1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that Hexagon uses to lower LLVM code 10 // into a selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "HexagonISelLowering.h" 15 #include "Hexagon.h" 16 #include "HexagonMachineFunctionInfo.h" 17 #include "HexagonRegisterInfo.h" 18 #include "HexagonSubtarget.h" 19 #include "HexagonTargetMachine.h" 20 #include "HexagonTargetObjectFile.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/TargetCallingConv.h" 33 #include "llvm/CodeGen/ValueTypes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <limits> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "hexagon-lowering" 66 67 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables", 68 cl::init(true), cl::Hidden, 69 cl::desc("Control jump table emission on Hexagon target")); 70 71 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched", 72 cl::Hidden, cl::ZeroOrMore, cl::init(false), 73 cl::desc("Enable Hexagon SDNode scheduling")); 74 75 static cl::opt<bool> EnableFastMath("ffast-math", 76 cl::Hidden, cl::ZeroOrMore, cl::init(false), 77 cl::desc("Enable Fast Math processing")); 78 79 static cl::opt<int> MinimumJumpTables("minimum-jump-tables", 80 cl::Hidden, cl::ZeroOrMore, cl::init(5), 81 cl::desc("Set minimum jump tables")); 82 83 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy", 84 cl::Hidden, cl::ZeroOrMore, cl::init(6), 85 cl::desc("Max #stores to inline memcpy")); 86 87 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", 88 cl::Hidden, cl::ZeroOrMore, cl::init(4), 89 cl::desc("Max #stores to inline memcpy")); 90 91 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove", 92 cl::Hidden, cl::ZeroOrMore, cl::init(6), 93 cl::desc("Max #stores to inline memmove")); 94 95 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", 96 cl::Hidden, cl::ZeroOrMore, cl::init(4), 97 cl::desc("Max #stores to inline memmove")); 98 99 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset", 100 cl::Hidden, cl::ZeroOrMore, cl::init(8), 101 cl::desc("Max #stores to inline memset")); 102 103 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", 104 cl::Hidden, cl::ZeroOrMore, cl::init(4), 105 cl::desc("Max #stores to inline memset")); 106 107 static cl::opt<bool> AlignLoads("hexagon-align-loads", 108 cl::Hidden, cl::init(false), 109 cl::desc("Rewrite unaligned loads as a pair of aligned loads")); 110 111 112 namespace { 113 114 class HexagonCCState : public CCState { 115 unsigned NumNamedVarArgParams = 0; 116 117 public: 118 HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF, 119 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, 120 unsigned NumNamedArgs) 121 : CCState(CC, IsVarArg, MF, locs, C), 122 NumNamedVarArgParams(NumNamedArgs) {} 123 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; } 124 }; 125 126 } // end anonymous namespace 127 128 129 // Implement calling convention for Hexagon. 130 131 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 132 CCValAssign::LocInfo &LocInfo, 133 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 134 static const MCPhysReg ArgRegs[] = { 135 Hexagon::R0, Hexagon::R1, Hexagon::R2, 136 Hexagon::R3, Hexagon::R4, Hexagon::R5 137 }; 138 const unsigned NumArgRegs = array_lengthof(ArgRegs); 139 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 140 141 // RegNum is an index into ArgRegs: skip a register if RegNum is odd. 142 if (RegNum != NumArgRegs && RegNum % 2 == 1) 143 State.AllocateReg(ArgRegs[RegNum]); 144 145 // Always return false here, as this function only makes sure that the first 146 // unallocated register has an even register number and does not actually 147 // allocate a register for the current argument. 148 return false; 149 } 150 151 #include "HexagonGenCallingConv.inc" 152 153 154 SDValue 155 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) 156 const { 157 return SDValue(); 158 } 159 160 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 161 /// by "Src" to address "Dst" of size "Size". Alignment information is 162 /// specified by the specific parameter attribute. The copy will be passed as 163 /// a byval function parameter. Sometimes what we are copying is the end of a 164 /// larger object, the part that does not fit in registers. 165 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 166 SDValue Chain, ISD::ArgFlagsTy Flags, 167 SelectionDAG &DAG, const SDLoc &dl) { 168 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 169 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 170 /*isVolatile=*/false, /*AlwaysInline=*/false, 171 /*isTailCall=*/false, 172 MachinePointerInfo(), MachinePointerInfo()); 173 } 174 175 bool 176 HexagonTargetLowering::CanLowerReturn( 177 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 178 const SmallVectorImpl<ISD::OutputArg> &Outs, 179 LLVMContext &Context) const { 180 SmallVector<CCValAssign, 16> RVLocs; 181 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 182 183 if (MF.getSubtarget<HexagonSubtarget>().useHVXOps()) 184 return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX); 185 return CCInfo.CheckReturn(Outs, RetCC_Hexagon); 186 } 187 188 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is 189 // passed by value, the function prototype is modified to return void and 190 // the value is stored in memory pointed by a pointer passed by caller. 191 SDValue 192 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 193 bool IsVarArg, 194 const SmallVectorImpl<ISD::OutputArg> &Outs, 195 const SmallVectorImpl<SDValue> &OutVals, 196 const SDLoc &dl, SelectionDAG &DAG) const { 197 // CCValAssign - represent the assignment of the return value to locations. 198 SmallVector<CCValAssign, 16> RVLocs; 199 200 // CCState - Info about the registers and stack slot. 201 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 202 *DAG.getContext()); 203 204 // Analyze return values of ISD::RET 205 if (Subtarget.useHVXOps()) 206 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX); 207 else 208 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); 209 210 SDValue Flag; 211 SmallVector<SDValue, 4> RetOps(1, Chain); 212 213 // Copy the result values into the output registers. 214 for (unsigned i = 0; i != RVLocs.size(); ++i) { 215 CCValAssign &VA = RVLocs[i]; 216 217 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 218 219 // Guarantee that all emitted copies are stuck together with flags. 220 Flag = Chain.getValue(1); 221 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 222 } 223 224 RetOps[0] = Chain; // Update chain. 225 226 // Add the flag if we have it. 227 if (Flag.getNode()) 228 RetOps.push_back(Flag); 229 230 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps); 231 } 232 233 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 234 // If either no tail call or told not to tail call at all, don't. 235 auto Attr = 236 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); 237 if (!CI->isTailCall() || Attr.getValueAsString() == "true") 238 return false; 239 240 return true; 241 } 242 243 unsigned HexagonTargetLowering::getRegisterByName(const char* RegName, EVT VT, 244 SelectionDAG &DAG) const { 245 // Just support r19, the linux kernel uses it. 246 unsigned Reg = StringSwitch<unsigned>(RegName) 247 .Case("r19", Hexagon::R19) 248 .Default(0); 249 if (Reg) 250 return Reg; 251 252 report_fatal_error("Invalid register name global variable"); 253 } 254 255 /// LowerCallResult - Lower the result values of an ISD::CALL into the 256 /// appropriate copies out of appropriate physical registers. This assumes that 257 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call 258 /// being lowered. Returns a SDNode with the same number of values as the 259 /// ISD::CALL. 260 SDValue HexagonTargetLowering::LowerCallResult( 261 SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg, 262 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 263 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 264 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const { 265 // Assign locations to each value returned by this call. 266 SmallVector<CCValAssign, 16> RVLocs; 267 268 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 269 *DAG.getContext()); 270 271 if (Subtarget.useHVXOps()) 272 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX); 273 else 274 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); 275 276 // Copy all of the result registers out of their specified physreg. 277 for (unsigned i = 0; i != RVLocs.size(); ++i) { 278 SDValue RetVal; 279 if (RVLocs[i].getValVT() == MVT::i1) { 280 // Return values of type MVT::i1 require special handling. The reason 281 // is that MVT::i1 is associated with the PredRegs register class, but 282 // values of that type are still returned in R0. Generate an explicit 283 // copy into a predicate register from R0, and treat the value of the 284 // predicate register as the call result. 285 auto &MRI = DAG.getMachineFunction().getRegInfo(); 286 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 287 MVT::i32, Glue); 288 // FR0 = (Value, Chain, Glue) 289 unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); 290 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR, 291 FR0.getValue(0), FR0.getValue(2)); 292 // TPR = (Chain, Glue) 293 // Don't glue this CopyFromReg, because it copies from a virtual 294 // register. If it is glued to the call, InstrEmitter will add it 295 // as an implicit def to the call (EmitMachineNode). 296 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1); 297 Glue = TPR.getValue(1); 298 Chain = TPR.getValue(0); 299 } else { 300 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 301 RVLocs[i].getValVT(), Glue); 302 Glue = RetVal.getValue(2); 303 Chain = RetVal.getValue(1); 304 } 305 InVals.push_back(RetVal.getValue(0)); 306 } 307 308 return Chain; 309 } 310 311 /// LowerCall - Functions arguments are copied from virtual regs to 312 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 313 SDValue 314 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 315 SmallVectorImpl<SDValue> &InVals) const { 316 SelectionDAG &DAG = CLI.DAG; 317 SDLoc &dl = CLI.DL; 318 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 319 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 320 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 321 SDValue Chain = CLI.Chain; 322 SDValue Callee = CLI.Callee; 323 CallingConv::ID CallConv = CLI.CallConv; 324 bool IsVarArg = CLI.IsVarArg; 325 bool DoesNotReturn = CLI.DoesNotReturn; 326 327 bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 328 MachineFunction &MF = DAG.getMachineFunction(); 329 MachineFrameInfo &MFI = MF.getFrameInfo(); 330 auto PtrVT = getPointerTy(MF.getDataLayout()); 331 332 unsigned NumParams = CLI.CS.getInstruction() 333 ? CLI.CS.getFunctionType()->getNumParams() 334 : 0; 335 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) 336 Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32); 337 338 // Analyze operands of the call, assigning locations to each operand. 339 SmallVector<CCValAssign, 16> ArgLocs; 340 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(), 341 NumParams); 342 343 if (Subtarget.useHVXOps()) 344 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX); 345 else 346 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); 347 348 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls"); 349 if (Attr.getValueAsString() == "true") 350 CLI.IsTailCall = false; 351 352 if (CLI.IsTailCall) { 353 bool StructAttrFlag = MF.getFunction().hasStructRetAttr(); 354 CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, 355 IsVarArg, IsStructRet, StructAttrFlag, Outs, 356 OutVals, Ins, DAG); 357 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 358 CCValAssign &VA = ArgLocs[i]; 359 if (VA.isMemLoc()) { 360 CLI.IsTailCall = false; 361 break; 362 } 363 } 364 LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n" 365 : "Argument must be passed on stack. " 366 "Not eligible for Tail Call\n")); 367 } 368 // Get a count of how many bytes are to be pushed on the stack. 369 unsigned NumBytes = CCInfo.getNextStackOffset(); 370 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; 371 SmallVector<SDValue, 8> MemOpChains; 372 373 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 374 SDValue StackPtr = 375 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT); 376 377 bool NeedsArgAlign = false; 378 unsigned LargestAlignSeen = 0; 379 // Walk the register/memloc assignments, inserting copies/loads. 380 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 381 CCValAssign &VA = ArgLocs[i]; 382 SDValue Arg = OutVals[i]; 383 ISD::ArgFlagsTy Flags = Outs[i].Flags; 384 // Record if we need > 8 byte alignment on an argument. 385 bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT()); 386 NeedsArgAlign |= ArgAlign; 387 388 // Promote the value if needed. 389 switch (VA.getLocInfo()) { 390 default: 391 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt. 392 llvm_unreachable("Unknown loc info!"); 393 case CCValAssign::Full: 394 break; 395 case CCValAssign::BCvt: 396 Arg = DAG.getBitcast(VA.getLocVT(), Arg); 397 break; 398 case CCValAssign::SExt: 399 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 400 break; 401 case CCValAssign::ZExt: 402 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 403 break; 404 case CCValAssign::AExt: 405 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 406 break; 407 } 408 409 if (VA.isMemLoc()) { 410 unsigned LocMemOffset = VA.getLocMemOffset(); 411 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl, 412 StackPtr.getValueType()); 413 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr); 414 if (ArgAlign) 415 LargestAlignSeen = std::max(LargestAlignSeen, 416 VA.getLocVT().getStoreSizeInBits() >> 3); 417 if (Flags.isByVal()) { 418 // The argument is a struct passed by value. According to LLVM, "Arg" 419 // is a pointer. 420 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain, 421 Flags, DAG, dl)); 422 } else { 423 MachinePointerInfo LocPI = MachinePointerInfo::getStack( 424 DAG.getMachineFunction(), LocMemOffset); 425 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI); 426 MemOpChains.push_back(S); 427 } 428 continue; 429 } 430 431 // Arguments that can be passed on register must be kept at RegsToPass 432 // vector. 433 if (VA.isRegLoc()) 434 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 435 } 436 437 if (NeedsArgAlign && Subtarget.hasV60Ops()) { 438 LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n"); 439 unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); 440 LargestAlignSeen = std::max(LargestAlignSeen, VecAlign); 441 MFI.ensureMaxAlignment(LargestAlignSeen); 442 } 443 // Transform all store nodes into one single node because all store 444 // nodes are independent of each other. 445 if (!MemOpChains.empty()) 446 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 447 448 SDValue Glue; 449 if (!CLI.IsTailCall) { 450 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 451 Glue = Chain.getValue(1); 452 } 453 454 // Build a sequence of copy-to-reg nodes chained together with token 455 // chain and flag operands which copy the outgoing args into registers. 456 // The Glue is necessary since all emitted instructions must be 457 // stuck together. 458 if (!CLI.IsTailCall) { 459 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 460 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 461 RegsToPass[i].second, Glue); 462 Glue = Chain.getValue(1); 463 } 464 } else { 465 // For tail calls lower the arguments to the 'real' stack slot. 466 // 467 // Force all the incoming stack arguments to be loaded from the stack 468 // before any new outgoing arguments are stored to the stack, because the 469 // outgoing stack slots may alias the incoming argument stack slots, and 470 // the alias isn't otherwise explicit. This is slightly more conservative 471 // than necessary, because it means that each store effectively depends 472 // on every argument instead of just those arguments it would clobber. 473 // 474 // Do not flag preceding copytoreg stuff together with the following stuff. 475 Glue = SDValue(); 476 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 477 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 478 RegsToPass[i].second, Glue); 479 Glue = Chain.getValue(1); 480 } 481 Glue = SDValue(); 482 } 483 484 bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls(); 485 unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0; 486 487 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 488 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 489 // node so that legalize doesn't hack it. 490 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 491 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags); 492 } else if (ExternalSymbolSDNode *S = 493 dyn_cast<ExternalSymbolSDNode>(Callee)) { 494 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags); 495 } 496 497 // Returns a chain & a flag for retval copy to use. 498 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 499 SmallVector<SDValue, 8> Ops; 500 Ops.push_back(Chain); 501 Ops.push_back(Callee); 502 503 // Add argument registers to the end of the list so that they are 504 // known live into the call. 505 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 506 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 507 RegsToPass[i].second.getValueType())); 508 } 509 510 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv); 511 assert(Mask && "Missing call preserved mask for calling convention"); 512 Ops.push_back(DAG.getRegisterMask(Mask)); 513 514 if (Glue.getNode()) 515 Ops.push_back(Glue); 516 517 if (CLI.IsTailCall) { 518 MFI.setHasTailCall(); 519 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops); 520 } 521 522 // Set this here because we need to know this for "hasFP" in frame lowering. 523 // The target-independent code calls getFrameRegister before setting it, and 524 // getFrameRegister uses hasFP to determine whether the function has FP. 525 MFI.setHasCalls(true); 526 527 unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL; 528 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops); 529 Glue = Chain.getValue(1); 530 531 // Create the CALLSEQ_END node. 532 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 533 DAG.getIntPtrConstant(0, dl, true), Glue, dl); 534 Glue = Chain.getValue(1); 535 536 // Handle result values, copying them out of physregs into vregs that we 537 // return. 538 return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG, 539 InVals, OutVals, Callee); 540 } 541 542 /// Returns true by value, base pointer and offset pointer and addressing 543 /// mode by reference if this node can be combined with a load / store to 544 /// form a post-indexed load / store. 545 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 546 SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, 547 SelectionDAG &DAG) const { 548 LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N); 549 if (!LSN) 550 return false; 551 EVT VT = LSN->getMemoryVT(); 552 if (!VT.isSimple()) 553 return false; 554 bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || 555 VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 || 556 VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 || 557 VT == MVT::v4i16 || VT == MVT::v8i8 || 558 Subtarget.isHVXVectorType(VT.getSimpleVT()); 559 if (!IsLegalType) 560 return false; 561 562 if (Op->getOpcode() != ISD::ADD) 563 return false; 564 Base = Op->getOperand(0); 565 Offset = Op->getOperand(1); 566 if (!isa<ConstantSDNode>(Offset.getNode())) 567 return false; 568 AM = ISD::POST_INC; 569 570 int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 571 return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V); 572 } 573 574 SDValue 575 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 576 MachineFunction &MF = DAG.getMachineFunction(); 577 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 578 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 579 unsigned LR = HRI.getRARegister(); 580 581 if ((Op.getOpcode() != ISD::INLINEASM && 582 Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR()) 583 return Op; 584 585 unsigned NumOps = Op.getNumOperands(); 586 if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue) 587 --NumOps; // Ignore the flag operand. 588 589 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 590 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 591 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 592 ++i; // Skip the ID value. 593 594 switch (InlineAsm::getKind(Flags)) { 595 default: 596 llvm_unreachable("Bad flags!"); 597 case InlineAsm::Kind_RegUse: 598 case InlineAsm::Kind_Imm: 599 case InlineAsm::Kind_Mem: 600 i += NumVals; 601 break; 602 case InlineAsm::Kind_Clobber: 603 case InlineAsm::Kind_RegDef: 604 case InlineAsm::Kind_RegDefEarlyClobber: { 605 for (; NumVals; --NumVals, ++i) { 606 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 607 if (Reg != LR) 608 continue; 609 HMFI.setHasClobberLR(true); 610 return Op; 611 } 612 break; 613 } 614 } 615 } 616 617 return Op; 618 } 619 620 // Need to transform ISD::PREFETCH into something that doesn't inherit 621 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and 622 // SDNPMayStore. 623 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op, 624 SelectionDAG &DAG) const { 625 SDValue Chain = Op.getOperand(0); 626 SDValue Addr = Op.getOperand(1); 627 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in, 628 // if the "reg" is fed by an "add". 629 SDLoc DL(Op); 630 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 631 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); 632 } 633 634 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode 635 // is marked as having side-effects, while the register read on Hexagon does 636 // not have any. TableGen refuses to accept the direct pattern from that node 637 // to the A4_tfrcpp. 638 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op, 639 SelectionDAG &DAG) const { 640 SDValue Chain = Op.getOperand(0); 641 SDLoc dl(Op); 642 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 643 return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain); 644 } 645 646 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 647 SelectionDAG &DAG) const { 648 SDValue Chain = Op.getOperand(0); 649 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 650 // Lower the hexagon_prefetch builtin to DCFETCH, as above. 651 if (IntNo == Intrinsic::hexagon_prefetch) { 652 SDValue Addr = Op.getOperand(2); 653 SDLoc DL(Op); 654 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 655 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); 656 } 657 return SDValue(); 658 } 659 660 SDValue 661 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 662 SelectionDAG &DAG) const { 663 SDValue Chain = Op.getOperand(0); 664 SDValue Size = Op.getOperand(1); 665 SDValue Align = Op.getOperand(2); 666 SDLoc dl(Op); 667 668 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align); 669 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC"); 670 671 unsigned A = AlignConst->getSExtValue(); 672 auto &HFI = *Subtarget.getFrameLowering(); 673 // "Zero" means natural stack alignment. 674 if (A == 0) 675 A = HFI.getStackAlignment(); 676 677 LLVM_DEBUG({ 678 dbgs () << __func__ << " Align: " << A << " Size: "; 679 Size.getNode()->dump(&DAG); 680 dbgs() << "\n"; 681 }); 682 683 SDValue AC = DAG.getConstant(A, dl, MVT::i32); 684 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 685 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC); 686 687 DAG.ReplaceAllUsesOfValueWith(Op, AA); 688 return AA; 689 } 690 691 SDValue HexagonTargetLowering::LowerFormalArguments( 692 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 693 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 694 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 695 MachineFunction &MF = DAG.getMachineFunction(); 696 MachineFrameInfo &MFI = MF.getFrameInfo(); 697 MachineRegisterInfo &MRI = MF.getRegInfo(); 698 699 // Assign locations to all of the incoming arguments. 700 SmallVector<CCValAssign, 16> ArgLocs; 701 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(), 702 MF.getFunction().getFunctionType()->getNumParams()); 703 704 if (Subtarget.useHVXOps()) 705 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX); 706 else 707 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); 708 709 // For LLVM, in the case when returning a struct by value (>8byte), 710 // the first argument is a pointer that points to the location on caller's 711 // stack where the return value will be stored. For Hexagon, the location on 712 // caller's stack is passed only when the struct size is smaller than (and 713 // equal to) 8 bytes. If not, no address will be passed into callee and 714 // callee return the result direclty through R0/R1. 715 716 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 717 718 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 719 CCValAssign &VA = ArgLocs[i]; 720 ISD::ArgFlagsTy Flags = Ins[i].Flags; 721 bool ByVal = Flags.isByVal(); 722 723 // Arguments passed in registers: 724 // 1. 32- and 64-bit values and HVX vectors are passed directly, 725 // 2. Large structs are passed via an address, and the address is 726 // passed in a register. 727 if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8) 728 llvm_unreachable("ByValSize must be bigger than 8 bytes"); 729 730 bool InReg = VA.isRegLoc() && 731 (!ByVal || (ByVal && Flags.getByValSize() > 8)); 732 733 if (InReg) { 734 MVT RegVT = VA.getLocVT(); 735 if (VA.getLocInfo() == CCValAssign::BCvt) 736 RegVT = VA.getValVT(); 737 738 const TargetRegisterClass *RC = getRegClassFor(RegVT); 739 unsigned VReg = MRI.createVirtualRegister(RC); 740 SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 741 742 // Treat values of type MVT::i1 specially: they are passed in 743 // registers of type i32, but they need to remain as values of 744 // type i1 for consistency of the argument lowering. 745 if (VA.getValVT() == MVT::i1) { 746 assert(RegVT.getSizeInBits() <= 32); 747 SDValue T = DAG.getNode(ISD::AND, dl, RegVT, 748 Copy, DAG.getConstant(1, dl, RegVT)); 749 Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT), 750 ISD::SETNE); 751 } else { 752 #ifndef NDEBUG 753 unsigned RegSize = RegVT.getSizeInBits(); 754 assert(RegSize == 32 || RegSize == 64 || 755 Subtarget.isHVXVectorType(RegVT)); 756 #endif 757 } 758 InVals.push_back(Copy); 759 MRI.addLiveIn(VA.getLocReg(), VReg); 760 } else { 761 assert(VA.isMemLoc() && "Argument should be passed in memory"); 762 763 // If it's a byval parameter, then we need to compute the 764 // "real" size, not the size of the pointer. 765 unsigned ObjSize = Flags.isByVal() 766 ? Flags.getByValSize() 767 : VA.getLocVT().getStoreSizeInBits() / 8; 768 769 // Create the frame index object for this incoming parameter. 770 int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); 771 int FI = MFI.CreateFixedObject(ObjSize, Offset, true); 772 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 773 774 if (Flags.isByVal()) { 775 // If it's a pass-by-value aggregate, then do not dereference the stack 776 // location. Instead, we should generate a reference to the stack 777 // location. 778 InVals.push_back(FIN); 779 } else { 780 SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 781 MachinePointerInfo::getFixedStack(MF, FI, 0)); 782 InVals.push_back(L); 783 } 784 } 785 } 786 787 788 if (IsVarArg) { 789 // This will point to the next argument passed via stack. 790 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset(); 791 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true); 792 HMFI.setVarArgsFrameIndex(FI); 793 } 794 795 return Chain; 796 } 797 798 SDValue 799 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 800 // VASTART stores the address of the VarArgsFrameIndex slot into the 801 // memory location argument. 802 MachineFunction &MF = DAG.getMachineFunction(); 803 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>(); 804 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); 805 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 806 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1), 807 MachinePointerInfo(SV)); 808 } 809 810 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 811 const SDLoc &dl(Op); 812 SDValue LHS = Op.getOperand(0); 813 SDValue RHS = Op.getOperand(1); 814 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 815 MVT ResTy = ty(Op); 816 MVT OpTy = ty(LHS); 817 818 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) { 819 MVT ElemTy = OpTy.getVectorElementType(); 820 assert(ElemTy.isScalarInteger()); 821 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()), 822 OpTy.getVectorNumElements()); 823 return DAG.getSetCC(dl, ResTy, 824 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy), 825 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC); 826 } 827 828 // Treat all other vector types as legal. 829 if (ResTy.isVector()) 830 return Op; 831 832 // Comparisons of short integers should use sign-extend, not zero-extend, 833 // since we can represent small negative values in the compare instructions. 834 // The LLVM default is to use zero-extend arbitrarily in these cases. 835 auto isSExtFree = [this](SDValue N) { 836 switch (N.getOpcode()) { 837 case ISD::TRUNCATE: { 838 // A sign-extend of a truncate of a sign-extend is free. 839 SDValue Op = N.getOperand(0); 840 if (Op.getOpcode() != ISD::AssertSext) 841 return false; 842 EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT(); 843 unsigned ThisBW = ty(N).getSizeInBits(); 844 unsigned OrigBW = OrigTy.getSizeInBits(); 845 // The type that was sign-extended to get the AssertSext must be 846 // narrower than the type of N (so that N has still the same value 847 // as the original). 848 return ThisBW >= OrigBW; 849 } 850 case ISD::LOAD: 851 // We have sign-extended loads. 852 return true; 853 } 854 return false; 855 }; 856 857 if (OpTy == MVT::i8 || OpTy == MVT::i16) { 858 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS); 859 bool IsNegative = C && C->getAPIntValue().isNegative(); 860 if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS)) 861 return DAG.getSetCC(dl, ResTy, 862 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32), 863 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC); 864 } 865 866 return SDValue(); 867 } 868 869 SDValue 870 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { 871 SDValue PredOp = Op.getOperand(0); 872 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2); 873 EVT OpVT = Op1.getValueType(); 874 SDLoc DL(Op); 875 876 if (OpVT == MVT::v2i16) { 877 SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1); 878 SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2); 879 SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2); 880 SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL); 881 return TR; 882 } 883 884 return SDValue(); 885 } 886 887 static Constant *convert_i1_to_i8(const Constant *ConstVal) { 888 SmallVector<Constant *, 128> NewConst; 889 const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal); 890 if (!CV) 891 return nullptr; 892 893 LLVMContext &Ctx = ConstVal->getContext(); 894 IRBuilder<> IRB(Ctx); 895 unsigned NumVectorElements = CV->getNumOperands(); 896 assert(isPowerOf2_32(NumVectorElements) && 897 "conversion only supported for pow2 VectorSize!"); 898 899 for (unsigned i = 0; i < NumVectorElements / 8; ++i) { 900 uint8_t x = 0; 901 for (unsigned j = 0; j < 8; ++j) { 902 uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue(); 903 x |= y << (7 - j); 904 } 905 assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!"); 906 NewConst.push_back(IRB.getInt8(x)); 907 } 908 return ConstantVector::get(NewConst); 909 } 910 911 SDValue 912 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { 913 EVT ValTy = Op.getValueType(); 914 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op); 915 Constant *CVal = nullptr; 916 bool isVTi1Type = false; 917 if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) { 918 Type *CValTy = ConstVal->getType(); 919 if (CValTy->isVectorTy() && 920 CValTy->getVectorElementType()->isIntegerTy(1)) { 921 CVal = convert_i1_to_i8(ConstVal); 922 isVTi1Type = (CVal != nullptr); 923 } 924 } 925 unsigned Align = CPN->getAlignment(); 926 bool IsPositionIndependent = isPositionIndependent(); 927 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0; 928 929 unsigned Offset = 0; 930 SDValue T; 931 if (CPN->isMachineConstantPoolEntry()) 932 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset, 933 TF); 934 else if (isVTi1Type) 935 T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF); 936 else 937 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF); 938 939 assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF && 940 "Inconsistent target flag encountered"); 941 942 if (IsPositionIndependent) 943 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T); 944 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T); 945 } 946 947 SDValue 948 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 949 EVT VT = Op.getValueType(); 950 int Idx = cast<JumpTableSDNode>(Op)->getIndex(); 951 if (isPositionIndependent()) { 952 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); 953 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T); 954 } 955 956 SDValue T = DAG.getTargetJumpTable(Idx, VT); 957 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T); 958 } 959 960 SDValue 961 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 962 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 963 MachineFunction &MF = DAG.getMachineFunction(); 964 MachineFrameInfo &MFI = MF.getFrameInfo(); 965 MFI.setReturnAddressIsTaken(true); 966 967 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 968 return SDValue(); 969 970 EVT VT = Op.getValueType(); 971 SDLoc dl(Op); 972 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 973 if (Depth) { 974 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 975 SDValue Offset = DAG.getConstant(4, dl, MVT::i32); 976 return DAG.getLoad(VT, dl, DAG.getEntryNode(), 977 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), 978 MachinePointerInfo()); 979 } 980 981 // Return LR, which contains the return address. Mark it an implicit live-in. 982 unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32)); 983 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); 984 } 985 986 SDValue 987 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 988 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 989 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 990 MFI.setFrameAddressIsTaken(true); 991 992 EVT VT = Op.getValueType(); 993 SDLoc dl(Op); 994 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 995 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 996 HRI.getFrameRegister(), VT); 997 while (Depth--) 998 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 999 MachinePointerInfo()); 1000 return FrameAddr; 1001 } 1002 1003 SDValue 1004 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { 1005 SDLoc dl(Op); 1006 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); 1007 } 1008 1009 SDValue 1010 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { 1011 SDLoc dl(Op); 1012 auto *GAN = cast<GlobalAddressSDNode>(Op); 1013 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1014 auto *GV = GAN->getGlobal(); 1015 int64_t Offset = GAN->getOffset(); 1016 1017 auto &HLOF = *HTM.getObjFileLowering(); 1018 Reloc::Model RM = HTM.getRelocationModel(); 1019 1020 if (RM == Reloc::Static) { 1021 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); 1022 const GlobalObject *GO = GV->getBaseObject(); 1023 if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM)) 1024 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA); 1025 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA); 1026 } 1027 1028 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 1029 if (UsePCRel) { 1030 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset, 1031 HexagonII::MO_PCREL); 1032 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA); 1033 } 1034 1035 // Use GOT index. 1036 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 1037 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT); 1038 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32); 1039 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off); 1040 } 1041 1042 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT. 1043 SDValue 1044 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { 1045 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1046 SDLoc dl(Op); 1047 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1048 1049 Reloc::Model RM = HTM.getRelocationModel(); 1050 if (RM == Reloc::Static) { 1051 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT); 1052 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A); 1053 } 1054 1055 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL); 1056 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A); 1057 } 1058 1059 SDValue 1060 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) 1061 const { 1062 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1063 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT, 1064 HexagonII::MO_PCREL); 1065 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym); 1066 } 1067 1068 SDValue 1069 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain, 1070 GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg, 1071 unsigned char OperandFlags) const { 1072 MachineFunction &MF = DAG.getMachineFunction(); 1073 MachineFrameInfo &MFI = MF.getFrameInfo(); 1074 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1075 SDLoc dl(GA); 1076 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, 1077 GA->getValueType(0), 1078 GA->getOffset(), 1079 OperandFlags); 1080 // Create Operands for the call.The Operands should have the following: 1081 // 1. Chain SDValue 1082 // 2. Callee which in this case is the Global address value. 1083 // 3. Registers live into the call.In this case its R0, as we 1084 // have just one argument to be passed. 1085 // 4. Glue. 1086 // Note: The order is important. 1087 1088 const auto &HRI = *Subtarget.getRegisterInfo(); 1089 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C); 1090 assert(Mask && "Missing call preserved mask for calling convention"); 1091 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT), 1092 DAG.getRegisterMask(Mask), Glue }; 1093 Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops); 1094 1095 // Inform MFI that function has calls. 1096 MFI.setAdjustsStack(true); 1097 1098 Glue = Chain.getValue(1); 1099 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue); 1100 } 1101 1102 // 1103 // Lower using the intial executable model for TLS addresses 1104 // 1105 SDValue 1106 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA, 1107 SelectionDAG &DAG) const { 1108 SDLoc dl(GA); 1109 int64_t Offset = GA->getOffset(); 1110 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1111 1112 // Get the thread pointer. 1113 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); 1114 1115 bool IsPositionIndependent = isPositionIndependent(); 1116 unsigned char TF = 1117 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE; 1118 1119 // First generate the TLS symbol address 1120 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, 1121 Offset, TF); 1122 1123 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1124 1125 if (IsPositionIndependent) { 1126 // Generate the GOT pointer in case of position independent code 1127 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG); 1128 1129 // Add the TLS Symbol address to GOT pointer.This gives 1130 // GOT relative relocation for the symbol. 1131 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); 1132 } 1133 1134 // Load the offset value for TLS symbol.This offset is relative to 1135 // thread pointer. 1136 SDValue LoadOffset = 1137 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo()); 1138 1139 // Address of the thread local variable is the add of thread 1140 // pointer and the offset of the variable. 1141 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset); 1142 } 1143 1144 // 1145 // Lower using the local executable model for TLS addresses 1146 // 1147 SDValue 1148 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA, 1149 SelectionDAG &DAG) const { 1150 SDLoc dl(GA); 1151 int64_t Offset = GA->getOffset(); 1152 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1153 1154 // Get the thread pointer. 1155 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); 1156 // Generate the TLS symbol address 1157 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, 1158 HexagonII::MO_TPREL); 1159 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1160 1161 // Address of the thread local variable is the add of thread 1162 // pointer and the offset of the variable. 1163 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym); 1164 } 1165 1166 // 1167 // Lower using the general dynamic model for TLS addresses 1168 // 1169 SDValue 1170 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 1171 SelectionDAG &DAG) const { 1172 SDLoc dl(GA); 1173 int64_t Offset = GA->getOffset(); 1174 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1175 1176 // First generate the TLS symbol address 1177 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, 1178 HexagonII::MO_GDGOT); 1179 1180 // Then, generate the GOT pointer 1181 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG); 1182 1183 // Add the TLS symbol and the GOT pointer 1184 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1185 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); 1186 1187 // Copy over the argument to R0 1188 SDValue InFlag; 1189 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag); 1190 InFlag = Chain.getValue(1); 1191 1192 unsigned Flags = 1193 static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls() 1194 ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended 1195 : HexagonII::MO_GDPLT; 1196 1197 return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT, 1198 Hexagon::R0, Flags); 1199 } 1200 1201 // 1202 // Lower TLS addresses. 1203 // 1204 // For now for dynamic models, we only support the general dynamic model. 1205 // 1206 SDValue 1207 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1208 SelectionDAG &DAG) const { 1209 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 1210 1211 switch (HTM.getTLSModel(GA->getGlobal())) { 1212 case TLSModel::GeneralDynamic: 1213 case TLSModel::LocalDynamic: 1214 return LowerToTLSGeneralDynamicModel(GA, DAG); 1215 case TLSModel::InitialExec: 1216 return LowerToTLSInitialExecModel(GA, DAG); 1217 case TLSModel::LocalExec: 1218 return LowerToTLSLocalExecModel(GA, DAG); 1219 } 1220 llvm_unreachable("Bogus TLS model"); 1221 } 1222 1223 //===----------------------------------------------------------------------===// 1224 // TargetLowering Implementation 1225 //===----------------------------------------------------------------------===// 1226 1227 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM, 1228 const HexagonSubtarget &ST) 1229 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)), 1230 Subtarget(ST) { 1231 auto &HRI = *Subtarget.getRegisterInfo(); 1232 1233 setPrefLoopAlignment(4); 1234 setPrefFunctionAlignment(4); 1235 setMinFunctionAlignment(2); 1236 setStackPointerRegisterToSaveRestore(HRI.getStackRegister()); 1237 setBooleanContents(TargetLoweringBase::UndefinedBooleanContent); 1238 setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent); 1239 1240 setMaxAtomicSizeInBitsSupported(64); 1241 setMinCmpXchgSizeInBits(32); 1242 1243 if (EnableHexSDNodeSched) 1244 setSchedulingPreference(Sched::VLIW); 1245 else 1246 setSchedulingPreference(Sched::Source); 1247 1248 // Limits for inline expansion of memcpy/memmove 1249 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL; 1250 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL; 1251 MaxStoresPerMemmove = MaxStoresPerMemmoveCL; 1252 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL; 1253 MaxStoresPerMemset = MaxStoresPerMemsetCL; 1254 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL; 1255 1256 // 1257 // Set up register classes. 1258 // 1259 1260 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); 1261 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa 1262 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa 1263 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba 1264 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); 1265 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass); 1266 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass); 1267 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); 1268 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass); 1269 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass); 1270 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass); 1271 1272 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); 1273 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); 1274 1275 // 1276 // Handling of scalar operations. 1277 // 1278 // All operations default to "legal", except: 1279 // - indexed loads and stores (pre-/post-incremented), 1280 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS, 1281 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN, 1282 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP, 1283 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, 1284 // which default to "expand" for at least one type. 1285 1286 // Misc operations. 1287 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 1288 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 1289 setOperationAction(ISD::TRAP, MVT::Other, Legal); 1290 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 1291 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 1292 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 1293 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 1294 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 1295 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 1296 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 1297 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1298 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 1299 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 1300 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); 1301 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 1302 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 1303 1304 // Custom legalize GlobalAddress nodes into CONST32. 1305 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 1306 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); 1307 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 1308 1309 // Hexagon needs to optimize cases with negative constants. 1310 setOperationAction(ISD::SETCC, MVT::i8, Custom); 1311 setOperationAction(ISD::SETCC, MVT::i16, Custom); 1312 setOperationAction(ISD::SETCC, MVT::v4i8, Custom); 1313 setOperationAction(ISD::SETCC, MVT::v2i16, Custom); 1314 1315 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1316 setOperationAction(ISD::VASTART, MVT::Other, Custom); 1317 setOperationAction(ISD::VAEND, MVT::Other, Expand); 1318 setOperationAction(ISD::VAARG, MVT::Other, Expand); 1319 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 1320 1321 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 1322 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 1323 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 1324 1325 if (EmitJumpTables) 1326 setMinimumJumpTableEntries(MinimumJumpTables); 1327 else 1328 setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max()); 1329 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1330 1331 setOperationAction(ISD::ABS, MVT::i32, Legal); 1332 setOperationAction(ISD::ABS, MVT::i64, Legal); 1333 1334 // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit, 1335 // but they only operate on i64. 1336 for (MVT VT : MVT::integer_valuetypes()) { 1337 setOperationAction(ISD::UADDO, VT, Custom); 1338 setOperationAction(ISD::USUBO, VT, Custom); 1339 setOperationAction(ISD::SADDO, VT, Expand); 1340 setOperationAction(ISD::SSUBO, VT, Expand); 1341 setOperationAction(ISD::ADDCARRY, VT, Expand); 1342 setOperationAction(ISD::SUBCARRY, VT, Expand); 1343 } 1344 setOperationAction(ISD::ADDCARRY, MVT::i64, Custom); 1345 setOperationAction(ISD::SUBCARRY, MVT::i64, Custom); 1346 1347 setOperationAction(ISD::CTLZ, MVT::i8, Promote); 1348 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 1349 setOperationAction(ISD::CTTZ, MVT::i8, Promote); 1350 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 1351 1352 // Popcount can count # of 1s in i64 but returns i32. 1353 setOperationAction(ISD::CTPOP, MVT::i8, Promote); 1354 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 1355 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 1356 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 1357 1358 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 1359 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 1360 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 1361 setOperationAction(ISD::BSWAP, MVT::i64, Legal); 1362 1363 setOperationAction(ISD::FSHL, MVT::i32, Legal); 1364 setOperationAction(ISD::FSHL, MVT::i64, Legal); 1365 setOperationAction(ISD::FSHR, MVT::i32, Legal); 1366 setOperationAction(ISD::FSHR, MVT::i64, Legal); 1367 1368 for (unsigned IntExpOp : 1369 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, 1370 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR, 1371 ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, 1372 ISD::SMUL_LOHI, ISD::UMUL_LOHI}) { 1373 for (MVT VT : MVT::integer_valuetypes()) 1374 setOperationAction(IntExpOp, VT, Expand); 1375 } 1376 1377 for (unsigned FPExpOp : 1378 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS, 1379 ISD::FPOW, ISD::FCOPYSIGN}) { 1380 for (MVT VT : MVT::fp_valuetypes()) 1381 setOperationAction(FPExpOp, VT, Expand); 1382 } 1383 1384 // No extending loads from i32. 1385 for (MVT VT : MVT::integer_valuetypes()) { 1386 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 1387 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 1388 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 1389 } 1390 // Turn FP truncstore into trunc + store. 1391 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1392 // Turn FP extload into load/fpextend. 1393 for (MVT VT : MVT::fp_valuetypes()) 1394 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1395 1396 // Expand BR_CC and SELECT_CC for all integer and fp types. 1397 for (MVT VT : MVT::integer_valuetypes()) { 1398 setOperationAction(ISD::BR_CC, VT, Expand); 1399 setOperationAction(ISD::SELECT_CC, VT, Expand); 1400 } 1401 for (MVT VT : MVT::fp_valuetypes()) { 1402 setOperationAction(ISD::BR_CC, VT, Expand); 1403 setOperationAction(ISD::SELECT_CC, VT, Expand); 1404 } 1405 setOperationAction(ISD::BR_CC, MVT::Other, Expand); 1406 1407 // 1408 // Handling of vector operations. 1409 // 1410 1411 // Set the action for vector operations to "expand", then override it with 1412 // either "custom" or "legal" for specific cases. 1413 static const unsigned VectExpOps[] = { 1414 // Integer arithmetic: 1415 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV, 1416 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO, 1417 ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI, 1418 // Logical/bit: 1419 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR, 1420 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, 1421 // Floating point arithmetic/math functions: 1422 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, 1423 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN, 1424 ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2, 1425 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC, 1426 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR, 1427 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, 1428 // Misc: 1429 ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool, 1430 // Vector: 1431 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR, 1432 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT, 1433 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR, 1434 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE 1435 }; 1436 1437 for (MVT VT : MVT::vector_valuetypes()) { 1438 for (unsigned VectExpOp : VectExpOps) 1439 setOperationAction(VectExpOp, VT, Expand); 1440 1441 // Expand all extending loads and truncating stores: 1442 for (MVT TargetVT : MVT::vector_valuetypes()) { 1443 if (TargetVT == VT) 1444 continue; 1445 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand); 1446 setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand); 1447 setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand); 1448 setTruncStoreAction(VT, TargetVT, Expand); 1449 } 1450 1451 // Normalize all inputs to SELECT to be vectors of i32. 1452 if (VT.getVectorElementType() != MVT::i32) { 1453 MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32); 1454 setOperationAction(ISD::SELECT, VT, Promote); 1455 AddPromotedToType(ISD::SELECT, VT, VT32); 1456 } 1457 setOperationAction(ISD::SRA, VT, Custom); 1458 setOperationAction(ISD::SHL, VT, Custom); 1459 setOperationAction(ISD::SRL, VT, Custom); 1460 } 1461 1462 // Extending loads from (native) vectors of i8 into (native) vectors of i16 1463 // are legal. 1464 setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal); 1465 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); 1466 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); 1467 setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal); 1468 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); 1469 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); 1470 1471 // Types natively supported: 1472 for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8, 1473 MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) { 1474 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom); 1475 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom); 1476 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom); 1477 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom); 1478 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom); 1479 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom); 1480 1481 setOperationAction(ISD::ADD, NativeVT, Legal); 1482 setOperationAction(ISD::SUB, NativeVT, Legal); 1483 setOperationAction(ISD::MUL, NativeVT, Legal); 1484 setOperationAction(ISD::AND, NativeVT, Legal); 1485 setOperationAction(ISD::OR, NativeVT, Legal); 1486 setOperationAction(ISD::XOR, NativeVT, Legal); 1487 } 1488 1489 // Custom lower unaligned loads. 1490 // Also, for both loads and stores, verify the alignment of the address 1491 // in case it is a compile-time constant. This is a usability feature to 1492 // provide a meaningful error message to users. 1493 for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8, 1494 MVT::v2i16, MVT::v4i16, MVT::v2i32}) { 1495 setOperationAction(ISD::LOAD, VT, Custom); 1496 setOperationAction(ISD::STORE, VT, Custom); 1497 } 1498 1499 for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v2i32, MVT::v4i16, MVT::v2i32}) { 1500 setCondCodeAction(ISD::SETLT, VT, Expand); 1501 setCondCodeAction(ISD::SETLE, VT, Expand); 1502 setCondCodeAction(ISD::SETULT, VT, Expand); 1503 setCondCodeAction(ISD::SETULE, VT, Expand); 1504 } 1505 1506 // Custom-lower bitcasts from i8 to v8i1. 1507 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1508 setOperationAction(ISD::SETCC, MVT::v2i16, Custom); 1509 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom); 1510 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom); 1511 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 1512 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); 1513 1514 // V5+. 1515 setOperationAction(ISD::FMA, MVT::f64, Expand); 1516 setOperationAction(ISD::FADD, MVT::f64, Expand); 1517 setOperationAction(ISD::FSUB, MVT::f64, Expand); 1518 setOperationAction(ISD::FMUL, MVT::f64, Expand); 1519 1520 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 1521 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 1522 1523 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 1524 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); 1525 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 1526 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 1527 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); 1528 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 1529 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 1530 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); 1531 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); 1532 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 1533 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); 1534 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); 1535 1536 // Handling of indexed loads/stores: default is "expand". 1537 // 1538 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64, 1539 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) { 1540 setIndexedLoadAction(ISD::POST_INC, VT, Legal); 1541 setIndexedStoreAction(ISD::POST_INC, VT, Legal); 1542 } 1543 1544 // Subtarget-specific operation actions. 1545 // 1546 if (Subtarget.hasV60Ops()) { 1547 setOperationAction(ISD::ROTL, MVT::i32, Legal); 1548 setOperationAction(ISD::ROTL, MVT::i64, Legal); 1549 setOperationAction(ISD::ROTR, MVT::i32, Legal); 1550 setOperationAction(ISD::ROTR, MVT::i64, Legal); 1551 } 1552 if (Subtarget.hasV66Ops()) { 1553 setOperationAction(ISD::FADD, MVT::f64, Legal); 1554 setOperationAction(ISD::FSUB, MVT::f64, Legal); 1555 } 1556 1557 if (Subtarget.useHVXOps()) 1558 initializeHVXLowering(); 1559 1560 computeRegisterProperties(&HRI); 1561 1562 // 1563 // Library calls for unsupported operations 1564 // 1565 bool FastMath = EnableFastMath; 1566 1567 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); 1568 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); 1569 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); 1570 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); 1571 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); 1572 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); 1573 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); 1574 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); 1575 1576 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); 1577 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); 1578 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); 1579 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); 1580 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); 1581 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); 1582 1583 // This is the only fast library function for sqrtd. 1584 if (FastMath) 1585 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2"); 1586 1587 // Prefix is: nothing for "slow-math", 1588 // "fast2_" for V5+ fast-math double-precision 1589 // (actually, keep fast-math and fast-math2 separate for now) 1590 if (FastMath) { 1591 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3"); 1592 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3"); 1593 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3"); 1594 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3"); 1595 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3"); 1596 } else { 1597 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); 1598 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); 1599 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); 1600 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); 1601 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); 1602 } 1603 1604 if (FastMath) 1605 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf"); 1606 else 1607 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf"); 1608 1609 // These cause problems when the shift amount is non-constant. 1610 setLibcallName(RTLIB::SHL_I128, nullptr); 1611 setLibcallName(RTLIB::SRL_I128, nullptr); 1612 setLibcallName(RTLIB::SRA_I128, nullptr); 1613 } 1614 1615 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { 1616 switch ((HexagonISD::NodeType)Opcode) { 1617 case HexagonISD::ADDC: return "HexagonISD::ADDC"; 1618 case HexagonISD::SUBC: return "HexagonISD::SUBC"; 1619 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA"; 1620 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT"; 1621 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL"; 1622 case HexagonISD::BARRIER: return "HexagonISD::BARRIER"; 1623 case HexagonISD::CALL: return "HexagonISD::CALL"; 1624 case HexagonISD::CALLnr: return "HexagonISD::CALLnr"; 1625 case HexagonISD::CALLR: return "HexagonISD::CALLR"; 1626 case HexagonISD::COMBINE: return "HexagonISD::COMBINE"; 1627 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP"; 1628 case HexagonISD::CONST32: return "HexagonISD::CONST32"; 1629 case HexagonISD::CP: return "HexagonISD::CP"; 1630 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH"; 1631 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN"; 1632 case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT"; 1633 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU"; 1634 case HexagonISD::INSERT: return "HexagonISD::INSERT"; 1635 case HexagonISD::JT: return "HexagonISD::JT"; 1636 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG"; 1637 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; 1638 case HexagonISD::VASL: return "HexagonISD::VASL"; 1639 case HexagonISD::VASR: return "HexagonISD::VASR"; 1640 case HexagonISD::VLSR: return "HexagonISD::VLSR"; 1641 case HexagonISD::VSPLAT: return "HexagonISD::VSPLAT"; 1642 case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW"; 1643 case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0"; 1644 case HexagonISD::VROR: return "HexagonISD::VROR"; 1645 case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE"; 1646 case HexagonISD::VZERO: return "HexagonISD::VZERO"; 1647 case HexagonISD::VSPLATW: return "HexagonISD::VSPLATW"; 1648 case HexagonISD::D2P: return "HexagonISD::D2P"; 1649 case HexagonISD::P2D: return "HexagonISD::P2D"; 1650 case HexagonISD::V2Q: return "HexagonISD::V2Q"; 1651 case HexagonISD::Q2V: return "HexagonISD::Q2V"; 1652 case HexagonISD::QCAT: return "HexagonISD::QCAT"; 1653 case HexagonISD::QTRUE: return "HexagonISD::QTRUE"; 1654 case HexagonISD::QFALSE: return "HexagonISD::QFALSE"; 1655 case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST"; 1656 case HexagonISD::VALIGN: return "HexagonISD::VALIGN"; 1657 case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR"; 1658 case HexagonISD::OP_END: break; 1659 } 1660 return nullptr; 1661 } 1662 1663 void 1664 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl, 1665 unsigned NeedAlign) const { 1666 auto *CA = dyn_cast<ConstantSDNode>(Ptr); 1667 if (!CA) 1668 return; 1669 unsigned Addr = CA->getZExtValue(); 1670 unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign; 1671 if (HaveAlign < NeedAlign) { 1672 std::string ErrMsg; 1673 raw_string_ostream O(ErrMsg); 1674 O << "Misaligned constant address: " << format_hex(Addr, 10) 1675 << " has alignment " << HaveAlign 1676 << ", but the memory access requires " << NeedAlign; 1677 if (DebugLoc DL = dl.getDebugLoc()) 1678 DL.print(O << ", at "); 1679 report_fatal_error(O.str()); 1680 } 1681 } 1682 1683 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load 1684 // intrinsic. 1685 static bool isBrevLdIntrinsic(const Value *Inst) { 1686 unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID(); 1687 return (ID == Intrinsic::hexagon_L2_loadrd_pbr || 1688 ID == Intrinsic::hexagon_L2_loadri_pbr || 1689 ID == Intrinsic::hexagon_L2_loadrh_pbr || 1690 ID == Intrinsic::hexagon_L2_loadruh_pbr || 1691 ID == Intrinsic::hexagon_L2_loadrb_pbr || 1692 ID == Intrinsic::hexagon_L2_loadrub_pbr); 1693 } 1694 1695 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous 1696 // instruction. So far we only handle bitcast, extract value and bit reverse 1697 // load intrinsic instructions. Should we handle CGEP ? 1698 static Value *getBrevLdObject(Value *V) { 1699 if (Operator::getOpcode(V) == Instruction::ExtractValue || 1700 Operator::getOpcode(V) == Instruction::BitCast) 1701 V = cast<Operator>(V)->getOperand(0); 1702 else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V)) 1703 V = cast<Instruction>(V)->getOperand(0); 1704 return V; 1705 } 1706 1707 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or 1708 // a back edge. If the back edge comes from the intrinsic itself, the incoming 1709 // edge is returned. 1710 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) { 1711 const BasicBlock *Parent = PN->getParent(); 1712 int Idx = -1; 1713 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { 1714 BasicBlock *Blk = PN->getIncomingBlock(i); 1715 // Determine if the back edge is originated from intrinsic. 1716 if (Blk == Parent) { 1717 Value *BackEdgeVal = PN->getIncomingValue(i); 1718 Value *BaseVal; 1719 // Loop over till we return the same Value or we hit the IntrBaseVal. 1720 do { 1721 BaseVal = BackEdgeVal; 1722 BackEdgeVal = getBrevLdObject(BackEdgeVal); 1723 } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal)); 1724 // If the getBrevLdObject returns IntrBaseVal, we should return the 1725 // incoming edge. 1726 if (IntrBaseVal == BackEdgeVal) 1727 continue; 1728 Idx = i; 1729 break; 1730 } else // Set the node to incoming edge. 1731 Idx = i; 1732 } 1733 assert(Idx >= 0 && "Unexpected index to incoming argument in PHI"); 1734 return PN->getIncomingValue(Idx); 1735 } 1736 1737 // Bit-reverse Load Intrinsic: Figure out the underlying object the base 1738 // pointer points to, for the bit-reverse load intrinsic. Setting this to 1739 // memoperand might help alias analysis to figure out the dependencies. 1740 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) { 1741 Value *IntrBaseVal = V; 1742 Value *BaseVal; 1743 // Loop over till we return the same Value, implies we either figure out 1744 // the object or we hit a PHI 1745 do { 1746 BaseVal = V; 1747 V = getBrevLdObject(V); 1748 } while (BaseVal != V); 1749 1750 // Identify the object from PHINode. 1751 if (const PHINode *PN = dyn_cast<PHINode>(V)) 1752 return returnEdge(PN, IntrBaseVal); 1753 // For non PHI nodes, the object is the last value returned by getBrevLdObject 1754 else 1755 return V; 1756 } 1757 1758 /// Given an intrinsic, checks if on the target the intrinsic will need to map 1759 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns 1760 /// true and store the intrinsic information into the IntrinsicInfo that was 1761 /// passed to the function. 1762 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1763 const CallInst &I, 1764 MachineFunction &MF, 1765 unsigned Intrinsic) const { 1766 switch (Intrinsic) { 1767 case Intrinsic::hexagon_L2_loadrd_pbr: 1768 case Intrinsic::hexagon_L2_loadri_pbr: 1769 case Intrinsic::hexagon_L2_loadrh_pbr: 1770 case Intrinsic::hexagon_L2_loadruh_pbr: 1771 case Intrinsic::hexagon_L2_loadrb_pbr: 1772 case Intrinsic::hexagon_L2_loadrub_pbr: { 1773 Info.opc = ISD::INTRINSIC_W_CHAIN; 1774 auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); 1775 auto &Cont = I.getCalledFunction()->getParent()->getContext(); 1776 // The intrinsic function call is of the form { ElTy, i8* } 1777 // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type 1778 // should be derived from ElTy. 1779 Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0); 1780 Info.memVT = MVT::getVT(ElTy); 1781 llvm::Value *BasePtrVal = I.getOperand(0); 1782 Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal); 1783 // The offset value comes through Modifier register. For now, assume the 1784 // offset is 0. 1785 Info.offset = 0; 1786 Info.align = DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont)); 1787 Info.flags = MachineMemOperand::MOLoad; 1788 return true; 1789 } 1790 case Intrinsic::hexagon_V6_vgathermw: 1791 case Intrinsic::hexagon_V6_vgathermw_128B: 1792 case Intrinsic::hexagon_V6_vgathermh: 1793 case Intrinsic::hexagon_V6_vgathermh_128B: 1794 case Intrinsic::hexagon_V6_vgathermhw: 1795 case Intrinsic::hexagon_V6_vgathermhw_128B: 1796 case Intrinsic::hexagon_V6_vgathermwq: 1797 case Intrinsic::hexagon_V6_vgathermwq_128B: 1798 case Intrinsic::hexagon_V6_vgathermhq: 1799 case Intrinsic::hexagon_V6_vgathermhq_128B: 1800 case Intrinsic::hexagon_V6_vgathermhwq: 1801 case Intrinsic::hexagon_V6_vgathermhwq_128B: { 1802 const Module &M = *I.getParent()->getParent()->getParent(); 1803 Info.opc = ISD::INTRINSIC_W_CHAIN; 1804 Type *VecTy = I.getArgOperand(1)->getType(); 1805 Info.memVT = MVT::getVT(VecTy); 1806 Info.ptrVal = I.getArgOperand(0); 1807 Info.offset = 0; 1808 Info.align = M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8; 1809 Info.flags = MachineMemOperand::MOLoad | 1810 MachineMemOperand::MOStore | 1811 MachineMemOperand::MOVolatile; 1812 return true; 1813 } 1814 default: 1815 break; 1816 } 1817 return false; 1818 } 1819 1820 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 1821 return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2)); 1822 } 1823 1824 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 1825 if (!VT1.isSimple() || !VT2.isSimple()) 1826 return false; 1827 return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32; 1828 } 1829 1830 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 1831 return isOperationLegalOrCustom(ISD::FMA, VT); 1832 } 1833 1834 // Should we expand the build vector with shuffles? 1835 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT, 1836 unsigned DefinedValues) const { 1837 return false; 1838 } 1839 1840 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask, 1841 EVT VT) const { 1842 return true; 1843 } 1844 1845 TargetLoweringBase::LegalizeTypeAction 1846 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const { 1847 if (VT.getVectorNumElements() == 1) 1848 return TargetLoweringBase::TypeScalarizeVector; 1849 1850 // Always widen vectors of i1. 1851 MVT ElemTy = VT.getVectorElementType(); 1852 if (ElemTy == MVT::i1) 1853 return TargetLoweringBase::TypeWidenVector; 1854 1855 if (Subtarget.useHVXOps()) { 1856 // If the size of VT is at least half of the vector length, 1857 // widen the vector. Note: the threshold was not selected in 1858 // any scientific way. 1859 ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes(); 1860 if (llvm::find(Tys, ElemTy) != Tys.end()) { 1861 unsigned HwWidth = 8*Subtarget.getVectorLength(); 1862 unsigned VecWidth = VT.getSizeInBits(); 1863 if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) 1864 return TargetLoweringBase::TypeWidenVector; 1865 } 1866 } 1867 return TargetLoweringBase::TypeSplitVector; 1868 } 1869 1870 std::pair<SDValue, int> 1871 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const { 1872 if (Addr.getOpcode() == ISD::ADD) { 1873 SDValue Op1 = Addr.getOperand(1); 1874 if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode())) 1875 return { Addr.getOperand(0), CN->getSExtValue() }; 1876 } 1877 return { Addr, 0 }; 1878 } 1879 1880 // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors 1881 // to select data from, V3 is the permutation. 1882 SDValue 1883 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) 1884 const { 1885 const auto *SVN = cast<ShuffleVectorSDNode>(Op); 1886 ArrayRef<int> AM = SVN->getMask(); 1887 assert(AM.size() <= 8 && "Unexpected shuffle mask"); 1888 unsigned VecLen = AM.size(); 1889 1890 MVT VecTy = ty(Op); 1891 assert(!Subtarget.isHVXVectorType(VecTy, true) && 1892 "HVX shuffles should be legal"); 1893 assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length"); 1894 1895 SDValue Op0 = Op.getOperand(0); 1896 SDValue Op1 = Op.getOperand(1); 1897 const SDLoc &dl(Op); 1898 1899 // If the inputs are not the same as the output, bail. This is not an 1900 // error situation, but complicates the handling and the default expansion 1901 // (into BUILD_VECTOR) should be adequate. 1902 if (ty(Op0) != VecTy || ty(Op1) != VecTy) 1903 return SDValue(); 1904 1905 // Normalize the mask so that the first non-negative index comes from 1906 // the first operand. 1907 SmallVector<int,8> Mask(AM.begin(), AM.end()); 1908 unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data(); 1909 if (F == AM.size()) 1910 return DAG.getUNDEF(VecTy); 1911 if (AM[F] >= int(VecLen)) { 1912 ShuffleVectorSDNode::commuteMask(Mask); 1913 std::swap(Op0, Op1); 1914 } 1915 1916 // Express the shuffle mask in terms of bytes. 1917 SmallVector<int,8> ByteMask; 1918 unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8; 1919 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1920 int M = Mask[i]; 1921 if (M < 0) { 1922 for (unsigned j = 0; j != ElemBytes; ++j) 1923 ByteMask.push_back(-1); 1924 } else { 1925 for (unsigned j = 0; j != ElemBytes; ++j) 1926 ByteMask.push_back(M*ElemBytes + j); 1927 } 1928 } 1929 assert(ByteMask.size() <= 8); 1930 1931 // All non-undef (non-negative) indexes are well within [0..127], so they 1932 // fit in a single byte. Build two 64-bit words: 1933 // - MaskIdx where each byte is the corresponding index (for non-negative 1934 // indexes), and 0xFF for negative indexes, and 1935 // - MaskUnd that has 0xFF for each negative index. 1936 uint64_t MaskIdx = 0; 1937 uint64_t MaskUnd = 0; 1938 for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) { 1939 unsigned S = 8*i; 1940 uint64_t M = ByteMask[i] & 0xFF; 1941 if (M == 0xFF) 1942 MaskUnd |= M << S; 1943 MaskIdx |= M << S; 1944 } 1945 1946 if (ByteMask.size() == 4) { 1947 // Identity. 1948 if (MaskIdx == (0x03020100 | MaskUnd)) 1949 return Op0; 1950 // Byte swap. 1951 if (MaskIdx == (0x00010203 | MaskUnd)) { 1952 SDValue T0 = DAG.getBitcast(MVT::i32, Op0); 1953 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0); 1954 return DAG.getBitcast(VecTy, T1); 1955 } 1956 1957 // Byte packs. 1958 SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl, 1959 typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0}); 1960 if (MaskIdx == (0x06040200 | MaskUnd)) 1961 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG); 1962 if (MaskIdx == (0x07050301 | MaskUnd)) 1963 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG); 1964 1965 SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl, 1966 typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1}); 1967 if (MaskIdx == (0x02000604 | MaskUnd)) 1968 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG); 1969 if (MaskIdx == (0x03010705 | MaskUnd)) 1970 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG); 1971 } 1972 1973 if (ByteMask.size() == 8) { 1974 // Identity. 1975 if (MaskIdx == (0x0706050403020100ull | MaskUnd)) 1976 return Op0; 1977 // Byte swap. 1978 if (MaskIdx == (0x0001020304050607ull | MaskUnd)) { 1979 SDValue T0 = DAG.getBitcast(MVT::i64, Op0); 1980 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0); 1981 return DAG.getBitcast(VecTy, T1); 1982 } 1983 1984 // Halfword picks. 1985 if (MaskIdx == (0x0d0c050409080100ull | MaskUnd)) 1986 return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG); 1987 if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd)) 1988 return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG); 1989 if (MaskIdx == (0x0d0c090805040100ull | MaskUnd)) 1990 return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG); 1991 if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd)) 1992 return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG); 1993 if (MaskIdx == (0x0706030205040100ull | MaskUnd)) { 1994 VectorPair P = opSplit(Op0, dl, DAG); 1995 return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG); 1996 } 1997 1998 // Byte packs. 1999 if (MaskIdx == (0x0e060c040a020800ull | MaskUnd)) 2000 return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG); 2001 if (MaskIdx == (0x0f070d050b030901ull | MaskUnd)) 2002 return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG); 2003 } 2004 2005 return SDValue(); 2006 } 2007 2008 // Create a Hexagon-specific node for shifting a vector by an integer. 2009 SDValue 2010 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) 2011 const { 2012 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) { 2013 if (SDValue S = BVN->getSplatValue()) { 2014 unsigned NewOpc; 2015 switch (Op.getOpcode()) { 2016 case ISD::SHL: 2017 NewOpc = HexagonISD::VASL; 2018 break; 2019 case ISD::SRA: 2020 NewOpc = HexagonISD::VASR; 2021 break; 2022 case ISD::SRL: 2023 NewOpc = HexagonISD::VLSR; 2024 break; 2025 default: 2026 llvm_unreachable("Unexpected shift opcode"); 2027 } 2028 return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S); 2029 } 2030 } 2031 2032 return SDValue(); 2033 } 2034 2035 SDValue 2036 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const { 2037 return getVectorShiftByInt(Op, DAG); 2038 } 2039 2040 SDValue 2041 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 2042 if (isa<ConstantSDNode>(Op.getOperand(1).getNode())) 2043 return Op; 2044 return SDValue(); 2045 } 2046 2047 SDValue 2048 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 2049 MVT ResTy = ty(Op); 2050 SDValue InpV = Op.getOperand(0); 2051 MVT InpTy = ty(InpV); 2052 assert(ResTy.getSizeInBits() == InpTy.getSizeInBits()); 2053 const SDLoc &dl(Op); 2054 2055 // Handle conversion from i8 to v8i1. 2056 if (ResTy == MVT::v8i1) { 2057 SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV); 2058 SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32); 2059 return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG); 2060 } 2061 2062 return SDValue(); 2063 } 2064 2065 bool 2066 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values, 2067 MVT VecTy, SelectionDAG &DAG, 2068 MutableArrayRef<ConstantInt*> Consts) const { 2069 MVT ElemTy = VecTy.getVectorElementType(); 2070 unsigned ElemWidth = ElemTy.getSizeInBits(); 2071 IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth); 2072 bool AllConst = true; 2073 2074 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2075 SDValue V = Values[i]; 2076 if (V.isUndef()) { 2077 Consts[i] = ConstantInt::get(IntTy, 0); 2078 continue; 2079 } 2080 // Make sure to always cast to IntTy. 2081 if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) { 2082 const ConstantInt *CI = CN->getConstantIntValue(); 2083 Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue()); 2084 } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) { 2085 const ConstantFP *CF = CN->getConstantFPValue(); 2086 APInt A = CF->getValueAPF().bitcastToAPInt(); 2087 Consts[i] = ConstantInt::get(IntTy, A.getZExtValue()); 2088 } else { 2089 AllConst = false; 2090 } 2091 } 2092 return AllConst; 2093 } 2094 2095 SDValue 2096 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, 2097 MVT VecTy, SelectionDAG &DAG) const { 2098 MVT ElemTy = VecTy.getVectorElementType(); 2099 assert(VecTy.getVectorNumElements() == Elem.size()); 2100 2101 SmallVector<ConstantInt*,4> Consts(Elem.size()); 2102 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); 2103 2104 unsigned First, Num = Elem.size(); 2105 for (First = 0; First != Num; ++First) 2106 if (!isUndef(Elem[First])) 2107 break; 2108 if (First == Num) 2109 return DAG.getUNDEF(VecTy); 2110 2111 if (AllConst && 2112 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) 2113 return getZero(dl, VecTy, DAG); 2114 2115 if (ElemTy == MVT::i16) { 2116 assert(Elem.size() == 2); 2117 if (AllConst) { 2118 uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) | 2119 Consts[1]->getZExtValue() << 16; 2120 return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32)); 2121 } 2122 SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, 2123 {Elem[1], Elem[0]}, DAG); 2124 return DAG.getBitcast(MVT::v2i16, N); 2125 } 2126 2127 if (ElemTy == MVT::i8) { 2128 // First try generating a constant. 2129 if (AllConst) { 2130 int32_t V = (Consts[0]->getZExtValue() & 0xFF) | 2131 (Consts[1]->getZExtValue() & 0xFF) << 8 | 2132 (Consts[1]->getZExtValue() & 0xFF) << 16 | 2133 Consts[2]->getZExtValue() << 24; 2134 return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32)); 2135 } 2136 2137 // Then try splat. 2138 bool IsSplat = true; 2139 for (unsigned i = 0; i != Num; ++i) { 2140 if (i == First) 2141 continue; 2142 if (Elem[i] == Elem[First] || isUndef(Elem[i])) 2143 continue; 2144 IsSplat = false; 2145 break; 2146 } 2147 if (IsSplat) { 2148 // Legalize the operand to VSPLAT. 2149 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); 2150 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext); 2151 } 2152 2153 // Generate 2154 // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) | 2155 // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16 2156 assert(Elem.size() == 4); 2157 SDValue Vs[4]; 2158 for (unsigned i = 0; i != 4; ++i) { 2159 Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32); 2160 Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8); 2161 } 2162 SDValue S8 = DAG.getConstant(8, dl, MVT::i32); 2163 SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8}); 2164 SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8}); 2165 SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0}); 2166 SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1}); 2167 2168 SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG); 2169 return DAG.getBitcast(MVT::v4i8, R); 2170 } 2171 2172 #ifndef NDEBUG 2173 dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n'; 2174 #endif 2175 llvm_unreachable("Unexpected vector element type"); 2176 } 2177 2178 SDValue 2179 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, 2180 MVT VecTy, SelectionDAG &DAG) const { 2181 MVT ElemTy = VecTy.getVectorElementType(); 2182 assert(VecTy.getVectorNumElements() == Elem.size()); 2183 2184 SmallVector<ConstantInt*,8> Consts(Elem.size()); 2185 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); 2186 2187 unsigned First, Num = Elem.size(); 2188 for (First = 0; First != Num; ++First) 2189 if (!isUndef(Elem[First])) 2190 break; 2191 if (First == Num) 2192 return DAG.getUNDEF(VecTy); 2193 2194 if (AllConst && 2195 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) 2196 return getZero(dl, VecTy, DAG); 2197 2198 // First try splat if possible. 2199 if (ElemTy == MVT::i16) { 2200 bool IsSplat = true; 2201 for (unsigned i = 0; i != Num; ++i) { 2202 if (i == First) 2203 continue; 2204 if (Elem[i] == Elem[First] || isUndef(Elem[i])) 2205 continue; 2206 IsSplat = false; 2207 break; 2208 } 2209 if (IsSplat) { 2210 // Legalize the operand to VSPLAT. 2211 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); 2212 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext); 2213 } 2214 } 2215 2216 // Then try constant. 2217 if (AllConst) { 2218 uint64_t Val = 0; 2219 unsigned W = ElemTy.getSizeInBits(); 2220 uint64_t Mask = (ElemTy == MVT::i8) ? 0xFFull 2221 : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull; 2222 for (unsigned i = 0; i != Num; ++i) 2223 Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask); 2224 SDValue V0 = DAG.getConstant(Val, dl, MVT::i64); 2225 return DAG.getBitcast(VecTy, V0); 2226 } 2227 2228 // Build two 32-bit vectors and concatenate. 2229 MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2); 2230 SDValue L = (ElemTy == MVT::i32) 2231 ? Elem[0] 2232 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG); 2233 SDValue H = (ElemTy == MVT::i32) 2234 ? Elem[1] 2235 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG); 2236 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L}); 2237 } 2238 2239 SDValue 2240 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV, 2241 const SDLoc &dl, MVT ValTy, MVT ResTy, 2242 SelectionDAG &DAG) const { 2243 MVT VecTy = ty(VecV); 2244 assert(!ValTy.isVector() || 2245 VecTy.getVectorElementType() == ValTy.getVectorElementType()); 2246 unsigned VecWidth = VecTy.getSizeInBits(); 2247 unsigned ValWidth = ValTy.getSizeInBits(); 2248 unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits(); 2249 assert((VecWidth % ElemWidth) == 0); 2250 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV); 2251 2252 // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon 2253 // without any coprocessors). 2254 if (ElemWidth == 1) { 2255 assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure"); 2256 assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2); 2257 // Check if this is an extract of the lowest bit. 2258 if (IdxN) { 2259 // Extracting the lowest bit is a no-op, but it changes the type, 2260 // so it must be kept as an operation to avoid errors related to 2261 // type mismatches. 2262 if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1) 2263 return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV); 2264 } 2265 2266 // If the value extracted is a single bit, use tstbit. 2267 if (ValWidth == 1) { 2268 SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG); 2269 SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32); 2270 SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0); 2271 return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0); 2272 } 2273 2274 // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in 2275 // a predicate register. The elements of the vector are repeated 2276 // in the register (if necessary) so that the total number is 8. 2277 // The extracted subvector will need to be expanded in such a way. 2278 unsigned Scale = VecWidth / ValWidth; 2279 2280 // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to 2281 // position 0. 2282 assert(ty(IdxV) == MVT::i32); 2283 unsigned VecRep = 8 / VecWidth; 2284 SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 2285 DAG.getConstant(8*VecRep, dl, MVT::i32)); 2286 SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); 2287 SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0); 2288 while (Scale > 1) { 2289 // The longest possible subvector is at most 32 bits, so it is always 2290 // contained in the low subregister. 2291 T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1); 2292 T1 = expandPredicate(T1, dl, DAG); 2293 Scale /= 2; 2294 } 2295 2296 return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1); 2297 } 2298 2299 assert(VecWidth == 32 || VecWidth == 64); 2300 2301 // Cast everything to scalar integer types. 2302 MVT ScalarTy = tyScalar(VecTy); 2303 VecV = DAG.getBitcast(ScalarTy, VecV); 2304 2305 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); 2306 SDValue ExtV; 2307 2308 if (IdxN) { 2309 unsigned Off = IdxN->getZExtValue() * ElemWidth; 2310 if (VecWidth == 64 && ValWidth == 32) { 2311 assert(Off == 0 || Off == 32); 2312 unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi; 2313 ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV); 2314 } else if (Off == 0 && (ValWidth % 8) == 0) { 2315 ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy)); 2316 } else { 2317 SDValue OffV = DAG.getConstant(Off, dl, MVT::i32); 2318 // The return type of EXTRACTU must be the same as the type of the 2319 // input vector. 2320 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, 2321 {VecV, WidthV, OffV}); 2322 } 2323 } else { 2324 if (ty(IdxV) != MVT::i32) 2325 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); 2326 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 2327 DAG.getConstant(ElemWidth, dl, MVT::i32)); 2328 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, 2329 {VecV, WidthV, OffV}); 2330 } 2331 2332 // Cast ExtV to the requested result type. 2333 ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy)); 2334 ExtV = DAG.getBitcast(ResTy, ExtV); 2335 return ExtV; 2336 } 2337 2338 SDValue 2339 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV, 2340 const SDLoc &dl, MVT ValTy, 2341 SelectionDAG &DAG) const { 2342 MVT VecTy = ty(VecV); 2343 if (VecTy.getVectorElementType() == MVT::i1) { 2344 MVT ValTy = ty(ValV); 2345 assert(ValTy.getVectorElementType() == MVT::i1); 2346 SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV); 2347 unsigned VecLen = VecTy.getVectorNumElements(); 2348 unsigned Scale = VecLen / ValTy.getVectorNumElements(); 2349 assert(Scale > 1); 2350 2351 for (unsigned R = Scale; R > 1; R /= 2) { 2352 ValR = contractPredicate(ValR, dl, DAG); 2353 ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, 2354 DAG.getUNDEF(MVT::i32), ValR); 2355 } 2356 // The longest possible subvector is at most 32 bits, so it is always 2357 // contained in the low subregister. 2358 ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR); 2359 2360 unsigned ValBytes = 64 / Scale; 2361 SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32); 2362 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 2363 DAG.getConstant(8, dl, MVT::i32)); 2364 SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); 2365 SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, 2366 {VecR, ValR, Width, Idx}); 2367 return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins); 2368 } 2369 2370 unsigned VecWidth = VecTy.getSizeInBits(); 2371 unsigned ValWidth = ValTy.getSizeInBits(); 2372 assert(VecWidth == 32 || VecWidth == 64); 2373 assert((VecWidth % ValWidth) == 0); 2374 2375 // Cast everything to scalar integer types. 2376 MVT ScalarTy = MVT::getIntegerVT(VecWidth); 2377 // The actual type of ValV may be different than ValTy (which is related 2378 // to the vector type). 2379 unsigned VW = ty(ValV).getSizeInBits(); 2380 ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV); 2381 VecV = DAG.getBitcast(ScalarTy, VecV); 2382 if (VW != VecWidth) 2383 ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy); 2384 2385 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); 2386 SDValue InsV; 2387 2388 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) { 2389 unsigned W = C->getZExtValue() * ValWidth; 2390 SDValue OffV = DAG.getConstant(W, dl, MVT::i32); 2391 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, 2392 {VecV, ValV, WidthV, OffV}); 2393 } else { 2394 if (ty(IdxV) != MVT::i32) 2395 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); 2396 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV); 2397 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, 2398 {VecV, ValV, WidthV, OffV}); 2399 } 2400 2401 return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV); 2402 } 2403 2404 SDValue 2405 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl, 2406 SelectionDAG &DAG) const { 2407 assert(ty(Vec32).getSizeInBits() == 32); 2408 if (isUndef(Vec32)) 2409 return DAG.getUNDEF(MVT::i64); 2410 return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG); 2411 } 2412 2413 SDValue 2414 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl, 2415 SelectionDAG &DAG) const { 2416 assert(ty(Vec64).getSizeInBits() == 64); 2417 if (isUndef(Vec64)) 2418 return DAG.getUNDEF(MVT::i32); 2419 return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG); 2420 } 2421 2422 SDValue 2423 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) 2424 const { 2425 if (Ty.isVector()) { 2426 assert(Ty.isInteger() && "Only integer vectors are supported here"); 2427 unsigned W = Ty.getSizeInBits(); 2428 if (W <= 64) 2429 return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W))); 2430 return DAG.getNode(HexagonISD::VZERO, dl, Ty); 2431 } 2432 2433 if (Ty.isInteger()) 2434 return DAG.getConstant(0, dl, Ty); 2435 if (Ty.isFloatingPoint()) 2436 return DAG.getConstantFP(0.0, dl, Ty); 2437 llvm_unreachable("Invalid type for zero"); 2438 } 2439 2440 SDValue 2441 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { 2442 MVT VecTy = ty(Op); 2443 unsigned BW = VecTy.getSizeInBits(); 2444 const SDLoc &dl(Op); 2445 SmallVector<SDValue,8> Ops; 2446 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) 2447 Ops.push_back(Op.getOperand(i)); 2448 2449 if (BW == 32) 2450 return buildVector32(Ops, dl, VecTy, DAG); 2451 if (BW == 64) 2452 return buildVector64(Ops, dl, VecTy, DAG); 2453 2454 if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) { 2455 // For each i1 element in the resulting predicate register, put 1 2456 // shifted by the index of the element into a general-purpose register, 2457 // then or them together and transfer it back into a predicate register. 2458 SDValue Rs[8]; 2459 SDValue Z = getZero(dl, MVT::i32, DAG); 2460 // Always produce 8 bits, repeat inputs if necessary. 2461 unsigned Rep = 8 / VecTy.getVectorNumElements(); 2462 for (unsigned i = 0; i != 8; ++i) { 2463 SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32); 2464 Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z); 2465 } 2466 for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) { 2467 for (unsigned i = 0, e = A.size()/2; i != e; ++i) 2468 Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]); 2469 } 2470 // Move the value directly to a predicate register. 2471 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG); 2472 } 2473 2474 return SDValue(); 2475 } 2476 2477 SDValue 2478 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 2479 SelectionDAG &DAG) const { 2480 MVT VecTy = ty(Op); 2481 const SDLoc &dl(Op); 2482 if (VecTy.getSizeInBits() == 64) { 2483 assert(Op.getNumOperands() == 2); 2484 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1), 2485 Op.getOperand(0)); 2486 } 2487 2488 MVT ElemTy = VecTy.getVectorElementType(); 2489 if (ElemTy == MVT::i1) { 2490 assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1); 2491 MVT OpTy = ty(Op.getOperand(0)); 2492 // Scale is how many times the operands need to be contracted to match 2493 // the representation in the target register. 2494 unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements(); 2495 assert(Scale == Op.getNumOperands() && Scale > 1); 2496 2497 // First, convert all bool vectors to integers, then generate pairwise 2498 // inserts to form values of doubled length. Up until there are only 2499 // two values left to concatenate, all of these values will fit in a 2500 // 32-bit integer, so keep them as i32 to use 32-bit inserts. 2501 SmallVector<SDValue,4> Words[2]; 2502 unsigned IdxW = 0; 2503 2504 for (SDValue P : Op.getNode()->op_values()) { 2505 SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P); 2506 for (unsigned R = Scale; R > 1; R /= 2) { 2507 W = contractPredicate(W, dl, DAG); 2508 W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, 2509 DAG.getUNDEF(MVT::i32), W); 2510 } 2511 W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W); 2512 Words[IdxW].push_back(W); 2513 } 2514 2515 while (Scale > 2) { 2516 SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32); 2517 Words[IdxW ^ 1].clear(); 2518 2519 for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) { 2520 SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1]; 2521 // Insert W1 into W0 right next to the significant bits of W0. 2522 SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, 2523 {W0, W1, WidthV, WidthV}); 2524 Words[IdxW ^ 1].push_back(T); 2525 } 2526 IdxW ^= 1; 2527 Scale /= 2; 2528 } 2529 2530 // Another sanity check. At this point there should only be two words 2531 // left, and Scale should be 2. 2532 assert(Scale == 2 && Words[IdxW].size() == 2); 2533 2534 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, 2535 Words[IdxW][1], Words[IdxW][0]); 2536 return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW); 2537 } 2538 2539 return SDValue(); 2540 } 2541 2542 SDValue 2543 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 2544 SelectionDAG &DAG) const { 2545 SDValue Vec = Op.getOperand(0); 2546 MVT ElemTy = ty(Vec).getVectorElementType(); 2547 return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG); 2548 } 2549 2550 SDValue 2551 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 2552 SelectionDAG &DAG) const { 2553 return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op), 2554 ty(Op), ty(Op), DAG); 2555 } 2556 2557 SDValue 2558 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 2559 SelectionDAG &DAG) const { 2560 return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), 2561 SDLoc(Op), ty(Op).getVectorElementType(), DAG); 2562 } 2563 2564 SDValue 2565 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, 2566 SelectionDAG &DAG) const { 2567 SDValue ValV = Op.getOperand(1); 2568 return insertVector(Op.getOperand(0), ValV, Op.getOperand(2), 2569 SDLoc(Op), ty(ValV), DAG); 2570 } 2571 2572 bool 2573 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { 2574 // Assuming the caller does not have either a signext or zeroext modifier, and 2575 // only one value is accepted, any reasonable truncation is allowed. 2576 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 2577 return false; 2578 2579 // FIXME: in principle up to 64-bit could be made safe, but it would be very 2580 // fragile at the moment: any support for multiple value returns would be 2581 // liable to disallow tail calls involving i64 -> iN truncation in many cases. 2582 return Ty1->getPrimitiveSizeInBits() <= 32; 2583 } 2584 2585 SDValue 2586 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const { 2587 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 2588 unsigned ClaimAlign = LN->getAlignment(); 2589 validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign); 2590 // Call LowerUnalignedLoad for all loads, it recognizes loads that 2591 // don't need extra aligning. 2592 return LowerUnalignedLoad(Op, DAG); 2593 } 2594 2595 SDValue 2596 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const { 2597 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 2598 unsigned ClaimAlign = SN->getAlignment(); 2599 SDValue Ptr = SN->getBasePtr(); 2600 const SDLoc &dl(Op); 2601 validateConstPtrAlignment(Ptr, dl, ClaimAlign); 2602 2603 MVT StoreTy = SN->getMemoryVT().getSimpleVT(); 2604 unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy); 2605 if (ClaimAlign < NeedAlign) 2606 return expandUnalignedStore(SN, DAG); 2607 return Op; 2608 } 2609 2610 SDValue 2611 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) 2612 const { 2613 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 2614 MVT LoadTy = ty(Op); 2615 unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy); 2616 unsigned HaveAlign = LN->getAlignment(); 2617 if (HaveAlign >= NeedAlign) 2618 return Op; 2619 2620 const SDLoc &dl(Op); 2621 const DataLayout &DL = DAG.getDataLayout(); 2622 LLVMContext &Ctx = *DAG.getContext(); 2623 2624 // If the load aligning is disabled or the load can be broken up into two 2625 // smaller legal loads, do the default (target-independent) expansion. 2626 bool DoDefault = false; 2627 // Handle it in the default way if this is an indexed load. 2628 if (!LN->isUnindexed()) 2629 DoDefault = true; 2630 2631 if (!AlignLoads) { 2632 if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), *LN->getMemOperand())) 2633 return Op; 2634 DoDefault = true; 2635 } 2636 if (!DoDefault && (2 * HaveAlign) == NeedAlign) { 2637 // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)". 2638 MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign) 2639 : MVT::getVectorVT(MVT::i8, HaveAlign); 2640 DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, *LN->getMemOperand()); 2641 } 2642 if (DoDefault) { 2643 std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG); 2644 return DAG.getMergeValues({P.first, P.second}, dl); 2645 } 2646 2647 // The code below generates two loads, both aligned as NeedAlign, and 2648 // with the distance of NeedAlign between them. For that to cover the 2649 // bits that need to be loaded (and without overlapping), the size of 2650 // the loads should be equal to NeedAlign. This is true for all loadable 2651 // types, but add an assertion in case something changes in the future. 2652 assert(LoadTy.getSizeInBits() == 8*NeedAlign); 2653 2654 unsigned LoadLen = NeedAlign; 2655 SDValue Base = LN->getBasePtr(); 2656 SDValue Chain = LN->getChain(); 2657 auto BO = getBaseAndOffset(Base); 2658 unsigned BaseOpc = BO.first.getOpcode(); 2659 if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0) 2660 return Op; 2661 2662 if (BO.second % LoadLen != 0) { 2663 BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first, 2664 DAG.getConstant(BO.second % LoadLen, dl, MVT::i32)); 2665 BO.second -= BO.second % LoadLen; 2666 } 2667 SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR) 2668 ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first, 2669 DAG.getConstant(NeedAlign, dl, MVT::i32)) 2670 : BO.first; 2671 SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl); 2672 SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl); 2673 2674 MachineMemOperand *WideMMO = nullptr; 2675 if (MachineMemOperand *MMO = LN->getMemOperand()) { 2676 MachineFunction &MF = DAG.getMachineFunction(); 2677 WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(), 2678 2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(), 2679 MMO->getSyncScopeID(), MMO->getOrdering(), 2680 MMO->getFailureOrdering()); 2681 } 2682 2683 SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO); 2684 SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO); 2685 2686 SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy, 2687 {Load1, Load0, BaseNoOff.getOperand(0)}); 2688 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2689 Load0.getValue(1), Load1.getValue(1)); 2690 SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl); 2691 return M; 2692 } 2693 2694 SDValue 2695 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const { 2696 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 2697 auto *CY = dyn_cast<ConstantSDNode>(Y); 2698 if (!CY) 2699 return SDValue(); 2700 2701 const SDLoc &dl(Op); 2702 SDVTList VTs = Op.getNode()->getVTList(); 2703 assert(VTs.NumVTs == 2); 2704 assert(VTs.VTs[1] == MVT::i1); 2705 unsigned Opc = Op.getOpcode(); 2706 2707 if (CY) { 2708 uint32_t VY = CY->getZExtValue(); 2709 assert(VY != 0 && "This should have been folded"); 2710 // X +/- 1 2711 if (VY != 1) 2712 return SDValue(); 2713 2714 if (Opc == ISD::UADDO) { 2715 SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y}); 2716 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG), 2717 ISD::SETEQ); 2718 return DAG.getMergeValues({Op, Ov}, dl); 2719 } 2720 if (Opc == ISD::USUBO) { 2721 SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y}); 2722 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, 2723 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ); 2724 return DAG.getMergeValues({Op, Ov}, dl); 2725 } 2726 } 2727 2728 return SDValue(); 2729 } 2730 2731 SDValue 2732 HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const { 2733 const SDLoc &dl(Op); 2734 unsigned Opc = Op.getOpcode(); 2735 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2); 2736 2737 if (Opc == ISD::ADDCARRY) 2738 return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(), 2739 { X, Y, C }); 2740 2741 EVT CarryTy = C.getValueType(); 2742 SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(), 2743 { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) }); 2744 SDValue Out[] = { SubC.getValue(0), 2745 DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) }; 2746 return DAG.getMergeValues(Out, dl); 2747 } 2748 2749 SDValue 2750 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 2751 SDValue Chain = Op.getOperand(0); 2752 SDValue Offset = Op.getOperand(1); 2753 SDValue Handler = Op.getOperand(2); 2754 SDLoc dl(Op); 2755 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2756 2757 // Mark function as containing a call to EH_RETURN. 2758 HexagonMachineFunctionInfo *FuncInfo = 2759 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>(); 2760 FuncInfo->setHasEHReturn(); 2761 2762 unsigned OffsetReg = Hexagon::R28; 2763 2764 SDValue StoreAddr = 2765 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT), 2766 DAG.getIntPtrConstant(4, dl)); 2767 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo()); 2768 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset); 2769 2770 // Not needed we already use it as explict input to EH_RETURN. 2771 // MF.getRegInfo().addLiveOut(OffsetReg); 2772 2773 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain); 2774 } 2775 2776 SDValue 2777 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 2778 unsigned Opc = Op.getOpcode(); 2779 2780 // Handle INLINEASM first. 2781 if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR) 2782 return LowerINLINEASM(Op, DAG); 2783 2784 if (isHvxOperation(Op)) { 2785 // If HVX lowering returns nothing, try the default lowering. 2786 if (SDValue V = LowerHvxOperation(Op, DAG)) 2787 return V; 2788 } 2789 2790 switch (Opc) { 2791 default: 2792 #ifndef NDEBUG 2793 Op.getNode()->dumpr(&DAG); 2794 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END) 2795 errs() << "Error: check for a non-legal type in this operation\n"; 2796 #endif 2797 llvm_unreachable("Should not custom lower this!"); 2798 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 2799 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG); 2800 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 2801 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 2802 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 2803 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 2804 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 2805 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 2806 case ISD::LOAD: return LowerLoad(Op, DAG); 2807 case ISD::STORE: return LowerStore(Op, DAG); 2808 case ISD::UADDO: 2809 case ISD::USUBO: return LowerUAddSubO(Op, DAG); 2810 case ISD::ADDCARRY: 2811 case ISD::SUBCARRY: return LowerAddSubCarry(Op, DAG); 2812 case ISD::SRA: 2813 case ISD::SHL: 2814 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG); 2815 case ISD::ROTL: return LowerROTL(Op, DAG); 2816 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 2817 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 2818 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 2819 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 2820 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 2821 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 2822 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 2823 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); 2824 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 2825 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); 2826 case ISD::VASTART: return LowerVASTART(Op, DAG); 2827 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 2828 case ISD::SETCC: return LowerSETCC(Op, DAG); 2829 case ISD::VSELECT: return LowerVSELECT(Op, DAG); 2830 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2831 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 2832 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG); 2833 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); 2834 break; 2835 } 2836 2837 return SDValue(); 2838 } 2839 2840 void 2841 HexagonTargetLowering::LowerOperationWrapper(SDNode *N, 2842 SmallVectorImpl<SDValue> &Results, 2843 SelectionDAG &DAG) const { 2844 // We are only custom-lowering stores to verify the alignment of the 2845 // address if it is a compile-time constant. Since a store can be modified 2846 // during type-legalization (the value being stored may need legalization), 2847 // return empty Results here to indicate that we don't really make any 2848 // changes in the custom lowering. 2849 if (N->getOpcode() != ISD::STORE) 2850 return TargetLowering::LowerOperationWrapper(N, Results, DAG); 2851 } 2852 2853 void 2854 HexagonTargetLowering::ReplaceNodeResults(SDNode *N, 2855 SmallVectorImpl<SDValue> &Results, 2856 SelectionDAG &DAG) const { 2857 const SDLoc &dl(N); 2858 switch (N->getOpcode()) { 2859 case ISD::SRL: 2860 case ISD::SRA: 2861 case ISD::SHL: 2862 return; 2863 case ISD::BITCAST: 2864 // Handle a bitcast from v8i1 to i8. 2865 if (N->getValueType(0) == MVT::i8) { 2866 SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, 2867 N->getOperand(0), DAG); 2868 Results.push_back(P); 2869 } 2870 break; 2871 } 2872 } 2873 2874 /// Returns relocation base for the given PIC jumptable. 2875 SDValue 2876 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2877 SelectionDAG &DAG) const { 2878 int Idx = cast<JumpTableSDNode>(Table)->getIndex(); 2879 EVT VT = Table.getValueType(); 2880 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); 2881 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T); 2882 } 2883 2884 //===----------------------------------------------------------------------===// 2885 // Inline Assembly Support 2886 //===----------------------------------------------------------------------===// 2887 2888 TargetLowering::ConstraintType 2889 HexagonTargetLowering::getConstraintType(StringRef Constraint) const { 2890 if (Constraint.size() == 1) { 2891 switch (Constraint[0]) { 2892 case 'q': 2893 case 'v': 2894 if (Subtarget.useHVXOps()) 2895 return C_RegisterClass; 2896 break; 2897 case 'a': 2898 return C_RegisterClass; 2899 default: 2900 break; 2901 } 2902 } 2903 return TargetLowering::getConstraintType(Constraint); 2904 } 2905 2906 std::pair<unsigned, const TargetRegisterClass*> 2907 HexagonTargetLowering::getRegForInlineAsmConstraint( 2908 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 2909 2910 if (Constraint.size() == 1) { 2911 switch (Constraint[0]) { 2912 case 'r': // R0-R31 2913 switch (VT.SimpleTy) { 2914 default: 2915 return {0u, nullptr}; 2916 case MVT::i1: 2917 case MVT::i8: 2918 case MVT::i16: 2919 case MVT::i32: 2920 case MVT::f32: 2921 return {0u, &Hexagon::IntRegsRegClass}; 2922 case MVT::i64: 2923 case MVT::f64: 2924 return {0u, &Hexagon::DoubleRegsRegClass}; 2925 } 2926 break; 2927 case 'a': // M0-M1 2928 if (VT != MVT::i32) 2929 return {0u, nullptr}; 2930 return {0u, &Hexagon::ModRegsRegClass}; 2931 case 'q': // q0-q3 2932 switch (VT.getSizeInBits()) { 2933 default: 2934 return {0u, nullptr}; 2935 case 512: 2936 case 1024: 2937 return {0u, &Hexagon::HvxQRRegClass}; 2938 } 2939 break; 2940 case 'v': // V0-V31 2941 switch (VT.getSizeInBits()) { 2942 default: 2943 return {0u, nullptr}; 2944 case 512: 2945 return {0u, &Hexagon::HvxVRRegClass}; 2946 case 1024: 2947 if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps()) 2948 return {0u, &Hexagon::HvxVRRegClass}; 2949 return {0u, &Hexagon::HvxWRRegClass}; 2950 case 2048: 2951 return {0u, &Hexagon::HvxWRRegClass}; 2952 } 2953 break; 2954 default: 2955 return {0u, nullptr}; 2956 } 2957 } 2958 2959 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2960 } 2961 2962 /// isFPImmLegal - Returns true if the target can instruction select the 2963 /// specified FP immediate natively. If false, the legalizer will 2964 /// materialize the FP immediate as a load from a constant pool. 2965 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 2966 bool ForCodeSize) const { 2967 return true; 2968 } 2969 2970 /// isLegalAddressingMode - Return true if the addressing mode represented by 2971 /// AM is legal for this target, for a load/store of the specified type. 2972 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL, 2973 const AddrMode &AM, Type *Ty, 2974 unsigned AS, Instruction *I) const { 2975 if (Ty->isSized()) { 2976 // When LSR detects uses of the same base address to access different 2977 // types (e.g. unions), it will assume a conservative type for these 2978 // uses: 2979 // LSR Use: Kind=Address of void in addrspace(4294967295), ... 2980 // The type Ty passed here would then be "void". Skip the alignment 2981 // checks, but do not return false right away, since that confuses 2982 // LSR into crashing. 2983 unsigned A = DL.getABITypeAlignment(Ty); 2984 // The base offset must be a multiple of the alignment. 2985 if ((AM.BaseOffs % A) != 0) 2986 return false; 2987 // The shifted offset must fit in 11 bits. 2988 if (!isInt<11>(AM.BaseOffs >> Log2_32(A))) 2989 return false; 2990 } 2991 2992 // No global is ever allowed as a base. 2993 if (AM.BaseGV) 2994 return false; 2995 2996 int Scale = AM.Scale; 2997 if (Scale < 0) 2998 Scale = -Scale; 2999 switch (Scale) { 3000 case 0: // No scale reg, "r+i", "r", or just "i". 3001 break; 3002 default: // No scaled addressing mode. 3003 return false; 3004 } 3005 return true; 3006 } 3007 3008 /// Return true if folding a constant offset with the given GlobalAddress is 3009 /// legal. It is frequently not legal in PIC relocation models. 3010 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) 3011 const { 3012 return HTM.getRelocationModel() == Reloc::Static; 3013 } 3014 3015 /// isLegalICmpImmediate - Return true if the specified immediate is legal 3016 /// icmp immediate, that is the target has icmp instructions which can compare 3017 /// a register against the immediate without having to materialize the 3018 /// immediate into a register. 3019 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 3020 return Imm >= -512 && Imm <= 511; 3021 } 3022 3023 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3024 /// for tail call optimization. Targets which want to do tail call 3025 /// optimization should implement this function. 3026 bool HexagonTargetLowering::IsEligibleForTailCallOptimization( 3027 SDValue Callee, 3028 CallingConv::ID CalleeCC, 3029 bool IsVarArg, 3030 bool IsCalleeStructRet, 3031 bool IsCallerStructRet, 3032 const SmallVectorImpl<ISD::OutputArg> &Outs, 3033 const SmallVectorImpl<SDValue> &OutVals, 3034 const SmallVectorImpl<ISD::InputArg> &Ins, 3035 SelectionDAG& DAG) const { 3036 const Function &CallerF = DAG.getMachineFunction().getFunction(); 3037 CallingConv::ID CallerCC = CallerF.getCallingConv(); 3038 bool CCMatch = CallerCC == CalleeCC; 3039 3040 // *************************************************************************** 3041 // Look for obvious safe cases to perform tail call optimization that do not 3042 // require ABI changes. 3043 // *************************************************************************** 3044 3045 // If this is a tail call via a function pointer, then don't do it! 3046 if (!isa<GlobalAddressSDNode>(Callee) && 3047 !isa<ExternalSymbolSDNode>(Callee)) { 3048 return false; 3049 } 3050 3051 // Do not optimize if the calling conventions do not match and the conventions 3052 // used are not C or Fast. 3053 if (!CCMatch) { 3054 bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast); 3055 bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast); 3056 // If R & E, then ok. 3057 if (!R || !E) 3058 return false; 3059 } 3060 3061 // Do not tail call optimize vararg calls. 3062 if (IsVarArg) 3063 return false; 3064 3065 // Also avoid tail call optimization if either caller or callee uses struct 3066 // return semantics. 3067 if (IsCalleeStructRet || IsCallerStructRet) 3068 return false; 3069 3070 // In addition to the cases above, we also disable Tail Call Optimization if 3071 // the calling convention code that at least one outgoing argument needs to 3072 // go on the stack. We cannot check that here because at this point that 3073 // information is not available. 3074 return true; 3075 } 3076 3077 /// Returns the target specific optimal type for load and store operations as 3078 /// a result of memset, memcpy, and memmove lowering. 3079 /// 3080 /// If DstAlign is zero that means it's safe to destination alignment can 3081 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't 3082 /// a need to check it against alignment requirement, probably because the 3083 /// source does not need to be loaded. If 'IsMemset' is true, that means it's 3084 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of 3085 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it 3086 /// does not need to be loaded. It returns EVT::Other if the type should be 3087 /// determined using generic target-independent logic. 3088 EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size, 3089 unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, 3090 bool MemcpyStrSrc, const AttributeList &FuncAttributes) const { 3091 3092 auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool { 3093 return (GivenA % MinA) == 0; 3094 }; 3095 3096 if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8))) 3097 return MVT::i64; 3098 if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4))) 3099 return MVT::i32; 3100 if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2))) 3101 return MVT::i16; 3102 3103 return MVT::Other; 3104 } 3105 3106 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses( 3107 EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags, 3108 bool *Fast) const { 3109 if (Fast) 3110 *Fast = false; 3111 return Subtarget.isHVXVectorType(VT.getSimpleVT()); 3112 } 3113 3114 std::pair<const TargetRegisterClass*, uint8_t> 3115 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, 3116 MVT VT) const { 3117 if (Subtarget.isHVXVectorType(VT, true)) { 3118 unsigned BitWidth = VT.getSizeInBits(); 3119 unsigned VecWidth = Subtarget.getVectorLength() * 8; 3120 3121 if (VT.getVectorElementType() == MVT::i1) 3122 return std::make_pair(&Hexagon::HvxQRRegClass, 1); 3123 if (BitWidth == VecWidth) 3124 return std::make_pair(&Hexagon::HvxVRRegClass, 1); 3125 assert(BitWidth == 2 * VecWidth); 3126 return std::make_pair(&Hexagon::HvxWRRegClass, 1); 3127 } 3128 3129 return TargetLowering::findRepresentativeClass(TRI, VT); 3130 } 3131 3132 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load, 3133 ISD::LoadExtType ExtTy, EVT NewVT) const { 3134 // TODO: This may be worth removing. Check regression tests for diffs. 3135 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) 3136 return false; 3137 3138 auto *L = cast<LoadSDNode>(Load); 3139 std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr()); 3140 // Small-data object, do not shrink. 3141 if (BO.first.getOpcode() == HexagonISD::CONST32_GP) 3142 return false; 3143 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) { 3144 auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine()); 3145 const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal()); 3146 return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM); 3147 } 3148 return true; 3149 } 3150 3151 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 3152 AtomicOrdering Ord) const { 3153 BasicBlock *BB = Builder.GetInsertBlock(); 3154 Module *M = BB->getParent()->getParent(); 3155 auto PT = cast<PointerType>(Addr->getType()); 3156 Type *Ty = PT->getElementType(); 3157 unsigned SZ = Ty->getPrimitiveSizeInBits(); 3158 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported"); 3159 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked 3160 : Intrinsic::hexagon_L4_loadd_locked; 3161 Function *Fn = Intrinsic::getDeclaration(M, IntID); 3162 3163 PointerType *NewPtrTy 3164 = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace()); 3165 Addr = Builder.CreateBitCast(Addr, NewPtrTy); 3166 3167 Value *Call = Builder.CreateCall(Fn, Addr, "larx"); 3168 3169 return Builder.CreateBitCast(Call, Ty); 3170 } 3171 3172 /// Perform a store-conditional operation to Addr. Return the status of the 3173 /// store. This should be 0 if the store succeeded, non-zero otherwise. 3174 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder, 3175 Value *Val, Value *Addr, AtomicOrdering Ord) const { 3176 BasicBlock *BB = Builder.GetInsertBlock(); 3177 Module *M = BB->getParent()->getParent(); 3178 Type *Ty = Val->getType(); 3179 unsigned SZ = Ty->getPrimitiveSizeInBits(); 3180 3181 Type *CastTy = Builder.getIntNTy(SZ); 3182 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported"); 3183 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked 3184 : Intrinsic::hexagon_S4_stored_locked; 3185 Function *Fn = Intrinsic::getDeclaration(M, IntID); 3186 3187 unsigned AS = Addr->getType()->getPointerAddressSpace(); 3188 Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS)); 3189 Val = Builder.CreateBitCast(Val, CastTy); 3190 3191 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx"); 3192 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), ""); 3193 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext())); 3194 return Ext; 3195 } 3196 3197 TargetLowering::AtomicExpansionKind 3198 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 3199 // Do not expand loads and stores that don't exceed 64 bits. 3200 return LI->getType()->getPrimitiveSizeInBits() > 64 3201 ? AtomicExpansionKind::LLOnly 3202 : AtomicExpansionKind::None; 3203 } 3204 3205 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 3206 // Do not expand loads and stores that don't exceed 64 bits. 3207 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64; 3208 } 3209 3210 TargetLowering::AtomicExpansionKind 3211 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR( 3212 AtomicCmpXchgInst *AI) const { 3213 const DataLayout &DL = AI->getModule()->getDataLayout(); 3214 unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 3215 if (Size >= 4 && Size <= 8) 3216 return AtomicExpansionKind::LLSC; 3217 return AtomicExpansionKind::None; 3218 } 3219