1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that Hexagon uses to lower LLVM code 10 // into a selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "HexagonISelLowering.h" 15 #include "Hexagon.h" 16 #include "HexagonMachineFunctionInfo.h" 17 #include "HexagonRegisterInfo.h" 18 #include "HexagonSubtarget.h" 19 #include "HexagonTargetMachine.h" 20 #include "HexagonTargetObjectFile.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/TargetCallingConv.h" 33 #include "llvm/CodeGen/ValueTypes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <limits> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "hexagon-lowering" 66 67 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables", 68 cl::init(true), cl::Hidden, 69 cl::desc("Control jump table emission on Hexagon target")); 70 71 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched", 72 cl::Hidden, cl::ZeroOrMore, cl::init(false), 73 cl::desc("Enable Hexagon SDNode scheduling")); 74 75 static cl::opt<bool> EnableFastMath("ffast-math", 76 cl::Hidden, cl::ZeroOrMore, cl::init(false), 77 cl::desc("Enable Fast Math processing")); 78 79 static cl::opt<int> MinimumJumpTables("minimum-jump-tables", 80 cl::Hidden, cl::ZeroOrMore, cl::init(5), 81 cl::desc("Set minimum jump tables")); 82 83 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy", 84 cl::Hidden, cl::ZeroOrMore, cl::init(6), 85 cl::desc("Max #stores to inline memcpy")); 86 87 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", 88 cl::Hidden, cl::ZeroOrMore, cl::init(4), 89 cl::desc("Max #stores to inline memcpy")); 90 91 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove", 92 cl::Hidden, cl::ZeroOrMore, cl::init(6), 93 cl::desc("Max #stores to inline memmove")); 94 95 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", 96 cl::Hidden, cl::ZeroOrMore, cl::init(4), 97 cl::desc("Max #stores to inline memmove")); 98 99 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset", 100 cl::Hidden, cl::ZeroOrMore, cl::init(8), 101 cl::desc("Max #stores to inline memset")); 102 103 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", 104 cl::Hidden, cl::ZeroOrMore, cl::init(4), 105 cl::desc("Max #stores to inline memset")); 106 107 static cl::opt<bool> AlignLoads("hexagon-align-loads", 108 cl::Hidden, cl::init(false), 109 cl::desc("Rewrite unaligned loads as a pair of aligned loads")); 110 111 112 namespace { 113 114 class HexagonCCState : public CCState { 115 unsigned NumNamedVarArgParams = 0; 116 117 public: 118 HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF, 119 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, 120 unsigned NumNamedArgs) 121 : CCState(CC, IsVarArg, MF, locs, C), 122 NumNamedVarArgParams(NumNamedArgs) {} 123 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; } 124 }; 125 126 } // end anonymous namespace 127 128 129 // Implement calling convention for Hexagon. 130 131 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 132 CCValAssign::LocInfo &LocInfo, 133 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 134 static const MCPhysReg ArgRegs[] = { 135 Hexagon::R0, Hexagon::R1, Hexagon::R2, 136 Hexagon::R3, Hexagon::R4, Hexagon::R5 137 }; 138 const unsigned NumArgRegs = array_lengthof(ArgRegs); 139 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 140 141 // RegNum is an index into ArgRegs: skip a register if RegNum is odd. 142 if (RegNum != NumArgRegs && RegNum % 2 == 1) 143 State.AllocateReg(ArgRegs[RegNum]); 144 145 // Always return false here, as this function only makes sure that the first 146 // unallocated register has an even register number and does not actually 147 // allocate a register for the current argument. 148 return false; 149 } 150 151 #include "HexagonGenCallingConv.inc" 152 153 154 SDValue 155 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) 156 const { 157 return SDValue(); 158 } 159 160 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 161 /// by "Src" to address "Dst" of size "Size". Alignment information is 162 /// specified by the specific parameter attribute. The copy will be passed as 163 /// a byval function parameter. Sometimes what we are copying is the end of a 164 /// larger object, the part that does not fit in registers. 165 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 166 SDValue Chain, ISD::ArgFlagsTy Flags, 167 SelectionDAG &DAG, const SDLoc &dl) { 168 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 169 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 170 /*isVolatile=*/false, /*AlwaysInline=*/false, 171 /*isTailCall=*/false, 172 MachinePointerInfo(), MachinePointerInfo()); 173 } 174 175 bool 176 HexagonTargetLowering::CanLowerReturn( 177 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 178 const SmallVectorImpl<ISD::OutputArg> &Outs, 179 LLVMContext &Context) const { 180 SmallVector<CCValAssign, 16> RVLocs; 181 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 182 183 if (MF.getSubtarget<HexagonSubtarget>().useHVXOps()) 184 return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX); 185 return CCInfo.CheckReturn(Outs, RetCC_Hexagon); 186 } 187 188 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is 189 // passed by value, the function prototype is modified to return void and 190 // the value is stored in memory pointed by a pointer passed by caller. 191 SDValue 192 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 193 bool IsVarArg, 194 const SmallVectorImpl<ISD::OutputArg> &Outs, 195 const SmallVectorImpl<SDValue> &OutVals, 196 const SDLoc &dl, SelectionDAG &DAG) const { 197 // CCValAssign - represent the assignment of the return value to locations. 198 SmallVector<CCValAssign, 16> RVLocs; 199 200 // CCState - Info about the registers and stack slot. 201 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 202 *DAG.getContext()); 203 204 // Analyze return values of ISD::RET 205 if (Subtarget.useHVXOps()) 206 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX); 207 else 208 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); 209 210 SDValue Flag; 211 SmallVector<SDValue, 4> RetOps(1, Chain); 212 213 // Copy the result values into the output registers. 214 for (unsigned i = 0; i != RVLocs.size(); ++i) { 215 CCValAssign &VA = RVLocs[i]; 216 217 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 218 219 // Guarantee that all emitted copies are stuck together with flags. 220 Flag = Chain.getValue(1); 221 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 222 } 223 224 RetOps[0] = Chain; // Update chain. 225 226 // Add the flag if we have it. 227 if (Flag.getNode()) 228 RetOps.push_back(Flag); 229 230 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps); 231 } 232 233 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 234 // If either no tail call or told not to tail call at all, don't. 235 auto Attr = 236 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); 237 if (!CI->isTailCall() || Attr.getValueAsString() == "true") 238 return false; 239 240 return true; 241 } 242 243 Register HexagonTargetLowering::getRegisterByName(const char* RegName, EVT VT, 244 const MachineFunction &) const { 245 // Just support r19, the linux kernel uses it. 246 Register Reg = StringSwitch<Register>(RegName) 247 .Case("r19", Hexagon::R19) 248 .Default(Register()); 249 if (Reg) 250 return Reg; 251 252 report_fatal_error("Invalid register name global variable"); 253 } 254 255 /// LowerCallResult - Lower the result values of an ISD::CALL into the 256 /// appropriate copies out of appropriate physical registers. This assumes that 257 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call 258 /// being lowered. Returns a SDNode with the same number of values as the 259 /// ISD::CALL. 260 SDValue HexagonTargetLowering::LowerCallResult( 261 SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg, 262 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 263 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 264 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const { 265 // Assign locations to each value returned by this call. 266 SmallVector<CCValAssign, 16> RVLocs; 267 268 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 269 *DAG.getContext()); 270 271 if (Subtarget.useHVXOps()) 272 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX); 273 else 274 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); 275 276 // Copy all of the result registers out of their specified physreg. 277 for (unsigned i = 0; i != RVLocs.size(); ++i) { 278 SDValue RetVal; 279 if (RVLocs[i].getValVT() == MVT::i1) { 280 // Return values of type MVT::i1 require special handling. The reason 281 // is that MVT::i1 is associated with the PredRegs register class, but 282 // values of that type are still returned in R0. Generate an explicit 283 // copy into a predicate register from R0, and treat the value of the 284 // predicate register as the call result. 285 auto &MRI = DAG.getMachineFunction().getRegInfo(); 286 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 287 MVT::i32, Glue); 288 // FR0 = (Value, Chain, Glue) 289 Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); 290 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR, 291 FR0.getValue(0), FR0.getValue(2)); 292 // TPR = (Chain, Glue) 293 // Don't glue this CopyFromReg, because it copies from a virtual 294 // register. If it is glued to the call, InstrEmitter will add it 295 // as an implicit def to the call (EmitMachineNode). 296 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1); 297 Glue = TPR.getValue(1); 298 Chain = TPR.getValue(0); 299 } else { 300 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 301 RVLocs[i].getValVT(), Glue); 302 Glue = RetVal.getValue(2); 303 Chain = RetVal.getValue(1); 304 } 305 InVals.push_back(RetVal.getValue(0)); 306 } 307 308 return Chain; 309 } 310 311 /// LowerCall - Functions arguments are copied from virtual regs to 312 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 313 SDValue 314 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 315 SmallVectorImpl<SDValue> &InVals) const { 316 SelectionDAG &DAG = CLI.DAG; 317 SDLoc &dl = CLI.DL; 318 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 319 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 320 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 321 SDValue Chain = CLI.Chain; 322 SDValue Callee = CLI.Callee; 323 CallingConv::ID CallConv = CLI.CallConv; 324 bool IsVarArg = CLI.IsVarArg; 325 bool DoesNotReturn = CLI.DoesNotReturn; 326 327 bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 328 MachineFunction &MF = DAG.getMachineFunction(); 329 MachineFrameInfo &MFI = MF.getFrameInfo(); 330 auto PtrVT = getPointerTy(MF.getDataLayout()); 331 332 unsigned NumParams = CLI.CS.getInstruction() 333 ? CLI.CS.getFunctionType()->getNumParams() 334 : 0; 335 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) 336 Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32); 337 338 // Analyze operands of the call, assigning locations to each operand. 339 SmallVector<CCValAssign, 16> ArgLocs; 340 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(), 341 NumParams); 342 343 if (Subtarget.useHVXOps()) 344 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX); 345 else 346 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); 347 348 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls"); 349 if (Attr.getValueAsString() == "true") 350 CLI.IsTailCall = false; 351 352 if (CLI.IsTailCall) { 353 bool StructAttrFlag = MF.getFunction().hasStructRetAttr(); 354 CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, 355 IsVarArg, IsStructRet, StructAttrFlag, Outs, 356 OutVals, Ins, DAG); 357 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 358 CCValAssign &VA = ArgLocs[i]; 359 if (VA.isMemLoc()) { 360 CLI.IsTailCall = false; 361 break; 362 } 363 } 364 LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n" 365 : "Argument must be passed on stack. " 366 "Not eligible for Tail Call\n")); 367 } 368 // Get a count of how many bytes are to be pushed on the stack. 369 unsigned NumBytes = CCInfo.getNextStackOffset(); 370 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; 371 SmallVector<SDValue, 8> MemOpChains; 372 373 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 374 SDValue StackPtr = 375 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT); 376 377 bool NeedsArgAlign = false; 378 unsigned LargestAlignSeen = 0; 379 // Walk the register/memloc assignments, inserting copies/loads. 380 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 381 CCValAssign &VA = ArgLocs[i]; 382 SDValue Arg = OutVals[i]; 383 ISD::ArgFlagsTy Flags = Outs[i].Flags; 384 // Record if we need > 8 byte alignment on an argument. 385 bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT()); 386 NeedsArgAlign |= ArgAlign; 387 388 // Promote the value if needed. 389 switch (VA.getLocInfo()) { 390 default: 391 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt. 392 llvm_unreachable("Unknown loc info!"); 393 case CCValAssign::Full: 394 break; 395 case CCValAssign::BCvt: 396 Arg = DAG.getBitcast(VA.getLocVT(), Arg); 397 break; 398 case CCValAssign::SExt: 399 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 400 break; 401 case CCValAssign::ZExt: 402 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 403 break; 404 case CCValAssign::AExt: 405 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 406 break; 407 } 408 409 if (VA.isMemLoc()) { 410 unsigned LocMemOffset = VA.getLocMemOffset(); 411 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl, 412 StackPtr.getValueType()); 413 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr); 414 if (ArgAlign) 415 LargestAlignSeen = std::max(LargestAlignSeen, 416 VA.getLocVT().getStoreSizeInBits() >> 3); 417 if (Flags.isByVal()) { 418 // The argument is a struct passed by value. According to LLVM, "Arg" 419 // is a pointer. 420 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain, 421 Flags, DAG, dl)); 422 } else { 423 MachinePointerInfo LocPI = MachinePointerInfo::getStack( 424 DAG.getMachineFunction(), LocMemOffset); 425 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI); 426 MemOpChains.push_back(S); 427 } 428 continue; 429 } 430 431 // Arguments that can be passed on register must be kept at RegsToPass 432 // vector. 433 if (VA.isRegLoc()) 434 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 435 } 436 437 if (NeedsArgAlign && Subtarget.hasV60Ops()) { 438 LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n"); 439 unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); 440 LargestAlignSeen = std::max(LargestAlignSeen, VecAlign); 441 MFI.ensureMaxAlignment(LargestAlignSeen); 442 } 443 // Transform all store nodes into one single node because all store 444 // nodes are independent of each other. 445 if (!MemOpChains.empty()) 446 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 447 448 SDValue Glue; 449 if (!CLI.IsTailCall) { 450 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 451 Glue = Chain.getValue(1); 452 } 453 454 // Build a sequence of copy-to-reg nodes chained together with token 455 // chain and flag operands which copy the outgoing args into registers. 456 // The Glue is necessary since all emitted instructions must be 457 // stuck together. 458 if (!CLI.IsTailCall) { 459 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 460 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 461 RegsToPass[i].second, Glue); 462 Glue = Chain.getValue(1); 463 } 464 } else { 465 // For tail calls lower the arguments to the 'real' stack slot. 466 // 467 // Force all the incoming stack arguments to be loaded from the stack 468 // before any new outgoing arguments are stored to the stack, because the 469 // outgoing stack slots may alias the incoming argument stack slots, and 470 // the alias isn't otherwise explicit. This is slightly more conservative 471 // than necessary, because it means that each store effectively depends 472 // on every argument instead of just those arguments it would clobber. 473 // 474 // Do not flag preceding copytoreg stuff together with the following stuff. 475 Glue = SDValue(); 476 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 477 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 478 RegsToPass[i].second, Glue); 479 Glue = Chain.getValue(1); 480 } 481 Glue = SDValue(); 482 } 483 484 bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls(); 485 unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0; 486 487 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 488 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 489 // node so that legalize doesn't hack it. 490 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 491 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags); 492 } else if (ExternalSymbolSDNode *S = 493 dyn_cast<ExternalSymbolSDNode>(Callee)) { 494 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags); 495 } 496 497 // Returns a chain & a flag for retval copy to use. 498 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 499 SmallVector<SDValue, 8> Ops; 500 Ops.push_back(Chain); 501 Ops.push_back(Callee); 502 503 // Add argument registers to the end of the list so that they are 504 // known live into the call. 505 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 506 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 507 RegsToPass[i].second.getValueType())); 508 } 509 510 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv); 511 assert(Mask && "Missing call preserved mask for calling convention"); 512 Ops.push_back(DAG.getRegisterMask(Mask)); 513 514 if (Glue.getNode()) 515 Ops.push_back(Glue); 516 517 if (CLI.IsTailCall) { 518 MFI.setHasTailCall(); 519 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops); 520 } 521 522 // Set this here because we need to know this for "hasFP" in frame lowering. 523 // The target-independent code calls getFrameRegister before setting it, and 524 // getFrameRegister uses hasFP to determine whether the function has FP. 525 MFI.setHasCalls(true); 526 527 unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL; 528 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops); 529 Glue = Chain.getValue(1); 530 531 // Create the CALLSEQ_END node. 532 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 533 DAG.getIntPtrConstant(0, dl, true), Glue, dl); 534 Glue = Chain.getValue(1); 535 536 // Handle result values, copying them out of physregs into vregs that we 537 // return. 538 return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG, 539 InVals, OutVals, Callee); 540 } 541 542 /// Returns true by value, base pointer and offset pointer and addressing 543 /// mode by reference if this node can be combined with a load / store to 544 /// form a post-indexed load / store. 545 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 546 SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, 547 SelectionDAG &DAG) const { 548 LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N); 549 if (!LSN) 550 return false; 551 EVT VT = LSN->getMemoryVT(); 552 if (!VT.isSimple()) 553 return false; 554 bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || 555 VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 || 556 VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 || 557 VT == MVT::v4i16 || VT == MVT::v8i8 || 558 Subtarget.isHVXVectorType(VT.getSimpleVT()); 559 if (!IsLegalType) 560 return false; 561 562 if (Op->getOpcode() != ISD::ADD) 563 return false; 564 Base = Op->getOperand(0); 565 Offset = Op->getOperand(1); 566 if (!isa<ConstantSDNode>(Offset.getNode())) 567 return false; 568 AM = ISD::POST_INC; 569 570 int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 571 return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V); 572 } 573 574 SDValue 575 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 576 MachineFunction &MF = DAG.getMachineFunction(); 577 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 578 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 579 unsigned LR = HRI.getRARegister(); 580 581 if ((Op.getOpcode() != ISD::INLINEASM && 582 Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR()) 583 return Op; 584 585 unsigned NumOps = Op.getNumOperands(); 586 if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue) 587 --NumOps; // Ignore the flag operand. 588 589 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 590 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 591 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 592 ++i; // Skip the ID value. 593 594 switch (InlineAsm::getKind(Flags)) { 595 default: 596 llvm_unreachable("Bad flags!"); 597 case InlineAsm::Kind_RegUse: 598 case InlineAsm::Kind_Imm: 599 case InlineAsm::Kind_Mem: 600 i += NumVals; 601 break; 602 case InlineAsm::Kind_Clobber: 603 case InlineAsm::Kind_RegDef: 604 case InlineAsm::Kind_RegDefEarlyClobber: { 605 for (; NumVals; --NumVals, ++i) { 606 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 607 if (Reg != LR) 608 continue; 609 HMFI.setHasClobberLR(true); 610 return Op; 611 } 612 break; 613 } 614 } 615 } 616 617 return Op; 618 } 619 620 // Need to transform ISD::PREFETCH into something that doesn't inherit 621 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and 622 // SDNPMayStore. 623 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op, 624 SelectionDAG &DAG) const { 625 SDValue Chain = Op.getOperand(0); 626 SDValue Addr = Op.getOperand(1); 627 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in, 628 // if the "reg" is fed by an "add". 629 SDLoc DL(Op); 630 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 631 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); 632 } 633 634 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode 635 // is marked as having side-effects, while the register read on Hexagon does 636 // not have any. TableGen refuses to accept the direct pattern from that node 637 // to the A4_tfrcpp. 638 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op, 639 SelectionDAG &DAG) const { 640 SDValue Chain = Op.getOperand(0); 641 SDLoc dl(Op); 642 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 643 return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain); 644 } 645 646 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 647 SelectionDAG &DAG) const { 648 SDValue Chain = Op.getOperand(0); 649 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 650 // Lower the hexagon_prefetch builtin to DCFETCH, as above. 651 if (IntNo == Intrinsic::hexagon_prefetch) { 652 SDValue Addr = Op.getOperand(2); 653 SDLoc DL(Op); 654 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 655 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); 656 } 657 return SDValue(); 658 } 659 660 SDValue 661 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 662 SelectionDAG &DAG) const { 663 SDValue Chain = Op.getOperand(0); 664 SDValue Size = Op.getOperand(1); 665 SDValue Align = Op.getOperand(2); 666 SDLoc dl(Op); 667 668 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align); 669 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC"); 670 671 unsigned A = AlignConst->getSExtValue(); 672 auto &HFI = *Subtarget.getFrameLowering(); 673 // "Zero" means natural stack alignment. 674 if (A == 0) 675 A = HFI.getStackAlignment(); 676 677 LLVM_DEBUG({ 678 dbgs () << __func__ << " Align: " << A << " Size: "; 679 Size.getNode()->dump(&DAG); 680 dbgs() << "\n"; 681 }); 682 683 SDValue AC = DAG.getConstant(A, dl, MVT::i32); 684 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 685 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC); 686 687 DAG.ReplaceAllUsesOfValueWith(Op, AA); 688 return AA; 689 } 690 691 SDValue HexagonTargetLowering::LowerFormalArguments( 692 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 693 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 694 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 695 MachineFunction &MF = DAG.getMachineFunction(); 696 MachineFrameInfo &MFI = MF.getFrameInfo(); 697 MachineRegisterInfo &MRI = MF.getRegInfo(); 698 699 // Assign locations to all of the incoming arguments. 700 SmallVector<CCValAssign, 16> ArgLocs; 701 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(), 702 MF.getFunction().getFunctionType()->getNumParams()); 703 704 if (Subtarget.useHVXOps()) 705 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX); 706 else 707 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); 708 709 // For LLVM, in the case when returning a struct by value (>8byte), 710 // the first argument is a pointer that points to the location on caller's 711 // stack where the return value will be stored. For Hexagon, the location on 712 // caller's stack is passed only when the struct size is smaller than (and 713 // equal to) 8 bytes. If not, no address will be passed into callee and 714 // callee return the result direclty through R0/R1. 715 716 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 717 718 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 719 CCValAssign &VA = ArgLocs[i]; 720 ISD::ArgFlagsTy Flags = Ins[i].Flags; 721 bool ByVal = Flags.isByVal(); 722 723 // Arguments passed in registers: 724 // 1. 32- and 64-bit values and HVX vectors are passed directly, 725 // 2. Large structs are passed via an address, and the address is 726 // passed in a register. 727 if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8) 728 llvm_unreachable("ByValSize must be bigger than 8 bytes"); 729 730 bool InReg = VA.isRegLoc() && 731 (!ByVal || (ByVal && Flags.getByValSize() > 8)); 732 733 if (InReg) { 734 MVT RegVT = VA.getLocVT(); 735 if (VA.getLocInfo() == CCValAssign::BCvt) 736 RegVT = VA.getValVT(); 737 738 const TargetRegisterClass *RC = getRegClassFor(RegVT); 739 Register VReg = MRI.createVirtualRegister(RC); 740 SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 741 742 // Treat values of type MVT::i1 specially: they are passed in 743 // registers of type i32, but they need to remain as values of 744 // type i1 for consistency of the argument lowering. 745 if (VA.getValVT() == MVT::i1) { 746 assert(RegVT.getSizeInBits() <= 32); 747 SDValue T = DAG.getNode(ISD::AND, dl, RegVT, 748 Copy, DAG.getConstant(1, dl, RegVT)); 749 Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT), 750 ISD::SETNE); 751 } else { 752 #ifndef NDEBUG 753 unsigned RegSize = RegVT.getSizeInBits(); 754 assert(RegSize == 32 || RegSize == 64 || 755 Subtarget.isHVXVectorType(RegVT)); 756 #endif 757 } 758 InVals.push_back(Copy); 759 MRI.addLiveIn(VA.getLocReg(), VReg); 760 } else { 761 assert(VA.isMemLoc() && "Argument should be passed in memory"); 762 763 // If it's a byval parameter, then we need to compute the 764 // "real" size, not the size of the pointer. 765 unsigned ObjSize = Flags.isByVal() 766 ? Flags.getByValSize() 767 : VA.getLocVT().getStoreSizeInBits() / 8; 768 769 // Create the frame index object for this incoming parameter. 770 int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); 771 int FI = MFI.CreateFixedObject(ObjSize, Offset, true); 772 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 773 774 if (Flags.isByVal()) { 775 // If it's a pass-by-value aggregate, then do not dereference the stack 776 // location. Instead, we should generate a reference to the stack 777 // location. 778 InVals.push_back(FIN); 779 } else { 780 SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 781 MachinePointerInfo::getFixedStack(MF, FI, 0)); 782 InVals.push_back(L); 783 } 784 } 785 } 786 787 788 if (IsVarArg) { 789 // This will point to the next argument passed via stack. 790 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset(); 791 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true); 792 HMFI.setVarArgsFrameIndex(FI); 793 } 794 795 return Chain; 796 } 797 798 SDValue 799 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 800 // VASTART stores the address of the VarArgsFrameIndex slot into the 801 // memory location argument. 802 MachineFunction &MF = DAG.getMachineFunction(); 803 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>(); 804 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); 805 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 806 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1), 807 MachinePointerInfo(SV)); 808 } 809 810 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 811 const SDLoc &dl(Op); 812 SDValue LHS = Op.getOperand(0); 813 SDValue RHS = Op.getOperand(1); 814 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 815 MVT ResTy = ty(Op); 816 MVT OpTy = ty(LHS); 817 818 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) { 819 MVT ElemTy = OpTy.getVectorElementType(); 820 assert(ElemTy.isScalarInteger()); 821 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()), 822 OpTy.getVectorNumElements()); 823 return DAG.getSetCC(dl, ResTy, 824 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy), 825 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC); 826 } 827 828 // Treat all other vector types as legal. 829 if (ResTy.isVector()) 830 return Op; 831 832 // Comparisons of short integers should use sign-extend, not zero-extend, 833 // since we can represent small negative values in the compare instructions. 834 // The LLVM default is to use zero-extend arbitrarily in these cases. 835 auto isSExtFree = [this](SDValue N) { 836 switch (N.getOpcode()) { 837 case ISD::TRUNCATE: { 838 // A sign-extend of a truncate of a sign-extend is free. 839 SDValue Op = N.getOperand(0); 840 if (Op.getOpcode() != ISD::AssertSext) 841 return false; 842 EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT(); 843 unsigned ThisBW = ty(N).getSizeInBits(); 844 unsigned OrigBW = OrigTy.getSizeInBits(); 845 // The type that was sign-extended to get the AssertSext must be 846 // narrower than the type of N (so that N has still the same value 847 // as the original). 848 return ThisBW >= OrigBW; 849 } 850 case ISD::LOAD: 851 // We have sign-extended loads. 852 return true; 853 } 854 return false; 855 }; 856 857 if (OpTy == MVT::i8 || OpTy == MVT::i16) { 858 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS); 859 bool IsNegative = C && C->getAPIntValue().isNegative(); 860 if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS)) 861 return DAG.getSetCC(dl, ResTy, 862 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32), 863 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC); 864 } 865 866 return SDValue(); 867 } 868 869 SDValue 870 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { 871 SDValue PredOp = Op.getOperand(0); 872 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2); 873 MVT OpTy = ty(Op1); 874 const SDLoc &dl(Op); 875 876 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) { 877 MVT ElemTy = OpTy.getVectorElementType(); 878 assert(ElemTy.isScalarInteger()); 879 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()), 880 OpTy.getVectorNumElements()); 881 // Generate (trunc (select (_, sext, sext))). 882 return DAG.getSExtOrTrunc( 883 DAG.getSelect(dl, WideTy, PredOp, 884 DAG.getSExtOrTrunc(Op1, dl, WideTy), 885 DAG.getSExtOrTrunc(Op2, dl, WideTy)), 886 dl, OpTy); 887 } 888 889 return SDValue(); 890 } 891 892 static Constant *convert_i1_to_i8(const Constant *ConstVal) { 893 SmallVector<Constant *, 128> NewConst; 894 const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal); 895 if (!CV) 896 return nullptr; 897 898 LLVMContext &Ctx = ConstVal->getContext(); 899 IRBuilder<> IRB(Ctx); 900 unsigned NumVectorElements = CV->getNumOperands(); 901 assert(isPowerOf2_32(NumVectorElements) && 902 "conversion only supported for pow2 VectorSize!"); 903 904 for (unsigned i = 0; i < NumVectorElements / 8; ++i) { 905 uint8_t x = 0; 906 for (unsigned j = 0; j < 8; ++j) { 907 uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue(); 908 x |= y << (7 - j); 909 } 910 assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!"); 911 NewConst.push_back(IRB.getInt8(x)); 912 } 913 return ConstantVector::get(NewConst); 914 } 915 916 SDValue 917 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { 918 EVT ValTy = Op.getValueType(); 919 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op); 920 Constant *CVal = nullptr; 921 bool isVTi1Type = false; 922 if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) { 923 Type *CValTy = ConstVal->getType(); 924 if (CValTy->isVectorTy() && 925 CValTy->getVectorElementType()->isIntegerTy(1)) { 926 CVal = convert_i1_to_i8(ConstVal); 927 isVTi1Type = (CVal != nullptr); 928 } 929 } 930 unsigned Align = CPN->getAlignment(); 931 bool IsPositionIndependent = isPositionIndependent(); 932 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0; 933 934 unsigned Offset = 0; 935 SDValue T; 936 if (CPN->isMachineConstantPoolEntry()) 937 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset, 938 TF); 939 else if (isVTi1Type) 940 T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF); 941 else 942 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF); 943 944 assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF && 945 "Inconsistent target flag encountered"); 946 947 if (IsPositionIndependent) 948 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T); 949 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T); 950 } 951 952 SDValue 953 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 954 EVT VT = Op.getValueType(); 955 int Idx = cast<JumpTableSDNode>(Op)->getIndex(); 956 if (isPositionIndependent()) { 957 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); 958 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T); 959 } 960 961 SDValue T = DAG.getTargetJumpTable(Idx, VT); 962 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T); 963 } 964 965 SDValue 966 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 967 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 968 MachineFunction &MF = DAG.getMachineFunction(); 969 MachineFrameInfo &MFI = MF.getFrameInfo(); 970 MFI.setReturnAddressIsTaken(true); 971 972 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 973 return SDValue(); 974 975 EVT VT = Op.getValueType(); 976 SDLoc dl(Op); 977 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 978 if (Depth) { 979 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 980 SDValue Offset = DAG.getConstant(4, dl, MVT::i32); 981 return DAG.getLoad(VT, dl, DAG.getEntryNode(), 982 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), 983 MachinePointerInfo()); 984 } 985 986 // Return LR, which contains the return address. Mark it an implicit live-in. 987 unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32)); 988 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); 989 } 990 991 SDValue 992 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 993 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 994 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 995 MFI.setFrameAddressIsTaken(true); 996 997 EVT VT = Op.getValueType(); 998 SDLoc dl(Op); 999 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1000 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 1001 HRI.getFrameRegister(), VT); 1002 while (Depth--) 1003 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 1004 MachinePointerInfo()); 1005 return FrameAddr; 1006 } 1007 1008 SDValue 1009 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { 1010 SDLoc dl(Op); 1011 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); 1012 } 1013 1014 SDValue 1015 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { 1016 SDLoc dl(Op); 1017 auto *GAN = cast<GlobalAddressSDNode>(Op); 1018 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1019 auto *GV = GAN->getGlobal(); 1020 int64_t Offset = GAN->getOffset(); 1021 1022 auto &HLOF = *HTM.getObjFileLowering(); 1023 Reloc::Model RM = HTM.getRelocationModel(); 1024 1025 if (RM == Reloc::Static) { 1026 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); 1027 const GlobalObject *GO = GV->getBaseObject(); 1028 if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM)) 1029 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA); 1030 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA); 1031 } 1032 1033 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 1034 if (UsePCRel) { 1035 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset, 1036 HexagonII::MO_PCREL); 1037 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA); 1038 } 1039 1040 // Use GOT index. 1041 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 1042 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT); 1043 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32); 1044 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off); 1045 } 1046 1047 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT. 1048 SDValue 1049 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { 1050 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1051 SDLoc dl(Op); 1052 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1053 1054 Reloc::Model RM = HTM.getRelocationModel(); 1055 if (RM == Reloc::Static) { 1056 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT); 1057 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A); 1058 } 1059 1060 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL); 1061 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A); 1062 } 1063 1064 SDValue 1065 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) 1066 const { 1067 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1068 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT, 1069 HexagonII::MO_PCREL); 1070 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym); 1071 } 1072 1073 SDValue 1074 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain, 1075 GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg, 1076 unsigned char OperandFlags) const { 1077 MachineFunction &MF = DAG.getMachineFunction(); 1078 MachineFrameInfo &MFI = MF.getFrameInfo(); 1079 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1080 SDLoc dl(GA); 1081 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, 1082 GA->getValueType(0), 1083 GA->getOffset(), 1084 OperandFlags); 1085 // Create Operands for the call.The Operands should have the following: 1086 // 1. Chain SDValue 1087 // 2. Callee which in this case is the Global address value. 1088 // 3. Registers live into the call.In this case its R0, as we 1089 // have just one argument to be passed. 1090 // 4. Glue. 1091 // Note: The order is important. 1092 1093 const auto &HRI = *Subtarget.getRegisterInfo(); 1094 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C); 1095 assert(Mask && "Missing call preserved mask for calling convention"); 1096 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT), 1097 DAG.getRegisterMask(Mask), Glue }; 1098 Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops); 1099 1100 // Inform MFI that function has calls. 1101 MFI.setAdjustsStack(true); 1102 1103 Glue = Chain.getValue(1); 1104 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue); 1105 } 1106 1107 // 1108 // Lower using the intial executable model for TLS addresses 1109 // 1110 SDValue 1111 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA, 1112 SelectionDAG &DAG) const { 1113 SDLoc dl(GA); 1114 int64_t Offset = GA->getOffset(); 1115 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1116 1117 // Get the thread pointer. 1118 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); 1119 1120 bool IsPositionIndependent = isPositionIndependent(); 1121 unsigned char TF = 1122 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE; 1123 1124 // First generate the TLS symbol address 1125 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, 1126 Offset, TF); 1127 1128 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1129 1130 if (IsPositionIndependent) { 1131 // Generate the GOT pointer in case of position independent code 1132 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG); 1133 1134 // Add the TLS Symbol address to GOT pointer.This gives 1135 // GOT relative relocation for the symbol. 1136 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); 1137 } 1138 1139 // Load the offset value for TLS symbol.This offset is relative to 1140 // thread pointer. 1141 SDValue LoadOffset = 1142 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo()); 1143 1144 // Address of the thread local variable is the add of thread 1145 // pointer and the offset of the variable. 1146 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset); 1147 } 1148 1149 // 1150 // Lower using the local executable model for TLS addresses 1151 // 1152 SDValue 1153 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA, 1154 SelectionDAG &DAG) const { 1155 SDLoc dl(GA); 1156 int64_t Offset = GA->getOffset(); 1157 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1158 1159 // Get the thread pointer. 1160 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); 1161 // Generate the TLS symbol address 1162 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, 1163 HexagonII::MO_TPREL); 1164 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1165 1166 // Address of the thread local variable is the add of thread 1167 // pointer and the offset of the variable. 1168 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym); 1169 } 1170 1171 // 1172 // Lower using the general dynamic model for TLS addresses 1173 // 1174 SDValue 1175 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 1176 SelectionDAG &DAG) const { 1177 SDLoc dl(GA); 1178 int64_t Offset = GA->getOffset(); 1179 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1180 1181 // First generate the TLS symbol address 1182 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, 1183 HexagonII::MO_GDGOT); 1184 1185 // Then, generate the GOT pointer 1186 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG); 1187 1188 // Add the TLS symbol and the GOT pointer 1189 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1190 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); 1191 1192 // Copy over the argument to R0 1193 SDValue InFlag; 1194 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag); 1195 InFlag = Chain.getValue(1); 1196 1197 unsigned Flags = 1198 static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls() 1199 ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended 1200 : HexagonII::MO_GDPLT; 1201 1202 return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT, 1203 Hexagon::R0, Flags); 1204 } 1205 1206 // 1207 // Lower TLS addresses. 1208 // 1209 // For now for dynamic models, we only support the general dynamic model. 1210 // 1211 SDValue 1212 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1213 SelectionDAG &DAG) const { 1214 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 1215 1216 switch (HTM.getTLSModel(GA->getGlobal())) { 1217 case TLSModel::GeneralDynamic: 1218 case TLSModel::LocalDynamic: 1219 return LowerToTLSGeneralDynamicModel(GA, DAG); 1220 case TLSModel::InitialExec: 1221 return LowerToTLSInitialExecModel(GA, DAG); 1222 case TLSModel::LocalExec: 1223 return LowerToTLSLocalExecModel(GA, DAG); 1224 } 1225 llvm_unreachable("Bogus TLS model"); 1226 } 1227 1228 //===----------------------------------------------------------------------===// 1229 // TargetLowering Implementation 1230 //===----------------------------------------------------------------------===// 1231 1232 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM, 1233 const HexagonSubtarget &ST) 1234 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)), 1235 Subtarget(ST) { 1236 auto &HRI = *Subtarget.getRegisterInfo(); 1237 1238 setPrefLoopAlignment(Align(16)); 1239 setMinFunctionAlignment(Align(4)); 1240 setPrefFunctionAlignment(Align(16)); 1241 setStackPointerRegisterToSaveRestore(HRI.getStackRegister()); 1242 setBooleanContents(TargetLoweringBase::UndefinedBooleanContent); 1243 setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent); 1244 1245 setMaxAtomicSizeInBitsSupported(64); 1246 setMinCmpXchgSizeInBits(32); 1247 1248 if (EnableHexSDNodeSched) 1249 setSchedulingPreference(Sched::VLIW); 1250 else 1251 setSchedulingPreference(Sched::Source); 1252 1253 // Limits for inline expansion of memcpy/memmove 1254 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL; 1255 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL; 1256 MaxStoresPerMemmove = MaxStoresPerMemmoveCL; 1257 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL; 1258 MaxStoresPerMemset = MaxStoresPerMemsetCL; 1259 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL; 1260 1261 // 1262 // Set up register classes. 1263 // 1264 1265 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); 1266 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa 1267 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa 1268 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba 1269 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); 1270 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass); 1271 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass); 1272 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); 1273 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass); 1274 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass); 1275 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass); 1276 1277 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); 1278 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); 1279 1280 // 1281 // Handling of scalar operations. 1282 // 1283 // All operations default to "legal", except: 1284 // - indexed loads and stores (pre-/post-incremented), 1285 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS, 1286 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN, 1287 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP, 1288 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, 1289 // which default to "expand" for at least one type. 1290 1291 // Misc operations. 1292 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 1293 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 1294 setOperationAction(ISD::TRAP, MVT::Other, Legal); 1295 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 1296 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 1297 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 1298 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 1299 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 1300 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 1301 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 1302 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1303 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 1304 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 1305 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); 1306 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 1307 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 1308 1309 // Custom legalize GlobalAddress nodes into CONST32. 1310 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 1311 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); 1312 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 1313 1314 // Hexagon needs to optimize cases with negative constants. 1315 setOperationAction(ISD::SETCC, MVT::i8, Custom); 1316 setOperationAction(ISD::SETCC, MVT::i16, Custom); 1317 setOperationAction(ISD::SETCC, MVT::v4i8, Custom); 1318 setOperationAction(ISD::SETCC, MVT::v2i16, Custom); 1319 1320 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1321 setOperationAction(ISD::VASTART, MVT::Other, Custom); 1322 setOperationAction(ISD::VAEND, MVT::Other, Expand); 1323 setOperationAction(ISD::VAARG, MVT::Other, Expand); 1324 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 1325 1326 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 1327 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 1328 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 1329 1330 if (EmitJumpTables) 1331 setMinimumJumpTableEntries(MinimumJumpTables); 1332 else 1333 setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max()); 1334 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1335 1336 setOperationAction(ISD::ABS, MVT::i32, Legal); 1337 setOperationAction(ISD::ABS, MVT::i64, Legal); 1338 1339 // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit, 1340 // but they only operate on i64. 1341 for (MVT VT : MVT::integer_valuetypes()) { 1342 setOperationAction(ISD::UADDO, VT, Custom); 1343 setOperationAction(ISD::USUBO, VT, Custom); 1344 setOperationAction(ISD::SADDO, VT, Expand); 1345 setOperationAction(ISD::SSUBO, VT, Expand); 1346 setOperationAction(ISD::ADDCARRY, VT, Expand); 1347 setOperationAction(ISD::SUBCARRY, VT, Expand); 1348 } 1349 setOperationAction(ISD::ADDCARRY, MVT::i64, Custom); 1350 setOperationAction(ISD::SUBCARRY, MVT::i64, Custom); 1351 1352 setOperationAction(ISD::CTLZ, MVT::i8, Promote); 1353 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 1354 setOperationAction(ISD::CTTZ, MVT::i8, Promote); 1355 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 1356 1357 // Popcount can count # of 1s in i64 but returns i32. 1358 setOperationAction(ISD::CTPOP, MVT::i8, Promote); 1359 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 1360 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 1361 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 1362 1363 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 1364 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 1365 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 1366 setOperationAction(ISD::BSWAP, MVT::i64, Legal); 1367 1368 setOperationAction(ISD::FSHL, MVT::i32, Legal); 1369 setOperationAction(ISD::FSHL, MVT::i64, Legal); 1370 setOperationAction(ISD::FSHR, MVT::i32, Legal); 1371 setOperationAction(ISD::FSHR, MVT::i64, Legal); 1372 1373 for (unsigned IntExpOp : 1374 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, 1375 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR, 1376 ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, 1377 ISD::SMUL_LOHI, ISD::UMUL_LOHI}) { 1378 for (MVT VT : MVT::integer_valuetypes()) 1379 setOperationAction(IntExpOp, VT, Expand); 1380 } 1381 1382 for (unsigned FPExpOp : 1383 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS, 1384 ISD::FPOW, ISD::FCOPYSIGN}) { 1385 for (MVT VT : MVT::fp_valuetypes()) 1386 setOperationAction(FPExpOp, VT, Expand); 1387 } 1388 1389 // No extending loads from i32. 1390 for (MVT VT : MVT::integer_valuetypes()) { 1391 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 1392 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 1393 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 1394 } 1395 // Turn FP truncstore into trunc + store. 1396 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1397 // Turn FP extload into load/fpextend. 1398 for (MVT VT : MVT::fp_valuetypes()) 1399 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1400 1401 // Expand BR_CC and SELECT_CC for all integer and fp types. 1402 for (MVT VT : MVT::integer_valuetypes()) { 1403 setOperationAction(ISD::BR_CC, VT, Expand); 1404 setOperationAction(ISD::SELECT_CC, VT, Expand); 1405 } 1406 for (MVT VT : MVT::fp_valuetypes()) { 1407 setOperationAction(ISD::BR_CC, VT, Expand); 1408 setOperationAction(ISD::SELECT_CC, VT, Expand); 1409 } 1410 setOperationAction(ISD::BR_CC, MVT::Other, Expand); 1411 1412 // 1413 // Handling of vector operations. 1414 // 1415 1416 // Set the action for vector operations to "expand", then override it with 1417 // either "custom" or "legal" for specific cases. 1418 static const unsigned VectExpOps[] = { 1419 // Integer arithmetic: 1420 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV, 1421 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO, 1422 ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI, 1423 // Logical/bit: 1424 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR, 1425 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, 1426 // Floating point arithmetic/math functions: 1427 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, 1428 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN, 1429 ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2, 1430 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC, 1431 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR, 1432 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, 1433 // Misc: 1434 ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool, 1435 // Vector: 1436 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR, 1437 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT, 1438 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR, 1439 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE 1440 }; 1441 1442 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 1443 for (unsigned VectExpOp : VectExpOps) 1444 setOperationAction(VectExpOp, VT, Expand); 1445 1446 // Expand all extending loads and truncating stores: 1447 for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) { 1448 if (TargetVT == VT) 1449 continue; 1450 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand); 1451 setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand); 1452 setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand); 1453 setTruncStoreAction(VT, TargetVT, Expand); 1454 } 1455 1456 // Normalize all inputs to SELECT to be vectors of i32. 1457 if (VT.getVectorElementType() != MVT::i32) { 1458 MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32); 1459 setOperationAction(ISD::SELECT, VT, Promote); 1460 AddPromotedToType(ISD::SELECT, VT, VT32); 1461 } 1462 setOperationAction(ISD::SRA, VT, Custom); 1463 setOperationAction(ISD::SHL, VT, Custom); 1464 setOperationAction(ISD::SRL, VT, Custom); 1465 } 1466 1467 // Extending loads from (native) vectors of i8 into (native) vectors of i16 1468 // are legal. 1469 setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal); 1470 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); 1471 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); 1472 setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal); 1473 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); 1474 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); 1475 1476 // Types natively supported: 1477 for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8, 1478 MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) { 1479 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom); 1480 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom); 1481 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom); 1482 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom); 1483 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom); 1484 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom); 1485 1486 setOperationAction(ISD::ADD, NativeVT, Legal); 1487 setOperationAction(ISD::SUB, NativeVT, Legal); 1488 setOperationAction(ISD::MUL, NativeVT, Legal); 1489 setOperationAction(ISD::AND, NativeVT, Legal); 1490 setOperationAction(ISD::OR, NativeVT, Legal); 1491 setOperationAction(ISD::XOR, NativeVT, Legal); 1492 } 1493 1494 // Custom lower unaligned loads. 1495 // Also, for both loads and stores, verify the alignment of the address 1496 // in case it is a compile-time constant. This is a usability feature to 1497 // provide a meaningful error message to users. 1498 for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8, 1499 MVT::v2i16, MVT::v4i16, MVT::v2i32}) { 1500 setOperationAction(ISD::LOAD, VT, Custom); 1501 setOperationAction(ISD::STORE, VT, Custom); 1502 } 1503 1504 for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16, 1505 MVT::v2i32}) { 1506 setCondCodeAction(ISD::SETNE, VT, Expand); 1507 setCondCodeAction(ISD::SETLE, VT, Expand); 1508 setCondCodeAction(ISD::SETGE, VT, Expand); 1509 setCondCodeAction(ISD::SETLT, VT, Expand); 1510 setCondCodeAction(ISD::SETULE, VT, Expand); 1511 setCondCodeAction(ISD::SETUGE, VT, Expand); 1512 setCondCodeAction(ISD::SETULT, VT, Expand); 1513 } 1514 1515 // Custom-lower bitcasts from i8 to v8i1. 1516 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1517 setOperationAction(ISD::SETCC, MVT::v2i16, Custom); 1518 setOperationAction(ISD::VSELECT, MVT::v4i8, Custom); 1519 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom); 1520 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom); 1521 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 1522 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); 1523 1524 // V5+. 1525 setOperationAction(ISD::FMA, MVT::f64, Expand); 1526 setOperationAction(ISD::FADD, MVT::f64, Expand); 1527 setOperationAction(ISD::FSUB, MVT::f64, Expand); 1528 setOperationAction(ISD::FMUL, MVT::f64, Expand); 1529 1530 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 1531 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 1532 1533 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 1534 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); 1535 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 1536 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 1537 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); 1538 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 1539 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 1540 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); 1541 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); 1542 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 1543 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); 1544 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); 1545 1546 // Handling of indexed loads/stores: default is "expand". 1547 // 1548 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64, 1549 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) { 1550 setIndexedLoadAction(ISD::POST_INC, VT, Legal); 1551 setIndexedStoreAction(ISD::POST_INC, VT, Legal); 1552 } 1553 1554 // Subtarget-specific operation actions. 1555 // 1556 if (Subtarget.hasV60Ops()) { 1557 setOperationAction(ISD::ROTL, MVT::i32, Legal); 1558 setOperationAction(ISD::ROTL, MVT::i64, Legal); 1559 setOperationAction(ISD::ROTR, MVT::i32, Legal); 1560 setOperationAction(ISD::ROTR, MVT::i64, Legal); 1561 } 1562 if (Subtarget.hasV66Ops()) { 1563 setOperationAction(ISD::FADD, MVT::f64, Legal); 1564 setOperationAction(ISD::FSUB, MVT::f64, Legal); 1565 } 1566 1567 setTargetDAGCombine(ISD::VSELECT); 1568 1569 if (Subtarget.useHVXOps()) 1570 initializeHVXLowering(); 1571 1572 computeRegisterProperties(&HRI); 1573 1574 // 1575 // Library calls for unsupported operations 1576 // 1577 bool FastMath = EnableFastMath; 1578 1579 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); 1580 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); 1581 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); 1582 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); 1583 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); 1584 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); 1585 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); 1586 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); 1587 1588 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); 1589 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); 1590 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); 1591 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); 1592 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); 1593 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); 1594 1595 // This is the only fast library function for sqrtd. 1596 if (FastMath) 1597 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2"); 1598 1599 // Prefix is: nothing for "slow-math", 1600 // "fast2_" for V5+ fast-math double-precision 1601 // (actually, keep fast-math and fast-math2 separate for now) 1602 if (FastMath) { 1603 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3"); 1604 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3"); 1605 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3"); 1606 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3"); 1607 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3"); 1608 } else { 1609 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); 1610 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); 1611 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); 1612 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); 1613 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); 1614 } 1615 1616 if (FastMath) 1617 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf"); 1618 else 1619 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf"); 1620 1621 // These cause problems when the shift amount is non-constant. 1622 setLibcallName(RTLIB::SHL_I128, nullptr); 1623 setLibcallName(RTLIB::SRL_I128, nullptr); 1624 setLibcallName(RTLIB::SRA_I128, nullptr); 1625 } 1626 1627 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { 1628 switch ((HexagonISD::NodeType)Opcode) { 1629 case HexagonISD::ADDC: return "HexagonISD::ADDC"; 1630 case HexagonISD::SUBC: return "HexagonISD::SUBC"; 1631 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA"; 1632 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT"; 1633 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL"; 1634 case HexagonISD::BARRIER: return "HexagonISD::BARRIER"; 1635 case HexagonISD::CALL: return "HexagonISD::CALL"; 1636 case HexagonISD::CALLnr: return "HexagonISD::CALLnr"; 1637 case HexagonISD::CALLR: return "HexagonISD::CALLR"; 1638 case HexagonISD::COMBINE: return "HexagonISD::COMBINE"; 1639 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP"; 1640 case HexagonISD::CONST32: return "HexagonISD::CONST32"; 1641 case HexagonISD::CP: return "HexagonISD::CP"; 1642 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH"; 1643 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN"; 1644 case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT"; 1645 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU"; 1646 case HexagonISD::INSERT: return "HexagonISD::INSERT"; 1647 case HexagonISD::JT: return "HexagonISD::JT"; 1648 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG"; 1649 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; 1650 case HexagonISD::VASL: return "HexagonISD::VASL"; 1651 case HexagonISD::VASR: return "HexagonISD::VASR"; 1652 case HexagonISD::VLSR: return "HexagonISD::VLSR"; 1653 case HexagonISD::VSPLAT: return "HexagonISD::VSPLAT"; 1654 case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW"; 1655 case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0"; 1656 case HexagonISD::VROR: return "HexagonISD::VROR"; 1657 case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE"; 1658 case HexagonISD::PTRUE: return "HexagonISD::PTRUE"; 1659 case HexagonISD::PFALSE: return "HexagonISD::PFALSE"; 1660 case HexagonISD::VZERO: return "HexagonISD::VZERO"; 1661 case HexagonISD::VSPLATW: return "HexagonISD::VSPLATW"; 1662 case HexagonISD::D2P: return "HexagonISD::D2P"; 1663 case HexagonISD::P2D: return "HexagonISD::P2D"; 1664 case HexagonISD::V2Q: return "HexagonISD::V2Q"; 1665 case HexagonISD::Q2V: return "HexagonISD::Q2V"; 1666 case HexagonISD::QCAT: return "HexagonISD::QCAT"; 1667 case HexagonISD::QTRUE: return "HexagonISD::QTRUE"; 1668 case HexagonISD::QFALSE: return "HexagonISD::QFALSE"; 1669 case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST"; 1670 case HexagonISD::VALIGN: return "HexagonISD::VALIGN"; 1671 case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR"; 1672 case HexagonISD::OP_END: break; 1673 } 1674 return nullptr; 1675 } 1676 1677 void 1678 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl, 1679 unsigned NeedAlign) const { 1680 auto *CA = dyn_cast<ConstantSDNode>(Ptr); 1681 if (!CA) 1682 return; 1683 unsigned Addr = CA->getZExtValue(); 1684 unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign; 1685 if (HaveAlign < NeedAlign) { 1686 std::string ErrMsg; 1687 raw_string_ostream O(ErrMsg); 1688 O << "Misaligned constant address: " << format_hex(Addr, 10) 1689 << " has alignment " << HaveAlign 1690 << ", but the memory access requires " << NeedAlign; 1691 if (DebugLoc DL = dl.getDebugLoc()) 1692 DL.print(O << ", at "); 1693 report_fatal_error(O.str()); 1694 } 1695 } 1696 1697 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load 1698 // intrinsic. 1699 static bool isBrevLdIntrinsic(const Value *Inst) { 1700 unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID(); 1701 return (ID == Intrinsic::hexagon_L2_loadrd_pbr || 1702 ID == Intrinsic::hexagon_L2_loadri_pbr || 1703 ID == Intrinsic::hexagon_L2_loadrh_pbr || 1704 ID == Intrinsic::hexagon_L2_loadruh_pbr || 1705 ID == Intrinsic::hexagon_L2_loadrb_pbr || 1706 ID == Intrinsic::hexagon_L2_loadrub_pbr); 1707 } 1708 1709 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous 1710 // instruction. So far we only handle bitcast, extract value and bit reverse 1711 // load intrinsic instructions. Should we handle CGEP ? 1712 static Value *getBrevLdObject(Value *V) { 1713 if (Operator::getOpcode(V) == Instruction::ExtractValue || 1714 Operator::getOpcode(V) == Instruction::BitCast) 1715 V = cast<Operator>(V)->getOperand(0); 1716 else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V)) 1717 V = cast<Instruction>(V)->getOperand(0); 1718 return V; 1719 } 1720 1721 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or 1722 // a back edge. If the back edge comes from the intrinsic itself, the incoming 1723 // edge is returned. 1724 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) { 1725 const BasicBlock *Parent = PN->getParent(); 1726 int Idx = -1; 1727 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { 1728 BasicBlock *Blk = PN->getIncomingBlock(i); 1729 // Determine if the back edge is originated from intrinsic. 1730 if (Blk == Parent) { 1731 Value *BackEdgeVal = PN->getIncomingValue(i); 1732 Value *BaseVal; 1733 // Loop over till we return the same Value or we hit the IntrBaseVal. 1734 do { 1735 BaseVal = BackEdgeVal; 1736 BackEdgeVal = getBrevLdObject(BackEdgeVal); 1737 } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal)); 1738 // If the getBrevLdObject returns IntrBaseVal, we should return the 1739 // incoming edge. 1740 if (IntrBaseVal == BackEdgeVal) 1741 continue; 1742 Idx = i; 1743 break; 1744 } else // Set the node to incoming edge. 1745 Idx = i; 1746 } 1747 assert(Idx >= 0 && "Unexpected index to incoming argument in PHI"); 1748 return PN->getIncomingValue(Idx); 1749 } 1750 1751 // Bit-reverse Load Intrinsic: Figure out the underlying object the base 1752 // pointer points to, for the bit-reverse load intrinsic. Setting this to 1753 // memoperand might help alias analysis to figure out the dependencies. 1754 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) { 1755 Value *IntrBaseVal = V; 1756 Value *BaseVal; 1757 // Loop over till we return the same Value, implies we either figure out 1758 // the object or we hit a PHI 1759 do { 1760 BaseVal = V; 1761 V = getBrevLdObject(V); 1762 } while (BaseVal != V); 1763 1764 // Identify the object from PHINode. 1765 if (const PHINode *PN = dyn_cast<PHINode>(V)) 1766 return returnEdge(PN, IntrBaseVal); 1767 // For non PHI nodes, the object is the last value returned by getBrevLdObject 1768 else 1769 return V; 1770 } 1771 1772 /// Given an intrinsic, checks if on the target the intrinsic will need to map 1773 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns 1774 /// true and store the intrinsic information into the IntrinsicInfo that was 1775 /// passed to the function. 1776 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1777 const CallInst &I, 1778 MachineFunction &MF, 1779 unsigned Intrinsic) const { 1780 switch (Intrinsic) { 1781 case Intrinsic::hexagon_L2_loadrd_pbr: 1782 case Intrinsic::hexagon_L2_loadri_pbr: 1783 case Intrinsic::hexagon_L2_loadrh_pbr: 1784 case Intrinsic::hexagon_L2_loadruh_pbr: 1785 case Intrinsic::hexagon_L2_loadrb_pbr: 1786 case Intrinsic::hexagon_L2_loadrub_pbr: { 1787 Info.opc = ISD::INTRINSIC_W_CHAIN; 1788 auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); 1789 auto &Cont = I.getCalledFunction()->getParent()->getContext(); 1790 // The intrinsic function call is of the form { ElTy, i8* } 1791 // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type 1792 // should be derived from ElTy. 1793 Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0); 1794 Info.memVT = MVT::getVT(ElTy); 1795 llvm::Value *BasePtrVal = I.getOperand(0); 1796 Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal); 1797 // The offset value comes through Modifier register. For now, assume the 1798 // offset is 0. 1799 Info.offset = 0; 1800 Info.align = 1801 MaybeAlign(DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont))); 1802 Info.flags = MachineMemOperand::MOLoad; 1803 return true; 1804 } 1805 case Intrinsic::hexagon_V6_vgathermw: 1806 case Intrinsic::hexagon_V6_vgathermw_128B: 1807 case Intrinsic::hexagon_V6_vgathermh: 1808 case Intrinsic::hexagon_V6_vgathermh_128B: 1809 case Intrinsic::hexagon_V6_vgathermhw: 1810 case Intrinsic::hexagon_V6_vgathermhw_128B: 1811 case Intrinsic::hexagon_V6_vgathermwq: 1812 case Intrinsic::hexagon_V6_vgathermwq_128B: 1813 case Intrinsic::hexagon_V6_vgathermhq: 1814 case Intrinsic::hexagon_V6_vgathermhq_128B: 1815 case Intrinsic::hexagon_V6_vgathermhwq: 1816 case Intrinsic::hexagon_V6_vgathermhwq_128B: { 1817 const Module &M = *I.getParent()->getParent()->getParent(); 1818 Info.opc = ISD::INTRINSIC_W_CHAIN; 1819 Type *VecTy = I.getArgOperand(1)->getType(); 1820 Info.memVT = MVT::getVT(VecTy); 1821 Info.ptrVal = I.getArgOperand(0); 1822 Info.offset = 0; 1823 Info.align = 1824 MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8); 1825 Info.flags = MachineMemOperand::MOLoad | 1826 MachineMemOperand::MOStore | 1827 MachineMemOperand::MOVolatile; 1828 return true; 1829 } 1830 default: 1831 break; 1832 } 1833 return false; 1834 } 1835 1836 bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1837 return X.getValueType().isScalarInteger(); // 'tstbit' 1838 } 1839 1840 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 1841 return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2)); 1842 } 1843 1844 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 1845 if (!VT1.isSimple() || !VT2.isSimple()) 1846 return false; 1847 return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32; 1848 } 1849 1850 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 1851 return isOperationLegalOrCustom(ISD::FMA, VT); 1852 } 1853 1854 // Should we expand the build vector with shuffles? 1855 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT, 1856 unsigned DefinedValues) const { 1857 return false; 1858 } 1859 1860 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask, 1861 EVT VT) const { 1862 return true; 1863 } 1864 1865 TargetLoweringBase::LegalizeTypeAction 1866 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const { 1867 unsigned VecLen = VT.getVectorNumElements(); 1868 MVT ElemTy = VT.getVectorElementType(); 1869 1870 if (VecLen == 1 || VT.isScalableVector()) 1871 return TargetLoweringBase::TypeScalarizeVector; 1872 1873 if (Subtarget.useHVXOps()) { 1874 unsigned HwLen = Subtarget.getVectorLength(); 1875 // If the size of VT is at least half of the vector length, 1876 // widen the vector. Note: the threshold was not selected in 1877 // any scientific way. 1878 ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes(); 1879 if (llvm::find(Tys, ElemTy) != Tys.end()) { 1880 unsigned HwWidth = 8*HwLen; 1881 unsigned VecWidth = VT.getSizeInBits(); 1882 if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) 1883 return TargetLoweringBase::TypeWidenVector; 1884 } 1885 // Split vectors of i1 that correspond to (byte) vector pairs. 1886 if (ElemTy == MVT::i1 && VecLen == 2*HwLen) 1887 return TargetLoweringBase::TypeSplitVector; 1888 } 1889 1890 // Always widen (remaining) vectors of i1. 1891 if (ElemTy == MVT::i1) 1892 return TargetLoweringBase::TypeWidenVector; 1893 1894 return TargetLoweringBase::TypeSplitVector; 1895 } 1896 1897 std::pair<SDValue, int> 1898 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const { 1899 if (Addr.getOpcode() == ISD::ADD) { 1900 SDValue Op1 = Addr.getOperand(1); 1901 if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode())) 1902 return { Addr.getOperand(0), CN->getSExtValue() }; 1903 } 1904 return { Addr, 0 }; 1905 } 1906 1907 // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors 1908 // to select data from, V3 is the permutation. 1909 SDValue 1910 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) 1911 const { 1912 const auto *SVN = cast<ShuffleVectorSDNode>(Op); 1913 ArrayRef<int> AM = SVN->getMask(); 1914 assert(AM.size() <= 8 && "Unexpected shuffle mask"); 1915 unsigned VecLen = AM.size(); 1916 1917 MVT VecTy = ty(Op); 1918 assert(!Subtarget.isHVXVectorType(VecTy, true) && 1919 "HVX shuffles should be legal"); 1920 assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length"); 1921 1922 SDValue Op0 = Op.getOperand(0); 1923 SDValue Op1 = Op.getOperand(1); 1924 const SDLoc &dl(Op); 1925 1926 // If the inputs are not the same as the output, bail. This is not an 1927 // error situation, but complicates the handling and the default expansion 1928 // (into BUILD_VECTOR) should be adequate. 1929 if (ty(Op0) != VecTy || ty(Op1) != VecTy) 1930 return SDValue(); 1931 1932 // Normalize the mask so that the first non-negative index comes from 1933 // the first operand. 1934 SmallVector<int,8> Mask(AM.begin(), AM.end()); 1935 unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data(); 1936 if (F == AM.size()) 1937 return DAG.getUNDEF(VecTy); 1938 if (AM[F] >= int(VecLen)) { 1939 ShuffleVectorSDNode::commuteMask(Mask); 1940 std::swap(Op0, Op1); 1941 } 1942 1943 // Express the shuffle mask in terms of bytes. 1944 SmallVector<int,8> ByteMask; 1945 unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8; 1946 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1947 int M = Mask[i]; 1948 if (M < 0) { 1949 for (unsigned j = 0; j != ElemBytes; ++j) 1950 ByteMask.push_back(-1); 1951 } else { 1952 for (unsigned j = 0; j != ElemBytes; ++j) 1953 ByteMask.push_back(M*ElemBytes + j); 1954 } 1955 } 1956 assert(ByteMask.size() <= 8); 1957 1958 // All non-undef (non-negative) indexes are well within [0..127], so they 1959 // fit in a single byte. Build two 64-bit words: 1960 // - MaskIdx where each byte is the corresponding index (for non-negative 1961 // indexes), and 0xFF for negative indexes, and 1962 // - MaskUnd that has 0xFF for each negative index. 1963 uint64_t MaskIdx = 0; 1964 uint64_t MaskUnd = 0; 1965 for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) { 1966 unsigned S = 8*i; 1967 uint64_t M = ByteMask[i] & 0xFF; 1968 if (M == 0xFF) 1969 MaskUnd |= M << S; 1970 MaskIdx |= M << S; 1971 } 1972 1973 if (ByteMask.size() == 4) { 1974 // Identity. 1975 if (MaskIdx == (0x03020100 | MaskUnd)) 1976 return Op0; 1977 // Byte swap. 1978 if (MaskIdx == (0x00010203 | MaskUnd)) { 1979 SDValue T0 = DAG.getBitcast(MVT::i32, Op0); 1980 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0); 1981 return DAG.getBitcast(VecTy, T1); 1982 } 1983 1984 // Byte packs. 1985 SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl, 1986 typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0}); 1987 if (MaskIdx == (0x06040200 | MaskUnd)) 1988 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG); 1989 if (MaskIdx == (0x07050301 | MaskUnd)) 1990 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG); 1991 1992 SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl, 1993 typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1}); 1994 if (MaskIdx == (0x02000604 | MaskUnd)) 1995 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG); 1996 if (MaskIdx == (0x03010705 | MaskUnd)) 1997 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG); 1998 } 1999 2000 if (ByteMask.size() == 8) { 2001 // Identity. 2002 if (MaskIdx == (0x0706050403020100ull | MaskUnd)) 2003 return Op0; 2004 // Byte swap. 2005 if (MaskIdx == (0x0001020304050607ull | MaskUnd)) { 2006 SDValue T0 = DAG.getBitcast(MVT::i64, Op0); 2007 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0); 2008 return DAG.getBitcast(VecTy, T1); 2009 } 2010 2011 // Halfword picks. 2012 if (MaskIdx == (0x0d0c050409080100ull | MaskUnd)) 2013 return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG); 2014 if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd)) 2015 return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG); 2016 if (MaskIdx == (0x0d0c090805040100ull | MaskUnd)) 2017 return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG); 2018 if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd)) 2019 return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG); 2020 if (MaskIdx == (0x0706030205040100ull | MaskUnd)) { 2021 VectorPair P = opSplit(Op0, dl, DAG); 2022 return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG); 2023 } 2024 2025 // Byte packs. 2026 if (MaskIdx == (0x0e060c040a020800ull | MaskUnd)) 2027 return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG); 2028 if (MaskIdx == (0x0f070d050b030901ull | MaskUnd)) 2029 return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG); 2030 } 2031 2032 return SDValue(); 2033 } 2034 2035 // Create a Hexagon-specific node for shifting a vector by an integer. 2036 SDValue 2037 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) 2038 const { 2039 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) { 2040 if (SDValue S = BVN->getSplatValue()) { 2041 unsigned NewOpc; 2042 switch (Op.getOpcode()) { 2043 case ISD::SHL: 2044 NewOpc = HexagonISD::VASL; 2045 break; 2046 case ISD::SRA: 2047 NewOpc = HexagonISD::VASR; 2048 break; 2049 case ISD::SRL: 2050 NewOpc = HexagonISD::VLSR; 2051 break; 2052 default: 2053 llvm_unreachable("Unexpected shift opcode"); 2054 } 2055 return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S); 2056 } 2057 } 2058 2059 return SDValue(); 2060 } 2061 2062 SDValue 2063 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const { 2064 return getVectorShiftByInt(Op, DAG); 2065 } 2066 2067 SDValue 2068 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 2069 if (isa<ConstantSDNode>(Op.getOperand(1).getNode())) 2070 return Op; 2071 return SDValue(); 2072 } 2073 2074 SDValue 2075 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 2076 MVT ResTy = ty(Op); 2077 SDValue InpV = Op.getOperand(0); 2078 MVT InpTy = ty(InpV); 2079 assert(ResTy.getSizeInBits() == InpTy.getSizeInBits()); 2080 const SDLoc &dl(Op); 2081 2082 // Handle conversion from i8 to v8i1. 2083 if (ResTy == MVT::v8i1) { 2084 SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV); 2085 SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32); 2086 return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG); 2087 } 2088 2089 return SDValue(); 2090 } 2091 2092 bool 2093 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values, 2094 MVT VecTy, SelectionDAG &DAG, 2095 MutableArrayRef<ConstantInt*> Consts) const { 2096 MVT ElemTy = VecTy.getVectorElementType(); 2097 unsigned ElemWidth = ElemTy.getSizeInBits(); 2098 IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth); 2099 bool AllConst = true; 2100 2101 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2102 SDValue V = Values[i]; 2103 if (V.isUndef()) { 2104 Consts[i] = ConstantInt::get(IntTy, 0); 2105 continue; 2106 } 2107 // Make sure to always cast to IntTy. 2108 if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) { 2109 const ConstantInt *CI = CN->getConstantIntValue(); 2110 Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue()); 2111 } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) { 2112 const ConstantFP *CF = CN->getConstantFPValue(); 2113 APInt A = CF->getValueAPF().bitcastToAPInt(); 2114 Consts[i] = ConstantInt::get(IntTy, A.getZExtValue()); 2115 } else { 2116 AllConst = false; 2117 } 2118 } 2119 return AllConst; 2120 } 2121 2122 SDValue 2123 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, 2124 MVT VecTy, SelectionDAG &DAG) const { 2125 MVT ElemTy = VecTy.getVectorElementType(); 2126 assert(VecTy.getVectorNumElements() == Elem.size()); 2127 2128 SmallVector<ConstantInt*,4> Consts(Elem.size()); 2129 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); 2130 2131 unsigned First, Num = Elem.size(); 2132 for (First = 0; First != Num; ++First) 2133 if (!isUndef(Elem[First])) 2134 break; 2135 if (First == Num) 2136 return DAG.getUNDEF(VecTy); 2137 2138 if (AllConst && 2139 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) 2140 return getZero(dl, VecTy, DAG); 2141 2142 if (ElemTy == MVT::i16) { 2143 assert(Elem.size() == 2); 2144 if (AllConst) { 2145 uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) | 2146 Consts[1]->getZExtValue() << 16; 2147 return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32)); 2148 } 2149 SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, 2150 {Elem[1], Elem[0]}, DAG); 2151 return DAG.getBitcast(MVT::v2i16, N); 2152 } 2153 2154 if (ElemTy == MVT::i8) { 2155 // First try generating a constant. 2156 if (AllConst) { 2157 int32_t V = (Consts[0]->getZExtValue() & 0xFF) | 2158 (Consts[1]->getZExtValue() & 0xFF) << 8 | 2159 (Consts[1]->getZExtValue() & 0xFF) << 16 | 2160 Consts[2]->getZExtValue() << 24; 2161 return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32)); 2162 } 2163 2164 // Then try splat. 2165 bool IsSplat = true; 2166 for (unsigned i = 0; i != Num; ++i) { 2167 if (i == First) 2168 continue; 2169 if (Elem[i] == Elem[First] || isUndef(Elem[i])) 2170 continue; 2171 IsSplat = false; 2172 break; 2173 } 2174 if (IsSplat) { 2175 // Legalize the operand to VSPLAT. 2176 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); 2177 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext); 2178 } 2179 2180 // Generate 2181 // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) | 2182 // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16 2183 assert(Elem.size() == 4); 2184 SDValue Vs[4]; 2185 for (unsigned i = 0; i != 4; ++i) { 2186 Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32); 2187 Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8); 2188 } 2189 SDValue S8 = DAG.getConstant(8, dl, MVT::i32); 2190 SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8}); 2191 SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8}); 2192 SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0}); 2193 SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1}); 2194 2195 SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG); 2196 return DAG.getBitcast(MVT::v4i8, R); 2197 } 2198 2199 #ifndef NDEBUG 2200 dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n'; 2201 #endif 2202 llvm_unreachable("Unexpected vector element type"); 2203 } 2204 2205 SDValue 2206 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, 2207 MVT VecTy, SelectionDAG &DAG) const { 2208 MVT ElemTy = VecTy.getVectorElementType(); 2209 assert(VecTy.getVectorNumElements() == Elem.size()); 2210 2211 SmallVector<ConstantInt*,8> Consts(Elem.size()); 2212 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); 2213 2214 unsigned First, Num = Elem.size(); 2215 for (First = 0; First != Num; ++First) 2216 if (!isUndef(Elem[First])) 2217 break; 2218 if (First == Num) 2219 return DAG.getUNDEF(VecTy); 2220 2221 if (AllConst && 2222 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) 2223 return getZero(dl, VecTy, DAG); 2224 2225 // First try splat if possible. 2226 if (ElemTy == MVT::i16) { 2227 bool IsSplat = true; 2228 for (unsigned i = 0; i != Num; ++i) { 2229 if (i == First) 2230 continue; 2231 if (Elem[i] == Elem[First] || isUndef(Elem[i])) 2232 continue; 2233 IsSplat = false; 2234 break; 2235 } 2236 if (IsSplat) { 2237 // Legalize the operand to VSPLAT. 2238 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); 2239 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext); 2240 } 2241 } 2242 2243 // Then try constant. 2244 if (AllConst) { 2245 uint64_t Val = 0; 2246 unsigned W = ElemTy.getSizeInBits(); 2247 uint64_t Mask = (ElemTy == MVT::i8) ? 0xFFull 2248 : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull; 2249 for (unsigned i = 0; i != Num; ++i) 2250 Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask); 2251 SDValue V0 = DAG.getConstant(Val, dl, MVT::i64); 2252 return DAG.getBitcast(VecTy, V0); 2253 } 2254 2255 // Build two 32-bit vectors and concatenate. 2256 MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2); 2257 SDValue L = (ElemTy == MVT::i32) 2258 ? Elem[0] 2259 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG); 2260 SDValue H = (ElemTy == MVT::i32) 2261 ? Elem[1] 2262 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG); 2263 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L}); 2264 } 2265 2266 SDValue 2267 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV, 2268 const SDLoc &dl, MVT ValTy, MVT ResTy, 2269 SelectionDAG &DAG) const { 2270 MVT VecTy = ty(VecV); 2271 assert(!ValTy.isVector() || 2272 VecTy.getVectorElementType() == ValTy.getVectorElementType()); 2273 unsigned VecWidth = VecTy.getSizeInBits(); 2274 unsigned ValWidth = ValTy.getSizeInBits(); 2275 unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits(); 2276 assert((VecWidth % ElemWidth) == 0); 2277 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV); 2278 2279 // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon 2280 // without any coprocessors). 2281 if (ElemWidth == 1) { 2282 assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure"); 2283 assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2); 2284 // Check if this is an extract of the lowest bit. 2285 if (IdxN) { 2286 // Extracting the lowest bit is a no-op, but it changes the type, 2287 // so it must be kept as an operation to avoid errors related to 2288 // type mismatches. 2289 if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1) 2290 return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV); 2291 } 2292 2293 // If the value extracted is a single bit, use tstbit. 2294 if (ValWidth == 1) { 2295 SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG); 2296 SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32); 2297 SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0); 2298 return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0); 2299 } 2300 2301 // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in 2302 // a predicate register. The elements of the vector are repeated 2303 // in the register (if necessary) so that the total number is 8. 2304 // The extracted subvector will need to be expanded in such a way. 2305 unsigned Scale = VecWidth / ValWidth; 2306 2307 // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to 2308 // position 0. 2309 assert(ty(IdxV) == MVT::i32); 2310 unsigned VecRep = 8 / VecWidth; 2311 SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 2312 DAG.getConstant(8*VecRep, dl, MVT::i32)); 2313 SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); 2314 SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0); 2315 while (Scale > 1) { 2316 // The longest possible subvector is at most 32 bits, so it is always 2317 // contained in the low subregister. 2318 T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1); 2319 T1 = expandPredicate(T1, dl, DAG); 2320 Scale /= 2; 2321 } 2322 2323 return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1); 2324 } 2325 2326 assert(VecWidth == 32 || VecWidth == 64); 2327 2328 // Cast everything to scalar integer types. 2329 MVT ScalarTy = tyScalar(VecTy); 2330 VecV = DAG.getBitcast(ScalarTy, VecV); 2331 2332 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); 2333 SDValue ExtV; 2334 2335 if (IdxN) { 2336 unsigned Off = IdxN->getZExtValue() * ElemWidth; 2337 if (VecWidth == 64 && ValWidth == 32) { 2338 assert(Off == 0 || Off == 32); 2339 unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi; 2340 ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV); 2341 } else if (Off == 0 && (ValWidth % 8) == 0) { 2342 ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy)); 2343 } else { 2344 SDValue OffV = DAG.getConstant(Off, dl, MVT::i32); 2345 // The return type of EXTRACTU must be the same as the type of the 2346 // input vector. 2347 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, 2348 {VecV, WidthV, OffV}); 2349 } 2350 } else { 2351 if (ty(IdxV) != MVT::i32) 2352 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); 2353 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 2354 DAG.getConstant(ElemWidth, dl, MVT::i32)); 2355 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, 2356 {VecV, WidthV, OffV}); 2357 } 2358 2359 // Cast ExtV to the requested result type. 2360 ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy)); 2361 ExtV = DAG.getBitcast(ResTy, ExtV); 2362 return ExtV; 2363 } 2364 2365 SDValue 2366 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV, 2367 const SDLoc &dl, MVT ValTy, 2368 SelectionDAG &DAG) const { 2369 MVT VecTy = ty(VecV); 2370 if (VecTy.getVectorElementType() == MVT::i1) { 2371 MVT ValTy = ty(ValV); 2372 assert(ValTy.getVectorElementType() == MVT::i1); 2373 SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV); 2374 unsigned VecLen = VecTy.getVectorNumElements(); 2375 unsigned Scale = VecLen / ValTy.getVectorNumElements(); 2376 assert(Scale > 1); 2377 2378 for (unsigned R = Scale; R > 1; R /= 2) { 2379 ValR = contractPredicate(ValR, dl, DAG); 2380 ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, 2381 DAG.getUNDEF(MVT::i32), ValR); 2382 } 2383 // The longest possible subvector is at most 32 bits, so it is always 2384 // contained in the low subregister. 2385 ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR); 2386 2387 unsigned ValBytes = 64 / Scale; 2388 SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32); 2389 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 2390 DAG.getConstant(8, dl, MVT::i32)); 2391 SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); 2392 SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, 2393 {VecR, ValR, Width, Idx}); 2394 return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins); 2395 } 2396 2397 unsigned VecWidth = VecTy.getSizeInBits(); 2398 unsigned ValWidth = ValTy.getSizeInBits(); 2399 assert(VecWidth == 32 || VecWidth == 64); 2400 assert((VecWidth % ValWidth) == 0); 2401 2402 // Cast everything to scalar integer types. 2403 MVT ScalarTy = MVT::getIntegerVT(VecWidth); 2404 // The actual type of ValV may be different than ValTy (which is related 2405 // to the vector type). 2406 unsigned VW = ty(ValV).getSizeInBits(); 2407 ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV); 2408 VecV = DAG.getBitcast(ScalarTy, VecV); 2409 if (VW != VecWidth) 2410 ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy); 2411 2412 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); 2413 SDValue InsV; 2414 2415 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) { 2416 unsigned W = C->getZExtValue() * ValWidth; 2417 SDValue OffV = DAG.getConstant(W, dl, MVT::i32); 2418 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, 2419 {VecV, ValV, WidthV, OffV}); 2420 } else { 2421 if (ty(IdxV) != MVT::i32) 2422 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); 2423 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV); 2424 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, 2425 {VecV, ValV, WidthV, OffV}); 2426 } 2427 2428 return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV); 2429 } 2430 2431 SDValue 2432 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl, 2433 SelectionDAG &DAG) const { 2434 assert(ty(Vec32).getSizeInBits() == 32); 2435 if (isUndef(Vec32)) 2436 return DAG.getUNDEF(MVT::i64); 2437 return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG); 2438 } 2439 2440 SDValue 2441 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl, 2442 SelectionDAG &DAG) const { 2443 assert(ty(Vec64).getSizeInBits() == 64); 2444 if (isUndef(Vec64)) 2445 return DAG.getUNDEF(MVT::i32); 2446 return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG); 2447 } 2448 2449 SDValue 2450 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) 2451 const { 2452 if (Ty.isVector()) { 2453 assert(Ty.isInteger() && "Only integer vectors are supported here"); 2454 unsigned W = Ty.getSizeInBits(); 2455 if (W <= 64) 2456 return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W))); 2457 return DAG.getNode(HexagonISD::VZERO, dl, Ty); 2458 } 2459 2460 if (Ty.isInteger()) 2461 return DAG.getConstant(0, dl, Ty); 2462 if (Ty.isFloatingPoint()) 2463 return DAG.getConstantFP(0.0, dl, Ty); 2464 llvm_unreachable("Invalid type for zero"); 2465 } 2466 2467 SDValue 2468 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { 2469 MVT VecTy = ty(Op); 2470 unsigned BW = VecTy.getSizeInBits(); 2471 const SDLoc &dl(Op); 2472 SmallVector<SDValue,8> Ops; 2473 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) 2474 Ops.push_back(Op.getOperand(i)); 2475 2476 if (BW == 32) 2477 return buildVector32(Ops, dl, VecTy, DAG); 2478 if (BW == 64) 2479 return buildVector64(Ops, dl, VecTy, DAG); 2480 2481 if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) { 2482 // Check if this is a special case or all-0 or all-1. 2483 bool All0 = true, All1 = true; 2484 for (SDValue P : Ops) { 2485 auto *CN = dyn_cast<ConstantSDNode>(P.getNode()); 2486 if (CN == nullptr) { 2487 All0 = All1 = false; 2488 break; 2489 } 2490 uint32_t C = CN->getZExtValue(); 2491 All0 &= (C == 0); 2492 All1 &= (C == 1); 2493 } 2494 if (All0) 2495 return DAG.getNode(HexagonISD::PFALSE, dl, VecTy); 2496 if (All1) 2497 return DAG.getNode(HexagonISD::PTRUE, dl, VecTy); 2498 2499 // For each i1 element in the resulting predicate register, put 1 2500 // shifted by the index of the element into a general-purpose register, 2501 // then or them together and transfer it back into a predicate register. 2502 SDValue Rs[8]; 2503 SDValue Z = getZero(dl, MVT::i32, DAG); 2504 // Always produce 8 bits, repeat inputs if necessary. 2505 unsigned Rep = 8 / VecTy.getVectorNumElements(); 2506 for (unsigned i = 0; i != 8; ++i) { 2507 SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32); 2508 Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z); 2509 } 2510 for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) { 2511 for (unsigned i = 0, e = A.size()/2; i != e; ++i) 2512 Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]); 2513 } 2514 // Move the value directly to a predicate register. 2515 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG); 2516 } 2517 2518 return SDValue(); 2519 } 2520 2521 SDValue 2522 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 2523 SelectionDAG &DAG) const { 2524 MVT VecTy = ty(Op); 2525 const SDLoc &dl(Op); 2526 if (VecTy.getSizeInBits() == 64) { 2527 assert(Op.getNumOperands() == 2); 2528 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1), 2529 Op.getOperand(0)); 2530 } 2531 2532 MVT ElemTy = VecTy.getVectorElementType(); 2533 if (ElemTy == MVT::i1) { 2534 assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1); 2535 MVT OpTy = ty(Op.getOperand(0)); 2536 // Scale is how many times the operands need to be contracted to match 2537 // the representation in the target register. 2538 unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements(); 2539 assert(Scale == Op.getNumOperands() && Scale > 1); 2540 2541 // First, convert all bool vectors to integers, then generate pairwise 2542 // inserts to form values of doubled length. Up until there are only 2543 // two values left to concatenate, all of these values will fit in a 2544 // 32-bit integer, so keep them as i32 to use 32-bit inserts. 2545 SmallVector<SDValue,4> Words[2]; 2546 unsigned IdxW = 0; 2547 2548 for (SDValue P : Op.getNode()->op_values()) { 2549 SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P); 2550 for (unsigned R = Scale; R > 1; R /= 2) { 2551 W = contractPredicate(W, dl, DAG); 2552 W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, 2553 DAG.getUNDEF(MVT::i32), W); 2554 } 2555 W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W); 2556 Words[IdxW].push_back(W); 2557 } 2558 2559 while (Scale > 2) { 2560 SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32); 2561 Words[IdxW ^ 1].clear(); 2562 2563 for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) { 2564 SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1]; 2565 // Insert W1 into W0 right next to the significant bits of W0. 2566 SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, 2567 {W0, W1, WidthV, WidthV}); 2568 Words[IdxW ^ 1].push_back(T); 2569 } 2570 IdxW ^= 1; 2571 Scale /= 2; 2572 } 2573 2574 // Another sanity check. At this point there should only be two words 2575 // left, and Scale should be 2. 2576 assert(Scale == 2 && Words[IdxW].size() == 2); 2577 2578 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, 2579 Words[IdxW][1], Words[IdxW][0]); 2580 return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW); 2581 } 2582 2583 return SDValue(); 2584 } 2585 2586 SDValue 2587 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 2588 SelectionDAG &DAG) const { 2589 SDValue Vec = Op.getOperand(0); 2590 MVT ElemTy = ty(Vec).getVectorElementType(); 2591 return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG); 2592 } 2593 2594 SDValue 2595 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 2596 SelectionDAG &DAG) const { 2597 return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op), 2598 ty(Op), ty(Op), DAG); 2599 } 2600 2601 SDValue 2602 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 2603 SelectionDAG &DAG) const { 2604 return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), 2605 SDLoc(Op), ty(Op).getVectorElementType(), DAG); 2606 } 2607 2608 SDValue 2609 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, 2610 SelectionDAG &DAG) const { 2611 SDValue ValV = Op.getOperand(1); 2612 return insertVector(Op.getOperand(0), ValV, Op.getOperand(2), 2613 SDLoc(Op), ty(ValV), DAG); 2614 } 2615 2616 bool 2617 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { 2618 // Assuming the caller does not have either a signext or zeroext modifier, and 2619 // only one value is accepted, any reasonable truncation is allowed. 2620 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 2621 return false; 2622 2623 // FIXME: in principle up to 64-bit could be made safe, but it would be very 2624 // fragile at the moment: any support for multiple value returns would be 2625 // liable to disallow tail calls involving i64 -> iN truncation in many cases. 2626 return Ty1->getPrimitiveSizeInBits() <= 32; 2627 } 2628 2629 SDValue 2630 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const { 2631 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 2632 unsigned ClaimAlign = LN->getAlignment(); 2633 validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign); 2634 // Call LowerUnalignedLoad for all loads, it recognizes loads that 2635 // don't need extra aligning. 2636 return LowerUnalignedLoad(Op, DAG); 2637 } 2638 2639 SDValue 2640 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const { 2641 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 2642 unsigned ClaimAlign = SN->getAlignment(); 2643 SDValue Ptr = SN->getBasePtr(); 2644 const SDLoc &dl(Op); 2645 validateConstPtrAlignment(Ptr, dl, ClaimAlign); 2646 2647 MVT StoreTy = SN->getMemoryVT().getSimpleVT(); 2648 unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy); 2649 if (ClaimAlign < NeedAlign) 2650 return expandUnalignedStore(SN, DAG); 2651 return Op; 2652 } 2653 2654 SDValue 2655 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) 2656 const { 2657 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 2658 MVT LoadTy = ty(Op); 2659 unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy); 2660 unsigned HaveAlign = LN->getAlignment(); 2661 if (HaveAlign >= NeedAlign) 2662 return Op; 2663 2664 const SDLoc &dl(Op); 2665 const DataLayout &DL = DAG.getDataLayout(); 2666 LLVMContext &Ctx = *DAG.getContext(); 2667 2668 // If the load aligning is disabled or the load can be broken up into two 2669 // smaller legal loads, do the default (target-independent) expansion. 2670 bool DoDefault = false; 2671 // Handle it in the default way if this is an indexed load. 2672 if (!LN->isUnindexed()) 2673 DoDefault = true; 2674 2675 if (!AlignLoads) { 2676 if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(), 2677 *LN->getMemOperand())) 2678 return Op; 2679 DoDefault = true; 2680 } 2681 if (!DoDefault && (2 * HaveAlign) == NeedAlign) { 2682 // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)". 2683 MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign) 2684 : MVT::getVectorVT(MVT::i8, HaveAlign); 2685 DoDefault = 2686 allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand()); 2687 } 2688 if (DoDefault) { 2689 std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG); 2690 return DAG.getMergeValues({P.first, P.second}, dl); 2691 } 2692 2693 // The code below generates two loads, both aligned as NeedAlign, and 2694 // with the distance of NeedAlign between them. For that to cover the 2695 // bits that need to be loaded (and without overlapping), the size of 2696 // the loads should be equal to NeedAlign. This is true for all loadable 2697 // types, but add an assertion in case something changes in the future. 2698 assert(LoadTy.getSizeInBits() == 8*NeedAlign); 2699 2700 unsigned LoadLen = NeedAlign; 2701 SDValue Base = LN->getBasePtr(); 2702 SDValue Chain = LN->getChain(); 2703 auto BO = getBaseAndOffset(Base); 2704 unsigned BaseOpc = BO.first.getOpcode(); 2705 if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0) 2706 return Op; 2707 2708 if (BO.second % LoadLen != 0) { 2709 BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first, 2710 DAG.getConstant(BO.second % LoadLen, dl, MVT::i32)); 2711 BO.second -= BO.second % LoadLen; 2712 } 2713 SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR) 2714 ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first, 2715 DAG.getConstant(NeedAlign, dl, MVT::i32)) 2716 : BO.first; 2717 SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl); 2718 SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl); 2719 2720 MachineMemOperand *WideMMO = nullptr; 2721 if (MachineMemOperand *MMO = LN->getMemOperand()) { 2722 MachineFunction &MF = DAG.getMachineFunction(); 2723 WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(), 2724 2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(), 2725 MMO->getSyncScopeID(), MMO->getOrdering(), 2726 MMO->getFailureOrdering()); 2727 } 2728 2729 SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO); 2730 SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO); 2731 2732 SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy, 2733 {Load1, Load0, BaseNoOff.getOperand(0)}); 2734 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2735 Load0.getValue(1), Load1.getValue(1)); 2736 SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl); 2737 return M; 2738 } 2739 2740 SDValue 2741 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const { 2742 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 2743 auto *CY = dyn_cast<ConstantSDNode>(Y); 2744 if (!CY) 2745 return SDValue(); 2746 2747 const SDLoc &dl(Op); 2748 SDVTList VTs = Op.getNode()->getVTList(); 2749 assert(VTs.NumVTs == 2); 2750 assert(VTs.VTs[1] == MVT::i1); 2751 unsigned Opc = Op.getOpcode(); 2752 2753 if (CY) { 2754 uint32_t VY = CY->getZExtValue(); 2755 assert(VY != 0 && "This should have been folded"); 2756 // X +/- 1 2757 if (VY != 1) 2758 return SDValue(); 2759 2760 if (Opc == ISD::UADDO) { 2761 SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y}); 2762 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG), 2763 ISD::SETEQ); 2764 return DAG.getMergeValues({Op, Ov}, dl); 2765 } 2766 if (Opc == ISD::USUBO) { 2767 SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y}); 2768 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, 2769 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ); 2770 return DAG.getMergeValues({Op, Ov}, dl); 2771 } 2772 } 2773 2774 return SDValue(); 2775 } 2776 2777 SDValue 2778 HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const { 2779 const SDLoc &dl(Op); 2780 unsigned Opc = Op.getOpcode(); 2781 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2); 2782 2783 if (Opc == ISD::ADDCARRY) 2784 return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(), 2785 { X, Y, C }); 2786 2787 EVT CarryTy = C.getValueType(); 2788 SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(), 2789 { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) }); 2790 SDValue Out[] = { SubC.getValue(0), 2791 DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) }; 2792 return DAG.getMergeValues(Out, dl); 2793 } 2794 2795 SDValue 2796 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 2797 SDValue Chain = Op.getOperand(0); 2798 SDValue Offset = Op.getOperand(1); 2799 SDValue Handler = Op.getOperand(2); 2800 SDLoc dl(Op); 2801 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2802 2803 // Mark function as containing a call to EH_RETURN. 2804 HexagonMachineFunctionInfo *FuncInfo = 2805 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>(); 2806 FuncInfo->setHasEHReturn(); 2807 2808 unsigned OffsetReg = Hexagon::R28; 2809 2810 SDValue StoreAddr = 2811 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT), 2812 DAG.getIntPtrConstant(4, dl)); 2813 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo()); 2814 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset); 2815 2816 // Not needed we already use it as explict input to EH_RETURN. 2817 // MF.getRegInfo().addLiveOut(OffsetReg); 2818 2819 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain); 2820 } 2821 2822 SDValue 2823 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 2824 unsigned Opc = Op.getOpcode(); 2825 2826 // Handle INLINEASM first. 2827 if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR) 2828 return LowerINLINEASM(Op, DAG); 2829 2830 if (isHvxOperation(Op)) { 2831 // If HVX lowering returns nothing, try the default lowering. 2832 if (SDValue V = LowerHvxOperation(Op, DAG)) 2833 return V; 2834 } 2835 2836 switch (Opc) { 2837 default: 2838 #ifndef NDEBUG 2839 Op.getNode()->dumpr(&DAG); 2840 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END) 2841 errs() << "Error: check for a non-legal type in this operation\n"; 2842 #endif 2843 llvm_unreachable("Should not custom lower this!"); 2844 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 2845 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG); 2846 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 2847 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 2848 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 2849 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 2850 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 2851 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 2852 case ISD::LOAD: return LowerLoad(Op, DAG); 2853 case ISD::STORE: return LowerStore(Op, DAG); 2854 case ISD::UADDO: 2855 case ISD::USUBO: return LowerUAddSubO(Op, DAG); 2856 case ISD::ADDCARRY: 2857 case ISD::SUBCARRY: return LowerAddSubCarry(Op, DAG); 2858 case ISD::SRA: 2859 case ISD::SHL: 2860 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG); 2861 case ISD::ROTL: return LowerROTL(Op, DAG); 2862 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 2863 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 2864 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 2865 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 2866 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 2867 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 2868 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 2869 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); 2870 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 2871 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); 2872 case ISD::VASTART: return LowerVASTART(Op, DAG); 2873 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 2874 case ISD::SETCC: return LowerSETCC(Op, DAG); 2875 case ISD::VSELECT: return LowerVSELECT(Op, DAG); 2876 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2877 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 2878 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG); 2879 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); 2880 break; 2881 } 2882 2883 return SDValue(); 2884 } 2885 2886 void 2887 HexagonTargetLowering::LowerOperationWrapper(SDNode *N, 2888 SmallVectorImpl<SDValue> &Results, 2889 SelectionDAG &DAG) const { 2890 // We are only custom-lowering stores to verify the alignment of the 2891 // address if it is a compile-time constant. Since a store can be modified 2892 // during type-legalization (the value being stored may need legalization), 2893 // return empty Results here to indicate that we don't really make any 2894 // changes in the custom lowering. 2895 if (N->getOpcode() != ISD::STORE) 2896 return TargetLowering::LowerOperationWrapper(N, Results, DAG); 2897 } 2898 2899 void 2900 HexagonTargetLowering::ReplaceNodeResults(SDNode *N, 2901 SmallVectorImpl<SDValue> &Results, 2902 SelectionDAG &DAG) const { 2903 const SDLoc &dl(N); 2904 switch (N->getOpcode()) { 2905 case ISD::SRL: 2906 case ISD::SRA: 2907 case ISD::SHL: 2908 return; 2909 case ISD::BITCAST: 2910 // Handle a bitcast from v8i1 to i8. 2911 if (N->getValueType(0) == MVT::i8) { 2912 SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, 2913 N->getOperand(0), DAG); 2914 SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8); 2915 Results.push_back(T); 2916 } 2917 break; 2918 } 2919 } 2920 2921 SDValue 2922 HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) 2923 const { 2924 SDValue Op(N, 0); 2925 if (isHvxOperation(Op)) { 2926 if (SDValue V = PerformHvxDAGCombine(N, DCI)) 2927 return V; 2928 return SDValue(); 2929 } 2930 2931 const SDLoc &dl(Op); 2932 unsigned Opc = Op.getOpcode(); 2933 2934 if (Opc == HexagonISD::P2D) { 2935 SDValue P = Op.getOperand(0); 2936 switch (P.getOpcode()) { 2937 case HexagonISD::PTRUE: 2938 return DCI.DAG.getConstant(-1, dl, ty(Op)); 2939 case HexagonISD::PFALSE: 2940 return getZero(dl, ty(Op), DCI.DAG); 2941 default: 2942 break; 2943 } 2944 } else if (Opc == ISD::VSELECT) { 2945 // This is pretty much duplicated in HexagonISelLoweringHVX... 2946 // 2947 // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0) 2948 SDValue Cond = Op.getOperand(0); 2949 if (Cond->getOpcode() == ISD::XOR) { 2950 SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1); 2951 if (C1->getOpcode() == HexagonISD::PTRUE) { 2952 SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, 2953 Op.getOperand(2), Op.getOperand(1)); 2954 return VSel; 2955 } 2956 } 2957 } 2958 2959 return SDValue(); 2960 } 2961 2962 /// Returns relocation base for the given PIC jumptable. 2963 SDValue 2964 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2965 SelectionDAG &DAG) const { 2966 int Idx = cast<JumpTableSDNode>(Table)->getIndex(); 2967 EVT VT = Table.getValueType(); 2968 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); 2969 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T); 2970 } 2971 2972 //===----------------------------------------------------------------------===// 2973 // Inline Assembly Support 2974 //===----------------------------------------------------------------------===// 2975 2976 TargetLowering::ConstraintType 2977 HexagonTargetLowering::getConstraintType(StringRef Constraint) const { 2978 if (Constraint.size() == 1) { 2979 switch (Constraint[0]) { 2980 case 'q': 2981 case 'v': 2982 if (Subtarget.useHVXOps()) 2983 return C_RegisterClass; 2984 break; 2985 case 'a': 2986 return C_RegisterClass; 2987 default: 2988 break; 2989 } 2990 } 2991 return TargetLowering::getConstraintType(Constraint); 2992 } 2993 2994 std::pair<unsigned, const TargetRegisterClass*> 2995 HexagonTargetLowering::getRegForInlineAsmConstraint( 2996 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 2997 2998 if (Constraint.size() == 1) { 2999 switch (Constraint[0]) { 3000 case 'r': // R0-R31 3001 switch (VT.SimpleTy) { 3002 default: 3003 return {0u, nullptr}; 3004 case MVT::i1: 3005 case MVT::i8: 3006 case MVT::i16: 3007 case MVT::i32: 3008 case MVT::f32: 3009 return {0u, &Hexagon::IntRegsRegClass}; 3010 case MVT::i64: 3011 case MVT::f64: 3012 return {0u, &Hexagon::DoubleRegsRegClass}; 3013 } 3014 break; 3015 case 'a': // M0-M1 3016 if (VT != MVT::i32) 3017 return {0u, nullptr}; 3018 return {0u, &Hexagon::ModRegsRegClass}; 3019 case 'q': // q0-q3 3020 switch (VT.getSizeInBits()) { 3021 default: 3022 return {0u, nullptr}; 3023 case 512: 3024 case 1024: 3025 return {0u, &Hexagon::HvxQRRegClass}; 3026 } 3027 break; 3028 case 'v': // V0-V31 3029 switch (VT.getSizeInBits()) { 3030 default: 3031 return {0u, nullptr}; 3032 case 512: 3033 return {0u, &Hexagon::HvxVRRegClass}; 3034 case 1024: 3035 if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps()) 3036 return {0u, &Hexagon::HvxVRRegClass}; 3037 return {0u, &Hexagon::HvxWRRegClass}; 3038 case 2048: 3039 return {0u, &Hexagon::HvxWRRegClass}; 3040 } 3041 break; 3042 default: 3043 return {0u, nullptr}; 3044 } 3045 } 3046 3047 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3048 } 3049 3050 /// isFPImmLegal - Returns true if the target can instruction select the 3051 /// specified FP immediate natively. If false, the legalizer will 3052 /// materialize the FP immediate as a load from a constant pool. 3053 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 3054 bool ForCodeSize) const { 3055 return true; 3056 } 3057 3058 /// isLegalAddressingMode - Return true if the addressing mode represented by 3059 /// AM is legal for this target, for a load/store of the specified type. 3060 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL, 3061 const AddrMode &AM, Type *Ty, 3062 unsigned AS, Instruction *I) const { 3063 if (Ty->isSized()) { 3064 // When LSR detects uses of the same base address to access different 3065 // types (e.g. unions), it will assume a conservative type for these 3066 // uses: 3067 // LSR Use: Kind=Address of void in addrspace(4294967295), ... 3068 // The type Ty passed here would then be "void". Skip the alignment 3069 // checks, but do not return false right away, since that confuses 3070 // LSR into crashing. 3071 unsigned A = DL.getABITypeAlignment(Ty); 3072 // The base offset must be a multiple of the alignment. 3073 if ((AM.BaseOffs % A) != 0) 3074 return false; 3075 // The shifted offset must fit in 11 bits. 3076 if (!isInt<11>(AM.BaseOffs >> Log2_32(A))) 3077 return false; 3078 } 3079 3080 // No global is ever allowed as a base. 3081 if (AM.BaseGV) 3082 return false; 3083 3084 int Scale = AM.Scale; 3085 if (Scale < 0) 3086 Scale = -Scale; 3087 switch (Scale) { 3088 case 0: // No scale reg, "r+i", "r", or just "i". 3089 break; 3090 default: // No scaled addressing mode. 3091 return false; 3092 } 3093 return true; 3094 } 3095 3096 /// Return true if folding a constant offset with the given GlobalAddress is 3097 /// legal. It is frequently not legal in PIC relocation models. 3098 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) 3099 const { 3100 return HTM.getRelocationModel() == Reloc::Static; 3101 } 3102 3103 /// isLegalICmpImmediate - Return true if the specified immediate is legal 3104 /// icmp immediate, that is the target has icmp instructions which can compare 3105 /// a register against the immediate without having to materialize the 3106 /// immediate into a register. 3107 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 3108 return Imm >= -512 && Imm <= 511; 3109 } 3110 3111 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3112 /// for tail call optimization. Targets which want to do tail call 3113 /// optimization should implement this function. 3114 bool HexagonTargetLowering::IsEligibleForTailCallOptimization( 3115 SDValue Callee, 3116 CallingConv::ID CalleeCC, 3117 bool IsVarArg, 3118 bool IsCalleeStructRet, 3119 bool IsCallerStructRet, 3120 const SmallVectorImpl<ISD::OutputArg> &Outs, 3121 const SmallVectorImpl<SDValue> &OutVals, 3122 const SmallVectorImpl<ISD::InputArg> &Ins, 3123 SelectionDAG& DAG) const { 3124 const Function &CallerF = DAG.getMachineFunction().getFunction(); 3125 CallingConv::ID CallerCC = CallerF.getCallingConv(); 3126 bool CCMatch = CallerCC == CalleeCC; 3127 3128 // *************************************************************************** 3129 // Look for obvious safe cases to perform tail call optimization that do not 3130 // require ABI changes. 3131 // *************************************************************************** 3132 3133 // If this is a tail call via a function pointer, then don't do it! 3134 if (!isa<GlobalAddressSDNode>(Callee) && 3135 !isa<ExternalSymbolSDNode>(Callee)) { 3136 return false; 3137 } 3138 3139 // Do not optimize if the calling conventions do not match and the conventions 3140 // used are not C or Fast. 3141 if (!CCMatch) { 3142 bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast); 3143 bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast); 3144 // If R & E, then ok. 3145 if (!R || !E) 3146 return false; 3147 } 3148 3149 // Do not tail call optimize vararg calls. 3150 if (IsVarArg) 3151 return false; 3152 3153 // Also avoid tail call optimization if either caller or callee uses struct 3154 // return semantics. 3155 if (IsCalleeStructRet || IsCallerStructRet) 3156 return false; 3157 3158 // In addition to the cases above, we also disable Tail Call Optimization if 3159 // the calling convention code that at least one outgoing argument needs to 3160 // go on the stack. We cannot check that here because at this point that 3161 // information is not available. 3162 return true; 3163 } 3164 3165 /// Returns the target specific optimal type for load and store operations as 3166 /// a result of memset, memcpy, and memmove lowering. 3167 /// 3168 /// If DstAlign is zero that means it's safe to destination alignment can 3169 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't 3170 /// a need to check it against alignment requirement, probably because the 3171 /// source does not need to be loaded. If 'IsMemset' is true, that means it's 3172 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of 3173 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it 3174 /// does not need to be loaded. It returns EVT::Other if the type should be 3175 /// determined using generic target-independent logic. 3176 EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size, 3177 unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, 3178 bool MemcpyStrSrc, const AttributeList &FuncAttributes) const { 3179 3180 auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool { 3181 return (GivenA % MinA) == 0; 3182 }; 3183 3184 if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8))) 3185 return MVT::i64; 3186 if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4))) 3187 return MVT::i32; 3188 if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2))) 3189 return MVT::i16; 3190 3191 return MVT::Other; 3192 } 3193 3194 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses( 3195 EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags, 3196 bool *Fast) const { 3197 if (Fast) 3198 *Fast = false; 3199 return Subtarget.isHVXVectorType(VT.getSimpleVT()); 3200 } 3201 3202 std::pair<const TargetRegisterClass*, uint8_t> 3203 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, 3204 MVT VT) const { 3205 if (Subtarget.isHVXVectorType(VT, true)) { 3206 unsigned BitWidth = VT.getSizeInBits(); 3207 unsigned VecWidth = Subtarget.getVectorLength() * 8; 3208 3209 if (VT.getVectorElementType() == MVT::i1) 3210 return std::make_pair(&Hexagon::HvxQRRegClass, 1); 3211 if (BitWidth == VecWidth) 3212 return std::make_pair(&Hexagon::HvxVRRegClass, 1); 3213 assert(BitWidth == 2 * VecWidth); 3214 return std::make_pair(&Hexagon::HvxWRRegClass, 1); 3215 } 3216 3217 return TargetLowering::findRepresentativeClass(TRI, VT); 3218 } 3219 3220 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load, 3221 ISD::LoadExtType ExtTy, EVT NewVT) const { 3222 // TODO: This may be worth removing. Check regression tests for diffs. 3223 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) 3224 return false; 3225 3226 auto *L = cast<LoadSDNode>(Load); 3227 std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr()); 3228 // Small-data object, do not shrink. 3229 if (BO.first.getOpcode() == HexagonISD::CONST32_GP) 3230 return false; 3231 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) { 3232 auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine()); 3233 const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal()); 3234 return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM); 3235 } 3236 return true; 3237 } 3238 3239 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 3240 AtomicOrdering Ord) const { 3241 BasicBlock *BB = Builder.GetInsertBlock(); 3242 Module *M = BB->getParent()->getParent(); 3243 auto PT = cast<PointerType>(Addr->getType()); 3244 Type *Ty = PT->getElementType(); 3245 unsigned SZ = Ty->getPrimitiveSizeInBits(); 3246 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported"); 3247 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked 3248 : Intrinsic::hexagon_L4_loadd_locked; 3249 Function *Fn = Intrinsic::getDeclaration(M, IntID); 3250 3251 PointerType *NewPtrTy 3252 = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace()); 3253 Addr = Builder.CreateBitCast(Addr, NewPtrTy); 3254 3255 Value *Call = Builder.CreateCall(Fn, Addr, "larx"); 3256 3257 return Builder.CreateBitCast(Call, Ty); 3258 } 3259 3260 /// Perform a store-conditional operation to Addr. Return the status of the 3261 /// store. This should be 0 if the store succeeded, non-zero otherwise. 3262 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder, 3263 Value *Val, Value *Addr, AtomicOrdering Ord) const { 3264 BasicBlock *BB = Builder.GetInsertBlock(); 3265 Module *M = BB->getParent()->getParent(); 3266 Type *Ty = Val->getType(); 3267 unsigned SZ = Ty->getPrimitiveSizeInBits(); 3268 3269 Type *CastTy = Builder.getIntNTy(SZ); 3270 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported"); 3271 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked 3272 : Intrinsic::hexagon_S4_stored_locked; 3273 Function *Fn = Intrinsic::getDeclaration(M, IntID); 3274 3275 unsigned AS = Addr->getType()->getPointerAddressSpace(); 3276 Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS)); 3277 Val = Builder.CreateBitCast(Val, CastTy); 3278 3279 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx"); 3280 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), ""); 3281 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext())); 3282 return Ext; 3283 } 3284 3285 TargetLowering::AtomicExpansionKind 3286 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 3287 // Do not expand loads and stores that don't exceed 64 bits. 3288 return LI->getType()->getPrimitiveSizeInBits() > 64 3289 ? AtomicExpansionKind::LLOnly 3290 : AtomicExpansionKind::None; 3291 } 3292 3293 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 3294 // Do not expand loads and stores that don't exceed 64 bits. 3295 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64; 3296 } 3297 3298 TargetLowering::AtomicExpansionKind 3299 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR( 3300 AtomicCmpXchgInst *AI) const { 3301 const DataLayout &DL = AI->getModule()->getDataLayout(); 3302 unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 3303 if (Size >= 4 && Size <= 8) 3304 return AtomicExpansionKind::LLSC; 3305 return AtomicExpansionKind::None; 3306 } 3307