1 //===-- HexagonISelLowering.h - Hexagon DAG Lowering Interface --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that Hexagon uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H 15 #define LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H 16 17 #include "Hexagon.h" 18 #include "MCTargetDesc/HexagonMCTargetDesc.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/CodeGen/ISDOpcodes.h" 21 #include "llvm/CodeGen/SelectionDAGNodes.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/ValueTypes.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/InlineAsm.h" 26 #include "llvm/Support/MachineValueType.h" 27 #include <cstdint> 28 #include <utility> 29 30 namespace llvm { 31 32 namespace HexagonISD { 33 34 enum NodeType : unsigned { 35 OP_BEGIN = ISD::BUILTIN_OP_END, 36 37 CONST32 = OP_BEGIN, 38 CONST32_GP, // For marking data present in GP. 39 ADDC, // Add with carry: (X, Y, Cin) -> (X+Y, Cout). 40 SUBC, // Sub with carry: (X, Y, Cin) -> (X+~Y+Cin, Cout). 41 ALLOCA, 42 43 AT_GOT, // Index in GOT. 44 AT_PCREL, // Offset relative to PC. 45 46 CALL, // Function call. 47 CALLnr, // Function call that does not return. 48 CALLR, 49 50 RET_FLAG, // Return with a flag operand. 51 BARRIER, // Memory barrier. 52 JT, // Jump table. 53 CP, // Constant pool. 54 55 COMBINE, 56 VASL, 57 VASR, 58 VLSR, 59 60 TSTBIT, 61 INSERT, 62 EXTRACTU, 63 VEXTRACTW, 64 VINSERTW0, 65 VROR, 66 TC_RETURN, 67 EH_RETURN, 68 DCFETCH, 69 READCYCLE, 70 PTRUE, 71 PFALSE, 72 D2P, // Convert 8-byte value to 8-bit predicate register. [*] 73 P2D, // Convert 8-bit predicate register to 8-byte value. [*] 74 V2Q, // Convert HVX vector to a vector predicate reg. [*] 75 Q2V, // Convert vector predicate to an HVX vector. [*] 76 // [*] The equivalence is defined as "Q <=> (V != 0)", 77 // where the != operation compares bytes. 78 // Note: V != 0 is implemented as V >u 0. 79 QCAT, 80 QTRUE, 81 QFALSE, 82 TYPECAST, // No-op that's used to convert between different legal 83 // types in a register. 84 VALIGN, // Align two vectors (in Op0, Op1) to one that would have 85 // been loaded from address in Op2. 86 VALIGNADDR, // Align vector address: Op0 & -Op1, except when it is 87 // an address in a vector load, then it's a no-op. 88 VPACKL, // Pack low parts of the input vector to the front of the 89 // output. For example v64i16 VPACKL(v32i32) will pick 90 // the low halfwords and pack them into the first 32 91 // halfwords of the output. The rest of the output is 92 // unspecified. 93 VUNPACK, // Unpacking into low elements with sign extension. 94 VUNPACKU, // Unpacking into low elements with zero extension. 95 ISEL, // Marker for nodes that were created during ISel, and 96 // which need explicit selection (would have been left 97 // unselected otherwise). 98 OP_END 99 }; 100 101 } // end namespace HexagonISD 102 103 class HexagonSubtarget; 104 105 class HexagonTargetLowering : public TargetLowering { 106 int VarArgsFrameOffset; // Frame offset to start of varargs area. 107 const HexagonTargetMachine &HTM; 108 const HexagonSubtarget &Subtarget; 109 110 bool CanReturnSmallStruct(const Function* CalleeFn, unsigned& RetSize) 111 const; 112 113 public: 114 explicit HexagonTargetLowering(const TargetMachine &TM, 115 const HexagonSubtarget &ST); 116 117 bool isHVXVectorType(MVT Ty) const; 118 119 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 120 /// for tail call optimization. Targets which want to do tail call 121 /// optimization should implement this function. 122 bool IsEligibleForTailCallOptimization(SDValue Callee, 123 CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, 124 bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs, 125 const SmallVectorImpl<SDValue> &OutVals, 126 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const; 127 128 bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, 129 MachineFunction &MF, 130 unsigned Intrinsic) const override; 131 132 bool isTruncateFree(Type *Ty1, Type *Ty2) const override; 133 bool isTruncateFree(EVT VT1, EVT VT2) const override; 134 135 bool isCheapToSpeculateCttz() const override { return true; } 136 bool isCheapToSpeculateCtlz() const override { return true; } 137 bool isCtlzFast() const override { return true; } 138 139 bool hasBitTest(SDValue X, SDValue Y) const override; 140 141 bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override; 142 143 /// Return true if an FMA operation is faster than a pair of mul and add 144 /// instructions. fmuladd intrinsics will be expanded to FMAs when this 145 /// method returns true (and FMAs are legal), otherwise fmuladd is 146 /// expanded to mul + add. 147 bool isFMAFasterThanFMulAndFAdd(const MachineFunction &, 148 EVT) const override; 149 150 // Should we expand the build vector with shuffles? 151 bool shouldExpandBuildVectorWithShuffles(EVT VT, 152 unsigned DefinedValues) const override; 153 154 bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override; 155 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) 156 const override; 157 158 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; 159 void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results, 160 SelectionDAG &DAG) const override; 161 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results, 162 SelectionDAG &DAG) const override; 163 164 const char *getTargetNodeName(unsigned Opcode) const override; 165 166 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; 167 SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const; 168 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; 169 SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; 170 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; 171 SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; 172 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; 173 SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const; 174 SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const; 175 SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const; 176 SDValue LowerANY_EXTEND(SDValue Op, SelectionDAG &DAG) const; 177 SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const; 178 SDValue LowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const; 179 SDValue LowerLoad(SDValue Op, SelectionDAG &DAG) const; 180 SDValue LowerStore(SDValue Op, SelectionDAG &DAG) const; 181 SDValue LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) const; 182 SDValue LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const; 183 SDValue LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const; 184 185 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; 186 SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const; 187 SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) const; 188 SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const; 189 SDValue LowerEH_LABEL(SDValue Op, SelectionDAG &DAG) const; 190 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const; 191 SDValue 192 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 193 const SmallVectorImpl<ISD::InputArg> &Ins, 194 const SDLoc &dl, SelectionDAG &DAG, 195 SmallVectorImpl<SDValue> &InVals) const override; 196 SDValue LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const; 197 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; 198 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; 199 SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 200 SelectionDAG &DAG) const; 201 SDValue LowerToTLSInitialExecModel(GlobalAddressSDNode *GA, 202 SelectionDAG &DAG) const; 203 SDValue LowerToTLSLocalExecModel(GlobalAddressSDNode *GA, 204 SelectionDAG &DAG) const; 205 SDValue GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain, 206 GlobalAddressSDNode *GA, SDValue InFlag, EVT PtrVT, 207 unsigned ReturnReg, unsigned char OperandFlags) const; 208 SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const; 209 210 SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, 211 SmallVectorImpl<SDValue> &InVals) const override; 212 SDValue LowerCallResult(SDValue Chain, SDValue InFlag, 213 CallingConv::ID CallConv, bool isVarArg, 214 const SmallVectorImpl<ISD::InputArg> &Ins, 215 const SDLoc &dl, SelectionDAG &DAG, 216 SmallVectorImpl<SDValue> &InVals, 217 const SmallVectorImpl<SDValue> &OutVals, 218 SDValue Callee) const; 219 220 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; 221 SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const; 222 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; 223 SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const; 224 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; 225 226 bool CanLowerReturn(CallingConv::ID CallConv, 227 MachineFunction &MF, bool isVarArg, 228 const SmallVectorImpl<ISD::OutputArg> &Outs, 229 LLVMContext &Context) const override; 230 231 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 232 const SmallVectorImpl<ISD::OutputArg> &Outs, 233 const SmallVectorImpl<SDValue> &OutVals, 234 const SDLoc &dl, SelectionDAG &DAG) const override; 235 236 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; 237 238 bool mayBeEmittedAsTailCall(const CallInst *CI) const override; 239 240 Register getRegisterByName(const char* RegName, LLT VT, 241 const MachineFunction &MF) const override; 242 243 /// If a physical register, this returns the register that receives the 244 /// exception address on entry to an EH pad. 245 Register 246 getExceptionPointerRegister(const Constant *PersonalityFn) const override { 247 return Hexagon::R0; 248 } 249 250 /// If a physical register, this returns the register that receives the 251 /// exception typeid on entry to a landing pad. 252 Register 253 getExceptionSelectorRegister(const Constant *PersonalityFn) const override { 254 return Hexagon::R1; 255 } 256 257 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; 258 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const; 259 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; 260 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; 261 262 EVT getSetCCResultType(const DataLayout &, LLVMContext &C, 263 EVT VT) const override { 264 if (!VT.isVector()) 265 return MVT::i1; 266 else 267 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 268 } 269 270 bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, 271 SDValue &Base, SDValue &Offset, 272 ISD::MemIndexedMode &AM, 273 SelectionDAG &DAG) const override; 274 275 ConstraintType getConstraintType(StringRef Constraint) const override; 276 277 std::pair<unsigned, const TargetRegisterClass *> 278 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 279 StringRef Constraint, MVT VT) const override; 280 281 unsigned 282 getInlineAsmMemConstraint(StringRef ConstraintCode) const override { 283 if (ConstraintCode == "o") 284 return InlineAsm::Constraint_o; 285 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 286 } 287 288 // Intrinsics 289 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; 290 SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const; 291 /// isLegalAddressingMode - Return true if the addressing mode represented 292 /// by AM is legal for this target, for a load/store of the specified type. 293 /// The type may be VoidTy, in which case only return true if the addressing 294 /// mode is legal for a load/store of any legal type. 295 /// TODO: Handle pre/postinc as well. 296 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, 297 Type *Ty, unsigned AS, 298 Instruction *I = nullptr) const override; 299 /// Return true if folding a constant offset with the given GlobalAddress 300 /// is legal. It is frequently not legal in PIC relocation models. 301 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; 302 303 bool isFPImmLegal(const APFloat &Imm, EVT VT, 304 bool ForCodeSize) const override; 305 306 /// isLegalICmpImmediate - Return true if the specified immediate is legal 307 /// icmp immediate, that is the target has icmp instructions which can 308 /// compare a register against the immediate without having to materialize 309 /// the immediate into a register. 310 bool isLegalICmpImmediate(int64_t Imm) const override; 311 312 EVT getOptimalMemOpType(const MemOp &Op, 313 const AttributeList &FuncAttributes) const override; 314 315 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, 316 unsigned AddrSpace, Align Alignment, 317 MachineMemOperand::Flags Flags, 318 bool *Fast) const override; 319 320 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, 321 unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) 322 const override; 323 324 /// Returns relocation base for the given PIC jumptable. 325 SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) 326 const override; 327 328 bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, 329 EVT NewVT) const override; 330 331 // Handling of atomic RMW instructions. 332 Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 333 AtomicOrdering Ord) const override; 334 Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val, 335 Value *Addr, AtomicOrdering Ord) const override; 336 AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override; 337 bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override; 338 AtomicExpansionKind 339 shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override; 340 341 AtomicExpansionKind 342 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override { 343 return AtomicExpansionKind::LLSC; 344 } 345 346 private: 347 void initializeHVXLowering(); 348 unsigned getPreferredHvxVectorAction(MVT VecTy) const; 349 350 void validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl, 351 unsigned NeedAlign) const; 352 353 std::pair<SDValue,int> getBaseAndOffset(SDValue Addr) const; 354 355 bool getBuildVectorConstInts(ArrayRef<SDValue> Values, MVT VecTy, 356 SelectionDAG &DAG, 357 MutableArrayRef<ConstantInt*> Consts) const; 358 SDValue buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy, 359 SelectionDAG &DAG) const; 360 SDValue buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy, 361 SelectionDAG &DAG) const; 362 SDValue extractVector(SDValue VecV, SDValue IdxV, const SDLoc &dl, 363 MVT ValTy, MVT ResTy, SelectionDAG &DAG) const; 364 SDValue insertVector(SDValue VecV, SDValue ValV, SDValue IdxV, 365 const SDLoc &dl, MVT ValTy, SelectionDAG &DAG) const; 366 SDValue expandPredicate(SDValue Vec32, const SDLoc &dl, 367 SelectionDAG &DAG) const; 368 SDValue contractPredicate(SDValue Vec64, const SDLoc &dl, 369 SelectionDAG &DAG) const; 370 SDValue getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) const; 371 SDValue appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG) const; 372 373 bool isUndef(SDValue Op) const { 374 if (Op.isMachineOpcode()) 375 return Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF; 376 return Op.getOpcode() == ISD::UNDEF; 377 } 378 SDValue getInstr(unsigned MachineOpc, const SDLoc &dl, MVT Ty, 379 ArrayRef<SDValue> Ops, SelectionDAG &DAG) const { 380 SDNode *N = DAG.getMachineNode(MachineOpc, dl, Ty, Ops); 381 return SDValue(N, 0); 382 } 383 SDValue getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) const; 384 385 using VectorPair = std::pair<SDValue, SDValue>; 386 using TypePair = std::pair<MVT, MVT>; 387 388 SDValue getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops, 389 const SDLoc &dl, SelectionDAG &DAG) const; 390 391 MVT ty(SDValue Op) const { 392 return Op.getValueType().getSimpleVT(); 393 } 394 TypePair ty(const VectorPair &Ops) const { 395 return { Ops.first.getValueType().getSimpleVT(), 396 Ops.second.getValueType().getSimpleVT() }; 397 } 398 MVT tyScalar(MVT Ty) const { 399 if (!Ty.isVector()) 400 return Ty; 401 return MVT::getIntegerVT(Ty.getSizeInBits()); 402 } 403 MVT tyVector(MVT Ty, MVT ElemTy) const { 404 if (Ty.isVector() && Ty.getVectorElementType() == ElemTy) 405 return Ty; 406 unsigned TyWidth = Ty.getSizeInBits(); 407 unsigned ElemWidth = ElemTy.getSizeInBits(); 408 assert((TyWidth % ElemWidth) == 0); 409 return MVT::getVectorVT(ElemTy, TyWidth/ElemWidth); 410 } 411 412 MVT typeJoin(const TypePair &Tys) const; 413 TypePair typeSplit(MVT Ty) const; 414 MVT typeExtElem(MVT VecTy, unsigned Factor) const; 415 MVT typeTruncElem(MVT VecTy, unsigned Factor) const; 416 417 SDValue opJoin(const VectorPair &Ops, const SDLoc &dl, 418 SelectionDAG &DAG) const; 419 VectorPair opSplit(SDValue Vec, const SDLoc &dl, SelectionDAG &DAG) const; 420 SDValue opCastElem(SDValue Vec, MVT ElemTy, SelectionDAG &DAG) const; 421 422 bool allowsHvxMemoryAccess(MVT VecTy, MachineMemOperand::Flags Flags, 423 bool *Fast) const; 424 bool allowsHvxMisalignedMemoryAccesses(MVT VecTy, 425 MachineMemOperand::Flags Flags, 426 bool *Fast) const; 427 428 bool isHvxSingleTy(MVT Ty) const; 429 bool isHvxPairTy(MVT Ty) const; 430 bool isHvxBoolTy(MVT Ty) const; 431 SDValue convertToByteIndex(SDValue ElemIdx, MVT ElemTy, 432 SelectionDAG &DAG) const; 433 SDValue getIndexInWord32(SDValue Idx, MVT ElemTy, SelectionDAG &DAG) const; 434 SDValue getByteShuffle(const SDLoc &dl, SDValue Op0, SDValue Op1, 435 ArrayRef<int> Mask, SelectionDAG &DAG) const; 436 437 SDValue buildHvxVectorReg(ArrayRef<SDValue> Values, const SDLoc &dl, 438 MVT VecTy, SelectionDAG &DAG) const; 439 SDValue buildHvxVectorPred(ArrayRef<SDValue> Values, const SDLoc &dl, 440 MVT VecTy, SelectionDAG &DAG) const; 441 SDValue createHvxPrefixPred(SDValue PredV, const SDLoc &dl, 442 unsigned BitBytes, bool ZeroFill, 443 SelectionDAG &DAG) const; 444 SDValue extractHvxElementReg(SDValue VecV, SDValue IdxV, const SDLoc &dl, 445 MVT ResTy, SelectionDAG &DAG) const; 446 SDValue extractHvxElementPred(SDValue VecV, SDValue IdxV, const SDLoc &dl, 447 MVT ResTy, SelectionDAG &DAG) const; 448 SDValue insertHvxElementReg(SDValue VecV, SDValue IdxV, SDValue ValV, 449 const SDLoc &dl, SelectionDAG &DAG) const; 450 SDValue insertHvxElementPred(SDValue VecV, SDValue IdxV, SDValue ValV, 451 const SDLoc &dl, SelectionDAG &DAG) const; 452 SDValue extractHvxSubvectorReg(SDValue VecV, SDValue IdxV, const SDLoc &dl, 453 MVT ResTy, SelectionDAG &DAG) const; 454 SDValue extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, const SDLoc &dl, 455 MVT ResTy, SelectionDAG &DAG) const; 456 SDValue insertHvxSubvectorReg(SDValue VecV, SDValue SubV, SDValue IdxV, 457 const SDLoc &dl, SelectionDAG &DAG) const; 458 SDValue insertHvxSubvectorPred(SDValue VecV, SDValue SubV, SDValue IdxV, 459 const SDLoc &dl, SelectionDAG &DAG) const; 460 SDValue extendHvxVectorPred(SDValue VecV, const SDLoc &dl, MVT ResTy, 461 bool ZeroExt, SelectionDAG &DAG) const; 462 SDValue compressHvxPred(SDValue VecQ, const SDLoc &dl, MVT ResTy, 463 SelectionDAG &DAG) const; 464 465 SDValue LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) const; 466 SDValue LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) const; 467 SDValue LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) const; 468 SDValue LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) const; 469 SDValue LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) const; 470 SDValue LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) const; 471 SDValue LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const; 472 SDValue LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const; 473 SDValue LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const; 474 SDValue LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const; 475 SDValue LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const; 476 SDValue LowerHvxMul(SDValue Op, SelectionDAG &DAG) const; 477 SDValue LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const; 478 SDValue LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const; 479 SDValue LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const; 480 SDValue LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const; 481 SDValue LowerHvxShift(SDValue Op, SelectionDAG &DAG) const; 482 SDValue LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const; 483 SDValue LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const; 484 485 SDValue SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const; 486 SDValue SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const; 487 SDValue WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const; 488 SDValue WidenHvxStore(SDValue Op, SelectionDAG &DAG) const; 489 SDValue WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const; 490 SDValue WidenHvxExtend(SDValue Op, SelectionDAG &DAG) const; 491 SDValue WidenHvxTruncate(SDValue Op, SelectionDAG &DAG) const; 492 493 std::pair<const TargetRegisterClass*, uint8_t> 494 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) 495 const override; 496 497 bool shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const; 498 bool isHvxOperation(SDNode *N, SelectionDAG &DAG) const; 499 SDValue LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const; 500 void LowerHvxOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results, 501 SelectionDAG &DAG) const; 502 void ReplaceHvxNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results, 503 SelectionDAG &DAG) const; 504 SDValue PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; 505 }; 506 507 } // end namespace llvm 508 509 #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H 510