned offset) const { 2271 // This selection of jump instructions matches to that what 2272 // analyzeBranch can parse, plus NVJ. 2273 if (isNewValueJump(MI)) // r9:2 2274 return isInt<11>(offset); 2275 2276 switch (MI.getOpcode()) { 2277 // Still missing Jump to address condition on register value. 2278 default: 2279 return false; 2280 case Hexagon::J2_jump: // bits<24> dst; // r22:2 2281 case Hexagon::J2_call: 2282 case Hexagon::PS_call_nr: 2283 return isInt<24>(offset); 2284 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2 2285 case Hexagon::J2_jumpf: 2286 case Hexagon::J2_jumptnew: 2287 case Hexagon::J2_jumptnewpt: 2288 case Hexagon::J2_jumpfnew: 2289 case Hexagon::J2_jumpfnewpt: 2290 case Hexagon::J2_callt: 2291 case Hexagon::J2_callf: 2292 return isInt<17>(offset); 2293 case Hexagon::J2_loop0i: 2294 case Hexagon::J2_loop0iext: 2295 case Hexagon::J2_loop0r: 2296 case Hexagon::J2_loop0rext: 2297 case Hexagon::J2_loop1i: 2298 case Hexagon::J2_loop1iext: 2299 case Hexagon::J2_loop1r: 2300 case Hexagon::J2_loop1rext: 2301 return isInt<9>(offset); 2302 // TODO: Add all the compound branches here. Can we do this in Relation model? 2303 case Hexagon::J4_cmpeqi_tp0_jump_nt: 2304 case Hexagon::J4_cmpeqi_tp1_jump_nt: 2305 case Hexagon::J4_cmpeqn1_tp0_jump_nt: 2306 case Hexagon::J4_cmpeqn1_tp1_jump_nt: 2307 return isInt<11>(offset); 2308 } 2309 } 2310 2311 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI, 2312 const MachineInstr &ESMI) const { 2313 bool isLate = isLateResultInstr(LRMI); 2314 bool isEarly = isEarlySourceInstr(ESMI); 2315 2316 LLVM_DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- ")); 2317 LLVM_DEBUG(LRMI.dump()); 2318 LLVM_DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- ")); 2319 LLVM_DEBUG(ESMI.dump()); 2320 2321 if (isLate && isEarly) { 2322 LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n"); 2323 return true; 2324 } 2325 2326 return false; 2327 } 2328 2329 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const { 2330 switch (MI.getOpcode()) { 2331 case TargetOpcode::EXTRACT_SUBREG: 2332 case TargetOpcode::INSERT_SUBREG: 2333 case TargetOpcode::SUBREG_TO_REG: 2334 case TargetOpcode::REG_SEQUENCE: 2335 case TargetOpcode::IMPLICIT_DEF: 2336 case TargetOpcode::COPY: 2337 case TargetOpcode::INLINEASM: 2338 case TargetOpcode::PHI: 2339 return false; 2340 default: 2341 break; 2342 } 2343 2344 unsigned SchedClass = MI.getDesc().getSchedClass(); 2345 return !is_TC1(SchedClass); 2346 } 2347 2348 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const { 2349 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply 2350 // resource, but all operands can be received late like an ALU instruction. 2351 return getType(MI) == HexagonII::TypeCVI_VX_LATE; 2352 } 2353 2354 bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const { 2355 unsigned Opcode = MI.getOpcode(); 2356 return Opcode == Hexagon::J2_loop0i || 2357 Opcode == Hexagon::J2_loop0r || 2358 Opcode == Hexagon::J2_loop0iext || 2359 Opcode == Hexagon::J2_loop0rext || 2360 Opcode == Hexagon::J2_loop1i || 2361 Opcode == Hexagon::J2_loop1r || 2362 Opcode == Hexagon::J2_loop1iext || 2363 Opcode == Hexagon::J2_loop1rext; 2364 } 2365 2366 bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const { 2367 switch (MI.getOpcode()) { 2368 default: return false; 2369 case Hexagon::L4_iadd_memopw_io: 2370 case Hexagon::L4_isub_memopw_io: 2371 case Hexagon::L4_add_memopw_io: 2372 case Hexagon::L4_sub_memopw_io: 2373 case Hexagon::L4_and_memopw_io: 2374 case Hexagon::L4_or_memopw_io: 2375 case Hexagon::L4_iadd_memoph_io: 2376 case Hexagon::L4_isub_memoph_io: 2377 case Hexagon::L4_add_memoph_io: 2378 case Hexagon::L4_sub_memoph_io: 2379 case Hexagon::L4_and_memoph_io: 2380 case Hexagon::L4_or_memoph_io: 2381 case Hexagon::L4_iadd_memopb_io: 2382 case Hexagon::L4_isub_memopb_io: 2383 case Hexagon::L4_add_memopb_io: 2384 case Hexagon::L4_sub_memopb_io: 2385 case Hexagon::L4_and_memopb_io: 2386 case Hexagon::L4_or_memopb_io: 2387 case Hexagon::L4_ior_memopb_io: 2388 case Hexagon::L4_ior_memoph_io: 2389 case Hexagon::L4_ior_memopw_io: 2390 case Hexagon::L4_iand_memopb_io: 2391 case Hexagon::L4_iand_memoph_io: 2392 case Hexagon::L4_iand_memopw_io: 2393 return true; 2394 } 2395 return false; 2396 } 2397 2398 bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const { 2399 const uint64_t F = MI.getDesc().TSFlags; 2400 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; 2401 } 2402 2403 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const { 2404 const uint64_t F = get(Opcode).TSFlags; 2405 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; 2406 } 2407 2408 bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const { 2409 return isNewValueJump(MI) || isNewValueStore(MI); 2410 } 2411 2412 bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const { 2413 return isNewValue(MI) && MI.isBranch(); 2414 } 2415 2416 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const { 2417 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode); 2418 } 2419 2420 bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const { 2421 const uint64_t F = MI.getDesc().TSFlags; 2422 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; 2423 } 2424 2425 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { 2426 const uint64_t F = get(Opcode).TSFlags; 2427 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; 2428 } 2429 2430 // Returns true if a particular operand is extendable for an instruction. 2431 bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI, 2432 unsigned OperandNum) const { 2433 const uint64_t F = MI.getDesc().TSFlags; 2434 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) 2435 == OperandNum; 2436 } 2437 2438 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const { 2439 const uint64_t F = MI.getDesc().TSFlags; 2440 assert(isPredicated(MI)); 2441 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; 2442 } 2443 2444 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { 2445 const uint64_t F = get(Opcode).TSFlags; 2446 assert(isPredicated(Opcode)); 2447 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; 2448 } 2449 2450 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const { 2451 const uint64_t F = MI.getDesc().TSFlags; 2452 return !((F >> HexagonII::PredicatedFalsePos) & 2453 HexagonII::PredicatedFalseMask); 2454 } 2455 2456 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { 2457 const uint64_t F = get(Opcode).TSFlags; 2458 // Make sure that the instruction is predicated. 2459 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); 2460 return !((F >> HexagonII::PredicatedFalsePos) & 2461 HexagonII::PredicatedFalseMask); 2462 } 2463 2464 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { 2465 const uint64_t F = get(Opcode).TSFlags; 2466 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; 2467 } 2468 2469 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const { 2470 const uint64_t F = get(Opcode).TSFlags; 2471 return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask; 2472 } 2473 2474 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const { 2475 const uint64_t F = get(Opcode).TSFlags; 2476 assert(get(Opcode).isBranch() && 2477 (isPredicatedNew(Opcode) || isNewValue(Opcode))); 2478 return (F >> HexagonII::TakenPos) & HexagonII::TakenMask; 2479 } 2480 2481 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const { 2482 return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 || 2483 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT || 2484 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC || 2485 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC; 2486 } 2487 2488 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const { 2489 switch (MI.getOpcode()) { 2490 // Byte 2491 case Hexagon::L2_loadrb_io: 2492 case Hexagon::L4_loadrb_ur: 2493 case Hexagon::L4_loadrb_ap: 2494 case Hexagon::L2_loadrb_pr: 2495 case Hexagon::L2_loadrb_pbr: 2496 case Hexagon::L2_loadrb_pi: 2497 case Hexagon::L2_loadrb_pci: 2498 case Hexagon::L2_loadrb_pcr: 2499 case Hexagon::L2_loadbsw2_io: 2500 case Hexagon::L4_loadbsw2_ur: 2501 case Hexagon::L4_loadbsw2_ap: 2502 case Hexagon::L2_loadbsw2_pr: 2503 case Hexagon::L2_loadbsw2_pbr: 2504 case Hexagon::L2_loadbsw2_pi: 2505 case Hexagon::L2_loadbsw2_pci: 2506 case Hexagon::L2_loadbsw2_pcr: 2507 case Hexagon::L2_loadbsw4_io: 2508 case Hexagon::L4_loadbsw4_ur: 2509 case Hexagon::L4_loadbsw4_ap: 2510 case Hexagon::L2_loadbsw4_pr: 2511 case Hexagon::L2_loadbsw4_pbr: 2512 case Hexagon::L2_loadbsw4_pi: 2513 case Hexagon::L2_loadbsw4_pci: 2514 case Hexagon::L2_loadbsw4_pcr: 2515 case Hexagon::L4_loadrb_rr: 2516 case Hexagon::L2_ploadrbt_io: 2517 case Hexagon::L2_ploadrbt_pi: 2518 case Hexagon::L2_ploadrbf_io: 2519 case Hexagon::L2_ploadrbf_pi: 2520 case Hexagon::L2_ploadrbtnew_io: 2521 case Hexagon::L2_ploadrbfnew_io: 2522 case Hexagon::L4_ploadrbt_rr: 2523 case Hexagon::L4_ploadrbf_rr: 2524 case Hexagon::L4_ploadrbtnew_rr: 2525 case Hexagon::L4_ploadrbfnew_rr: 2526 case Hexagon::L2_ploadrbtnew_pi: 2527 case Hexagon::L2_ploadrbfnew_pi: 2528 case Hexagon::L4_ploadrbt_abs: 2529 case Hexagon::L4_ploadrbf_abs: 2530 case Hexagon::L4_ploadrbtnew_abs: 2531 case Hexagon::L4_ploadrbfnew_abs: 2532 case Hexagon::L2_loadrbgp: 2533 // Half 2534 case Hexagon::L2_loadrh_io: 2535 case Hexagon::L4_loadrh_ur: 2536 case Hexagon::L4_loadrh_ap: 2537 case Hexagon::L2_loadrh_pr: 2538 case Hexagon::L2_loadrh_pbr: 2539 case Hexagon::L2_loadrh_pi: 2540 case Hexagon::L2_loadrh_pci: 2541 case Hexagon::L2_loadrh_pcr: 2542 case Hexagon::L4_loadrh_rr: 2543 case Hexagon::L2_ploadrht_io: 2544 case Hexagon::L2_ploadrht_pi: 2545 case Hexagon::L2_ploadrhf_io: 2546 case Hexagon::L2_ploadrhf_pi: 2547 case Hexagon::L2_ploadrhtnew_io: 2548 case Hexagon::L2_ploadrhfnew_io: 2549 case Hexagon::L4_ploadrht_rr: 2550 case Hexagon::L4_ploadrhf_rr: 2551 case Hexagon::L4_ploadrhtnew_rr: 2552 case Hexagon::L4_ploadrhfnew_rr: 2553 case Hexagon::L2_ploadrhtnew_pi: 2554 case Hexagon::L2_ploadrhfnew_pi: 2555 case Hexagon::L4_ploadrht_abs: 2556 case Hexagon::L4_ploadrhf_abs: 2557 case Hexagon::L4_ploadrhtnew_abs: 2558 case Hexagon::L4_ploadrhfnew_abs: 2559 case Hexagon::L2_loadrhgp: 2560 return true; 2561 default: 2562 return false; 2563 } 2564 } 2565 2566 bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const { 2567 const uint64_t F = MI.getDesc().TSFlags; 2568 return (F >> HexagonII::SoloPos) & HexagonII::SoloMask; 2569 } 2570 2571 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const { 2572 switch (MI.getOpcode()) { 2573 case Hexagon::STriw_pred: 2574 case Hexagon::LDriw_pred: 2575 return true; 2576 default: 2577 return false; 2578 } 2579 } 2580 2581 bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const { 2582 if (!MI.isBranch()) 2583 return false; 2584 2585 for (auto &Op : MI.operands()) 2586 if (Op.isGlobal() || Op.isSymbol()) 2587 return true; 2588 return false; 2589 } 2590 2591 // Returns true when SU has a timing class TC1. 2592 bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const { 2593 unsigned SchedClass = MI.getDesc().getSchedClass(); 2594 return is_TC1(SchedClass); 2595 } 2596 2597 bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const { 2598 unsigned SchedClass = MI.getDesc().getSchedClass(); 2599 return is_TC2(SchedClass); 2600 } 2601 2602 bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const { 2603 unsigned SchedClass = MI.getDesc().getSchedClass(); 2604 return is_TC2early(SchedClass); 2605 } 2606 2607 bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const { 2608 unsigned SchedClass = MI.getDesc().getSchedClass(); 2609 return is_TC4x(SchedClass); 2610 } 2611 2612 // Schedule this ASAP. 2613 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1, 2614 const MachineInstr &MI2) const { 2615 if (mayBeCurLoad(MI1)) { 2616 // if (result of SU is used in Next) return true; 2617 Register DstReg = MI1.getOperand(0).getReg(); 2618 int N = MI2.getNumOperands(); 2619 for (int I = 0; I < N; I++) 2620 if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg()) 2621 return true; 2622 } 2623 if (mayBeNewStore(MI2)) 2624 if (MI2.getOpcode() == Hexagon::V6_vS32b_pi) 2625 if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() && 2626 MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg()) 2627 return true; 2628 return false; 2629 } 2630 2631 bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const { 2632 const uint64_t V = getType(MI); 2633 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST; 2634 } 2635 2636 // Check if the Offset is a valid auto-inc imm by Load/Store Type. 2637 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const { 2638 int Size = VT.getSizeInBits() / 8; 2639 if (Offset % Size != 0) 2640 return false; 2641 int Count = Offset / Size; 2642 2643 switch (VT.getSimpleVT().SimpleTy) { 2644 // For scalars the auto-inc is s4 2645 case MVT::i8: 2646 case MVT::i16: 2647 case MVT::i32: 2648 case MVT::i64: 2649 case MVT::f32: 2650 case MVT::f64: 2651 case MVT::v2i16: 2652 case MVT::v2i32: 2653 case MVT::v4i8: 2654 case MVT::v4i16: 2655 case MVT::v8i8: 2656 return isInt<4>(Count); 2657 // For HVX vectors the auto-inc is s3 2658 case MVT::v64i8: 2659 case MVT::v32i16: 2660 case MVT::v16i32: 2661 case MVT::v8i64: 2662 case MVT::v128i8: 2663 case MVT::v64i16: 2664 case MVT::v32i32: 2665 case MVT::v16i64: 2666 return isInt<3>(Count); 2667 default: 2668 break; 2669 } 2670 2671 llvm_unreachable("Not an valid type!"); 2672 } 2673 2674 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset, 2675 const TargetRegisterInfo *TRI, bool Extend) const { 2676 // This function is to check whether the "Offset" is in the correct range of 2677 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is 2678 // inserted to calculate the final address. Due to this reason, the function 2679 // assumes that the "Offset" has correct alignment. 2680 // We used to assert if the offset was not properly aligned, however, 2681 // there are cases where a misaligned pointer recast can cause this 2682 // problem, and we need to allow for it. The front end warns of such 2683 // misaligns with respect to load size. 2684 switch (Opcode) { 2685 case Hexagon::PS_vstorerq_ai: 2686 case Hexagon::PS_vstorerw_ai: 2687 case Hexagon::PS_vstorerw_nt_ai: 2688 case Hexagon::PS_vloadrq_ai: 2689 case Hexagon::PS_vloadrw_ai: 2690 case Hexagon::PS_vloadrw_nt_ai: 2691 case Hexagon::V6_vL32b_ai: 2692 case Hexagon::V6_vS32b_ai: 2693 case Hexagon::V6_vL32b_nt_ai: 2694 case Hexagon::V6_vS32b_nt_ai: 2695 case Hexagon::V6_vL32Ub_ai: 2696 case Hexagon::V6_vS32Ub_ai: { 2697 unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass); 2698 assert(isPowerOf2_32(VectorSize)); 2699 if (Offset & (VectorSize-1)) 2700 return false; 2701 return isInt<4>(Offset >> Log2_32(VectorSize)); 2702 } 2703 2704 case Hexagon::J2_loop0i: 2705 case Hexagon::J2_loop1i: 2706 return isUInt<10>(Offset); 2707 2708 case Hexagon::S4_storeirb_io: 2709 case Hexagon::S4_storeirbt_io: 2710 case Hexagon::S4_storeirbf_io: 2711 return isUInt<6>(Offset); 2712 2713 case Hexagon::S4_storeirh_io: 2714 case Hexagon::S4_storeirht_io: 2715 case Hexagon::S4_storeirhf_io: 2716 return isShiftedUInt<6,1>(Offset); 2717 2718 case Hexagon::S4_storeiri_io: 2719 case Hexagon::S4_storeirit_io: 2720 case Hexagon::S4_storeirif_io: 2721 return isShiftedUInt<6,2>(Offset); 2722 } 2723 2724 if (Extend) 2725 return true; 2726 2727 switch (Opcode) { 2728 case Hexagon::L2_loadri_io: 2729 case Hexagon::S2_storeri_io: 2730 return (Offset >= Hexagon_MEMW_OFFSET_MIN) && 2731 (Offset <= Hexagon_MEMW_OFFSET_MAX); 2732 2733 case Hexagon::L2_loadrd_io: 2734 case Hexagon::S2_storerd_io: 2735 return (Offset >= Hexagon_MEMD_OFFSET_MIN) && 2736 (Offset <= Hexagon_MEMD_OFFSET_MAX); 2737 2738 case Hexagon::L2_loadrh_io: 2739 case Hexagon::L2_loadruh_io: 2740 case Hexagon::S2_storerh_io: 2741 case Hexagon::S2_storerf_io: 2742 return (Offset >= Hexagon_MEMH_OFFSET_MIN) && 2743 (Offset <= Hexagon_MEMH_OFFSET_MAX); 2744 2745 case Hexagon::L2_loadrb_io: 2746 case Hexagon::L2_loadrub_io: 2747 case Hexagon::S2_storerb_io: 2748 return (Offset >= Hexagon_MEMB_OFFSET_MIN) && 2749 (Offset <= Hexagon_MEMB_OFFSET_MAX); 2750 2751 case Hexagon::A2_addi: 2752 return (Offset >= Hexagon_ADDI_OFFSET_MIN) && 2753 (Offset <= Hexagon_ADDI_OFFSET_MAX); 2754 2755 case Hexagon::L4_iadd_memopw_io: 2756 case Hexagon::L4_isub_memopw_io: 2757 case Hexagon::L4_add_memopw_io: 2758 case Hexagon::L4_sub_memopw_io: 2759 case Hexagon::L4_and_memopw_io: 2760 case Hexagon::L4_or_memopw_io: 2761 return (0 <= Offset && Offset <= 255); 2762 2763 case Hexagon::L4_iadd_memoph_io: 2764 case Hexagon::L4_isub_memoph_io: 2765 case Hexagon::L4_add_memoph_io: 2766 case Hexagon::L4_sub_memoph_io: 2767 case Hexagon::L4_and_memoph_io: 2768 case Hexagon::L4_or_memoph_io: 2769 return (0 <= Offset && Offset <= 127); 2770 2771 case Hexagon::L4_iadd_memopb_io: 2772 case Hexagon::L4_isub_memopb_io: 2773 case Hexagon::L4_add_memopb_io: 2774 case Hexagon::L4_sub_memopb_io: 2775 case Hexagon::L4_and_memopb_io: 2776 case Hexagon::L4_or_memopb_io: 2777 return (0 <= Offset && Offset <= 63); 2778 2779 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of 2780 // any size. Later pass knows how to handle it. 2781 case Hexagon::STriw_pred: 2782 case Hexagon::LDriw_pred: 2783 case Hexagon::STriw_ctr: 2784 case Hexagon::LDriw_ctr: 2785 return true; 2786 2787 case Hexagon::PS_fi: 2788 case Hexagon::PS_fia: 2789 case Hexagon::INLINEASM: 2790 return true; 2791 2792 case Hexagon::L2_ploadrbt_io: 2793 case Hexagon::L2_ploadrbf_io: 2794 case Hexagon::L2_ploadrubt_io: 2795 case Hexagon::L2_ploadrubf_io: 2796 case Hexagon::S2_pstorerbt_io: 2797 case Hexagon::S2_pstorerbf_io: 2798 return isUInt<6>(Offset); 2799 2800 case Hexagon::L2_ploadrht_io: 2801 case Hexagon::L2_ploadrhf_io: 2802 case Hexagon::L2_ploadruht_io: 2803 case Hexagon::L2_ploadruhf_io: 2804 case Hexagon::S2_pstorerht_io: 2805 case Hexagon::S2_pstorerhf_io: 2806 return isShiftedUInt<6,1>(Offset); 2807 2808 case Hexagon::L2_ploadrit_io: 2809 case Hexagon::L2_ploadrif_io: 2810 case Hexagon::S2_pstorerit_io: 2811 case Hexagon::S2_pstorerif_io: 2812 return isShiftedUInt<6,2>(Offset); 2813 2814 case Hexagon::L2_ploadrdt_io: 2815 case Hexagon::L2_ploadrdf_io: 2816 case Hexagon::S2_pstorerdt_io: 2817 case Hexagon::S2_pstorerdf_io: 2818 return isShiftedUInt<6,3>(Offset); 2819 } // switch 2820 2821 llvm_unreachable("No offset range is defined for this opcode. " 2822 "Please define it in the above switch statement!"); 2823 } 2824 2825 bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const { 2826 return isHVXVec(MI) && isAccumulator(MI); 2827 } 2828 2829 bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const { 2830 const uint64_t F = get(MI.getOpcode()).TSFlags; 2831 const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask); 2832 return 2833 V == HexagonII::TypeCVI_VA || 2834 V == HexagonII::TypeCVI_VA_DV; 2835 } 2836 2837 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI, 2838 const MachineInstr &ConsMI) const { 2839 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI)) 2840 return true; 2841 2842 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI))) 2843 return true; 2844 2845 if (mayBeNewStore(ConsMI)) 2846 return true; 2847 2848 return false; 2849 } 2850 2851 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const { 2852 switch (MI.getOpcode()) { 2853 // Byte 2854 case Hexagon::L2_loadrub_io: 2855 case Hexagon::L4_loadrub_ur: 2856 case Hexagon::L4_loadrub_ap: 2857 case Hexagon::L2_loadrub_pr: 2858 case Hexagon::L2_loadrub_pbr: 2859 case Hexagon::L2_loadrub_pi: 2860 case Hexagon::L2_loadrub_pci: 2861 case Hexagon::L2_loadrub_pcr: 2862 case Hexagon::L2_loadbzw2_io: 2863 case Hexagon::L4_loadbzw2_ur: 2864 case Hexagon::L4_loadbzw2_ap: 2865 case Hexagon::L2_loadbzw2_pr: 2866 case Hexagon::L2_loadbzw2_pbr: 2867 case Hexagon::L2_loadbzw2_pi: 2868 case Hexagon::L2_loadbzw2_pci: 2869 case Hexagon::L2_loadbzw2_pcr: 2870 case Hexagon::L2_loadbzw4_io: 2871 case Hexagon::L4_loadbzw4_ur: 2872 case Hexagon::L4_loadbzw4_ap: 2873 case Hexagon::L2_loadbzw4_pr: 2874 case Hexagon::L2_loadbzw4_pbr: 2875 case Hexagon::L2_loadbzw4_pi: 2876 case Hexagon::L2_loadbzw4_pci: 2877 case Hexagon::L2_loadbzw4_pcr: 2878 case Hexagon::L4_loadrub_rr: 2879 case Hexagon::L2_ploadrubt_io: 2880 case Hexagon::L2_ploadrubt_pi: 2881 case Hexagon::L2_ploadrubf_io: 2882 case Hexagon::L2_ploadrubf_pi: 2883 case Hexagon::L2_ploadrubtnew_io: 2884 case Hexagon::L2_ploadrubfnew_io: 2885 case Hexagon::L4_ploadrubt_rr: 2886 case Hexagon::L4_ploadrubf_rr: 2887 case Hexagon::L4_ploadrubtnew_rr: 2888 case Hexagon::L4_ploadrubfnew_rr: 2889 case Hexagon::L2_ploadrubtnew_pi: 2890 case Hexagon::L2_ploadrubfnew_pi: 2891 case Hexagon::L4_ploadrubt_abs: 2892 case Hexagon::L4_ploadrubf_abs: 2893 case Hexagon::L4_ploadrubtnew_abs: 2894 case Hexagon::L4_ploadrubfnew_abs: 2895 case Hexagon::L2_loadrubgp: 2896 // Half 2897 case Hexagon::L2_loadruh_io: 2898 case Hexagon::L4_loadruh_ur: 2899 case Hexagon::L4_loadruh_ap: 2900 case Hexagon::L2_loadruh_pr: 2901 case Hexagon::L2_loadruh_pbr: 2902 case Hexagon::L2_loadruh_pi: 2903 case Hexagon::L2_loadruh_pci: 2904 case Hexagon::L2_loadruh_pcr: 2905 case Hexagon::L4_loadruh_rr: 2906 case Hexagon::L2_ploadruht_io: 2907 case Hexagon::L2_ploadruht_pi: 2908 case Hexagon::L2_ploadruhf_io: 2909 case Hexagon::L2_ploadruhf_pi: 2910 case Hexagon::L2_ploadruhtnew_io: 2911 case Hexagon::L2_ploadruhfnew_io: 2912 case Hexagon::L4_ploadruht_rr: 2913 case Hexagon::L4_ploadruhf_rr: 2914 case Hexagon::L4_ploadruhtnew_rr: 2915 case Hexagon::L4_ploadruhfnew_rr: 2916 case Hexagon::L2_ploadruhtnew_pi: 2917 case Hexagon::L2_ploadruhfnew_pi: 2918 case Hexagon::L4_ploadruht_abs: 2919 case Hexagon::L4_ploadruhf_abs: 2920 case Hexagon::L4_ploadruhtnew_abs: 2921 case Hexagon::L4_ploadruhfnew_abs: 2922 case Hexagon::L2_loadruhgp: 2923 return true; 2924 default: 2925 return false; 2926 } 2927 } 2928 2929 // Add latency to instruction. 2930 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1, 2931 const MachineInstr &MI2) const { 2932 if (isHVXVec(MI1) && isHVXVec(MI2)) 2933 if (!isVecUsableNextPacket(MI1, MI2)) 2934 return true; 2935 return false; 2936 } 2937 2938 /// Get the base register and byte offset of a load/store instr. 2939 bool HexagonInstrInfo::getMemOperandWithOffset( 2940 const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset, 2941 const TargetRegisterInfo *TRI) const { 2942 unsigned AccessSize = 0; 2943 BaseOp = getBaseAndOffset(LdSt, Offset, AccessSize); 2944 assert((!BaseOp || BaseOp->isReg()) && 2945 "getMemOperandWithOffset only supports base " 2946 "operands of type register."); 2947 return BaseOp != nullptr; 2948 } 2949 2950 /// Can these instructions execute at the same time in a bundle. 2951 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First, 2952 const MachineInstr &Second) const { 2953 if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) { 2954 const MachineOperand &Op = Second.getOperand(0); 2955 if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29) 2956 return true; 2957 } 2958 if (DisableNVSchedule) 2959 return false; 2960 if (mayBeNewStore(Second)) { 2961 // Make sure the definition of the first instruction is the value being 2962 // stored. 2963 const MachineOperand &Stored = 2964 Second.getOperand(Second.getNumOperands() - 1); 2965 if (!Stored.isReg()) 2966 return false; 2967 for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) { 2968 const MachineOperand &Op = First.getOperand(i); 2969 if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg()) 2970 return true; 2971 } 2972 } 2973 return false; 2974 } 2975 2976 bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const { 2977 unsigned Opc = CallMI.getOpcode(); 2978 return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr; 2979 } 2980 2981 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const { 2982 for (auto &I : *B) 2983 if (I.isEHLabel()) 2984 return true; 2985 return false; 2986 } 2987 2988 // Returns true if an instruction can be converted into a non-extended 2989 // equivalent instruction. 2990 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const { 2991 short NonExtOpcode; 2992 // Check if the instruction has a register form that uses register in place 2993 // of the extended operand, if so return that as the non-extended form. 2994 if (Hexagon::getRegForm(MI.getOpcode()) >= 0) 2995 return true; 2996 2997 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { 2998 // Check addressing mode and retrieve non-ext equivalent instruction. 2999 3000 switch (getAddrMode(MI)) { 3001 case HexagonII::Absolute: 3002 // Load/store with absolute addressing mode can be converted into 3003 // base+offset mode. 3004 NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode()); 3005 break; 3006 case HexagonII::BaseImmOffset: 3007 // Load/store with base+offset addressing mode can be converted into 3008 // base+register offset addressing mode. However left shift operand should 3009 // be set to 0. 3010 NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode()); 3011 break; 3012 case HexagonII::BaseLongOffset: 3013 NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode()); 3014 break; 3015 default: 3016 return false; 3017 } 3018 if (NonExtOpcode < 0) 3019 return false; 3020 return true; 3021 } 3022 return false; 3023 } 3024 3025 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const { 3026 return Hexagon::getRealHWInstr(MI.getOpcode(), 3027 Hexagon::InstrType_Pseudo) >= 0; 3028 } 3029 3030 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B) 3031 const { 3032 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); 3033 while (I != E) { 3034 if (I->isBarrier()) 3035 return true; 3036 ++I; 3037 } 3038 return false; 3039 } 3040 3041 // Returns true, if a LD insn can be promoted to a cur load. 3042 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const { 3043 const uint64_t F = MI.getDesc().TSFlags; 3044 return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) && 3045 Subtarget.hasV60Ops(); 3046 } 3047 3048 // Returns true, if a ST insn can be promoted to a new-value store. 3049 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const { 3050 if (MI.mayStore() && !Subtarget.useNewValueStores()) 3051 return false; 3052 3053 const uint64_t F = MI.getDesc().TSFlags; 3054 return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask; 3055 } 3056 3057 bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI, 3058 const MachineInstr &ConsMI) const { 3059 // There is no stall when ProdMI is not a V60 vector. 3060 if (!isHVXVec(ProdMI)) 3061 return false; 3062 3063 // There is no stall when ProdMI and ConsMI are not dependent. 3064 if (!isDependent(ProdMI, ConsMI)) 3065 return false; 3066 3067 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI 3068 // are scheduled in consecutive packets. 3069 if (isVecUsableNextPacket(ProdMI, ConsMI)) 3070 return false; 3071 3072 return true; 3073 } 3074 3075 bool HexagonInstrInfo::producesStall(const MachineInstr &MI, 3076 MachineBasicBlock::const_instr_iterator BII) const { 3077 // There is no stall when I is not a V60 vector. 3078 if (!isHVXVec(MI)) 3079 return false; 3080 3081 MachineBasicBlock::const_instr_iterator MII = BII; 3082 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end(); 3083 3084 if (!MII->isBundle()) 3085 return producesStall(*MII, MI); 3086 3087 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) { 3088 const MachineInstr &J = *MII; 3089 if (producesStall(J, MI)) 3090 return true; 3091 } 3092 return false; 3093 } 3094 3095 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI, 3096 unsigned PredReg) const { 3097 for (const MachineOperand &MO : MI.operands()) { 3098 // Predicate register must be explicitly defined. 3099 if (MO.isRegMask() && MO.clobbersPhysReg(PredReg)) 3100 return false; 3101 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg)) 3102 return false; 3103 } 3104 3105 // Instruction that produce late predicate cannot be used as sources of 3106 // dot-new. 3107 switch (MI.getOpcode()) { 3108 case Hexagon::A4_addp_c: 3109 case Hexagon::A4_subp_c: 3110 case Hexagon::A4_tlbmatch: 3111 case Hexagon::A5_ACS: 3112 case Hexagon::F2_sfinvsqrta: 3113 case Hexagon::F2_sfrecipa: 3114 case Hexagon::J2_endloop0: 3115 case Hexagon::J2_endloop01: 3116 case Hexagon::J2_ploop1si: 3117 case Hexagon::J2_ploop1sr: 3118 case Hexagon::J2_ploop2si: 3119 case Hexagon::J2_ploop2sr: 3120 case Hexagon::J2_ploop3si: 3121 case Hexagon::J2_ploop3sr: 3122 case Hexagon::S2_cabacdecbin: 3123 case Hexagon::S2_storew_locked: 3124 case Hexagon::S4_stored_locked: 3125 return false; 3126 } 3127 return true; 3128 } 3129 3130 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const { 3131 return Opcode == Hexagon::J2_jumpt || 3132 Opcode == Hexagon::J2_jumptpt || 3133 Opcode == Hexagon::J2_jumpf || 3134 Opcode == Hexagon::J2_jumpfpt || 3135 Opcode == Hexagon::J2_jumptnew || 3136 Opcode == Hexagon::J2_jumpfnew || 3137 Opcode == Hexagon::J2_jumptnewpt || 3138 Opcode == Hexagon::J2_jumpfnewpt; 3139 } 3140 3141 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const { 3142 if (Cond.empty() || !isPredicated(Cond[0].getImm())) 3143 return false; 3144 return !isPredicatedTrue(Cond[0].getImm()); 3145 } 3146 3147 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const { 3148 const uint64_t F = MI.getDesc().TSFlags; 3149 return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; 3150 } 3151 3152 // Returns the base register in a memory access (load/store). The offset is 3153 // returned in Offset and the access size is returned in AccessSize. 3154 // If the base operand has a subregister or the offset field does not contain 3155 // an immediate value, return nullptr. 3156 MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI, 3157 int64_t &Offset, 3158 unsigned &AccessSize) const { 3159 // Return if it is not a base+offset type instruction or a MemOp. 3160 if (getAddrMode(MI) != HexagonII::BaseImmOffset && 3161 getAddrMode(MI) != HexagonII::BaseLongOffset && 3162 !isMemOp(MI) && !isPostIncrement(MI)) 3163 return nullptr; 3164 3165 AccessSize = getMemAccessSize(MI); 3166 3167 unsigned BasePos = 0, OffsetPos = 0; 3168 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) 3169 return nullptr; 3170 3171 // Post increment updates its EA after the mem access, 3172 // so we need to treat its offset as zero. 3173 if (isPostIncrement(MI)) { 3174 Offset = 0; 3175 } else { 3176 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos); 3177 if (!OffsetOp.isImm()) 3178 return nullptr; 3179 Offset = OffsetOp.getImm(); 3180 } 3181 3182 const MachineOperand &BaseOp = MI.getOperand(BasePos); 3183 if (BaseOp.getSubReg() != 0) 3184 return nullptr; 3185 return &const_cast<MachineOperand&>(BaseOp); 3186 } 3187 3188 /// Return the position of the base and offset operands for this instruction. 3189 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI, 3190 unsigned &BasePos, unsigned &OffsetPos) const { 3191 if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI)) 3192 return false; 3193 3194 // Deal with memops first. 3195 if (isMemOp(MI)) { 3196 BasePos = 0; 3197 OffsetPos = 1; 3198 } else if (MI.mayStore()) { 3199 BasePos = 0; 3200 OffsetPos = 1; 3201 } else if (MI.mayLoad()) { 3202 BasePos = 1; 3203 OffsetPos = 2; 3204 } else 3205 return false; 3206 3207 if (isPredicated(MI)) { 3208 BasePos++; 3209 OffsetPos++; 3210 } 3211 if (isPostIncrement(MI)) { 3212 BasePos++; 3213 OffsetPos++; 3214 } 3215 3216 if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm()) 3217 return false; 3218 3219 return true; 3220 } 3221 3222 // Inserts branching instructions in reverse order of their occurrence. 3223 // e.g. jump_t t1 (i1) 3224 // jump t2 (i2) 3225 // Jumpers = {i2, i1} 3226 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs( 3227 MachineBasicBlock& MBB) const { 3228 SmallVector<MachineInstr*, 2> Jumpers; 3229 // If the block has no terminators, it just falls into the block after it. 3230 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 3231 if (I == MBB.instr_begin()) 3232 return Jumpers; 3233 3234 // A basic block may looks like this: 3235 // 3236 // [ insn 3237 // EH_LABEL 3238 // insn 3239 // insn 3240 // insn 3241 // EH_LABEL 3242 // insn ] 3243 // 3244 // It has two succs but does not have a terminator 3245 // Don't know how to handle it. 3246 do { 3247 --I; 3248 if (I->isEHLabel()) 3249 return Jumpers; 3250 } while (I != MBB.instr_begin()); 3251 3252 I = MBB.instr_end(); 3253 --I; 3254 3255 while (I->isDebugInstr()) { 3256 if (I == MBB.instr_begin()) 3257 return Jumpers; 3258 --I; 3259 } 3260 if (!isUnpredicatedTerminator(*I)) 3261 return Jumpers; 3262 3263 // Get the last instruction in the block. 3264 MachineInstr *LastInst = &*I; 3265 Jumpers.push_back(LastInst); 3266 MachineInstr *SecondLastInst = nullptr; 3267 // Find one more terminator if present. 3268 do { 3269 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) { 3270 if (!SecondLastInst) { 3271 SecondLastInst = &*I; 3272 Jumpers.push_back(SecondLastInst); 3273 } else // This is a third branch. 3274 return Jumpers; 3275 } 3276 if (I == MBB.instr_begin()) 3277 break; 3278 --I; 3279 } while (true); 3280 return Jumpers; 3281 } 3282 3283 // Returns Operand Index for the constant extended instruction. 3284 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const { 3285 const uint64_t F = MI.getDesc().TSFlags; 3286 return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask; 3287 } 3288 3289 // See if instruction could potentially be a duplex candidate. 3290 // If so, return its group. Zero otherwise. 3291 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup( 3292 const MachineInstr &MI) const { 3293 unsigned DstReg, SrcReg, Src1Reg, Src2Reg; 3294 3295 switch (MI.getOpcode()) { 3296 default: 3297 return HexagonII::HCG_None; 3298 // 3299 // Compound pairs. 3300 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2" 3301 // "Rd16=#U6 ; jump #r9:2" 3302 // "Rd16=Rs16 ; jump #r9:2" 3303 // 3304 case Hexagon::C2_cmpeq: 3305 case Hexagon::C2_cmpgt: 3306 case Hexagon::C2_cmpgtu: 3307 DstReg = MI.getOperand(0).getReg(); 3308 Src1Reg = MI.getOperand(1).getReg(); 3309 Src2Reg = MI.getOperand(2).getReg(); 3310 if (Hexagon::PredRegsRegClass.contains(DstReg) && 3311 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && 3312 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg)) 3313 return HexagonII::HCG_A; 3314 break; 3315 case Hexagon::C2_cmpeqi: 3316 case Hexagon::C2_cmpgti: 3317 case Hexagon::C2_cmpgtui: 3318 // P0 = cmp.eq(Rs,#u2) 3319 DstReg = MI.getOperand(0).getReg(); 3320 SrcReg = MI.getOperand(1).getReg(); 3321 if (Hexagon::PredRegsRegClass.contains(DstReg) && 3322 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && 3323 isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() && 3324 ((isUInt<5>(MI.getOperand(2).getImm())) || 3325 (MI.getOperand(2).getImm() == -1))) 3326 return HexagonII::HCG_A; 3327 break; 3328 case Hexagon::A2_tfr: 3329 // Rd = Rs 3330 DstReg = MI.getOperand(0).getReg(); 3331 SrcReg = MI.getOperand(1).getReg(); 3332 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) 3333 return HexagonII::HCG_A; 3334 break; 3335 case Hexagon::A2_tfrsi: 3336 // Rd = #u6 3337 // Do not test for #u6 size since the const is getting extended 3338 // regardless and compound could be formed. 3339 DstReg = MI.getOperand(0).getReg(); 3340 if (isIntRegForSubInst(DstReg)) 3341 return HexagonII::HCG_A; 3342 break; 3343 case Hexagon::S2_tstbit_i: 3344 DstReg = MI.getOperand(0).getReg(); 3345 Src1Reg = MI.getOperand(1).getReg(); 3346 if (Hexagon::PredRegsRegClass.contains(DstReg) && 3347 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && 3348 MI.getOperand(2).isImm() && 3349 isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0)) 3350 return HexagonII::HCG_A; 3351 break; 3352 // The fact that .new form is used pretty much guarantees 3353 // that predicate register will match. Nevertheless, 3354 // there could be some false positives without additional 3355 // checking. 3356 case Hexagon::J2_jumptnew: 3357 case Hexagon::J2_jumpfnew: 3358 case Hexagon::J2_jumptnewpt: 3359 case Hexagon::J2_jumpfnewpt: 3360 Src1Reg = MI.getOperand(0).getReg(); 3361 if (Hexagon::PredRegsRegClass.contains(Src1Reg) && 3362 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg)) 3363 return HexagonII::HCG_B; 3364 break; 3365 // Transfer and jump: 3366 // Rd=#U6 ; jump #r9:2 3367 // Rd=Rs ; jump #r9:2 3368 // Do not test for jump range here. 3369 case Hexagon::J2_jump: 3370 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: 3371 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: 3372 return HexagonII::HCG_C; 3373 } 3374 3375 return HexagonII::HCG_None; 3376 } 3377 3378 // Returns -1 when there is no opcode found. 3379 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA, 3380 const MachineInstr &GB) const { 3381 assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A); 3382 assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B); 3383 if ((GA.getOpcode() != Hexagon::C2_cmpeqi) || 3384 (GB.getOpcode() != Hexagon::J2_jumptnew)) 3385 return -1u; 3386 Register DestReg = GA.getOperand(0).getReg(); 3387 if (!GB.readsRegister(DestReg)) 3388 return -1u; 3389 if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1) 3390 return -1u; 3391 // The value compared against must be either u5 or -1. 3392 const MachineOperand &CmpOp = GA.getOperand(2); 3393 if (!CmpOp.isImm()) 3394 return -1u; 3395 int V = CmpOp.getImm(); 3396 if (V == -1) 3397 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt 3398 : Hexagon::J4_cmpeqn1_tp1_jump_nt; 3399 if (!isUInt<5>(V)) 3400 return -1u; 3401 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt 3402 : Hexagon::J4_cmpeqi_tp1_jump_nt; 3403 } 3404 3405 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const { 3406 enum Hexagon::PredSense inPredSense; 3407 inPredSense = invertPredicate ? Hexagon::PredSense_false : 3408 Hexagon::PredSense_true; 3409 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense); 3410 if (CondOpcode >= 0) // Valid Conditional opcode/instruction 3411 return CondOpcode; 3412 3413 llvm_unreachable("Unexpected predicable instruction"); 3414 } 3415 3416 // Return the cur value instruction for a given store. 3417 int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const { 3418 switch (MI.getOpcode()) { 3419 default: llvm_unreachable("Unknown .cur type"); 3420 case Hexagon::V6_vL32b_pi: 3421 return Hexagon::V6_vL32b_cur_pi; 3422 case Hexagon::V6_vL32b_ai: 3423 return Hexagon::V6_vL32b_cur_ai; 3424 case Hexagon::V6_vL32b_nt_pi: 3425 return Hexagon::V6_vL32b_nt_cur_pi; 3426 case Hexagon::V6_vL32b_nt_ai: 3427 return Hexagon::V6_vL32b_nt_cur_ai; 3428 } 3429 return 0; 3430 } 3431 3432 // Return the regular version of the .cur instruction. 3433 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const { 3434 switch (MI.getOpcode()) { 3435 default: llvm_unreachable("Unknown .cur type"); 3436 case Hexagon::V6_vL32b_cur_pi: 3437 return Hexagon::V6_vL32b_pi; 3438 case Hexagon::V6_vL32b_cur_ai: 3439 return Hexagon::V6_vL32b_ai; 3440 case Hexagon::V6_vL32b_nt_cur_pi: 3441 return Hexagon::V6_vL32b_nt_pi; 3442 case Hexagon::V6_vL32b_nt_cur_ai: 3443 return Hexagon::V6_vL32b_nt_ai; 3444 } 3445 return 0; 3446 } 3447 3448 // The diagram below shows the steps involved in the conversion of a predicated 3449 // store instruction to its .new predicated new-value form. 3450 // 3451 // Note: It doesn't include conditional new-value stores as they can't be 3452 // converted to .new predicate. 3453 // 3454 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] 3455 // ^ ^ 3456 // / \ (not OK. it will cause new-value store to be 3457 // / X conditional on p0.new while R2 producer is 3458 // / \ on p0) 3459 // / \. 3460 // p.new store p.old NV store 3461 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new] 3462 // ^ ^ 3463 // \ / 3464 // \ / 3465 // \ / 3466 // p.old store 3467 // [if (p0)memw(R0+#0)=R2] 3468 // 3469 // The following set of instructions further explains the scenario where 3470 // conditional new-value store becomes invalid when promoted to .new predicate 3471 // form. 3472 // 3473 // { 1) if (p0) r0 = add(r1, r2) 3474 // 2) p0 = cmp.eq(r3, #0) } 3475 // 3476 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with 3477 // the first two instructions because in instr 1, r0 is conditional on old value 3478 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which 3479 // is not valid for new-value stores. 3480 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded 3481 // from the "Conditional Store" list. Because a predicated new value store 3482 // would NOT be promoted to a double dot new store. See diagram below: 3483 // This function returns yes for those stores that are predicated but not 3484 // yet promoted to predicate dot new instructions. 3485 // 3486 // +---------------------+ 3487 // /-----| if (p0) memw(..)=r0 |---------\~ 3488 // || +---------------------+ || 3489 // promote || /\ /\ || promote 3490 // || /||\ /||\ || 3491 // \||/ demote || \||/ 3492 // \/ || || \/ 3493 // +-------------------------+ || +-------------------------+ 3494 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new | 3495 // +-------------------------+ || +-------------------------+ 3496 // || || || 3497 // || demote \||/ 3498 // promote || \/ NOT possible 3499 // || || /\~ 3500 // \||/ || /||\~ 3501 // \/ || || 3502 // +-----------------------------+ 3503 // | if (p0.new) memw(..)=r0.new | 3504 // +-----------------------------+ 3505 // Double Dot New Store 3506 // 3507 // Returns the most basic instruction for the .new predicated instructions and 3508 // new-value stores. 3509 // For example, all of the following instructions will be converted back to the 3510 // same instruction: 3511 // 1) if (p0.new) memw(R0+#0) = R1.new ---> 3512 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1 3513 // 3) if (p0.new) memw(R0+#0) = R1 ---> 3514 // 3515 // To understand the translation of instruction 1 to its original form, consider 3516 // a packet with 3 instructions. 3517 // { p0 = cmp.eq(R0,R1) 3518 // if (p0.new) R2 = add(R3, R4) 3519 // R5 = add (R3, R1) 3520 // } 3521 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet 3522 // 3523 // This instruction can be part of the previous packet only if both p0 and R2 3524 // are promoted to .new values. This promotion happens in steps, first 3525 // predicate register is promoted to .new and in the next iteration R2 is 3526 // promoted. Therefore, in case of dependence check failure (due to R5) during 3527 // next iteration, it should be converted back to its most basic form. 3528 3529 // Return the new value instruction for a given store. 3530 int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const { 3531 int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode()); 3532 if (NVOpcode >= 0) // Valid new-value store instruction. 3533 return NVOpcode; 3534 3535 switch (MI.getOpcode()) { 3536 default: 3537 report_fatal_error(std::string("Unknown .new type: ") + 3538 std::to_string(MI.getOpcode())); 3539 case Hexagon::S4_storerb_ur: 3540 return Hexagon::S4_storerbnew_ur; 3541 3542 case Hexagon::S2_storerb_pci: 3543 return Hexagon::S2_storerb_pci; 3544 3545 case Hexagon::S2_storeri_pci: 3546 return Hexagon::S2_storeri_pci; 3547 3548 case Hexagon::S2_storerh_pci: 3549 return Hexagon::S2_storerh_pci; 3550 3551 case Hexagon::S2_storerd_pci: 3552 return Hexagon::S2_storerd_pci; 3553 3554 case Hexagon::S2_storerf_pci: 3555 return Hexagon::S2_storerf_pci; 3556 3557 case Hexagon::V6_vS32b_ai: 3558 return Hexagon::V6_vS32b_new_ai; 3559 3560 case Hexagon::V6_vS32b_pi: 3561 return Hexagon::V6_vS32b_new_pi; 3562 } 3563 return 0; 3564 } 3565 3566 // Returns the opcode to use when converting MI, which is a conditional jump, 3567 // into a conditional instruction which uses the .new value of the predicate. 3568 // We also use branch probabilities to add a hint to the jump. 3569 // If MBPI is null, all edges will be treated as equally likely for the 3570 // purposes of establishing a predication hint. 3571 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI, 3572 const MachineBranchProbabilityInfo *MBPI) const { 3573 // We assume that block can have at most two successors. 3574 const MachineBasicBlock *Src = MI.getParent(); 3575 const MachineOperand &BrTarget = MI.getOperand(1); 3576 bool Taken = false; 3577 const BranchProbability OneHalf(1, 2); 3578 3579 auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src, 3580 const MachineBasicBlock *Dst) { 3581 if (MBPI) 3582 return MBPI->getEdgeProbability(Src, Dst); 3583 return BranchProbability(1, Src->succ_size()); 3584 }; 3585 3586 if (BrTarget.isMBB()) { 3587 const MachineBasicBlock *Dst = BrTarget.getMBB(); 3588 Taken = getEdgeProbability(Src, Dst) >= OneHalf; 3589 } else { 3590 // The branch target is not a basic block (most likely a function). 3591 // Since BPI only gives probabilities for targets that are basic blocks, 3592 // try to identify another target of this branch (potentially a fall- 3593 // -through) and check the probability of that target. 3594 // 3595 // The only handled branch combinations are: 3596 // - one conditional branch, 3597 // - one conditional branch followed by one unconditional branch. 3598 // Otherwise, assume not-taken. 3599 assert(MI.isConditionalBranch()); 3600 const MachineBasicBlock &B = *MI.getParent(); 3601 bool SawCond = false, Bad = false; 3602 for (const MachineInstr &I : B) { 3603 if (!I.isBranch()) 3604 continue; 3605 if (I.isConditionalBranch()) { 3606 SawCond = true; 3607 if (&I != &MI) { 3608 Bad = true; 3609 break; 3610 } 3611 } 3612 if (I.isUnconditionalBranch() && !SawCond) { 3613 Bad = true; 3614 break; 3615 } 3616 } 3617 if (!Bad) { 3618 MachineBasicBlock::const_instr_iterator It(MI); 3619 MachineBasicBlock::const_instr_iterator NextIt = std::next(It); 3620 if (NextIt == B.instr_end()) { 3621 // If this branch is the last, look for the fall-through block. 3622 for (const MachineBasicBlock *SB : B.successors()) { 3623 if (!B.isLayoutSuccessor(SB)) 3624 continue; 3625 Taken = getEdgeProbability(Src, SB) < OneHalf; 3626 break; 3627 } 3628 } else { 3629 assert(NextIt->isUnconditionalBranch()); 3630 // Find the first MBB operand and assume it's the target. 3631 const MachineBasicBlock *BT = nullptr; 3632 for (const MachineOperand &Op : NextIt->operands()) { 3633 if (!Op.isMBB()) 3634 continue; 3635 BT = Op.getMBB(); 3636 break; 3637 } 3638 Taken = BT && getEdgeProbability(Src, BT) < OneHalf; 3639 } 3640 } // if (!Bad) 3641 } 3642 3643 // The Taken flag should be set to something reasonable by this point. 3644 3645 switch (MI.getOpcode()) { 3646 case Hexagon::J2_jumpt: 3647 return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew; 3648 case Hexagon::J2_jumpf: 3649 return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew; 3650 3651 default: 3652 llvm_unreachable("Unexpected jump instruction."); 3653 } 3654 } 3655 3656 // Return .new predicate version for an instruction. 3657 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI, 3658 const MachineBranchProbabilityInfo *MBPI) const { 3659 switch (MI.getOpcode()) { 3660 // Condtional Jumps 3661 case Hexagon::J2_jumpt: 3662 case Hexagon::J2_jumpf: 3663 return getDotNewPredJumpOp(MI, MBPI); 3664 } 3665 3666 int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode()); 3667 if (NewOpcode >= 0) 3668 return NewOpcode; 3669 return 0; 3670 } 3671 3672 int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const { 3673 int NewOp = MI.getOpcode(); 3674 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form 3675 NewOp = Hexagon::getPredOldOpcode(NewOp); 3676 // All Hexagon architectures have prediction bits on dot-new branches, 3677 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure 3678 // to pick the right opcode when converting back to dot-old. 3679 if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) { 3680 switch (NewOp) { 3681 case Hexagon::J2_jumptpt: 3682 NewOp = Hexagon::J2_jumpt; 3683 break; 3684 case Hexagon::J2_jumpfpt: 3685 NewOp = Hexagon::J2_jumpf; 3686 break; 3687 case Hexagon::J2_jumprtpt: 3688 NewOp = Hexagon::J2_jumprt; 3689 break; 3690 case Hexagon::J2_jumprfpt: 3691 NewOp = Hexagon::J2_jumprf; 3692 break; 3693 } 3694 } 3695 assert(NewOp >= 0 && 3696 "Couldn't change predicate new instruction to its old form."); 3697 } 3698 3699 if (isNewValueStore(NewOp)) { // Convert into non-new-value format 3700 NewOp = Hexagon::getNonNVStore(NewOp); 3701 assert(NewOp >= 0 && "Couldn't change new-value store to its old form."); 3702 } 3703 3704 if (Subtarget.hasV60Ops()) 3705 return NewOp; 3706 3707 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps. 3708 switch (NewOp) { 3709 case Hexagon::J2_jumpfpt: 3710 return Hexagon::J2_jumpf; 3711 case Hexagon::J2_jumptpt: 3712 return Hexagon::J2_jumpt; 3713 case Hexagon::J2_jumprfpt: 3714 return Hexagon::J2_jumprf; 3715 case Hexagon::J2_jumprtpt: 3716 return Hexagon::J2_jumprt; 3717 } 3718 return NewOp; 3719 } 3720 3721 // See if instruction could potentially be a duplex candidate. 3722 // If so, return its group. Zero otherwise. 3723 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup( 3724 const MachineInstr &MI) const { 3725 unsigned DstReg, SrcReg, Src1Reg, Src2Reg; 3726 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 3727 3728 switch (MI.getOpcode()) { 3729 default: 3730 return HexagonII::HSIG_None; 3731 // 3732 // Group L1: 3733 // 3734 // Rd = memw(Rs+#u4:2) 3735 // Rd = memub(Rs+#u4:0) 3736 case Hexagon::L2_loadri_io: 3737 DstReg = MI.getOperand(0).getReg(); 3738 SrcReg = MI.getOperand(1).getReg(); 3739 // Special case this one from Group L2. 3740 // Rd = memw(r29+#u5:2) 3741 if (isIntRegForSubInst(DstReg)) { 3742 if (Hexagon::IntRegsRegClass.contains(SrcReg) && 3743 HRI.getStackRegister() == SrcReg && 3744 MI.getOperand(2).isImm() && 3745 isShiftedUInt<5,2>(MI.getOperand(2).getImm())) 3746 return HexagonII::HSIG_L2; 3747 // Rd = memw(Rs+#u4:2) 3748 if (isIntRegForSubInst(SrcReg) && 3749 (MI.getOperand(2).isImm() && 3750 isShiftedUInt<4,2>(MI.getOperand(2).getImm()))) 3751 return HexagonII::HSIG_L1; 3752 } 3753 break; 3754 case Hexagon::L2_loadrub_io: 3755 // Rd = memub(Rs+#u4:0) 3756 DstReg = MI.getOperand(0).getReg(); 3757 SrcReg = MI.getOperand(1).getReg(); 3758 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && 3759 MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm())) 3760 return HexagonII::HSIG_L1; 3761 break; 3762 // 3763 // Group L2: 3764 // 3765 // Rd = memh/memuh(Rs+#u3:1) 3766 // Rd = memb(Rs+#u3:0) 3767 // Rd = memw(r29+#u5:2) - Handled above. 3768 // Rdd = memd(r29+#u5:3) 3769 // deallocframe 3770 // [if ([!]p0[.new])] dealloc_return 3771 // [if ([!]p0[.new])] jumpr r31 3772 case Hexagon::L2_loadrh_io: 3773 case Hexagon::L2_loadruh_io: 3774 // Rd = memh/memuh(Rs+#u3:1) 3775 DstReg = MI.getOperand(0).getReg(); 3776 SrcReg = MI.getOperand(1).getReg(); 3777 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && 3778 MI.getOperand(2).isImm() && 3779 isShiftedUInt<3,1>(MI.getOperand(2).getImm())) 3780 return HexagonII::HSIG_L2; 3781 break; 3782 case Hexagon::L2_loadrb_io: 3783 // Rd = memb(Rs+#u3:0) 3784 DstReg = MI.getOperand(0).getReg(); 3785 SrcReg = MI.getOperand(1).getReg(); 3786 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && 3787 MI.getOperand(2).isImm() && 3788 isUInt<3>(MI.getOperand(2).getImm())) 3789 return HexagonII::HSIG_L2; 3790 break; 3791 case Hexagon::L2_loadrd_io: 3792 // Rdd = memd(r29+#u5:3) 3793 DstReg = MI.getOperand(0).getReg(); 3794 SrcReg = MI.getOperand(1).getReg(); 3795 if (isDblRegForSubInst(DstReg, HRI) && 3796 Hexagon::IntRegsRegClass.contains(SrcReg) && 3797 HRI.getStackRegister() == SrcReg && 3798 MI.getOperand(2).isImm() && 3799 isShiftedUInt<5,3>(MI.getOperand(2).getImm())) 3800 return HexagonII::HSIG_L2; 3801 break; 3802 // dealloc_return is not documented in Hexagon Manual, but marked 3803 // with A_SUBINSN attribute in iset_v4classic.py. 3804 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: 3805 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: 3806 case Hexagon::L4_return: 3807 case Hexagon::L2_deallocframe: 3808 return HexagonII::HSIG_L2; 3809 case Hexagon::EH_RETURN_JMPR: 3810 case Hexagon::PS_jmpret: 3811 case Hexagon::SL2_jumpr31: 3812 // jumpr r31 3813 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0 3814 DstReg = MI.getOperand(0).getReg(); 3815 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)) 3816 return HexagonII::HSIG_L2; 3817 break; 3818 case Hexagon::PS_jmprett: 3819 case Hexagon::PS_jmpretf: 3820 case Hexagon::PS_jmprettnewpt: 3821 case Hexagon::PS_jmpretfnewpt: 3822 case Hexagon::PS_jmprettnew: 3823 case Hexagon::PS_jmpretfnew: 3824 case Hexagon::SL2_jumpr31_t: 3825 case Hexagon::SL2_jumpr31_f: 3826 case Hexagon::SL2_jumpr31_tnew: 3827 DstReg = MI.getOperand(1).getReg(); 3828 SrcReg = MI.getOperand(0).getReg(); 3829 // [if ([!]p0[.new])] jumpr r31 3830 if ((Hexagon::PredRegsRegClass.contains(SrcReg) && 3831 (Hexagon::P0 == SrcReg)) && 3832 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))) 3833 return HexagonII::HSIG_L2; 3834 break; 3835 case Hexagon::L4_return_t: 3836 case Hexagon::L4_return_f: 3837 case Hexagon::L4_return_tnew_pnt: 3838 case Hexagon::L4_return_fnew_pnt: 3839 case Hexagon::L4_return_tnew_pt: 3840 case Hexagon::L4_return_fnew_pt: 3841 // [if ([!]p0[.new])] dealloc_return 3842 SrcReg = MI.getOperand(0).getReg(); 3843 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg)) 3844 return HexagonII::HSIG_L2; 3845 break; 3846 // 3847 // Group S1: 3848 // 3849 // memw(Rs+#u4:2) = Rt 3850 // memb(Rs+#u4:0) = Rt 3851 case Hexagon::S2_storeri_io: 3852 // Special case this one from Group S2. 3853 // memw(r29+#u5:2) = Rt 3854 Src1Reg = MI.getOperand(0).getReg(); 3855 Src2Reg = MI.getOperand(2).getReg(); 3856 if (Hexagon::IntRegsRegClass.contains(Src1Reg) && 3857 isIntRegForSubInst(Src2Reg) && 3858 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() && 3859 isShiftedUInt<5,2>(MI.getOperand(1).getImm())) 3860 return HexagonII::HSIG_S2; 3861 // memw(Rs+#u4:2) = Rt 3862 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && 3863 MI.getOperand(1).isImm() && 3864 isShiftedUInt<4,2>(MI.getOperand(1).getImm())) 3865 return HexagonII::HSIG_S1; 3866 break; 3867 case Hexagon::S2_storerb_io: 3868 // memb(Rs+#u4:0) = Rt 3869 Src1Reg = MI.getOperand(0).getReg(); 3870 Src2Reg = MI.getOperand(2).getReg(); 3871 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && 3872 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm())) 3873 return HexagonII::HSIG_S1; 3874 break; 3875 // 3876 // Group S2: 3877 // 3878 // memh(Rs+#u3:1) = Rt 3879 // memw(r29+#u5:2) = Rt 3880 // memd(r29+#s6:3) = Rtt 3881 // memw(Rs+#u4:2) = #U1 3882 // memb(Rs+#u4) = #U1 3883 // allocframe(#u5:3) 3884 case Hexagon::S2_storerh_io: 3885 // memh(Rs+#u3:1) = Rt 3886 Src1Reg = MI.getOperand(0).getReg(); 3887 Src2Reg = MI.getOperand(2).getReg(); 3888 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && 3889 MI.getOperand(1).isImm() && 3890 isShiftedUInt<3,1>(MI.getOperand(1).getImm())) 3891 return HexagonII::HSIG_S1; 3892 break; 3893 case Hexagon::S2_storerd_io: 3894 // memd(r29+#s6:3) = Rtt 3895 Src1Reg = MI.getOperand(0).getReg(); 3896 Src2Reg = MI.getOperand(2).getReg(); 3897 if (isDblRegForSubInst(Src2Reg, HRI) && 3898 Hexagon::IntRegsRegClass.contains(Src1Reg) && 3899 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() && 3900 isShiftedInt<6,3>(MI.getOperand(1).getImm())) 3901 return HexagonII::HSIG_S2; 3902 break; 3903 case Hexagon::S4_storeiri_io: 3904 // memw(Rs+#u4:2) = #U1 3905 Src1Reg = MI.getOperand(0).getReg(); 3906 if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() && 3907 isShiftedUInt<4,2>(MI.getOperand(1).getImm()) && 3908 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm())) 3909 return HexagonII::HSIG_S2; 3910 break; 3911 case Hexagon::S4_storeirb_io: 3912 // memb(Rs+#u4) = #U1 3913 Src1Reg = MI.getOperand(0).getReg(); 3914 if (isIntRegForSubInst(Src1Reg) && 3915 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) && 3916 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm())) 3917 return HexagonII::HSIG_S2; 3918 break; 3919 case Hexagon::S2_allocframe: 3920 if (MI.getOperand(2).isImm() && 3921 isShiftedUInt<5,3>(MI.getOperand(2).getImm())) 3922 return HexagonII::HSIG_S1; 3923 break; 3924 // 3925 // Group A: 3926 // 3927 // Rx = add(Rx,#s7) 3928 // Rd = Rs 3929 // Rd = #u6 3930 // Rd = #-1 3931 // if ([!]P0[.new]) Rd = #0 3932 // Rd = add(r29,#u6:2) 3933 // Rx = add(Rx,Rs) 3934 // P0 = cmp.eq(Rs,#u2) 3935 // Rdd = combine(#0,Rs) 3936 // Rdd = combine(Rs,#0) 3937 // Rdd = combine(#u2,#U2) 3938 // Rd = add(Rs,#1) 3939 // Rd = add(Rs,#-1) 3940 // Rd = sxth/sxtb/zxtb/zxth(Rs) 3941 // Rd = and(Rs,#1) 3942 case Hexagon::A2_addi: 3943 DstReg = MI.getOperand(0).getReg(); 3944 SrcReg = MI.getOperand(1).getReg(); 3945 if (isIntRegForSubInst(DstReg)) { 3946 // Rd = add(r29,#u6:2) 3947 if (Hexagon::IntRegsRegClass.contains(SrcReg) && 3948 HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() && 3949 isShiftedUInt<6,2>(MI.getOperand(2).getImm())) 3950 return HexagonII::HSIG_A; 3951 // Rx = add(Rx,#s7) 3952 if ((DstReg == SrcReg) && MI.getOperand(2).isImm() && 3953 isInt<7>(MI.getOperand(2).getImm())) 3954 return HexagonII::HSIG_A; 3955 // Rd = add(Rs,#1) 3956 // Rd = add(Rs,#-1) 3957 if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() && 3958 ((MI.getOperand(2).getImm() == 1) || 3959 (MI.getOperand(2).getImm() == -1))) 3960 return HexagonII::HSIG_A; 3961 } 3962 break; 3963 case Hexagon::A2_add: 3964 // Rx = add(Rx,Rs) 3965 DstReg = MI.getOperand(0).getReg(); 3966 Src1Reg = MI.getOperand(1).getReg(); 3967 Src2Reg = MI.getOperand(2).getReg(); 3968 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) && 3969 isIntRegForSubInst(Src2Reg)) 3970 return HexagonII::HSIG_A; 3971 break; 3972 case Hexagon::A2_andir: 3973 // Same as zxtb. 3974 // Rd16=and(Rs16,#255) 3975 // Rd16=and(Rs16,#1) 3976 DstReg = MI.getOperand(0).getReg(); 3977 SrcReg = MI.getOperand(1).getReg(); 3978 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && 3979 MI.getOperand(2).isImm() && 3980 ((MI.getOperand(2).getImm() == 1) || 3981 (MI.getOperand(2).getImm() == 255))) 3982 return HexagonII::HSIG_A; 3983 break; 3984 case Hexagon::A2_tfr: 3985 // Rd = Rs 3986 DstReg = MI.getOperand(0).getReg(); 3987 SrcReg = MI.getOperand(1).getReg(); 3988 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) 3989 return HexagonII::HSIG_A; 3990 break; 3991 case Hexagon::A2_tfrsi: 3992 // Rd = #u6 3993 // Do not test for #u6 size since the const is getting extended 3994 // regardless and compound could be formed. 3995 // Rd = #-1 3996 DstReg = MI.getOperand(0).getReg(); 3997 if (isIntRegForSubInst(DstReg)) 3998 return HexagonII::HSIG_A; 3999 break; 4000 case Hexagon::C2_cmoveit: 4001 case Hexagon::C2_cmovenewit: 4002 case Hexagon::C2_cmoveif: 4003 case Hexagon::C2_cmovenewif: 4004 // if ([!]P0[.new]) Rd = #0 4005 // Actual form: 4006 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16; 4007 DstReg = MI.getOperand(0).getReg(); 4008 SrcReg = MI.getOperand(1).getReg(); 4009 if (isIntRegForSubInst(DstReg) && 4010 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg && 4011 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) 4012 return HexagonII::HSIG_A; 4013 break; 4014 case Hexagon::C2_cmpeqi: 4015 // P0 = cmp.eq(Rs,#u2) 4016 DstReg = MI.getOperand(0).getReg(); 4017 SrcReg = MI.getOperand(1).getReg(); 4018 if (Hexagon::PredRegsRegClass.contains(DstReg) && 4019 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) && 4020 MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) 4021 return HexagonII::HSIG_A; 4022 break; 4023 case Hexagon::A2_combineii: 4024 case Hexagon::A4_combineii: 4025 // Rdd = combine(#u2,#U2) 4026 DstReg = MI.getOperand(0).getReg(); 4027 if (isDblRegForSubInst(DstReg, HRI) && 4028 ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) || 4029 (MI.getOperand(1).isGlobal() && 4030 isUInt<2>(MI.getOperand(1).getOffset()))) && 4031 ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) || 4032 (MI.getOperand(2).isGlobal() && 4033 isUInt<2>(MI.getOperand(2).getOffset())))) 4034 return HexagonII::HSIG_A; 4035 break; 4036 case Hexagon::A4_combineri: 4037 // Rdd = combine(Rs,#0) 4038 DstReg = MI.getOperand(0).getReg(); 4039 SrcReg = MI.getOperand(1).getReg(); 4040 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) && 4041 ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) || 4042 (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0))) 4043 return HexagonII::HSIG_A; 4044 break; 4045 case Hexagon::A4_combineir: 4046 // Rdd = combine(#0,Rs) 4047 DstReg = MI.getOperand(0).getReg(); 4048 SrcReg = MI.getOperand(2).getReg(); 4049 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) && 4050 ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) || 4051 (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0))) 4052 return HexagonII::HSIG_A; 4053 break; 4054 case Hexagon::A2_sxtb: 4055 case Hexagon::A2_sxth: 4056 case Hexagon::A2_zxtb: 4057 case Hexagon::A2_zxth: 4058 // Rd = sxth/sxtb/zxtb/zxth(Rs) 4059 DstReg = MI.getOperand(0).getReg(); 4060 SrcReg = MI.getOperand(1).getReg(); 4061 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) 4062 return HexagonII::HSIG_A; 4063 break; 4064 } 4065 4066 return HexagonII::HSIG_None; 4067 } 4068 4069 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const { 4070 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real); 4071 } 4072 4073 unsigned HexagonInstrInfo::getInstrTimingClassLatency( 4074 const InstrItineraryData *ItinData, const MachineInstr &MI) const { 4075 // Default to one cycle for no itinerary. However, an "empty" itinerary may 4076 // still have a MinLatency property, which getStageLatency checks. 4077 if (!ItinData) 4078 return getInstrLatency(ItinData, MI); 4079 4080 if (MI.isTransient()) 4081 return 0; 4082 return ItinData->getStageLatency(MI.getDesc().getSchedClass()); 4083 } 4084 4085 /// getOperandLatency - Compute and return the use operand latency of a given 4086 /// pair of def and use. 4087 /// In most cases, the static scheduling itinerary was enough to determine the 4088 /// operand latency. But it may not be possible for instructions with variable 4089 /// number of defs / uses. 4090 /// 4091 /// This is a raw interface to the itinerary that may be directly overriden by 4092 /// a target. Use computeOperandLatency to get the best estimate of latency. 4093 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4094 const MachineInstr &DefMI, 4095 unsigned DefIdx, 4096 const MachineInstr &UseMI, 4097 unsigned UseIdx) const { 4098 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 4099 4100 // Get DefIdx and UseIdx for super registers. 4101 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4102 4103 if (DefMO.isReg() && Register::isPhysicalRegister(DefMO.getReg())) { 4104 if (DefMO.isImplicit()) { 4105 for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) { 4106 int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI); 4107 if (Idx != -1) { 4108 DefIdx = Idx; 4109 break; 4110 } 4111 } 4112 } 4113 4114 const MachineOperand &UseMO = UseMI.getOperand(UseIdx); 4115 if (UseMO.isImplicit()) { 4116 for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) { 4117 int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI); 4118 if (Idx != -1) { 4119 UseIdx = Idx; 4120 break; 4121 } 4122 } 4123 } 4124 } 4125 4126 int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 4127 UseMI, UseIdx); 4128 if (!Latency) 4129 // We should never have 0 cycle latency between two instructions unless 4130 // they can be packetized together. However, this decision can't be made 4131 // here. 4132 Latency = 1; 4133 return Latency; 4134 } 4135 4136 // inverts the predication logic. 4137 // p -> NotP 4138 // NotP -> P 4139 bool HexagonInstrInfo::getInvertedPredSense( 4140 SmallVectorImpl<MachineOperand> &Cond) const { 4141 if (Cond.empty()) 4142 return false; 4143 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm()); 4144 Cond[0].setImm(Opc); 4145 return true; 4146 } 4147 4148 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { 4149 int InvPredOpcode; 4150 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc) 4151 : Hexagon::getTruePredOpcode(Opc); 4152 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. 4153 return InvPredOpcode; 4154 4155 llvm_unreachable("Unexpected predicated instruction"); 4156 } 4157 4158 // Returns the max value that doesn't need to be extended. 4159 int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const { 4160 const uint64_t F = MI.getDesc().TSFlags; 4161 unsigned isSigned = (F >> HexagonII::ExtentSignedPos) 4162 & HexagonII::ExtentSignedMask; 4163 unsigned bits = (F >> HexagonII::ExtentBitsPos) 4164 & HexagonII::ExtentBitsMask; 4165 4166 if (isSigned) // if value is signed 4167 return ~(-1U << (bits - 1)); 4168 else 4169 return ~(-1U << bits); 4170 } 4171 4172 4173 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const { 4174 switch (MI.getOpcode()) { 4175 case Hexagon::L2_loadrbgp: 4176 case Hexagon::L2_loadrdgp: 4177 case Hexagon::L2_loadrhgp: 4178 case Hexagon::L2_loadrigp: 4179 case Hexagon::L2_loadrubgp: 4180 case Hexagon::L2_loadruhgp: 4181 case Hexagon::S2_storerbgp: 4182 case Hexagon::S2_storerbnewgp: 4183 case Hexagon::S2_storerhgp: 4184 case Hexagon::S2_storerhnewgp: 4185 case Hexagon::S2_storerigp: 4186 case Hexagon::S2_storerinewgp: 4187 case Hexagon::S2_storerdgp: 4188 case Hexagon::S2_storerfgp: 4189 return true; 4190 } 4191 const uint64_t F = MI.getDesc().TSFlags; 4192 unsigned addrMode = 4193 ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); 4194 // Disallow any base+offset instruction. The assembler does not yet reorder 4195 // based up any zero offset instruction. 4196 return (addrMode == HexagonII::BaseRegOffset || 4197 addrMode == HexagonII::BaseImmOffset || 4198 addrMode == HexagonII::BaseLongOffset); 4199 } 4200 4201 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const { 4202 using namespace HexagonII; 4203 4204 const uint64_t F = MI.getDesc().TSFlags; 4205 unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask; 4206 unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S)); 4207 if (Size != 0) 4208 return Size; 4209 4210 // Handle vector access sizes. 4211 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 4212 switch (S) { 4213 case HexagonII::HVXVectorAccess: 4214 return HRI.getSpillSize(Hexagon::HvxVRRegClass); 4215 default: 4216 llvm_unreachable("Unexpected instruction"); 4217 } 4218 } 4219 4220 // Returns the min value that doesn't need to be extended. 4221 int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const { 4222 const uint64_t F = MI.getDesc().TSFlags; 4223 unsigned isSigned = (F >> HexagonII::ExtentSignedPos) 4224 & HexagonII::ExtentSignedMask; 4225 unsigned bits = (F >> HexagonII::ExtentBitsPos) 4226 & HexagonII::ExtentBitsMask; 4227 4228 if (isSigned) // if value is signed 4229 return -1U << (bits - 1); 4230 else 4231 return 0; 4232 } 4233 4234 // Returns opcode of the non-extended equivalent instruction. 4235 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const { 4236 // Check if the instruction has a register form that uses register in place 4237 // of the extended operand, if so return that as the non-extended form. 4238 short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode()); 4239 if (NonExtOpcode >= 0) 4240 return NonExtOpcode; 4241 4242 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { 4243 // Check addressing mode and retrieve non-ext equivalent instruction. 4244 switch (getAddrMode(MI)) { 4245 case HexagonII::Absolute: 4246 return Hexagon::changeAddrMode_abs_io(MI.getOpcode()); 4247 case HexagonII::BaseImmOffset: 4248 return Hexagon::changeAddrMode_io_rr(MI.getOpcode()); 4249 case HexagonII::BaseLongOffset: 4250 return Hexagon::changeAddrMode_ur_rr(MI.getOpcode()); 4251 4252 default: 4253 return -1; 4254 } 4255 } 4256 return -1; 4257 } 4258 4259 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond, 4260 unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const { 4261 if (Cond.empty()) 4262 return false; 4263 assert(Cond.size() == 2); 4264 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) { 4265 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop"); 4266 return false; 4267 } 4268 PredReg = Cond[1].getReg(); 4269 PredRegPos = 1; 4270 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef 4271 PredRegFlags = 0; 4272 if (Cond[1].isImplicit()) 4273 PredRegFlags = RegState::Implicit; 4274 if (Cond[1].isUndef()) 4275 PredRegFlags |= RegState::Undef; 4276 return true; 4277 } 4278 4279 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const { 4280 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo); 4281 } 4282 4283 short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const { 4284 return Hexagon::getRegForm(MI.getOpcode()); 4285 } 4286 4287 // Return the number of bytes required to encode the instruction. 4288 // Hexagon instructions are fixed length, 4 bytes, unless they 4289 // use a constant extender, which requires another 4 bytes. 4290 // For debug instructions and prolog labels, return 0. 4291 unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const { 4292 if (MI.isDebugInstr() || MI.isPosition()) 4293 return 0; 4294 4295 unsigned Size = MI.getDesc().getSize(); 4296 if (!Size) 4297 // Assume the default insn size in case it cannot be determined 4298 // for whatever reason. 4299 Size = HEXAGON_INSTR_SIZE; 4300 4301 if (isConstExtended(MI) || isExtended(MI)) 4302 Size += HEXAGON_INSTR_SIZE; 4303 4304 // Try and compute number of instructions in asm. 4305 if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) { 4306 const MachineBasicBlock &MBB = *MI.getParent(); 4307 const MachineFunction *MF = MBB.getParent(); 4308 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 4309 4310 // Count the number of register definitions to find the asm string. 4311 unsigned NumDefs = 0; 4312 for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef(); 4313 ++NumDefs) 4314 assert(NumDefs != MI.getNumOperands()-2 && "No asm string?"); 4315 4316 assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?"); 4317 // Disassemble the AsmStr and approximate number of instructions. 4318 const char *AsmStr = MI.getOperand(NumDefs).getSymbolName(); 4319 Size = getInlineAsmLength(AsmStr, *MAI); 4320 } 4321 4322 return Size; 4323 } 4324 4325 uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const { 4326 const uint64_t F = MI.getDesc().TSFlags; 4327 return (F >> HexagonII::TypePos) & HexagonII::TypeMask; 4328 } 4329 4330 unsigned HexagonInstrInfo::getUnits(const MachineInstr &MI) const { 4331 const InstrItineraryData &II = *Subtarget.getInstrItineraryData(); 4332 const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass()); 4333 4334 return IS.getUnits(); 4335 } 4336 4337 // Calculate size of the basic block without debug instructions. 4338 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const { 4339 return nonDbgMICount(BB->instr_begin(), BB->instr_end()); 4340 } 4341 4342 unsigned HexagonInstrInfo::nonDbgBundleSize( 4343 MachineBasicBlock::const_iterator BundleHead) const { 4344 assert(BundleHead->isBundle() && "Not a bundle header"); 4345 auto MII = BundleHead.getInstrIterator(); 4346 // Skip the bundle header. 4347 return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator())); 4348 } 4349 4350 /// immediateExtend - Changes the instruction in place to one using an immediate 4351 /// extender. 4352 void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const { 4353 assert((isExtendable(MI)||isConstExtended(MI)) && 4354 "Instruction must be extendable"); 4355 // Find which operand is extendable. 4356 short ExtOpNum = getCExtOpNum(MI); 4357 MachineOperand &MO = MI.getOperand(ExtOpNum); 4358 // This needs to be something we understand. 4359 assert((MO.isMBB() || MO.isImm()) && 4360 "Branch with unknown extendable field type"); 4361 // Mark given operand as extended. 4362 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended); 4363 } 4364 4365 bool HexagonInstrInfo::invertAndChangeJumpTarget( 4366 MachineInstr &MI, MachineBasicBlock *NewTarget) const { 4367 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to " 4368 << printMBBReference(*NewTarget); 4369 MI.dump();); 4370 assert(MI.isBranch()); 4371 unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode()); 4372 int TargetPos = MI.getNumOperands() - 1; 4373 // In general branch target is the last operand, 4374 // but some implicit defs added at the end might change it. 4375 while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB()) 4376 --TargetPos; 4377 assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB()); 4378 MI.getOperand(TargetPos).setMBB(NewTarget); 4379 if (EnableBranchPrediction && isPredicatedNew(MI)) { 4380 NewOpcode = reversePrediction(NewOpcode); 4381 } 4382 MI.setDesc(get(NewOpcode)); 4383 return true; 4384 } 4385 4386 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const { 4387 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */ 4388 MachineFunction::iterator A = MF.begin(); 4389 MachineBasicBlock &B = *A; 4390 MachineBasicBlock::iterator I = B.begin(); 4391 DebugLoc DL = I->getDebugLoc(); 4392 MachineInstr *NewMI; 4393 4394 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1; 4395 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) { 4396 NewMI = BuildMI(B, I, DL, get(insn)); 4397 LLVM_DEBUG(dbgs() << "\n" 4398 << getName(NewMI->getOpcode()) 4399 << " Class: " << NewMI->getDesc().getSchedClass()); 4400 NewMI->eraseFromParent(); 4401 } 4402 /* --- The code above is used to generate complete set of Hexagon Insn --- */ 4403 } 4404 4405 // inverts the predication logic. 4406 // p -> NotP 4407 // NotP -> P 4408 bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const { 4409 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump()); 4410 MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode()))); 4411 return true; 4412 } 4413 4414 // Reverse the branch prediction. 4415 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const { 4416 int PredRevOpcode = -1; 4417 if (isPredictedTaken(Opcode)) 4418 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode); 4419 else 4420 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode); 4421 assert(PredRevOpcode > 0); 4422 return PredRevOpcode; 4423 } 4424 4425 // TODO: Add more rigorous validation. 4426 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond) 4427 const { 4428 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1)); 4429 } 4430 4431 void HexagonInstrInfo:: 4432 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const { 4433 assert(MIB->isBundle()); 4434 MachineOperand &Operand = MIB->getOperand(0); 4435 if (Operand.isImm()) 4436 Operand.setImm(Operand.getImm() | memShufDisabledMask); 4437 else 4438 MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask)); 4439 } 4440 4441 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const { 4442 assert(MIB.isBundle()); 4443 const MachineOperand &Operand = MIB.getOperand(0); 4444 return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0); 4445 } 4446 4447 // Addressing mode relations. 4448 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const { 4449 return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc; 4450 } 4451 4452 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const { 4453 return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc; 4454 } 4455 4456 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const { 4457 return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc; 4458 } 4459 4460 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const { 4461 return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc; 4462 } 4463 4464 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const { 4465 return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc; 4466 } 4467 4468 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const { 4469 return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc; 4470 } 4471 4472 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const { 4473 return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc; 4474 } 4475 4476 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const { 4477 return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc; 4478 } 4479