xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "HexagonISelLowering.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/Support/CommandLine.h"
13 
14 using namespace llvm;
15 
16 static const MVT LegalV64[] =  { MVT::v64i8,  MVT::v32i16,  MVT::v16i32 };
17 static const MVT LegalW64[] =  { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
18 static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
19 static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
20 
21 
22 void
23 HexagonTargetLowering::initializeHVXLowering() {
24   if (Subtarget.useHVX64BOps()) {
25     addRegisterClass(MVT::v64i8,  &Hexagon::HvxVRRegClass);
26     addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
27     addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
28     addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
29     addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
30     addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
31     // These "short" boolean vector types should be legal because
32     // they will appear as results of vector compares. If they were
33     // not legal, type legalization would try to make them legal
34     // and that would require using operations that do not use or
35     // produce such types. That, in turn, would imply using custom
36     // nodes, which would be unoptimizable by the DAG combiner.
37     // The idea is to rely on target-independent operations as much
38     // as possible.
39     addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
40     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
41     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
42     addRegisterClass(MVT::v512i1, &Hexagon::HvxQRRegClass);
43   } else if (Subtarget.useHVX128BOps()) {
44     addRegisterClass(MVT::v128i8,  &Hexagon::HvxVRRegClass);
45     addRegisterClass(MVT::v64i16,  &Hexagon::HvxVRRegClass);
46     addRegisterClass(MVT::v32i32,  &Hexagon::HvxVRRegClass);
47     addRegisterClass(MVT::v256i8,  &Hexagon::HvxWRRegClass);
48     addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
49     addRegisterClass(MVT::v64i32,  &Hexagon::HvxWRRegClass);
50     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
51     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
52     addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
53     addRegisterClass(MVT::v1024i1, &Hexagon::HvxQRRegClass);
54   }
55 
56   // Set up operation actions.
57 
58   bool Use64b = Subtarget.useHVX64BOps();
59   ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
60   ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
61   MVT ByteV = Use64b ?  MVT::v64i8 : MVT::v128i8;
62   MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
63 
64   auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
65     setOperationAction(Opc, FromTy, Promote);
66     AddPromotedToType(Opc, FromTy, ToTy);
67   };
68 
69   setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
70   setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);
71 
72   for (MVT T : LegalV) {
73     setIndexedLoadAction(ISD::POST_INC,  T, Legal);
74     setIndexedStoreAction(ISD::POST_INC, T, Legal);
75 
76     setOperationAction(ISD::AND,            T, Legal);
77     setOperationAction(ISD::OR,             T, Legal);
78     setOperationAction(ISD::XOR,            T, Legal);
79     setOperationAction(ISD::ADD,            T, Legal);
80     setOperationAction(ISD::SUB,            T, Legal);
81     setOperationAction(ISD::CTPOP,          T, Legal);
82     setOperationAction(ISD::CTLZ,           T, Legal);
83     if (T != ByteV) {
84       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
85       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
86       setOperationAction(ISD::BSWAP,                    T, Legal);
87     }
88 
89     setOperationAction(ISD::CTTZ,               T, Custom);
90     setOperationAction(ISD::LOAD,               T, Custom);
91     setOperationAction(ISD::MUL,                T, Custom);
92     setOperationAction(ISD::MULHS,              T, Custom);
93     setOperationAction(ISD::MULHU,              T, Custom);
94     setOperationAction(ISD::BUILD_VECTOR,       T, Custom);
95     // Make concat-vectors custom to handle concats of more than 2 vectors.
96     setOperationAction(ISD::CONCAT_VECTORS,     T, Custom);
97     setOperationAction(ISD::INSERT_SUBVECTOR,   T, Custom);
98     setOperationAction(ISD::INSERT_VECTOR_ELT,  T, Custom);
99     setOperationAction(ISD::EXTRACT_SUBVECTOR,  T, Custom);
100     setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
101     setOperationAction(ISD::ANY_EXTEND,         T, Custom);
102     setOperationAction(ISD::SIGN_EXTEND,        T, Custom);
103     setOperationAction(ISD::ZERO_EXTEND,        T, Custom);
104     if (T != ByteV) {
105       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
106       // HVX only has shifts of words and halfwords.
107       setOperationAction(ISD::SRA,                     T, Custom);
108       setOperationAction(ISD::SHL,                     T, Custom);
109       setOperationAction(ISD::SRL,                     T, Custom);
110 
111       // Promote all shuffles to operate on vectors of bytes.
112       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
113     }
114 
115     setCondCodeAction(ISD::SETNE,  T, Expand);
116     setCondCodeAction(ISD::SETLE,  T, Expand);
117     setCondCodeAction(ISD::SETGE,  T, Expand);
118     setCondCodeAction(ISD::SETLT,  T, Expand);
119     setCondCodeAction(ISD::SETULE, T, Expand);
120     setCondCodeAction(ISD::SETUGE, T, Expand);
121     setCondCodeAction(ISD::SETULT, T, Expand);
122   }
123 
124   for (MVT T : LegalW) {
125     // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
126     // independent) handling of it would convert it to a load, which is
127     // not always the optimal choice.
128     setOperationAction(ISD::BUILD_VECTOR,   T, Custom);
129     // Make concat-vectors custom to handle concats of more than 2 vectors.
130     setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
131 
132     // Custom-lower these operations for pairs. Expand them into a concat
133     // of the corresponding operations on individual vectors.
134     setOperationAction(ISD::ANY_EXTEND,               T, Custom);
135     setOperationAction(ISD::SIGN_EXTEND,              T, Custom);
136     setOperationAction(ISD::ZERO_EXTEND,              T, Custom);
137     setOperationAction(ISD::SIGN_EXTEND_INREG,        T, Custom);
138     setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,  T, Custom);
139     setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
140     setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
141 
142     setOperationAction(ISD::LOAD,     T, Custom);
143     setOperationAction(ISD::STORE,    T, Custom);
144     setOperationAction(ISD::CTLZ,     T, Custom);
145     setOperationAction(ISD::CTTZ,     T, Custom);
146     setOperationAction(ISD::CTPOP,    T, Custom);
147 
148     setOperationAction(ISD::ADD,      T, Legal);
149     setOperationAction(ISD::SUB,      T, Legal);
150     setOperationAction(ISD::MUL,      T, Custom);
151     setOperationAction(ISD::MULHS,    T, Custom);
152     setOperationAction(ISD::MULHU,    T, Custom);
153     setOperationAction(ISD::AND,      T, Custom);
154     setOperationAction(ISD::OR,       T, Custom);
155     setOperationAction(ISD::XOR,      T, Custom);
156     setOperationAction(ISD::SETCC,    T, Custom);
157     setOperationAction(ISD::VSELECT,  T, Custom);
158     if (T != ByteW) {
159       setOperationAction(ISD::SRA,      T, Custom);
160       setOperationAction(ISD::SHL,      T, Custom);
161       setOperationAction(ISD::SRL,      T, Custom);
162 
163       // Promote all shuffles to operate on vectors of bytes.
164       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
165     }
166   }
167 
168   // Boolean vectors.
169 
170   for (MVT T : LegalW) {
171     // Boolean types for vector pairs will overlap with the boolean
172     // types for single vectors, e.g.
173     //   v64i8  -> v64i1 (single)
174     //   v64i16 -> v64i1 (pair)
175     // Set these actions first, and allow the single actions to overwrite
176     // any duplicates.
177     MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
178     setOperationAction(ISD::SETCC,              BoolW, Custom);
179     setOperationAction(ISD::AND,                BoolW, Custom);
180     setOperationAction(ISD::OR,                 BoolW, Custom);
181     setOperationAction(ISD::XOR,                BoolW, Custom);
182   }
183 
184   for (MVT T : LegalV) {
185     MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
186     setOperationAction(ISD::BUILD_VECTOR,       BoolV, Custom);
187     setOperationAction(ISD::CONCAT_VECTORS,     BoolV, Custom);
188     setOperationAction(ISD::INSERT_SUBVECTOR,   BoolV, Custom);
189     setOperationAction(ISD::INSERT_VECTOR_ELT,  BoolV, Custom);
190     setOperationAction(ISD::EXTRACT_SUBVECTOR,  BoolV, Custom);
191     setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
192     setOperationAction(ISD::AND,                BoolV, Legal);
193     setOperationAction(ISD::OR,                 BoolV, Legal);
194     setOperationAction(ISD::XOR,                BoolV, Legal);
195   }
196 
197   if (Use64b)
198     for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32})
199       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
200   else
201     for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32})
202       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
203 
204   setTargetDAGCombine(ISD::VSELECT);
205 }
206 
207 SDValue
208 HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
209                               const SDLoc &dl, SelectionDAG &DAG) const {
210   SmallVector<SDValue,4> IntOps;
211   IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
212   for (const SDValue &Op : Ops)
213     IntOps.push_back(Op);
214   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
215 }
216 
217 MVT
218 HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
219   assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
220 
221   MVT ElemTy = Tys.first.getVectorElementType();
222   return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
223                                   Tys.second.getVectorNumElements());
224 }
225 
226 HexagonTargetLowering::TypePair
227 HexagonTargetLowering::typeSplit(MVT VecTy) const {
228   assert(VecTy.isVector());
229   unsigned NumElem = VecTy.getVectorNumElements();
230   assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
231   MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
232   return { HalfTy, HalfTy };
233 }
234 
235 MVT
236 HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
237   MVT ElemTy = VecTy.getVectorElementType();
238   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
239   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
240 }
241 
242 MVT
243 HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
244   MVT ElemTy = VecTy.getVectorElementType();
245   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
246   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
247 }
248 
249 SDValue
250 HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
251                                   SelectionDAG &DAG) const {
252   if (ty(Vec).getVectorElementType() == ElemTy)
253     return Vec;
254   MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
255   return DAG.getBitcast(CastTy, Vec);
256 }
257 
258 SDValue
259 HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
260                               SelectionDAG &DAG) const {
261   return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
262                      Ops.second, Ops.first);
263 }
264 
265 HexagonTargetLowering::VectorPair
266 HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
267                                SelectionDAG &DAG) const {
268   TypePair Tys = typeSplit(ty(Vec));
269   if (Vec.getOpcode() == HexagonISD::QCAT)
270     return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
271   return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
272 }
273 
274 bool
275 HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
276   return Subtarget.isHVXVectorType(Ty) &&
277          Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
278 }
279 
280 bool
281 HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
282   return Subtarget.isHVXVectorType(Ty) &&
283          Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
284 }
285 
286 SDValue
287 HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
288                                           SelectionDAG &DAG) const {
289   if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
290     ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
291 
292   unsigned ElemWidth = ElemTy.getSizeInBits();
293   if (ElemWidth == 8)
294     return ElemIdx;
295 
296   unsigned L = Log2_32(ElemWidth/8);
297   const SDLoc &dl(ElemIdx);
298   return DAG.getNode(ISD::SHL, dl, MVT::i32,
299                      {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
300 }
301 
302 SDValue
303 HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
304                                         SelectionDAG &DAG) const {
305   unsigned ElemWidth = ElemTy.getSizeInBits();
306   assert(ElemWidth >= 8 && ElemWidth <= 32);
307   if (ElemWidth == 32)
308     return Idx;
309 
310   if (ty(Idx) != MVT::i32)
311     Idx = DAG.getBitcast(MVT::i32, Idx);
312   const SDLoc &dl(Idx);
313   SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
314   SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
315   return SubIdx;
316 }
317 
318 SDValue
319 HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
320                                       SDValue Op1, ArrayRef<int> Mask,
321                                       SelectionDAG &DAG) const {
322   MVT OpTy = ty(Op0);
323   assert(OpTy == ty(Op1));
324 
325   MVT ElemTy = OpTy.getVectorElementType();
326   if (ElemTy == MVT::i8)
327     return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
328   assert(ElemTy.getSizeInBits() >= 8);
329 
330   MVT ResTy = tyVector(OpTy, MVT::i8);
331   unsigned ElemSize = ElemTy.getSizeInBits() / 8;
332 
333   SmallVector<int,128> ByteMask;
334   for (int M : Mask) {
335     if (M < 0) {
336       for (unsigned I = 0; I != ElemSize; ++I)
337         ByteMask.push_back(-1);
338     } else {
339       int NewM = M*ElemSize;
340       for (unsigned I = 0; I != ElemSize; ++I)
341         ByteMask.push_back(NewM+I);
342     }
343   }
344   assert(ResTy.getVectorNumElements() == ByteMask.size());
345   return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
346                               opCastElem(Op1, MVT::i8, DAG), ByteMask);
347 }
348 
349 SDValue
350 HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
351                                          const SDLoc &dl, MVT VecTy,
352                                          SelectionDAG &DAG) const {
353   unsigned VecLen = Values.size();
354   MachineFunction &MF = DAG.getMachineFunction();
355   MVT ElemTy = VecTy.getVectorElementType();
356   unsigned ElemWidth = ElemTy.getSizeInBits();
357   unsigned HwLen = Subtarget.getVectorLength();
358 
359   unsigned ElemSize = ElemWidth / 8;
360   assert(ElemSize*VecLen == HwLen);
361   SmallVector<SDValue,32> Words;
362 
363   if (VecTy.getVectorElementType() != MVT::i32) {
364     assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
365     unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
366     MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
367     for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
368       SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
369       Words.push_back(DAG.getBitcast(MVT::i32, W));
370     }
371   } else {
372     Words.assign(Values.begin(), Values.end());
373   }
374 
375   unsigned NumWords = Words.size();
376   bool IsSplat = true, IsUndef = true;
377   SDValue SplatV;
378   for (unsigned i = 0; i != NumWords && IsSplat; ++i) {
379     if (isUndef(Words[i]))
380       continue;
381     IsUndef = false;
382     if (!SplatV.getNode())
383       SplatV = Words[i];
384     else if (SplatV != Words[i])
385       IsSplat = false;
386   }
387   if (IsUndef)
388     return DAG.getUNDEF(VecTy);
389   if (IsSplat) {
390     assert(SplatV.getNode());
391     auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
392     if (IdxN && IdxN->isNullValue())
393       return getZero(dl, VecTy, DAG);
394     return DAG.getNode(HexagonISD::VSPLATW, dl, VecTy, SplatV);
395   }
396 
397   // Delay recognizing constant vectors until here, so that we can generate
398   // a vsplat.
399   SmallVector<ConstantInt*, 128> Consts(VecLen);
400   bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
401   if (AllConst) {
402     ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
403                             (Constant**)Consts.end());
404     Constant *CV = ConstantVector::get(Tmp);
405     unsigned Align = HwLen;
406     SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
407     return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
408                        MachinePointerInfo::getConstantPool(MF), Align);
409   }
410 
411   // A special case is a situation where the vector is built entirely from
412   // elements extracted from another vector. This could be done via a shuffle
413   // more efficiently, but typically, the size of the source vector will not
414   // match the size of the vector being built (which precludes the use of a
415   // shuffle directly).
416   // This only handles a single source vector, and the vector being built
417   // should be of a sub-vector type of the source vector type.
418   auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
419                                              SmallVectorImpl<int> &SrcIdx) {
420     SDValue Vec;
421     for (SDValue V : Values) {
422       if (isUndef(V)) {
423         SrcIdx.push_back(-1);
424         continue;
425       }
426       if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
427         return false;
428       // All extracts should come from the same vector.
429       SDValue T = V.getOperand(0);
430       if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
431         return false;
432       Vec = T;
433       ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
434       if (C == nullptr)
435         return false;
436       int I = C->getSExtValue();
437       assert(I >= 0 && "Negative element index");
438       SrcIdx.push_back(I);
439     }
440     SrcVec = Vec;
441     return true;
442   };
443 
444   SmallVector<int,128> ExtIdx;
445   SDValue ExtVec;
446   if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
447     MVT ExtTy = ty(ExtVec);
448     unsigned ExtLen = ExtTy.getVectorNumElements();
449     if (ExtLen == VecLen || ExtLen == 2*VecLen) {
450       // Construct a new shuffle mask that will produce a vector with the same
451       // number of elements as the input vector, and such that the vector we
452       // want will be the initial subvector of it.
453       SmallVector<int,128> Mask;
454       BitVector Used(ExtLen);
455 
456       for (int M : ExtIdx) {
457         Mask.push_back(M);
458         if (M >= 0)
459           Used.set(M);
460       }
461       // Fill the rest of the mask with the unused elements of ExtVec in hopes
462       // that it will result in a permutation of ExtVec's elements. It's still
463       // fine if it doesn't (e.g. if undefs are present, or elements are
464       // repeated), but permutations can always be done efficiently via vdelta
465       // and vrdelta.
466       for (unsigned I = 0; I != ExtLen; ++I) {
467         if (Mask.size() == ExtLen)
468           break;
469         if (!Used.test(I))
470           Mask.push_back(I);
471       }
472 
473       SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
474                                        DAG.getUNDEF(ExtTy), Mask);
475       if (ExtLen == VecLen)
476         return S;
477       return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, VecTy, S);
478     }
479   }
480 
481   // Construct two halves in parallel, then or them together.
482   assert(4*Words.size() == Subtarget.getVectorLength());
483   SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
484   SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
485   SDValue S = DAG.getConstant(4, dl, MVT::i32);
486   for (unsigned i = 0; i != NumWords/2; ++i) {
487     SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
488                             {HalfV0, Words[i]});
489     SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
490                             {HalfV1, Words[i+NumWords/2]});
491     HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
492     HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
493   }
494 
495   HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
496                        {HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
497   SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
498   return DstV;
499 }
500 
501 SDValue
502 HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
503       unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
504   MVT PredTy = ty(PredV);
505   unsigned HwLen = Subtarget.getVectorLength();
506   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
507 
508   if (Subtarget.isHVXVectorType(PredTy, true)) {
509     // Move the vector predicate SubV to a vector register, and scale it
510     // down to match the representation (bytes per type element) that VecV
511     // uses. The scaling down will pick every 2nd or 4th (every Scale-th
512     // in general) element and put them at the front of the resulting
513     // vector. This subvector will then be inserted into the Q2V of VecV.
514     // To avoid having an operation that generates an illegal type (short
515     // vector), generate a full size vector.
516     //
517     SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
518     SmallVector<int,128> Mask(HwLen);
519     // Scale = BitBytes(PredV) / Given BitBytes.
520     unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
521     unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
522 
523     for (unsigned i = 0; i != HwLen; ++i) {
524       unsigned Num = i % Scale;
525       unsigned Off = i / Scale;
526       Mask[BlockLen*Num + Off] = i;
527     }
528     SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
529     if (!ZeroFill)
530       return S;
531     // Fill the bytes beyond BlockLen with 0s.
532     MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
533     SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
534                          {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
535     SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
536     return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
537   }
538 
539   // Make sure that this is a valid scalar predicate.
540   assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
541 
542   unsigned Bytes = 8 / PredTy.getVectorNumElements();
543   SmallVector<SDValue,4> Words[2];
544   unsigned IdxW = 0;
545 
546   auto Lo32 = [&DAG, &dl] (SDValue P) {
547     return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
548   };
549   auto Hi32 = [&DAG, &dl] (SDValue P) {
550     return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
551   };
552 
553   SDValue W0 = isUndef(PredV)
554                   ? DAG.getUNDEF(MVT::i64)
555                   : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
556   Words[IdxW].push_back(Hi32(W0));
557   Words[IdxW].push_back(Lo32(W0));
558 
559   while (Bytes < BitBytes) {
560     IdxW ^= 1;
561     Words[IdxW].clear();
562 
563     if (Bytes < 4) {
564       for (const SDValue &W : Words[IdxW ^ 1]) {
565         SDValue T = expandPredicate(W, dl, DAG);
566         Words[IdxW].push_back(Hi32(T));
567         Words[IdxW].push_back(Lo32(T));
568       }
569     } else {
570       for (const SDValue &W : Words[IdxW ^ 1]) {
571         Words[IdxW].push_back(W);
572         Words[IdxW].push_back(W);
573       }
574     }
575     Bytes *= 2;
576   }
577 
578   assert(Bytes == BitBytes);
579 
580   SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
581   SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
582   for (const SDValue &W : Words[IdxW]) {
583     Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
584     Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
585   }
586 
587   return Vec;
588 }
589 
590 SDValue
591 HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
592                                           const SDLoc &dl, MVT VecTy,
593                                           SelectionDAG &DAG) const {
594   // Construct a vector V of bytes, such that a comparison V >u 0 would
595   // produce the required vector predicate.
596   unsigned VecLen = Values.size();
597   unsigned HwLen = Subtarget.getVectorLength();
598   assert(VecLen <= HwLen || VecLen == 8*HwLen);
599   SmallVector<SDValue,128> Bytes;
600   bool AllT = true, AllF = true;
601 
602   auto IsTrue = [] (SDValue V) {
603     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
604       return !N->isNullValue();
605     return false;
606   };
607   auto IsFalse = [] (SDValue V) {
608     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
609       return N->isNullValue();
610     return false;
611   };
612 
613   if (VecLen <= HwLen) {
614     // In the hardware, each bit of a vector predicate corresponds to a byte
615     // of a vector register. Calculate how many bytes does a bit of VecTy
616     // correspond to.
617     assert(HwLen % VecLen == 0);
618     unsigned BitBytes = HwLen / VecLen;
619     for (SDValue V : Values) {
620       AllT &= IsTrue(V);
621       AllF &= IsFalse(V);
622 
623       SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
624                                  : DAG.getUNDEF(MVT::i8);
625       for (unsigned B = 0; B != BitBytes; ++B)
626         Bytes.push_back(Ext);
627     }
628   } else {
629     // There are as many i1 values, as there are bits in a vector register.
630     // Divide the values into groups of 8 and check that each group consists
631     // of the same value (ignoring undefs).
632     for (unsigned I = 0; I != VecLen; I += 8) {
633       unsigned B = 0;
634       // Find the first non-undef value in this group.
635       for (; B != 8; ++B) {
636         if (!Values[I+B].isUndef())
637           break;
638       }
639       SDValue F = Values[I+B];
640       AllT &= IsTrue(F);
641       AllF &= IsFalse(F);
642 
643       SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
644                             : DAG.getUNDEF(MVT::i8);
645       Bytes.push_back(Ext);
646       // Verify that the rest of values in the group are the same as the
647       // first.
648       for (; B != 8; ++B)
649         assert(Values[I+B].isUndef() || Values[I+B] == F);
650     }
651   }
652 
653   if (AllT)
654     return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
655   if (AllF)
656     return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
657 
658   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
659   SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
660   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
661 }
662 
663 SDValue
664 HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
665       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
666   MVT ElemTy = ty(VecV).getVectorElementType();
667 
668   unsigned ElemWidth = ElemTy.getSizeInBits();
669   assert(ElemWidth >= 8 && ElemWidth <= 32);
670   (void)ElemWidth;
671 
672   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
673   SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
674                                {VecV, ByteIdx});
675   if (ElemTy == MVT::i32)
676     return ExWord;
677 
678   // Have an extracted word, need to extract the smaller element out of it.
679   // 1. Extract the bits of (the original) IdxV that correspond to the index
680   //    of the desired element in the 32-bit word.
681   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
682   // 2. Extract the element from the word.
683   SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
684   return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
685 }
686 
687 SDValue
688 HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
689       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
690   // Implement other return types if necessary.
691   assert(ResTy == MVT::i1);
692 
693   unsigned HwLen = Subtarget.getVectorLength();
694   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
695   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
696 
697   unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
698   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
699   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
700 
701   SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
702   SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
703   return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
704 }
705 
706 SDValue
707 HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
708       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
709   MVT ElemTy = ty(VecV).getVectorElementType();
710 
711   unsigned ElemWidth = ElemTy.getSizeInBits();
712   assert(ElemWidth >= 8 && ElemWidth <= 32);
713   (void)ElemWidth;
714 
715   auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
716                                      SDValue ByteIdxV) {
717     MVT VecTy = ty(VecV);
718     unsigned HwLen = Subtarget.getVectorLength();
719     SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
720                                 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
721     SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
722     SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
723     SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
724                                {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
725     SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
726     return TorV;
727   };
728 
729   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
730   if (ElemTy == MVT::i32)
731     return InsertWord(VecV, ValV, ByteIdx);
732 
733   // If this is not inserting a 32-bit word, convert it into such a thing.
734   // 1. Extract the existing word from the target vector.
735   SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
736                                 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
737   SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
738                                      dl, MVT::i32, DAG);
739 
740   // 2. Treating the extracted word as a 32-bit vector, insert the given
741   //    value into it.
742   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
743   MVT SubVecTy = tyVector(ty(Ext), ElemTy);
744   SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
745                              ValV, SubIdx, dl, ElemTy, DAG);
746 
747   // 3. Insert the 32-bit word back into the original vector.
748   return InsertWord(VecV, Ins, ByteIdx);
749 }
750 
751 SDValue
752 HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
753       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
754   unsigned HwLen = Subtarget.getVectorLength();
755   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
756   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
757 
758   unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
759   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
760   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
761   ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
762 
763   SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
764   return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
765 }
766 
767 SDValue
768 HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
769       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
770   MVT VecTy = ty(VecV);
771   unsigned HwLen = Subtarget.getVectorLength();
772   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
773   MVT ElemTy = VecTy.getVectorElementType();
774   unsigned ElemWidth = ElemTy.getSizeInBits();
775 
776   // If the source vector is a vector pair, get the single vector containing
777   // the subvector of interest. The subvector will never overlap two single
778   // vectors.
779   if (isHvxPairTy(VecTy)) {
780     unsigned SubIdx;
781     if (Idx * ElemWidth >= 8*HwLen) {
782       SubIdx = Hexagon::vsub_hi;
783       Idx -= VecTy.getVectorNumElements() / 2;
784     } else {
785       SubIdx = Hexagon::vsub_lo;
786     }
787     VecTy = typeSplit(VecTy).first;
788     VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
789     if (VecTy == ResTy)
790       return VecV;
791   }
792 
793   // The only meaningful subvectors of a single HVX vector are those that
794   // fit in a scalar register.
795   assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
796 
797   MVT WordTy = tyVector(VecTy, MVT::i32);
798   SDValue WordVec = DAG.getBitcast(WordTy, VecV);
799   unsigned WordIdx = (Idx*ElemWidth) / 32;
800 
801   SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
802   SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
803   if (ResTy.getSizeInBits() == 32)
804     return DAG.getBitcast(ResTy, W0);
805 
806   SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
807   SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
808   SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
809   return DAG.getBitcast(ResTy, WW);
810 }
811 
812 SDValue
813 HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
814       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
815   MVT VecTy = ty(VecV);
816   unsigned HwLen = Subtarget.getVectorLength();
817   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
818   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
819   // IdxV is required to be a constant.
820   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
821 
822   unsigned ResLen = ResTy.getVectorNumElements();
823   unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
824   unsigned Offset = Idx * BitBytes;
825   SDValue Undef = DAG.getUNDEF(ByteTy);
826   SmallVector<int,128> Mask;
827 
828   if (Subtarget.isHVXVectorType(ResTy, true)) {
829     // Converting between two vector predicates. Since the result is shorter
830     // than the source, it will correspond to a vector predicate with the
831     // relevant bits replicated. The replication count is the ratio of the
832     // source and target vector lengths.
833     unsigned Rep = VecTy.getVectorNumElements() / ResLen;
834     assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
835     for (unsigned i = 0; i != HwLen/Rep; ++i) {
836       for (unsigned j = 0; j != Rep; ++j)
837         Mask.push_back(i + Offset);
838     }
839     SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
840     return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
841   }
842 
843   // Converting between a vector predicate and a scalar predicate. In the
844   // vector predicate, a group of BitBytes bits will correspond to a single
845   // i1 element of the source vector type. Those bits will all have the same
846   // value. The same will be true for ByteVec, where each byte corresponds
847   // to a bit in the vector predicate.
848   // The algorithm is to traverse the ByteVec, going over the i1 values from
849   // the source vector, and generate the corresponding representation in an
850   // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
851   // elements so that the interesting 8 bytes will be in the low end of the
852   // vector.
853   unsigned Rep = 8 / ResLen;
854   // Make sure the output fill the entire vector register, so repeat the
855   // 8-byte groups as many times as necessary.
856   for (unsigned r = 0; r != HwLen/ResLen; ++r) {
857     // This will generate the indexes of the 8 interesting bytes.
858     for (unsigned i = 0; i != ResLen; ++i) {
859       for (unsigned j = 0; j != Rep; ++j)
860         Mask.push_back(Offset + i*BitBytes);
861     }
862   }
863 
864   SDValue Zero = getZero(dl, MVT::i32, DAG);
865   SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
866   // Combine the two low words from ShuffV into a v8i8, and byte-compare
867   // them against 0.
868   SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
869   SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
870                            {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
871   SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
872   return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
873                   {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
874 }
875 
876 SDValue
877 HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
878       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
879   MVT VecTy = ty(VecV);
880   MVT SubTy = ty(SubV);
881   unsigned HwLen = Subtarget.getVectorLength();
882   MVT ElemTy = VecTy.getVectorElementType();
883   unsigned ElemWidth = ElemTy.getSizeInBits();
884 
885   bool IsPair = isHvxPairTy(VecTy);
886   MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
887   // The two single vectors that VecV consists of, if it's a pair.
888   SDValue V0, V1;
889   SDValue SingleV = VecV;
890   SDValue PickHi;
891 
892   if (IsPair) {
893     V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
894     V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);
895 
896     SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
897                                     dl, MVT::i32);
898     PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
899     if (isHvxSingleTy(SubTy)) {
900       if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
901         unsigned Idx = CN->getZExtValue();
902         assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
903         unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
904         return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
905       }
906       // If IdxV is not a constant, generate the two variants: with the
907       // SubV as the high and as the low subregister, and select the right
908       // pair based on the IdxV.
909       SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
910       SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
911       return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
912     }
913     // The subvector being inserted must be entirely contained in one of
914     // the vectors V0 or V1. Set SingleV to the correct one, and update
915     // IdxV to be the index relative to the beginning of that vector.
916     SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
917     IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
918     SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
919   }
920 
921   // The only meaningful subvectors of a single HVX vector are those that
922   // fit in a scalar register.
923   assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
924   // Convert IdxV to be index in bytes.
925   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
926   if (!IdxN || !IdxN->isNullValue()) {
927     IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
928                        DAG.getConstant(ElemWidth/8, dl, MVT::i32));
929     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
930   }
931   // When inserting a single word, the rotation back to the original position
932   // would be by HwLen-Idx, but if two words are inserted, it will need to be
933   // by (HwLen-4)-Idx.
934   unsigned RolBase = HwLen;
935   if (VecTy.getSizeInBits() == 32) {
936     SDValue V = DAG.getBitcast(MVT::i32, SubV);
937     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
938   } else {
939     SDValue V = DAG.getBitcast(MVT::i64, SubV);
940     SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
941     SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
942     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
943     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
944                           DAG.getConstant(4, dl, MVT::i32));
945     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
946     RolBase = HwLen-4;
947   }
948   // If the vector wasn't ror'ed, don't ror it back.
949   if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) {
950     SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
951                                DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
952     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
953   }
954 
955   if (IsPair) {
956     SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
957     SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
958     return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
959   }
960   return SingleV;
961 }
962 
963 SDValue
964 HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
965       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
966   MVT VecTy = ty(VecV);
967   MVT SubTy = ty(SubV);
968   assert(Subtarget.isHVXVectorType(VecTy, true));
969   // VecV is an HVX vector predicate. SubV may be either an HVX vector
970   // predicate as well, or it can be a scalar predicate.
971 
972   unsigned VecLen = VecTy.getVectorNumElements();
973   unsigned HwLen = Subtarget.getVectorLength();
974   assert(HwLen % VecLen == 0 && "Unexpected vector type");
975 
976   unsigned Scale = VecLen / SubTy.getVectorNumElements();
977   unsigned BitBytes = HwLen / VecLen;
978   unsigned BlockLen = HwLen / Scale;
979 
980   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
981   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
982   SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
983   SDValue ByteIdx;
984 
985   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
986   if (!IdxN || !IdxN->isNullValue()) {
987     ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
988                           DAG.getConstant(BitBytes, dl, MVT::i32));
989     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
990   }
991 
992   // ByteVec is the target vector VecV rotated in such a way that the
993   // subvector should be inserted at index 0. Generate a predicate mask
994   // and use vmux to do the insertion.
995   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
996   SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
997                        {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
998   ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
999   // Rotate ByteVec back, and convert to a vector predicate.
1000   if (!IdxN || !IdxN->isNullValue()) {
1001     SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
1002     SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
1003     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
1004   }
1005   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
1006 }
1007 
1008 SDValue
1009 HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
1010       MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
1011   // Sign- and any-extending of a vector predicate to a vector register is
1012   // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
1013   // a vector of 1s (where the 1s are of type matching the vector type).
1014   assert(Subtarget.isHVXVectorType(ResTy));
1015   if (!ZeroExt)
1016     return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
1017 
1018   assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
1019   SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy,
1020                              DAG.getConstant(1, dl, MVT::i32));
1021   SDValue False = getZero(dl, ResTy, DAG);
1022   return DAG.getSelect(dl, ResTy, VecV, True, False);
1023 }
1024 
1025 SDValue
1026 HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
1027       const {
1028   const SDLoc &dl(Op);
1029   MVT VecTy = ty(Op);
1030 
1031   unsigned Size = Op.getNumOperands();
1032   SmallVector<SDValue,128> Ops;
1033   for (unsigned i = 0; i != Size; ++i)
1034     Ops.push_back(Op.getOperand(i));
1035 
1036   if (VecTy.getVectorElementType() == MVT::i1)
1037     return buildHvxVectorPred(Ops, dl, VecTy, DAG);
1038 
1039   if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
1040     ArrayRef<SDValue> A(Ops);
1041     MVT SingleTy = typeSplit(VecTy).first;
1042     SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
1043     SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
1044     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
1045   }
1046 
1047   return buildHvxVectorReg(Ops, dl, VecTy, DAG);
1048 }
1049 
1050 SDValue
1051 HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
1052       const {
1053   // Vector concatenation of two integer (non-bool) vectors does not need
1054   // special lowering. Custom-lower concats of bool vectors and expand
1055   // concats of more than 2 vectors.
1056   MVT VecTy = ty(Op);
1057   const SDLoc &dl(Op);
1058   unsigned NumOp = Op.getNumOperands();
1059   if (VecTy.getVectorElementType() != MVT::i1) {
1060     if (NumOp == 2)
1061       return Op;
1062     // Expand the other cases into a build-vector.
1063     SmallVector<SDValue,8> Elems;
1064     for (SDValue V : Op.getNode()->ops())
1065       DAG.ExtractVectorElements(V, Elems);
1066     // A vector of i16 will be broken up into a build_vector of i16's.
1067     // This is a problem, since at the time of operation legalization,
1068     // all operations are expected to be type-legalized, and i16 is not
1069     // a legal type. If any of the extracted elements is not of a valid
1070     // type, sign-extend it to a valid one.
1071     for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
1072       SDValue V = Elems[i];
1073       MVT Ty = ty(V);
1074       if (!isTypeLegal(Ty)) {
1075         EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty);
1076         if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1077           Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
1078                                  DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
1079                                              V.getOperand(0), V.getOperand(1)),
1080                                  DAG.getValueType(Ty));
1081           continue;
1082         }
1083         // A few less complicated cases.
1084         if (V.getOpcode() == ISD::Constant)
1085           Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
1086         else if (V.isUndef())
1087           Elems[i] = DAG.getUNDEF(NTy);
1088         else
1089           llvm_unreachable("Unexpected vector element");
1090       }
1091     }
1092     return DAG.getBuildVector(VecTy, dl, Elems);
1093   }
1094 
1095   assert(VecTy.getVectorElementType() == MVT::i1);
1096   unsigned HwLen = Subtarget.getVectorLength();
1097   assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
1098 
1099   SDValue Op0 = Op.getOperand(0);
1100 
1101   // If the operands are HVX types (i.e. not scalar predicates), then
1102   // defer the concatenation, and create QCAT instead.
1103   if (Subtarget.isHVXVectorType(ty(Op0), true)) {
1104     if (NumOp == 2)
1105       return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
1106 
1107     ArrayRef<SDUse> U(Op.getNode()->ops());
1108     SmallVector<SDValue,4> SV(U.begin(), U.end());
1109     ArrayRef<SDValue> Ops(SV);
1110 
1111     MVT HalfTy = typeSplit(VecTy).first;
1112     SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1113                              Ops.take_front(NumOp/2));
1114     SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1115                              Ops.take_back(NumOp/2));
1116     return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
1117   }
1118 
1119   // Count how many bytes (in a vector register) each bit in VecTy
1120   // corresponds to.
1121   unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1122 
1123   SmallVector<SDValue,8> Prefixes;
1124   for (SDValue V : Op.getNode()->op_values()) {
1125     SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
1126     Prefixes.push_back(P);
1127   }
1128 
1129   unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
1130   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1131   SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
1132   SDValue Res = getZero(dl, ByteTy, DAG);
1133   for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
1134     Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
1135     Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
1136   }
1137   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
1138 }
1139 
1140 SDValue
1141 HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
1142       const {
1143   // Change the type of the extracted element to i32.
1144   SDValue VecV = Op.getOperand(0);
1145   MVT ElemTy = ty(VecV).getVectorElementType();
1146   const SDLoc &dl(Op);
1147   SDValue IdxV = Op.getOperand(1);
1148   if (ElemTy == MVT::i1)
1149     return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
1150 
1151   return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
1152 }
1153 
1154 SDValue
1155 HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
1156       const {
1157   const SDLoc &dl(Op);
1158   SDValue VecV = Op.getOperand(0);
1159   SDValue ValV = Op.getOperand(1);
1160   SDValue IdxV = Op.getOperand(2);
1161   MVT ElemTy = ty(VecV).getVectorElementType();
1162   if (ElemTy == MVT::i1)
1163     return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
1164 
1165   return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
1166 }
1167 
1168 SDValue
1169 HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
1170       const {
1171   SDValue SrcV = Op.getOperand(0);
1172   MVT SrcTy = ty(SrcV);
1173   MVT DstTy = ty(Op);
1174   SDValue IdxV = Op.getOperand(1);
1175   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1176   assert(Idx % DstTy.getVectorNumElements() == 0);
1177   (void)Idx;
1178   const SDLoc &dl(Op);
1179 
1180   MVT ElemTy = SrcTy.getVectorElementType();
1181   if (ElemTy == MVT::i1)
1182     return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
1183 
1184   return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
1185 }
1186 
1187 SDValue
1188 HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
1189       const {
1190   // Idx does not need to be a constant.
1191   SDValue VecV = Op.getOperand(0);
1192   SDValue ValV = Op.getOperand(1);
1193   SDValue IdxV = Op.getOperand(2);
1194 
1195   const SDLoc &dl(Op);
1196   MVT VecTy = ty(VecV);
1197   MVT ElemTy = VecTy.getVectorElementType();
1198   if (ElemTy == MVT::i1)
1199     return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
1200 
1201   return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
1202 }
1203 
1204 SDValue
1205 HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
1206   // Lower any-extends of boolean vectors to sign-extends, since they
1207   // translate directly to Q2V. Zero-extending could also be done equally
1208   // fast, but Q2V is used/recognized in more places.
1209   // For all other vectors, use zero-extend.
1210   MVT ResTy = ty(Op);
1211   SDValue InpV = Op.getOperand(0);
1212   MVT ElemTy = ty(InpV).getVectorElementType();
1213   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1214     return LowerHvxSignExt(Op, DAG);
1215   return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
1216 }
1217 
1218 SDValue
1219 HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
1220   MVT ResTy = ty(Op);
1221   SDValue InpV = Op.getOperand(0);
1222   MVT ElemTy = ty(InpV).getVectorElementType();
1223   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1224     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
1225   return Op;
1226 }
1227 
1228 SDValue
1229 HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
1230   MVT ResTy = ty(Op);
1231   SDValue InpV = Op.getOperand(0);
1232   MVT ElemTy = ty(InpV).getVectorElementType();
1233   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1234     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
1235   return Op;
1236 }
1237 
1238 SDValue
1239 HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
1240   // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
1241   // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
1242   const SDLoc &dl(Op);
1243   MVT ResTy = ty(Op);
1244   SDValue InpV = Op.getOperand(0);
1245   assert(ResTy == ty(InpV));
1246 
1247   // Calculate the vectors of 1 and bitwidth(x).
1248   MVT ElemTy = ty(InpV).getVectorElementType();
1249   unsigned ElemWidth = ElemTy.getSizeInBits();
1250   // Using uint64_t because a shift by 32 can happen.
1251   uint64_t Splat1 = 0, SplatW = 0;
1252   assert(isPowerOf2_32(ElemWidth) && ElemWidth <= 32);
1253   for (unsigned i = 0; i != 32/ElemWidth; ++i) {
1254     Splat1 = (Splat1 << ElemWidth) | 1;
1255     SplatW = (SplatW << ElemWidth) | ElemWidth;
1256   }
1257   SDValue Vec1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1258                              DAG.getConstant(uint32_t(Splat1), dl, MVT::i32));
1259   SDValue VecW = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1260                              DAG.getConstant(uint32_t(SplatW), dl, MVT::i32));
1261   SDValue VecN1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1262                               DAG.getConstant(-1, dl, MVT::i32));
1263   // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
1264   // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
1265   // it separately in custom combine or selection).
1266   SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
1267                           {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
1268                            DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
1269   return DAG.getNode(ISD::SUB, dl, ResTy,
1270                      {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
1271 }
1272 
1273 SDValue
1274 HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
1275   MVT ResTy = ty(Op);
1276   assert(ResTy.isVector() && isHvxSingleTy(ResTy));
1277   const SDLoc &dl(Op);
1278   SmallVector<int,256> ShuffMask;
1279 
1280   MVT ElemTy = ResTy.getVectorElementType();
1281   unsigned VecLen = ResTy.getVectorNumElements();
1282   SDValue Vs = Op.getOperand(0);
1283   SDValue Vt = Op.getOperand(1);
1284 
1285   switch (ElemTy.SimpleTy) {
1286     case MVT::i8: {
1287       // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1288       // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1289       // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1290       MVT ExtTy = typeExtElem(ResTy, 2);
1291       unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
1292                                           : Hexagon::V6_vmpyhv;
1293       SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1294 
1295       // Discard high halves of the resulting values, collect the low halves.
1296       for (unsigned I = 0; I < VecLen; I += 2) {
1297         ShuffMask.push_back(I);         // Pick even element.
1298         ShuffMask.push_back(I+VecLen);  // Pick odd element.
1299       }
1300       VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1301       SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1302       return DAG.getBitcast(ResTy, BS);
1303     }
1304     case MVT::i16:
1305       // For i16 there is V6_vmpyih, which acts exactly like the MUL opcode.
1306       // (There is also V6_vmpyhv, which behaves in an analogous way to
1307       // V6_vmpybv.)
1308       return getInstr(Hexagon::V6_vmpyih, dl, ResTy, {Vs, Vt}, DAG);
1309     case MVT::i32: {
1310       // Use the following sequence for signed word multiply:
1311       // T0 = V6_vmpyiowh Vs, Vt
1312       // T1 = V6_vaslw T0, 16
1313       // T2 = V6_vmpyiewuh_acc T1, Vs, Vt
1314       SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1315       SDValue T0 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
1316       SDValue T1 = getInstr(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
1317       SDValue T2 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1318                             {T1, Vs, Vt}, DAG);
1319       return T2;
1320     }
1321     default:
1322       break;
1323   }
1324   return SDValue();
1325 }
1326 
1327 SDValue
1328 HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
1329   MVT ResTy = ty(Op);
1330   assert(ResTy.isVector());
1331   const SDLoc &dl(Op);
1332   SmallVector<int,256> ShuffMask;
1333 
1334   MVT ElemTy = ResTy.getVectorElementType();
1335   unsigned VecLen = ResTy.getVectorNumElements();
1336   SDValue Vs = Op.getOperand(0);
1337   SDValue Vt = Op.getOperand(1);
1338   bool IsSigned = Op.getOpcode() == ISD::MULHS;
1339 
1340   if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
1341     // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1342     // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1343     // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1344     // For i16, use V6_vmpyhv, which behaves in an analogous way to
1345     // V6_vmpybv: results Lo and Hi are products of even/odd elements
1346     // respectively.
1347     MVT ExtTy = typeExtElem(ResTy, 2);
1348     unsigned MpyOpc = ElemTy == MVT::i8
1349         ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
1350         : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
1351     SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1352 
1353     // Discard low halves of the resulting values, collect the high halves.
1354     for (unsigned I = 0; I < VecLen; I += 2) {
1355       ShuffMask.push_back(I+1);         // Pick even element.
1356       ShuffMask.push_back(I+VecLen+1);  // Pick odd element.
1357     }
1358     VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1359     SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1360     return DAG.getBitcast(ResTy, BS);
1361   }
1362 
1363   assert(ElemTy == MVT::i32);
1364   SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1365 
1366   if (IsSigned) {
1367     // mulhs(Vs,Vt) =
1368     //   = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1369     //   = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
1370     //      + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1371     //   = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
1372     //      + Lo(Vs) *us Vt] >> 32
1373     // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
1374     // anything, so it cannot produce any carry over to higher bits),
1375     // so everything in [] can be shifted by 16 without loss of precision.
1376     //   = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
1377     //   = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
1378     // Denote Hi(Vs) = Vs':
1379     //   = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
1380     //   = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
1381     SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
1382     // Get Vs':
1383     SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
1384     SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1385                           {T0, S0, Vt}, DAG);
1386     // Shift by 16:
1387     SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
1388     // Get Vs'*Hi(Vt):
1389     SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
1390     // Add:
1391     SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
1392     return T3;
1393   }
1394 
1395   // Unsigned mulhw. (Would expansion using signed mulhw be better?)
1396 
1397   auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
1398     return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
1399   };
1400   auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
1401     return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
1402   };
1403 
1404   MVT PairTy = typeJoin({ResTy, ResTy});
1405   SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
1406                        {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
1407   // Multiply-unsigned halfwords:
1408   //   LoVec = Vs.uh[2i] * Vt.uh[2i],
1409   //   HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
1410   SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
1411   // The low halves in the LoVec of the pair can be discarded. They are
1412   // not added to anything (in the full-precision product), so they cannot
1413   // produce a carry into the higher bits.
1414   SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
1415   // Swap low and high halves in Vt, and do the halfword multiplication
1416   // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
1417   SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
1418   SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
1419   // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
1420   // These products are words, but cannot be added directly because the
1421   // sums could overflow. Add these products, by halfwords, where each sum
1422   // of a pair of halfwords gives a word.
1423   SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
1424                         {LoVec(T2), HiVec(T2)}, DAG);
1425   // Add the high halfwords from the products of the low halfwords.
1426   SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
1427   SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
1428   SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
1429   SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
1430   return T7;
1431 }
1432 
1433 SDValue
1434 HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
1435   // Sign- and zero-extends are legal.
1436   assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
1437   return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
1438                      Op.getOperand(0));
1439 }
1440 
1441 SDValue
1442 HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
1443   if (SDValue S = getVectorShiftByInt(Op, DAG))
1444     return S;
1445   return Op;
1446 }
1447 
1448 SDValue
1449 HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const {
1450   assert(!Op.isMachineOpcode());
1451   SmallVector<SDValue,2> OpsL, OpsH;
1452   const SDLoc &dl(Op);
1453 
1454   auto SplitVTNode = [&DAG,this] (const VTSDNode *N) {
1455     MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
1456     SDValue TV = DAG.getValueType(Ty);
1457     return std::make_pair(TV, TV);
1458   };
1459 
1460   for (SDValue A : Op.getNode()->ops()) {
1461     VectorPair P = Subtarget.isHVXVectorType(ty(A), true)
1462                     ? opSplit(A, dl, DAG)
1463                     : std::make_pair(A, A);
1464     // Special case for type operand.
1465     if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1466       if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
1467         P = SplitVTNode(N);
1468     }
1469     OpsL.push_back(P.first);
1470     OpsH.push_back(P.second);
1471   }
1472 
1473   MVT ResTy = ty(Op);
1474   MVT HalfTy = typeSplit(ResTy).first;
1475   SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
1476   SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
1477   SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H);
1478   return S;
1479 }
1480 
1481 SDValue
1482 HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
1483   LSBaseSDNode *BN = cast<LSBaseSDNode>(Op.getNode());
1484   assert(BN->isUnindexed());
1485   MVT MemTy = BN->getMemoryVT().getSimpleVT();
1486   if (!isHvxPairTy(MemTy))
1487     return Op;
1488 
1489   const SDLoc &dl(Op);
1490   unsigned HwLen = Subtarget.getVectorLength();
1491   MVT SingleTy = typeSplit(MemTy).first;
1492   SDValue Chain = BN->getChain();
1493   SDValue Base0 = BN->getBasePtr();
1494   SDValue Base1 = DAG.getMemBasePlusOffset(Base0, HwLen, dl);
1495 
1496   MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
1497   if (MachineMemOperand *MMO = BN->getMemOperand()) {
1498     MachineFunction &MF = DAG.getMachineFunction();
1499     MOp0 = MF.getMachineMemOperand(MMO, 0, HwLen);
1500     MOp1 = MF.getMachineMemOperand(MMO, HwLen, HwLen);
1501   }
1502 
1503   unsigned MemOpc = BN->getOpcode();
1504   SDValue NewOp;
1505 
1506   if (MemOpc == ISD::LOAD) {
1507     SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
1508     SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
1509     NewOp = DAG.getMergeValues(
1510               { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
1511                 DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1512                             Load0.getValue(1), Load1.getValue(1)) }, dl);
1513   } else {
1514     assert(MemOpc == ISD::STORE);
1515     VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
1516     SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
1517     SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
1518     NewOp = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
1519   }
1520 
1521   return NewOp;
1522 }
1523 
1524 SDValue
1525 HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
1526   unsigned Opc = Op.getOpcode();
1527   bool IsPairOp = isHvxPairTy(ty(Op)) ||
1528                   llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
1529                     return isHvxPairTy(ty(V));
1530                   });
1531 
1532   if (IsPairOp) {
1533     switch (Opc) {
1534       default:
1535         break;
1536       case ISD::LOAD:
1537       case ISD::STORE:
1538         return SplitHvxMemOp(Op, DAG);
1539       case ISD::CTPOP:
1540       case ISD::CTLZ:
1541       case ISD::CTTZ:
1542       case ISD::MUL:
1543       case ISD::MULHS:
1544       case ISD::MULHU:
1545       case ISD::AND:
1546       case ISD::OR:
1547       case ISD::XOR:
1548       case ISD::SRA:
1549       case ISD::SHL:
1550       case ISD::SRL:
1551       case ISD::SETCC:
1552       case ISD::VSELECT:
1553       case ISD::SIGN_EXTEND:
1554       case ISD::ZERO_EXTEND:
1555       case ISD::SIGN_EXTEND_INREG:
1556         return SplitHvxPairOp(Op, DAG);
1557     }
1558   }
1559 
1560   switch (Opc) {
1561     default:
1562       break;
1563     case ISD::BUILD_VECTOR:            return LowerHvxBuildVector(Op, DAG);
1564     case ISD::CONCAT_VECTORS:          return LowerHvxConcatVectors(Op, DAG);
1565     case ISD::INSERT_SUBVECTOR:        return LowerHvxInsertSubvector(Op, DAG);
1566     case ISD::INSERT_VECTOR_ELT:       return LowerHvxInsertElement(Op, DAG);
1567     case ISD::EXTRACT_SUBVECTOR:       return LowerHvxExtractSubvector(Op, DAG);
1568     case ISD::EXTRACT_VECTOR_ELT:      return LowerHvxExtractElement(Op, DAG);
1569 
1570     case ISD::ANY_EXTEND:              return LowerHvxAnyExt(Op, DAG);
1571     case ISD::SIGN_EXTEND:             return LowerHvxSignExt(Op, DAG);
1572     case ISD::ZERO_EXTEND:             return LowerHvxZeroExt(Op, DAG);
1573     case ISD::CTTZ:                    return LowerHvxCttz(Op, DAG);
1574     case ISD::SRA:
1575     case ISD::SHL:
1576     case ISD::SRL:                     return LowerHvxShift(Op, DAG);
1577     case ISD::MUL:                     return LowerHvxMul(Op, DAG);
1578     case ISD::MULHS:
1579     case ISD::MULHU:                   return LowerHvxMulh(Op, DAG);
1580     case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
1581     case ISD::SETCC:
1582     case ISD::INTRINSIC_VOID:          return Op;
1583     // Unaligned loads will be handled by the default lowering.
1584     case ISD::LOAD:                    return SDValue();
1585   }
1586 #ifndef NDEBUG
1587   Op.dumpr(&DAG);
1588 #endif
1589   llvm_unreachable("Unhandled HVX operation");
1590 }
1591 
1592 SDValue
1593 HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1594       const {
1595   const SDLoc &dl(N);
1596   SDValue Op(N, 0);
1597 
1598   unsigned Opc = Op.getOpcode();
1599   if (Opc == ISD::VSELECT) {
1600     // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
1601     SDValue Cond = Op.getOperand(0);
1602     if (Cond->getOpcode() == ISD::XOR) {
1603       SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
1604       if (C1->getOpcode() == HexagonISD::QTRUE) {
1605         SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
1606                                        Op.getOperand(2), Op.getOperand(1));
1607         return VSel;
1608       }
1609     }
1610   }
1611   return SDValue();
1612 }
1613 
1614 bool
1615 HexagonTargetLowering::isHvxOperation(SDValue Op) const {
1616   // If the type of the result, or any operand type are HVX vector types,
1617   // this is an HVX operation.
1618   return Subtarget.isHVXVectorType(ty(Op), true) ||
1619          llvm::any_of(Op.getNode()->ops(),
1620                       [this] (SDValue V) {
1621                         return Subtarget.isHVXVectorType(ty(V), true);
1622                       });
1623 }
1624