xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp (revision 7029da5c36f2d3cf6bb6c81bf551229f416399e8)
1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonInstrInfo.h"
14 #include "Hexagon.h"
15 #include "HexagonFrameLowering.h"
16 #include "HexagonHazardRecognizer.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/DFAPacketizer.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/MC/MCInstrItineraries.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <cassert>
55 #include <cctype>
56 #include <cstdint>
57 #include <cstring>
58 #include <iterator>
59 #include <string>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "hexagon-instrinfo"
65 
66 #define GET_INSTRINFO_CTOR_DTOR
67 #define GET_INSTRMAP_INFO
68 #include "HexagonDepTimingClasses.h"
69 #include "HexagonGenDFAPacketizer.inc"
70 #include "HexagonGenInstrInfo.inc"
71 
72 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
73   cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
74                             "packetization boundary."));
75 
76 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
77   cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
78 
79 static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
80   cl::Hidden, cl::ZeroOrMore, cl::init(false),
81   cl::desc("Disable schedule adjustment for new value stores."));
82 
83 static cl::opt<bool> EnableTimingClassLatency(
84   "enable-timing-class-latency", cl::Hidden, cl::init(false),
85   cl::desc("Enable timing class latency"));
86 
87 static cl::opt<bool> EnableALUForwarding(
88   "enable-alu-forwarding", cl::Hidden, cl::init(true),
89   cl::desc("Enable vec alu forwarding"));
90 
91 static cl::opt<bool> EnableACCForwarding(
92   "enable-acc-forwarding", cl::Hidden, cl::init(true),
93   cl::desc("Enable vec acc forwarding"));
94 
95 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
96   cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
97 
98 static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec",
99   cl::init(true), cl::Hidden, cl::ZeroOrMore,
100   cl::desc("Use the DFA based hazard recognizer."));
101 
102 /// Constants for Hexagon instructions.
103 const int Hexagon_MEMW_OFFSET_MAX = 4095;
104 const int Hexagon_MEMW_OFFSET_MIN = -4096;
105 const int Hexagon_MEMD_OFFSET_MAX = 8191;
106 const int Hexagon_MEMD_OFFSET_MIN = -8192;
107 const int Hexagon_MEMH_OFFSET_MAX = 2047;
108 const int Hexagon_MEMH_OFFSET_MIN = -2048;
109 const int Hexagon_MEMB_OFFSET_MAX = 1023;
110 const int Hexagon_MEMB_OFFSET_MIN = -1024;
111 const int Hexagon_ADDI_OFFSET_MAX = 32767;
112 const int Hexagon_ADDI_OFFSET_MIN = -32768;
113 
114 // Pin the vtable to this file.
115 void HexagonInstrInfo::anchor() {}
116 
117 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
118   : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
119     Subtarget(ST) {}
120 
121 static bool isIntRegForSubInst(unsigned Reg) {
122   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
123          (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
124 }
125 
126 static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
127   return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
128          isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
129 }
130 
131 /// Calculate number of instructions excluding the debug instructions.
132 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
133                               MachineBasicBlock::const_instr_iterator MIE) {
134   unsigned Count = 0;
135   for (; MIB != MIE; ++MIB) {
136     if (!MIB->isDebugInstr())
137       ++Count;
138   }
139   return Count;
140 }
141 
142 /// Find the hardware loop instruction used to set-up the specified loop.
143 /// On Hexagon, we have two instructions used to set-up the hardware loop
144 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
145 /// to indicate the end of a loop.
146 MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB,
147       unsigned EndLoopOp, MachineBasicBlock *TargetBB,
148       SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
149   unsigned LOOPi;
150   unsigned LOOPr;
151   if (EndLoopOp == Hexagon::ENDLOOP0) {
152     LOOPi = Hexagon::J2_loop0i;
153     LOOPr = Hexagon::J2_loop0r;
154   } else { // EndLoopOp == Hexagon::EndLOOP1
155     LOOPi = Hexagon::J2_loop1i;
156     LOOPr = Hexagon::J2_loop1r;
157   }
158 
159   // The loop set-up instruction will be in a predecessor block
160   for (MachineBasicBlock *PB : BB->predecessors()) {
161     // If this has been visited, already skip it.
162     if (!Visited.insert(PB).second)
163       continue;
164     if (PB == BB)
165       continue;
166     for (auto I = PB->instr_rbegin(), E = PB->instr_rend(); I != E; ++I) {
167       unsigned Opc = I->getOpcode();
168       if (Opc == LOOPi || Opc == LOOPr)
169         return &*I;
170       // We've reached a different loop, which means the loop01 has been
171       // removed.
172       if (Opc == EndLoopOp && I->getOperand(0).getMBB() != TargetBB)
173         return nullptr;
174     }
175     // Check the predecessors for the LOOP instruction.
176     if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
177       return Loop;
178   }
179   return nullptr;
180 }
181 
182 /// Gather register def/uses from MI.
183 /// This treats possible (predicated) defs as actually happening ones
184 /// (conservatively).
185 static inline void parseOperands(const MachineInstr &MI,
186       SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
187   Defs.clear();
188   Uses.clear();
189 
190   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
191     const MachineOperand &MO = MI.getOperand(i);
192 
193     if (!MO.isReg())
194       continue;
195 
196     unsigned Reg = MO.getReg();
197     if (!Reg)
198       continue;
199 
200     if (MO.isUse())
201       Uses.push_back(MO.getReg());
202 
203     if (MO.isDef())
204       Defs.push_back(MO.getReg());
205   }
206 }
207 
208 // Position dependent, so check twice for swap.
209 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
210   switch (Ga) {
211   case HexagonII::HSIG_None:
212   default:
213     return false;
214   case HexagonII::HSIG_L1:
215     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
216   case HexagonII::HSIG_L2:
217     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
218             Gb == HexagonII::HSIG_A);
219   case HexagonII::HSIG_S1:
220     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
221             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
222   case HexagonII::HSIG_S2:
223     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
224             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
225             Gb == HexagonII::HSIG_A);
226   case HexagonII::HSIG_A:
227     return (Gb == HexagonII::HSIG_A);
228   case HexagonII::HSIG_Compound:
229     return (Gb == HexagonII::HSIG_Compound);
230   }
231   return false;
232 }
233 
234 /// isLoadFromStackSlot - If the specified machine instruction is a direct
235 /// load from a stack slot, return the virtual or physical register number of
236 /// the destination along with the FrameIndex of the loaded stack slot.  If
237 /// not, return 0.  This predicate must return 0 if the instruction has
238 /// any side effects other than loading from the stack slot.
239 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
240                                                int &FrameIndex) const {
241   switch (MI.getOpcode()) {
242     default:
243       break;
244     case Hexagon::L2_loadri_io:
245     case Hexagon::L2_loadrd_io:
246     case Hexagon::V6_vL32b_ai:
247     case Hexagon::V6_vL32b_nt_ai:
248     case Hexagon::V6_vL32Ub_ai:
249     case Hexagon::LDriw_pred:
250     case Hexagon::LDriw_ctr:
251     case Hexagon::PS_vloadrq_ai:
252     case Hexagon::PS_vloadrw_ai:
253     case Hexagon::PS_vloadrw_nt_ai: {
254       const MachineOperand OpFI = MI.getOperand(1);
255       if (!OpFI.isFI())
256         return 0;
257       const MachineOperand OpOff = MI.getOperand(2);
258       if (!OpOff.isImm() || OpOff.getImm() != 0)
259         return 0;
260       FrameIndex = OpFI.getIndex();
261       return MI.getOperand(0).getReg();
262     }
263 
264     case Hexagon::L2_ploadrit_io:
265     case Hexagon::L2_ploadrif_io:
266     case Hexagon::L2_ploadrdt_io:
267     case Hexagon::L2_ploadrdf_io: {
268       const MachineOperand OpFI = MI.getOperand(2);
269       if (!OpFI.isFI())
270         return 0;
271       const MachineOperand OpOff = MI.getOperand(3);
272       if (!OpOff.isImm() || OpOff.getImm() != 0)
273         return 0;
274       FrameIndex = OpFI.getIndex();
275       return MI.getOperand(0).getReg();
276     }
277   }
278 
279   return 0;
280 }
281 
282 /// isStoreToStackSlot - If the specified machine instruction is a direct
283 /// store to a stack slot, return the virtual or physical register number of
284 /// the source reg along with the FrameIndex of the loaded stack slot.  If
285 /// not, return 0.  This predicate must return 0 if the instruction has
286 /// any side effects other than storing to the stack slot.
287 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
288                                               int &FrameIndex) const {
289   switch (MI.getOpcode()) {
290     default:
291       break;
292     case Hexagon::S2_storerb_io:
293     case Hexagon::S2_storerh_io:
294     case Hexagon::S2_storeri_io:
295     case Hexagon::S2_storerd_io:
296     case Hexagon::V6_vS32b_ai:
297     case Hexagon::V6_vS32Ub_ai:
298     case Hexagon::STriw_pred:
299     case Hexagon::STriw_ctr:
300     case Hexagon::PS_vstorerq_ai:
301     case Hexagon::PS_vstorerw_ai: {
302       const MachineOperand &OpFI = MI.getOperand(0);
303       if (!OpFI.isFI())
304         return 0;
305       const MachineOperand &OpOff = MI.getOperand(1);
306       if (!OpOff.isImm() || OpOff.getImm() != 0)
307         return 0;
308       FrameIndex = OpFI.getIndex();
309       return MI.getOperand(2).getReg();
310     }
311 
312     case Hexagon::S2_pstorerbt_io:
313     case Hexagon::S2_pstorerbf_io:
314     case Hexagon::S2_pstorerht_io:
315     case Hexagon::S2_pstorerhf_io:
316     case Hexagon::S2_pstorerit_io:
317     case Hexagon::S2_pstorerif_io:
318     case Hexagon::S2_pstorerdt_io:
319     case Hexagon::S2_pstorerdf_io: {
320       const MachineOperand &OpFI = MI.getOperand(1);
321       if (!OpFI.isFI())
322         return 0;
323       const MachineOperand &OpOff = MI.getOperand(2);
324       if (!OpOff.isImm() || OpOff.getImm() != 0)
325         return 0;
326       FrameIndex = OpFI.getIndex();
327       return MI.getOperand(3).getReg();
328     }
329   }
330 
331   return 0;
332 }
333 
334 /// This function checks if the instruction or bundle of instructions
335 /// has load from stack slot and returns frameindex and machine memory
336 /// operand of that instruction if true.
337 bool HexagonInstrInfo::hasLoadFromStackSlot(
338     const MachineInstr &MI,
339     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
340   if (MI.isBundle()) {
341     const MachineBasicBlock *MBB = MI.getParent();
342     MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
343     for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
344       if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses))
345         return true;
346     return false;
347   }
348 
349   return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses);
350 }
351 
352 /// This function checks if the instruction or bundle of instructions
353 /// has store to stack slot and returns frameindex and machine memory
354 /// operand of that instruction if true.
355 bool HexagonInstrInfo::hasStoreToStackSlot(
356     const MachineInstr &MI,
357     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
358   if (MI.isBundle()) {
359     const MachineBasicBlock *MBB = MI.getParent();
360     MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
361     for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
362       if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses))
363         return true;
364     return false;
365   }
366 
367   return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses);
368 }
369 
370 /// This function can analyze one/two way branching only and should (mostly) be
371 /// called by target independent side.
372 /// First entry is always the opcode of the branching instruction, except when
373 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
374 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
375 /// e.g. Jump_c p will have
376 /// Cond[0] = Jump_c
377 /// Cond[1] = p
378 /// HW-loop ENDLOOP:
379 /// Cond[0] = ENDLOOP
380 /// Cond[1] = MBB
381 /// New value jump:
382 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
383 /// Cond[1] = R
384 /// Cond[2] = Imm
385 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
386                                      MachineBasicBlock *&TBB,
387                                      MachineBasicBlock *&FBB,
388                                      SmallVectorImpl<MachineOperand> &Cond,
389                                      bool AllowModify) const {
390   TBB = nullptr;
391   FBB = nullptr;
392   Cond.clear();
393 
394   // If the block has no terminators, it just falls into the block after it.
395   MachineBasicBlock::instr_iterator I = MBB.instr_end();
396   if (I == MBB.instr_begin())
397     return false;
398 
399   // A basic block may looks like this:
400   //
401   //  [   insn
402   //     EH_LABEL
403   //      insn
404   //      insn
405   //      insn
406   //     EH_LABEL
407   //      insn     ]
408   //
409   // It has two succs but does not have a terminator
410   // Don't know how to handle it.
411   do {
412     --I;
413     if (I->isEHLabel())
414       // Don't analyze EH branches.
415       return true;
416   } while (I != MBB.instr_begin());
417 
418   I = MBB.instr_end();
419   --I;
420 
421   while (I->isDebugInstr()) {
422     if (I == MBB.instr_begin())
423       return false;
424     --I;
425   }
426 
427   bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
428                      I->getOperand(0).isMBB();
429   // Delete the J2_jump if it's equivalent to a fall-through.
430   if (AllowModify && JumpToBlock &&
431       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
432     LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
433     I->eraseFromParent();
434     I = MBB.instr_end();
435     if (I == MBB.instr_begin())
436       return false;
437     --I;
438   }
439   if (!isUnpredicatedTerminator(*I))
440     return false;
441 
442   // Get the last instruction in the block.
443   MachineInstr *LastInst = &*I;
444   MachineInstr *SecondLastInst = nullptr;
445   // Find one more terminator if present.
446   while (true) {
447     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
448       if (!SecondLastInst)
449         SecondLastInst = &*I;
450       else
451         // This is a third branch.
452         return true;
453     }
454     if (I == MBB.instr_begin())
455       break;
456     --I;
457   }
458 
459   int LastOpcode = LastInst->getOpcode();
460   int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
461   // If the branch target is not a basic block, it could be a tail call.
462   // (It is, if the target is a function.)
463   if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
464     return true;
465   if (SecLastOpcode == Hexagon::J2_jump &&
466       !SecondLastInst->getOperand(0).isMBB())
467     return true;
468 
469   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
470   bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
471 
472   if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
473     return true;
474 
475   // If there is only one terminator instruction, process it.
476   if (LastInst && !SecondLastInst) {
477     if (LastOpcode == Hexagon::J2_jump) {
478       TBB = LastInst->getOperand(0).getMBB();
479       return false;
480     }
481     if (isEndLoopN(LastOpcode)) {
482       TBB = LastInst->getOperand(0).getMBB();
483       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
484       Cond.push_back(LastInst->getOperand(0));
485       return false;
486     }
487     if (LastOpcodeHasJMP_c) {
488       TBB = LastInst->getOperand(1).getMBB();
489       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
490       Cond.push_back(LastInst->getOperand(0));
491       return false;
492     }
493     // Only supporting rr/ri versions of new-value jumps.
494     if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
495       TBB = LastInst->getOperand(2).getMBB();
496       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
497       Cond.push_back(LastInst->getOperand(0));
498       Cond.push_back(LastInst->getOperand(1));
499       return false;
500     }
501     LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
502                       << " with one jump\n";);
503     // Otherwise, don't know what this is.
504     return true;
505   }
506 
507   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
508   bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
509   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
510     if (!SecondLastInst->getOperand(1).isMBB())
511       return true;
512     TBB =  SecondLastInst->getOperand(1).getMBB();
513     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
514     Cond.push_back(SecondLastInst->getOperand(0));
515     FBB = LastInst->getOperand(0).getMBB();
516     return false;
517   }
518 
519   // Only supporting rr/ri versions of new-value jumps.
520   if (SecLastOpcodeHasNVJump &&
521       (SecondLastInst->getNumExplicitOperands() == 3) &&
522       (LastOpcode == Hexagon::J2_jump)) {
523     TBB = SecondLastInst->getOperand(2).getMBB();
524     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
525     Cond.push_back(SecondLastInst->getOperand(0));
526     Cond.push_back(SecondLastInst->getOperand(1));
527     FBB = LastInst->getOperand(0).getMBB();
528     return false;
529   }
530 
531   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
532   // executed, so remove it.
533   if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
534     TBB = SecondLastInst->getOperand(0).getMBB();
535     I = LastInst->getIterator();
536     if (AllowModify)
537       I->eraseFromParent();
538     return false;
539   }
540 
541   // If the block ends with an ENDLOOP, and J2_jump, handle it.
542   if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
543     TBB = SecondLastInst->getOperand(0).getMBB();
544     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
545     Cond.push_back(SecondLastInst->getOperand(0));
546     FBB = LastInst->getOperand(0).getMBB();
547     return false;
548   }
549   LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
550                     << " with two jumps";);
551   // Otherwise, can't handle this.
552   return true;
553 }
554 
555 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB,
556                                         int *BytesRemoved) const {
557   assert(!BytesRemoved && "code size not handled");
558 
559   LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
560   MachineBasicBlock::iterator I = MBB.end();
561   unsigned Count = 0;
562   while (I != MBB.begin()) {
563     --I;
564     if (I->isDebugInstr())
565       continue;
566     // Only removing branches from end of MBB.
567     if (!I->isBranch())
568       return Count;
569     if (Count && (I->getOpcode() == Hexagon::J2_jump))
570       llvm_unreachable("Malformed basic block: unconditional branch not last");
571     MBB.erase(&MBB.back());
572     I = MBB.end();
573     ++Count;
574   }
575   return Count;
576 }
577 
578 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB,
579                                         MachineBasicBlock *TBB,
580                                         MachineBasicBlock *FBB,
581                                         ArrayRef<MachineOperand> Cond,
582                                         const DebugLoc &DL,
583                                         int *BytesAdded) const {
584   unsigned BOpc   = Hexagon::J2_jump;
585   unsigned BccOpc = Hexagon::J2_jumpt;
586   assert(validateBranchCond(Cond) && "Invalid branching condition");
587   assert(TBB && "insertBranch must not be told to insert a fallthrough");
588   assert(!BytesAdded && "code size not handled");
589 
590   // Check if reverseBranchCondition has asked to reverse this branch
591   // If we want to reverse the branch an odd number of times, we want
592   // J2_jumpf.
593   if (!Cond.empty() && Cond[0].isImm())
594     BccOpc = Cond[0].getImm();
595 
596   if (!FBB) {
597     if (Cond.empty()) {
598       // Due to a bug in TailMerging/CFG Optimization, we need to add a
599       // special case handling of a predicated jump followed by an
600       // unconditional jump. If not, Tail Merging and CFG Optimization go
601       // into an infinite loop.
602       MachineBasicBlock *NewTBB, *NewFBB;
603       SmallVector<MachineOperand, 4> Cond;
604       auto Term = MBB.getFirstTerminator();
605       if (Term != MBB.end() && isPredicated(*Term) &&
606           !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
607           MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
608         reverseBranchCondition(Cond);
609         removeBranch(MBB);
610         return insertBranch(MBB, TBB, nullptr, Cond, DL);
611       }
612       BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
613     } else if (isEndLoopN(Cond[0].getImm())) {
614       int EndLoopOp = Cond[0].getImm();
615       assert(Cond[1].isMBB());
616       // Since we're adding an ENDLOOP, there better be a LOOP instruction.
617       // Check for it, and change the BB target if needed.
618       SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
619       MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
620                                          VisitedBBs);
621       assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
622       Loop->getOperand(0).setMBB(TBB);
623       // Add the ENDLOOP after the finding the LOOP0.
624       BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
625     } else if (isNewValueJump(Cond[0].getImm())) {
626       assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
627       // New value jump
628       // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
629       // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
630       unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
631       LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
632                         << printMBBReference(MBB););
633       if (Cond[2].isReg()) {
634         unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
635         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
636           addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
637       } else if(Cond[2].isImm()) {
638         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
639           addImm(Cond[2].getImm()).addMBB(TBB);
640       } else
641         llvm_unreachable("Invalid condition for branching");
642     } else {
643       assert((Cond.size() == 2) && "Malformed cond vector");
644       const MachineOperand &RO = Cond[1];
645       unsigned Flags = getUndefRegState(RO.isUndef());
646       BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
647     }
648     return 1;
649   }
650   assert((!Cond.empty()) &&
651          "Cond. cannot be empty when multiple branchings are required");
652   assert((!isNewValueJump(Cond[0].getImm())) &&
653          "NV-jump cannot be inserted with another branch");
654   // Special case for hardware loops.  The condition is a basic block.
655   if (isEndLoopN(Cond[0].getImm())) {
656     int EndLoopOp = Cond[0].getImm();
657     assert(Cond[1].isMBB());
658     // Since we're adding an ENDLOOP, there better be a LOOP instruction.
659     // Check for it, and change the BB target if needed.
660     SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
661     MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
662                                        VisitedBBs);
663     assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
664     Loop->getOperand(0).setMBB(TBB);
665     // Add the ENDLOOP after the finding the LOOP0.
666     BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
667   } else {
668     const MachineOperand &RO = Cond[1];
669     unsigned Flags = getUndefRegState(RO.isUndef());
670     BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
671   }
672   BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
673 
674   return 2;
675 }
676 
677 /// Analyze the loop code to find the loop induction variable and compare used
678 /// to compute the number of iterations. Currently, we analyze loop that are
679 /// controlled using hardware loops.  In this case, the induction variable
680 /// instruction is null.  For all other cases, this function returns true, which
681 /// means we're unable to analyze it.
682 bool HexagonInstrInfo::analyzeLoop(MachineLoop &L,
683                                    MachineInstr *&IndVarInst,
684                                    MachineInstr *&CmpInst) const {
685 
686   MachineBasicBlock *LoopEnd = L.getBottomBlock();
687   MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
688   // We really "analyze" only hardware loops right now.
689   if (I != LoopEnd->end() && isEndLoopN(I->getOpcode())) {
690     IndVarInst = nullptr;
691     CmpInst = &*I;
692     return false;
693   }
694   return true;
695 }
696 
697 /// Generate code to reduce the loop iteration by one and check if the loop is
698 /// finished. Return the value/register of the new loop count. this function
699 /// assumes the nth iteration is peeled first.
700 unsigned HexagonInstrInfo::reduceLoopCount(
701     MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar,
702     MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond,
703     SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter,
704     unsigned MaxIter) const {
705   // We expect a hardware loop currently. This means that IndVar is set
706   // to null, and the compare is the ENDLOOP instruction.
707   assert((!IndVar) && isEndLoopN(Cmp.getOpcode())
708                    && "Expecting a hardware loop");
709   MachineFunction *MF = MBB.getParent();
710   DebugLoc DL = Cmp.getDebugLoc();
711   SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
712   MachineInstr *Loop = findLoopInstr(&MBB, Cmp.getOpcode(),
713                                      Cmp.getOperand(0).getMBB(), VisitedBBs);
714   if (!Loop)
715     return 0;
716   // If the loop trip count is a compile-time value, then just change the
717   // value.
718   if (Loop->getOpcode() == Hexagon::J2_loop0i ||
719       Loop->getOpcode() == Hexagon::J2_loop1i) {
720     int64_t Offset = Loop->getOperand(1).getImm();
721     if (Offset <= 1)
722       Loop->eraseFromParent();
723     else
724       Loop->getOperand(1).setImm(Offset - 1);
725     return Offset - 1;
726   }
727   // The loop trip count is a run-time value. We generate code to subtract
728   // one from the trip count, and update the loop instruction.
729   assert(Loop->getOpcode() == Hexagon::J2_loop0r && "Unexpected instruction");
730   unsigned LoopCount = Loop->getOperand(1).getReg();
731   // Check if we're done with the loop.
732   unsigned LoopEnd = createVR(MF, MVT::i1);
733   MachineInstr *NewCmp = BuildMI(&MBB, DL, get(Hexagon::C2_cmpgtui), LoopEnd).
734     addReg(LoopCount).addImm(1);
735   unsigned NewLoopCount = createVR(MF, MVT::i32);
736   MachineInstr *NewAdd = BuildMI(&MBB, DL, get(Hexagon::A2_addi), NewLoopCount).
737     addReg(LoopCount).addImm(-1);
738   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
739   // Update the previously generated instructions with the new loop counter.
740   for (SmallVectorImpl<MachineInstr *>::iterator I = PrevInsts.begin(),
741          E = PrevInsts.end(); I != E; ++I)
742     (*I)->substituteRegister(LoopCount, NewLoopCount, 0, HRI);
743   PrevInsts.clear();
744   PrevInsts.push_back(NewCmp);
745   PrevInsts.push_back(NewAdd);
746   // Insert the new loop instruction if this is the last time the loop is
747   // decremented.
748   if (Iter == MaxIter)
749     BuildMI(&MBB, DL, get(Hexagon::J2_loop0r)).
750       addMBB(Loop->getOperand(0).getMBB()).addReg(NewLoopCount);
751   // Delete the old loop instruction.
752   if (Iter == 0)
753     Loop->eraseFromParent();
754   Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
755   Cond.push_back(NewCmp->getOperand(0));
756   return NewLoopCount;
757 }
758 
759 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
760       unsigned NumCycles, unsigned ExtraPredCycles,
761       BranchProbability Probability) const {
762   return nonDbgBBSize(&MBB) <= 3;
763 }
764 
765 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
766       unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
767       unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
768       const {
769   return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
770 }
771 
772 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
773       unsigned NumInstrs, BranchProbability Probability) const {
774   return NumInstrs <= 4;
775 }
776 
777 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
778                                    MachineBasicBlock::iterator I,
779                                    const DebugLoc &DL, unsigned DestReg,
780                                    unsigned SrcReg, bool KillSrc) const {
781   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
782   unsigned KillFlag = getKillRegState(KillSrc);
783 
784   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
785     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
786       .addReg(SrcReg, KillFlag);
787     return;
788   }
789   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
790     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
791       .addReg(SrcReg, KillFlag);
792     return;
793   }
794   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
795     // Map Pd = Ps to Pd = or(Ps, Ps).
796     BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
797       .addReg(SrcReg).addReg(SrcReg, KillFlag);
798     return;
799   }
800   if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
801       Hexagon::IntRegsRegClass.contains(SrcReg)) {
802     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
803       .addReg(SrcReg, KillFlag);
804     return;
805   }
806   if (Hexagon::IntRegsRegClass.contains(DestReg) &&
807       Hexagon::CtrRegsRegClass.contains(SrcReg)) {
808     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
809       .addReg(SrcReg, KillFlag);
810     return;
811   }
812   if (Hexagon::ModRegsRegClass.contains(DestReg) &&
813       Hexagon::IntRegsRegClass.contains(SrcReg)) {
814     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
815       .addReg(SrcReg, KillFlag);
816     return;
817   }
818   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
819       Hexagon::IntRegsRegClass.contains(DestReg)) {
820     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
821       .addReg(SrcReg, KillFlag);
822     return;
823   }
824   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
825       Hexagon::PredRegsRegClass.contains(DestReg)) {
826     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
827       .addReg(SrcReg, KillFlag);
828     return;
829   }
830   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
831       Hexagon::IntRegsRegClass.contains(DestReg)) {
832     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
833       .addReg(SrcReg, KillFlag);
834     return;
835   }
836   if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
837     BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
838       addReg(SrcReg, KillFlag);
839     return;
840   }
841   if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
842     unsigned LoSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
843     unsigned HiSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
844     BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
845       .addReg(HiSrc, KillFlag)
846       .addReg(LoSrc, KillFlag);
847     return;
848   }
849   if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
850     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
851       .addReg(SrcReg)
852       .addReg(SrcReg, KillFlag);
853     return;
854   }
855   if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
856       Hexagon::HvxVRRegClass.contains(DestReg)) {
857     llvm_unreachable("Unimplemented pred to vec");
858     return;
859   }
860   if (Hexagon::HvxQRRegClass.contains(DestReg) &&
861       Hexagon::HvxVRRegClass.contains(SrcReg)) {
862     llvm_unreachable("Unimplemented vec to pred");
863     return;
864   }
865 
866 #ifndef NDEBUG
867   // Show the invalid registers to ease debugging.
868   dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
869          << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
870 #endif
871   llvm_unreachable("Unimplemented");
872 }
873 
874 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
875       MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
876       const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
877   DebugLoc DL = MBB.findDebugLoc(I);
878   MachineFunction &MF = *MBB.getParent();
879   MachineFrameInfo &MFI = MF.getFrameInfo();
880   unsigned SlotAlign = MFI.getObjectAlignment(FI);
881   unsigned RegAlign = TRI->getSpillAlignment(*RC);
882   unsigned KillFlag = getKillRegState(isKill);
883   bool HasAlloca = MFI.hasVarSizedObjects();
884   const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();
885 
886   MachineMemOperand *MMO = MF.getMachineMemOperand(
887       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
888       MFI.getObjectSize(FI), SlotAlign);
889 
890   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
891     BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
892       .addFrameIndex(FI).addImm(0)
893       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
894   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
895     BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
896       .addFrameIndex(FI).addImm(0)
897       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
898   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
899     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
900       .addFrameIndex(FI).addImm(0)
901       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
902   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
903     BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
904       .addFrameIndex(FI).addImm(0)
905       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
906   } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
907     BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
908       .addFrameIndex(FI).addImm(0)
909       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
910   } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
911     // If there are variable-sized objects, spills will not be aligned.
912     if (HasAlloca)
913       SlotAlign = HFI.getStackAlignment();
914     unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vS32Ub_ai
915                                         : Hexagon::V6_vS32b_ai;
916     MachineMemOperand *MMOA = MF.getMachineMemOperand(
917         MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
918         MFI.getObjectSize(FI), SlotAlign);
919     BuildMI(MBB, I, DL, get(Opc))
920       .addFrameIndex(FI).addImm(0)
921       .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
922   } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
923     // If there are variable-sized objects, spills will not be aligned.
924     if (HasAlloca)
925       SlotAlign = HFI.getStackAlignment();
926     unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vstorerwu_ai
927                                         : Hexagon::PS_vstorerw_ai;
928     MachineMemOperand *MMOA = MF.getMachineMemOperand(
929         MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
930         MFI.getObjectSize(FI), SlotAlign);
931     BuildMI(MBB, I, DL, get(Opc))
932       .addFrameIndex(FI).addImm(0)
933       .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
934   } else {
935     llvm_unreachable("Unimplemented");
936   }
937 }
938 
939 void HexagonInstrInfo::loadRegFromStackSlot(
940     MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg,
941     int FI, const TargetRegisterClass *RC,
942     const TargetRegisterInfo *TRI) const {
943   DebugLoc DL = MBB.findDebugLoc(I);
944   MachineFunction &MF = *MBB.getParent();
945   MachineFrameInfo &MFI = MF.getFrameInfo();
946   unsigned SlotAlign = MFI.getObjectAlignment(FI);
947   unsigned RegAlign = TRI->getSpillAlignment(*RC);
948   bool HasAlloca = MFI.hasVarSizedObjects();
949   const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();
950 
951   MachineMemOperand *MMO = MF.getMachineMemOperand(
952       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
953       MFI.getObjectSize(FI), SlotAlign);
954 
955   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
956     BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
957       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
958   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
959     BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
960       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
961   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
962     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
963       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
964   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
965     BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
966       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
967   } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
968     BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
969       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
970   } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
971     // If there are variable-sized objects, spills will not be aligned.
972     if (HasAlloca)
973       SlotAlign = HFI.getStackAlignment();
974     unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vL32Ub_ai
975                                         : Hexagon::V6_vL32b_ai;
976     MachineMemOperand *MMOA = MF.getMachineMemOperand(
977         MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
978         MFI.getObjectSize(FI), SlotAlign);
979     BuildMI(MBB, I, DL, get(Opc), DestReg)
980       .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
981   } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
982     // If there are variable-sized objects, spills will not be aligned.
983     if (HasAlloca)
984       SlotAlign = HFI.getStackAlignment();
985     unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vloadrwu_ai
986                                         : Hexagon::PS_vloadrw_ai;
987     MachineMemOperand *MMOA = MF.getMachineMemOperand(
988         MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
989         MFI.getObjectSize(FI), SlotAlign);
990     BuildMI(MBB, I, DL, get(Opc), DestReg)
991       .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
992   } else {
993     llvm_unreachable("Can't store this register to stack slot");
994   }
995 }
996 
997 static void getLiveRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
998   const MachineBasicBlock &B = *MI.getParent();
999   Regs.addLiveOuts(B);
1000   auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
1001   for (auto I = B.rbegin(); I != E; ++I)
1002     Regs.stepBackward(*I);
1003 }
1004 
1005 /// expandPostRAPseudo - This function is called for all pseudo instructions
1006 /// that remain after register allocation. Many pseudo instructions are
1007 /// created to help register allocation. This is the place to convert them
1008 /// into real instructions. The target can edit MI in place, or it can insert
1009 /// new instructions and erase MI. The function should return true if
1010 /// anything was changed.
1011 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1012   MachineBasicBlock &MBB = *MI.getParent();
1013   MachineFunction &MF = *MBB.getParent();
1014   MachineRegisterInfo &MRI = MF.getRegInfo();
1015   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1016   DebugLoc DL = MI.getDebugLoc();
1017   unsigned Opc = MI.getOpcode();
1018 
1019   auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
1020     unsigned Mx = MI.getOperand(MxOp).getReg();
1021     unsigned CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
1022     BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
1023         .add(MI.getOperand((HasImm ? 5 : 4)));
1024     auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
1025         .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
1026     if (HasImm)
1027       MIB.add(MI.getOperand(4));
1028     MIB.addReg(CSx, RegState::Implicit);
1029     MBB.erase(MI);
1030     return true;
1031   };
1032 
1033   switch (Opc) {
1034     case TargetOpcode::COPY: {
1035       MachineOperand &MD = MI.getOperand(0);
1036       MachineOperand &MS = MI.getOperand(1);
1037       MachineBasicBlock::iterator MBBI = MI.getIterator();
1038       if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1039         copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1040         std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1041       }
1042       MBB.erase(MBBI);
1043       return true;
1044     }
1045     case Hexagon::PS_aligna:
1046       BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1047           .addReg(HRI.getFrameRegister())
1048           .addImm(-MI.getOperand(1).getImm());
1049       MBB.erase(MI);
1050       return true;
1051     case Hexagon::V6_vassignp: {
1052       unsigned SrcReg = MI.getOperand(1).getReg();
1053       unsigned DstReg = MI.getOperand(0).getReg();
1054       unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1055       BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1056         .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi), Kill)
1057         .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo), Kill);
1058       MBB.erase(MI);
1059       return true;
1060     }
1061     case Hexagon::V6_lo: {
1062       unsigned SrcReg = MI.getOperand(1).getReg();
1063       unsigned DstReg = MI.getOperand(0).getReg();
1064       unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1065       copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1066       MBB.erase(MI);
1067       MRI.clearKillFlags(SrcSubLo);
1068       return true;
1069     }
1070     case Hexagon::V6_hi: {
1071       unsigned SrcReg = MI.getOperand(1).getReg();
1072       unsigned DstReg = MI.getOperand(0).getReg();
1073       unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1074       copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1075       MBB.erase(MI);
1076       MRI.clearKillFlags(SrcSubHi);
1077       return true;
1078     }
1079     case Hexagon::PS_vstorerw_ai:
1080     case Hexagon::PS_vstorerwu_ai: {
1081       bool Aligned = Opc == Hexagon::PS_vstorerw_ai;
1082       unsigned SrcReg = MI.getOperand(2).getReg();
1083       unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1084       unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1085       unsigned NewOpc = Aligned ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai;
1086       unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1087 
1088       MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc))
1089                                  .add(MI.getOperand(0))
1090                                  .addImm(MI.getOperand(1).getImm())
1091                                  .addReg(SrcSubLo)
1092                                  .cloneMemRefs(MI);
1093       MI1New->getOperand(0).setIsKill(false);
1094       BuildMI(MBB, MI, DL, get(NewOpc))
1095           .add(MI.getOperand(0))
1096           // The Vectors are indexed in multiples of vector size.
1097           .addImm(MI.getOperand(1).getImm() + Offset)
1098           .addReg(SrcSubHi)
1099           .cloneMemRefs(MI);
1100       MBB.erase(MI);
1101       return true;
1102     }
1103     case Hexagon::PS_vloadrw_ai:
1104     case Hexagon::PS_vloadrwu_ai: {
1105       bool Aligned = Opc == Hexagon::PS_vloadrw_ai;
1106       unsigned DstReg = MI.getOperand(0).getReg();
1107       unsigned NewOpc = Aligned ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai;
1108       unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1109 
1110       MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc),
1111                                      HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1112                                  .add(MI.getOperand(1))
1113                                  .addImm(MI.getOperand(2).getImm())
1114                                  .cloneMemRefs(MI);
1115       MI1New->getOperand(1).setIsKill(false);
1116       BuildMI(MBB, MI, DL, get(NewOpc), HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1117           .add(MI.getOperand(1))
1118           // The Vectors are indexed in multiples of vector size.
1119           .addImm(MI.getOperand(2).getImm() + Offset)
1120           .cloneMemRefs(MI);
1121       MBB.erase(MI);
1122       return true;
1123     }
1124     case Hexagon::PS_true: {
1125       unsigned Reg = MI.getOperand(0).getReg();
1126       BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1127         .addReg(Reg, RegState::Undef)
1128         .addReg(Reg, RegState::Undef);
1129       MBB.erase(MI);
1130       return true;
1131     }
1132     case Hexagon::PS_false: {
1133       unsigned Reg = MI.getOperand(0).getReg();
1134       BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1135         .addReg(Reg, RegState::Undef)
1136         .addReg(Reg, RegState::Undef);
1137       MBB.erase(MI);
1138       return true;
1139     }
1140     case Hexagon::PS_qtrue: {
1141       BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1142         .addReg(Hexagon::V0, RegState::Undef)
1143         .addReg(Hexagon::V0, RegState::Undef);
1144       MBB.erase(MI);
1145       return true;
1146     }
1147     case Hexagon::PS_qfalse: {
1148       BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1149         .addReg(Hexagon::V0, RegState::Undef)
1150         .addReg(Hexagon::V0, RegState::Undef);
1151       MBB.erase(MI);
1152       return true;
1153     }
1154     case Hexagon::PS_vdd0: {
1155       unsigned Vd = MI.getOperand(0).getReg();
1156       BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1157         .addReg(Vd, RegState::Undef)
1158         .addReg(Vd, RegState::Undef);
1159       MBB.erase(MI);
1160       return true;
1161     }
1162     case Hexagon::PS_vmulw: {
1163       // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1164       unsigned DstReg = MI.getOperand(0).getReg();
1165       unsigned Src1Reg = MI.getOperand(1).getReg();
1166       unsigned Src2Reg = MI.getOperand(2).getReg();
1167       unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1168       unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1169       unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1170       unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1171       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1172               HRI.getSubReg(DstReg, Hexagon::isub_hi))
1173           .addReg(Src1SubHi)
1174           .addReg(Src2SubHi);
1175       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1176               HRI.getSubReg(DstReg, Hexagon::isub_lo))
1177           .addReg(Src1SubLo)
1178           .addReg(Src2SubLo);
1179       MBB.erase(MI);
1180       MRI.clearKillFlags(Src1SubHi);
1181       MRI.clearKillFlags(Src1SubLo);
1182       MRI.clearKillFlags(Src2SubHi);
1183       MRI.clearKillFlags(Src2SubLo);
1184       return true;
1185     }
1186     case Hexagon::PS_vmulw_acc: {
1187       // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1188       unsigned DstReg = MI.getOperand(0).getReg();
1189       unsigned Src1Reg = MI.getOperand(1).getReg();
1190       unsigned Src2Reg = MI.getOperand(2).getReg();
1191       unsigned Src3Reg = MI.getOperand(3).getReg();
1192       unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1193       unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1194       unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1195       unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1196       unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1197       unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1198       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1199               HRI.getSubReg(DstReg, Hexagon::isub_hi))
1200           .addReg(Src1SubHi)
1201           .addReg(Src2SubHi)
1202           .addReg(Src3SubHi);
1203       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1204               HRI.getSubReg(DstReg, Hexagon::isub_lo))
1205           .addReg(Src1SubLo)
1206           .addReg(Src2SubLo)
1207           .addReg(Src3SubLo);
1208       MBB.erase(MI);
1209       MRI.clearKillFlags(Src1SubHi);
1210       MRI.clearKillFlags(Src1SubLo);
1211       MRI.clearKillFlags(Src2SubHi);
1212       MRI.clearKillFlags(Src2SubLo);
1213       MRI.clearKillFlags(Src3SubHi);
1214       MRI.clearKillFlags(Src3SubLo);
1215       return true;
1216     }
1217     case Hexagon::PS_pselect: {
1218       const MachineOperand &Op0 = MI.getOperand(0);
1219       const MachineOperand &Op1 = MI.getOperand(1);
1220       const MachineOperand &Op2 = MI.getOperand(2);
1221       const MachineOperand &Op3 = MI.getOperand(3);
1222       unsigned Rd = Op0.getReg();
1223       unsigned Pu = Op1.getReg();
1224       unsigned Rs = Op2.getReg();
1225       unsigned Rt = Op3.getReg();
1226       DebugLoc DL = MI.getDebugLoc();
1227       unsigned K1 = getKillRegState(Op1.isKill());
1228       unsigned K2 = getKillRegState(Op2.isKill());
1229       unsigned K3 = getKillRegState(Op3.isKill());
1230       if (Rd != Rs)
1231         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1232           .addReg(Pu, (Rd == Rt) ? K1 : 0)
1233           .addReg(Rs, K2);
1234       if (Rd != Rt)
1235         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1236           .addReg(Pu, K1)
1237           .addReg(Rt, K3);
1238       MBB.erase(MI);
1239       return true;
1240     }
1241     case Hexagon::PS_vselect: {
1242       const MachineOperand &Op0 = MI.getOperand(0);
1243       const MachineOperand &Op1 = MI.getOperand(1);
1244       const MachineOperand &Op2 = MI.getOperand(2);
1245       const MachineOperand &Op3 = MI.getOperand(3);
1246       LivePhysRegs LiveAtMI(HRI);
1247       getLiveRegsAt(LiveAtMI, MI);
1248       bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1249       unsigned PReg = Op1.getReg();
1250       assert(Op1.getSubReg() == 0);
1251       unsigned PState = getRegState(Op1);
1252 
1253       if (Op0.getReg() != Op2.getReg()) {
1254         unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1255                                                   : PState;
1256         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1257                      .add(Op0)
1258                      .addReg(PReg, S)
1259                      .add(Op2);
1260         if (IsDestLive)
1261           T.addReg(Op0.getReg(), RegState::Implicit);
1262         IsDestLive = true;
1263       }
1264       if (Op0.getReg() != Op3.getReg()) {
1265         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1266                      .add(Op0)
1267                      .addReg(PReg, PState)
1268                      .add(Op3);
1269         if (IsDestLive)
1270           T.addReg(Op0.getReg(), RegState::Implicit);
1271       }
1272       MBB.erase(MI);
1273       return true;
1274     }
1275     case Hexagon::PS_wselect: {
1276       MachineOperand &Op0 = MI.getOperand(0);
1277       MachineOperand &Op1 = MI.getOperand(1);
1278       MachineOperand &Op2 = MI.getOperand(2);
1279       MachineOperand &Op3 = MI.getOperand(3);
1280       LivePhysRegs LiveAtMI(HRI);
1281       getLiveRegsAt(LiveAtMI, MI);
1282       bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1283       unsigned PReg = Op1.getReg();
1284       assert(Op1.getSubReg() == 0);
1285       unsigned PState = getRegState(Op1);
1286 
1287       if (Op0.getReg() != Op2.getReg()) {
1288         unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1289                                                   : PState;
1290         unsigned SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1291         unsigned SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1292         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1293                      .add(Op0)
1294                      .addReg(PReg, S)
1295                      .addReg(SrcHi)
1296                      .addReg(SrcLo);
1297         if (IsDestLive)
1298           T.addReg(Op0.getReg(), RegState::Implicit);
1299         IsDestLive = true;
1300       }
1301       if (Op0.getReg() != Op3.getReg()) {
1302         unsigned SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1303         unsigned SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1304         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1305                      .add(Op0)
1306                      .addReg(PReg, PState)
1307                      .addReg(SrcHi)
1308                      .addReg(SrcLo);
1309         if (IsDestLive)
1310           T.addReg(Op0.getReg(), RegState::Implicit);
1311       }
1312       MBB.erase(MI);
1313       return true;
1314     }
1315 
1316     case Hexagon::PS_crash: {
1317       // Generate a misaligned load that is guaranteed to cause a crash.
1318       class CrashPseudoSourceValue : public PseudoSourceValue {
1319       public:
1320         CrashPseudoSourceValue(const TargetInstrInfo &TII)
1321           : PseudoSourceValue(TargetCustom, TII) {}
1322 
1323         bool isConstant(const MachineFrameInfo *) const override {
1324           return false;
1325         }
1326         bool isAliased(const MachineFrameInfo *) const override {
1327           return false;
1328         }
1329         bool mayAlias(const MachineFrameInfo *) const override {
1330           return false;
1331         }
1332         void printCustom(raw_ostream &OS) const override {
1333           OS << "MisalignedCrash";
1334         }
1335       };
1336 
1337       static const CrashPseudoSourceValue CrashPSV(*this);
1338       MachineMemOperand *MMO = MF.getMachineMemOperand(
1339           MachinePointerInfo(&CrashPSV),
1340           MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8, 1);
1341       BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13)
1342         .addImm(0xBADC0FEE)  // Misaligned load.
1343         .addMemOperand(MMO);
1344       MBB.erase(MI);
1345       return true;
1346     }
1347 
1348     case Hexagon::PS_tailcall_i:
1349       MI.setDesc(get(Hexagon::J2_jump));
1350       return true;
1351     case Hexagon::PS_tailcall_r:
1352     case Hexagon::PS_jmpret:
1353       MI.setDesc(get(Hexagon::J2_jumpr));
1354       return true;
1355     case Hexagon::PS_jmprett:
1356       MI.setDesc(get(Hexagon::J2_jumprt));
1357       return true;
1358     case Hexagon::PS_jmpretf:
1359       MI.setDesc(get(Hexagon::J2_jumprf));
1360       return true;
1361     case Hexagon::PS_jmprettnewpt:
1362       MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1363       return true;
1364     case Hexagon::PS_jmpretfnewpt:
1365       MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1366       return true;
1367     case Hexagon::PS_jmprettnew:
1368       MI.setDesc(get(Hexagon::J2_jumprtnew));
1369       return true;
1370     case Hexagon::PS_jmpretfnew:
1371       MI.setDesc(get(Hexagon::J2_jumprfnew));
1372       return true;
1373 
1374     case Hexagon::PS_loadrub_pci:
1375       return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true,  /*MxOp*/4);
1376     case Hexagon::PS_loadrb_pci:
1377       return RealCirc(Hexagon::L2_loadrb_pci,  /*HasImm*/true,  /*MxOp*/4);
1378     case Hexagon::PS_loadruh_pci:
1379       return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true,  /*MxOp*/4);
1380     case Hexagon::PS_loadrh_pci:
1381       return RealCirc(Hexagon::L2_loadrh_pci,  /*HasImm*/true,  /*MxOp*/4);
1382     case Hexagon::PS_loadri_pci:
1383       return RealCirc(Hexagon::L2_loadri_pci,  /*HasImm*/true,  /*MxOp*/4);
1384     case Hexagon::PS_loadrd_pci:
1385       return RealCirc(Hexagon::L2_loadrd_pci,  /*HasImm*/true,  /*MxOp*/4);
1386     case Hexagon::PS_loadrub_pcr:
1387       return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1388     case Hexagon::PS_loadrb_pcr:
1389       return RealCirc(Hexagon::L2_loadrb_pcr,  /*HasImm*/false, /*MxOp*/3);
1390     case Hexagon::PS_loadruh_pcr:
1391       return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1392     case Hexagon::PS_loadrh_pcr:
1393       return RealCirc(Hexagon::L2_loadrh_pcr,  /*HasImm*/false, /*MxOp*/3);
1394     case Hexagon::PS_loadri_pcr:
1395       return RealCirc(Hexagon::L2_loadri_pcr,  /*HasImm*/false, /*MxOp*/3);
1396     case Hexagon::PS_loadrd_pcr:
1397       return RealCirc(Hexagon::L2_loadrd_pcr,  /*HasImm*/false, /*MxOp*/3);
1398     case Hexagon::PS_storerb_pci:
1399       return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true,  /*MxOp*/3);
1400     case Hexagon::PS_storerh_pci:
1401       return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true,  /*MxOp*/3);
1402     case Hexagon::PS_storerf_pci:
1403       return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true,  /*MxOp*/3);
1404     case Hexagon::PS_storeri_pci:
1405       return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true,  /*MxOp*/3);
1406     case Hexagon::PS_storerd_pci:
1407       return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true,  /*MxOp*/3);
1408     case Hexagon::PS_storerb_pcr:
1409       return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1410     case Hexagon::PS_storerh_pcr:
1411       return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1412     case Hexagon::PS_storerf_pcr:
1413       return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1414     case Hexagon::PS_storeri_pcr:
1415       return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1416     case Hexagon::PS_storerd_pcr:
1417       return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1418   }
1419 
1420   return false;
1421 }
1422 
1423 MachineBasicBlock::instr_iterator
1424 HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const {
1425   MachineBasicBlock &MBB = *MI.getParent();
1426   const DebugLoc &DL = MI.getDebugLoc();
1427   unsigned Opc = MI.getOpcode();
1428   MachineBasicBlock::iterator First;
1429 
1430   switch (Opc) {
1431     case Hexagon::V6_vgathermh_pseudo:
1432       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1433                   .add(MI.getOperand(1))
1434                   .add(MI.getOperand(2))
1435                   .add(MI.getOperand(3));
1436       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1437           .add(MI.getOperand(0))
1438           .addImm(0)
1439           .addReg(Hexagon::VTMP);
1440       MBB.erase(MI);
1441       return First.getInstrIterator();
1442 
1443     case Hexagon::V6_vgathermw_pseudo:
1444       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1445                   .add(MI.getOperand(1))
1446                   .add(MI.getOperand(2))
1447                   .add(MI.getOperand(3));
1448       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1449           .add(MI.getOperand(0))
1450           .addImm(0)
1451           .addReg(Hexagon::VTMP);
1452       MBB.erase(MI);
1453       return First.getInstrIterator();
1454 
1455     case Hexagon::V6_vgathermhw_pseudo:
1456       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1457                   .add(MI.getOperand(1))
1458                   .add(MI.getOperand(2))
1459                   .add(MI.getOperand(3));
1460       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1461           .add(MI.getOperand(0))
1462           .addImm(0)
1463           .addReg(Hexagon::VTMP);
1464       MBB.erase(MI);
1465       return First.getInstrIterator();
1466 
1467     case Hexagon::V6_vgathermhq_pseudo:
1468       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1469                   .add(MI.getOperand(1))
1470                   .add(MI.getOperand(2))
1471                   .add(MI.getOperand(3))
1472                   .add(MI.getOperand(4));
1473       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1474           .add(MI.getOperand(0))
1475           .addImm(0)
1476           .addReg(Hexagon::VTMP);
1477       MBB.erase(MI);
1478       return First.getInstrIterator();
1479 
1480     case Hexagon::V6_vgathermwq_pseudo:
1481       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1482                   .add(MI.getOperand(1))
1483                   .add(MI.getOperand(2))
1484                   .add(MI.getOperand(3))
1485                   .add(MI.getOperand(4));
1486       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1487           .add(MI.getOperand(0))
1488           .addImm(0)
1489           .addReg(Hexagon::VTMP);
1490       MBB.erase(MI);
1491       return First.getInstrIterator();
1492 
1493     case Hexagon::V6_vgathermhwq_pseudo:
1494       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1495                   .add(MI.getOperand(1))
1496                   .add(MI.getOperand(2))
1497                   .add(MI.getOperand(3))
1498                   .add(MI.getOperand(4));
1499       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1500           .add(MI.getOperand(0))
1501           .addImm(0)
1502           .addReg(Hexagon::VTMP);
1503       MBB.erase(MI);
1504       return First.getInstrIterator();
1505   }
1506 
1507   return MI.getIterator();
1508 }
1509 
1510 // We indicate that we want to reverse the branch by
1511 // inserting the reversed branching opcode.
1512 bool HexagonInstrInfo::reverseBranchCondition(
1513       SmallVectorImpl<MachineOperand> &Cond) const {
1514   if (Cond.empty())
1515     return true;
1516   assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1517   unsigned opcode = Cond[0].getImm();
1518   //unsigned temp;
1519   assert(get(opcode).isBranch() && "Should be a branching condition.");
1520   if (isEndLoopN(opcode))
1521     return true;
1522   unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1523   Cond[0].setImm(NewOpcode);
1524   return false;
1525 }
1526 
1527 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1528       MachineBasicBlock::iterator MI) const {
1529   DebugLoc DL;
1530   BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1531 }
1532 
1533 bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const {
1534   return getAddrMode(MI) == HexagonII::PostInc;
1535 }
1536 
1537 // Returns true if an instruction is predicated irrespective of the predicate
1538 // sense. For example, all of the following will return true.
1539 // if (p0) R1 = add(R2, R3)
1540 // if (!p0) R1 = add(R2, R3)
1541 // if (p0.new) R1 = add(R2, R3)
1542 // if (!p0.new) R1 = add(R2, R3)
1543 // Note: New-value stores are not included here as in the current
1544 // implementation, we don't need to check their predicate sense.
1545 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
1546   const uint64_t F = MI.getDesc().TSFlags;
1547   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
1548 }
1549 
1550 bool HexagonInstrInfo::PredicateInstruction(
1551     MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
1552   if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1553       isEndLoopN(Cond[0].getImm())) {
1554     LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1555     return false;
1556   }
1557   int Opc = MI.getOpcode();
1558   assert (isPredicable(MI) && "Expected predicable instruction");
1559   bool invertJump = predOpcodeHasNot(Cond);
1560 
1561   // We have to predicate MI "in place", i.e. after this function returns,
1562   // MI will need to be transformed into a predicated form. To avoid com-
1563   // plicated manipulations with the operands (handling tied operands,
1564   // etc.), build a new temporary instruction, then overwrite MI with it.
1565 
1566   MachineBasicBlock &B = *MI.getParent();
1567   DebugLoc DL = MI.getDebugLoc();
1568   unsigned PredOpc = getCondOpcode(Opc, invertJump);
1569   MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1570   unsigned NOp = 0, NumOps = MI.getNumOperands();
1571   while (NOp < NumOps) {
1572     MachineOperand &Op = MI.getOperand(NOp);
1573     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1574       break;
1575     T.add(Op);
1576     NOp++;
1577   }
1578 
1579   unsigned PredReg, PredRegPos, PredRegFlags;
1580   bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1581   (void)GotPredReg;
1582   assert(GotPredReg);
1583   T.addReg(PredReg, PredRegFlags);
1584   while (NOp < NumOps)
1585     T.add(MI.getOperand(NOp++));
1586 
1587   MI.setDesc(get(PredOpc));
1588   while (unsigned n = MI.getNumOperands())
1589     MI.RemoveOperand(n-1);
1590   for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1591     MI.addOperand(T->getOperand(i));
1592 
1593   MachineBasicBlock::instr_iterator TI = T->getIterator();
1594   B.erase(TI);
1595 
1596   MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1597   MRI.clearKillFlags(PredReg);
1598   return true;
1599 }
1600 
1601 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1602       ArrayRef<MachineOperand> Pred2) const {
1603   // TODO: Fix this
1604   return false;
1605 }
1606 
1607 bool HexagonInstrInfo::DefinesPredicate(MachineInstr &MI,
1608       std::vector<MachineOperand> &Pred) const {
1609   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1610 
1611   for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) {
1612     MachineOperand MO = MI.getOperand(oper);
1613     if (MO.isReg()) {
1614       if (!MO.isDef())
1615         continue;
1616       const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1617       if (RC == &Hexagon::PredRegsRegClass) {
1618         Pred.push_back(MO);
1619         return true;
1620       }
1621       continue;
1622     } else if (MO.isRegMask()) {
1623       for (unsigned PR : Hexagon::PredRegsRegClass) {
1624         if (!MI.modifiesRegister(PR, &HRI))
1625           continue;
1626         Pred.push_back(MO);
1627         return true;
1628       }
1629     }
1630   }
1631   return false;
1632 }
1633 
1634 bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const {
1635   if (!MI.getDesc().isPredicable())
1636     return false;
1637 
1638   if (MI.isCall() || isTailCall(MI)) {
1639     if (!Subtarget.usePredicatedCalls())
1640       return false;
1641   }
1642 
1643   // HVX loads are not predicable on v60, but are on v62.
1644   if (!Subtarget.hasV62Ops()) {
1645     switch (MI.getOpcode()) {
1646       case Hexagon::V6_vL32b_ai:
1647       case Hexagon::V6_vL32b_pi:
1648       case Hexagon::V6_vL32b_ppu:
1649       case Hexagon::V6_vL32b_cur_ai:
1650       case Hexagon::V6_vL32b_cur_pi:
1651       case Hexagon::V6_vL32b_cur_ppu:
1652       case Hexagon::V6_vL32b_nt_ai:
1653       case Hexagon::V6_vL32b_nt_pi:
1654       case Hexagon::V6_vL32b_nt_ppu:
1655       case Hexagon::V6_vL32b_tmp_ai:
1656       case Hexagon::V6_vL32b_tmp_pi:
1657       case Hexagon::V6_vL32b_tmp_ppu:
1658       case Hexagon::V6_vL32b_nt_cur_ai:
1659       case Hexagon::V6_vL32b_nt_cur_pi:
1660       case Hexagon::V6_vL32b_nt_cur_ppu:
1661       case Hexagon::V6_vL32b_nt_tmp_ai:
1662       case Hexagon::V6_vL32b_nt_tmp_pi:
1663       case Hexagon::V6_vL32b_nt_tmp_ppu:
1664         return false;
1665     }
1666   }
1667   return true;
1668 }
1669 
1670 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1671                                             const MachineBasicBlock *MBB,
1672                                             const MachineFunction &MF) const {
1673   // Debug info is never a scheduling boundary. It's necessary to be explicit
1674   // due to the special treatment of IT instructions below, otherwise a
1675   // dbg_value followed by an IT will result in the IT instruction being
1676   // considered a scheduling hazard, which is wrong. It should be the actual
1677   // instruction preceding the dbg_value instruction(s), just like it is
1678   // when debug info is not present.
1679   if (MI.isDebugInstr())
1680     return false;
1681 
1682   // Throwing call is a boundary.
1683   if (MI.isCall()) {
1684     // Don't mess around with no return calls.
1685     if (doesNotReturn(MI))
1686       return true;
1687     // If any of the block's successors is a landing pad, this could be a
1688     // throwing call.
1689     for (auto I : MBB->successors())
1690       if (I->isEHPad())
1691         return true;
1692   }
1693 
1694   // Terminators and labels can't be scheduled around.
1695   if (MI.getDesc().isTerminator() || MI.isPosition())
1696     return true;
1697 
1698   if (MI.isInlineAsm() && !ScheduleInlineAsm)
1699     return true;
1700 
1701   return false;
1702 }
1703 
1704 /// Measure the specified inline asm to determine an approximation of its
1705 /// length.
1706 /// Comments (which run till the next SeparatorString or newline) do not
1707 /// count as an instruction.
1708 /// Any other non-whitespace text is considered an instruction, with
1709 /// multiple instructions separated by SeparatorString or newlines.
1710 /// Variable-length instructions are not handled here; this function
1711 /// may be overloaded in the target code to do that.
1712 /// Hexagon counts the number of ##'s and adjust for that many
1713 /// constant exenders.
1714 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1715                                               const MCAsmInfo &MAI,
1716                                               const TargetSubtargetInfo *STI) const {
1717   StringRef AStr(Str);
1718   // Count the number of instructions in the asm.
1719   bool atInsnStart = true;
1720   unsigned Length = 0;
1721   const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
1722   for (; *Str; ++Str) {
1723     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1724                                 strlen(MAI.getSeparatorString())) == 0)
1725       atInsnStart = true;
1726     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1727       Length += MaxInstLength;
1728       atInsnStart = false;
1729     }
1730     if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1731                                MAI.getCommentString().size()) == 0)
1732       atInsnStart = false;
1733   }
1734 
1735   // Add to size number of constant extenders seen * 4.
1736   StringRef Occ("##");
1737   Length += AStr.count(Occ)*4;
1738   return Length;
1739 }
1740 
1741 ScheduleHazardRecognizer*
1742 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1743       const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1744   if (UseDFAHazardRec)
1745     return new HexagonHazardRecognizer(II, this, Subtarget);
1746   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1747 }
1748 
1749 /// For a comparison instruction, return the source registers in
1750 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1751 /// compares against in CmpValue. Return true if the comparison instruction
1752 /// can be analyzed.
1753 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1754                                       unsigned &SrcReg2, int &Mask,
1755                                       int &Value) const {
1756   unsigned Opc = MI.getOpcode();
1757 
1758   // Set mask and the first source register.
1759   switch (Opc) {
1760     case Hexagon::C2_cmpeq:
1761     case Hexagon::C2_cmpeqp:
1762     case Hexagon::C2_cmpgt:
1763     case Hexagon::C2_cmpgtp:
1764     case Hexagon::C2_cmpgtu:
1765     case Hexagon::C2_cmpgtup:
1766     case Hexagon::C4_cmpneq:
1767     case Hexagon::C4_cmplte:
1768     case Hexagon::C4_cmplteu:
1769     case Hexagon::C2_cmpeqi:
1770     case Hexagon::C2_cmpgti:
1771     case Hexagon::C2_cmpgtui:
1772     case Hexagon::C4_cmpneqi:
1773     case Hexagon::C4_cmplteui:
1774     case Hexagon::C4_cmpltei:
1775       SrcReg = MI.getOperand(1).getReg();
1776       Mask = ~0;
1777       break;
1778     case Hexagon::A4_cmpbeq:
1779     case Hexagon::A4_cmpbgt:
1780     case Hexagon::A4_cmpbgtu:
1781     case Hexagon::A4_cmpbeqi:
1782     case Hexagon::A4_cmpbgti:
1783     case Hexagon::A4_cmpbgtui:
1784       SrcReg = MI.getOperand(1).getReg();
1785       Mask = 0xFF;
1786       break;
1787     case Hexagon::A4_cmpheq:
1788     case Hexagon::A4_cmphgt:
1789     case Hexagon::A4_cmphgtu:
1790     case Hexagon::A4_cmpheqi:
1791     case Hexagon::A4_cmphgti:
1792     case Hexagon::A4_cmphgtui:
1793       SrcReg = MI.getOperand(1).getReg();
1794       Mask = 0xFFFF;
1795       break;
1796   }
1797 
1798   // Set the value/second source register.
1799   switch (Opc) {
1800     case Hexagon::C2_cmpeq:
1801     case Hexagon::C2_cmpeqp:
1802     case Hexagon::C2_cmpgt:
1803     case Hexagon::C2_cmpgtp:
1804     case Hexagon::C2_cmpgtu:
1805     case Hexagon::C2_cmpgtup:
1806     case Hexagon::A4_cmpbeq:
1807     case Hexagon::A4_cmpbgt:
1808     case Hexagon::A4_cmpbgtu:
1809     case Hexagon::A4_cmpheq:
1810     case Hexagon::A4_cmphgt:
1811     case Hexagon::A4_cmphgtu:
1812     case Hexagon::C4_cmpneq:
1813     case Hexagon::C4_cmplte:
1814     case Hexagon::C4_cmplteu:
1815       SrcReg2 = MI.getOperand(2).getReg();
1816       return true;
1817 
1818     case Hexagon::C2_cmpeqi:
1819     case Hexagon::C2_cmpgtui:
1820     case Hexagon::C2_cmpgti:
1821     case Hexagon::C4_cmpneqi:
1822     case Hexagon::C4_cmplteui:
1823     case Hexagon::C4_cmpltei:
1824     case Hexagon::A4_cmpbeqi:
1825     case Hexagon::A4_cmpbgti:
1826     case Hexagon::A4_cmpbgtui:
1827     case Hexagon::A4_cmpheqi:
1828     case Hexagon::A4_cmphgti:
1829     case Hexagon::A4_cmphgtui: {
1830       SrcReg2 = 0;
1831       const MachineOperand &Op2 = MI.getOperand(2);
1832       if (!Op2.isImm())
1833         return false;
1834       Value = MI.getOperand(2).getImm();
1835       return true;
1836     }
1837   }
1838 
1839   return false;
1840 }
1841 
1842 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1843                                            const MachineInstr &MI,
1844                                            unsigned *PredCost) const {
1845   return getInstrTimingClassLatency(ItinData, MI);
1846 }
1847 
1848 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1849     const TargetSubtargetInfo &STI) const {
1850   const InstrItineraryData *II = STI.getInstrItineraryData();
1851   return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1852 }
1853 
1854 // Inspired by this pair:
1855 //  %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1856 //  S2_storeri_io %r29, 132, killed %r1; flags:  mem:ST4[FixedStack1]
1857 // Currently AA considers the addresses in these instructions to be aliasing.
1858 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1859     const MachineInstr &MIa, const MachineInstr &MIb,
1860     AliasAnalysis *AA) const {
1861   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1862       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1863     return false;
1864 
1865   // Instructions that are pure loads, not loads and stores like memops are not
1866   // dependent.
1867   if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
1868     return true;
1869 
1870   // Get the base register in MIa.
1871   unsigned BasePosA, OffsetPosA;
1872   if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
1873     return false;
1874   const MachineOperand &BaseA = MIa.getOperand(BasePosA);
1875   unsigned BaseRegA = BaseA.getReg();
1876   unsigned BaseSubA = BaseA.getSubReg();
1877 
1878   // Get the base register in MIb.
1879   unsigned BasePosB, OffsetPosB;
1880   if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
1881     return false;
1882   const MachineOperand &BaseB = MIb.getOperand(BasePosB);
1883   unsigned BaseRegB = BaseB.getReg();
1884   unsigned BaseSubB = BaseB.getSubReg();
1885 
1886   if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
1887     return false;
1888 
1889   // Get the access sizes.
1890   unsigned SizeA = getMemAccessSize(MIa);
1891   unsigned SizeB = getMemAccessSize(MIb);
1892 
1893   // Get the offsets. Handle immediates only for now.
1894   const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
1895   const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
1896   if (!MIa.getOperand(OffsetPosA).isImm() ||
1897       !MIb.getOperand(OffsetPosB).isImm())
1898     return false;
1899   int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
1900   int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
1901 
1902   // This is a mem access with the same base register and known offsets from it.
1903   // Reason about it.
1904   if (OffsetA > OffsetB) {
1905     uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1906     return SizeB <= OffDiff;
1907   }
1908   if (OffsetA < OffsetB) {
1909     uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1910     return SizeA <= OffDiff;
1911   }
1912 
1913   return false;
1914 }
1915 
1916 /// If the instruction is an increment of a constant value, return the amount.
1917 bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI,
1918       int &Value) const {
1919   if (isPostIncrement(MI)) {
1920     unsigned BasePos = 0, OffsetPos = 0;
1921     if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
1922       return false;
1923     const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
1924     if (OffsetOp.isImm()) {
1925       Value = OffsetOp.getImm();
1926       return true;
1927     }
1928   } else if (MI.getOpcode() == Hexagon::A2_addi) {
1929     const MachineOperand &AddOp = MI.getOperand(2);
1930     if (AddOp.isImm()) {
1931       Value = AddOp.getImm();
1932       return true;
1933     }
1934   }
1935 
1936   return false;
1937 }
1938 
1939 std::pair<unsigned, unsigned>
1940 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1941   return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
1942                         TF & HexagonII::MO_Bitmasks);
1943 }
1944 
1945 ArrayRef<std::pair<unsigned, const char*>>
1946 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1947   using namespace HexagonII;
1948 
1949   static const std::pair<unsigned, const char*> Flags[] = {
1950     {MO_PCREL,  "hexagon-pcrel"},
1951     {MO_GOT,    "hexagon-got"},
1952     {MO_LO16,   "hexagon-lo16"},
1953     {MO_HI16,   "hexagon-hi16"},
1954     {MO_GPREL,  "hexagon-gprel"},
1955     {MO_GDGOT,  "hexagon-gdgot"},
1956     {MO_GDPLT,  "hexagon-gdplt"},
1957     {MO_IE,     "hexagon-ie"},
1958     {MO_IEGOT,  "hexagon-iegot"},
1959     {MO_TPREL,  "hexagon-tprel"}
1960   };
1961   return makeArrayRef(Flags);
1962 }
1963 
1964 ArrayRef<std::pair<unsigned, const char*>>
1965 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1966   using namespace HexagonII;
1967 
1968   static const std::pair<unsigned, const char*> Flags[] = {
1969     {HMOTF_ConstExtended, "hexagon-ext"}
1970   };
1971   return makeArrayRef(Flags);
1972 }
1973 
1974 unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const {
1975   MachineRegisterInfo &MRI = MF->getRegInfo();
1976   const TargetRegisterClass *TRC;
1977   if (VT == MVT::i1) {
1978     TRC = &Hexagon::PredRegsRegClass;
1979   } else if (VT == MVT::i32 || VT == MVT::f32) {
1980     TRC = &Hexagon::IntRegsRegClass;
1981   } else if (VT == MVT::i64 || VT == MVT::f64) {
1982     TRC = &Hexagon::DoubleRegsRegClass;
1983   } else {
1984     llvm_unreachable("Cannot handle this register class");
1985   }
1986 
1987   unsigned NewReg = MRI.createVirtualRegister(TRC);
1988   return NewReg;
1989 }
1990 
1991 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const {
1992   return (getAddrMode(MI) == HexagonII::AbsoluteSet);
1993 }
1994 
1995 bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const {
1996   const uint64_t F = MI.getDesc().TSFlags;
1997   return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
1998 }
1999 
2000 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const {
2001   return getAddrMode(MI) == HexagonII::BaseImmOffset;
2002 }
2003 
2004 bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const {
2005   return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
2006          !MI.getDesc().mayStore() &&
2007          MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
2008          MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
2009          !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
2010 }
2011 
2012 // Return true if the instruction is a compund branch instruction.
2013 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const {
2014   return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
2015 }
2016 
2017 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2018 // isFPImm and later getFPImm as well.
2019 bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const {
2020   const uint64_t F = MI.getDesc().TSFlags;
2021   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
2022   if (isExtended) // Instruction must be extended.
2023     return true;
2024 
2025   unsigned isExtendable =
2026     (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
2027   if (!isExtendable)
2028     return false;
2029 
2030   if (MI.isCall())
2031     return false;
2032 
2033   short ExtOpNum = getCExtOpNum(MI);
2034   const MachineOperand &MO = MI.getOperand(ExtOpNum);
2035   // Use MO operand flags to determine if MO
2036   // has the HMOTF_ConstExtended flag set.
2037   if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2038     return true;
2039   // If this is a Machine BB address we are talking about, and it is
2040   // not marked as extended, say so.
2041   if (MO.isMBB())
2042     return false;
2043 
2044   // We could be using an instruction with an extendable immediate and shoehorn
2045   // a global address into it. If it is a global address it will be constant
2046   // extended. We do this for COMBINE.
2047   if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2048       MO.isJTI() || MO.isCPI() || MO.isFPImm())
2049     return true;
2050 
2051   // If the extendable operand is not 'Immediate' type, the instruction should
2052   // have 'isExtended' flag set.
2053   assert(MO.isImm() && "Extendable operand must be Immediate type");
2054 
2055   int MinValue = getMinValue(MI);
2056   int MaxValue = getMaxValue(MI);
2057   int ImmValue = MO.getImm();
2058 
2059   return (ImmValue < MinValue || ImmValue > MaxValue);
2060 }
2061 
2062 bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const {
2063   switch (MI.getOpcode()) {
2064   case Hexagon::L4_return:
2065   case Hexagon::L4_return_t:
2066   case Hexagon::L4_return_f:
2067   case Hexagon::L4_return_tnew_pnt:
2068   case Hexagon::L4_return_fnew_pnt:
2069   case Hexagon::L4_return_tnew_pt:
2070   case Hexagon::L4_return_fnew_pt:
2071     return true;
2072   }
2073   return false;
2074 }
2075 
2076 // Return true when ConsMI uses a register defined by ProdMI.
2077 bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI,
2078       const MachineInstr &ConsMI) const {
2079   if (!ProdMI.getDesc().getNumDefs())
2080     return false;
2081   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2082 
2083   SmallVector<unsigned, 4> DefsA;
2084   SmallVector<unsigned, 4> DefsB;
2085   SmallVector<unsigned, 8> UsesA;
2086   SmallVector<unsigned, 8> UsesB;
2087 
2088   parseOperands(ProdMI, DefsA, UsesA);
2089   parseOperands(ConsMI, DefsB, UsesB);
2090 
2091   for (auto &RegA : DefsA)
2092     for (auto &RegB : UsesB) {
2093       // True data dependency.
2094       if (RegA == RegB)
2095         return true;
2096 
2097       if (TargetRegisterInfo::isPhysicalRegister(RegA))
2098         for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
2099           if (RegB == *SubRegs)
2100             return true;
2101 
2102       if (TargetRegisterInfo::isPhysicalRegister(RegB))
2103         for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
2104           if (RegA == *SubRegs)
2105             return true;
2106     }
2107 
2108   return false;
2109 }
2110 
2111 // Returns true if the instruction is alread a .cur.
2112 bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const {
2113   switch (MI.getOpcode()) {
2114   case Hexagon::V6_vL32b_cur_pi:
2115   case Hexagon::V6_vL32b_cur_ai:
2116     return true;
2117   }
2118   return false;
2119 }
2120 
2121 // Returns true, if any one of the operands is a dot new
2122 // insn, whether it is predicated dot new or register dot new.
2123 bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const {
2124   if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI)))
2125     return true;
2126 
2127   return false;
2128 }
2129 
2130 /// Symmetrical. See if these two instructions are fit for duplex pair.
2131 bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa,
2132       const MachineInstr &MIb) const {
2133   HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
2134   HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
2135   return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2136 }
2137 
2138 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const {
2139   if (MI.mayLoad() || MI.mayStore() || MI.isCompare())
2140     return true;
2141 
2142   // Multiply
2143   unsigned SchedClass = MI.getDesc().getSchedClass();
2144   return is_TC4x(SchedClass) || is_TC3x(SchedClass);
2145 }
2146 
2147 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2148   return (Opcode == Hexagon::ENDLOOP0 ||
2149           Opcode == Hexagon::ENDLOOP1);
2150 }
2151 
2152 bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2153   switch(OpType) {
2154   case MachineOperand::MO_MachineBasicBlock:
2155   case MachineOperand::MO_GlobalAddress:
2156   case MachineOperand::MO_ExternalSymbol:
2157   case MachineOperand::MO_JumpTableIndex:
2158   case MachineOperand::MO_ConstantPoolIndex:
2159   case MachineOperand::MO_BlockAddress:
2160     return true;
2161   default:
2162     return false;
2163   }
2164 }
2165 
2166 bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const {
2167   const MCInstrDesc &MID = MI.getDesc();
2168   const uint64_t F = MID.TSFlags;
2169   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
2170     return true;
2171 
2172   // TODO: This is largely obsolete now. Will need to be removed
2173   // in consecutive patches.
2174   switch (MI.getOpcode()) {
2175     // PS_fi and PS_fia remain special cases.
2176     case Hexagon::PS_fi:
2177     case Hexagon::PS_fia:
2178       return true;
2179     default:
2180       return false;
2181   }
2182   return  false;
2183 }
2184 
2185 // This returns true in two cases:
2186 // - The OP code itself indicates that this is an extended instruction.
2187 // - One of MOs has been marked with HMOTF_ConstExtended flag.
2188 bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const {
2189   // First check if this is permanently extended op code.
2190   const uint64_t F = MI.getDesc().TSFlags;
2191   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
2192     return true;
2193   // Use MO operand flags to determine if one of MI's operands
2194   // has HMOTF_ConstExtended flag set.
2195   for (const MachineOperand &MO : MI.operands())
2196     if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2197       return true;
2198   return  false;
2199 }
2200 
2201 bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const {
2202   unsigned Opcode = MI.getOpcode();
2203   const uint64_t F = get(Opcode).TSFlags;
2204   return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2205 }
2206 
2207 // No V60 HVX VMEM with A_INDIRECT.
2208 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I,
2209       const MachineInstr &J) const {
2210   if (!isHVXVec(I))
2211     return false;
2212   if (!I.mayLoad() && !I.mayStore())
2213     return false;
2214   return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2215 }
2216 
2217 bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const {
2218   switch (MI.getOpcode()) {
2219   case Hexagon::J2_callr:
2220   case Hexagon::J2_callrf:
2221   case Hexagon::J2_callrt:
2222   case Hexagon::PS_call_nr:
2223     return true;
2224   }
2225   return false;
2226 }
2227 
2228 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const {
2229   switch (MI.getOpcode()) {
2230   case Hexagon::L4_return:
2231   case Hexagon::L4_return_t:
2232   case Hexagon::L4_return_f:
2233   case Hexagon::L4_return_fnew_pnt:
2234   case Hexagon::L4_return_fnew_pt:
2235   case Hexagon::L4_return_tnew_pnt:
2236   case Hexagon::L4_return_tnew_pt:
2237     return true;
2238   }
2239   return false;
2240 }
2241 
2242 bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const {
2243   switch (MI.getOpcode()) {
2244   case Hexagon::J2_jumpr:
2245   case Hexagon::J2_jumprt:
2246   case Hexagon::J2_jumprf:
2247   case Hexagon::J2_jumprtnewpt:
2248   case Hexagon::J2_jumprfnewpt:
2249   case Hexagon::J2_jumprtnew:
2250   case Hexagon::J2_jumprfnew:
2251     return true;
2252   }
2253   return false;
2254 }
2255 
2256 // Return true if a given MI can accommodate given offset.
2257 // Use abs estimate as oppose to the exact number.
2258 // TODO: This will need to be changed to use MC level
2259 // definition of instruction extendable field size.
2260 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI,
2261       unsigned offset) const {
2262   // This selection of jump instructions matches to that what
2263   // analyzeBranch can parse, plus NVJ.
2264   if (isNewValueJump(MI)) // r9:2
2265     return isInt<11>(offset);
2266 
2267   switch (MI.getOpcode()) {
2268   // Still missing Jump to address condition on register value.
2269   default:
2270     return false;
2271   case Hexagon::J2_jump: // bits<24> dst; // r22:2
2272   case Hexagon::J2_call:
2273   case Hexagon::PS_call_nr:
2274     return isInt<24>(offset);
2275   case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2276   case Hexagon::J2_jumpf:
2277   case Hexagon::J2_jumptnew:
2278   case Hexagon::J2_jumptnewpt:
2279   case Hexagon::J2_jumpfnew:
2280   case Hexagon::J2_jumpfnewpt:
2281   case Hexagon::J2_callt:
2282   case Hexagon::J2_callf:
2283     return isInt<17>(offset);
2284   case Hexagon::J2_loop0i:
2285   case Hexagon::J2_loop0iext:
2286   case Hexagon::J2_loop0r:
2287   case Hexagon::J2_loop0rext:
2288   case Hexagon::J2_loop1i:
2289   case Hexagon::J2_loop1iext:
2290   case Hexagon::J2_loop1r:
2291   case Hexagon::J2_loop1rext:
2292     return isInt<9>(offset);
2293   // TODO: Add all the compound branches here. Can we do this in Relation model?
2294   case Hexagon::J4_cmpeqi_tp0_jump_nt:
2295   case Hexagon::J4_cmpeqi_tp1_jump_nt:
2296   case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2297   case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2298     return isInt<11>(offset);
2299   }
2300 }
2301 
2302 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
2303       const MachineInstr &ESMI) const {
2304   bool isLate = isLateResultInstr(LRMI);
2305   bool isEarly = isEarlySourceInstr(ESMI);
2306 
2307   LLVM_DEBUG(dbgs() << "V60" << (isLate ? "-LR  " : " --  "));
2308   LLVM_DEBUG(LRMI.dump());
2309   LLVM_DEBUG(dbgs() << "V60" << (isEarly ? "-ES  " : " --  "));
2310   LLVM_DEBUG(ESMI.dump());
2311 
2312   if (isLate && isEarly) {
2313     LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2314     return true;
2315   }
2316 
2317   return false;
2318 }
2319 
2320 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const {
2321   switch (MI.getOpcode()) {
2322   case TargetOpcode::EXTRACT_SUBREG:
2323   case TargetOpcode::INSERT_SUBREG:
2324   case TargetOpcode::SUBREG_TO_REG:
2325   case TargetOpcode::REG_SEQUENCE:
2326   case TargetOpcode::IMPLICIT_DEF:
2327   case TargetOpcode::COPY:
2328   case TargetOpcode::INLINEASM:
2329   case TargetOpcode::PHI:
2330     return false;
2331   default:
2332     break;
2333   }
2334 
2335   unsigned SchedClass = MI.getDesc().getSchedClass();
2336   return !is_TC1(SchedClass);
2337 }
2338 
2339 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const {
2340   // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2341   // resource, but all operands can be received late like an ALU instruction.
2342   return getType(MI) == HexagonII::TypeCVI_VX_LATE;
2343 }
2344 
2345 bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const {
2346   unsigned Opcode = MI.getOpcode();
2347   return Opcode == Hexagon::J2_loop0i    ||
2348          Opcode == Hexagon::J2_loop0r    ||
2349          Opcode == Hexagon::J2_loop0iext ||
2350          Opcode == Hexagon::J2_loop0rext ||
2351          Opcode == Hexagon::J2_loop1i    ||
2352          Opcode == Hexagon::J2_loop1r    ||
2353          Opcode == Hexagon::J2_loop1iext ||
2354          Opcode == Hexagon::J2_loop1rext;
2355 }
2356 
2357 bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const {
2358   switch (MI.getOpcode()) {
2359     default: return false;
2360     case Hexagon::L4_iadd_memopw_io:
2361     case Hexagon::L4_isub_memopw_io:
2362     case Hexagon::L4_add_memopw_io:
2363     case Hexagon::L4_sub_memopw_io:
2364     case Hexagon::L4_and_memopw_io:
2365     case Hexagon::L4_or_memopw_io:
2366     case Hexagon::L4_iadd_memoph_io:
2367     case Hexagon::L4_isub_memoph_io:
2368     case Hexagon::L4_add_memoph_io:
2369     case Hexagon::L4_sub_memoph_io:
2370     case Hexagon::L4_and_memoph_io:
2371     case Hexagon::L4_or_memoph_io:
2372     case Hexagon::L4_iadd_memopb_io:
2373     case Hexagon::L4_isub_memopb_io:
2374     case Hexagon::L4_add_memopb_io:
2375     case Hexagon::L4_sub_memopb_io:
2376     case Hexagon::L4_and_memopb_io:
2377     case Hexagon::L4_or_memopb_io:
2378     case Hexagon::L4_ior_memopb_io:
2379     case Hexagon::L4_ior_memoph_io:
2380     case Hexagon::L4_ior_memopw_io:
2381     case Hexagon::L4_iand_memopb_io:
2382     case Hexagon::L4_iand_memoph_io:
2383     case Hexagon::L4_iand_memopw_io:
2384     return true;
2385   }
2386   return false;
2387 }
2388 
2389 bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const {
2390   const uint64_t F = MI.getDesc().TSFlags;
2391   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2392 }
2393 
2394 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2395   const uint64_t F = get(Opcode).TSFlags;
2396   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2397 }
2398 
2399 bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const {
2400   return isNewValueJump(MI) || isNewValueStore(MI);
2401 }
2402 
2403 bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const {
2404   return isNewValue(MI) && MI.isBranch();
2405 }
2406 
2407 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2408   return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2409 }
2410 
2411 bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const {
2412   const uint64_t F = MI.getDesc().TSFlags;
2413   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2414 }
2415 
2416 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2417   const uint64_t F = get(Opcode).TSFlags;
2418   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2419 }
2420 
2421 // Returns true if a particular operand is extendable for an instruction.
2422 bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI,
2423     unsigned OperandNum) const {
2424   const uint64_t F = MI.getDesc().TSFlags;
2425   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2426           == OperandNum;
2427 }
2428 
2429 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
2430   const uint64_t F = MI.getDesc().TSFlags;
2431   assert(isPredicated(MI));
2432   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2433 }
2434 
2435 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2436   const uint64_t F = get(Opcode).TSFlags;
2437   assert(isPredicated(Opcode));
2438   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2439 }
2440 
2441 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
2442   const uint64_t F = MI.getDesc().TSFlags;
2443   return !((F >> HexagonII::PredicatedFalsePos) &
2444            HexagonII::PredicatedFalseMask);
2445 }
2446 
2447 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2448   const uint64_t F = get(Opcode).TSFlags;
2449   // Make sure that the instruction is predicated.
2450   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2451   return !((F >> HexagonII::PredicatedFalsePos) &
2452            HexagonII::PredicatedFalseMask);
2453 }
2454 
2455 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2456   const uint64_t F = get(Opcode).TSFlags;
2457   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2458 }
2459 
2460 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2461   const uint64_t F = get(Opcode).TSFlags;
2462   return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2463 }
2464 
2465 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2466   const uint64_t F = get(Opcode).TSFlags;
2467   assert(get(Opcode).isBranch() &&
2468          (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2469   return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2470 }
2471 
2472 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const {
2473   return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2474          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2475          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2476          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2477 }
2478 
2479 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
2480   switch (MI.getOpcode()) {
2481   // Byte
2482   case Hexagon::L2_loadrb_io:
2483   case Hexagon::L4_loadrb_ur:
2484   case Hexagon::L4_loadrb_ap:
2485   case Hexagon::L2_loadrb_pr:
2486   case Hexagon::L2_loadrb_pbr:
2487   case Hexagon::L2_loadrb_pi:
2488   case Hexagon::L2_loadrb_pci:
2489   case Hexagon::L2_loadrb_pcr:
2490   case Hexagon::L2_loadbsw2_io:
2491   case Hexagon::L4_loadbsw2_ur:
2492   case Hexagon::L4_loadbsw2_ap:
2493   case Hexagon::L2_loadbsw2_pr:
2494   case Hexagon::L2_loadbsw2_pbr:
2495   case Hexagon::L2_loadbsw2_pi:
2496   case Hexagon::L2_loadbsw2_pci:
2497   case Hexagon::L2_loadbsw2_pcr:
2498   case Hexagon::L2_loadbsw4_io:
2499   case Hexagon::L4_loadbsw4_ur:
2500   case Hexagon::L4_loadbsw4_ap:
2501   case Hexagon::L2_loadbsw4_pr:
2502   case Hexagon::L2_loadbsw4_pbr:
2503   case Hexagon::L2_loadbsw4_pi:
2504   case Hexagon::L2_loadbsw4_pci:
2505   case Hexagon::L2_loadbsw4_pcr:
2506   case Hexagon::L4_loadrb_rr:
2507   case Hexagon::L2_ploadrbt_io:
2508   case Hexagon::L2_ploadrbt_pi:
2509   case Hexagon::L2_ploadrbf_io:
2510   case Hexagon::L2_ploadrbf_pi:
2511   case Hexagon::L2_ploadrbtnew_io:
2512   case Hexagon::L2_ploadrbfnew_io:
2513   case Hexagon::L4_ploadrbt_rr:
2514   case Hexagon::L4_ploadrbf_rr:
2515   case Hexagon::L4_ploadrbtnew_rr:
2516   case Hexagon::L4_ploadrbfnew_rr:
2517   case Hexagon::L2_ploadrbtnew_pi:
2518   case Hexagon::L2_ploadrbfnew_pi:
2519   case Hexagon::L4_ploadrbt_abs:
2520   case Hexagon::L4_ploadrbf_abs:
2521   case Hexagon::L4_ploadrbtnew_abs:
2522   case Hexagon::L4_ploadrbfnew_abs:
2523   case Hexagon::L2_loadrbgp:
2524   // Half
2525   case Hexagon::L2_loadrh_io:
2526   case Hexagon::L4_loadrh_ur:
2527   case Hexagon::L4_loadrh_ap:
2528   case Hexagon::L2_loadrh_pr:
2529   case Hexagon::L2_loadrh_pbr:
2530   case Hexagon::L2_loadrh_pi:
2531   case Hexagon::L2_loadrh_pci:
2532   case Hexagon::L2_loadrh_pcr:
2533   case Hexagon::L4_loadrh_rr:
2534   case Hexagon::L2_ploadrht_io:
2535   case Hexagon::L2_ploadrht_pi:
2536   case Hexagon::L2_ploadrhf_io:
2537   case Hexagon::L2_ploadrhf_pi:
2538   case Hexagon::L2_ploadrhtnew_io:
2539   case Hexagon::L2_ploadrhfnew_io:
2540   case Hexagon::L4_ploadrht_rr:
2541   case Hexagon::L4_ploadrhf_rr:
2542   case Hexagon::L4_ploadrhtnew_rr:
2543   case Hexagon::L4_ploadrhfnew_rr:
2544   case Hexagon::L2_ploadrhtnew_pi:
2545   case Hexagon::L2_ploadrhfnew_pi:
2546   case Hexagon::L4_ploadrht_abs:
2547   case Hexagon::L4_ploadrhf_abs:
2548   case Hexagon::L4_ploadrhtnew_abs:
2549   case Hexagon::L4_ploadrhfnew_abs:
2550   case Hexagon::L2_loadrhgp:
2551     return true;
2552   default:
2553     return false;
2554   }
2555 }
2556 
2557 bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const {
2558   const uint64_t F = MI.getDesc().TSFlags;
2559   return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2560 }
2561 
2562 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const {
2563   switch (MI.getOpcode()) {
2564   case Hexagon::STriw_pred:
2565   case Hexagon::LDriw_pred:
2566     return true;
2567   default:
2568     return false;
2569   }
2570 }
2571 
2572 bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const {
2573   if (!MI.isBranch())
2574     return false;
2575 
2576   for (auto &Op : MI.operands())
2577     if (Op.isGlobal() || Op.isSymbol())
2578       return true;
2579   return false;
2580 }
2581 
2582 // Returns true when SU has a timing class TC1.
2583 bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const {
2584   unsigned SchedClass = MI.getDesc().getSchedClass();
2585   return is_TC1(SchedClass);
2586 }
2587 
2588 bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const {
2589   unsigned SchedClass = MI.getDesc().getSchedClass();
2590   return is_TC2(SchedClass);
2591 }
2592 
2593 bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const {
2594   unsigned SchedClass = MI.getDesc().getSchedClass();
2595   return is_TC2early(SchedClass);
2596 }
2597 
2598 bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const {
2599   unsigned SchedClass = MI.getDesc().getSchedClass();
2600   return is_TC4x(SchedClass);
2601 }
2602 
2603 // Schedule this ASAP.
2604 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1,
2605       const MachineInstr &MI2) const {
2606   if (mayBeCurLoad(MI1)) {
2607     // if (result of SU is used in Next) return true;
2608     unsigned DstReg = MI1.getOperand(0).getReg();
2609     int N = MI2.getNumOperands();
2610     for (int I = 0; I < N; I++)
2611       if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2612         return true;
2613   }
2614   if (mayBeNewStore(MI2))
2615     if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2616       if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2617           MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2618         return true;
2619   return false;
2620 }
2621 
2622 bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const {
2623   const uint64_t V = getType(MI);
2624   return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2625 }
2626 
2627 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2628 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const {
2629   int Size = VT.getSizeInBits() / 8;
2630   if (Offset % Size != 0)
2631     return false;
2632   int Count = Offset / Size;
2633 
2634   switch (VT.getSimpleVT().SimpleTy) {
2635     // For scalars the auto-inc is s4
2636     case MVT::i8:
2637     case MVT::i16:
2638     case MVT::i32:
2639     case MVT::i64:
2640     case MVT::f32:
2641     case MVT::f64:
2642     case MVT::v2i16:
2643     case MVT::v2i32:
2644     case MVT::v4i8:
2645     case MVT::v4i16:
2646     case MVT::v8i8:
2647       return isInt<4>(Count);
2648     // For HVX vectors the auto-inc is s3
2649     case MVT::v64i8:
2650     case MVT::v32i16:
2651     case MVT::v16i32:
2652     case MVT::v8i64:
2653     case MVT::v128i8:
2654     case MVT::v64i16:
2655     case MVT::v32i32:
2656     case MVT::v16i64:
2657       return isInt<3>(Count);
2658     default:
2659       break;
2660   }
2661 
2662   llvm_unreachable("Not an valid type!");
2663 }
2664 
2665 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2666       const TargetRegisterInfo *TRI, bool Extend) const {
2667   // This function is to check whether the "Offset" is in the correct range of
2668   // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2669   // inserted to calculate the final address. Due to this reason, the function
2670   // assumes that the "Offset" has correct alignment.
2671   // We used to assert if the offset was not properly aligned, however,
2672   // there are cases where a misaligned pointer recast can cause this
2673   // problem, and we need to allow for it. The front end warns of such
2674   // misaligns with respect to load size.
2675   switch (Opcode) {
2676   case Hexagon::PS_vstorerq_ai:
2677   case Hexagon::PS_vstorerw_ai:
2678   case Hexagon::PS_vstorerw_nt_ai:
2679   case Hexagon::PS_vloadrq_ai:
2680   case Hexagon::PS_vloadrw_ai:
2681   case Hexagon::PS_vloadrw_nt_ai:
2682   case Hexagon::V6_vL32b_ai:
2683   case Hexagon::V6_vS32b_ai:
2684   case Hexagon::V6_vL32b_nt_ai:
2685   case Hexagon::V6_vS32b_nt_ai:
2686   case Hexagon::V6_vL32Ub_ai:
2687   case Hexagon::V6_vS32Ub_ai: {
2688     unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2689     assert(isPowerOf2_32(VectorSize));
2690     if (Offset & (VectorSize-1))
2691       return false;
2692     return isInt<4>(Offset >> Log2_32(VectorSize));
2693   }
2694 
2695   case Hexagon::J2_loop0i:
2696   case Hexagon::J2_loop1i:
2697     return isUInt<10>(Offset);
2698 
2699   case Hexagon::S4_storeirb_io:
2700   case Hexagon::S4_storeirbt_io:
2701   case Hexagon::S4_storeirbf_io:
2702     return isUInt<6>(Offset);
2703 
2704   case Hexagon::S4_storeirh_io:
2705   case Hexagon::S4_storeirht_io:
2706   case Hexagon::S4_storeirhf_io:
2707     return isShiftedUInt<6,1>(Offset);
2708 
2709   case Hexagon::S4_storeiri_io:
2710   case Hexagon::S4_storeirit_io:
2711   case Hexagon::S4_storeirif_io:
2712     return isShiftedUInt<6,2>(Offset);
2713   }
2714 
2715   if (Extend)
2716     return true;
2717 
2718   switch (Opcode) {
2719   case Hexagon::L2_loadri_io:
2720   case Hexagon::S2_storeri_io:
2721     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2722       (Offset <= Hexagon_MEMW_OFFSET_MAX);
2723 
2724   case Hexagon::L2_loadrd_io:
2725   case Hexagon::S2_storerd_io:
2726     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2727       (Offset <= Hexagon_MEMD_OFFSET_MAX);
2728 
2729   case Hexagon::L2_loadrh_io:
2730   case Hexagon::L2_loadruh_io:
2731   case Hexagon::S2_storerh_io:
2732   case Hexagon::S2_storerf_io:
2733     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2734       (Offset <= Hexagon_MEMH_OFFSET_MAX);
2735 
2736   case Hexagon::L2_loadrb_io:
2737   case Hexagon::L2_loadrub_io:
2738   case Hexagon::S2_storerb_io:
2739     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2740       (Offset <= Hexagon_MEMB_OFFSET_MAX);
2741 
2742   case Hexagon::A2_addi:
2743     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2744       (Offset <= Hexagon_ADDI_OFFSET_MAX);
2745 
2746   case Hexagon::L4_iadd_memopw_io:
2747   case Hexagon::L4_isub_memopw_io:
2748   case Hexagon::L4_add_memopw_io:
2749   case Hexagon::L4_sub_memopw_io:
2750   case Hexagon::L4_and_memopw_io:
2751   case Hexagon::L4_or_memopw_io:
2752     return (0 <= Offset && Offset <= 255);
2753 
2754   case Hexagon::L4_iadd_memoph_io:
2755   case Hexagon::L4_isub_memoph_io:
2756   case Hexagon::L4_add_memoph_io:
2757   case Hexagon::L4_sub_memoph_io:
2758   case Hexagon::L4_and_memoph_io:
2759   case Hexagon::L4_or_memoph_io:
2760     return (0 <= Offset && Offset <= 127);
2761 
2762   case Hexagon::L4_iadd_memopb_io:
2763   case Hexagon::L4_isub_memopb_io:
2764   case Hexagon::L4_add_memopb_io:
2765   case Hexagon::L4_sub_memopb_io:
2766   case Hexagon::L4_and_memopb_io:
2767   case Hexagon::L4_or_memopb_io:
2768     return (0 <= Offset && Offset <= 63);
2769 
2770   // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2771   // any size. Later pass knows how to handle it.
2772   case Hexagon::STriw_pred:
2773   case Hexagon::LDriw_pred:
2774   case Hexagon::STriw_ctr:
2775   case Hexagon::LDriw_ctr:
2776     return true;
2777 
2778   case Hexagon::PS_fi:
2779   case Hexagon::PS_fia:
2780   case Hexagon::INLINEASM:
2781     return true;
2782 
2783   case Hexagon::L2_ploadrbt_io:
2784   case Hexagon::L2_ploadrbf_io:
2785   case Hexagon::L2_ploadrubt_io:
2786   case Hexagon::L2_ploadrubf_io:
2787   case Hexagon::S2_pstorerbt_io:
2788   case Hexagon::S2_pstorerbf_io:
2789     return isUInt<6>(Offset);
2790 
2791   case Hexagon::L2_ploadrht_io:
2792   case Hexagon::L2_ploadrhf_io:
2793   case Hexagon::L2_ploadruht_io:
2794   case Hexagon::L2_ploadruhf_io:
2795   case Hexagon::S2_pstorerht_io:
2796   case Hexagon::S2_pstorerhf_io:
2797     return isShiftedUInt<6,1>(Offset);
2798 
2799   case Hexagon::L2_ploadrit_io:
2800   case Hexagon::L2_ploadrif_io:
2801   case Hexagon::S2_pstorerit_io:
2802   case Hexagon::S2_pstorerif_io:
2803     return isShiftedUInt<6,2>(Offset);
2804 
2805   case Hexagon::L2_ploadrdt_io:
2806   case Hexagon::L2_ploadrdf_io:
2807   case Hexagon::S2_pstorerdt_io:
2808   case Hexagon::S2_pstorerdf_io:
2809     return isShiftedUInt<6,3>(Offset);
2810   } // switch
2811 
2812   llvm_unreachable("No offset range is defined for this opcode. "
2813                    "Please define it in the above switch statement!");
2814 }
2815 
2816 bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const {
2817   return isHVXVec(MI) && isAccumulator(MI);
2818 }
2819 
2820 bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const {
2821   const uint64_t F = get(MI.getOpcode()).TSFlags;
2822   const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2823   return
2824     V == HexagonII::TypeCVI_VA         ||
2825     V == HexagonII::TypeCVI_VA_DV;
2826 }
2827 
2828 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI,
2829       const MachineInstr &ConsMI) const {
2830   if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2831     return true;
2832 
2833   if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2834     return true;
2835 
2836   if (mayBeNewStore(ConsMI))
2837     return true;
2838 
2839   return false;
2840 }
2841 
2842 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
2843   switch (MI.getOpcode()) {
2844   // Byte
2845   case Hexagon::L2_loadrub_io:
2846   case Hexagon::L4_loadrub_ur:
2847   case Hexagon::L4_loadrub_ap:
2848   case Hexagon::L2_loadrub_pr:
2849   case Hexagon::L2_loadrub_pbr:
2850   case Hexagon::L2_loadrub_pi:
2851   case Hexagon::L2_loadrub_pci:
2852   case Hexagon::L2_loadrub_pcr:
2853   case Hexagon::L2_loadbzw2_io:
2854   case Hexagon::L4_loadbzw2_ur:
2855   case Hexagon::L4_loadbzw2_ap:
2856   case Hexagon::L2_loadbzw2_pr:
2857   case Hexagon::L2_loadbzw2_pbr:
2858   case Hexagon::L2_loadbzw2_pi:
2859   case Hexagon::L2_loadbzw2_pci:
2860   case Hexagon::L2_loadbzw2_pcr:
2861   case Hexagon::L2_loadbzw4_io:
2862   case Hexagon::L4_loadbzw4_ur:
2863   case Hexagon::L4_loadbzw4_ap:
2864   case Hexagon::L2_loadbzw4_pr:
2865   case Hexagon::L2_loadbzw4_pbr:
2866   case Hexagon::L2_loadbzw4_pi:
2867   case Hexagon::L2_loadbzw4_pci:
2868   case Hexagon::L2_loadbzw4_pcr:
2869   case Hexagon::L4_loadrub_rr:
2870   case Hexagon::L2_ploadrubt_io:
2871   case Hexagon::L2_ploadrubt_pi:
2872   case Hexagon::L2_ploadrubf_io:
2873   case Hexagon::L2_ploadrubf_pi:
2874   case Hexagon::L2_ploadrubtnew_io:
2875   case Hexagon::L2_ploadrubfnew_io:
2876   case Hexagon::L4_ploadrubt_rr:
2877   case Hexagon::L4_ploadrubf_rr:
2878   case Hexagon::L4_ploadrubtnew_rr:
2879   case Hexagon::L4_ploadrubfnew_rr:
2880   case Hexagon::L2_ploadrubtnew_pi:
2881   case Hexagon::L2_ploadrubfnew_pi:
2882   case Hexagon::L4_ploadrubt_abs:
2883   case Hexagon::L4_ploadrubf_abs:
2884   case Hexagon::L4_ploadrubtnew_abs:
2885   case Hexagon::L4_ploadrubfnew_abs:
2886   case Hexagon::L2_loadrubgp:
2887   // Half
2888   case Hexagon::L2_loadruh_io:
2889   case Hexagon::L4_loadruh_ur:
2890   case Hexagon::L4_loadruh_ap:
2891   case Hexagon::L2_loadruh_pr:
2892   case Hexagon::L2_loadruh_pbr:
2893   case Hexagon::L2_loadruh_pi:
2894   case Hexagon::L2_loadruh_pci:
2895   case Hexagon::L2_loadruh_pcr:
2896   case Hexagon::L4_loadruh_rr:
2897   case Hexagon::L2_ploadruht_io:
2898   case Hexagon::L2_ploadruht_pi:
2899   case Hexagon::L2_ploadruhf_io:
2900   case Hexagon::L2_ploadruhf_pi:
2901   case Hexagon::L2_ploadruhtnew_io:
2902   case Hexagon::L2_ploadruhfnew_io:
2903   case Hexagon::L4_ploadruht_rr:
2904   case Hexagon::L4_ploadruhf_rr:
2905   case Hexagon::L4_ploadruhtnew_rr:
2906   case Hexagon::L4_ploadruhfnew_rr:
2907   case Hexagon::L2_ploadruhtnew_pi:
2908   case Hexagon::L2_ploadruhfnew_pi:
2909   case Hexagon::L4_ploadruht_abs:
2910   case Hexagon::L4_ploadruhf_abs:
2911   case Hexagon::L4_ploadruhtnew_abs:
2912   case Hexagon::L4_ploadruhfnew_abs:
2913   case Hexagon::L2_loadruhgp:
2914     return true;
2915   default:
2916     return false;
2917   }
2918 }
2919 
2920 // Add latency to instruction.
2921 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1,
2922       const MachineInstr &MI2) const {
2923   if (isHVXVec(MI1) && isHVXVec(MI2))
2924     if (!isVecUsableNextPacket(MI1, MI2))
2925       return true;
2926   return false;
2927 }
2928 
2929 /// Get the base register and byte offset of a load/store instr.
2930 bool HexagonInstrInfo::getMemOperandWithOffset(
2931     const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
2932     const TargetRegisterInfo *TRI) const {
2933   unsigned AccessSize = 0;
2934   BaseOp = getBaseAndOffset(LdSt, Offset, AccessSize);
2935   assert((!BaseOp || BaseOp->isReg()) &&
2936          "getMemOperandWithOffset only supports base "
2937          "operands of type register.");
2938   return BaseOp != nullptr;
2939 }
2940 
2941 /// Can these instructions execute at the same time in a bundle.
2942 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First,
2943       const MachineInstr &Second) const {
2944   if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
2945     const MachineOperand &Op = Second.getOperand(0);
2946     if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
2947       return true;
2948   }
2949   if (DisableNVSchedule)
2950     return false;
2951   if (mayBeNewStore(Second)) {
2952     // Make sure the definition of the first instruction is the value being
2953     // stored.
2954     const MachineOperand &Stored =
2955       Second.getOperand(Second.getNumOperands() - 1);
2956     if (!Stored.isReg())
2957       return false;
2958     for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
2959       const MachineOperand &Op = First.getOperand(i);
2960       if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
2961         return true;
2962     }
2963   }
2964   return false;
2965 }
2966 
2967 bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const {
2968   unsigned Opc = CallMI.getOpcode();
2969   return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
2970 }
2971 
2972 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2973   for (auto &I : *B)
2974     if (I.isEHLabel())
2975       return true;
2976   return false;
2977 }
2978 
2979 // Returns true if an instruction can be converted into a non-extended
2980 // equivalent instruction.
2981 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const {
2982   short NonExtOpcode;
2983   // Check if the instruction has a register form that uses register in place
2984   // of the extended operand, if so return that as the non-extended form.
2985   if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
2986     return true;
2987 
2988   if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
2989     // Check addressing mode and retrieve non-ext equivalent instruction.
2990 
2991     switch (getAddrMode(MI)) {
2992     case HexagonII::Absolute:
2993       // Load/store with absolute addressing mode can be converted into
2994       // base+offset mode.
2995       NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
2996       break;
2997     case HexagonII::BaseImmOffset:
2998       // Load/store with base+offset addressing mode can be converted into
2999       // base+register offset addressing mode. However left shift operand should
3000       // be set to 0.
3001       NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
3002       break;
3003     case HexagonII::BaseLongOffset:
3004       NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
3005       break;
3006     default:
3007       return false;
3008     }
3009     if (NonExtOpcode < 0)
3010       return false;
3011     return true;
3012   }
3013   return false;
3014 }
3015 
3016 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const {
3017   return Hexagon::getRealHWInstr(MI.getOpcode(),
3018                                  Hexagon::InstrType_Pseudo) >= 0;
3019 }
3020 
3021 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
3022       const {
3023   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
3024   while (I != E) {
3025     if (I->isBarrier())
3026       return true;
3027     ++I;
3028   }
3029   return false;
3030 }
3031 
3032 // Returns true, if a LD insn can be promoted to a cur load.
3033 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const {
3034   const uint64_t F = MI.getDesc().TSFlags;
3035   return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
3036          Subtarget.hasV60Ops();
3037 }
3038 
3039 // Returns true, if a ST insn can be promoted to a new-value store.
3040 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const {
3041   if (MI.mayStore() && !Subtarget.useNewValueStores())
3042     return false;
3043 
3044   const uint64_t F = MI.getDesc().TSFlags;
3045   return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
3046 }
3047 
3048 bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI,
3049       const MachineInstr &ConsMI) const {
3050   // There is no stall when ProdMI is not a V60 vector.
3051   if (!isHVXVec(ProdMI))
3052     return false;
3053 
3054   // There is no stall when ProdMI and ConsMI are not dependent.
3055   if (!isDependent(ProdMI, ConsMI))
3056     return false;
3057 
3058   // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3059   // are scheduled in consecutive packets.
3060   if (isVecUsableNextPacket(ProdMI, ConsMI))
3061     return false;
3062 
3063   return true;
3064 }
3065 
3066 bool HexagonInstrInfo::producesStall(const MachineInstr &MI,
3067       MachineBasicBlock::const_instr_iterator BII) const {
3068   // There is no stall when I is not a V60 vector.
3069   if (!isHVXVec(MI))
3070     return false;
3071 
3072   MachineBasicBlock::const_instr_iterator MII = BII;
3073   MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3074 
3075   if (!MII->isBundle())
3076     return producesStall(*MII, MI);
3077 
3078   for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3079     const MachineInstr &J = *MII;
3080     if (producesStall(J, MI))
3081       return true;
3082   }
3083   return false;
3084 }
3085 
3086 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI,
3087       unsigned PredReg) const {
3088   for (const MachineOperand &MO : MI.operands()) {
3089     // Predicate register must be explicitly defined.
3090     if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3091       return false;
3092     if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3093       return false;
3094   }
3095 
3096   // Instruction that produce late predicate cannot be used as sources of
3097   // dot-new.
3098   switch (MI.getOpcode()) {
3099     case Hexagon::A4_addp_c:
3100     case Hexagon::A4_subp_c:
3101     case Hexagon::A4_tlbmatch:
3102     case Hexagon::A5_ACS:
3103     case Hexagon::F2_sfinvsqrta:
3104     case Hexagon::F2_sfrecipa:
3105     case Hexagon::J2_endloop0:
3106     case Hexagon::J2_endloop01:
3107     case Hexagon::J2_ploop1si:
3108     case Hexagon::J2_ploop1sr:
3109     case Hexagon::J2_ploop2si:
3110     case Hexagon::J2_ploop2sr:
3111     case Hexagon::J2_ploop3si:
3112     case Hexagon::J2_ploop3sr:
3113     case Hexagon::S2_cabacdecbin:
3114     case Hexagon::S2_storew_locked:
3115     case Hexagon::S4_stored_locked:
3116       return false;
3117   }
3118   return true;
3119 }
3120 
3121 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3122   return Opcode == Hexagon::J2_jumpt      ||
3123          Opcode == Hexagon::J2_jumptpt    ||
3124          Opcode == Hexagon::J2_jumpf      ||
3125          Opcode == Hexagon::J2_jumpfpt    ||
3126          Opcode == Hexagon::J2_jumptnew   ||
3127          Opcode == Hexagon::J2_jumpfnew   ||
3128          Opcode == Hexagon::J2_jumptnewpt ||
3129          Opcode == Hexagon::J2_jumpfnewpt;
3130 }
3131 
3132 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
3133   if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3134     return false;
3135   return !isPredicatedTrue(Cond[0].getImm());
3136 }
3137 
3138 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const {
3139   const uint64_t F = MI.getDesc().TSFlags;
3140   return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
3141 }
3142 
3143 // Returns the base register in a memory access (load/store). The offset is
3144 // returned in Offset and the access size is returned in AccessSize.
3145 // If the base operand has a subregister or the offset field does not contain
3146 // an immediate value, return nullptr.
3147 MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI,
3148                                                    int64_t &Offset,
3149                                                    unsigned &AccessSize) const {
3150   // Return if it is not a base+offset type instruction or a MemOp.
3151   if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
3152       getAddrMode(MI) != HexagonII::BaseLongOffset &&
3153       !isMemOp(MI) && !isPostIncrement(MI))
3154     return nullptr;
3155 
3156   AccessSize = getMemAccessSize(MI);
3157 
3158   unsigned BasePos = 0, OffsetPos = 0;
3159   if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3160     return nullptr;
3161 
3162   // Post increment updates its EA after the mem access,
3163   // so we need to treat its offset as zero.
3164   if (isPostIncrement(MI)) {
3165     Offset = 0;
3166   } else {
3167     const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3168     if (!OffsetOp.isImm())
3169       return nullptr;
3170     Offset = OffsetOp.getImm();
3171   }
3172 
3173   const MachineOperand &BaseOp = MI.getOperand(BasePos);
3174   if (BaseOp.getSubReg() != 0)
3175     return nullptr;
3176   return &const_cast<MachineOperand&>(BaseOp);
3177 }
3178 
3179 /// Return the position of the base and offset operands for this instruction.
3180 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
3181       unsigned &BasePos, unsigned &OffsetPos) const {
3182   if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI))
3183     return false;
3184 
3185   // Deal with memops first.
3186   if (isMemOp(MI)) {
3187     BasePos = 0;
3188     OffsetPos = 1;
3189   } else if (MI.mayStore()) {
3190     BasePos = 0;
3191     OffsetPos = 1;
3192   } else if (MI.mayLoad()) {
3193     BasePos = 1;
3194     OffsetPos = 2;
3195   } else
3196     return false;
3197 
3198   if (isPredicated(MI)) {
3199     BasePos++;
3200     OffsetPos++;
3201   }
3202   if (isPostIncrement(MI)) {
3203     BasePos++;
3204     OffsetPos++;
3205   }
3206 
3207   if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3208     return false;
3209 
3210   return true;
3211 }
3212 
3213 // Inserts branching instructions in reverse order of their occurrence.
3214 // e.g. jump_t t1 (i1)
3215 // jump t2        (i2)
3216 // Jumpers = {i2, i1}
3217 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
3218       MachineBasicBlock& MBB) const {
3219   SmallVector<MachineInstr*, 2> Jumpers;
3220   // If the block has no terminators, it just falls into the block after it.
3221   MachineBasicBlock::instr_iterator I = MBB.instr_end();
3222   if (I == MBB.instr_begin())
3223     return Jumpers;
3224 
3225   // A basic block may looks like this:
3226   //
3227   //  [   insn
3228   //     EH_LABEL
3229   //      insn
3230   //      insn
3231   //      insn
3232   //     EH_LABEL
3233   //      insn     ]
3234   //
3235   // It has two succs but does not have a terminator
3236   // Don't know how to handle it.
3237   do {
3238     --I;
3239     if (I->isEHLabel())
3240       return Jumpers;
3241   } while (I != MBB.instr_begin());
3242 
3243   I = MBB.instr_end();
3244   --I;
3245 
3246   while (I->isDebugInstr()) {
3247     if (I == MBB.instr_begin())
3248       return Jumpers;
3249     --I;
3250   }
3251   if (!isUnpredicatedTerminator(*I))
3252     return Jumpers;
3253 
3254   // Get the last instruction in the block.
3255   MachineInstr *LastInst = &*I;
3256   Jumpers.push_back(LastInst);
3257   MachineInstr *SecondLastInst = nullptr;
3258   // Find one more terminator if present.
3259   do {
3260     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3261       if (!SecondLastInst) {
3262         SecondLastInst = &*I;
3263         Jumpers.push_back(SecondLastInst);
3264       } else // This is a third branch.
3265         return Jumpers;
3266     }
3267     if (I == MBB.instr_begin())
3268       break;
3269     --I;
3270   } while (true);
3271   return Jumpers;
3272 }
3273 
3274 // Returns Operand Index for the constant extended instruction.
3275 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const {
3276   const uint64_t F = MI.getDesc().TSFlags;
3277   return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
3278 }
3279 
3280 // See if instruction could potentially be a duplex candidate.
3281 // If so, return its group. Zero otherwise.
3282 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
3283       const MachineInstr &MI) const {
3284   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3285 
3286   switch (MI.getOpcode()) {
3287   default:
3288     return HexagonII::HCG_None;
3289   //
3290   // Compound pairs.
3291   // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3292   // "Rd16=#U6 ; jump #r9:2"
3293   // "Rd16=Rs16 ; jump #r9:2"
3294   //
3295   case Hexagon::C2_cmpeq:
3296   case Hexagon::C2_cmpgt:
3297   case Hexagon::C2_cmpgtu:
3298     DstReg = MI.getOperand(0).getReg();
3299     Src1Reg = MI.getOperand(1).getReg();
3300     Src2Reg = MI.getOperand(2).getReg();
3301     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3302         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3303         isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3304       return HexagonII::HCG_A;
3305     break;
3306   case Hexagon::C2_cmpeqi:
3307   case Hexagon::C2_cmpgti:
3308   case Hexagon::C2_cmpgtui:
3309     // P0 = cmp.eq(Rs,#u2)
3310     DstReg = MI.getOperand(0).getReg();
3311     SrcReg = MI.getOperand(1).getReg();
3312     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3313         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3314         isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3315         ((isUInt<5>(MI.getOperand(2).getImm())) ||
3316          (MI.getOperand(2).getImm() == -1)))
3317       return HexagonII::HCG_A;
3318     break;
3319   case Hexagon::A2_tfr:
3320     // Rd = Rs
3321     DstReg = MI.getOperand(0).getReg();
3322     SrcReg = MI.getOperand(1).getReg();
3323     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3324       return HexagonII::HCG_A;
3325     break;
3326   case Hexagon::A2_tfrsi:
3327     // Rd = #u6
3328     // Do not test for #u6 size since the const is getting extended
3329     // regardless and compound could be formed.
3330     DstReg = MI.getOperand(0).getReg();
3331     if (isIntRegForSubInst(DstReg))
3332       return HexagonII::HCG_A;
3333     break;
3334   case Hexagon::S2_tstbit_i:
3335     DstReg = MI.getOperand(0).getReg();
3336     Src1Reg = MI.getOperand(1).getReg();
3337     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3338         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3339         MI.getOperand(2).isImm() &&
3340         isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3341       return HexagonII::HCG_A;
3342     break;
3343   // The fact that .new form is used pretty much guarantees
3344   // that predicate register will match. Nevertheless,
3345   // there could be some false positives without additional
3346   // checking.
3347   case Hexagon::J2_jumptnew:
3348   case Hexagon::J2_jumpfnew:
3349   case Hexagon::J2_jumptnewpt:
3350   case Hexagon::J2_jumpfnewpt:
3351     Src1Reg = MI.getOperand(0).getReg();
3352     if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3353         (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3354       return HexagonII::HCG_B;
3355     break;
3356   // Transfer and jump:
3357   // Rd=#U6 ; jump #r9:2
3358   // Rd=Rs ; jump #r9:2
3359   // Do not test for jump range here.
3360   case Hexagon::J2_jump:
3361   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3362   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3363     return HexagonII::HCG_C;
3364   }
3365 
3366   return HexagonII::HCG_None;
3367 }
3368 
3369 // Returns -1 when there is no opcode found.
3370 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA,
3371       const MachineInstr &GB) const {
3372   assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
3373   assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
3374   if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3375       (GB.getOpcode() != Hexagon::J2_jumptnew))
3376     return -1u;
3377   unsigned DestReg = GA.getOperand(0).getReg();
3378   if (!GB.readsRegister(DestReg))
3379     return -1u;
3380   if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3381     return -1u;
3382   // The value compared against must be either u5 or -1.
3383   const MachineOperand &CmpOp = GA.getOperand(2);
3384   if (!CmpOp.isImm())
3385     return -1u;
3386   int V = CmpOp.getImm();
3387   if (V == -1)
3388     return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3389                                   : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3390   if (!isUInt<5>(V))
3391     return -1u;
3392   return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3393                                 : Hexagon::J4_cmpeqi_tp1_jump_nt;
3394 }
3395 
3396 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3397   enum Hexagon::PredSense inPredSense;
3398   inPredSense = invertPredicate ? Hexagon::PredSense_false :
3399                                   Hexagon::PredSense_true;
3400   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3401   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3402     return CondOpcode;
3403 
3404   llvm_unreachable("Unexpected predicable instruction");
3405 }
3406 
3407 // Return the cur value instruction for a given store.
3408 int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const {
3409   switch (MI.getOpcode()) {
3410   default: llvm_unreachable("Unknown .cur type");
3411   case Hexagon::V6_vL32b_pi:
3412     return Hexagon::V6_vL32b_cur_pi;
3413   case Hexagon::V6_vL32b_ai:
3414     return Hexagon::V6_vL32b_cur_ai;
3415   case Hexagon::V6_vL32b_nt_pi:
3416     return Hexagon::V6_vL32b_nt_cur_pi;
3417   case Hexagon::V6_vL32b_nt_ai:
3418     return Hexagon::V6_vL32b_nt_cur_ai;
3419   }
3420   return 0;
3421 }
3422 
3423 // Return the regular version of the .cur instruction.
3424 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const {
3425   switch (MI.getOpcode()) {
3426   default: llvm_unreachable("Unknown .cur type");
3427   case Hexagon::V6_vL32b_cur_pi:
3428     return Hexagon::V6_vL32b_pi;
3429   case Hexagon::V6_vL32b_cur_ai:
3430     return Hexagon::V6_vL32b_ai;
3431   case Hexagon::V6_vL32b_nt_cur_pi:
3432     return Hexagon::V6_vL32b_nt_pi;
3433   case Hexagon::V6_vL32b_nt_cur_ai:
3434     return Hexagon::V6_vL32b_nt_ai;
3435   }
3436   return 0;
3437 }
3438 
3439 // The diagram below shows the steps involved in the conversion of a predicated
3440 // store instruction to its .new predicated new-value form.
3441 //
3442 // Note: It doesn't include conditional new-value stores as they can't be
3443 // converted to .new predicate.
3444 //
3445 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3446 //                ^           ^
3447 //               /             \ (not OK. it will cause new-value store to be
3448 //              /               X conditional on p0.new while R2 producer is
3449 //             /                 \ on p0)
3450 //            /                   \.
3451 //     p.new store                 p.old NV store
3452 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
3453 //            ^                  ^
3454 //             \                /
3455 //              \              /
3456 //               \            /
3457 //                 p.old store
3458 //             [if (p0)memw(R0+#0)=R2]
3459 //
3460 // The following set of instructions further explains the scenario where
3461 // conditional new-value store becomes invalid when promoted to .new predicate
3462 // form.
3463 //
3464 // { 1) if (p0) r0 = add(r1, r2)
3465 //   2) p0 = cmp.eq(r3, #0) }
3466 //
3467 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
3468 // the first two instructions because in instr 1, r0 is conditional on old value
3469 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3470 // is not valid for new-value stores.
3471 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3472 // from the "Conditional Store" list. Because a predicated new value store
3473 // would NOT be promoted to a double dot new store. See diagram below:
3474 // This function returns yes for those stores that are predicated but not
3475 // yet promoted to predicate dot new instructions.
3476 //
3477 //                          +---------------------+
3478 //                    /-----| if (p0) memw(..)=r0 |---------\~
3479 //                   ||     +---------------------+         ||
3480 //          promote  ||       /\       /\                   ||  promote
3481 //                   ||      /||\     /||\                  ||
3482 //                  \||/    demote     ||                  \||/
3483 //                   \/       ||       ||                   \/
3484 //       +-------------------------+   ||   +-------------------------+
3485 //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
3486 //       +-------------------------+   ||   +-------------------------+
3487 //                        ||           ||         ||
3488 //                        ||         demote      \||/
3489 //                      promote        ||         \/ NOT possible
3490 //                        ||           ||         /\~
3491 //                       \||/          ||        /||\~
3492 //                        \/           ||         ||
3493 //                      +-----------------------------+
3494 //                      | if (p0.new) memw(..)=r0.new |
3495 //                      +-----------------------------+
3496 //                           Double Dot New Store
3497 //
3498 // Returns the most basic instruction for the .new predicated instructions and
3499 // new-value stores.
3500 // For example, all of the following instructions will be converted back to the
3501 // same instruction:
3502 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
3503 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
3504 // 3) if (p0.new) memw(R0+#0) = R1      --->
3505 //
3506 // To understand the translation of instruction 1 to its original form, consider
3507 // a packet with 3 instructions.
3508 // { p0 = cmp.eq(R0,R1)
3509 //   if (p0.new) R2 = add(R3, R4)
3510 //   R5 = add (R3, R1)
3511 // }
3512 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3513 //
3514 // This instruction can be part of the previous packet only if both p0 and R2
3515 // are promoted to .new values. This promotion happens in steps, first
3516 // predicate register is promoted to .new and in the next iteration R2 is
3517 // promoted. Therefore, in case of dependence check failure (due to R5) during
3518 // next iteration, it should be converted back to its most basic form.
3519 
3520 // Return the new value instruction for a given store.
3521 int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const {
3522   int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3523   if (NVOpcode >= 0) // Valid new-value store instruction.
3524     return NVOpcode;
3525 
3526   switch (MI.getOpcode()) {
3527   default:
3528     report_fatal_error(std::string("Unknown .new type: ") +
3529       std::to_string(MI.getOpcode()));
3530   case Hexagon::S4_storerb_ur:
3531     return Hexagon::S4_storerbnew_ur;
3532 
3533   case Hexagon::S2_storerb_pci:
3534     return Hexagon::S2_storerb_pci;
3535 
3536   case Hexagon::S2_storeri_pci:
3537     return Hexagon::S2_storeri_pci;
3538 
3539   case Hexagon::S2_storerh_pci:
3540     return Hexagon::S2_storerh_pci;
3541 
3542   case Hexagon::S2_storerd_pci:
3543     return Hexagon::S2_storerd_pci;
3544 
3545   case Hexagon::S2_storerf_pci:
3546     return Hexagon::S2_storerf_pci;
3547 
3548   case Hexagon::V6_vS32b_ai:
3549     return Hexagon::V6_vS32b_new_ai;
3550 
3551   case Hexagon::V6_vS32b_pi:
3552     return Hexagon::V6_vS32b_new_pi;
3553   }
3554   return 0;
3555 }
3556 
3557 // Returns the opcode to use when converting MI, which is a conditional jump,
3558 // into a conditional instruction which uses the .new value of the predicate.
3559 // We also use branch probabilities to add a hint to the jump.
3560 // If MBPI is null, all edges will be treated as equally likely for the
3561 // purposes of establishing a predication hint.
3562 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI,
3563       const MachineBranchProbabilityInfo *MBPI) const {
3564   // We assume that block can have at most two successors.
3565   const MachineBasicBlock *Src = MI.getParent();
3566   const MachineOperand &BrTarget = MI.getOperand(1);
3567   bool Taken = false;
3568   const BranchProbability OneHalf(1, 2);
3569 
3570   auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3571                                     const MachineBasicBlock *Dst) {
3572     if (MBPI)
3573       return MBPI->getEdgeProbability(Src, Dst);
3574     return BranchProbability(1, Src->succ_size());
3575   };
3576 
3577   if (BrTarget.isMBB()) {
3578     const MachineBasicBlock *Dst = BrTarget.getMBB();
3579     Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3580   } else {
3581     // The branch target is not a basic block (most likely a function).
3582     // Since BPI only gives probabilities for targets that are basic blocks,
3583     // try to identify another target of this branch (potentially a fall-
3584     // -through) and check the probability of that target.
3585     //
3586     // The only handled branch combinations are:
3587     // - one conditional branch,
3588     // - one conditional branch followed by one unconditional branch.
3589     // Otherwise, assume not-taken.
3590     assert(MI.isConditionalBranch());
3591     const MachineBasicBlock &B = *MI.getParent();
3592     bool SawCond = false, Bad = false;
3593     for (const MachineInstr &I : B) {
3594       if (!I.isBranch())
3595         continue;
3596       if (I.isConditionalBranch()) {
3597         SawCond = true;
3598         if (&I != &MI) {
3599           Bad = true;
3600           break;
3601         }
3602       }
3603       if (I.isUnconditionalBranch() && !SawCond) {
3604         Bad = true;
3605         break;
3606       }
3607     }
3608     if (!Bad) {
3609       MachineBasicBlock::const_instr_iterator It(MI);
3610       MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3611       if (NextIt == B.instr_end()) {
3612         // If this branch is the last, look for the fall-through block.
3613         for (const MachineBasicBlock *SB : B.successors()) {
3614           if (!B.isLayoutSuccessor(SB))
3615             continue;
3616           Taken = getEdgeProbability(Src, SB) < OneHalf;
3617           break;
3618         }
3619       } else {
3620         assert(NextIt->isUnconditionalBranch());
3621         // Find the first MBB operand and assume it's the target.
3622         const MachineBasicBlock *BT = nullptr;
3623         for (const MachineOperand &Op : NextIt->operands()) {
3624           if (!Op.isMBB())
3625             continue;
3626           BT = Op.getMBB();
3627           break;
3628         }
3629         Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3630       }
3631     } // if (!Bad)
3632   }
3633 
3634   // The Taken flag should be set to something reasonable by this point.
3635 
3636   switch (MI.getOpcode()) {
3637   case Hexagon::J2_jumpt:
3638     return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3639   case Hexagon::J2_jumpf:
3640     return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3641 
3642   default:
3643     llvm_unreachable("Unexpected jump instruction.");
3644   }
3645 }
3646 
3647 // Return .new predicate version for an instruction.
3648 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI,
3649       const MachineBranchProbabilityInfo *MBPI) const {
3650   switch (MI.getOpcode()) {
3651   // Condtional Jumps
3652   case Hexagon::J2_jumpt:
3653   case Hexagon::J2_jumpf:
3654     return getDotNewPredJumpOp(MI, MBPI);
3655   }
3656 
3657   int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3658   if (NewOpcode >= 0)
3659     return NewOpcode;
3660   return 0;
3661 }
3662 
3663 int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const {
3664   int NewOp = MI.getOpcode();
3665   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3666     NewOp = Hexagon::getPredOldOpcode(NewOp);
3667     // All Hexagon architectures have prediction bits on dot-new branches,
3668     // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3669     // to pick the right opcode when converting back to dot-old.
3670     if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) {
3671       switch (NewOp) {
3672       case Hexagon::J2_jumptpt:
3673         NewOp = Hexagon::J2_jumpt;
3674         break;
3675       case Hexagon::J2_jumpfpt:
3676         NewOp = Hexagon::J2_jumpf;
3677         break;
3678       case Hexagon::J2_jumprtpt:
3679         NewOp = Hexagon::J2_jumprt;
3680         break;
3681       case Hexagon::J2_jumprfpt:
3682         NewOp = Hexagon::J2_jumprf;
3683         break;
3684       }
3685     }
3686     assert(NewOp >= 0 &&
3687            "Couldn't change predicate new instruction to its old form.");
3688   }
3689 
3690   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3691     NewOp = Hexagon::getNonNVStore(NewOp);
3692     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3693   }
3694 
3695   if (Subtarget.hasV60Ops())
3696     return NewOp;
3697 
3698   // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3699   switch (NewOp) {
3700   case Hexagon::J2_jumpfpt:
3701     return Hexagon::J2_jumpf;
3702   case Hexagon::J2_jumptpt:
3703     return Hexagon::J2_jumpt;
3704   case Hexagon::J2_jumprfpt:
3705     return Hexagon::J2_jumprf;
3706   case Hexagon::J2_jumprtpt:
3707     return Hexagon::J2_jumprt;
3708   }
3709   return NewOp;
3710 }
3711 
3712 // See if instruction could potentially be a duplex candidate.
3713 // If so, return its group. Zero otherwise.
3714 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3715       const MachineInstr &MI) const {
3716   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3717   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3718 
3719   switch (MI.getOpcode()) {
3720   default:
3721     return HexagonII::HSIG_None;
3722   //
3723   // Group L1:
3724   //
3725   // Rd = memw(Rs+#u4:2)
3726   // Rd = memub(Rs+#u4:0)
3727   case Hexagon::L2_loadri_io:
3728     DstReg = MI.getOperand(0).getReg();
3729     SrcReg = MI.getOperand(1).getReg();
3730     // Special case this one from Group L2.
3731     // Rd = memw(r29+#u5:2)
3732     if (isIntRegForSubInst(DstReg)) {
3733       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3734           HRI.getStackRegister() == SrcReg &&
3735           MI.getOperand(2).isImm() &&
3736           isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3737         return HexagonII::HSIG_L2;
3738       // Rd = memw(Rs+#u4:2)
3739       if (isIntRegForSubInst(SrcReg) &&
3740           (MI.getOperand(2).isImm() &&
3741           isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3742         return HexagonII::HSIG_L1;
3743     }
3744     break;
3745   case Hexagon::L2_loadrub_io:
3746     // Rd = memub(Rs+#u4:0)
3747     DstReg = MI.getOperand(0).getReg();
3748     SrcReg = MI.getOperand(1).getReg();
3749     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3750         MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3751       return HexagonII::HSIG_L1;
3752     break;
3753   //
3754   // Group L2:
3755   //
3756   // Rd = memh/memuh(Rs+#u3:1)
3757   // Rd = memb(Rs+#u3:0)
3758   // Rd = memw(r29+#u5:2) - Handled above.
3759   // Rdd = memd(r29+#u5:3)
3760   // deallocframe
3761   // [if ([!]p0[.new])] dealloc_return
3762   // [if ([!]p0[.new])] jumpr r31
3763   case Hexagon::L2_loadrh_io:
3764   case Hexagon::L2_loadruh_io:
3765     // Rd = memh/memuh(Rs+#u3:1)
3766     DstReg = MI.getOperand(0).getReg();
3767     SrcReg = MI.getOperand(1).getReg();
3768     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3769         MI.getOperand(2).isImm() &&
3770         isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
3771       return HexagonII::HSIG_L2;
3772     break;
3773   case Hexagon::L2_loadrb_io:
3774     // Rd = memb(Rs+#u3:0)
3775     DstReg = MI.getOperand(0).getReg();
3776     SrcReg = MI.getOperand(1).getReg();
3777     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3778         MI.getOperand(2).isImm() &&
3779         isUInt<3>(MI.getOperand(2).getImm()))
3780       return HexagonII::HSIG_L2;
3781     break;
3782   case Hexagon::L2_loadrd_io:
3783     // Rdd = memd(r29+#u5:3)
3784     DstReg = MI.getOperand(0).getReg();
3785     SrcReg = MI.getOperand(1).getReg();
3786     if (isDblRegForSubInst(DstReg, HRI) &&
3787         Hexagon::IntRegsRegClass.contains(SrcReg) &&
3788         HRI.getStackRegister() == SrcReg &&
3789         MI.getOperand(2).isImm() &&
3790         isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3791       return HexagonII::HSIG_L2;
3792     break;
3793   // dealloc_return is not documented in Hexagon Manual, but marked
3794   // with A_SUBINSN attribute in iset_v4classic.py.
3795   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3796   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3797   case Hexagon::L4_return:
3798   case Hexagon::L2_deallocframe:
3799     return HexagonII::HSIG_L2;
3800   case Hexagon::EH_RETURN_JMPR:
3801   case Hexagon::PS_jmpret:
3802   case Hexagon::SL2_jumpr31:
3803     // jumpr r31
3804     // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3805     DstReg = MI.getOperand(0).getReg();
3806     if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3807       return HexagonII::HSIG_L2;
3808     break;
3809   case Hexagon::PS_jmprett:
3810   case Hexagon::PS_jmpretf:
3811   case Hexagon::PS_jmprettnewpt:
3812   case Hexagon::PS_jmpretfnewpt:
3813   case Hexagon::PS_jmprettnew:
3814   case Hexagon::PS_jmpretfnew:
3815   case Hexagon::SL2_jumpr31_t:
3816   case Hexagon::SL2_jumpr31_f:
3817   case Hexagon::SL2_jumpr31_tnew:
3818     DstReg = MI.getOperand(1).getReg();
3819     SrcReg = MI.getOperand(0).getReg();
3820     // [if ([!]p0[.new])] jumpr r31
3821     if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3822         (Hexagon::P0 == SrcReg)) &&
3823         (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3824       return HexagonII::HSIG_L2;
3825     break;
3826   case Hexagon::L4_return_t:
3827   case Hexagon::L4_return_f:
3828   case Hexagon::L4_return_tnew_pnt:
3829   case Hexagon::L4_return_fnew_pnt:
3830   case Hexagon::L4_return_tnew_pt:
3831   case Hexagon::L4_return_fnew_pt:
3832     // [if ([!]p0[.new])] dealloc_return
3833     SrcReg = MI.getOperand(0).getReg();
3834     if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3835       return HexagonII::HSIG_L2;
3836     break;
3837   //
3838   // Group S1:
3839   //
3840   // memw(Rs+#u4:2) = Rt
3841   // memb(Rs+#u4:0) = Rt
3842   case Hexagon::S2_storeri_io:
3843     // Special case this one from Group S2.
3844     // memw(r29+#u5:2) = Rt
3845     Src1Reg = MI.getOperand(0).getReg();
3846     Src2Reg = MI.getOperand(2).getReg();
3847     if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3848         isIntRegForSubInst(Src2Reg) &&
3849         HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3850         isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
3851       return HexagonII::HSIG_S2;
3852     // memw(Rs+#u4:2) = Rt
3853     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3854         MI.getOperand(1).isImm() &&
3855         isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
3856       return HexagonII::HSIG_S1;
3857     break;
3858   case Hexagon::S2_storerb_io:
3859     // memb(Rs+#u4:0) = Rt
3860     Src1Reg = MI.getOperand(0).getReg();
3861     Src2Reg = MI.getOperand(2).getReg();
3862     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3863         MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
3864       return HexagonII::HSIG_S1;
3865     break;
3866   //
3867   // Group S2:
3868   //
3869   // memh(Rs+#u3:1) = Rt
3870   // memw(r29+#u5:2) = Rt
3871   // memd(r29+#s6:3) = Rtt
3872   // memw(Rs+#u4:2) = #U1
3873   // memb(Rs+#u4) = #U1
3874   // allocframe(#u5:3)
3875   case Hexagon::S2_storerh_io:
3876     // memh(Rs+#u3:1) = Rt
3877     Src1Reg = MI.getOperand(0).getReg();
3878     Src2Reg = MI.getOperand(2).getReg();
3879     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3880         MI.getOperand(1).isImm() &&
3881         isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
3882       return HexagonII::HSIG_S1;
3883     break;
3884   case Hexagon::S2_storerd_io:
3885     // memd(r29+#s6:3) = Rtt
3886     Src1Reg = MI.getOperand(0).getReg();
3887     Src2Reg = MI.getOperand(2).getReg();
3888     if (isDblRegForSubInst(Src2Reg, HRI) &&
3889         Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3890         HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3891         isShiftedInt<6,3>(MI.getOperand(1).getImm()))
3892       return HexagonII::HSIG_S2;
3893     break;
3894   case Hexagon::S4_storeiri_io:
3895     // memw(Rs+#u4:2) = #U1
3896     Src1Reg = MI.getOperand(0).getReg();
3897     if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
3898         isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
3899         MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3900       return HexagonII::HSIG_S2;
3901     break;
3902   case Hexagon::S4_storeirb_io:
3903     // memb(Rs+#u4) = #U1
3904     Src1Reg = MI.getOperand(0).getReg();
3905     if (isIntRegForSubInst(Src1Reg) &&
3906         MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
3907         MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3908       return HexagonII::HSIG_S2;
3909     break;
3910   case Hexagon::S2_allocframe:
3911     if (MI.getOperand(2).isImm() &&
3912         isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3913       return HexagonII::HSIG_S1;
3914     break;
3915   //
3916   // Group A:
3917   //
3918   // Rx = add(Rx,#s7)
3919   // Rd = Rs
3920   // Rd = #u6
3921   // Rd = #-1
3922   // if ([!]P0[.new]) Rd = #0
3923   // Rd = add(r29,#u6:2)
3924   // Rx = add(Rx,Rs)
3925   // P0 = cmp.eq(Rs,#u2)
3926   // Rdd = combine(#0,Rs)
3927   // Rdd = combine(Rs,#0)
3928   // Rdd = combine(#u2,#U2)
3929   // Rd = add(Rs,#1)
3930   // Rd = add(Rs,#-1)
3931   // Rd = sxth/sxtb/zxtb/zxth(Rs)
3932   // Rd = and(Rs,#1)
3933   case Hexagon::A2_addi:
3934     DstReg = MI.getOperand(0).getReg();
3935     SrcReg = MI.getOperand(1).getReg();
3936     if (isIntRegForSubInst(DstReg)) {
3937       // Rd = add(r29,#u6:2)
3938       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3939         HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
3940         isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
3941         return HexagonII::HSIG_A;
3942       // Rx = add(Rx,#s7)
3943       if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
3944           isInt<7>(MI.getOperand(2).getImm()))
3945         return HexagonII::HSIG_A;
3946       // Rd = add(Rs,#1)
3947       // Rd = add(Rs,#-1)
3948       if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3949           ((MI.getOperand(2).getImm() == 1) ||
3950           (MI.getOperand(2).getImm() == -1)))
3951         return HexagonII::HSIG_A;
3952     }
3953     break;
3954   case Hexagon::A2_add:
3955     // Rx = add(Rx,Rs)
3956     DstReg = MI.getOperand(0).getReg();
3957     Src1Reg = MI.getOperand(1).getReg();
3958     Src2Reg = MI.getOperand(2).getReg();
3959     if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3960         isIntRegForSubInst(Src2Reg))
3961       return HexagonII::HSIG_A;
3962     break;
3963   case Hexagon::A2_andir:
3964     // Same as zxtb.
3965     // Rd16=and(Rs16,#255)
3966     // Rd16=and(Rs16,#1)
3967     DstReg = MI.getOperand(0).getReg();
3968     SrcReg = MI.getOperand(1).getReg();
3969     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3970         MI.getOperand(2).isImm() &&
3971         ((MI.getOperand(2).getImm() == 1) ||
3972         (MI.getOperand(2).getImm() == 255)))
3973       return HexagonII::HSIG_A;
3974     break;
3975   case Hexagon::A2_tfr:
3976     // Rd = Rs
3977     DstReg = MI.getOperand(0).getReg();
3978     SrcReg = MI.getOperand(1).getReg();
3979     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3980       return HexagonII::HSIG_A;
3981     break;
3982   case Hexagon::A2_tfrsi:
3983     // Rd = #u6
3984     // Do not test for #u6 size since the const is getting extended
3985     // regardless and compound could be formed.
3986     // Rd = #-1
3987     DstReg = MI.getOperand(0).getReg();
3988     if (isIntRegForSubInst(DstReg))
3989       return HexagonII::HSIG_A;
3990     break;
3991   case Hexagon::C2_cmoveit:
3992   case Hexagon::C2_cmovenewit:
3993   case Hexagon::C2_cmoveif:
3994   case Hexagon::C2_cmovenewif:
3995     // if ([!]P0[.new]) Rd = #0
3996     // Actual form:
3997     // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
3998     DstReg = MI.getOperand(0).getReg();
3999     SrcReg = MI.getOperand(1).getReg();
4000     if (isIntRegForSubInst(DstReg) &&
4001         Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
4002         MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
4003       return HexagonII::HSIG_A;
4004     break;
4005   case Hexagon::C2_cmpeqi:
4006     // P0 = cmp.eq(Rs,#u2)
4007     DstReg = MI.getOperand(0).getReg();
4008     SrcReg = MI.getOperand(1).getReg();
4009     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
4010         Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
4011         MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
4012       return HexagonII::HSIG_A;
4013     break;
4014   case Hexagon::A2_combineii:
4015   case Hexagon::A4_combineii:
4016     // Rdd = combine(#u2,#U2)
4017     DstReg = MI.getOperand(0).getReg();
4018     if (isDblRegForSubInst(DstReg, HRI) &&
4019         ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
4020         (MI.getOperand(1).isGlobal() &&
4021         isUInt<2>(MI.getOperand(1).getOffset()))) &&
4022         ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
4023         (MI.getOperand(2).isGlobal() &&
4024         isUInt<2>(MI.getOperand(2).getOffset()))))
4025       return HexagonII::HSIG_A;
4026     break;
4027   case Hexagon::A4_combineri:
4028     // Rdd = combine(Rs,#0)
4029     DstReg = MI.getOperand(0).getReg();
4030     SrcReg = MI.getOperand(1).getReg();
4031     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4032         ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
4033         (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
4034       return HexagonII::HSIG_A;
4035     break;
4036   case Hexagon::A4_combineir:
4037     // Rdd = combine(#0,Rs)
4038     DstReg = MI.getOperand(0).getReg();
4039     SrcReg = MI.getOperand(2).getReg();
4040     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4041         ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
4042         (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
4043       return HexagonII::HSIG_A;
4044     break;
4045   case Hexagon::A2_sxtb:
4046   case Hexagon::A2_sxth:
4047   case Hexagon::A2_zxtb:
4048   case Hexagon::A2_zxth:
4049     // Rd = sxth/sxtb/zxtb/zxth(Rs)
4050     DstReg = MI.getOperand(0).getReg();
4051     SrcReg = MI.getOperand(1).getReg();
4052     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4053       return HexagonII::HSIG_A;
4054     break;
4055   }
4056 
4057   return HexagonII::HSIG_None;
4058 }
4059 
4060 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const {
4061   return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4062 }
4063 
4064 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4065       const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4066   // Default to one cycle for no itinerary. However, an "empty" itinerary may
4067   // still have a MinLatency property, which getStageLatency checks.
4068   if (!ItinData)
4069     return getInstrLatency(ItinData, MI);
4070 
4071   if (MI.isTransient())
4072     return 0;
4073   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4074 }
4075 
4076 /// getOperandLatency - Compute and return the use operand latency of a given
4077 /// pair of def and use.
4078 /// In most cases, the static scheduling itinerary was enough to determine the
4079 /// operand latency. But it may not be possible for instructions with variable
4080 /// number of defs / uses.
4081 ///
4082 /// This is a raw interface to the itinerary that may be directly overriden by
4083 /// a target. Use computeOperandLatency to get the best estimate of latency.
4084 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4085                                         const MachineInstr &DefMI,
4086                                         unsigned DefIdx,
4087                                         const MachineInstr &UseMI,
4088                                         unsigned UseIdx) const {
4089   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4090 
4091   // Get DefIdx and UseIdx for super registers.
4092   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4093 
4094   if (DefMO.isReg() && HRI.isPhysicalRegister(DefMO.getReg())) {
4095     if (DefMO.isImplicit()) {
4096       for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) {
4097         int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI);
4098         if (Idx != -1) {
4099           DefIdx = Idx;
4100           break;
4101         }
4102       }
4103     }
4104 
4105     const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4106     if (UseMO.isImplicit()) {
4107       for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) {
4108         int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI);
4109         if (Idx != -1) {
4110           UseIdx = Idx;
4111           break;
4112         }
4113       }
4114     }
4115   }
4116 
4117   int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
4118                                                    UseMI, UseIdx);
4119   if (!Latency)
4120     // We should never have 0 cycle latency between two instructions unless
4121     // they can be packetized together. However, this decision can't be made
4122     // here.
4123     Latency = 1;
4124   return Latency;
4125 }
4126 
4127 // inverts the predication logic.
4128 // p -> NotP
4129 // NotP -> P
4130 bool HexagonInstrInfo::getInvertedPredSense(
4131       SmallVectorImpl<MachineOperand> &Cond) const {
4132   if (Cond.empty())
4133     return false;
4134   unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4135   Cond[0].setImm(Opc);
4136   return true;
4137 }
4138 
4139 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
4140   int InvPredOpcode;
4141   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4142                                         : Hexagon::getTruePredOpcode(Opc);
4143   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4144     return InvPredOpcode;
4145 
4146   llvm_unreachable("Unexpected predicated instruction");
4147 }
4148 
4149 // Returns the max value that doesn't need to be extended.
4150 int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const {
4151   const uint64_t F = MI.getDesc().TSFlags;
4152   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4153                     & HexagonII::ExtentSignedMask;
4154   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4155                     & HexagonII::ExtentBitsMask;
4156 
4157   if (isSigned) // if value is signed
4158     return ~(-1U << (bits - 1));
4159   else
4160     return ~(-1U << bits);
4161 }
4162 
4163 
4164 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const {
4165   switch (MI.getOpcode()) {
4166   case Hexagon::L2_loadrbgp:
4167   case Hexagon::L2_loadrdgp:
4168   case Hexagon::L2_loadrhgp:
4169   case Hexagon::L2_loadrigp:
4170   case Hexagon::L2_loadrubgp:
4171   case Hexagon::L2_loadruhgp:
4172   case Hexagon::S2_storerbgp:
4173   case Hexagon::S2_storerbnewgp:
4174   case Hexagon::S2_storerhgp:
4175   case Hexagon::S2_storerhnewgp:
4176   case Hexagon::S2_storerigp:
4177   case Hexagon::S2_storerinewgp:
4178   case Hexagon::S2_storerdgp:
4179   case Hexagon::S2_storerfgp:
4180     return true;
4181   }
4182   const uint64_t F = MI.getDesc().TSFlags;
4183   unsigned addrMode =
4184     ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
4185   // Disallow any base+offset instruction. The assembler does not yet reorder
4186   // based up any zero offset instruction.
4187   return (addrMode == HexagonII::BaseRegOffset ||
4188           addrMode == HexagonII::BaseImmOffset ||
4189           addrMode == HexagonII::BaseLongOffset);
4190 }
4191 
4192 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const {
4193   using namespace HexagonII;
4194 
4195   const uint64_t F = MI.getDesc().TSFlags;
4196   unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4197   unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4198   if (Size != 0)
4199     return Size;
4200 
4201   // Handle vector access sizes.
4202   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4203   switch (S) {
4204     case HexagonII::HVXVectorAccess:
4205       return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4206     default:
4207       llvm_unreachable("Unexpected instruction");
4208   }
4209 }
4210 
4211 // Returns the min value that doesn't need to be extended.
4212 int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const {
4213   const uint64_t F = MI.getDesc().TSFlags;
4214   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4215                     & HexagonII::ExtentSignedMask;
4216   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4217                     & HexagonII::ExtentBitsMask;
4218 
4219   if (isSigned) // if value is signed
4220     return -1U << (bits - 1);
4221   else
4222     return 0;
4223 }
4224 
4225 // Returns opcode of the non-extended equivalent instruction.
4226 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const {
4227   // Check if the instruction has a register form that uses register in place
4228   // of the extended operand, if so return that as the non-extended form.
4229   short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4230     if (NonExtOpcode >= 0)
4231       return NonExtOpcode;
4232 
4233   if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4234     // Check addressing mode and retrieve non-ext equivalent instruction.
4235     switch (getAddrMode(MI)) {
4236     case HexagonII::Absolute:
4237       return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4238     case HexagonII::BaseImmOffset:
4239       return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4240     case HexagonII::BaseLongOffset:
4241       return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4242 
4243     default:
4244       return -1;
4245     }
4246   }
4247   return -1;
4248 }
4249 
4250 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
4251       unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4252   if (Cond.empty())
4253     return false;
4254   assert(Cond.size() == 2);
4255   if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4256     LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4257     return false;
4258   }
4259   PredReg = Cond[1].getReg();
4260   PredRegPos = 1;
4261   // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4262   PredRegFlags = 0;
4263   if (Cond[1].isImplicit())
4264     PredRegFlags = RegState::Implicit;
4265   if (Cond[1].isUndef())
4266     PredRegFlags |= RegState::Undef;
4267   return true;
4268 }
4269 
4270 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const {
4271   return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4272 }
4273 
4274 short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const {
4275   return Hexagon::getRegForm(MI.getOpcode());
4276 }
4277 
4278 // Return the number of bytes required to encode the instruction.
4279 // Hexagon instructions are fixed length, 4 bytes, unless they
4280 // use a constant extender, which requires another 4 bytes.
4281 // For debug instructions and prolog labels, return 0.
4282 unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const {
4283   if (MI.isDebugInstr() || MI.isPosition())
4284     return 0;
4285 
4286   unsigned Size = MI.getDesc().getSize();
4287   if (!Size)
4288     // Assume the default insn size in case it cannot be determined
4289     // for whatever reason.
4290     Size = HEXAGON_INSTR_SIZE;
4291 
4292   if (isConstExtended(MI) || isExtended(MI))
4293     Size += HEXAGON_INSTR_SIZE;
4294 
4295   // Try and compute number of instructions in asm.
4296   if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4297     const MachineBasicBlock &MBB = *MI.getParent();
4298     const MachineFunction *MF = MBB.getParent();
4299     const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4300 
4301     // Count the number of register definitions to find the asm string.
4302     unsigned NumDefs = 0;
4303     for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4304          ++NumDefs)
4305       assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4306 
4307     assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4308     // Disassemble the AsmStr and approximate number of instructions.
4309     const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4310     Size = getInlineAsmLength(AsmStr, *MAI);
4311   }
4312 
4313   return Size;
4314 }
4315 
4316 uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const {
4317   const uint64_t F = MI.getDesc().TSFlags;
4318   return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
4319 }
4320 
4321 unsigned HexagonInstrInfo::getUnits(const MachineInstr &MI) const {
4322   const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4323   const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4324 
4325   return IS.getUnits();
4326 }
4327 
4328 // Calculate size of the basic block without debug instructions.
4329 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
4330   return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4331 }
4332 
4333 unsigned HexagonInstrInfo::nonDbgBundleSize(
4334       MachineBasicBlock::const_iterator BundleHead) const {
4335   assert(BundleHead->isBundle() && "Not a bundle header");
4336   auto MII = BundleHead.getInstrIterator();
4337   // Skip the bundle header.
4338   return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4339 }
4340 
4341 /// immediateExtend - Changes the instruction in place to one using an immediate
4342 /// extender.
4343 void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const {
4344   assert((isExtendable(MI)||isConstExtended(MI)) &&
4345                                "Instruction must be extendable");
4346   // Find which operand is extendable.
4347   short ExtOpNum = getCExtOpNum(MI);
4348   MachineOperand &MO = MI.getOperand(ExtOpNum);
4349   // This needs to be something we understand.
4350   assert((MO.isMBB() || MO.isImm()) &&
4351          "Branch with unknown extendable field type");
4352   // Mark given operand as extended.
4353   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
4354 }
4355 
4356 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4357       MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4358   LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4359                     << printMBBReference(*NewTarget);
4360              MI.dump(););
4361   assert(MI.isBranch());
4362   unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4363   int TargetPos = MI.getNumOperands() - 1;
4364   // In general branch target is the last operand,
4365   // but some implicit defs added at the end might change it.
4366   while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4367     --TargetPos;
4368   assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4369   MI.getOperand(TargetPos).setMBB(NewTarget);
4370   if (EnableBranchPrediction && isPredicatedNew(MI)) {
4371     NewOpcode = reversePrediction(NewOpcode);
4372   }
4373   MI.setDesc(get(NewOpcode));
4374   return true;
4375 }
4376 
4377 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
4378   /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4379   MachineFunction::iterator A = MF.begin();
4380   MachineBasicBlock &B = *A;
4381   MachineBasicBlock::iterator I = B.begin();
4382   DebugLoc DL = I->getDebugLoc();
4383   MachineInstr *NewMI;
4384 
4385   for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4386        insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4387     NewMI = BuildMI(B, I, DL, get(insn));
4388     LLVM_DEBUG(dbgs() << "\n"
4389                       << getName(NewMI->getOpcode())
4390                       << "  Class: " << NewMI->getDesc().getSchedClass());
4391     NewMI->eraseFromParent();
4392   }
4393   /* --- The code above is used to generate complete set of Hexagon Insn --- */
4394 }
4395 
4396 // inverts the predication logic.
4397 // p -> NotP
4398 // NotP -> P
4399 bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const {
4400   LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4401   MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4402   return true;
4403 }
4404 
4405 // Reverse the branch prediction.
4406 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4407   int PredRevOpcode = -1;
4408   if (isPredictedTaken(Opcode))
4409     PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4410   else
4411     PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4412   assert(PredRevOpcode > 0);
4413   return PredRevOpcode;
4414 }
4415 
4416 // TODO: Add more rigorous validation.
4417 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
4418       const {
4419   return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4420 }
4421 
4422 void HexagonInstrInfo::
4423 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const {
4424   assert(MIB->isBundle());
4425   MachineOperand &Operand = MIB->getOperand(0);
4426   if (Operand.isImm())
4427     Operand.setImm(Operand.getImm() | memShufDisabledMask);
4428   else
4429     MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4430 }
4431 
4432 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const {
4433   assert(MIB.isBundle());
4434   const MachineOperand &Operand = MIB.getOperand(0);
4435   return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4436 }
4437 
4438 // Addressing mode relations.
4439 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const {
4440   return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4441 }
4442 
4443 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const {
4444   return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4445 }
4446 
4447 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const {
4448   return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4449 }
4450 
4451 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const {
4452   return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4453 }
4454 
4455 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const {
4456   return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4457 }
4458 
4459 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const {
4460   return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4461 }
4462 
4463 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const {
4464   return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4465 }
4466 
4467 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const {
4468   return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
4469 }
4470