xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp (revision 5956d97f4b3204318ceb6aa9c77bd0bc6ea87a41)
1 //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "HexagonISelLowering.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/Analysis/MemoryLocation.h"
13 #include "llvm/IR/IntrinsicsHexagon.h"
14 #include "llvm/Support/CommandLine.h"
15 
16 using namespace llvm;
17 
18 static cl::opt<unsigned> HvxWidenThreshold("hexagon-hvx-widen",
19   cl::Hidden, cl::init(16),
20   cl::desc("Lower threshold (in bytes) for widening to HVX vectors"));
21 
22 static const MVT LegalV64[] =  { MVT::v64i8,  MVT::v32i16,  MVT::v16i32 };
23 static const MVT LegalW64[] =  { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
24 static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
25 static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
26 
27 
28 void
29 HexagonTargetLowering::initializeHVXLowering() {
30   if (Subtarget.useHVX64BOps()) {
31     addRegisterClass(MVT::v64i8,  &Hexagon::HvxVRRegClass);
32     addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
33     addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
34     addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
35     addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
36     addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
37     // These "short" boolean vector types should be legal because
38     // they will appear as results of vector compares. If they were
39     // not legal, type legalization would try to make them legal
40     // and that would require using operations that do not use or
41     // produce such types. That, in turn, would imply using custom
42     // nodes, which would be unoptimizable by the DAG combiner.
43     // The idea is to rely on target-independent operations as much
44     // as possible.
45     addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
46     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
47     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
48   } else if (Subtarget.useHVX128BOps()) {
49     addRegisterClass(MVT::v128i8,  &Hexagon::HvxVRRegClass);
50     addRegisterClass(MVT::v64i16,  &Hexagon::HvxVRRegClass);
51     addRegisterClass(MVT::v32i32,  &Hexagon::HvxVRRegClass);
52     addRegisterClass(MVT::v256i8,  &Hexagon::HvxWRRegClass);
53     addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
54     addRegisterClass(MVT::v64i32,  &Hexagon::HvxWRRegClass);
55     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
56     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
57     addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
58     if (Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) {
59       addRegisterClass(MVT::v32f32, &Hexagon::HvxVRRegClass);
60       addRegisterClass(MVT::v64f16, &Hexagon::HvxVRRegClass);
61       addRegisterClass(MVT::v64f32, &Hexagon::HvxWRRegClass);
62       addRegisterClass(MVT::v128f16, &Hexagon::HvxWRRegClass);
63     }
64   }
65 
66   // Set up operation actions.
67 
68   bool Use64b = Subtarget.useHVX64BOps();
69   ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
70   ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
71   MVT ByteV = Use64b ?  MVT::v64i8 : MVT::v128i8;
72   MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
73 
74   auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
75     setOperationAction(Opc, FromTy, Promote);
76     AddPromotedToType(Opc, FromTy, ToTy);
77   };
78 
79   // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32).
80   // Note: v16i1 -> i16 is handled in type legalization instead of op
81   // legalization.
82   setOperationAction(ISD::BITCAST,            MVT::i16,   Custom);
83   setOperationAction(ISD::BITCAST,            MVT::i32,   Custom);
84   setOperationAction(ISD::BITCAST,            MVT::i64,   Custom);
85   setOperationAction(ISD::BITCAST,            MVT::v16i1, Custom);
86   setOperationAction(ISD::BITCAST,            MVT::v128i1, Custom);
87   setOperationAction(ISD::BITCAST,            MVT::i128, Custom);
88   setOperationAction(ISD::VECTOR_SHUFFLE,     ByteV,      Legal);
89   setOperationAction(ISD::VECTOR_SHUFFLE,     ByteW,      Legal);
90   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
91 
92   if (Subtarget.useHVX128BOps() && Subtarget.useHVXV68Ops() &&
93       Subtarget.useHVXFloatingPoint()) {
94     setOperationAction(ISD::FMINNUM, MVT::v64f16, Legal);
95     setOperationAction(ISD::FMAXNUM, MVT::v64f16, Legal);
96     setOperationAction(ISD::FADD,    MVT::v64f16, Legal);
97     setOperationAction(ISD::FSUB,    MVT::v64f16, Legal);
98     setOperationAction(ISD::FMUL,    MVT::v64f16, Legal);
99     setOperationAction(ISD::FADD,    MVT::v32f32, Legal);
100     setOperationAction(ISD::FSUB,    MVT::v32f32, Legal);
101     setOperationAction(ISD::FMUL,    MVT::v32f32, Legal);
102     setOperationAction(ISD::FMINNUM, MVT::v32f32, Legal);
103     setOperationAction(ISD::FMAXNUM, MVT::v32f32, Legal);
104     setOperationAction(ISD::INSERT_SUBVECTOR,  MVT::v64f16, Custom);
105     setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v64f16, Custom);
106     setOperationAction(ISD::INSERT_SUBVECTOR,  MVT::v32f32, Custom);
107     setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
108 
109     // Handle ISD::BUILD_VECTOR for v32f32 in a custom way to generate vsplat
110     setOperationAction(ISD::BUILD_VECTOR, MVT::v32f32, Custom);
111 
112     // BUILD_VECTOR with f16 operands cannot be promoted without
113     // promoting the result, so lower the node to vsplat or constant pool
114     setOperationAction(ISD::BUILD_VECTOR,      MVT::f16,    Custom);
115     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::f16,    Custom);
116     setOperationAction(ISD::SPLAT_VECTOR,      MVT::f16,    Custom);
117     setOperationAction(ISD::SPLAT_VECTOR,      MVT::v64f16, Legal);
118     setOperationAction(ISD::SPLAT_VECTOR,      MVT::v32f32, Legal);
119     // Vector shuffle is always promoted to ByteV and a bitcast to f16 is
120     // generated.
121     setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v128f16, ByteW);
122     setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f16,  ByteV);
123     setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f32,  ByteW);
124     setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v32f32,  ByteV);
125 
126     // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
127     // independent) handling of it would convert it to a load, which is
128     // not always the optimal choice.
129     setOperationAction(ISD::BUILD_VECTOR, MVT::v64f32, Custom);
130     // Make concat-vectors custom to handle concats of more than 2 vectors.
131     setOperationAction(ISD::CONCAT_VECTORS, MVT::v128f16, Custom);
132     setOperationAction(ISD::CONCAT_VECTORS, MVT::v64f32, Custom);
133 
134     setOperationAction(ISD::LOAD,    MVT::v64f32, Custom);
135     setOperationAction(ISD::STORE,   MVT::v64f32, Custom);
136     setOperationAction(ISD::FADD,    MVT::v64f32, Custom);
137     setOperationAction(ISD::FSUB,    MVT::v64f32, Custom);
138     setOperationAction(ISD::FMUL,    MVT::v64f32, Custom);
139     setOperationAction(ISD::FMINNUM, MVT::v64f32, Custom);
140     setOperationAction(ISD::FMAXNUM, MVT::v64f32, Custom);
141     setOperationAction(ISD::VSELECT, MVT::v64f32, Custom);
142 
143     if (Subtarget.useHVXQFloatOps()) {
144       setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Custom);
145       setOperationAction(ISD::FP_ROUND, MVT::v64f16, Legal);
146     } else if (Subtarget.useHVXIEEEFPOps()) {
147       setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Legal);
148       setOperationAction(ISD::FP_ROUND, MVT::v64f16, Legal);
149     }
150 
151     setOperationAction(ISD::MLOAD, MVT::v32f32, Custom);
152     setOperationAction(ISD::MSTORE, MVT::v32f32, Custom);
153     setOperationAction(ISD::MLOAD, MVT::v64f16, Custom);
154     setOperationAction(ISD::MSTORE, MVT::v64f16, Custom);
155     setOperationAction(ISD::MLOAD, MVT::v64f32, Custom);
156     setOperationAction(ISD::MSTORE, MVT::v64f32, Custom);
157   }
158 
159   for (MVT T : LegalV) {
160     setIndexedLoadAction(ISD::POST_INC,  T, Legal);
161     setIndexedStoreAction(ISD::POST_INC, T, Legal);
162 
163     setOperationAction(ISD::AND,            T, Legal);
164     setOperationAction(ISD::OR,             T, Legal);
165     setOperationAction(ISD::XOR,            T, Legal);
166     setOperationAction(ISD::ADD,            T, Legal);
167     setOperationAction(ISD::SUB,            T, Legal);
168     setOperationAction(ISD::MUL,            T, Legal);
169     setOperationAction(ISD::CTPOP,          T, Legal);
170     setOperationAction(ISD::CTLZ,           T, Legal);
171     setOperationAction(ISD::SELECT,         T, Legal);
172     setOperationAction(ISD::SPLAT_VECTOR,   T, Legal);
173     if (T != ByteV) {
174       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
175       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
176       setOperationAction(ISD::BSWAP,                    T, Legal);
177     }
178 
179     setOperationAction(ISD::SMIN,           T, Legal);
180     setOperationAction(ISD::SMAX,           T, Legal);
181     if (T.getScalarType() != MVT::i32) {
182       setOperationAction(ISD::UMIN,         T, Legal);
183       setOperationAction(ISD::UMAX,         T, Legal);
184     }
185 
186     setOperationAction(ISD::CTTZ,               T, Custom);
187     setOperationAction(ISD::LOAD,               T, Custom);
188     setOperationAction(ISD::MLOAD,              T, Custom);
189     setOperationAction(ISD::MSTORE,             T, Custom);
190     setOperationAction(ISD::MULHS,              T, Custom);
191     setOperationAction(ISD::MULHU,              T, Custom);
192     setOperationAction(ISD::BUILD_VECTOR,       T, Custom);
193     // Make concat-vectors custom to handle concats of more than 2 vectors.
194     setOperationAction(ISD::CONCAT_VECTORS,     T, Custom);
195     setOperationAction(ISD::INSERT_SUBVECTOR,   T, Custom);
196     setOperationAction(ISD::INSERT_VECTOR_ELT,  T, Custom);
197     setOperationAction(ISD::EXTRACT_SUBVECTOR,  T, Custom);
198     setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
199     setOperationAction(ISD::ANY_EXTEND,         T, Custom);
200     setOperationAction(ISD::SIGN_EXTEND,        T, Custom);
201     setOperationAction(ISD::ZERO_EXTEND,        T, Custom);
202     if (T != ByteV) {
203       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
204       // HVX only has shifts of words and halfwords.
205       setOperationAction(ISD::SRA,                     T, Custom);
206       setOperationAction(ISD::SHL,                     T, Custom);
207       setOperationAction(ISD::SRL,                     T, Custom);
208 
209       // Promote all shuffles to operate on vectors of bytes.
210       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
211     }
212 
213     if (Subtarget.useHVXQFloatOps()) {
214       setOperationAction(ISD::SINT_TO_FP, T, Expand);
215       setOperationAction(ISD::UINT_TO_FP, T, Expand);
216       setOperationAction(ISD::FP_TO_SINT, T, Expand);
217       setOperationAction(ISD::FP_TO_UINT, T, Expand);
218     } else if (Subtarget.useHVXIEEEFPOps()) {
219       setOperationAction(ISD::SINT_TO_FP, T, Custom);
220       setOperationAction(ISD::UINT_TO_FP, T, Custom);
221       setOperationAction(ISD::FP_TO_SINT, T, Custom);
222       setOperationAction(ISD::FP_TO_UINT, T, Custom);
223     }
224 
225     setCondCodeAction(ISD::SETNE,  T, Expand);
226     setCondCodeAction(ISD::SETLE,  T, Expand);
227     setCondCodeAction(ISD::SETGE,  T, Expand);
228     setCondCodeAction(ISD::SETLT,  T, Expand);
229     setCondCodeAction(ISD::SETULE, T, Expand);
230     setCondCodeAction(ISD::SETUGE, T, Expand);
231     setCondCodeAction(ISD::SETULT, T, Expand);
232   }
233 
234   for (MVT T : LegalW) {
235     // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
236     // independent) handling of it would convert it to a load, which is
237     // not always the optimal choice.
238     setOperationAction(ISD::BUILD_VECTOR,   T, Custom);
239     // Make concat-vectors custom to handle concats of more than 2 vectors.
240     setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
241 
242     // Custom-lower these operations for pairs. Expand them into a concat
243     // of the corresponding operations on individual vectors.
244     setOperationAction(ISD::ANY_EXTEND,               T, Custom);
245     setOperationAction(ISD::SIGN_EXTEND,              T, Custom);
246     setOperationAction(ISD::ZERO_EXTEND,              T, Custom);
247     setOperationAction(ISD::SIGN_EXTEND_INREG,        T, Custom);
248     setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,  T, Custom);
249     setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
250     setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
251     setOperationAction(ISD::SPLAT_VECTOR,             T, Custom);
252 
253     setOperationAction(ISD::LOAD,     T, Custom);
254     setOperationAction(ISD::STORE,    T, Custom);
255     setOperationAction(ISD::MLOAD,    T, Custom);
256     setOperationAction(ISD::MSTORE,   T, Custom);
257     setOperationAction(ISD::CTLZ,     T, Custom);
258     setOperationAction(ISD::CTTZ,     T, Custom);
259     setOperationAction(ISD::CTPOP,    T, Custom);
260 
261     setOperationAction(ISD::ADD,      T, Legal);
262     setOperationAction(ISD::SUB,      T, Legal);
263     setOperationAction(ISD::MUL,      T, Custom);
264     setOperationAction(ISD::MULHS,    T, Custom);
265     setOperationAction(ISD::MULHU,    T, Custom);
266     setOperationAction(ISD::AND,      T, Custom);
267     setOperationAction(ISD::OR,       T, Custom);
268     setOperationAction(ISD::XOR,      T, Custom);
269     setOperationAction(ISD::SETCC,    T, Custom);
270     setOperationAction(ISD::VSELECT,  T, Custom);
271     if (T != ByteW) {
272       setOperationAction(ISD::SRA,      T, Custom);
273       setOperationAction(ISD::SHL,      T, Custom);
274       setOperationAction(ISD::SRL,      T, Custom);
275 
276       // Promote all shuffles to operate on vectors of bytes.
277       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
278     }
279 
280     setOperationAction(ISD::SMIN,     T, Custom);
281     setOperationAction(ISD::SMAX,     T, Custom);
282     if (T.getScalarType() != MVT::i32) {
283       setOperationAction(ISD::UMIN,   T, Custom);
284       setOperationAction(ISD::UMAX,   T, Custom);
285     }
286 
287     setOperationAction(ISD::SINT_TO_FP, T, Custom);
288     setOperationAction(ISD::UINT_TO_FP, T, Custom);
289     setOperationAction(ISD::FP_TO_SINT, T, Custom);
290     setOperationAction(ISD::FP_TO_UINT, T, Custom);
291   }
292 
293   setCondCodeAction(ISD::SETNE,  MVT::v64f16, Expand);
294   setCondCodeAction(ISD::SETLE,  MVT::v64f16, Expand);
295   setCondCodeAction(ISD::SETGE,  MVT::v64f16, Expand);
296   setCondCodeAction(ISD::SETLT,  MVT::v64f16, Expand);
297   setCondCodeAction(ISD::SETONE, MVT::v64f16, Expand);
298   setCondCodeAction(ISD::SETOLE, MVT::v64f16, Expand);
299   setCondCodeAction(ISD::SETOGE, MVT::v64f16, Expand);
300   setCondCodeAction(ISD::SETOLT, MVT::v64f16, Expand);
301   setCondCodeAction(ISD::SETUNE, MVT::v64f16, Expand);
302   setCondCodeAction(ISD::SETULE, MVT::v64f16, Expand);
303   setCondCodeAction(ISD::SETUGE, MVT::v64f16, Expand);
304   setCondCodeAction(ISD::SETULT, MVT::v64f16, Expand);
305 
306   setCondCodeAction(ISD::SETNE,  MVT::v32f32, Expand);
307   setCondCodeAction(ISD::SETLE,  MVT::v32f32, Expand);
308   setCondCodeAction(ISD::SETGE,  MVT::v32f32, Expand);
309   setCondCodeAction(ISD::SETLT,  MVT::v32f32, Expand);
310   setCondCodeAction(ISD::SETONE, MVT::v32f32, Expand);
311   setCondCodeAction(ISD::SETOLE, MVT::v32f32, Expand);
312   setCondCodeAction(ISD::SETOGE, MVT::v32f32, Expand);
313   setCondCodeAction(ISD::SETOLT, MVT::v32f32, Expand);
314   setCondCodeAction(ISD::SETUNE, MVT::v32f32, Expand);
315   setCondCodeAction(ISD::SETULE, MVT::v32f32, Expand);
316   setCondCodeAction(ISD::SETUGE, MVT::v32f32, Expand);
317   setCondCodeAction(ISD::SETULT, MVT::v32f32, Expand);
318 
319   // Boolean vectors.
320 
321   for (MVT T : LegalW) {
322     // Boolean types for vector pairs will overlap with the boolean
323     // types for single vectors, e.g.
324     //   v64i8  -> v64i1 (single)
325     //   v64i16 -> v64i1 (pair)
326     // Set these actions first, and allow the single actions to overwrite
327     // any duplicates.
328     MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
329     setOperationAction(ISD::SETCC,              BoolW, Custom);
330     setOperationAction(ISD::AND,                BoolW, Custom);
331     setOperationAction(ISD::OR,                 BoolW, Custom);
332     setOperationAction(ISD::XOR,                BoolW, Custom);
333     // Masked load/store takes a mask that may need splitting.
334     setOperationAction(ISD::MLOAD,              BoolW, Custom);
335     setOperationAction(ISD::MSTORE,             BoolW, Custom);
336   }
337 
338   for (MVT T : LegalV) {
339     MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
340     setOperationAction(ISD::BUILD_VECTOR,       BoolV, Custom);
341     setOperationAction(ISD::CONCAT_VECTORS,     BoolV, Custom);
342     setOperationAction(ISD::INSERT_SUBVECTOR,   BoolV, Custom);
343     setOperationAction(ISD::INSERT_VECTOR_ELT,  BoolV, Custom);
344     setOperationAction(ISD::EXTRACT_SUBVECTOR,  BoolV, Custom);
345     setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
346     setOperationAction(ISD::SELECT,             BoolV, Custom);
347     setOperationAction(ISD::AND,                BoolV, Legal);
348     setOperationAction(ISD::OR,                 BoolV, Legal);
349     setOperationAction(ISD::XOR,                BoolV, Legal);
350   }
351 
352   if (Use64b) {
353     for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32})
354       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
355   } else {
356     for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32})
357       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
358   }
359 
360   // Handle store widening for short vectors.
361   unsigned HwLen = Subtarget.getVectorLength();
362   for (MVT ElemTy : Subtarget.getHVXElementTypes()) {
363     if (ElemTy == MVT::i1)
364       continue;
365     int ElemWidth = ElemTy.getFixedSizeInBits();
366     int MaxElems = (8*HwLen) / ElemWidth;
367     for (int N = 2; N < MaxElems; N *= 2) {
368       MVT VecTy = MVT::getVectorVT(ElemTy, N);
369       auto Action = getPreferredVectorAction(VecTy);
370       if (Action == TargetLoweringBase::TypeWidenVector) {
371         setOperationAction(ISD::LOAD,         VecTy, Custom);
372         setOperationAction(ISD::STORE,        VecTy, Custom);
373         setOperationAction(ISD::SETCC,        VecTy, Custom);
374         setOperationAction(ISD::TRUNCATE,     VecTy, Custom);
375         setOperationAction(ISD::ANY_EXTEND,   VecTy, Custom);
376         setOperationAction(ISD::SIGN_EXTEND,  VecTy, Custom);
377         setOperationAction(ISD::ZERO_EXTEND,  VecTy, Custom);
378 
379         MVT BoolTy = MVT::getVectorVT(MVT::i1, N);
380         if (!isTypeLegal(BoolTy))
381           setOperationAction(ISD::SETCC, BoolTy, Custom);
382       }
383     }
384   }
385 
386   setTargetDAGCombine(ISD::SPLAT_VECTOR);
387   setTargetDAGCombine(ISD::VSELECT);
388 }
389 
390 unsigned
391 HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const {
392   MVT ElemTy = VecTy.getVectorElementType();
393   unsigned VecLen = VecTy.getVectorNumElements();
394   unsigned HwLen = Subtarget.getVectorLength();
395 
396   // Split vectors of i1 that exceed byte vector length.
397   if (ElemTy == MVT::i1 && VecLen > HwLen)
398     return TargetLoweringBase::TypeSplitVector;
399 
400   ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
401   // For shorter vectors of i1, widen them if any of the corresponding
402   // vectors of integers needs to be widened.
403   if (ElemTy == MVT::i1) {
404     for (MVT T : Tys) {
405       assert(T != MVT::i1);
406       auto A = getPreferredHvxVectorAction(MVT::getVectorVT(T, VecLen));
407       if (A != ~0u)
408         return A;
409     }
410     return ~0u;
411   }
412 
413   // If the size of VecTy is at least half of the vector length,
414   // widen the vector. Note: the threshold was not selected in
415   // any scientific way.
416   if (llvm::is_contained(Tys, ElemTy)) {
417     unsigned VecWidth = VecTy.getSizeInBits();
418     bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0;
419     if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth)
420       return TargetLoweringBase::TypeWidenVector;
421     unsigned HwWidth = 8*HwLen;
422     if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
423       return TargetLoweringBase::TypeWidenVector;
424   }
425 
426   // Defer to default.
427   return ~0u;
428 }
429 
430 SDValue
431 HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
432                               const SDLoc &dl, SelectionDAG &DAG) const {
433   SmallVector<SDValue,4> IntOps;
434   IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
435   append_range(IntOps, Ops);
436   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
437 }
438 
439 MVT
440 HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
441   assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
442 
443   MVT ElemTy = Tys.first.getVectorElementType();
444   return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
445                                   Tys.second.getVectorNumElements());
446 }
447 
448 HexagonTargetLowering::TypePair
449 HexagonTargetLowering::typeSplit(MVT VecTy) const {
450   assert(VecTy.isVector());
451   unsigned NumElem = VecTy.getVectorNumElements();
452   assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
453   MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
454   return { HalfTy, HalfTy };
455 }
456 
457 MVT
458 HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
459   MVT ElemTy = VecTy.getVectorElementType();
460   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
461   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
462 }
463 
464 MVT
465 HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
466   MVT ElemTy = VecTy.getVectorElementType();
467   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
468   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
469 }
470 
471 SDValue
472 HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
473                                   SelectionDAG &DAG) const {
474   if (ty(Vec).getVectorElementType() == ElemTy)
475     return Vec;
476   MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
477   return DAG.getBitcast(CastTy, Vec);
478 }
479 
480 SDValue
481 HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
482                               SelectionDAG &DAG) const {
483   return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
484                      Ops.second, Ops.first);
485 }
486 
487 HexagonTargetLowering::VectorPair
488 HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
489                                SelectionDAG &DAG) const {
490   TypePair Tys = typeSplit(ty(Vec));
491   if (Vec.getOpcode() == HexagonISD::QCAT)
492     return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
493   return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
494 }
495 
496 bool
497 HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
498   return Subtarget.isHVXVectorType(Ty) &&
499          Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
500 }
501 
502 bool
503 HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
504   return Subtarget.isHVXVectorType(Ty) &&
505          Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
506 }
507 
508 bool
509 HexagonTargetLowering::isHvxBoolTy(MVT Ty) const {
510   return Subtarget.isHVXVectorType(Ty, true) &&
511          Ty.getVectorElementType() == MVT::i1;
512 }
513 
514 bool HexagonTargetLowering::allowsHvxMemoryAccess(
515     MVT VecTy, MachineMemOperand::Flags Flags, bool *Fast) const {
516   // Bool vectors are excluded by default, but make it explicit to
517   // emphasize that bool vectors cannot be loaded or stored.
518   // Also, disallow double vector stores (to prevent unnecessary
519   // store widening in DAG combiner).
520   if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength())
521     return false;
522   if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false))
523     return false;
524   if (Fast)
525     *Fast = true;
526   return true;
527 }
528 
529 bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses(
530     MVT VecTy, MachineMemOperand::Flags Flags, bool *Fast) const {
531   if (!Subtarget.isHVXVectorType(VecTy))
532     return false;
533   // XXX Should this be false?  vmemu are a bit slower than vmem.
534   if (Fast)
535     *Fast = true;
536   return true;
537 }
538 
539 SDValue
540 HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
541                                           SelectionDAG &DAG) const {
542   if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
543     ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
544 
545   unsigned ElemWidth = ElemTy.getSizeInBits();
546   if (ElemWidth == 8)
547     return ElemIdx;
548 
549   unsigned L = Log2_32(ElemWidth/8);
550   const SDLoc &dl(ElemIdx);
551   return DAG.getNode(ISD::SHL, dl, MVT::i32,
552                      {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
553 }
554 
555 SDValue
556 HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
557                                         SelectionDAG &DAG) const {
558   unsigned ElemWidth = ElemTy.getSizeInBits();
559   assert(ElemWidth >= 8 && ElemWidth <= 32);
560   if (ElemWidth == 32)
561     return Idx;
562 
563   if (ty(Idx) != MVT::i32)
564     Idx = DAG.getBitcast(MVT::i32, Idx);
565   const SDLoc &dl(Idx);
566   SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
567   SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
568   return SubIdx;
569 }
570 
571 SDValue
572 HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
573                                       SDValue Op1, ArrayRef<int> Mask,
574                                       SelectionDAG &DAG) const {
575   MVT OpTy = ty(Op0);
576   assert(OpTy == ty(Op1));
577 
578   MVT ElemTy = OpTy.getVectorElementType();
579   if (ElemTy == MVT::i8)
580     return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
581   assert(ElemTy.getSizeInBits() >= 8);
582 
583   MVT ResTy = tyVector(OpTy, MVT::i8);
584   unsigned ElemSize = ElemTy.getSizeInBits() / 8;
585 
586   SmallVector<int,128> ByteMask;
587   for (int M : Mask) {
588     if (M < 0) {
589       for (unsigned I = 0; I != ElemSize; ++I)
590         ByteMask.push_back(-1);
591     } else {
592       int NewM = M*ElemSize;
593       for (unsigned I = 0; I != ElemSize; ++I)
594         ByteMask.push_back(NewM+I);
595     }
596   }
597   assert(ResTy.getVectorNumElements() == ByteMask.size());
598   return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
599                               opCastElem(Op1, MVT::i8, DAG), ByteMask);
600 }
601 
602 SDValue
603 HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
604                                          const SDLoc &dl, MVT VecTy,
605                                          SelectionDAG &DAG) const {
606   unsigned VecLen = Values.size();
607   MachineFunction &MF = DAG.getMachineFunction();
608   MVT ElemTy = VecTy.getVectorElementType();
609   unsigned ElemWidth = ElemTy.getSizeInBits();
610   unsigned HwLen = Subtarget.getVectorLength();
611 
612   unsigned ElemSize = ElemWidth / 8;
613   assert(ElemSize*VecLen == HwLen);
614   SmallVector<SDValue,32> Words;
615 
616   if (VecTy.getVectorElementType() != MVT::i32 &&
617       !(Subtarget.useHVXFloatingPoint() &&
618       VecTy.getVectorElementType() == MVT::f32)) {
619     assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
620     unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
621     MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
622     for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
623       SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
624       Words.push_back(DAG.getBitcast(MVT::i32, W));
625     }
626   } else {
627     for (SDValue V : Values)
628       Words.push_back(DAG.getBitcast(MVT::i32, V));
629   }
630   auto isSplat = [] (ArrayRef<SDValue> Values, SDValue &SplatV) {
631     unsigned NumValues = Values.size();
632     assert(NumValues > 0);
633     bool IsUndef = true;
634     for (unsigned i = 0; i != NumValues; ++i) {
635       if (Values[i].isUndef())
636         continue;
637       IsUndef = false;
638       if (!SplatV.getNode())
639         SplatV = Values[i];
640       else if (SplatV != Values[i])
641         return false;
642     }
643     if (IsUndef)
644       SplatV = Values[0];
645     return true;
646   };
647 
648   unsigned NumWords = Words.size();
649   SDValue SplatV;
650   bool IsSplat = isSplat(Words, SplatV);
651   if (IsSplat && isUndef(SplatV))
652     return DAG.getUNDEF(VecTy);
653   if (IsSplat) {
654     assert(SplatV.getNode());
655     auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
656     if (IdxN && IdxN->isZero())
657       return getZero(dl, VecTy, DAG);
658     MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
659     SDValue S = DAG.getNode(ISD::SPLAT_VECTOR, dl, WordTy, SplatV);
660     return DAG.getBitcast(VecTy, S);
661   }
662 
663   // Delay recognizing constant vectors until here, so that we can generate
664   // a vsplat.
665   SmallVector<ConstantInt*, 128> Consts(VecLen);
666   bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
667   if (AllConst) {
668     ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
669                             (Constant**)Consts.end());
670     Constant *CV = ConstantVector::get(Tmp);
671     Align Alignment(HwLen);
672     SDValue CP =
673         LowerConstantPool(DAG.getConstantPool(CV, VecTy, Alignment), DAG);
674     return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
675                        MachinePointerInfo::getConstantPool(MF), Alignment);
676   }
677 
678   // A special case is a situation where the vector is built entirely from
679   // elements extracted from another vector. This could be done via a shuffle
680   // more efficiently, but typically, the size of the source vector will not
681   // match the size of the vector being built (which precludes the use of a
682   // shuffle directly).
683   // This only handles a single source vector, and the vector being built
684   // should be of a sub-vector type of the source vector type.
685   auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
686                                              SmallVectorImpl<int> &SrcIdx) {
687     SDValue Vec;
688     for (SDValue V : Values) {
689       if (isUndef(V)) {
690         SrcIdx.push_back(-1);
691         continue;
692       }
693       if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
694         return false;
695       // All extracts should come from the same vector.
696       SDValue T = V.getOperand(0);
697       if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
698         return false;
699       Vec = T;
700       ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
701       if (C == nullptr)
702         return false;
703       int I = C->getSExtValue();
704       assert(I >= 0 && "Negative element index");
705       SrcIdx.push_back(I);
706     }
707     SrcVec = Vec;
708     return true;
709   };
710 
711   SmallVector<int,128> ExtIdx;
712   SDValue ExtVec;
713   if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
714     MVT ExtTy = ty(ExtVec);
715     unsigned ExtLen = ExtTy.getVectorNumElements();
716     if (ExtLen == VecLen || ExtLen == 2*VecLen) {
717       // Construct a new shuffle mask that will produce a vector with the same
718       // number of elements as the input vector, and such that the vector we
719       // want will be the initial subvector of it.
720       SmallVector<int,128> Mask;
721       BitVector Used(ExtLen);
722 
723       for (int M : ExtIdx) {
724         Mask.push_back(M);
725         if (M >= 0)
726           Used.set(M);
727       }
728       // Fill the rest of the mask with the unused elements of ExtVec in hopes
729       // that it will result in a permutation of ExtVec's elements. It's still
730       // fine if it doesn't (e.g. if undefs are present, or elements are
731       // repeated), but permutations can always be done efficiently via vdelta
732       // and vrdelta.
733       for (unsigned I = 0; I != ExtLen; ++I) {
734         if (Mask.size() == ExtLen)
735           break;
736         if (!Used.test(I))
737           Mask.push_back(I);
738       }
739 
740       SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
741                                        DAG.getUNDEF(ExtTy), Mask);
742       if (ExtLen == VecLen)
743         return S;
744       return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, VecTy, S);
745     }
746   }
747 
748   // Find most common element to initialize vector with. This is to avoid
749   // unnecessary vinsert/valign for cases where the same value is present
750   // many times. Creates a histogram of the vector's elements to find the
751   // most common element n.
752   assert(4*Words.size() == Subtarget.getVectorLength());
753   int VecHist[32];
754   int n = 0;
755   for (unsigned i = 0; i != NumWords; ++i) {
756     VecHist[i] = 0;
757     if (Words[i].isUndef())
758       continue;
759     for (unsigned j = i; j != NumWords; ++j)
760       if (Words[i] == Words[j])
761         VecHist[i]++;
762 
763     if (VecHist[i] > VecHist[n])
764       n = i;
765   }
766 
767   SDValue HalfV = getZero(dl, VecTy, DAG);
768   if (VecHist[n] > 1) {
769     SDValue SplatV = DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Words[n]);
770     HalfV = DAG.getNode(HexagonISD::VALIGN, dl, VecTy,
771                        {HalfV, SplatV, DAG.getConstant(HwLen/2, dl, MVT::i32)});
772   }
773   SDValue HalfV0 = HalfV;
774   SDValue HalfV1 = HalfV;
775 
776   // Construct two halves in parallel, then or them together. Rn and Rm count
777   // number of rotations needed before the next element. One last rotation is
778   // performed post-loop to position the last element.
779   int Rn = 0, Rm = 0;
780   SDValue Sn, Sm;
781   SDValue N = HalfV0;
782   SDValue M = HalfV1;
783   for (unsigned i = 0; i != NumWords/2; ++i) {
784     // Rotate by element count since last insertion.
785     if (Words[i] != Words[n] || VecHist[n] <= 1) {
786       Sn = DAG.getConstant(Rn, dl, MVT::i32);
787       HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn});
788       N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
789                       {HalfV0, Words[i]});
790       Rn = 0;
791     }
792     if (Words[i+NumWords/2] != Words[n] || VecHist[n] <= 1) {
793       Sm = DAG.getConstant(Rm, dl, MVT::i32);
794       HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm});
795       M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
796                       {HalfV1, Words[i+NumWords/2]});
797       Rm = 0;
798     }
799     Rn += 4;
800     Rm += 4;
801   }
802   // Perform last rotation.
803   Sn = DAG.getConstant(Rn+HwLen/2, dl, MVT::i32);
804   Sm = DAG.getConstant(Rm, dl, MVT::i32);
805   HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn});
806   HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm});
807 
808   SDValue T0 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV0);
809   SDValue T1 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV1);
810 
811   SDValue DstV = DAG.getNode(ISD::OR, dl, ty(T0), {T0, T1});
812 
813   SDValue OutV =
814       DAG.getBitcast(tyVector(ty(DstV), VecTy.getVectorElementType()), DstV);
815   return OutV;
816 }
817 
818 SDValue
819 HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
820       unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
821   MVT PredTy = ty(PredV);
822   unsigned HwLen = Subtarget.getVectorLength();
823   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
824 
825   if (Subtarget.isHVXVectorType(PredTy, true)) {
826     // Move the vector predicate SubV to a vector register, and scale it
827     // down to match the representation (bytes per type element) that VecV
828     // uses. The scaling down will pick every 2nd or 4th (every Scale-th
829     // in general) element and put them at the front of the resulting
830     // vector. This subvector will then be inserted into the Q2V of VecV.
831     // To avoid having an operation that generates an illegal type (short
832     // vector), generate a full size vector.
833     //
834     SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
835     SmallVector<int,128> Mask(HwLen);
836     // Scale = BitBytes(PredV) / Given BitBytes.
837     unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
838     unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
839 
840     for (unsigned i = 0; i != HwLen; ++i) {
841       unsigned Num = i % Scale;
842       unsigned Off = i / Scale;
843       Mask[BlockLen*Num + Off] = i;
844     }
845     SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
846     if (!ZeroFill)
847       return S;
848     // Fill the bytes beyond BlockLen with 0s.
849     // V6_pred_scalar2 cannot fill the entire predicate, so it only works
850     // when BlockLen < HwLen.
851     assert(BlockLen < HwLen && "vsetq(v1) prerequisite");
852     MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
853     SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
854                          {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
855     SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
856     return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
857   }
858 
859   // Make sure that this is a valid scalar predicate.
860   assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
861 
862   unsigned Bytes = 8 / PredTy.getVectorNumElements();
863   SmallVector<SDValue,4> Words[2];
864   unsigned IdxW = 0;
865 
866   auto Lo32 = [&DAG, &dl] (SDValue P) {
867     return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
868   };
869   auto Hi32 = [&DAG, &dl] (SDValue P) {
870     return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
871   };
872 
873   SDValue W0 = isUndef(PredV)
874                   ? DAG.getUNDEF(MVT::i64)
875                   : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
876   Words[IdxW].push_back(Hi32(W0));
877   Words[IdxW].push_back(Lo32(W0));
878 
879   while (Bytes < BitBytes) {
880     IdxW ^= 1;
881     Words[IdxW].clear();
882 
883     if (Bytes < 4) {
884       for (const SDValue &W : Words[IdxW ^ 1]) {
885         SDValue T = expandPredicate(W, dl, DAG);
886         Words[IdxW].push_back(Hi32(T));
887         Words[IdxW].push_back(Lo32(T));
888       }
889     } else {
890       for (const SDValue &W : Words[IdxW ^ 1]) {
891         Words[IdxW].push_back(W);
892         Words[IdxW].push_back(W);
893       }
894     }
895     Bytes *= 2;
896   }
897 
898   assert(Bytes == BitBytes);
899 
900   SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
901   SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
902   for (const SDValue &W : Words[IdxW]) {
903     Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
904     Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
905   }
906 
907   return Vec;
908 }
909 
910 SDValue
911 HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
912                                           const SDLoc &dl, MVT VecTy,
913                                           SelectionDAG &DAG) const {
914   // Construct a vector V of bytes, such that a comparison V >u 0 would
915   // produce the required vector predicate.
916   unsigned VecLen = Values.size();
917   unsigned HwLen = Subtarget.getVectorLength();
918   assert(VecLen <= HwLen || VecLen == 8*HwLen);
919   SmallVector<SDValue,128> Bytes;
920   bool AllT = true, AllF = true;
921 
922   auto IsTrue = [] (SDValue V) {
923     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
924       return !N->isZero();
925     return false;
926   };
927   auto IsFalse = [] (SDValue V) {
928     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
929       return N->isZero();
930     return false;
931   };
932 
933   if (VecLen <= HwLen) {
934     // In the hardware, each bit of a vector predicate corresponds to a byte
935     // of a vector register. Calculate how many bytes does a bit of VecTy
936     // correspond to.
937     assert(HwLen % VecLen == 0);
938     unsigned BitBytes = HwLen / VecLen;
939     for (SDValue V : Values) {
940       AllT &= IsTrue(V);
941       AllF &= IsFalse(V);
942 
943       SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
944                                  : DAG.getUNDEF(MVT::i8);
945       for (unsigned B = 0; B != BitBytes; ++B)
946         Bytes.push_back(Ext);
947     }
948   } else {
949     // There are as many i1 values, as there are bits in a vector register.
950     // Divide the values into groups of 8 and check that each group consists
951     // of the same value (ignoring undefs).
952     for (unsigned I = 0; I != VecLen; I += 8) {
953       unsigned B = 0;
954       // Find the first non-undef value in this group.
955       for (; B != 8; ++B) {
956         if (!Values[I+B].isUndef())
957           break;
958       }
959       SDValue F = Values[I+B];
960       AllT &= IsTrue(F);
961       AllF &= IsFalse(F);
962 
963       SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
964                             : DAG.getUNDEF(MVT::i8);
965       Bytes.push_back(Ext);
966       // Verify that the rest of values in the group are the same as the
967       // first.
968       for (; B != 8; ++B)
969         assert(Values[I+B].isUndef() || Values[I+B] == F);
970     }
971   }
972 
973   if (AllT)
974     return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
975   if (AllF)
976     return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
977 
978   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
979   SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
980   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
981 }
982 
983 SDValue
984 HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
985       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
986   MVT ElemTy = ty(VecV).getVectorElementType();
987 
988   unsigned ElemWidth = ElemTy.getSizeInBits();
989   assert(ElemWidth >= 8 && ElemWidth <= 32);
990   (void)ElemWidth;
991 
992   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
993   SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
994                                {VecV, ByteIdx});
995   if (ElemTy == MVT::i32)
996     return ExWord;
997 
998   // Have an extracted word, need to extract the smaller element out of it.
999   // 1. Extract the bits of (the original) IdxV that correspond to the index
1000   //    of the desired element in the 32-bit word.
1001   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
1002   // 2. Extract the element from the word.
1003   SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
1004   return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
1005 }
1006 
1007 SDValue
1008 HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
1009       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1010   // Implement other return types if necessary.
1011   assert(ResTy == MVT::i1);
1012 
1013   unsigned HwLen = Subtarget.getVectorLength();
1014   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1015   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1016 
1017   unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
1018   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
1019   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
1020 
1021   SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
1022   SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
1023   return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
1024 }
1025 
1026 SDValue
1027 HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
1028       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
1029   MVT ElemTy = ty(VecV).getVectorElementType();
1030 
1031   unsigned ElemWidth = ElemTy.getSizeInBits();
1032   assert(ElemWidth >= 8 && ElemWidth <= 32);
1033   (void)ElemWidth;
1034 
1035   auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
1036                                      SDValue ByteIdxV) {
1037     MVT VecTy = ty(VecV);
1038     unsigned HwLen = Subtarget.getVectorLength();
1039     SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
1040                                 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
1041     SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
1042     SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
1043     SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
1044                                {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
1045     SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
1046     return TorV;
1047   };
1048 
1049   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
1050   if (ElemTy == MVT::i32)
1051     return InsertWord(VecV, ValV, ByteIdx);
1052 
1053   // If this is not inserting a 32-bit word, convert it into such a thing.
1054   // 1. Extract the existing word from the target vector.
1055   SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
1056                                 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
1057   SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
1058                                      dl, MVT::i32, DAG);
1059 
1060   // 2. Treating the extracted word as a 32-bit vector, insert the given
1061   //    value into it.
1062   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
1063   MVT SubVecTy = tyVector(ty(Ext), ElemTy);
1064   SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
1065                              ValV, SubIdx, dl, ElemTy, DAG);
1066 
1067   // 3. Insert the 32-bit word back into the original vector.
1068   return InsertWord(VecV, Ins, ByteIdx);
1069 }
1070 
1071 SDValue
1072 HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
1073       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
1074   unsigned HwLen = Subtarget.getVectorLength();
1075   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1076   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1077 
1078   unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
1079   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
1080   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
1081   ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
1082 
1083   SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
1084   return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
1085 }
1086 
1087 SDValue
1088 HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
1089       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1090   MVT VecTy = ty(VecV);
1091   unsigned HwLen = Subtarget.getVectorLength();
1092   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1093   MVT ElemTy = VecTy.getVectorElementType();
1094   unsigned ElemWidth = ElemTy.getSizeInBits();
1095 
1096   // If the source vector is a vector pair, get the single vector containing
1097   // the subvector of interest. The subvector will never overlap two single
1098   // vectors.
1099   if (isHvxPairTy(VecTy)) {
1100     unsigned SubIdx;
1101     if (Idx * ElemWidth >= 8*HwLen) {
1102       SubIdx = Hexagon::vsub_hi;
1103       Idx -= VecTy.getVectorNumElements() / 2;
1104     } else {
1105       SubIdx = Hexagon::vsub_lo;
1106     }
1107     VecTy = typeSplit(VecTy).first;
1108     VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
1109     if (VecTy == ResTy)
1110       return VecV;
1111   }
1112 
1113   // The only meaningful subvectors of a single HVX vector are those that
1114   // fit in a scalar register.
1115   assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
1116 
1117   MVT WordTy = tyVector(VecTy, MVT::i32);
1118   SDValue WordVec = DAG.getBitcast(WordTy, VecV);
1119   unsigned WordIdx = (Idx*ElemWidth) / 32;
1120 
1121   SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
1122   SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
1123   if (ResTy.getSizeInBits() == 32)
1124     return DAG.getBitcast(ResTy, W0);
1125 
1126   SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
1127   SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
1128   SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
1129   return DAG.getBitcast(ResTy, WW);
1130 }
1131 
1132 SDValue
1133 HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
1134       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1135   MVT VecTy = ty(VecV);
1136   unsigned HwLen = Subtarget.getVectorLength();
1137   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1138   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1139   // IdxV is required to be a constant.
1140   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1141 
1142   unsigned ResLen = ResTy.getVectorNumElements();
1143   unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1144   unsigned Offset = Idx * BitBytes;
1145   SDValue Undef = DAG.getUNDEF(ByteTy);
1146   SmallVector<int,128> Mask;
1147 
1148   if (Subtarget.isHVXVectorType(ResTy, true)) {
1149     // Converting between two vector predicates. Since the result is shorter
1150     // than the source, it will correspond to a vector predicate with the
1151     // relevant bits replicated. The replication count is the ratio of the
1152     // source and target vector lengths.
1153     unsigned Rep = VecTy.getVectorNumElements() / ResLen;
1154     assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
1155     for (unsigned i = 0; i != HwLen/Rep; ++i) {
1156       for (unsigned j = 0; j != Rep; ++j)
1157         Mask.push_back(i + Offset);
1158     }
1159     SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
1160     return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
1161   }
1162 
1163   // Converting between a vector predicate and a scalar predicate. In the
1164   // vector predicate, a group of BitBytes bits will correspond to a single
1165   // i1 element of the source vector type. Those bits will all have the same
1166   // value. The same will be true for ByteVec, where each byte corresponds
1167   // to a bit in the vector predicate.
1168   // The algorithm is to traverse the ByteVec, going over the i1 values from
1169   // the source vector, and generate the corresponding representation in an
1170   // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
1171   // elements so that the interesting 8 bytes will be in the low end of the
1172   // vector.
1173   unsigned Rep = 8 / ResLen;
1174   // Make sure the output fill the entire vector register, so repeat the
1175   // 8-byte groups as many times as necessary.
1176   for (unsigned r = 0; r != HwLen/ResLen; ++r) {
1177     // This will generate the indexes of the 8 interesting bytes.
1178     for (unsigned i = 0; i != ResLen; ++i) {
1179       for (unsigned j = 0; j != Rep; ++j)
1180         Mask.push_back(Offset + i*BitBytes);
1181     }
1182   }
1183 
1184   SDValue Zero = getZero(dl, MVT::i32, DAG);
1185   SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
1186   // Combine the two low words from ShuffV into a v8i8, and byte-compare
1187   // them against 0.
1188   SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
1189   SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
1190                            {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
1191   SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
1192   return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
1193                   {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
1194 }
1195 
1196 SDValue
1197 HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
1198       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
1199   MVT VecTy = ty(VecV);
1200   MVT SubTy = ty(SubV);
1201   unsigned HwLen = Subtarget.getVectorLength();
1202   MVT ElemTy = VecTy.getVectorElementType();
1203   unsigned ElemWidth = ElemTy.getSizeInBits();
1204 
1205   bool IsPair = isHvxPairTy(VecTy);
1206   MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
1207   // The two single vectors that VecV consists of, if it's a pair.
1208   SDValue V0, V1;
1209   SDValue SingleV = VecV;
1210   SDValue PickHi;
1211 
1212   if (IsPair) {
1213     V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
1214     V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);
1215 
1216     SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
1217                                     dl, MVT::i32);
1218     PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
1219     if (isHvxSingleTy(SubTy)) {
1220       if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
1221         unsigned Idx = CN->getZExtValue();
1222         assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
1223         unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
1224         return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
1225       }
1226       // If IdxV is not a constant, generate the two variants: with the
1227       // SubV as the high and as the low subregister, and select the right
1228       // pair based on the IdxV.
1229       SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
1230       SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
1231       return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
1232     }
1233     // The subvector being inserted must be entirely contained in one of
1234     // the vectors V0 or V1. Set SingleV to the correct one, and update
1235     // IdxV to be the index relative to the beginning of that vector.
1236     SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
1237     IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
1238     SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
1239   }
1240 
1241   // The only meaningful subvectors of a single HVX vector are those that
1242   // fit in a scalar register.
1243   assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
1244   // Convert IdxV to be index in bytes.
1245   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
1246   if (!IdxN || !IdxN->isZero()) {
1247     IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
1248                        DAG.getConstant(ElemWidth/8, dl, MVT::i32));
1249     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
1250   }
1251   // When inserting a single word, the rotation back to the original position
1252   // would be by HwLen-Idx, but if two words are inserted, it will need to be
1253   // by (HwLen-4)-Idx.
1254   unsigned RolBase = HwLen;
1255   if (VecTy.getSizeInBits() == 32) {
1256     SDValue V = DAG.getBitcast(MVT::i32, SubV);
1257     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
1258   } else {
1259     SDValue V = DAG.getBitcast(MVT::i64, SubV);
1260     SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
1261     SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
1262     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
1263     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
1264                           DAG.getConstant(4, dl, MVT::i32));
1265     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
1266     RolBase = HwLen-4;
1267   }
1268   // If the vector wasn't ror'ed, don't ror it back.
1269   if (RolBase != 4 || !IdxN || !IdxN->isZero()) {
1270     SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
1271                                DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
1272     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
1273   }
1274 
1275   if (IsPair) {
1276     SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
1277     SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
1278     return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
1279   }
1280   return SingleV;
1281 }
1282 
1283 SDValue
1284 HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
1285       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
1286   MVT VecTy = ty(VecV);
1287   MVT SubTy = ty(SubV);
1288   assert(Subtarget.isHVXVectorType(VecTy, true));
1289   // VecV is an HVX vector predicate. SubV may be either an HVX vector
1290   // predicate as well, or it can be a scalar predicate.
1291 
1292   unsigned VecLen = VecTy.getVectorNumElements();
1293   unsigned HwLen = Subtarget.getVectorLength();
1294   assert(HwLen % VecLen == 0 && "Unexpected vector type");
1295 
1296   unsigned Scale = VecLen / SubTy.getVectorNumElements();
1297   unsigned BitBytes = HwLen / VecLen;
1298   unsigned BlockLen = HwLen / Scale;
1299 
1300   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1301   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1302   SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
1303   SDValue ByteIdx;
1304 
1305   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
1306   if (!IdxN || !IdxN->isZero()) {
1307     ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
1308                           DAG.getConstant(BitBytes, dl, MVT::i32));
1309     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
1310   }
1311 
1312   // ByteVec is the target vector VecV rotated in such a way that the
1313   // subvector should be inserted at index 0. Generate a predicate mask
1314   // and use vmux to do the insertion.
1315   assert(BlockLen < HwLen && "vsetq(v1) prerequisite");
1316   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1317   SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
1318                        {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
1319   ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
1320   // Rotate ByteVec back, and convert to a vector predicate.
1321   if (!IdxN || !IdxN->isZero()) {
1322     SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
1323     SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
1324     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
1325   }
1326   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
1327 }
1328 
1329 SDValue
1330 HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
1331       MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
1332   // Sign- and any-extending of a vector predicate to a vector register is
1333   // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
1334   // a vector of 1s (where the 1s are of type matching the vector type).
1335   assert(Subtarget.isHVXVectorType(ResTy));
1336   if (!ZeroExt)
1337     return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
1338 
1339   assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
1340   SDValue True = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1341                              DAG.getConstant(1, dl, MVT::i32));
1342   SDValue False = getZero(dl, ResTy, DAG);
1343   return DAG.getSelect(dl, ResTy, VecV, True, False);
1344 }
1345 
1346 SDValue
1347 HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl,
1348       MVT ResTy, SelectionDAG &DAG) const {
1349   // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1]
1350   // (i.e. the entire predicate register) to bits [0..HwLen-1] of a
1351   // vector register. The remaining bits of the vector register are
1352   // unspecified.
1353 
1354   MachineFunction &MF = DAG.getMachineFunction();
1355   unsigned HwLen = Subtarget.getVectorLength();
1356   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1357   MVT PredTy = ty(VecQ);
1358   unsigned PredLen = PredTy.getVectorNumElements();
1359   assert(HwLen % PredLen == 0);
1360   MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen);
1361 
1362   Type *Int8Ty = Type::getInt8Ty(*DAG.getContext());
1363   SmallVector<Constant*, 128> Tmp;
1364   // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,...
1365   // These are bytes with the LSB rotated left with respect to their index.
1366   for (unsigned i = 0; i != HwLen/8; ++i) {
1367     for (unsigned j = 0; j != 8; ++j)
1368       Tmp.push_back(ConstantInt::get(Int8Ty, 1ull << j));
1369   }
1370   Constant *CV = ConstantVector::get(Tmp);
1371   Align Alignment(HwLen);
1372   SDValue CP =
1373       LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Alignment), DAG);
1374   SDValue Bytes =
1375       DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP,
1376                   MachinePointerInfo::getConstantPool(MF), Alignment);
1377 
1378   // Select the bytes that correspond to true bits in the vector predicate.
1379   SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes),
1380       getZero(dl, VecTy, DAG));
1381   // Calculate the OR of all bytes in each group of 8. That will compress
1382   // all the individual bits into a single byte.
1383   // First, OR groups of 4, via vrmpy with 0x01010101.
1384   SDValue All1 =
1385       DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32));
1386   SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG);
1387   // Then rotate the accumulated vector by 4 bytes, and do the final OR.
1388   SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy,
1389       {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG);
1390   SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot});
1391 
1392   // Pick every 8th byte and coalesce them at the beginning of the output.
1393   // For symmetry, coalesce every 1+8th byte after that, then every 2+8th
1394   // byte and so on.
1395   SmallVector<int,128> Mask;
1396   for (unsigned i = 0; i != HwLen; ++i)
1397     Mask.push_back((8*i) % HwLen + i/(HwLen/8));
1398   SDValue Collect =
1399       DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask);
1400   return DAG.getBitcast(ResTy, Collect);
1401 }
1402 
1403 SDValue
1404 HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
1405       const {
1406   const SDLoc &dl(Op);
1407   MVT VecTy = ty(Op);
1408 
1409   unsigned Size = Op.getNumOperands();
1410   SmallVector<SDValue,128> Ops;
1411   for (unsigned i = 0; i != Size; ++i)
1412     Ops.push_back(Op.getOperand(i));
1413 
1414   if (VecTy.getVectorElementType() == MVT::i1)
1415     return buildHvxVectorPred(Ops, dl, VecTy, DAG);
1416 
1417   // In case of MVT::f16 BUILD_VECTOR, since MVT::f16 is
1418   // not a legal type, just bitcast the node to use i16
1419   // types and bitcast the result back to f16
1420   if (VecTy.getVectorElementType() == MVT::f16) {
1421     SmallVector<SDValue,64> NewOps;
1422     for (unsigned i = 0; i != Size; i++)
1423       NewOps.push_back(DAG.getBitcast(MVT::i16, Ops[i]));
1424 
1425     SDValue T0 = DAG.getNode(ISD::BUILD_VECTOR, dl,
1426         tyVector(VecTy, MVT::i16), NewOps);
1427     return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0);
1428   }
1429 
1430   if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
1431     ArrayRef<SDValue> A(Ops);
1432     MVT SingleTy = typeSplit(VecTy).first;
1433     SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
1434     SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
1435     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
1436   }
1437 
1438   return buildHvxVectorReg(Ops, dl, VecTy, DAG);
1439 }
1440 
1441 SDValue
1442 HexagonTargetLowering::LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG)
1443       const {
1444   const SDLoc &dl(Op);
1445   MVT VecTy = ty(Op);
1446   MVT ArgTy = ty(Op.getOperand(0));
1447 
1448   if (ArgTy == MVT::f16) {
1449     MVT SplatTy =  MVT::getVectorVT(MVT::i16, VecTy.getVectorNumElements());
1450     SDValue ToInt16 = DAG.getBitcast(MVT::i16, Op.getOperand(0));
1451     SDValue ToInt32 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, ToInt16);
1452     SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, dl, SplatTy, ToInt32);
1453     return DAG.getBitcast(VecTy, Splat);
1454   }
1455 
1456   return SDValue();
1457 }
1458 
1459 SDValue
1460 HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
1461       const {
1462   // Vector concatenation of two integer (non-bool) vectors does not need
1463   // special lowering. Custom-lower concats of bool vectors and expand
1464   // concats of more than 2 vectors.
1465   MVT VecTy = ty(Op);
1466   const SDLoc &dl(Op);
1467   unsigned NumOp = Op.getNumOperands();
1468   if (VecTy.getVectorElementType() != MVT::i1) {
1469     if (NumOp == 2)
1470       return Op;
1471     // Expand the other cases into a build-vector.
1472     SmallVector<SDValue,8> Elems;
1473     for (SDValue V : Op.getNode()->ops())
1474       DAG.ExtractVectorElements(V, Elems);
1475     // A vector of i16 will be broken up into a build_vector of i16's.
1476     // This is a problem, since at the time of operation legalization,
1477     // all operations are expected to be type-legalized, and i16 is not
1478     // a legal type. If any of the extracted elements is not of a valid
1479     // type, sign-extend it to a valid one.
1480     for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
1481       SDValue V = Elems[i];
1482       MVT Ty = ty(V);
1483       if (!isTypeLegal(Ty)) {
1484         EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty);
1485         if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1486           Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
1487                                  DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
1488                                              V.getOperand(0), V.getOperand(1)),
1489                                  DAG.getValueType(Ty));
1490           continue;
1491         }
1492         // A few less complicated cases.
1493         switch (V.getOpcode()) {
1494           case ISD::Constant:
1495             Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
1496             break;
1497           case ISD::UNDEF:
1498             Elems[i] = DAG.getUNDEF(NTy);
1499             break;
1500           case ISD::TRUNCATE:
1501             Elems[i] = V.getOperand(0);
1502             break;
1503           default:
1504             llvm_unreachable("Unexpected vector element");
1505         }
1506       }
1507     }
1508     return DAG.getBuildVector(VecTy, dl, Elems);
1509   }
1510 
1511   assert(VecTy.getVectorElementType() == MVT::i1);
1512   unsigned HwLen = Subtarget.getVectorLength();
1513   assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
1514 
1515   SDValue Op0 = Op.getOperand(0);
1516 
1517   // If the operands are HVX types (i.e. not scalar predicates), then
1518   // defer the concatenation, and create QCAT instead.
1519   if (Subtarget.isHVXVectorType(ty(Op0), true)) {
1520     if (NumOp == 2)
1521       return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
1522 
1523     ArrayRef<SDUse> U(Op.getNode()->ops());
1524     SmallVector<SDValue,4> SV(U.begin(), U.end());
1525     ArrayRef<SDValue> Ops(SV);
1526 
1527     MVT HalfTy = typeSplit(VecTy).first;
1528     SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1529                              Ops.take_front(NumOp/2));
1530     SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1531                              Ops.take_back(NumOp/2));
1532     return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
1533   }
1534 
1535   // Count how many bytes (in a vector register) each bit in VecTy
1536   // corresponds to.
1537   unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1538 
1539   SmallVector<SDValue,8> Prefixes;
1540   for (SDValue V : Op.getNode()->op_values()) {
1541     SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
1542     Prefixes.push_back(P);
1543   }
1544 
1545   unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
1546   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1547   SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
1548   SDValue Res = getZero(dl, ByteTy, DAG);
1549   for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
1550     Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
1551     Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
1552   }
1553   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
1554 }
1555 
1556 SDValue
1557 HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
1558       const {
1559   // Change the type of the extracted element to i32.
1560   SDValue VecV = Op.getOperand(0);
1561   MVT ElemTy = ty(VecV).getVectorElementType();
1562   const SDLoc &dl(Op);
1563   SDValue IdxV = Op.getOperand(1);
1564   if (ElemTy == MVT::i1)
1565     return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
1566 
1567   return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
1568 }
1569 
1570 SDValue
1571 HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
1572       const {
1573   const SDLoc &dl(Op);
1574   MVT VecTy = ty(Op);
1575   SDValue VecV = Op.getOperand(0);
1576   SDValue ValV = Op.getOperand(1);
1577   SDValue IdxV = Op.getOperand(2);
1578   MVT ElemTy = ty(VecV).getVectorElementType();
1579   if (ElemTy == MVT::i1)
1580     return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
1581 
1582   if (ElemTy == MVT::f16) {
1583     SDValue T0 = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
1584         tyVector(VecTy, MVT::i16),
1585         DAG.getBitcast(tyVector(VecTy, MVT::i16), VecV),
1586         DAG.getBitcast(MVT::i16, ValV), IdxV);
1587     return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0);
1588   }
1589 
1590   return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
1591 }
1592 
1593 SDValue
1594 HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
1595       const {
1596   SDValue SrcV = Op.getOperand(0);
1597   MVT SrcTy = ty(SrcV);
1598   MVT DstTy = ty(Op);
1599   SDValue IdxV = Op.getOperand(1);
1600   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1601   assert(Idx % DstTy.getVectorNumElements() == 0);
1602   (void)Idx;
1603   const SDLoc &dl(Op);
1604 
1605   MVT ElemTy = SrcTy.getVectorElementType();
1606   if (ElemTy == MVT::i1)
1607     return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
1608 
1609   return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
1610 }
1611 
1612 SDValue
1613 HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
1614       const {
1615   // Idx does not need to be a constant.
1616   SDValue VecV = Op.getOperand(0);
1617   SDValue ValV = Op.getOperand(1);
1618   SDValue IdxV = Op.getOperand(2);
1619 
1620   const SDLoc &dl(Op);
1621   MVT VecTy = ty(VecV);
1622   MVT ElemTy = VecTy.getVectorElementType();
1623   if (ElemTy == MVT::i1)
1624     return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
1625 
1626   return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
1627 }
1628 
1629 SDValue
1630 HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
1631   // Lower any-extends of boolean vectors to sign-extends, since they
1632   // translate directly to Q2V. Zero-extending could also be done equally
1633   // fast, but Q2V is used/recognized in more places.
1634   // For all other vectors, use zero-extend.
1635   MVT ResTy = ty(Op);
1636   SDValue InpV = Op.getOperand(0);
1637   MVT ElemTy = ty(InpV).getVectorElementType();
1638   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1639     return LowerHvxSignExt(Op, DAG);
1640   return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
1641 }
1642 
1643 SDValue
1644 HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
1645   MVT ResTy = ty(Op);
1646   SDValue InpV = Op.getOperand(0);
1647   MVT ElemTy = ty(InpV).getVectorElementType();
1648   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1649     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
1650   return Op;
1651 }
1652 
1653 SDValue
1654 HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
1655   MVT ResTy = ty(Op);
1656   SDValue InpV = Op.getOperand(0);
1657   MVT ElemTy = ty(InpV).getVectorElementType();
1658   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1659     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
1660   return Op;
1661 }
1662 
1663 SDValue
1664 HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
1665   // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
1666   // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
1667   const SDLoc &dl(Op);
1668   MVT ResTy = ty(Op);
1669   SDValue InpV = Op.getOperand(0);
1670   assert(ResTy == ty(InpV));
1671 
1672   // Calculate the vectors of 1 and bitwidth(x).
1673   MVT ElemTy = ty(InpV).getVectorElementType();
1674   unsigned ElemWidth = ElemTy.getSizeInBits();
1675 
1676   SDValue Vec1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1677                              DAG.getConstant(1, dl, MVT::i32));
1678   SDValue VecW = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1679                              DAG.getConstant(ElemWidth, dl, MVT::i32));
1680   SDValue VecN1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1681                               DAG.getConstant(-1, dl, MVT::i32));
1682 
1683   // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
1684   // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
1685   // it separately in custom combine or selection).
1686   SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
1687                           {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
1688                            DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
1689   return DAG.getNode(ISD::SUB, dl, ResTy,
1690                      {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
1691 }
1692 
1693 SDValue
1694 HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
1695   MVT ResTy = ty(Op);
1696   assert(ResTy.isVector());
1697   const SDLoc &dl(Op);
1698   SmallVector<int,256> ShuffMask;
1699 
1700   MVT ElemTy = ResTy.getVectorElementType();
1701   unsigned VecLen = ResTy.getVectorNumElements();
1702   SDValue Vs = Op.getOperand(0);
1703   SDValue Vt = Op.getOperand(1);
1704   bool IsSigned = Op.getOpcode() == ISD::MULHS;
1705 
1706   if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
1707     // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1708     // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1709     // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1710     // For i16, use V6_vmpyhv, which behaves in an analogous way to
1711     // V6_vmpybv: results Lo and Hi are products of even/odd elements
1712     // respectively.
1713     MVT ExtTy = typeExtElem(ResTy, 2);
1714     unsigned MpyOpc = ElemTy == MVT::i8
1715         ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
1716         : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
1717     SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1718 
1719     // Discard low halves of the resulting values, collect the high halves.
1720     for (unsigned I = 0; I < VecLen; I += 2) {
1721       ShuffMask.push_back(I+1);         // Pick even element.
1722       ShuffMask.push_back(I+VecLen+1);  // Pick odd element.
1723     }
1724     VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1725     SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1726     return DAG.getBitcast(ResTy, BS);
1727   }
1728 
1729   assert(ElemTy == MVT::i32);
1730   SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1731 
1732   auto MulHS_V60 = [&](SDValue Vs, SDValue Vt) {
1733     // mulhs(Vs,Vt) =
1734     //   = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1735     //   = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
1736     //      + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1737     //   = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
1738     //      + Lo(Vs) *us Vt] >> 32
1739     // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
1740     // anything, so it cannot produce any carry over to higher bits),
1741     // so everything in [] can be shifted by 16 without loss of precision.
1742     //   = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
1743     //   = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
1744     // Denote Hi(Vs) = Vs':
1745     //   = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
1746     //   = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
1747     SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
1748     // Get Vs':
1749     SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
1750     SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1751                           {T0, S0, Vt}, DAG);
1752     // Shift by 16:
1753     SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
1754     // Get Vs'*Hi(Vt):
1755     SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
1756     // Add:
1757     SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
1758     return T3;
1759   };
1760 
1761   auto MulHS_V62 = [&](SDValue Vs, SDValue Vt) {
1762     MVT PairTy = typeJoin({ResTy, ResTy});
1763     SDValue T0 = getInstr(Hexagon::V6_vmpyewuh_64, dl, PairTy, {Vs, Vt}, DAG);
1764     SDValue T1 = getInstr(Hexagon::V6_vmpyowh_64_acc, dl, PairTy,
1765                           {T0, Vs, Vt}, DAG);
1766     return opSplit(T1, dl, DAG).second;
1767   };
1768 
1769   if (IsSigned) {
1770     if (Subtarget.useHVXV62Ops())
1771       return MulHS_V62(Vs, Vt);
1772     return MulHS_V60(Vs, Vt);
1773   }
1774 
1775   // Unsigned mulhw. (Would expansion using signed mulhw be better?)
1776 
1777   auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
1778     return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
1779   };
1780   auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
1781     return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
1782   };
1783 
1784   MVT PairTy = typeJoin({ResTy, ResTy});
1785   SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
1786                        {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
1787   // Multiply-unsigned halfwords:
1788   //   LoVec = Vs.uh[2i] * Vt.uh[2i],
1789   //   HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
1790   SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
1791   // The low halves in the LoVec of the pair can be discarded. They are
1792   // not added to anything (in the full-precision product), so they cannot
1793   // produce a carry into the higher bits.
1794   SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
1795   // Swap low and high halves in Vt, and do the halfword multiplication
1796   // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
1797   SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
1798   SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
1799   // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
1800   // These products are words, but cannot be added directly because the
1801   // sums could overflow. Add these products, by halfwords, where each sum
1802   // of a pair of halfwords gives a word.
1803   SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
1804                         {LoVec(T2), HiVec(T2)}, DAG);
1805   // Add the high halfwords from the products of the low halfwords.
1806   SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
1807   SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
1808   SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
1809   SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
1810   return T7;
1811 }
1812 
1813 SDValue
1814 HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const {
1815   SDValue Val = Op.getOperand(0);
1816   MVT ResTy = ty(Op);
1817   MVT ValTy = ty(Val);
1818   const SDLoc &dl(Op);
1819 
1820   if (isHvxBoolTy(ValTy) && ResTy.isScalarInteger()) {
1821     unsigned HwLen = Subtarget.getVectorLength();
1822     MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
1823     SDValue VQ = compressHvxPred(Val, dl, WordTy, DAG);
1824     unsigned BitWidth = ResTy.getSizeInBits();
1825 
1826     if (BitWidth < 64) {
1827       SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32),
1828           dl, MVT::i32, DAG);
1829       if (BitWidth == 32)
1830         return W0;
1831       assert(BitWidth < 32u);
1832       return DAG.getZExtOrTrunc(W0, dl, ResTy);
1833     }
1834 
1835     // The result is >= 64 bits. The only options are 64 or 128.
1836     assert(BitWidth == 64 || BitWidth == 128);
1837     SmallVector<SDValue,4> Words;
1838     for (unsigned i = 0; i != BitWidth/32; ++i) {
1839       SDValue W = extractHvxElementReg(
1840           VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG);
1841       Words.push_back(W);
1842     }
1843     SmallVector<SDValue,2> Combines;
1844     assert(Words.size() % 2 == 0);
1845     for (unsigned i = 0, e = Words.size(); i < e; i += 2) {
1846       SDValue C = DAG.getNode(
1847           HexagonISD::COMBINE, dl, MVT::i64, {Words[i+1], Words[i]});
1848       Combines.push_back(C);
1849     }
1850 
1851     if (BitWidth == 64)
1852       return Combines[0];
1853 
1854     return DAG.getNode(ISD::BUILD_PAIR, dl, ResTy, Combines);
1855   }
1856   if (isHvxBoolTy(ResTy) && ValTy.isScalarInteger()) {
1857     // Handle bitcast from i128 -> v128i1 and i64 -> v64i1.
1858     unsigned BitWidth = ValTy.getSizeInBits();
1859     unsigned HwLen = Subtarget.getVectorLength();
1860     assert(BitWidth == HwLen);
1861 
1862     MVT ValAsVecTy = MVT::getVectorVT(MVT::i8, BitWidth / 8);
1863     SDValue ValAsVec = DAG.getBitcast(ValAsVecTy, Val);
1864     // Splat each byte of Val 8 times.
1865     // Bytes = [(b0)x8, (b1)x8, ...., (b15)x8]
1866     // where b0, b1,..., b15 are least to most significant bytes of I.
1867     SmallVector<SDValue, 128> Bytes;
1868     // Tmp: 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x01,0x02,0x04,0x08,...
1869     // These are bytes with the LSB rotated left with respect to their index.
1870     SmallVector<SDValue, 128> Tmp;
1871     for (unsigned I = 0; I != HwLen / 8; ++I) {
1872       SDValue Idx = DAG.getConstant(I, dl, MVT::i32);
1873       SDValue Byte =
1874           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, ValAsVec, Idx);
1875       for (unsigned J = 0; J != 8; ++J) {
1876         Bytes.push_back(Byte);
1877         Tmp.push_back(DAG.getConstant(1ull << J, dl, MVT::i8));
1878       }
1879     }
1880 
1881     MVT ConstantVecTy = MVT::getVectorVT(MVT::i8, HwLen);
1882     SDValue ConstantVec = DAG.getBuildVector(ConstantVecTy, dl, Tmp);
1883     SDValue I2V = buildHvxVectorReg(Bytes, dl, ConstantVecTy, DAG);
1884 
1885     // Each Byte in the I2V will be set iff corresponding bit is set in Val.
1886     I2V = DAG.getNode(ISD::AND, dl, ConstantVecTy, {I2V, ConstantVec});
1887     return DAG.getNode(HexagonISD::V2Q, dl, ResTy, I2V);
1888   }
1889 
1890   return Op;
1891 }
1892 
1893 SDValue
1894 HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
1895   // Sign- and zero-extends are legal.
1896   assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
1897   return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
1898                      Op.getOperand(0));
1899 }
1900 
1901 SDValue
1902 HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const {
1903   MVT ResTy = ty(Op);
1904   if (ResTy.getVectorElementType() != MVT::i1)
1905     return Op;
1906 
1907   const SDLoc &dl(Op);
1908   unsigned HwLen = Subtarget.getVectorLength();
1909   unsigned VecLen = ResTy.getVectorNumElements();
1910   assert(HwLen % VecLen == 0);
1911   unsigned ElemSize = HwLen / VecLen;
1912 
1913   MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(ElemSize * 8), VecLen);
1914   SDValue S =
1915       DAG.getNode(ISD::SELECT, dl, VecTy, Op.getOperand(0),
1916                   DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(1)),
1917                   DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(2)));
1918   return DAG.getNode(HexagonISD::V2Q, dl, ResTy, S);
1919 }
1920 
1921 SDValue
1922 HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
1923   if (SDValue S = getVectorShiftByInt(Op, DAG))
1924     return S;
1925   return Op;
1926 }
1927 
1928 SDValue
1929 HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const {
1930       const SDLoc &dl(Op);
1931   MVT ResTy = ty(Op);
1932 
1933   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1934   bool Use64b = Subtarget.useHVX64BOps();
1935   unsigned IntPredCast = Use64b ? Intrinsic::hexagon_V6_pred_typecast
1936                                 : Intrinsic::hexagon_V6_pred_typecast_128B;
1937   if (IntNo == IntPredCast) {
1938     SDValue Vs = Op.getOperand(1);
1939     MVT OpTy = ty(Vs);
1940     if (isHvxBoolTy(ResTy) && isHvxBoolTy(OpTy)) {
1941       if (ResTy == OpTy)
1942         return Vs;
1943       return DAG.getNode(HexagonISD::TYPECAST, dl, ResTy, Vs);
1944     }
1945   }
1946 
1947   return Op;
1948 }
1949 
1950 SDValue
1951 HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const {
1952   const SDLoc &dl(Op);
1953   unsigned HwLen = Subtarget.getVectorLength();
1954   MachineFunction &MF = DAG.getMachineFunction();
1955   auto *MaskN = cast<MaskedLoadStoreSDNode>(Op.getNode());
1956   SDValue Mask = MaskN->getMask();
1957   SDValue Chain = MaskN->getChain();
1958   SDValue Base = MaskN->getBasePtr();
1959   auto *MemOp = MF.getMachineMemOperand(MaskN->getMemOperand(), 0, HwLen);
1960 
1961   unsigned Opc = Op->getOpcode();
1962   assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE);
1963 
1964   if (Opc == ISD::MLOAD) {
1965     MVT ValTy = ty(Op);
1966     SDValue Load = DAG.getLoad(ValTy, dl, Chain, Base, MemOp);
1967     SDValue Thru = cast<MaskedLoadSDNode>(MaskN)->getPassThru();
1968     if (isUndef(Thru))
1969       return Load;
1970     SDValue VSel = DAG.getNode(ISD::VSELECT, dl, ValTy, Mask, Load, Thru);
1971     return DAG.getMergeValues({VSel, Load.getValue(1)}, dl);
1972   }
1973 
1974   // MSTORE
1975   // HVX only has aligned masked stores.
1976 
1977   // TODO: Fold negations of the mask into the store.
1978   unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai;
1979   SDValue Value = cast<MaskedStoreSDNode>(MaskN)->getValue();
1980   SDValue Offset0 = DAG.getTargetConstant(0, dl, ty(Base));
1981 
1982   if (MaskN->getAlign().value() % HwLen == 0) {
1983     SDValue Store = getInstr(StoreOpc, dl, MVT::Other,
1984                              {Mask, Base, Offset0, Value, Chain}, DAG);
1985     DAG.setNodeMemRefs(cast<MachineSDNode>(Store.getNode()), {MemOp});
1986     return Store;
1987   }
1988 
1989   // Unaligned case.
1990   auto StoreAlign = [&](SDValue V, SDValue A) {
1991     SDValue Z = getZero(dl, ty(V), DAG);
1992     // TODO: use funnel shifts?
1993     // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the
1994     // upper half.
1995     SDValue LoV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {V, Z, A}, DAG);
1996     SDValue HiV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {Z, V, A}, DAG);
1997     return std::make_pair(LoV, HiV);
1998   };
1999 
2000   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
2001   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
2002   SDValue MaskV = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Mask);
2003   VectorPair Tmp = StoreAlign(MaskV, Base);
2004   VectorPair MaskU = {DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.first),
2005                       DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.second)};
2006   VectorPair ValueU = StoreAlign(Value, Base);
2007 
2008   SDValue Offset1 = DAG.getTargetConstant(HwLen, dl, MVT::i32);
2009   SDValue StoreLo =
2010       getInstr(StoreOpc, dl, MVT::Other,
2011                {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG);
2012   SDValue StoreHi =
2013       getInstr(StoreOpc, dl, MVT::Other,
2014                {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG);
2015   DAG.setNodeMemRefs(cast<MachineSDNode>(StoreLo.getNode()), {MemOp});
2016   DAG.setNodeMemRefs(cast<MachineSDNode>(StoreHi.getNode()), {MemOp});
2017   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, {StoreLo, StoreHi});
2018 }
2019 
2020 SDValue HexagonTargetLowering::LowerHvxFpExtend(SDValue Op,
2021                                                 SelectionDAG &DAG) const {
2022   // This conversion only applies to QFloat.
2023   assert(Subtarget.useHVXQFloatOps());
2024 
2025   assert(Op->getOpcode() == ISD::FP_EXTEND);
2026 
2027   MVT VecTy = ty(Op);
2028   MVT ArgTy = ty(Op.getOperand(0));
2029   const SDLoc &dl(Op);
2030   assert(VecTy == MVT::v64f32 && ArgTy == MVT::v64f16);
2031 
2032   SDValue F16Vec = Op.getOperand(0);
2033 
2034   APFloat FloatVal = APFloat(1.0f);
2035   bool Ignored;
2036   FloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
2037   SDValue Fp16Ones = DAG.getConstantFP(FloatVal, dl, ArgTy);
2038   SDValue VmpyVec =
2039       getInstr(Hexagon::V6_vmpy_qf32_hf, dl, VecTy, {F16Vec, Fp16Ones}, DAG);
2040 
2041   MVT HalfTy = typeSplit(VecTy).first;
2042   VectorPair Pair = opSplit(VmpyVec, dl, DAG);
2043   SDValue LoVec =
2044       getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.first}, DAG);
2045   SDValue HiVec =
2046       getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.second}, DAG);
2047 
2048   SDValue ShuffVec =
2049       getInstr(Hexagon::V6_vshuffvdd, dl, VecTy,
2050                {HiVec, LoVec, DAG.getConstant(-4, dl, MVT::i32)}, DAG);
2051 
2052   return ShuffVec;
2053 }
2054 
2055 SDValue
2056 HexagonTargetLowering::LowerHvxConvertFpInt(SDValue Op, SelectionDAG &DAG)
2057     const {
2058   // This conversion only applies to IEEE.
2059   assert(Subtarget.useHVXIEEEFPOps());
2060 
2061   unsigned Opc = Op.getOpcode();
2062   // Catch invalid conversion ops (just in case).
2063   assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT ||
2064          Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP);
2065   MVT ResTy = ty(Op);
2066 
2067   if (Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT) {
2068     MVT FpTy = ty(Op.getOperand(0)).getVectorElementType();
2069     // There are only conversions of f16.
2070     if (FpTy != MVT::f16)
2071       return SDValue();
2072 
2073     MVT IntTy = ResTy.getVectorElementType();
2074     // Other int types aren't legal in HVX, so we shouldn't see them here.
2075     assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32);
2076     // Conversions to i8 and i16 are legal.
2077     if (IntTy == MVT::i8 || IntTy == MVT::i16)
2078       return Op;
2079   } else {
2080     // Converting int -> fp.
2081     if (ResTy.getVectorElementType() != MVT::f16)
2082       return SDValue();
2083     MVT IntTy = ty(Op.getOperand(0)).getVectorElementType();
2084     // Other int types aren't legal in HVX, so we shouldn't see them here.
2085     assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32);
2086     // i8, i16 -> f16 is legal.
2087     if (IntTy == MVT::i8 || IntTy == MVT::i16)
2088       return Op;
2089   }
2090 
2091   return SDValue();
2092 }
2093 
2094 SDValue
2095 HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const {
2096   assert(!Op.isMachineOpcode());
2097   SmallVector<SDValue,2> OpsL, OpsH;
2098   const SDLoc &dl(Op);
2099 
2100   auto SplitVTNode = [&DAG,this] (const VTSDNode *N) {
2101     MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
2102     SDValue TV = DAG.getValueType(Ty);
2103     return std::make_pair(TV, TV);
2104   };
2105 
2106   for (SDValue A : Op.getNode()->ops()) {
2107     VectorPair P = Subtarget.isHVXVectorType(ty(A), true)
2108                     ? opSplit(A, dl, DAG)
2109                     : std::make_pair(A, A);
2110     // Special case for type operand.
2111     if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
2112       if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
2113         P = SplitVTNode(N);
2114     }
2115     OpsL.push_back(P.first);
2116     OpsH.push_back(P.second);
2117   }
2118 
2119   MVT ResTy = ty(Op);
2120   MVT HalfTy = typeSplit(ResTy).first;
2121   SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
2122   SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
2123   SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H);
2124   return S;
2125 }
2126 
2127 SDValue
2128 HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
2129   auto *MemN = cast<MemSDNode>(Op.getNode());
2130 
2131   MVT MemTy = MemN->getMemoryVT().getSimpleVT();
2132   if (!isHvxPairTy(MemTy))
2133     return Op;
2134 
2135   const SDLoc &dl(Op);
2136   unsigned HwLen = Subtarget.getVectorLength();
2137   MVT SingleTy = typeSplit(MemTy).first;
2138   SDValue Chain = MemN->getChain();
2139   SDValue Base0 = MemN->getBasePtr();
2140   SDValue Base1 = DAG.getMemBasePlusOffset(Base0, TypeSize::Fixed(HwLen), dl);
2141   unsigned MemOpc = MemN->getOpcode();
2142 
2143   MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
2144   if (MachineMemOperand *MMO = MemN->getMemOperand()) {
2145     MachineFunction &MF = DAG.getMachineFunction();
2146     uint64_t MemSize = (MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE)
2147                            ? (uint64_t)MemoryLocation::UnknownSize
2148                            : HwLen;
2149     MOp0 = MF.getMachineMemOperand(MMO, 0, MemSize);
2150     MOp1 = MF.getMachineMemOperand(MMO, HwLen, MemSize);
2151   }
2152 
2153   if (MemOpc == ISD::LOAD) {
2154     assert(cast<LoadSDNode>(Op)->isUnindexed());
2155     SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
2156     SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
2157     return DAG.getMergeValues(
2158         { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
2159           DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2160                       Load0.getValue(1), Load1.getValue(1)) }, dl);
2161   }
2162   if (MemOpc == ISD::STORE) {
2163     assert(cast<StoreSDNode>(Op)->isUnindexed());
2164     VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
2165     SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
2166     SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
2167     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
2168   }
2169 
2170   assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE);
2171 
2172   auto MaskN = cast<MaskedLoadStoreSDNode>(Op);
2173   assert(MaskN->isUnindexed());
2174   VectorPair Masks = opSplit(MaskN->getMask(), dl, DAG);
2175   SDValue Offset = DAG.getUNDEF(MVT::i32);
2176 
2177   if (MemOpc == ISD::MLOAD) {
2178     VectorPair Thru =
2179         opSplit(cast<MaskedLoadSDNode>(Op)->getPassThru(), dl, DAG);
2180     SDValue MLoad0 =
2181         DAG.getMaskedLoad(SingleTy, dl, Chain, Base0, Offset, Masks.first,
2182                           Thru.first, SingleTy, MOp0, ISD::UNINDEXED,
2183                           ISD::NON_EXTLOAD, false);
2184     SDValue MLoad1 =
2185         DAG.getMaskedLoad(SingleTy, dl, Chain, Base1, Offset, Masks.second,
2186                           Thru.second, SingleTy, MOp1, ISD::UNINDEXED,
2187                           ISD::NON_EXTLOAD, false);
2188     return DAG.getMergeValues(
2189         { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, MLoad0, MLoad1),
2190           DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2191                       MLoad0.getValue(1), MLoad1.getValue(1)) }, dl);
2192   }
2193   if (MemOpc == ISD::MSTORE) {
2194     VectorPair Vals = opSplit(cast<MaskedStoreSDNode>(Op)->getValue(), dl, DAG);
2195     SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Vals.first, Base0, Offset,
2196                                          Masks.first, SingleTy, MOp0,
2197                                          ISD::UNINDEXED, false, false);
2198     SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Vals.second, Base1, Offset,
2199                                          Masks.second, SingleTy, MOp1,
2200                                          ISD::UNINDEXED, false, false);
2201     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MStore0, MStore1);
2202   }
2203 
2204   std::string Name = "Unexpected operation: " + Op->getOperationName(&DAG);
2205   llvm_unreachable(Name.c_str());
2206 }
2207 
2208 SDValue
2209 HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const {
2210   const SDLoc &dl(Op);
2211   auto *LoadN = cast<LoadSDNode>(Op.getNode());
2212   assert(LoadN->isUnindexed() && "Not widening indexed loads yet");
2213   assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 &&
2214          "Not widening loads of i1 yet");
2215 
2216   SDValue Chain = LoadN->getChain();
2217   SDValue Base = LoadN->getBasePtr();
2218   SDValue Offset = DAG.getUNDEF(MVT::i32);
2219 
2220   MVT ResTy = ty(Op);
2221   unsigned HwLen = Subtarget.getVectorLength();
2222   unsigned ResLen = ResTy.getStoreSize();
2223   assert(ResLen < HwLen && "vsetq(v1) prerequisite");
2224 
2225   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
2226   SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
2227                           {DAG.getConstant(ResLen, dl, MVT::i32)}, DAG);
2228 
2229   MVT LoadTy = MVT::getVectorVT(MVT::i8, HwLen);
2230   MachineFunction &MF = DAG.getMachineFunction();
2231   auto *MemOp = MF.getMachineMemOperand(LoadN->getMemOperand(), 0, HwLen);
2232 
2233   SDValue Load = DAG.getMaskedLoad(LoadTy, dl, Chain, Base, Offset, Mask,
2234                                    DAG.getUNDEF(LoadTy), LoadTy, MemOp,
2235                                    ISD::UNINDEXED, ISD::NON_EXTLOAD, false);
2236   SDValue Value = opCastElem(Load, ResTy.getVectorElementType(), DAG);
2237   return DAG.getMergeValues({Value, Chain}, dl);
2238 }
2239 
2240 SDValue
2241 HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const {
2242   const SDLoc &dl(Op);
2243   auto *StoreN = cast<StoreSDNode>(Op.getNode());
2244   assert(StoreN->isUnindexed() && "Not widening indexed stores yet");
2245   assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 &&
2246          "Not widening stores of i1 yet");
2247 
2248   SDValue Chain = StoreN->getChain();
2249   SDValue Base = StoreN->getBasePtr();
2250   SDValue Offset = DAG.getUNDEF(MVT::i32);
2251 
2252   SDValue Value = opCastElem(StoreN->getValue(), MVT::i8, DAG);
2253   MVT ValueTy = ty(Value);
2254   unsigned ValueLen = ValueTy.getVectorNumElements();
2255   unsigned HwLen = Subtarget.getVectorLength();
2256   assert(isPowerOf2_32(ValueLen));
2257 
2258   for (unsigned Len = ValueLen; Len < HwLen; ) {
2259     Value = opJoin({DAG.getUNDEF(ty(Value)), Value}, dl, DAG);
2260     Len = ty(Value).getVectorNumElements(); // This is Len *= 2
2261   }
2262   assert(ty(Value).getVectorNumElements() == HwLen);  // Paranoia
2263 
2264   assert(ValueLen < HwLen && "vsetq(v1) prerequisite");
2265   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
2266   SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
2267                           {DAG.getConstant(ValueLen, dl, MVT::i32)}, DAG);
2268   MachineFunction &MF = DAG.getMachineFunction();
2269   auto *MemOp = MF.getMachineMemOperand(StoreN->getMemOperand(), 0, HwLen);
2270   return DAG.getMaskedStore(Chain, dl, Value, Base, Offset, Mask, ty(Value),
2271                             MemOp, ISD::UNINDEXED, false, false);
2272 }
2273 
2274 SDValue
2275 HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const {
2276   const SDLoc &dl(Op);
2277   SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2278   MVT ElemTy = ty(Op0).getVectorElementType();
2279   unsigned HwLen = Subtarget.getVectorLength();
2280 
2281   unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits();
2282   assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen);
2283   MVT WideOpTy = MVT::getVectorVT(ElemTy, WideOpLen);
2284   if (!Subtarget.isHVXVectorType(WideOpTy, true))
2285     return SDValue();
2286 
2287   SDValue WideOp0 = appendUndef(Op0, WideOpTy, DAG);
2288   SDValue WideOp1 = appendUndef(Op1, WideOpTy, DAG);
2289   EVT ResTy =
2290       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), WideOpTy);
2291   SDValue SetCC = DAG.getNode(ISD::SETCC, dl, ResTy,
2292                               {WideOp0, WideOp1, Op.getOperand(2)});
2293 
2294   EVT RetTy = getTypeToTransformTo(*DAG.getContext(), ty(Op));
2295   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RetTy,
2296                      {SetCC, getZero(dl, MVT::i32, DAG)});
2297 }
2298 
2299 SDValue
2300 HexagonTargetLowering::WidenHvxExtend(SDValue Op, SelectionDAG &DAG) const {
2301   const SDLoc &dl(Op);
2302   unsigned HwWidth = 8*Subtarget.getVectorLength();
2303 
2304   SDValue Op0 = Op.getOperand(0);
2305   MVT ResTy = ty(Op);
2306   MVT OpTy = ty(Op0);
2307   if (!Subtarget.isHVXElementType(OpTy) || !Subtarget.isHVXElementType(ResTy))
2308     return SDValue();
2309 
2310   // .-res, op->      ScalarVec  Illegal      HVX
2311   // Scalar                  ok        -        -
2312   // Illegal      widen(insert)    widen        -
2313   // HVX                      -    widen       ok
2314 
2315   auto getFactor = [HwWidth](MVT Ty) {
2316     unsigned Width = Ty.getSizeInBits();
2317     return HwWidth > Width ? HwWidth / Width : 1;
2318   };
2319 
2320   auto getWideTy = [getFactor](MVT Ty) {
2321     unsigned WideLen = Ty.getVectorNumElements() * getFactor(Ty);
2322     return MVT::getVectorVT(Ty.getVectorElementType(), WideLen);
2323   };
2324 
2325   unsigned Opcode = Op.getOpcode() == ISD::SIGN_EXTEND ? HexagonISD::VUNPACK
2326                                                        : HexagonISD::VUNPACKU;
2327   SDValue WideOp = appendUndef(Op0, getWideTy(OpTy), DAG);
2328   SDValue WideRes = DAG.getNode(Opcode, dl, getWideTy(ResTy), WideOp);
2329   return WideRes;
2330 }
2331 
2332 SDValue
2333 HexagonTargetLowering::WidenHvxTruncate(SDValue Op, SelectionDAG &DAG) const {
2334   const SDLoc &dl(Op);
2335   unsigned HwWidth = 8*Subtarget.getVectorLength();
2336 
2337   SDValue Op0 = Op.getOperand(0);
2338   MVT ResTy = ty(Op);
2339   MVT OpTy = ty(Op0);
2340   if (!Subtarget.isHVXElementType(OpTy) || !Subtarget.isHVXElementType(ResTy))
2341     return SDValue();
2342 
2343   // .-res, op->  ScalarVec         Illegal      HVX
2344   // Scalar              ok  extract(widen)        -
2345   // Illegal              -           widen    widen
2346   // HVX                  -               -       ok
2347 
2348   auto getFactor = [HwWidth](MVT Ty) {
2349     unsigned Width = Ty.getSizeInBits();
2350     assert(HwWidth % Width == 0);
2351     return HwWidth / Width;
2352   };
2353 
2354   auto getWideTy = [getFactor](MVT Ty) {
2355     unsigned WideLen = Ty.getVectorNumElements() * getFactor(Ty);
2356     return MVT::getVectorVT(Ty.getVectorElementType(), WideLen);
2357   };
2358 
2359   if (Subtarget.isHVXVectorType(OpTy))
2360     return DAG.getNode(HexagonISD::VPACKL, dl, getWideTy(ResTy), Op0);
2361 
2362   assert(!isTypeLegal(OpTy) && "HVX-widening a truncate of scalar?");
2363 
2364   SDValue WideOp = appendUndef(Op0, getWideTy(OpTy), DAG);
2365   SDValue WideRes = DAG.getNode(HexagonISD::VPACKL, dl, getWideTy(ResTy),
2366                                 WideOp);
2367   // If the original result wasn't legal and was supposed to be widened,
2368   // we're done.
2369   if (shouldWidenToHvx(ResTy, DAG))
2370     return WideRes;
2371 
2372   // The original result type wasn't meant to be widened to HVX, so
2373   // leave it as it is. Standard legalization should be able to deal
2374   // with it (since now it's a result of a target-idendependent ISD
2375   // node).
2376   assert(ResTy.isVector());
2377   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResTy,
2378                      {WideRes, getZero(dl, MVT::i32, DAG)});
2379 }
2380 
2381 SDValue
2382 HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
2383   unsigned Opc = Op.getOpcode();
2384   bool IsPairOp = isHvxPairTy(ty(Op)) ||
2385                   llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
2386                     return isHvxPairTy(ty(V));
2387                   });
2388 
2389   if (IsPairOp) {
2390     switch (Opc) {
2391       default:
2392         break;
2393       case ISD::LOAD:
2394       case ISD::STORE:
2395       case ISD::MLOAD:
2396       case ISD::MSTORE:
2397         return SplitHvxMemOp(Op, DAG);
2398       case ISD::SINT_TO_FP:
2399       case ISD::UINT_TO_FP:
2400       case ISD::FP_TO_SINT:
2401       case ISD::FP_TO_UINT:
2402         if (ty(Op).getSizeInBits() == ty(Op.getOperand(0)).getSizeInBits())
2403           return SplitHvxPairOp(Op, DAG);
2404         break;
2405       case ISD::CTPOP:
2406       case ISD::CTLZ:
2407       case ISD::CTTZ:
2408       case ISD::MUL:
2409       case ISD::FADD:
2410       case ISD::FSUB:
2411       case ISD::FMUL:
2412       case ISD::FMINNUM:
2413       case ISD::FMAXNUM:
2414       case ISD::MULHS:
2415       case ISD::MULHU:
2416       case ISD::AND:
2417       case ISD::OR:
2418       case ISD::XOR:
2419       case ISD::SRA:
2420       case ISD::SHL:
2421       case ISD::SRL:
2422       case ISD::SMIN:
2423       case ISD::SMAX:
2424       case ISD::UMIN:
2425       case ISD::UMAX:
2426       case ISD::SETCC:
2427       case ISD::VSELECT:
2428       case ISD::SIGN_EXTEND:
2429       case ISD::ZERO_EXTEND:
2430       case ISD::SIGN_EXTEND_INREG:
2431       case ISD::SPLAT_VECTOR:
2432         return SplitHvxPairOp(Op, DAG);
2433     }
2434   }
2435 
2436   switch (Opc) {
2437     default:
2438       break;
2439     case ISD::BUILD_VECTOR:            return LowerHvxBuildVector(Op, DAG);
2440     case ISD::SPLAT_VECTOR:            return LowerHvxSplatVector(Op, DAG);
2441     case ISD::CONCAT_VECTORS:          return LowerHvxConcatVectors(Op, DAG);
2442     case ISD::INSERT_SUBVECTOR:        return LowerHvxInsertSubvector(Op, DAG);
2443     case ISD::INSERT_VECTOR_ELT:       return LowerHvxInsertElement(Op, DAG);
2444     case ISD::EXTRACT_SUBVECTOR:       return LowerHvxExtractSubvector(Op, DAG);
2445     case ISD::EXTRACT_VECTOR_ELT:      return LowerHvxExtractElement(Op, DAG);
2446     case ISD::BITCAST:                 return LowerHvxBitcast(Op, DAG);
2447     case ISD::ANY_EXTEND:              return LowerHvxAnyExt(Op, DAG);
2448     case ISD::SIGN_EXTEND:             return LowerHvxSignExt(Op, DAG);
2449     case ISD::ZERO_EXTEND:             return LowerHvxZeroExt(Op, DAG);
2450     case ISD::CTTZ:                    return LowerHvxCttz(Op, DAG);
2451     case ISD::SELECT:                  return LowerHvxSelect(Op, DAG);
2452     case ISD::SRA:
2453     case ISD::SHL:
2454     case ISD::SRL:                     return LowerHvxShift(Op, DAG);
2455     case ISD::MULHS:
2456     case ISD::MULHU:                   return LowerHvxMulh(Op, DAG);
2457     case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
2458     case ISD::SETCC:
2459     case ISD::INTRINSIC_VOID:          return Op;
2460     case ISD::INTRINSIC_WO_CHAIN:      return LowerHvxIntrinsic(Op, DAG);
2461     case ISD::MLOAD:
2462     case ISD::MSTORE:                  return LowerHvxMaskedOp(Op, DAG);
2463     // Unaligned loads will be handled by the default lowering.
2464     case ISD::LOAD:                    return SDValue();
2465     case ISD::FP_EXTEND:               return LowerHvxFpExtend(Op, DAG);
2466     case ISD::FP_TO_SINT:
2467     case ISD::FP_TO_UINT:
2468     case ISD::SINT_TO_FP:
2469     case ISD::UINT_TO_FP:              return LowerHvxConvertFpInt(Op, DAG);
2470   }
2471 #ifndef NDEBUG
2472   Op.dumpr(&DAG);
2473 #endif
2474   llvm_unreachable("Unhandled HVX operation");
2475 }
2476 
2477 void
2478 HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N,
2479       SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
2480   unsigned Opc = N->getOpcode();
2481   SDValue Op(N, 0);
2482 
2483   switch (Opc) {
2484     case ISD::ANY_EXTEND:
2485     case ISD::SIGN_EXTEND:
2486     case ISD::ZERO_EXTEND:
2487       if (shouldWidenToHvx(ty(Op.getOperand(0)), DAG)) {
2488         if (SDValue T = WidenHvxExtend(Op, DAG))
2489           Results.push_back(T);
2490       }
2491       break;
2492     case ISD::SETCC:
2493       if (shouldWidenToHvx(ty(Op.getOperand(0)), DAG)) {
2494         if (SDValue T = WidenHvxSetCC(Op, DAG))
2495           Results.push_back(T);
2496       }
2497       break;
2498     case ISD::TRUNCATE:
2499       if (shouldWidenToHvx(ty(Op.getOperand(0)), DAG)) {
2500         if (SDValue T = WidenHvxTruncate(Op, DAG))
2501           Results.push_back(T);
2502       }
2503       break;
2504     case ISD::STORE: {
2505       if (shouldWidenToHvx(ty(cast<StoreSDNode>(N)->getValue()), DAG)) {
2506         SDValue Store = WidenHvxStore(Op, DAG);
2507         Results.push_back(Store);
2508       }
2509       break;
2510     }
2511     case ISD::MLOAD:
2512       if (isHvxPairTy(ty(Op))) {
2513         SDValue S = SplitHvxMemOp(Op, DAG);
2514         assert(S->getOpcode() == ISD::MERGE_VALUES);
2515         Results.push_back(S.getOperand(0));
2516         Results.push_back(S.getOperand(1));
2517       }
2518       break;
2519     case ISD::MSTORE:
2520       if (isHvxPairTy(ty(Op->getOperand(1)))) {    // Stored value
2521         SDValue S = SplitHvxMemOp(Op, DAG);
2522         Results.push_back(S);
2523       }
2524       break;
2525     default:
2526       break;
2527   }
2528 }
2529 
2530 void
2531 HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N,
2532       SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
2533   unsigned Opc = N->getOpcode();
2534   SDValue Op(N, 0);
2535   switch (Opc) {
2536     case ISD::ANY_EXTEND:
2537     case ISD::SIGN_EXTEND:
2538     case ISD::ZERO_EXTEND:
2539       if (shouldWidenToHvx(ty(Op), DAG)) {
2540         if (SDValue T = WidenHvxExtend(Op, DAG))
2541           Results.push_back(T);
2542       }
2543       break;
2544     case ISD::SETCC:
2545       if (shouldWidenToHvx(ty(Op), DAG)) {
2546         if (SDValue T = WidenHvxSetCC(Op, DAG))
2547           Results.push_back(T);
2548       }
2549       break;
2550     case ISD::TRUNCATE:
2551       if (shouldWidenToHvx(ty(Op), DAG)) {
2552         if (SDValue T = WidenHvxTruncate(Op, DAG))
2553           Results.push_back(T);
2554       }
2555       break;
2556     case ISD::LOAD: {
2557       if (shouldWidenToHvx(ty(Op), DAG)) {
2558         SDValue Load = WidenHvxLoad(Op, DAG);
2559         assert(Load->getOpcode() == ISD::MERGE_VALUES);
2560         Results.push_back(Load.getOperand(0));
2561         Results.push_back(Load.getOperand(1));
2562       }
2563       break;
2564     }
2565     case ISD::BITCAST:
2566       if (isHvxBoolTy(ty(N->getOperand(0)))) {
2567         SDValue Op(N, 0);
2568         SDValue C = LowerHvxBitcast(Op, DAG);
2569         Results.push_back(C);
2570       }
2571       break;
2572     default:
2573       break;
2574   }
2575 }
2576 
2577 SDValue
2578 HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
2579       const {
2580   const SDLoc &dl(N);
2581   SelectionDAG &DAG = DCI.DAG;
2582   SDValue Op(N, 0);
2583   unsigned Opc = Op.getOpcode();
2584   if (DCI.isBeforeLegalizeOps())
2585     return SDValue();
2586 
2587   SmallVector<SDValue, 4> Ops(N->ops().begin(), N->ops().end());
2588 
2589   switch (Opc) {
2590     case ISD::VSELECT: {
2591       // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
2592       SDValue Cond = Ops[0];
2593       if (Cond->getOpcode() == ISD::XOR) {
2594         SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
2595         if (C1->getOpcode() == HexagonISD::QTRUE)
2596           return DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, Ops[2], Ops[1]);
2597       }
2598       break;
2599     }
2600     case HexagonISD::V2Q:
2601       if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) {
2602         if (const auto *C = dyn_cast<ConstantSDNode>(Ops[0].getOperand(0)))
2603           return C->isZero() ? DAG.getNode(HexagonISD::QFALSE, dl, ty(Op))
2604                              : DAG.getNode(HexagonISD::QTRUE, dl, ty(Op));
2605       }
2606       break;
2607     case HexagonISD::Q2V:
2608       if (Ops[0].getOpcode() == HexagonISD::QTRUE)
2609         return DAG.getNode(ISD::SPLAT_VECTOR, dl, ty(Op),
2610                            DAG.getConstant(-1, dl, MVT::i32));
2611       if (Ops[0].getOpcode() == HexagonISD::QFALSE)
2612         return getZero(dl, ty(Op), DAG);
2613       break;
2614     case HexagonISD::VINSERTW0:
2615       if (isUndef(Ops[1]))
2616         return Ops[0];;
2617       break;
2618     case HexagonISD::VROR: {
2619       if (Ops[0].getOpcode() == HexagonISD::VROR) {
2620         SDValue Vec = Ops[0].getOperand(0);
2621         SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(1);
2622         SDValue Rot = DAG.getNode(ISD::ADD, dl, ty(Rot0), {Rot0, Rot1});
2623         return DAG.getNode(HexagonISD::VROR, dl, ty(Op), {Vec, Rot});
2624       }
2625       break;
2626     }
2627   }
2628 
2629   return SDValue();
2630 }
2631 
2632 bool
2633 HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const {
2634   auto Action = getPreferredHvxVectorAction(Ty);
2635   if (Action == TargetLoweringBase::TypeWidenVector) {
2636     EVT WideTy = getTypeToTransformTo(*DAG.getContext(), Ty);
2637     assert(WideTy.isSimple());
2638     return Subtarget.isHVXVectorType(WideTy.getSimpleVT(), true);
2639   }
2640   return false;
2641 }
2642 
2643 bool
2644 HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const {
2645   if (!Subtarget.useHVXOps())
2646     return false;
2647   // If the type of any result, or any operand type are HVX vector types,
2648   // this is an HVX operation.
2649   auto IsHvxTy = [this](EVT Ty) {
2650     return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true);
2651   };
2652   auto IsHvxOp = [this](SDValue Op) {
2653     return Op.getValueType().isSimple() &&
2654            Subtarget.isHVXVectorType(ty(Op), true);
2655   };
2656   if (llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp))
2657     return true;
2658 
2659   // Check if this could be an HVX operation after type widening.
2660   auto IsWidenedToHvx = [this, &DAG](SDValue Op) {
2661     if (!Op.getValueType().isSimple())
2662       return false;
2663     MVT ValTy = ty(Op);
2664     return ValTy.isVector() && shouldWidenToHvx(ValTy, DAG);
2665   };
2666 
2667   for (int i = 0, e = N->getNumValues(); i != e; ++i) {
2668     if (IsWidenedToHvx(SDValue(N, i)))
2669       return true;
2670   }
2671   return llvm::any_of(N->ops(), IsWidenedToHvx);
2672 }
2673