xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/DiagnosticPrinter.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/IntrinsicsHexagon.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CodeGen.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetMachine.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstddef>
63 #include <cstdint>
64 #include <limits>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "hexagon-lowering"
70 
71 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
72   cl::init(true), cl::Hidden,
73   cl::desc("Control jump table emission on Hexagon target"));
74 
75 static cl::opt<bool>
76     EnableHexSDNodeSched("enable-hexagon-sdnode-sched", cl::Hidden,
77                          cl::desc("Enable Hexagon SDNode scheduling"));
78 
79 static cl::opt<bool> EnableFastMath("ffast-math", cl::Hidden,
80                                     cl::desc("Enable Fast Math processing"));
81 
82 static cl::opt<int> MinimumJumpTables("minimum-jump-tables", cl::Hidden,
83                                       cl::init(5),
84                                       cl::desc("Set minimum jump tables"));
85 
86 static cl::opt<int>
87     MaxStoresPerMemcpyCL("max-store-memcpy", cl::Hidden, cl::init(6),
88                          cl::desc("Max #stores to inline memcpy"));
89 
90 static cl::opt<int>
91     MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", cl::Hidden, cl::init(4),
92                                 cl::desc("Max #stores to inline memcpy"));
93 
94 static cl::opt<int>
95     MaxStoresPerMemmoveCL("max-store-memmove", cl::Hidden, cl::init(6),
96                           cl::desc("Max #stores to inline memmove"));
97 
98 static cl::opt<int>
99     MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", cl::Hidden,
100                                  cl::init(4),
101                                  cl::desc("Max #stores to inline memmove"));
102 
103 static cl::opt<int>
104     MaxStoresPerMemsetCL("max-store-memset", cl::Hidden, cl::init(8),
105                          cl::desc("Max #stores to inline memset"));
106 
107 static cl::opt<int>
108     MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", cl::Hidden, cl::init(4),
109                                 cl::desc("Max #stores to inline memset"));
110 
111 static cl::opt<bool> AlignLoads("hexagon-align-loads",
112   cl::Hidden, cl::init(false),
113   cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
114 
115 static cl::opt<bool>
116     DisableArgsMinAlignment("hexagon-disable-args-min-alignment", cl::Hidden,
117                             cl::init(false),
118                             cl::desc("Disable minimum alignment of 1 for "
119                                      "arguments passed by value on stack"));
120 
121 namespace {
122 
123   class HexagonCCState : public CCState {
124     unsigned NumNamedVarArgParams = 0;
125 
126   public:
127     HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
128                    SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
129                    unsigned NumNamedArgs)
130         : CCState(CC, IsVarArg, MF, locs, C),
131           NumNamedVarArgParams(NumNamedArgs) {}
132     unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
133   };
134 
135 } // end anonymous namespace
136 
137 
138 // Implement calling convention for Hexagon.
139 
140 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
141                        CCValAssign::LocInfo &LocInfo,
142                        ISD::ArgFlagsTy &ArgFlags, CCState &State) {
143   static const MCPhysReg ArgRegs[] = {
144     Hexagon::R0, Hexagon::R1, Hexagon::R2,
145     Hexagon::R3, Hexagon::R4, Hexagon::R5
146   };
147   const unsigned NumArgRegs = std::size(ArgRegs);
148   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
149 
150   // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
151   if (RegNum != NumArgRegs && RegNum % 2 == 1)
152     State.AllocateReg(ArgRegs[RegNum]);
153 
154   // Always return false here, as this function only makes sure that the first
155   // unallocated register has an even register number and does not actually
156   // allocate a register for the current argument.
157   return false;
158 }
159 
160 #include "HexagonGenCallingConv.inc"
161 
162 
163 SDValue
164 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
165       const {
166   return SDValue();
167 }
168 
169 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
170 /// by "Src" to address "Dst" of size "Size".  Alignment information is
171 /// specified by the specific parameter attribute. The copy will be passed as
172 /// a byval function parameter.  Sometimes what we are copying is the end of a
173 /// larger object, the part that does not fit in registers.
174 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
175                                          SDValue Chain, ISD::ArgFlagsTy Flags,
176                                          SelectionDAG &DAG, const SDLoc &dl) {
177   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
178   return DAG.getMemcpy(
179       Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
180       /*isVolatile=*/false, /*AlwaysInline=*/false,
181       /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), MachinePointerInfo());
182 }
183 
184 bool
185 HexagonTargetLowering::CanLowerReturn(
186     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
187     const SmallVectorImpl<ISD::OutputArg> &Outs,
188     LLVMContext &Context) const {
189   SmallVector<CCValAssign, 16> RVLocs;
190   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
191 
192   if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
193     return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
194   return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
195 }
196 
197 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
198 // passed by value, the function prototype is modified to return void and
199 // the value is stored in memory pointed by a pointer passed by caller.
200 SDValue
201 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
202                                    bool IsVarArg,
203                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
204                                    const SmallVectorImpl<SDValue> &OutVals,
205                                    const SDLoc &dl, SelectionDAG &DAG) const {
206   // CCValAssign - represent the assignment of the return value to locations.
207   SmallVector<CCValAssign, 16> RVLocs;
208 
209   // CCState - Info about the registers and stack slot.
210   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
211                  *DAG.getContext());
212 
213   // Analyze return values of ISD::RET
214   if (Subtarget.useHVXOps())
215     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
216   else
217     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
218 
219   SDValue Glue;
220   SmallVector<SDValue, 4> RetOps(1, Chain);
221 
222   // Copy the result values into the output registers.
223   for (unsigned i = 0; i != RVLocs.size(); ++i) {
224     CCValAssign &VA = RVLocs[i];
225     SDValue Val = OutVals[i];
226 
227     switch (VA.getLocInfo()) {
228       default:
229         // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
230         llvm_unreachable("Unknown loc info!");
231       case CCValAssign::Full:
232         break;
233       case CCValAssign::BCvt:
234         Val = DAG.getBitcast(VA.getLocVT(), Val);
235         break;
236       case CCValAssign::SExt:
237         Val = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Val);
238         break;
239       case CCValAssign::ZExt:
240         Val = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Val);
241         break;
242       case CCValAssign::AExt:
243         Val = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Val);
244         break;
245     }
246 
247     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Val, Glue);
248 
249     // Guarantee that all emitted copies are stuck together with flags.
250     Glue = Chain.getValue(1);
251     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
252   }
253 
254   RetOps[0] = Chain;  // Update chain.
255 
256   // Add the glue if we have it.
257   if (Glue.getNode())
258     RetOps.push_back(Glue);
259 
260   return DAG.getNode(HexagonISD::RET_GLUE, dl, MVT::Other, RetOps);
261 }
262 
263 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
264   // If either no tail call or told not to tail call at all, don't.
265   return CI->isTailCall();
266 }
267 
268 Register HexagonTargetLowering::getRegisterByName(
269       const char* RegName, LLT VT, const MachineFunction &) const {
270   // Just support r19, the linux kernel uses it.
271   Register Reg = StringSwitch<Register>(RegName)
272                      .Case("r0", Hexagon::R0)
273                      .Case("r1", Hexagon::R1)
274                      .Case("r2", Hexagon::R2)
275                      .Case("r3", Hexagon::R3)
276                      .Case("r4", Hexagon::R4)
277                      .Case("r5", Hexagon::R5)
278                      .Case("r6", Hexagon::R6)
279                      .Case("r7", Hexagon::R7)
280                      .Case("r8", Hexagon::R8)
281                      .Case("r9", Hexagon::R9)
282                      .Case("r10", Hexagon::R10)
283                      .Case("r11", Hexagon::R11)
284                      .Case("r12", Hexagon::R12)
285                      .Case("r13", Hexagon::R13)
286                      .Case("r14", Hexagon::R14)
287                      .Case("r15", Hexagon::R15)
288                      .Case("r16", Hexagon::R16)
289                      .Case("r17", Hexagon::R17)
290                      .Case("r18", Hexagon::R18)
291                      .Case("r19", Hexagon::R19)
292                      .Case("r20", Hexagon::R20)
293                      .Case("r21", Hexagon::R21)
294                      .Case("r22", Hexagon::R22)
295                      .Case("r23", Hexagon::R23)
296                      .Case("r24", Hexagon::R24)
297                      .Case("r25", Hexagon::R25)
298                      .Case("r26", Hexagon::R26)
299                      .Case("r27", Hexagon::R27)
300                      .Case("r28", Hexagon::R28)
301                      .Case("r29", Hexagon::R29)
302                      .Case("r30", Hexagon::R30)
303                      .Case("r31", Hexagon::R31)
304                      .Case("r1:0", Hexagon::D0)
305                      .Case("r3:2", Hexagon::D1)
306                      .Case("r5:4", Hexagon::D2)
307                      .Case("r7:6", Hexagon::D3)
308                      .Case("r9:8", Hexagon::D4)
309                      .Case("r11:10", Hexagon::D5)
310                      .Case("r13:12", Hexagon::D6)
311                      .Case("r15:14", Hexagon::D7)
312                      .Case("r17:16", Hexagon::D8)
313                      .Case("r19:18", Hexagon::D9)
314                      .Case("r21:20", Hexagon::D10)
315                      .Case("r23:22", Hexagon::D11)
316                      .Case("r25:24", Hexagon::D12)
317                      .Case("r27:26", Hexagon::D13)
318                      .Case("r29:28", Hexagon::D14)
319                      .Case("r31:30", Hexagon::D15)
320                      .Case("sp", Hexagon::R29)
321                      .Case("fp", Hexagon::R30)
322                      .Case("lr", Hexagon::R31)
323                      .Case("p0", Hexagon::P0)
324                      .Case("p1", Hexagon::P1)
325                      .Case("p2", Hexagon::P2)
326                      .Case("p3", Hexagon::P3)
327                      .Case("sa0", Hexagon::SA0)
328                      .Case("lc0", Hexagon::LC0)
329                      .Case("sa1", Hexagon::SA1)
330                      .Case("lc1", Hexagon::LC1)
331                      .Case("m0", Hexagon::M0)
332                      .Case("m1", Hexagon::M1)
333                      .Case("usr", Hexagon::USR)
334                      .Case("ugp", Hexagon::UGP)
335                      .Case("cs0", Hexagon::CS0)
336                      .Case("cs1", Hexagon::CS1)
337                      .Default(Register());
338   if (Reg)
339     return Reg;
340 
341   report_fatal_error("Invalid register name global variable");
342 }
343 
344 /// LowerCallResult - Lower the result values of an ISD::CALL into the
345 /// appropriate copies out of appropriate physical registers.  This assumes that
346 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
347 /// being lowered. Returns a SDNode with the same number of values as the
348 /// ISD::CALL.
349 SDValue HexagonTargetLowering::LowerCallResult(
350     SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
351     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
352     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
353     const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
354   // Assign locations to each value returned by this call.
355   SmallVector<CCValAssign, 16> RVLocs;
356 
357   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
358                  *DAG.getContext());
359 
360   if (Subtarget.useHVXOps())
361     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
362   else
363     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
364 
365   // Copy all of the result registers out of their specified physreg.
366   for (unsigned i = 0; i != RVLocs.size(); ++i) {
367     SDValue RetVal;
368     if (RVLocs[i].getValVT() == MVT::i1) {
369       // Return values of type MVT::i1 require special handling. The reason
370       // is that MVT::i1 is associated with the PredRegs register class, but
371       // values of that type are still returned in R0. Generate an explicit
372       // copy into a predicate register from R0, and treat the value of the
373       // predicate register as the call result.
374       auto &MRI = DAG.getMachineFunction().getRegInfo();
375       SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
376                                        MVT::i32, Glue);
377       // FR0 = (Value, Chain, Glue)
378       Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
379       SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
380                                      FR0.getValue(0), FR0.getValue(2));
381       // TPR = (Chain, Glue)
382       // Don't glue this CopyFromReg, because it copies from a virtual
383       // register. If it is glued to the call, InstrEmitter will add it
384       // as an implicit def to the call (EmitMachineNode).
385       RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
386       Glue = TPR.getValue(1);
387       Chain = TPR.getValue(0);
388     } else {
389       RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
390                                   RVLocs[i].getValVT(), Glue);
391       Glue = RetVal.getValue(2);
392       Chain = RetVal.getValue(1);
393     }
394     InVals.push_back(RetVal.getValue(0));
395   }
396 
397   return Chain;
398 }
399 
400 /// LowerCall - Functions arguments are copied from virtual regs to
401 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
402 SDValue
403 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
404                                  SmallVectorImpl<SDValue> &InVals) const {
405   SelectionDAG &DAG                     = CLI.DAG;
406   SDLoc &dl                             = CLI.DL;
407   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
408   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
409   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
410   SDValue Chain                         = CLI.Chain;
411   SDValue Callee                        = CLI.Callee;
412   CallingConv::ID CallConv              = CLI.CallConv;
413   bool IsVarArg                         = CLI.IsVarArg;
414   bool DoesNotReturn                    = CLI.DoesNotReturn;
415 
416   bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
417   MachineFunction &MF = DAG.getMachineFunction();
418   MachineFrameInfo &MFI = MF.getFrameInfo();
419   auto PtrVT = getPointerTy(MF.getDataLayout());
420 
421   unsigned NumParams = CLI.CB ? CLI.CB->getFunctionType()->getNumParams() : 0;
422   if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
423     Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
424 
425   // Linux ABI treats var-arg calls the same way as regular ones.
426   bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
427 
428   // Analyze operands of the call, assigning locations to each operand.
429   SmallVector<CCValAssign, 16> ArgLocs;
430   HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(),
431                         NumParams);
432 
433   if (Subtarget.useHVXOps())
434     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
435   else if (DisableArgsMinAlignment)
436     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_Legacy);
437   else
438     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
439 
440   if (CLI.IsTailCall) {
441     bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
442     CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
443                         IsVarArg, IsStructRet, StructAttrFlag, Outs,
444                         OutVals, Ins, DAG);
445     for (const CCValAssign &VA : ArgLocs) {
446       if (VA.isMemLoc()) {
447         CLI.IsTailCall = false;
448         break;
449       }
450     }
451     LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
452                                          : "Argument must be passed on stack. "
453                                            "Not eligible for Tail Call\n"));
454   }
455   // Get a count of how many bytes are to be pushed on the stack.
456   unsigned NumBytes = CCInfo.getStackSize();
457   SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
458   SmallVector<SDValue, 8> MemOpChains;
459 
460   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
461   SDValue StackPtr =
462       DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
463 
464   bool NeedsArgAlign = false;
465   Align LargestAlignSeen;
466   // Walk the register/memloc assignments, inserting copies/loads.
467   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
468     CCValAssign &VA = ArgLocs[i];
469     SDValue Arg = OutVals[i];
470     ISD::ArgFlagsTy Flags = Outs[i].Flags;
471     // Record if we need > 8 byte alignment on an argument.
472     bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
473     NeedsArgAlign |= ArgAlign;
474 
475     // Promote the value if needed.
476     switch (VA.getLocInfo()) {
477       default:
478         // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
479         llvm_unreachable("Unknown loc info!");
480       case CCValAssign::Full:
481         break;
482       case CCValAssign::BCvt:
483         Arg = DAG.getBitcast(VA.getLocVT(), Arg);
484         break;
485       case CCValAssign::SExt:
486         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
487         break;
488       case CCValAssign::ZExt:
489         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
490         break;
491       case CCValAssign::AExt:
492         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
493         break;
494     }
495 
496     if (VA.isMemLoc()) {
497       unsigned LocMemOffset = VA.getLocMemOffset();
498       SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
499                                         StackPtr.getValueType());
500       MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
501       if (ArgAlign)
502         LargestAlignSeen = std::max(
503             LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8));
504       if (Flags.isByVal()) {
505         // The argument is a struct passed by value. According to LLVM, "Arg"
506         // is a pointer.
507         MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
508                                                         Flags, DAG, dl));
509       } else {
510         MachinePointerInfo LocPI = MachinePointerInfo::getStack(
511             DAG.getMachineFunction(), LocMemOffset);
512         SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
513         MemOpChains.push_back(S);
514       }
515       continue;
516     }
517 
518     // Arguments that can be passed on register must be kept at RegsToPass
519     // vector.
520     if (VA.isRegLoc())
521       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
522   }
523 
524   if (NeedsArgAlign && Subtarget.hasV60Ops()) {
525     LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
526     Align VecAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
527     LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
528     MFI.ensureMaxAlignment(LargestAlignSeen);
529   }
530   // Transform all store nodes into one single node because all store
531   // nodes are independent of each other.
532   if (!MemOpChains.empty())
533     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
534 
535   SDValue Glue;
536   if (!CLI.IsTailCall) {
537     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
538     Glue = Chain.getValue(1);
539   }
540 
541   // Build a sequence of copy-to-reg nodes chained together with token
542   // chain and flag operands which copy the outgoing args into registers.
543   // The Glue is necessary since all emitted instructions must be
544   // stuck together.
545   if (!CLI.IsTailCall) {
546     for (const auto &R : RegsToPass) {
547       Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
548       Glue = Chain.getValue(1);
549     }
550   } else {
551     // For tail calls lower the arguments to the 'real' stack slot.
552     //
553     // Force all the incoming stack arguments to be loaded from the stack
554     // before any new outgoing arguments are stored to the stack, because the
555     // outgoing stack slots may alias the incoming argument stack slots, and
556     // the alias isn't otherwise explicit. This is slightly more conservative
557     // than necessary, because it means that each store effectively depends
558     // on every argument instead of just those arguments it would clobber.
559     //
560     // Do not flag preceding copytoreg stuff together with the following stuff.
561     Glue = SDValue();
562     for (const auto &R : RegsToPass) {
563       Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
564       Glue = Chain.getValue(1);
565     }
566     Glue = SDValue();
567   }
568 
569   bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
570   unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
571 
572   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
573   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
574   // node so that legalize doesn't hack it.
575   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
576     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
577   } else if (ExternalSymbolSDNode *S =
578              dyn_cast<ExternalSymbolSDNode>(Callee)) {
579     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
580   }
581 
582   // Returns a chain & a flag for retval copy to use.
583   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
584   SmallVector<SDValue, 8> Ops;
585   Ops.push_back(Chain);
586   Ops.push_back(Callee);
587 
588   // Add argument registers to the end of the list so that they are
589   // known live into the call.
590   for (const auto &R : RegsToPass)
591     Ops.push_back(DAG.getRegister(R.first, R.second.getValueType()));
592 
593   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
594   assert(Mask && "Missing call preserved mask for calling convention");
595   Ops.push_back(DAG.getRegisterMask(Mask));
596 
597   if (Glue.getNode())
598     Ops.push_back(Glue);
599 
600   if (CLI.IsTailCall) {
601     MFI.setHasTailCall();
602     return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
603   }
604 
605   // Set this here because we need to know this for "hasFP" in frame lowering.
606   // The target-independent code calls getFrameRegister before setting it, and
607   // getFrameRegister uses hasFP to determine whether the function has FP.
608   MFI.setHasCalls(true);
609 
610   unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
611   Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
612   Glue = Chain.getValue(1);
613 
614   // Create the CALLSEQ_END node.
615   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, dl);
616   Glue = Chain.getValue(1);
617 
618   // Handle result values, copying them out of physregs into vregs that we
619   // return.
620   return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
621                          InVals, OutVals, Callee);
622 }
623 
624 /// Returns true by value, base pointer and offset pointer and addressing
625 /// mode by reference if this node can be combined with a load / store to
626 /// form a post-indexed load / store.
627 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
628       SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
629       SelectionDAG &DAG) const {
630   LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
631   if (!LSN)
632     return false;
633   EVT VT = LSN->getMemoryVT();
634   if (!VT.isSimple())
635     return false;
636   bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
637                      VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
638                      VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
639                      VT == MVT::v4i16 || VT == MVT::v8i8 ||
640                      Subtarget.isHVXVectorType(VT.getSimpleVT());
641   if (!IsLegalType)
642     return false;
643 
644   if (Op->getOpcode() != ISD::ADD)
645     return false;
646   Base = Op->getOperand(0);
647   Offset = Op->getOperand(1);
648   if (!isa<ConstantSDNode>(Offset.getNode()))
649     return false;
650   AM = ISD::POST_INC;
651 
652   int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
653   return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
654 }
655 
656 SDValue HexagonTargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
657   if (DAG.getMachineFunction().getFunction().hasOptSize())
658     return SDValue();
659   else
660     return Op;
661 }
662 
663 SDValue
664 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
665   MachineFunction &MF = DAG.getMachineFunction();
666   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
667   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
668   unsigned LR = HRI.getRARegister();
669 
670   if ((Op.getOpcode() != ISD::INLINEASM &&
671        Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
672     return Op;
673 
674   unsigned NumOps = Op.getNumOperands();
675   if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
676     --NumOps;  // Ignore the flag operand.
677 
678   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
679     const InlineAsm::Flag Flags(Op.getConstantOperandVal(i));
680     unsigned NumVals = Flags.getNumOperandRegisters();
681     ++i;  // Skip the ID value.
682 
683     switch (Flags.getKind()) {
684     default:
685       llvm_unreachable("Bad flags!");
686     case InlineAsm::Kind::RegUse:
687     case InlineAsm::Kind::Imm:
688     case InlineAsm::Kind::Mem:
689       i += NumVals;
690       break;
691     case InlineAsm::Kind::Clobber:
692     case InlineAsm::Kind::RegDef:
693     case InlineAsm::Kind::RegDefEarlyClobber: {
694       for (; NumVals; --NumVals, ++i) {
695         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
696         if (Reg != LR)
697           continue;
698         HMFI.setHasClobberLR(true);
699         return Op;
700       }
701       break;
702       }
703       }
704   }
705 
706   return Op;
707 }
708 
709 // Need to transform ISD::PREFETCH into something that doesn't inherit
710 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
711 // SDNPMayStore.
712 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
713                                              SelectionDAG &DAG) const {
714   SDValue Chain = Op.getOperand(0);
715   SDValue Addr = Op.getOperand(1);
716   // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
717   // if the "reg" is fed by an "add".
718   SDLoc DL(Op);
719   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
720   return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
721 }
722 
723 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
724 // is marked as having side-effects, while the register read on Hexagon does
725 // not have any. TableGen refuses to accept the direct pattern from that node
726 // to the A4_tfrcpp.
727 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
728                                                      SelectionDAG &DAG) const {
729   SDValue Chain = Op.getOperand(0);
730   SDLoc dl(Op);
731   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
732   return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
733 }
734 
735 // Custom-handle ISD::READSTEADYCOUNTER because the target-independent SDNode
736 // is marked as having side-effects, while the register read on Hexagon does
737 // not have any. TableGen refuses to accept the direct pattern from that node
738 // to the A4_tfrcpp.
739 SDValue HexagonTargetLowering::LowerREADSTEADYCOUNTER(SDValue Op,
740                                                       SelectionDAG &DAG) const {
741   SDValue Chain = Op.getOperand(0);
742   SDLoc dl(Op);
743   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
744   return DAG.getNode(HexagonISD::READTIMER, dl, VTs, Chain);
745 }
746 
747 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
748       SelectionDAG &DAG) const {
749   SDValue Chain = Op.getOperand(0);
750   unsigned IntNo = Op.getConstantOperandVal(1);
751   // Lower the hexagon_prefetch builtin to DCFETCH, as above.
752   if (IntNo == Intrinsic::hexagon_prefetch) {
753     SDValue Addr = Op.getOperand(2);
754     SDLoc DL(Op);
755     SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
756     return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
757   }
758   return SDValue();
759 }
760 
761 SDValue
762 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
763                                                SelectionDAG &DAG) const {
764   SDValue Chain = Op.getOperand(0);
765   SDValue Size = Op.getOperand(1);
766   SDValue Align = Op.getOperand(2);
767   SDLoc dl(Op);
768 
769   ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
770   assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
771 
772   unsigned A = AlignConst->getSExtValue();
773   auto &HFI = *Subtarget.getFrameLowering();
774   // "Zero" means natural stack alignment.
775   if (A == 0)
776     A = HFI.getStackAlign().value();
777 
778   LLVM_DEBUG({
779     dbgs () << __func__ << " Align: " << A << " Size: ";
780     Size.getNode()->dump(&DAG);
781     dbgs() << "\n";
782   });
783 
784   SDValue AC = DAG.getConstant(A, dl, MVT::i32);
785   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
786   SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
787 
788   DAG.ReplaceAllUsesOfValueWith(Op, AA);
789   return AA;
790 }
791 
792 SDValue HexagonTargetLowering::LowerFormalArguments(
793     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
794     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
795     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
796   MachineFunction &MF = DAG.getMachineFunction();
797   MachineFrameInfo &MFI = MF.getFrameInfo();
798   MachineRegisterInfo &MRI = MF.getRegInfo();
799 
800   // Linux ABI treats var-arg calls the same way as regular ones.
801   bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
802 
803   // Assign locations to all of the incoming arguments.
804   SmallVector<CCValAssign, 16> ArgLocs;
805   HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs,
806                         *DAG.getContext(),
807                         MF.getFunction().getFunctionType()->getNumParams());
808 
809   if (Subtarget.useHVXOps())
810     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
811   else if (DisableArgsMinAlignment)
812     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_Legacy);
813   else
814     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
815 
816   // For LLVM, in the case when returning a struct by value (>8byte),
817   // the first argument is a pointer that points to the location on caller's
818   // stack where the return value will be stored. For Hexagon, the location on
819   // caller's stack is passed only when the struct size is smaller than (and
820   // equal to) 8 bytes. If not, no address will be passed into callee and
821   // callee return the result direclty through R0/R1.
822   auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) {
823     switch (RC.getID()) {
824     case Hexagon::IntRegsRegClassID:
825       return Reg - Hexagon::R0 + 1;
826     case Hexagon::DoubleRegsRegClassID:
827       return (Reg - Hexagon::D0 + 1) * 2;
828     case Hexagon::HvxVRRegClassID:
829       return Reg - Hexagon::V0 + 1;
830     case Hexagon::HvxWRRegClassID:
831       return (Reg - Hexagon::W0 + 1) * 2;
832     }
833     llvm_unreachable("Unexpected register class");
834   };
835 
836   auto &HFL = const_cast<HexagonFrameLowering&>(*Subtarget.getFrameLowering());
837   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
838   HFL.FirstVarArgSavedReg = 0;
839   HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
840 
841   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
842     CCValAssign &VA = ArgLocs[i];
843     ISD::ArgFlagsTy Flags = Ins[i].Flags;
844     bool ByVal = Flags.isByVal();
845 
846     // Arguments passed in registers:
847     // 1. 32- and 64-bit values and HVX vectors are passed directly,
848     // 2. Large structs are passed via an address, and the address is
849     //    passed in a register.
850     if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
851       llvm_unreachable("ByValSize must be bigger than 8 bytes");
852 
853     bool InReg = VA.isRegLoc() &&
854                  (!ByVal || (ByVal && Flags.getByValSize() > 8));
855 
856     if (InReg) {
857       MVT RegVT = VA.getLocVT();
858       if (VA.getLocInfo() == CCValAssign::BCvt)
859         RegVT = VA.getValVT();
860 
861       const TargetRegisterClass *RC = getRegClassFor(RegVT);
862       Register VReg = MRI.createVirtualRegister(RC);
863       SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
864 
865       // Treat values of type MVT::i1 specially: they are passed in
866       // registers of type i32, but they need to remain as values of
867       // type i1 for consistency of the argument lowering.
868       if (VA.getValVT() == MVT::i1) {
869         assert(RegVT.getSizeInBits() <= 32);
870         SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
871                                 Copy, DAG.getConstant(1, dl, RegVT));
872         Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
873                             ISD::SETNE);
874       } else {
875 #ifndef NDEBUG
876         unsigned RegSize = RegVT.getSizeInBits();
877         assert(RegSize == 32 || RegSize == 64 ||
878                Subtarget.isHVXVectorType(RegVT));
879 #endif
880       }
881       InVals.push_back(Copy);
882       MRI.addLiveIn(VA.getLocReg(), VReg);
883       HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg());
884     } else {
885       assert(VA.isMemLoc() && "Argument should be passed in memory");
886 
887       // If it's a byval parameter, then we need to compute the
888       // "real" size, not the size of the pointer.
889       unsigned ObjSize = Flags.isByVal()
890                             ? Flags.getByValSize()
891                             : VA.getLocVT().getStoreSizeInBits() / 8;
892 
893       // Create the frame index object for this incoming parameter.
894       int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
895       int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
896       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
897 
898       if (Flags.isByVal()) {
899         // If it's a pass-by-value aggregate, then do not dereference the stack
900         // location. Instead, we should generate a reference to the stack
901         // location.
902         InVals.push_back(FIN);
903       } else {
904         SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
905                                 MachinePointerInfo::getFixedStack(MF, FI, 0));
906         InVals.push_back(L);
907       }
908     }
909   }
910 
911   if (IsVarArg && Subtarget.isEnvironmentMusl()) {
912     for (int i = HFL.FirstVarArgSavedReg; i < 6; i++)
913       MRI.addLiveIn(Hexagon::R0+i);
914   }
915 
916   if (IsVarArg && Subtarget.isEnvironmentMusl()) {
917     HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1);
918     HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
919 
920     // Create Frame index for the start of register saved area.
921     int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg;
922     bool RequiresPadding = (NumVarArgRegs & 1);
923     int RegSaveAreaSizePlusPadding = RequiresPadding
924                                         ? (NumVarArgRegs + 1) * 4
925                                         : NumVarArgRegs * 4;
926 
927     if (RegSaveAreaSizePlusPadding > 0) {
928       // The offset to saved register area should be 8 byte aligned.
929       int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
930       if (!(RegAreaStart % 8))
931         RegAreaStart = (RegAreaStart + 7) & -8;
932 
933       int RegSaveAreaFrameIndex =
934         MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true);
935       HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex);
936 
937       // This will point to the next argument passed via stack.
938       int Offset = RegAreaStart + RegSaveAreaSizePlusPadding;
939       int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
940       HMFI.setVarArgsFrameIndex(FI);
941     } else {
942       // This will point to the next argument passed via stack, when
943       // there is no saved register area.
944       int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
945       int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
946       HMFI.setRegSavedAreaStartFrameIndex(FI);
947       HMFI.setVarArgsFrameIndex(FI);
948     }
949   }
950 
951 
952   if (IsVarArg && !Subtarget.isEnvironmentMusl()) {
953     // This will point to the next argument passed via stack.
954     int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
955     int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
956     HMFI.setVarArgsFrameIndex(FI);
957   }
958 
959   return Chain;
960 }
961 
962 SDValue
963 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
964   // VASTART stores the address of the VarArgsFrameIndex slot into the
965   // memory location argument.
966   MachineFunction &MF = DAG.getMachineFunction();
967   HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
968   SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
969   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
970 
971   if (!Subtarget.isEnvironmentMusl()) {
972     return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
973                         MachinePointerInfo(SV));
974   }
975   auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
976   auto &HFL = *Subtarget.getFrameLowering();
977   SDLoc DL(Op);
978   SmallVector<SDValue, 8> MemOps;
979 
980   // Get frame index of va_list.
981   SDValue FIN = Op.getOperand(1);
982 
983   // If first Vararg register is odd, add 4 bytes to start of
984   // saved register area to point to the first register location.
985   // This is because the saved register area has to be 8 byte aligned.
986   // Incase of an odd start register, there will be 4 bytes of padding in
987   // the beginning of saved register area. If all registers area used up,
988   // the following condition will handle it correctly.
989   SDValue SavedRegAreaStartFrameIndex =
990     DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32);
991 
992   auto PtrVT = getPointerTy(DAG.getDataLayout());
993 
994   if (HFL.FirstVarArgSavedReg & 1)
995     SavedRegAreaStartFrameIndex =
996       DAG.getNode(ISD::ADD, DL, PtrVT,
997                   DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(),
998                                     MVT::i32),
999                   DAG.getIntPtrConstant(4, DL));
1000 
1001   // Store the saved register area start pointer.
1002   SDValue Store =
1003     DAG.getStore(Op.getOperand(0), DL,
1004                  SavedRegAreaStartFrameIndex,
1005                  FIN, MachinePointerInfo(SV));
1006   MemOps.push_back(Store);
1007 
1008   // Store saved register area end pointer.
1009   FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1010                     FIN, DAG.getIntPtrConstant(4, DL));
1011   Store = DAG.getStore(Op.getOperand(0), DL,
1012                        DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1013                                          PtrVT),
1014                        FIN, MachinePointerInfo(SV, 4));
1015   MemOps.push_back(Store);
1016 
1017   // Store overflow area pointer.
1018   FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1019                     FIN, DAG.getIntPtrConstant(4, DL));
1020   Store = DAG.getStore(Op.getOperand(0), DL,
1021                        DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1022                                          PtrVT),
1023                        FIN, MachinePointerInfo(SV, 8));
1024   MemOps.push_back(Store);
1025 
1026   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1027 }
1028 
1029 SDValue
1030 HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
1031   // Assert that the linux ABI is enabled for the current compilation.
1032   assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled");
1033   SDValue Chain = Op.getOperand(0);
1034   SDValue DestPtr = Op.getOperand(1);
1035   SDValue SrcPtr = Op.getOperand(2);
1036   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1037   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1038   SDLoc DL(Op);
1039   // Size of the va_list is 12 bytes as it has 3 pointers. Therefore,
1040   // we need to memcopy 12 bytes from va_list to another similar list.
1041   return DAG.getMemcpy(
1042       Chain, DL, DestPtr, SrcPtr, DAG.getIntPtrConstant(12, DL), Align(4),
1043       /*isVolatile*/ false, false, /*CI=*/nullptr, std::nullopt,
1044       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
1045 }
1046 
1047 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1048   const SDLoc &dl(Op);
1049   SDValue LHS = Op.getOperand(0);
1050   SDValue RHS = Op.getOperand(1);
1051   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1052   MVT ResTy = ty(Op);
1053   MVT OpTy = ty(LHS);
1054 
1055   if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1056     MVT ElemTy = OpTy.getVectorElementType();
1057     assert(ElemTy.isScalarInteger());
1058     MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1059                                   OpTy.getVectorNumElements());
1060     return DAG.getSetCC(dl, ResTy,
1061                         DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
1062                         DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
1063   }
1064 
1065   // Treat all other vector types as legal.
1066   if (ResTy.isVector())
1067     return Op;
1068 
1069   // Comparisons of short integers should use sign-extend, not zero-extend,
1070   // since we can represent small negative values in the compare instructions.
1071   // The LLVM default is to use zero-extend arbitrarily in these cases.
1072   auto isSExtFree = [this](SDValue N) {
1073     switch (N.getOpcode()) {
1074       case ISD::TRUNCATE: {
1075         // A sign-extend of a truncate of a sign-extend is free.
1076         SDValue Op = N.getOperand(0);
1077         if (Op.getOpcode() != ISD::AssertSext)
1078           return false;
1079         EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
1080         unsigned ThisBW = ty(N).getSizeInBits();
1081         unsigned OrigBW = OrigTy.getSizeInBits();
1082         // The type that was sign-extended to get the AssertSext must be
1083         // narrower than the type of N (so that N has still the same value
1084         // as the original).
1085         return ThisBW >= OrigBW;
1086       }
1087       case ISD::LOAD:
1088         // We have sign-extended loads.
1089         return true;
1090     }
1091     return false;
1092   };
1093 
1094   if (OpTy == MVT::i8 || OpTy == MVT::i16) {
1095     ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
1096     bool IsNegative = C && C->getAPIntValue().isNegative();
1097     if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
1098       return DAG.getSetCC(dl, ResTy,
1099                           DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
1100                           DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
1101   }
1102 
1103   return SDValue();
1104 }
1105 
1106 SDValue
1107 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
1108   SDValue PredOp = Op.getOperand(0);
1109   SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
1110   MVT OpTy = ty(Op1);
1111   const SDLoc &dl(Op);
1112 
1113   if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1114     MVT ElemTy = OpTy.getVectorElementType();
1115     assert(ElemTy.isScalarInteger());
1116     MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1117                                   OpTy.getVectorNumElements());
1118     // Generate (trunc (select (_, sext, sext))).
1119     return DAG.getSExtOrTrunc(
1120               DAG.getSelect(dl, WideTy, PredOp,
1121                             DAG.getSExtOrTrunc(Op1, dl, WideTy),
1122                             DAG.getSExtOrTrunc(Op2, dl, WideTy)),
1123               dl, OpTy);
1124   }
1125 
1126   return SDValue();
1127 }
1128 
1129 SDValue
1130 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
1131   EVT ValTy = Op.getValueType();
1132   ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
1133   Constant *CVal = nullptr;
1134   bool isVTi1Type = false;
1135   if (auto *CV = dyn_cast<ConstantVector>(CPN->getConstVal())) {
1136     if (cast<VectorType>(CV->getType())->getElementType()->isIntegerTy(1)) {
1137       IRBuilder<> IRB(CV->getContext());
1138       SmallVector<Constant*, 128> NewConst;
1139       unsigned VecLen = CV->getNumOperands();
1140       assert(isPowerOf2_32(VecLen) &&
1141              "conversion only supported for pow2 VectorSize");
1142       for (unsigned i = 0; i < VecLen; ++i)
1143         NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue()));
1144 
1145       CVal = ConstantVector::get(NewConst);
1146       isVTi1Type = true;
1147     }
1148   }
1149   Align Alignment = CPN->getAlign();
1150   bool IsPositionIndependent = isPositionIndependent();
1151   unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
1152 
1153   unsigned Offset = 0;
1154   SDValue T;
1155   if (CPN->isMachineConstantPoolEntry())
1156     T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Alignment,
1157                                   Offset, TF);
1158   else if (isVTi1Type)
1159     T = DAG.getTargetConstantPool(CVal, ValTy, Alignment, Offset, TF);
1160   else
1161     T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Alignment, Offset,
1162                                   TF);
1163 
1164   assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
1165          "Inconsistent target flag encountered");
1166 
1167   if (IsPositionIndependent)
1168     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1169   return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1170 }
1171 
1172 SDValue
1173 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1174   EVT VT = Op.getValueType();
1175   int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1176   if (isPositionIndependent()) {
1177     SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1178     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1179   }
1180 
1181   SDValue T = DAG.getTargetJumpTable(Idx, VT);
1182   return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1183 }
1184 
1185 SDValue
1186 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1187   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1188   MachineFunction &MF = DAG.getMachineFunction();
1189   MachineFrameInfo &MFI = MF.getFrameInfo();
1190   MFI.setReturnAddressIsTaken(true);
1191 
1192   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1193     return SDValue();
1194 
1195   EVT VT = Op.getValueType();
1196   SDLoc dl(Op);
1197   unsigned Depth = Op.getConstantOperandVal(0);
1198   if (Depth) {
1199     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1200     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1201     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1202                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1203                        MachinePointerInfo());
1204   }
1205 
1206   // Return LR, which contains the return address. Mark it an implicit live-in.
1207   Register Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1208   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1209 }
1210 
1211 SDValue
1212 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1213   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1214   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1215   MFI.setFrameAddressIsTaken(true);
1216 
1217   EVT VT = Op.getValueType();
1218   SDLoc dl(Op);
1219   unsigned Depth = Op.getConstantOperandVal(0);
1220   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1221                                          HRI.getFrameRegister(), VT);
1222   while (Depth--)
1223     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1224                             MachinePointerInfo());
1225   return FrameAddr;
1226 }
1227 
1228 SDValue
1229 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1230   SDLoc dl(Op);
1231   return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1232 }
1233 
1234 SDValue
1235 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1236   SDLoc dl(Op);
1237   auto *GAN = cast<GlobalAddressSDNode>(Op);
1238   auto PtrVT = getPointerTy(DAG.getDataLayout());
1239   auto *GV = GAN->getGlobal();
1240   int64_t Offset = GAN->getOffset();
1241 
1242   auto &HLOF = *HTM.getObjFileLowering();
1243   Reloc::Model RM = HTM.getRelocationModel();
1244 
1245   if (RM == Reloc::Static) {
1246     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1247     const GlobalObject *GO = GV->getAliaseeObject();
1248     if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1249       return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1250     return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1251   }
1252 
1253   bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(GV);
1254   if (UsePCRel) {
1255     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1256                                             HexagonII::MO_PCREL);
1257     return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1258   }
1259 
1260   // Use GOT index.
1261   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1262   SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1263   SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1264   return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1265 }
1266 
1267 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1268 SDValue
1269 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1270   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1271   SDLoc dl(Op);
1272   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1273 
1274   Reloc::Model RM = HTM.getRelocationModel();
1275   if (RM == Reloc::Static) {
1276     SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1277     return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1278   }
1279 
1280   SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1281   return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1282 }
1283 
1284 SDValue
1285 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1286       const {
1287   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1288   SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1289                                                HexagonII::MO_PCREL);
1290   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1291 }
1292 
1293 SDValue
1294 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1295       GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1296       unsigned char OperandFlags) const {
1297   MachineFunction &MF = DAG.getMachineFunction();
1298   MachineFrameInfo &MFI = MF.getFrameInfo();
1299   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1300   SDLoc dl(GA);
1301   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1302                                            GA->getValueType(0),
1303                                            GA->getOffset(),
1304                                            OperandFlags);
1305   // Create Operands for the call.The Operands should have the following:
1306   // 1. Chain SDValue
1307   // 2. Callee which in this case is the Global address value.
1308   // 3. Registers live into the call.In this case its R0, as we
1309   //    have just one argument to be passed.
1310   // 4. Glue.
1311   // Note: The order is important.
1312 
1313   const auto &HRI = *Subtarget.getRegisterInfo();
1314   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1315   assert(Mask && "Missing call preserved mask for calling convention");
1316   SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1317                     DAG.getRegisterMask(Mask), Glue };
1318   Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1319 
1320   // Inform MFI that function has calls.
1321   MFI.setAdjustsStack(true);
1322 
1323   Glue = Chain.getValue(1);
1324   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1325 }
1326 
1327 //
1328 // Lower using the intial executable model for TLS addresses
1329 //
1330 SDValue
1331 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1332       SelectionDAG &DAG) const {
1333   SDLoc dl(GA);
1334   int64_t Offset = GA->getOffset();
1335   auto PtrVT = getPointerTy(DAG.getDataLayout());
1336 
1337   // Get the thread pointer.
1338   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1339 
1340   bool IsPositionIndependent = isPositionIndependent();
1341   unsigned char TF =
1342       IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1343 
1344   // First generate the TLS symbol address
1345   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1346                                            Offset, TF);
1347 
1348   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1349 
1350   if (IsPositionIndependent) {
1351     // Generate the GOT pointer in case of position independent code
1352     SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1353 
1354     // Add the TLS Symbol address to GOT pointer.This gives
1355     // GOT relative relocation for the symbol.
1356     Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1357   }
1358 
1359   // Load the offset value for TLS symbol.This offset is relative to
1360   // thread pointer.
1361   SDValue LoadOffset =
1362       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1363 
1364   // Address of the thread local variable is the add of thread
1365   // pointer and the offset of the variable.
1366   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1367 }
1368 
1369 //
1370 // Lower using the local executable model for TLS addresses
1371 //
1372 SDValue
1373 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1374       SelectionDAG &DAG) const {
1375   SDLoc dl(GA);
1376   int64_t Offset = GA->getOffset();
1377   auto PtrVT = getPointerTy(DAG.getDataLayout());
1378 
1379   // Get the thread pointer.
1380   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1381   // Generate the TLS symbol address
1382   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1383                                            HexagonII::MO_TPREL);
1384   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1385 
1386   // Address of the thread local variable is the add of thread
1387   // pointer and the offset of the variable.
1388   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1389 }
1390 
1391 //
1392 // Lower using the general dynamic model for TLS addresses
1393 //
1394 SDValue
1395 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1396       SelectionDAG &DAG) const {
1397   SDLoc dl(GA);
1398   int64_t Offset = GA->getOffset();
1399   auto PtrVT = getPointerTy(DAG.getDataLayout());
1400 
1401   // First generate the TLS symbol address
1402   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1403                                            HexagonII::MO_GDGOT);
1404 
1405   // Then, generate the GOT pointer
1406   SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1407 
1408   // Add the TLS symbol and the GOT pointer
1409   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1410   SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1411 
1412   // Copy over the argument to R0
1413   SDValue InGlue;
1414   Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InGlue);
1415   InGlue = Chain.getValue(1);
1416 
1417   unsigned Flags = DAG.getSubtarget<HexagonSubtarget>().useLongCalls()
1418                        ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1419                        : HexagonII::MO_GDPLT;
1420 
1421   return GetDynamicTLSAddr(DAG, Chain, GA, InGlue, PtrVT,
1422                            Hexagon::R0, Flags);
1423 }
1424 
1425 //
1426 // Lower TLS addresses.
1427 //
1428 // For now for dynamic models, we only support the general dynamic model.
1429 //
1430 SDValue
1431 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1432       SelectionDAG &DAG) const {
1433   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1434 
1435   switch (HTM.getTLSModel(GA->getGlobal())) {
1436     case TLSModel::GeneralDynamic:
1437     case TLSModel::LocalDynamic:
1438       return LowerToTLSGeneralDynamicModel(GA, DAG);
1439     case TLSModel::InitialExec:
1440       return LowerToTLSInitialExecModel(GA, DAG);
1441     case TLSModel::LocalExec:
1442       return LowerToTLSLocalExecModel(GA, DAG);
1443   }
1444   llvm_unreachable("Bogus TLS model");
1445 }
1446 
1447 //===----------------------------------------------------------------------===//
1448 // TargetLowering Implementation
1449 //===----------------------------------------------------------------------===//
1450 
1451 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1452                                              const HexagonSubtarget &ST)
1453     : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1454       Subtarget(ST) {
1455   auto &HRI = *Subtarget.getRegisterInfo();
1456 
1457   setPrefLoopAlignment(Align(16));
1458   setMinFunctionAlignment(Align(4));
1459   setPrefFunctionAlignment(Align(16));
1460   setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1461   setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1462   setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1463 
1464   setMaxAtomicSizeInBitsSupported(64);
1465   setMinCmpXchgSizeInBits(32);
1466 
1467   if (EnableHexSDNodeSched)
1468     setSchedulingPreference(Sched::VLIW);
1469   else
1470     setSchedulingPreference(Sched::Source);
1471 
1472   // Limits for inline expansion of memcpy/memmove
1473   MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1474   MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1475   MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1476   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1477   MaxStoresPerMemset = MaxStoresPerMemsetCL;
1478   MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1479 
1480   //
1481   // Set up register classes.
1482   //
1483 
1484   addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
1485   addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
1486   addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
1487   addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
1488   addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
1489   addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1490   addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
1491   addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
1492   addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
1493   addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1494   addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1495 
1496   addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1497   addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1498 
1499   //
1500   // Handling of scalar operations.
1501   //
1502   // All operations default to "legal", except:
1503   // - indexed loads and stores (pre-/post-incremented),
1504   // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1505   //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1506   //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1507   //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1508   // which default to "expand" for at least one type.
1509 
1510   // Misc operations.
1511   setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
1512   setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
1513   setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
1514   setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
1515   setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
1516   setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
1517   setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
1518   setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
1519   setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
1520   setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
1521   setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
1522   setOperationAction(ISD::READSTEADYCOUNTER,    MVT::i64,   Custom);
1523   setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
1524   setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
1525   setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
1526   setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
1527   setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);
1528 
1529   // Custom legalize GlobalAddress nodes into CONST32.
1530   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1531   setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
1532   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
1533 
1534   // Hexagon needs to optimize cases with negative constants.
1535   setOperationAction(ISD::SETCC, MVT::i8,    Custom);
1536   setOperationAction(ISD::SETCC, MVT::i16,   Custom);
1537   setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
1538   setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1539 
1540   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1541   setOperationAction(ISD::VASTART, MVT::Other, Custom);
1542   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
1543   setOperationAction(ISD::VAARG,   MVT::Other, Expand);
1544   if (Subtarget.isEnvironmentMusl())
1545     setOperationAction(ISD::VACOPY, MVT::Other, Custom);
1546   else
1547     setOperationAction(ISD::VACOPY,  MVT::Other, Expand);
1548 
1549   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1550   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1551   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1552 
1553   if (EmitJumpTables)
1554     setMinimumJumpTableEntries(MinimumJumpTables);
1555   else
1556     setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1557   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1558 
1559   for (unsigned LegalIntOp :
1560        {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) {
1561     setOperationAction(LegalIntOp, MVT::i32, Legal);
1562     setOperationAction(LegalIntOp, MVT::i64, Legal);
1563   }
1564 
1565   // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1566   // but they only operate on i64.
1567   for (MVT VT : MVT::integer_valuetypes()) {
1568     setOperationAction(ISD::UADDO, VT, Custom);
1569     setOperationAction(ISD::USUBO, VT, Custom);
1570     setOperationAction(ISD::SADDO, VT, Expand);
1571     setOperationAction(ISD::SSUBO, VT, Expand);
1572     setOperationAction(ISD::UADDO_CARRY, VT, Expand);
1573     setOperationAction(ISD::USUBO_CARRY, VT, Expand);
1574   }
1575   setOperationAction(ISD::UADDO_CARRY, MVT::i64, Custom);
1576   setOperationAction(ISD::USUBO_CARRY, MVT::i64, Custom);
1577 
1578   setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
1579   setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1580   setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
1581   setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1582 
1583   // Popcount can count # of 1s in i64 but returns i32.
1584   setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
1585   setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1586   setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1587   setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1588 
1589   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1590   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1591   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1592   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1593 
1594   setOperationAction(ISD::FSHL, MVT::i32, Legal);
1595   setOperationAction(ISD::FSHL, MVT::i64, Legal);
1596   setOperationAction(ISD::FSHR, MVT::i32, Legal);
1597   setOperationAction(ISD::FSHR, MVT::i64, Legal);
1598 
1599   for (unsigned IntExpOp :
1600        {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
1601         ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
1602         ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1603         ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1604     for (MVT VT : MVT::integer_valuetypes())
1605       setOperationAction(IntExpOp, VT, Expand);
1606   }
1607 
1608   for (unsigned FPExpOp :
1609        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1610         ISD::FPOW, ISD::FCOPYSIGN}) {
1611     for (MVT VT : MVT::fp_valuetypes())
1612       setOperationAction(FPExpOp, VT, Expand);
1613   }
1614 
1615   // No extending loads from i32.
1616   for (MVT VT : MVT::integer_valuetypes()) {
1617     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1618     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1619     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
1620   }
1621   // Turn FP truncstore into trunc + store.
1622   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1623   // Turn FP extload into load/fpextend.
1624   for (MVT VT : MVT::fp_valuetypes())
1625     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1626 
1627   // Expand BR_CC and SELECT_CC for all integer and fp types.
1628   for (MVT VT : MVT::integer_valuetypes()) {
1629     setOperationAction(ISD::BR_CC,     VT, Expand);
1630     setOperationAction(ISD::SELECT_CC, VT, Expand);
1631   }
1632   for (MVT VT : MVT::fp_valuetypes()) {
1633     setOperationAction(ISD::BR_CC,     VT, Expand);
1634     setOperationAction(ISD::SELECT_CC, VT, Expand);
1635   }
1636   setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1637 
1638   //
1639   // Handling of vector operations.
1640   //
1641 
1642   // Set the action for vector operations to "expand", then override it with
1643   // either "custom" or "legal" for specific cases.
1644   static const unsigned VectExpOps[] = {
1645     // Integer arithmetic:
1646     ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
1647     ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
1648     ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1649     // Logical/bit:
1650     ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
1651     ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,    ISD::BSWAP,   ISD::BITREVERSE,
1652     // Floating point arithmetic/math functions:
1653     ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
1654     ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
1655     ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
1656     ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
1657     ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
1658     ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, ISD::FLDEXP,
1659     // Misc:
1660     ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
1661     // Vector:
1662     ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
1663     ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
1664     ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
1665     ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE,
1666     ISD::SPLAT_VECTOR,
1667   };
1668 
1669   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1670     for (unsigned VectExpOp : VectExpOps)
1671       setOperationAction(VectExpOp, VT, Expand);
1672 
1673     // Expand all extending loads and truncating stores:
1674     for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
1675       if (TargetVT == VT)
1676         continue;
1677       setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1678       setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1679       setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1680       setTruncStoreAction(VT, TargetVT, Expand);
1681     }
1682 
1683     // Normalize all inputs to SELECT to be vectors of i32.
1684     if (VT.getVectorElementType() != MVT::i32) {
1685       MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1686       setOperationAction(ISD::SELECT, VT, Promote);
1687       AddPromotedToType(ISD::SELECT, VT, VT32);
1688     }
1689     setOperationAction(ISD::SRA, VT, Custom);
1690     setOperationAction(ISD::SHL, VT, Custom);
1691     setOperationAction(ISD::SRL, VT, Custom);
1692   }
1693 
1694   // Extending loads from (native) vectors of i8 into (native) vectors of i16
1695   // are legal.
1696   setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
1697   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1698   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1699   setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
1700   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1701   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1702 
1703   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1704   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1705   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1706 
1707   // Types natively supported:
1708   for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1709                        MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1710     setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
1711     setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1712     setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
1713     setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
1714     setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
1715     setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
1716 
1717     setOperationAction(ISD::ADD, NativeVT, Legal);
1718     setOperationAction(ISD::SUB, NativeVT, Legal);
1719     setOperationAction(ISD::MUL, NativeVT, Legal);
1720     setOperationAction(ISD::AND, NativeVT, Legal);
1721     setOperationAction(ISD::OR,  NativeVT, Legal);
1722     setOperationAction(ISD::XOR, NativeVT, Legal);
1723 
1724     if (NativeVT.getVectorElementType() != MVT::i1) {
1725       setOperationAction(ISD::SPLAT_VECTOR, NativeVT, Legal);
1726       setOperationAction(ISD::BSWAP,        NativeVT, Legal);
1727       setOperationAction(ISD::BITREVERSE,   NativeVT, Legal);
1728     }
1729   }
1730 
1731   for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32}) {
1732     setOperationAction(ISD::SMIN, VT, Legal);
1733     setOperationAction(ISD::SMAX, VT, Legal);
1734     setOperationAction(ISD::UMIN, VT, Legal);
1735     setOperationAction(ISD::UMAX, VT, Legal);
1736   }
1737 
1738   // Custom lower unaligned loads.
1739   // Also, for both loads and stores, verify the alignment of the address
1740   // in case it is a compile-time constant. This is a usability feature to
1741   // provide a meaningful error message to users.
1742   for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1743                  MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1744     setOperationAction(ISD::LOAD,  VT, Custom);
1745     setOperationAction(ISD::STORE, VT, Custom);
1746   }
1747 
1748   // Custom-lower load/stores of boolean vectors.
1749   for (MVT VT : {MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1750     setOperationAction(ISD::LOAD,  VT, Custom);
1751     setOperationAction(ISD::STORE, VT, Custom);
1752   }
1753 
1754   // Normalize integer compares to EQ/GT/UGT
1755   for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1756                  MVT::v2i32}) {
1757     setCondCodeAction(ISD::SETNE,  VT, Expand);
1758     setCondCodeAction(ISD::SETLE,  VT, Expand);
1759     setCondCodeAction(ISD::SETGE,  VT, Expand);
1760     setCondCodeAction(ISD::SETLT,  VT, Expand);
1761     setCondCodeAction(ISD::SETULE, VT, Expand);
1762     setCondCodeAction(ISD::SETUGE, VT, Expand);
1763     setCondCodeAction(ISD::SETULT, VT, Expand);
1764   }
1765 
1766   // Normalize boolean compares to [U]LE/[U]LT
1767   for (MVT VT : {MVT::i1, MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1768     setCondCodeAction(ISD::SETGE,  VT, Expand);
1769     setCondCodeAction(ISD::SETGT,  VT, Expand);
1770     setCondCodeAction(ISD::SETUGE, VT, Expand);
1771     setCondCodeAction(ISD::SETUGT, VT, Expand);
1772   }
1773 
1774   // Custom-lower bitcasts from i8 to v8i1.
1775   setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
1776   setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
1777   setOperationAction(ISD::VSELECT,        MVT::v4i8,  Custom);
1778   setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
1779   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
1780   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1781   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
1782 
1783   // V5+.
1784   setOperationAction(ISD::FMA,  MVT::f64, Expand);
1785   setOperationAction(ISD::FADD, MVT::f64, Expand);
1786   setOperationAction(ISD::FSUB, MVT::f64, Expand);
1787   setOperationAction(ISD::FMUL, MVT::f64, Expand);
1788   setOperationAction(ISD::FDIV, MVT::f32, Custom);
1789 
1790   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1791   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1792 
1793   setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
1794   setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
1795   setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1796   setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
1797   setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
1798   setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1799   setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
1800   setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
1801   setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1802   setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
1803   setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
1804   setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1805 
1806   // Special handling for half-precision floating point conversions.
1807   // Lower half float conversions into library calls.
1808   setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1809   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1810   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1811   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1812 
1813   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
1814   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
1815   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1816   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1817 
1818   // Handling of indexed loads/stores: default is "expand".
1819   //
1820   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1821                  MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1822     setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1823     setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1824   }
1825 
1826   // Subtarget-specific operation actions.
1827   //
1828   if (Subtarget.hasV60Ops()) {
1829     setOperationAction(ISD::ROTL, MVT::i32, Legal);
1830     setOperationAction(ISD::ROTL, MVT::i64, Legal);
1831     setOperationAction(ISD::ROTR, MVT::i32, Legal);
1832     setOperationAction(ISD::ROTR, MVT::i64, Legal);
1833   }
1834   if (Subtarget.hasV66Ops()) {
1835     setOperationAction(ISD::FADD, MVT::f64, Legal);
1836     setOperationAction(ISD::FSUB, MVT::f64, Legal);
1837   }
1838   if (Subtarget.hasV67Ops()) {
1839     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1840     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1841     setOperationAction(ISD::FMUL,    MVT::f64, Legal);
1842   }
1843 
1844   setTargetDAGCombine(ISD::OR);
1845   setTargetDAGCombine(ISD::TRUNCATE);
1846   setTargetDAGCombine(ISD::VSELECT);
1847 
1848   if (Subtarget.useHVXOps())
1849     initializeHVXLowering();
1850 
1851   computeRegisterProperties(&HRI);
1852 
1853   //
1854   // Library calls for unsupported operations
1855   //
1856   bool FastMath  = EnableFastMath;
1857 
1858   setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1859   setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1860   setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1861   setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1862   setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1863   setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1864   setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1865   setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1866 
1867   setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1868   setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1869   setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1870   setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1871   setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1872   setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1873 
1874   // This is the only fast library function for sqrtd.
1875   if (FastMath)
1876     setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1877 
1878   // Prefix is: nothing  for "slow-math",
1879   //            "fast2_" for V5+ fast-math double-precision
1880   // (actually, keep fast-math and fast-math2 separate for now)
1881   if (FastMath) {
1882     setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1883     setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1884     setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1885     setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1886     setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1887   } else {
1888     setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1889     setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1890     setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1891     setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1892     setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1893   }
1894 
1895   if (FastMath)
1896     setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1897   else
1898     setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1899 
1900   // Routines to handle fp16 storage type.
1901   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1902   setLibcallName(RTLIB::FPROUND_F64_F16, "__truncdfhf2");
1903   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1904 }
1905 
1906 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1907   switch ((HexagonISD::NodeType)Opcode) {
1908   case HexagonISD::ADDC:          return "HexagonISD::ADDC";
1909   case HexagonISD::SUBC:          return "HexagonISD::SUBC";
1910   case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
1911   case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
1912   case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
1913   case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
1914   case HexagonISD::CALL:          return "HexagonISD::CALL";
1915   case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
1916   case HexagonISD::CALLR:         return "HexagonISD::CALLR";
1917   case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
1918   case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
1919   case HexagonISD::CONST32:       return "HexagonISD::CONST32";
1920   case HexagonISD::CP:            return "HexagonISD::CP";
1921   case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
1922   case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
1923   case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
1924   case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
1925   case HexagonISD::INSERT:        return "HexagonISD::INSERT";
1926   case HexagonISD::JT:            return "HexagonISD::JT";
1927   case HexagonISD::RET_GLUE:      return "HexagonISD::RET_GLUE";
1928   case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
1929   case HexagonISD::VASL:          return "HexagonISD::VASL";
1930   case HexagonISD::VASR:          return "HexagonISD::VASR";
1931   case HexagonISD::VLSR:          return "HexagonISD::VLSR";
1932   case HexagonISD::MFSHL:         return "HexagonISD::MFSHL";
1933   case HexagonISD::MFSHR:         return "HexagonISD::MFSHR";
1934   case HexagonISD::SSAT:          return "HexagonISD::SSAT";
1935   case HexagonISD::USAT:          return "HexagonISD::USAT";
1936   case HexagonISD::SMUL_LOHI:     return "HexagonISD::SMUL_LOHI";
1937   case HexagonISD::UMUL_LOHI:     return "HexagonISD::UMUL_LOHI";
1938   case HexagonISD::USMUL_LOHI:    return "HexagonISD::USMUL_LOHI";
1939   case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
1940   case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
1941   case HexagonISD::VROR:          return "HexagonISD::VROR";
1942   case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
1943   case HexagonISD::READTIMER:     return "HexagonISD::READTIMER";
1944   case HexagonISD::PTRUE:         return "HexagonISD::PTRUE";
1945   case HexagonISD::PFALSE:        return "HexagonISD::PFALSE";
1946   case HexagonISD::D2P:           return "HexagonISD::D2P";
1947   case HexagonISD::P2D:           return "HexagonISD::P2D";
1948   case HexagonISD::V2Q:           return "HexagonISD::V2Q";
1949   case HexagonISD::Q2V:           return "HexagonISD::Q2V";
1950   case HexagonISD::QCAT:          return "HexagonISD::QCAT";
1951   case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
1952   case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
1953   case HexagonISD::TL_EXTEND:     return "HexagonISD::TL_EXTEND";
1954   case HexagonISD::TL_TRUNCATE:   return "HexagonISD::TL_TRUNCATE";
1955   case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
1956   case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
1957   case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
1958   case HexagonISD::ISEL:          return "HexagonISD::ISEL";
1959   case HexagonISD::OP_END:        break;
1960   }
1961   return nullptr;
1962 }
1963 
1964 bool
1965 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, Align NeedAlign,
1966       const SDLoc &dl, SelectionDAG &DAG) const {
1967   auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1968   if (!CA)
1969     return true;
1970   unsigned Addr = CA->getZExtValue();
1971   Align HaveAlign =
1972       Addr != 0 ? Align(1ull << llvm::countr_zero(Addr)) : NeedAlign;
1973   if (HaveAlign >= NeedAlign)
1974     return true;
1975 
1976   static int DK_MisalignedTrap = llvm::getNextAvailablePluginDiagnosticKind();
1977 
1978   struct DiagnosticInfoMisalignedTrap : public DiagnosticInfo {
1979     DiagnosticInfoMisalignedTrap(StringRef M)
1980       : DiagnosticInfo(DK_MisalignedTrap, DS_Remark), Msg(M) {}
1981     void print(DiagnosticPrinter &DP) const override {
1982       DP << Msg;
1983     }
1984     static bool classof(const DiagnosticInfo *DI) {
1985       return DI->getKind() == DK_MisalignedTrap;
1986     }
1987     StringRef Msg;
1988   };
1989 
1990   std::string ErrMsg;
1991   raw_string_ostream O(ErrMsg);
1992   O << "Misaligned constant address: " << format_hex(Addr, 10)
1993     << " has alignment " << HaveAlign.value()
1994     << ", but the memory access requires " << NeedAlign.value();
1995   if (DebugLoc DL = dl.getDebugLoc())
1996     DL.print(O << ", at ");
1997   O << ". The instruction has been replaced with a trap.";
1998 
1999   DAG.getContext()->diagnose(DiagnosticInfoMisalignedTrap(O.str()));
2000   return false;
2001 }
2002 
2003 SDValue
2004 HexagonTargetLowering::replaceMemWithUndef(SDValue Op, SelectionDAG &DAG)
2005       const {
2006   const SDLoc &dl(Op);
2007   auto *LS = cast<LSBaseSDNode>(Op.getNode());
2008   assert(!LS->isIndexed() && "Not expecting indexed ops on constant address");
2009 
2010   SDValue Chain = LS->getChain();
2011   SDValue Trap = DAG.getNode(ISD::TRAP, dl, MVT::Other, Chain);
2012   if (LS->getOpcode() == ISD::LOAD)
2013     return DAG.getMergeValues({DAG.getUNDEF(ty(Op)), Trap}, dl);
2014   return Trap;
2015 }
2016 
2017 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
2018 // intrinsic.
2019 static bool isBrevLdIntrinsic(const Value *Inst) {
2020   unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
2021   return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
2022           ID == Intrinsic::hexagon_L2_loadri_pbr ||
2023           ID == Intrinsic::hexagon_L2_loadrh_pbr ||
2024           ID == Intrinsic::hexagon_L2_loadruh_pbr ||
2025           ID == Intrinsic::hexagon_L2_loadrb_pbr ||
2026           ID == Intrinsic::hexagon_L2_loadrub_pbr);
2027 }
2028 
2029 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
2030 // instruction. So far we only handle bitcast, extract value and bit reverse
2031 // load intrinsic instructions. Should we handle CGEP ?
2032 static Value *getBrevLdObject(Value *V) {
2033   if (Operator::getOpcode(V) == Instruction::ExtractValue ||
2034       Operator::getOpcode(V) == Instruction::BitCast)
2035     V = cast<Operator>(V)->getOperand(0);
2036   else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
2037     V = cast<Instruction>(V)->getOperand(0);
2038   return V;
2039 }
2040 
2041 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
2042 // a back edge. If the back edge comes from the intrinsic itself, the incoming
2043 // edge is returned.
2044 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
2045   const BasicBlock *Parent = PN->getParent();
2046   int Idx = -1;
2047   for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
2048     BasicBlock *Blk = PN->getIncomingBlock(i);
2049     // Determine if the back edge is originated from intrinsic.
2050     if (Blk == Parent) {
2051       Value *BackEdgeVal = PN->getIncomingValue(i);
2052       Value *BaseVal;
2053       // Loop over till we return the same Value or we hit the IntrBaseVal.
2054       do {
2055         BaseVal = BackEdgeVal;
2056         BackEdgeVal = getBrevLdObject(BackEdgeVal);
2057       } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
2058       // If the getBrevLdObject returns IntrBaseVal, we should return the
2059       // incoming edge.
2060       if (IntrBaseVal == BackEdgeVal)
2061         continue;
2062       Idx = i;
2063       break;
2064     } else // Set the node to incoming edge.
2065       Idx = i;
2066   }
2067   assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
2068   return PN->getIncomingValue(Idx);
2069 }
2070 
2071 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
2072 // pointer points to, for the bit-reverse load intrinsic. Setting this to
2073 // memoperand might help alias analysis to figure out the dependencies.
2074 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
2075   Value *IntrBaseVal = V;
2076   Value *BaseVal;
2077   // Loop over till we return the same Value, implies we either figure out
2078   // the object or we hit a PHI
2079   do {
2080     BaseVal = V;
2081     V = getBrevLdObject(V);
2082   } while (BaseVal != V);
2083 
2084   // Identify the object from PHINode.
2085   if (const PHINode *PN = dyn_cast<PHINode>(V))
2086     return returnEdge(PN, IntrBaseVal);
2087   // For non PHI nodes, the object is the last value returned by getBrevLdObject
2088   else
2089     return V;
2090 }
2091 
2092 /// Given an intrinsic, checks if on the target the intrinsic will need to map
2093 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
2094 /// true and store the intrinsic information into the IntrinsicInfo that was
2095 /// passed to the function.
2096 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
2097                                                const CallInst &I,
2098                                                MachineFunction &MF,
2099                                                unsigned Intrinsic) const {
2100   switch (Intrinsic) {
2101   case Intrinsic::hexagon_L2_loadrd_pbr:
2102   case Intrinsic::hexagon_L2_loadri_pbr:
2103   case Intrinsic::hexagon_L2_loadrh_pbr:
2104   case Intrinsic::hexagon_L2_loadruh_pbr:
2105   case Intrinsic::hexagon_L2_loadrb_pbr:
2106   case Intrinsic::hexagon_L2_loadrub_pbr: {
2107     Info.opc = ISD::INTRINSIC_W_CHAIN;
2108     auto &DL = I.getDataLayout();
2109     auto &Cont = I.getCalledFunction()->getParent()->getContext();
2110     // The intrinsic function call is of the form { ElTy, i8* }
2111     // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
2112     // should be derived from ElTy.
2113     Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
2114     Info.memVT = MVT::getVT(ElTy);
2115     llvm::Value *BasePtrVal = I.getOperand(0);
2116     Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
2117     // The offset value comes through Modifier register. For now, assume the
2118     // offset is 0.
2119     Info.offset = 0;
2120     Info.align = DL.getABITypeAlign(Info.memVT.getTypeForEVT(Cont));
2121     Info.flags = MachineMemOperand::MOLoad;
2122     return true;
2123   }
2124   case Intrinsic::hexagon_V6_vgathermw:
2125   case Intrinsic::hexagon_V6_vgathermw_128B:
2126   case Intrinsic::hexagon_V6_vgathermh:
2127   case Intrinsic::hexagon_V6_vgathermh_128B:
2128   case Intrinsic::hexagon_V6_vgathermhw:
2129   case Intrinsic::hexagon_V6_vgathermhw_128B:
2130   case Intrinsic::hexagon_V6_vgathermwq:
2131   case Intrinsic::hexagon_V6_vgathermwq_128B:
2132   case Intrinsic::hexagon_V6_vgathermhq:
2133   case Intrinsic::hexagon_V6_vgathermhq_128B:
2134   case Intrinsic::hexagon_V6_vgathermhwq:
2135   case Intrinsic::hexagon_V6_vgathermhwq_128B: {
2136     const Module &M = *I.getParent()->getParent()->getParent();
2137     Info.opc = ISD::INTRINSIC_W_CHAIN;
2138     Type *VecTy = I.getArgOperand(1)->getType();
2139     Info.memVT = MVT::getVT(VecTy);
2140     Info.ptrVal = I.getArgOperand(0);
2141     Info.offset = 0;
2142     Info.align =
2143         MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
2144     Info.flags = MachineMemOperand::MOLoad |
2145                  MachineMemOperand::MOStore |
2146                  MachineMemOperand::MOVolatile;
2147     return true;
2148   }
2149   default:
2150     break;
2151   }
2152   return false;
2153 }
2154 
2155 bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
2156   return X.getValueType().isScalarInteger(); // 'tstbit'
2157 }
2158 
2159 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
2160   return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
2161 }
2162 
2163 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
2164   if (!VT1.isSimple() || !VT2.isSimple())
2165     return false;
2166   return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
2167 }
2168 
2169 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
2170     const MachineFunction &MF, EVT VT) const {
2171   return isOperationLegalOrCustom(ISD::FMA, VT);
2172 }
2173 
2174 // Should we expand the build vector with shuffles?
2175 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
2176       unsigned DefinedValues) const {
2177   return false;
2178 }
2179 
2180 bool HexagonTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2181       unsigned Index) const {
2182   assert(ResVT.getVectorElementType() == SrcVT.getVectorElementType());
2183   if (!ResVT.isSimple() || !SrcVT.isSimple())
2184     return false;
2185 
2186   MVT ResTy = ResVT.getSimpleVT(), SrcTy = SrcVT.getSimpleVT();
2187   if (ResTy.getVectorElementType() != MVT::i1)
2188     return true;
2189 
2190   // Non-HVX bool vectors are relatively cheap.
2191   return SrcTy.getVectorNumElements() <= 8;
2192 }
2193 
2194 bool HexagonTargetLowering::isTargetCanonicalConstantNode(SDValue Op) const {
2195   return Op.getOpcode() == ISD::CONCAT_VECTORS ||
2196          TargetLowering::isTargetCanonicalConstantNode(Op);
2197 }
2198 
2199 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
2200                                                EVT VT) const {
2201   return true;
2202 }
2203 
2204 TargetLoweringBase::LegalizeTypeAction
2205 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
2206   unsigned VecLen = VT.getVectorMinNumElements();
2207   MVT ElemTy = VT.getVectorElementType();
2208 
2209   if (VecLen == 1 || VT.isScalableVector())
2210     return TargetLoweringBase::TypeScalarizeVector;
2211 
2212   if (Subtarget.useHVXOps()) {
2213     unsigned Action = getPreferredHvxVectorAction(VT);
2214     if (Action != ~0u)
2215       return static_cast<TargetLoweringBase::LegalizeTypeAction>(Action);
2216   }
2217 
2218   // Always widen (remaining) vectors of i1.
2219   if (ElemTy == MVT::i1)
2220     return TargetLoweringBase::TypeWidenVector;
2221   // Widen non-power-of-2 vectors. Such types cannot be split right now,
2222   // and computeRegisterProperties will override "split" with "widen",
2223   // which can cause other issues.
2224   if (!isPowerOf2_32(VecLen))
2225     return TargetLoweringBase::TypeWidenVector;
2226 
2227   return TargetLoweringBase::TypeSplitVector;
2228 }
2229 
2230 TargetLoweringBase::LegalizeAction
2231 HexagonTargetLowering::getCustomOperationAction(SDNode &Op) const {
2232   if (Subtarget.useHVXOps()) {
2233     unsigned Action = getCustomHvxOperationAction(Op);
2234     if (Action != ~0u)
2235       return static_cast<TargetLoweringBase::LegalizeAction>(Action);
2236   }
2237   return TargetLoweringBase::Legal;
2238 }
2239 
2240 std::pair<SDValue, int>
2241 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
2242   if (Addr.getOpcode() == ISD::ADD) {
2243     SDValue Op1 = Addr.getOperand(1);
2244     if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
2245       return { Addr.getOperand(0), CN->getSExtValue() };
2246   }
2247   return { Addr, 0 };
2248 }
2249 
2250 // Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
2251 // to select data from, V3 is the permutation.
2252 SDValue
2253 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
2254       const {
2255   const auto *SVN = cast<ShuffleVectorSDNode>(Op);
2256   ArrayRef<int> AM = SVN->getMask();
2257   assert(AM.size() <= 8 && "Unexpected shuffle mask");
2258   unsigned VecLen = AM.size();
2259 
2260   MVT VecTy = ty(Op);
2261   assert(!Subtarget.isHVXVectorType(VecTy, true) &&
2262          "HVX shuffles should be legal");
2263   assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
2264 
2265   SDValue Op0 = Op.getOperand(0);
2266   SDValue Op1 = Op.getOperand(1);
2267   const SDLoc &dl(Op);
2268 
2269   // If the inputs are not the same as the output, bail. This is not an
2270   // error situation, but complicates the handling and the default expansion
2271   // (into BUILD_VECTOR) should be adequate.
2272   if (ty(Op0) != VecTy || ty(Op1) != VecTy)
2273     return SDValue();
2274 
2275   // Normalize the mask so that the first non-negative index comes from
2276   // the first operand.
2277   SmallVector<int,8> Mask(AM.begin(), AM.end());
2278   unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
2279   if (F == AM.size())
2280     return DAG.getUNDEF(VecTy);
2281   if (AM[F] >= int(VecLen)) {
2282     ShuffleVectorSDNode::commuteMask(Mask);
2283     std::swap(Op0, Op1);
2284   }
2285 
2286   // Express the shuffle mask in terms of bytes.
2287   SmallVector<int,8> ByteMask;
2288   unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
2289   for (int M : Mask) {
2290     if (M < 0) {
2291       for (unsigned j = 0; j != ElemBytes; ++j)
2292         ByteMask.push_back(-1);
2293     } else {
2294       for (unsigned j = 0; j != ElemBytes; ++j)
2295         ByteMask.push_back(M*ElemBytes + j);
2296     }
2297   }
2298   assert(ByteMask.size() <= 8);
2299 
2300   // All non-undef (non-negative) indexes are well within [0..127], so they
2301   // fit in a single byte. Build two 64-bit words:
2302   // - MaskIdx where each byte is the corresponding index (for non-negative
2303   //   indexes), and 0xFF for negative indexes, and
2304   // - MaskUnd that has 0xFF for each negative index.
2305   uint64_t MaskIdx = 0;
2306   uint64_t MaskUnd = 0;
2307   for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2308     unsigned S = 8*i;
2309     uint64_t M = ByteMask[i] & 0xFF;
2310     if (M == 0xFF)
2311       MaskUnd |= M << S;
2312     MaskIdx |= M << S;
2313   }
2314 
2315   if (ByteMask.size() == 4) {
2316     // Identity.
2317     if (MaskIdx == (0x03020100 | MaskUnd))
2318       return Op0;
2319     // Byte swap.
2320     if (MaskIdx == (0x00010203 | MaskUnd)) {
2321       SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2322       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2323       return DAG.getBitcast(VecTy, T1);
2324     }
2325 
2326     // Byte packs.
2327     SDValue Concat10 =
2328         getCombine(Op1, Op0, dl, typeJoin({ty(Op1), ty(Op0)}), DAG);
2329     if (MaskIdx == (0x06040200 | MaskUnd))
2330       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2331     if (MaskIdx == (0x07050301 | MaskUnd))
2332       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2333 
2334     SDValue Concat01 =
2335         getCombine(Op0, Op1, dl, typeJoin({ty(Op0), ty(Op1)}), DAG);
2336     if (MaskIdx == (0x02000604 | MaskUnd))
2337       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2338     if (MaskIdx == (0x03010705 | MaskUnd))
2339       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2340   }
2341 
2342   if (ByteMask.size() == 8) {
2343     // Identity.
2344     if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2345       return Op0;
2346     // Byte swap.
2347     if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2348       SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2349       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2350       return DAG.getBitcast(VecTy, T1);
2351     }
2352 
2353     // Halfword picks.
2354     if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2355       return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2356     if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2357       return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2358     if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2359       return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2360     if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2361       return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2362     if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2363       VectorPair P = opSplit(Op0, dl, DAG);
2364       return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2365     }
2366 
2367     // Byte packs.
2368     if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2369       return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2370     if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2371       return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2372   }
2373 
2374   return SDValue();
2375 }
2376 
2377 SDValue
2378 HexagonTargetLowering::getSplatValue(SDValue Op, SelectionDAG &DAG) const {
2379   switch (Op.getOpcode()) {
2380     case ISD::BUILD_VECTOR:
2381       if (SDValue S = cast<BuildVectorSDNode>(Op)->getSplatValue())
2382         return S;
2383       break;
2384     case ISD::SPLAT_VECTOR:
2385       return Op.getOperand(0);
2386   }
2387   return SDValue();
2388 }
2389 
2390 // Create a Hexagon-specific node for shifting a vector by an integer.
2391 SDValue
2392 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2393       const {
2394   unsigned NewOpc;
2395   switch (Op.getOpcode()) {
2396     case ISD::SHL:
2397       NewOpc = HexagonISD::VASL;
2398       break;
2399     case ISD::SRA:
2400       NewOpc = HexagonISD::VASR;
2401       break;
2402     case ISD::SRL:
2403       NewOpc = HexagonISD::VLSR;
2404       break;
2405     default:
2406       llvm_unreachable("Unexpected shift opcode");
2407   }
2408 
2409   if (SDValue Sp = getSplatValue(Op.getOperand(1), DAG))
2410     return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), Sp);
2411   return SDValue();
2412 }
2413 
2414 SDValue
2415 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2416   const SDLoc &dl(Op);
2417 
2418   // First try to convert the shift (by vector) to a shift by a scalar.
2419   // If we first split the shift, the shift amount will become 'extract
2420   // subvector', and will no longer be recognized as scalar.
2421   SDValue Res = Op;
2422   if (SDValue S = getVectorShiftByInt(Op, DAG))
2423     Res = S;
2424 
2425   unsigned Opc = Res.getOpcode();
2426   switch (Opc) {
2427   case HexagonISD::VASR:
2428   case HexagonISD::VLSR:
2429   case HexagonISD::VASL:
2430     break;
2431   default:
2432     // No instructions for shifts by non-scalars.
2433     return SDValue();
2434   }
2435 
2436   MVT ResTy = ty(Res);
2437   if (ResTy.getVectorElementType() != MVT::i8)
2438     return Res;
2439 
2440   // For shifts of i8, extend the inputs to i16, then truncate back to i8.
2441   assert(ResTy.getVectorElementType() == MVT::i8);
2442   SDValue Val = Res.getOperand(0), Amt = Res.getOperand(1);
2443 
2444   auto ShiftPartI8 = [&dl, &DAG, this](unsigned Opc, SDValue V, SDValue A) {
2445     MVT Ty = ty(V);
2446     MVT ExtTy = MVT::getVectorVT(MVT::i16, Ty.getVectorNumElements());
2447     SDValue ExtV = Opc == HexagonISD::VASR ? DAG.getSExtOrTrunc(V, dl, ExtTy)
2448                                            : DAG.getZExtOrTrunc(V, dl, ExtTy);
2449     SDValue ExtS = DAG.getNode(Opc, dl, ExtTy, {ExtV, A});
2450     return DAG.getZExtOrTrunc(ExtS, dl, Ty);
2451   };
2452 
2453   if (ResTy.getSizeInBits() == 32)
2454     return ShiftPartI8(Opc, Val, Amt);
2455 
2456   auto [LoV, HiV] = opSplit(Val, dl, DAG);
2457   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy,
2458                      {ShiftPartI8(Opc, LoV, Amt), ShiftPartI8(Opc, HiV, Amt)});
2459 }
2460 
2461 SDValue
2462 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2463   if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2464     return Op;
2465   return SDValue();
2466 }
2467 
2468 SDValue
2469 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2470   MVT ResTy = ty(Op);
2471   SDValue InpV = Op.getOperand(0);
2472   MVT InpTy = ty(InpV);
2473   assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2474   const SDLoc &dl(Op);
2475 
2476   // Handle conversion from i8 to v8i1.
2477   if (InpTy == MVT::i8) {
2478     if (ResTy == MVT::v8i1) {
2479       SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2480       SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2481       return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2482     }
2483     return SDValue();
2484   }
2485 
2486   return Op;
2487 }
2488 
2489 bool
2490 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2491       MVT VecTy, SelectionDAG &DAG,
2492       MutableArrayRef<ConstantInt*> Consts) const {
2493   MVT ElemTy = VecTy.getVectorElementType();
2494   unsigned ElemWidth = ElemTy.getSizeInBits();
2495   IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2496   bool AllConst = true;
2497 
2498   for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2499     SDValue V = Values[i];
2500     if (V.isUndef()) {
2501       Consts[i] = ConstantInt::get(IntTy, 0);
2502       continue;
2503     }
2504     // Make sure to always cast to IntTy.
2505     if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2506       const ConstantInt *CI = CN->getConstantIntValue();
2507       Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2508     } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2509       const ConstantFP *CF = CN->getConstantFPValue();
2510       APInt A = CF->getValueAPF().bitcastToAPInt();
2511       Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2512     } else {
2513       AllConst = false;
2514     }
2515   }
2516   return AllConst;
2517 }
2518 
2519 SDValue
2520 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2521                                      MVT VecTy, SelectionDAG &DAG) const {
2522   MVT ElemTy = VecTy.getVectorElementType();
2523   assert(VecTy.getVectorNumElements() == Elem.size());
2524 
2525   SmallVector<ConstantInt*,4> Consts(Elem.size());
2526   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2527 
2528   unsigned First, Num = Elem.size();
2529   for (First = 0; First != Num; ++First) {
2530     if (!isUndef(Elem[First]))
2531       break;
2532   }
2533   if (First == Num)
2534     return DAG.getUNDEF(VecTy);
2535 
2536   if (AllConst &&
2537       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2538     return getZero(dl, VecTy, DAG);
2539 
2540   if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2541     assert(Elem.size() == 2);
2542     if (AllConst) {
2543       // The 'Consts' array will have all values as integers regardless
2544       // of the vector element type.
2545       uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2546                    Consts[1]->getZExtValue() << 16;
2547       return DAG.getBitcast(VecTy, DAG.getConstant(V, dl, MVT::i32));
2548     }
2549     SDValue E0, E1;
2550     if (ElemTy == MVT::f16) {
2551       E0 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[0]), dl, MVT::i32);
2552       E1 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[1]), dl, MVT::i32);
2553     } else {
2554       E0 = Elem[0];
2555       E1 = Elem[1];
2556     }
2557     SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {E1, E0}, DAG);
2558     return DAG.getBitcast(VecTy, N);
2559   }
2560 
2561   if (ElemTy == MVT::i8) {
2562     // First try generating a constant.
2563     if (AllConst) {
2564       int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2565                   (Consts[1]->getZExtValue() & 0xFF) << 8 |
2566                   (Consts[2]->getZExtValue() & 0xFF) << 16 |
2567                   Consts[3]->getZExtValue() << 24;
2568       return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2569     }
2570 
2571     // Then try splat.
2572     bool IsSplat = true;
2573     for (unsigned i = First+1; i != Num; ++i) {
2574       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2575         continue;
2576       IsSplat = false;
2577       break;
2578     }
2579     if (IsSplat) {
2580       // Legalize the operand of SPLAT_VECTOR.
2581       SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2582       return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2583     }
2584 
2585     // Generate
2586     //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2587     //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2588     assert(Elem.size() == 4);
2589     SDValue Vs[4];
2590     for (unsigned i = 0; i != 4; ++i) {
2591       Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2592       Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2593     }
2594     SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2595     SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2596     SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2597     SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2598     SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2599 
2600     SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2601     return DAG.getBitcast(MVT::v4i8, R);
2602   }
2603 
2604 #ifndef NDEBUG
2605   dbgs() << "VecTy: " << VecTy << '\n';
2606 #endif
2607   llvm_unreachable("Unexpected vector element type");
2608 }
2609 
2610 SDValue
2611 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2612                                      MVT VecTy, SelectionDAG &DAG) const {
2613   MVT ElemTy = VecTy.getVectorElementType();
2614   assert(VecTy.getVectorNumElements() == Elem.size());
2615 
2616   SmallVector<ConstantInt*,8> Consts(Elem.size());
2617   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2618 
2619   unsigned First, Num = Elem.size();
2620   for (First = 0; First != Num; ++First) {
2621     if (!isUndef(Elem[First]))
2622       break;
2623   }
2624   if (First == Num)
2625     return DAG.getUNDEF(VecTy);
2626 
2627   if (AllConst &&
2628       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2629     return getZero(dl, VecTy, DAG);
2630 
2631   // First try splat if possible.
2632   if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2633     bool IsSplat = true;
2634     for (unsigned i = First+1; i != Num; ++i) {
2635       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2636         continue;
2637       IsSplat = false;
2638       break;
2639     }
2640     if (IsSplat) {
2641       // Legalize the operand of SPLAT_VECTOR
2642       SDValue S = ElemTy == MVT::f16 ? DAG.getBitcast(MVT::i16, Elem[First])
2643                                      : Elem[First];
2644       SDValue Ext = DAG.getZExtOrTrunc(S, dl, MVT::i32);
2645       return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2646     }
2647   }
2648 
2649   // Then try constant.
2650   if (AllConst) {
2651     uint64_t Val = 0;
2652     unsigned W = ElemTy.getSizeInBits();
2653     uint64_t Mask = (1ull << W) - 1;
2654     for (unsigned i = 0; i != Num; ++i)
2655       Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2656     SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2657     return DAG.getBitcast(VecTy, V0);
2658   }
2659 
2660   // Build two 32-bit vectors and concatenate.
2661   MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2662   SDValue L = (ElemTy == MVT::i32)
2663                 ? Elem[0]
2664                 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2665   SDValue H = (ElemTy == MVT::i32)
2666                 ? Elem[1]
2667                 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2668   return getCombine(H, L, dl, VecTy, DAG);
2669 }
2670 
2671 SDValue
2672 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2673                                      const SDLoc &dl, MVT ValTy, MVT ResTy,
2674                                      SelectionDAG &DAG) const {
2675   MVT VecTy = ty(VecV);
2676   assert(!ValTy.isVector() ||
2677          VecTy.getVectorElementType() == ValTy.getVectorElementType());
2678   if (VecTy.getVectorElementType() == MVT::i1)
2679     return extractVectorPred(VecV, IdxV, dl, ValTy, ResTy, DAG);
2680 
2681   unsigned VecWidth = VecTy.getSizeInBits();
2682   unsigned ValWidth = ValTy.getSizeInBits();
2683   unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2684   assert((VecWidth % ElemWidth) == 0);
2685   assert(VecWidth == 32 || VecWidth == 64);
2686 
2687   // Cast everything to scalar integer types.
2688   MVT ScalarTy = tyScalar(VecTy);
2689   VecV = DAG.getBitcast(ScalarTy, VecV);
2690 
2691   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2692   SDValue ExtV;
2693 
2694   if (auto *IdxN = dyn_cast<ConstantSDNode>(IdxV)) {
2695     unsigned Off = IdxN->getZExtValue() * ElemWidth;
2696     if (VecWidth == 64 && ValWidth == 32) {
2697       assert(Off == 0 || Off == 32);
2698       ExtV = Off == 0 ? LoHalf(VecV, DAG) : HiHalf(VecV, DAG);
2699     } else if (Off == 0 && (ValWidth % 8) == 0) {
2700       ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2701     } else {
2702       SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2703       // The return type of EXTRACTU must be the same as the type of the
2704       // input vector.
2705       ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2706                          {VecV, WidthV, OffV});
2707     }
2708   } else {
2709     if (ty(IdxV) != MVT::i32)
2710       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2711     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2712                                DAG.getConstant(ElemWidth, dl, MVT::i32));
2713     ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2714                        {VecV, WidthV, OffV});
2715   }
2716 
2717   // Cast ExtV to the requested result type.
2718   ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2719   ExtV = DAG.getBitcast(ResTy, ExtV);
2720   return ExtV;
2721 }
2722 
2723 SDValue
2724 HexagonTargetLowering::extractVectorPred(SDValue VecV, SDValue IdxV,
2725                                          const SDLoc &dl, MVT ValTy, MVT ResTy,
2726                                          SelectionDAG &DAG) const {
2727   // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2728   // without any coprocessors).
2729   MVT VecTy = ty(VecV);
2730   unsigned VecWidth = VecTy.getSizeInBits();
2731   unsigned ValWidth = ValTy.getSizeInBits();
2732   assert(VecWidth == VecTy.getVectorNumElements() &&
2733          "Vector elements should equal vector width size");
2734   assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2735 
2736   // Check if this is an extract of the lowest bit.
2737   if (isNullConstant(IdxV) && ValTy.getSizeInBits() == 1) {
2738     // Extracting the lowest bit is a no-op, but it changes the type,
2739     // so it must be kept as an operation to avoid errors related to
2740     // type mismatches.
2741     return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2742   }
2743 
2744   // If the value extracted is a single bit, use tstbit.
2745   if (ValWidth == 1) {
2746     SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2747     SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2748     SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2749     return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2750   }
2751 
2752   // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2753   // a predicate register. The elements of the vector are repeated
2754   // in the register (if necessary) so that the total number is 8.
2755   // The extracted subvector will need to be expanded in such a way.
2756   unsigned Scale = VecWidth / ValWidth;
2757 
2758   // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2759   // position 0.
2760   assert(ty(IdxV) == MVT::i32);
2761   unsigned VecRep = 8 / VecWidth;
2762   SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2763                            DAG.getConstant(8*VecRep, dl, MVT::i32));
2764   SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2765   SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2766   while (Scale > 1) {
2767     // The longest possible subvector is at most 32 bits, so it is always
2768     // contained in the low subregister.
2769     T1 = LoHalf(T1, DAG);
2770     T1 = expandPredicate(T1, dl, DAG);
2771     Scale /= 2;
2772   }
2773 
2774   return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2775 }
2776 
2777 SDValue
2778 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2779                                     const SDLoc &dl, MVT ValTy,
2780                                     SelectionDAG &DAG) const {
2781   MVT VecTy = ty(VecV);
2782   if (VecTy.getVectorElementType() == MVT::i1)
2783     return insertVectorPred(VecV, ValV, IdxV, dl, ValTy, DAG);
2784 
2785   unsigned VecWidth = VecTy.getSizeInBits();
2786   unsigned ValWidth = ValTy.getSizeInBits();
2787   assert(VecWidth == 32 || VecWidth == 64);
2788   assert((VecWidth % ValWidth) == 0);
2789 
2790   // Cast everything to scalar integer types.
2791   MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2792   // The actual type of ValV may be different than ValTy (which is related
2793   // to the vector type).
2794   unsigned VW = ty(ValV).getSizeInBits();
2795   ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2796   VecV = DAG.getBitcast(ScalarTy, VecV);
2797   if (VW != VecWidth)
2798     ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2799 
2800   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2801   SDValue InsV;
2802 
2803   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2804     unsigned W = C->getZExtValue() * ValWidth;
2805     SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2806     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2807                        {VecV, ValV, WidthV, OffV});
2808   } else {
2809     if (ty(IdxV) != MVT::i32)
2810       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2811     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2812     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2813                        {VecV, ValV, WidthV, OffV});
2814   }
2815 
2816   return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2817 }
2818 
2819 SDValue
2820 HexagonTargetLowering::insertVectorPred(SDValue VecV, SDValue ValV,
2821                                         SDValue IdxV, const SDLoc &dl,
2822                                         MVT ValTy, SelectionDAG &DAG) const {
2823   MVT VecTy = ty(VecV);
2824   unsigned VecLen = VecTy.getVectorNumElements();
2825 
2826   if (ValTy == MVT::i1) {
2827     SDValue ToReg = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2828     SDValue Ext = DAG.getSExtOrTrunc(ValV, dl, MVT::i32);
2829     SDValue Width = DAG.getConstant(8 / VecLen, dl, MVT::i32);
2830     SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2831     SDValue Ins =
2832         DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, {ToReg, Ext, Width, Idx});
2833     return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Ins}, DAG);
2834   }
2835 
2836   assert(ValTy.getVectorElementType() == MVT::i1);
2837   SDValue ValR = ValTy.isVector()
2838                      ? DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV)
2839                      : DAG.getSExtOrTrunc(ValV, dl, MVT::i64);
2840 
2841   unsigned Scale = VecLen / ValTy.getVectorNumElements();
2842   assert(Scale > 1);
2843 
2844   for (unsigned R = Scale; R > 1; R /= 2) {
2845     ValR = contractPredicate(ValR, dl, DAG);
2846     ValR = getCombine(DAG.getUNDEF(MVT::i32), ValR, dl, MVT::i64, DAG);
2847   }
2848 
2849   SDValue Width = DAG.getConstant(64 / Scale, dl, MVT::i32);
2850   SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2851   SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2852   SDValue Ins =
2853       DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, {VecR, ValR, Width, Idx});
2854   return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2855 }
2856 
2857 SDValue
2858 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2859                                        SelectionDAG &DAG) const {
2860   assert(ty(Vec32).getSizeInBits() == 32);
2861   if (isUndef(Vec32))
2862     return DAG.getUNDEF(MVT::i64);
2863   SDValue P = DAG.getBitcast(MVT::v4i8, Vec32);
2864   SDValue X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i16, P);
2865   return DAG.getBitcast(MVT::i64, X);
2866 }
2867 
2868 SDValue
2869 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2870                                          SelectionDAG &DAG) const {
2871   assert(ty(Vec64).getSizeInBits() == 64);
2872   if (isUndef(Vec64))
2873     return DAG.getUNDEF(MVT::i32);
2874   // Collect even bytes:
2875   SDValue A = DAG.getBitcast(MVT::v8i8, Vec64);
2876   SDValue S = DAG.getVectorShuffle(MVT::v8i8, dl, A, DAG.getUNDEF(MVT::v8i8),
2877                                    {0, 2, 4, 6, 1, 3, 5, 7});
2878   return extractVector(S, DAG.getConstant(0, dl, MVT::i32), dl, MVT::v4i8,
2879                        MVT::i32, DAG);
2880 }
2881 
2882 SDValue
2883 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2884       const {
2885   if (Ty.isVector()) {
2886     unsigned W = Ty.getSizeInBits();
2887     if (W <= 64)
2888       return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2889     return DAG.getNode(ISD::SPLAT_VECTOR, dl, Ty, getZero(dl, MVT::i32, DAG));
2890   }
2891 
2892   if (Ty.isInteger())
2893     return DAG.getConstant(0, dl, Ty);
2894   if (Ty.isFloatingPoint())
2895     return DAG.getConstantFP(0.0, dl, Ty);
2896   llvm_unreachable("Invalid type for zero");
2897 }
2898 
2899 SDValue
2900 HexagonTargetLowering::appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG)
2901       const {
2902   MVT ValTy = ty(Val);
2903   assert(ValTy.getVectorElementType() == ResTy.getVectorElementType());
2904 
2905   unsigned ValLen = ValTy.getVectorNumElements();
2906   unsigned ResLen = ResTy.getVectorNumElements();
2907   if (ValLen == ResLen)
2908     return Val;
2909 
2910   const SDLoc &dl(Val);
2911   assert(ValLen < ResLen);
2912   assert(ResLen % ValLen == 0);
2913 
2914   SmallVector<SDValue, 4> Concats = {Val};
2915   for (unsigned i = 1, e = ResLen / ValLen; i < e; ++i)
2916     Concats.push_back(DAG.getUNDEF(ValTy));
2917 
2918   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, Concats);
2919 }
2920 
2921 SDValue
2922 HexagonTargetLowering::getCombine(SDValue Hi, SDValue Lo, const SDLoc &dl,
2923                                   MVT ResTy, SelectionDAG &DAG) const {
2924   MVT ElemTy = ty(Hi);
2925   assert(ElemTy == ty(Lo));
2926 
2927   if (!ElemTy.isVector()) {
2928     assert(ElemTy.isScalarInteger());
2929     MVT PairTy = MVT::getIntegerVT(2 * ElemTy.getSizeInBits());
2930     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Lo, Hi);
2931     return DAG.getBitcast(ResTy, Pair);
2932   }
2933 
2934   unsigned Width = ElemTy.getSizeInBits();
2935   MVT IntTy = MVT::getIntegerVT(Width);
2936   MVT PairTy = MVT::getIntegerVT(2 * Width);
2937   SDValue Pair =
2938       DAG.getNode(ISD::BUILD_PAIR, dl, PairTy,
2939                   {DAG.getBitcast(IntTy, Lo), DAG.getBitcast(IntTy, Hi)});
2940   return DAG.getBitcast(ResTy, Pair);
2941 }
2942 
2943 SDValue
2944 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2945   MVT VecTy = ty(Op);
2946   unsigned BW = VecTy.getSizeInBits();
2947   const SDLoc &dl(Op);
2948   SmallVector<SDValue,8> Ops;
2949   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2950     Ops.push_back(Op.getOperand(i));
2951 
2952   if (BW == 32)
2953     return buildVector32(Ops, dl, VecTy, DAG);
2954   if (BW == 64)
2955     return buildVector64(Ops, dl, VecTy, DAG);
2956 
2957   if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2958     // Check if this is a special case or all-0 or all-1.
2959     bool All0 = true, All1 = true;
2960     for (SDValue P : Ops) {
2961       auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2962       if (CN == nullptr) {
2963         All0 = All1 = false;
2964         break;
2965       }
2966       uint32_t C = CN->getZExtValue();
2967       All0 &= (C == 0);
2968       All1 &= (C == 1);
2969     }
2970     if (All0)
2971       return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2972     if (All1)
2973       return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2974 
2975     // For each i1 element in the resulting predicate register, put 1
2976     // shifted by the index of the element into a general-purpose register,
2977     // then or them together and transfer it back into a predicate register.
2978     SDValue Rs[8];
2979     SDValue Z = getZero(dl, MVT::i32, DAG);
2980     // Always produce 8 bits, repeat inputs if necessary.
2981     unsigned Rep = 8 / VecTy.getVectorNumElements();
2982     for (unsigned i = 0; i != 8; ++i) {
2983       SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2984       Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2985     }
2986     for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2987       for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2988         Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2989     }
2990     // Move the value directly to a predicate register.
2991     return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2992   }
2993 
2994   return SDValue();
2995 }
2996 
2997 SDValue
2998 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2999                                            SelectionDAG &DAG) const {
3000   MVT VecTy = ty(Op);
3001   const SDLoc &dl(Op);
3002   if (VecTy.getSizeInBits() == 64) {
3003     assert(Op.getNumOperands() == 2);
3004     return getCombine(Op.getOperand(1), Op.getOperand(0), dl, VecTy, DAG);
3005   }
3006 
3007   MVT ElemTy = VecTy.getVectorElementType();
3008   if (ElemTy == MVT::i1) {
3009     assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
3010     MVT OpTy = ty(Op.getOperand(0));
3011     // Scale is how many times the operands need to be contracted to match
3012     // the representation in the target register.
3013     unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
3014     assert(Scale == Op.getNumOperands() && Scale > 1);
3015 
3016     // First, convert all bool vectors to integers, then generate pairwise
3017     // inserts to form values of doubled length. Up until there are only
3018     // two values left to concatenate, all of these values will fit in a
3019     // 32-bit integer, so keep them as i32 to use 32-bit inserts.
3020     SmallVector<SDValue,4> Words[2];
3021     unsigned IdxW = 0;
3022 
3023     for (SDValue P : Op.getNode()->op_values()) {
3024       SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
3025       for (unsigned R = Scale; R > 1; R /= 2) {
3026         W = contractPredicate(W, dl, DAG);
3027         W = getCombine(DAG.getUNDEF(MVT::i32), W, dl, MVT::i64, DAG);
3028       }
3029       W = LoHalf(W, DAG);
3030       Words[IdxW].push_back(W);
3031     }
3032 
3033     while (Scale > 2) {
3034       SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
3035       Words[IdxW ^ 1].clear();
3036 
3037       for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
3038         SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
3039         // Insert W1 into W0 right next to the significant bits of W0.
3040         SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
3041                                 {W0, W1, WidthV, WidthV});
3042         Words[IdxW ^ 1].push_back(T);
3043       }
3044       IdxW ^= 1;
3045       Scale /= 2;
3046     }
3047 
3048     // At this point there should only be two words left, and Scale should be 2.
3049     assert(Scale == 2 && Words[IdxW].size() == 2);
3050 
3051     SDValue WW = getCombine(Words[IdxW][1], Words[IdxW][0], dl, MVT::i64, DAG);
3052     return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
3053   }
3054 
3055   return SDValue();
3056 }
3057 
3058 SDValue
3059 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
3060                                                SelectionDAG &DAG) const {
3061   SDValue Vec = Op.getOperand(0);
3062   MVT ElemTy = ty(Vec).getVectorElementType();
3063   return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
3064 }
3065 
3066 SDValue
3067 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
3068                                               SelectionDAG &DAG) const {
3069   return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
3070                        ty(Op), ty(Op), DAG);
3071 }
3072 
3073 SDValue
3074 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
3075                                               SelectionDAG &DAG) const {
3076   return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
3077                       SDLoc(Op), ty(Op).getVectorElementType(), DAG);
3078 }
3079 
3080 SDValue
3081 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
3082                                              SelectionDAG &DAG) const {
3083   SDValue ValV = Op.getOperand(1);
3084   return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
3085                       SDLoc(Op), ty(ValV), DAG);
3086 }
3087 
3088 bool
3089 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
3090   // Assuming the caller does not have either a signext or zeroext modifier, and
3091   // only one value is accepted, any reasonable truncation is allowed.
3092   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
3093     return false;
3094 
3095   // FIXME: in principle up to 64-bit could be made safe, but it would be very
3096   // fragile at the moment: any support for multiple value returns would be
3097   // liable to disallow tail calls involving i64 -> iN truncation in many cases.
3098   return Ty1->getPrimitiveSizeInBits() <= 32;
3099 }
3100 
3101 SDValue
3102 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
3103   MVT Ty = ty(Op);
3104   const SDLoc &dl(Op);
3105   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3106   MVT MemTy = LN->getMemoryVT().getSimpleVT();
3107   ISD::LoadExtType ET = LN->getExtensionType();
3108 
3109   bool LoadPred = MemTy == MVT::v2i1 || MemTy == MVT::v4i1 || MemTy == MVT::v8i1;
3110   if (LoadPred) {
3111     SDValue NL = DAG.getLoad(
3112         LN->getAddressingMode(), ISD::ZEXTLOAD, MVT::i32, dl, LN->getChain(),
3113         LN->getBasePtr(), LN->getOffset(), LN->getPointerInfo(),
3114         /*MemoryVT*/ MVT::i8, LN->getAlign(), LN->getMemOperand()->getFlags(),
3115         LN->getAAInfo(), LN->getRanges());
3116     LN = cast<LoadSDNode>(NL.getNode());
3117   }
3118 
3119   Align ClaimAlign = LN->getAlign();
3120   if (!validateConstPtrAlignment(LN->getBasePtr(), ClaimAlign, dl, DAG))
3121     return replaceMemWithUndef(Op, DAG);
3122 
3123   // Call LowerUnalignedLoad for all loads, it recognizes loads that
3124   // don't need extra aligning.
3125   SDValue LU = LowerUnalignedLoad(SDValue(LN, 0), DAG);
3126   if (LoadPred) {
3127     SDValue TP = getInstr(Hexagon::C2_tfrrp, dl, MemTy, {LU}, DAG);
3128     if (ET == ISD::SEXTLOAD) {
3129       TP = DAG.getSExtOrTrunc(TP, dl, Ty);
3130     } else if (ET != ISD::NON_EXTLOAD) {
3131       TP = DAG.getZExtOrTrunc(TP, dl, Ty);
3132     }
3133     SDValue Ch = cast<LoadSDNode>(LU.getNode())->getChain();
3134     return DAG.getMergeValues({TP, Ch}, dl);
3135   }
3136   return LU;
3137 }
3138 
3139 SDValue
3140 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
3141   const SDLoc &dl(Op);
3142   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
3143   SDValue Val = SN->getValue();
3144   MVT Ty = ty(Val);
3145 
3146   if (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1) {
3147     // Store the exact predicate (all bits).
3148     SDValue TR = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {Val}, DAG);
3149     SDValue NS = DAG.getTruncStore(SN->getChain(), dl, TR, SN->getBasePtr(),
3150                                    MVT::i8, SN->getMemOperand());
3151     if (SN->isIndexed()) {
3152       NS = DAG.getIndexedStore(NS, dl, SN->getBasePtr(), SN->getOffset(),
3153                                SN->getAddressingMode());
3154     }
3155     SN = cast<StoreSDNode>(NS.getNode());
3156   }
3157 
3158   Align ClaimAlign = SN->getAlign();
3159   if (!validateConstPtrAlignment(SN->getBasePtr(), ClaimAlign, dl, DAG))
3160     return replaceMemWithUndef(Op, DAG);
3161 
3162   MVT StoreTy = SN->getMemoryVT().getSimpleVT();
3163   Align NeedAlign = Subtarget.getTypeAlignment(StoreTy);
3164   if (ClaimAlign < NeedAlign)
3165     return expandUnalignedStore(SN, DAG);
3166   return SDValue(SN, 0);
3167 }
3168 
3169 SDValue
3170 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
3171       const {
3172   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3173   MVT LoadTy = ty(Op);
3174   unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy).value();
3175   unsigned HaveAlign = LN->getAlign().value();
3176   if (HaveAlign >= NeedAlign)
3177     return Op;
3178 
3179   const SDLoc &dl(Op);
3180   const DataLayout &DL = DAG.getDataLayout();
3181   LLVMContext &Ctx = *DAG.getContext();
3182 
3183   // If the load aligning is disabled or the load can be broken up into two
3184   // smaller legal loads, do the default (target-independent) expansion.
3185   bool DoDefault = false;
3186   // Handle it in the default way if this is an indexed load.
3187   if (!LN->isUnindexed())
3188     DoDefault = true;
3189 
3190   if (!AlignLoads) {
3191     if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
3192                                        *LN->getMemOperand()))
3193       return Op;
3194     DoDefault = true;
3195   }
3196   if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
3197     // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
3198     MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
3199                                 : MVT::getVectorVT(MVT::i8, HaveAlign);
3200     DoDefault =
3201         allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
3202   }
3203   if (DoDefault) {
3204     std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
3205     return DAG.getMergeValues({P.first, P.second}, dl);
3206   }
3207 
3208   // The code below generates two loads, both aligned as NeedAlign, and
3209   // with the distance of NeedAlign between them. For that to cover the
3210   // bits that need to be loaded (and without overlapping), the size of
3211   // the loads should be equal to NeedAlign. This is true for all loadable
3212   // types, but add an assertion in case something changes in the future.
3213   assert(LoadTy.getSizeInBits() == 8*NeedAlign);
3214 
3215   unsigned LoadLen = NeedAlign;
3216   SDValue Base = LN->getBasePtr();
3217   SDValue Chain = LN->getChain();
3218   auto BO = getBaseAndOffset(Base);
3219   unsigned BaseOpc = BO.first.getOpcode();
3220   if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
3221     return Op;
3222 
3223   if (BO.second % LoadLen != 0) {
3224     BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
3225                            DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
3226     BO.second -= BO.second % LoadLen;
3227   }
3228   SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
3229       ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
3230                     DAG.getConstant(NeedAlign, dl, MVT::i32))
3231       : BO.first;
3232   SDValue Base0 =
3233       DAG.getMemBasePlusOffset(BaseNoOff, TypeSize::getFixed(BO.second), dl);
3234   SDValue Base1 = DAG.getMemBasePlusOffset(
3235       BaseNoOff, TypeSize::getFixed(BO.second + LoadLen), dl);
3236 
3237   MachineMemOperand *WideMMO = nullptr;
3238   if (MachineMemOperand *MMO = LN->getMemOperand()) {
3239     MachineFunction &MF = DAG.getMachineFunction();
3240     WideMMO = MF.getMachineMemOperand(
3241         MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen),
3242         MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
3243         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
3244   }
3245 
3246   SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
3247   SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
3248 
3249   SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
3250                                 {Load1, Load0, BaseNoOff.getOperand(0)});
3251   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3252                                  Load0.getValue(1), Load1.getValue(1));
3253   SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
3254   return M;
3255 }
3256 
3257 SDValue
3258 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
3259   SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
3260   auto *CY = dyn_cast<ConstantSDNode>(Y);
3261   if (!CY)
3262     return SDValue();
3263 
3264   const SDLoc &dl(Op);
3265   SDVTList VTs = Op.getNode()->getVTList();
3266   assert(VTs.NumVTs == 2);
3267   assert(VTs.VTs[1] == MVT::i1);
3268   unsigned Opc = Op.getOpcode();
3269 
3270   if (CY) {
3271     uint64_t VY = CY->getZExtValue();
3272     assert(VY != 0 && "This should have been folded");
3273     // X +/- 1
3274     if (VY != 1)
3275       return SDValue();
3276 
3277     if (Opc == ISD::UADDO) {
3278       SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
3279       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
3280                                 ISD::SETEQ);
3281       return DAG.getMergeValues({Op, Ov}, dl);
3282     }
3283     if (Opc == ISD::USUBO) {
3284       SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
3285       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
3286                                 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
3287       return DAG.getMergeValues({Op, Ov}, dl);
3288     }
3289   }
3290 
3291   return SDValue();
3292 }
3293 
3294 SDValue HexagonTargetLowering::LowerUAddSubOCarry(SDValue Op,
3295                                                   SelectionDAG &DAG) const {
3296   const SDLoc &dl(Op);
3297   unsigned Opc = Op.getOpcode();
3298   SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
3299 
3300   if (Opc == ISD::UADDO_CARRY)
3301     return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
3302                        { X, Y, C });
3303 
3304   EVT CarryTy = C.getValueType();
3305   SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
3306                              { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
3307   SDValue Out[] = { SubC.getValue(0),
3308                     DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
3309   return DAG.getMergeValues(Out, dl);
3310 }
3311 
3312 SDValue
3313 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
3314   SDValue Chain     = Op.getOperand(0);
3315   SDValue Offset    = Op.getOperand(1);
3316   SDValue Handler   = Op.getOperand(2);
3317   SDLoc dl(Op);
3318   auto PtrVT = getPointerTy(DAG.getDataLayout());
3319 
3320   // Mark function as containing a call to EH_RETURN.
3321   HexagonMachineFunctionInfo *FuncInfo =
3322     DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
3323   FuncInfo->setHasEHReturn();
3324 
3325   unsigned OffsetReg = Hexagon::R28;
3326 
3327   SDValue StoreAddr =
3328       DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
3329                   DAG.getIntPtrConstant(4, dl));
3330   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
3331   Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
3332 
3333   // Not needed we already use it as explict input to EH_RETURN.
3334   // MF.getRegInfo().addLiveOut(OffsetReg);
3335 
3336   return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
3337 }
3338 
3339 SDValue
3340 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3341   unsigned Opc = Op.getOpcode();
3342 
3343   // Handle INLINEASM first.
3344   if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
3345     return LowerINLINEASM(Op, DAG);
3346 
3347   if (isHvxOperation(Op.getNode(), DAG)) {
3348     // If HVX lowering returns nothing, try the default lowering.
3349     if (SDValue V = LowerHvxOperation(Op, DAG))
3350       return V;
3351   }
3352 
3353   switch (Opc) {
3354     default:
3355 #ifndef NDEBUG
3356       Op.getNode()->dumpr(&DAG);
3357       if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
3358         errs() << "Error: check for a non-legal type in this operation\n";
3359 #endif
3360       llvm_unreachable("Should not custom lower this!");
3361 
3362     case ISD::FDIV:
3363       return LowerFDIV(Op, DAG);
3364     case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
3365     case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
3366     case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
3367     case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
3368     case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3369     case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
3370     case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
3371     case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
3372     case ISD::LOAD:                 return LowerLoad(Op, DAG);
3373     case ISD::STORE:                return LowerStore(Op, DAG);
3374     case ISD::UADDO:
3375     case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
3376     case ISD::UADDO_CARRY:
3377     case ISD::USUBO_CARRY:          return LowerUAddSubOCarry(Op, DAG);
3378     case ISD::SRA:
3379     case ISD::SHL:
3380     case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
3381     case ISD::ROTL:                 return LowerROTL(Op, DAG);
3382     case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
3383     case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
3384     case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
3385     case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
3386     case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
3387     case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
3388     case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
3389     case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
3390     case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
3391     case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3392     case ISD::VACOPY:               return LowerVACOPY(Op, DAG);
3393     case ISD::VASTART:              return LowerVASTART(Op, DAG);
3394     case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
3395     case ISD::SETCC:                return LowerSETCC(Op, DAG);
3396     case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
3397     case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3398     case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
3399     case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
3400     case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
3401     case ISD::READSTEADYCOUNTER:    return LowerREADSTEADYCOUNTER(Op, DAG);
3402       break;
3403   }
3404 
3405   return SDValue();
3406 }
3407 
3408 void
3409 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
3410                                              SmallVectorImpl<SDValue> &Results,
3411                                              SelectionDAG &DAG) const {
3412   if (isHvxOperation(N, DAG)) {
3413     LowerHvxOperationWrapper(N, Results, DAG);
3414     if (!Results.empty())
3415       return;
3416   }
3417 
3418   SDValue Op(N, 0);
3419   unsigned Opc = N->getOpcode();
3420 
3421   switch (Opc) {
3422     case HexagonISD::SSAT:
3423     case HexagonISD::USAT:
3424       Results.push_back(opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG));
3425       break;
3426     case ISD::STORE:
3427       // We are only custom-lowering stores to verify the alignment of the
3428       // address if it is a compile-time constant. Since a store can be
3429       // modified during type-legalization (the value being stored may need
3430       // legalization), return empty Results here to indicate that we don't
3431       // really make any changes in the custom lowering.
3432       return;
3433     default:
3434       TargetLowering::LowerOperationWrapper(N, Results, DAG);
3435       break;
3436   }
3437 }
3438 
3439 void
3440 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
3441                                           SmallVectorImpl<SDValue> &Results,
3442                                           SelectionDAG &DAG) const {
3443   if (isHvxOperation(N, DAG)) {
3444     ReplaceHvxNodeResults(N, Results, DAG);
3445     if (!Results.empty())
3446       return;
3447   }
3448 
3449   const SDLoc &dl(N);
3450   switch (N->getOpcode()) {
3451     case ISD::SRL:
3452     case ISD::SRA:
3453     case ISD::SHL:
3454       return;
3455     case ISD::BITCAST:
3456       // Handle a bitcast from v8i1 to i8.
3457       if (N->getValueType(0) == MVT::i8) {
3458         if (N->getOperand(0).getValueType() == MVT::v8i1) {
3459           SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
3460                                N->getOperand(0), DAG);
3461           SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
3462           Results.push_back(T);
3463         }
3464       }
3465       break;
3466   }
3467 }
3468 
3469 SDValue
3470 HexagonTargetLowering::PerformDAGCombine(SDNode *N,
3471                                          DAGCombinerInfo &DCI) const {
3472   if (isHvxOperation(N, DCI.DAG)) {
3473     if (SDValue V = PerformHvxDAGCombine(N, DCI))
3474       return V;
3475     return SDValue();
3476   }
3477 
3478   SDValue Op(N, 0);
3479   const SDLoc &dl(Op);
3480   unsigned Opc = Op.getOpcode();
3481 
3482   if (Opc == ISD::TRUNCATE) {
3483     SDValue Op0 = Op.getOperand(0);
3484     // fold (truncate (build pair x, y)) -> (truncate x) or x
3485     if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3486       EVT TruncTy = Op.getValueType();
3487       SDValue Elem0 = Op0.getOperand(0);
3488       // if we match the low element of the pair, just return it.
3489       if (Elem0.getValueType() == TruncTy)
3490         return Elem0;
3491       // otherwise, if the low part is still too large, apply the truncate.
3492       if (Elem0.getValueType().bitsGT(TruncTy))
3493         return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3494     }
3495   }
3496 
3497   if (DCI.isBeforeLegalizeOps())
3498     return SDValue();
3499 
3500   if (Opc == HexagonISD::P2D) {
3501     SDValue P = Op.getOperand(0);
3502     switch (P.getOpcode()) {
3503     case HexagonISD::PTRUE:
3504       return DCI.DAG.getConstant(-1, dl, ty(Op));
3505     case HexagonISD::PFALSE:
3506       return getZero(dl, ty(Op), DCI.DAG);
3507     default:
3508       break;
3509     }
3510   } else if (Opc == ISD::VSELECT) {
3511     // This is pretty much duplicated in HexagonISelLoweringHVX...
3512     //
3513     // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
3514     SDValue Cond = Op.getOperand(0);
3515     if (Cond->getOpcode() == ISD::XOR) {
3516       SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3517       if (C1->getOpcode() == HexagonISD::PTRUE) {
3518         SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
3519                                        Op.getOperand(2), Op.getOperand(1));
3520         return VSel;
3521       }
3522     }
3523   } else if (Opc == ISD::TRUNCATE) {
3524     SDValue Op0 = Op.getOperand(0);
3525     // fold (truncate (build pair x, y)) -> (truncate x) or x
3526     if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3527       MVT TruncTy = ty(Op);
3528       SDValue Elem0 = Op0.getOperand(0);
3529       // if we match the low element of the pair, just return it.
3530       if (ty(Elem0) == TruncTy)
3531         return Elem0;
3532       // otherwise, if the low part is still too large, apply the truncate.
3533       if (ty(Elem0).bitsGT(TruncTy))
3534         return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3535     }
3536   } else if (Opc == ISD::OR) {
3537     // fold (or (shl xx, s), (zext y)) -> (COMBINE (shl xx, s-32), y)
3538     // if s >= 32
3539     auto fold0 = [&, this](SDValue Op) {
3540       if (ty(Op) != MVT::i64)
3541         return SDValue();
3542       SDValue Shl = Op.getOperand(0);
3543       SDValue Zxt = Op.getOperand(1);
3544       if (Shl.getOpcode() != ISD::SHL)
3545         std::swap(Shl, Zxt);
3546 
3547       if (Shl.getOpcode() != ISD::SHL || Zxt.getOpcode() != ISD::ZERO_EXTEND)
3548         return SDValue();
3549 
3550       SDValue Z = Zxt.getOperand(0);
3551       auto *Amt = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
3552       if (Amt && Amt->getZExtValue() >= 32 && ty(Z).getSizeInBits() <= 32) {
3553         unsigned A = Amt->getZExtValue();
3554         SDValue S = Shl.getOperand(0);
3555         SDValue T0 = DCI.DAG.getNode(ISD::SHL, dl, ty(S), S,
3556                                      DCI.DAG.getConstant(A - 32, dl, MVT::i32));
3557         SDValue T1 = DCI.DAG.getZExtOrTrunc(T0, dl, MVT::i32);
3558         SDValue T2 = DCI.DAG.getZExtOrTrunc(Z, dl, MVT::i32);
3559         return DCI.DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {T1, T2});
3560       }
3561       return SDValue();
3562     };
3563 
3564     if (SDValue R = fold0(Op))
3565       return R;
3566   }
3567 
3568   return SDValue();
3569 }
3570 
3571 /// Returns relocation base for the given PIC jumptable.
3572 SDValue
3573 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3574                                                 SelectionDAG &DAG) const {
3575   int Idx = cast<JumpTableSDNode>(Table)->getIndex();
3576   EVT VT = Table.getValueType();
3577   SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
3578   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
3579 }
3580 
3581 //===----------------------------------------------------------------------===//
3582 // Inline Assembly Support
3583 //===----------------------------------------------------------------------===//
3584 
3585 TargetLowering::ConstraintType
3586 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
3587   if (Constraint.size() == 1) {
3588     switch (Constraint[0]) {
3589       case 'q':
3590       case 'v':
3591         if (Subtarget.useHVXOps())
3592           return C_RegisterClass;
3593         break;
3594       case 'a':
3595         return C_RegisterClass;
3596       default:
3597         break;
3598     }
3599   }
3600   return TargetLowering::getConstraintType(Constraint);
3601 }
3602 
3603 std::pair<unsigned, const TargetRegisterClass*>
3604 HexagonTargetLowering::getRegForInlineAsmConstraint(
3605     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
3606 
3607   if (Constraint.size() == 1) {
3608     switch (Constraint[0]) {
3609     case 'r':   // R0-R31
3610       switch (VT.SimpleTy) {
3611       default:
3612         return {0u, nullptr};
3613       case MVT::i1:
3614       case MVT::i8:
3615       case MVT::i16:
3616       case MVT::i32:
3617       case MVT::f32:
3618         return {0u, &Hexagon::IntRegsRegClass};
3619       case MVT::i64:
3620       case MVT::f64:
3621         return {0u, &Hexagon::DoubleRegsRegClass};
3622       }
3623       break;
3624     case 'a': // M0-M1
3625       if (VT != MVT::i32)
3626         return {0u, nullptr};
3627       return {0u, &Hexagon::ModRegsRegClass};
3628     case 'q': // q0-q3
3629       switch (VT.getSizeInBits()) {
3630       default:
3631         return {0u, nullptr};
3632       case 64:
3633       case 128:
3634         return {0u, &Hexagon::HvxQRRegClass};
3635       }
3636       break;
3637     case 'v': // V0-V31
3638       switch (VT.getSizeInBits()) {
3639       default:
3640         return {0u, nullptr};
3641       case 512:
3642         return {0u, &Hexagon::HvxVRRegClass};
3643       case 1024:
3644         if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3645           return {0u, &Hexagon::HvxVRRegClass};
3646         return {0u, &Hexagon::HvxWRRegClass};
3647       case 2048:
3648         return {0u, &Hexagon::HvxWRRegClass};
3649       }
3650       break;
3651     default:
3652       return {0u, nullptr};
3653     }
3654   }
3655 
3656   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3657 }
3658 
3659 /// isFPImmLegal - Returns true if the target can instruction select the
3660 /// specified FP immediate natively. If false, the legalizer will
3661 /// materialize the FP immediate as a load from a constant pool.
3662 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3663                                          bool ForCodeSize) const {
3664   return true;
3665 }
3666 
3667 /// isLegalAddressingMode - Return true if the addressing mode represented by
3668 /// AM is legal for this target, for a load/store of the specified type.
3669 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3670                                                   const AddrMode &AM, Type *Ty,
3671                                                   unsigned AS, Instruction *I) const {
3672   if (Ty->isSized()) {
3673     // When LSR detects uses of the same base address to access different
3674     // types (e.g. unions), it will assume a conservative type for these
3675     // uses:
3676     //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
3677     // The type Ty passed here would then be "void". Skip the alignment
3678     // checks, but do not return false right away, since that confuses
3679     // LSR into crashing.
3680     Align A = DL.getABITypeAlign(Ty);
3681     // The base offset must be a multiple of the alignment.
3682     if (!isAligned(A, AM.BaseOffs))
3683       return false;
3684     // The shifted offset must fit in 11 bits.
3685     if (!isInt<11>(AM.BaseOffs >> Log2(A)))
3686       return false;
3687   }
3688 
3689   // No global is ever allowed as a base.
3690   if (AM.BaseGV)
3691     return false;
3692 
3693   int Scale = AM.Scale;
3694   if (Scale < 0)
3695     Scale = -Scale;
3696   switch (Scale) {
3697   case 0:  // No scale reg, "r+i", "r", or just "i".
3698     break;
3699   default: // No scaled addressing mode.
3700     return false;
3701   }
3702   return true;
3703 }
3704 
3705 /// Return true if folding a constant offset with the given GlobalAddress is
3706 /// legal.  It is frequently not legal in PIC relocation models.
3707 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3708       const {
3709   return HTM.getRelocationModel() == Reloc::Static;
3710 }
3711 
3712 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3713 /// icmp immediate, that is the target has icmp instructions which can compare
3714 /// a register against the immediate without having to materialize the
3715 /// immediate into a register.
3716 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3717   return Imm >= -512 && Imm <= 511;
3718 }
3719 
3720 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3721 /// for tail call optimization. Targets which want to do tail call
3722 /// optimization should implement this function.
3723 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3724                                  SDValue Callee,
3725                                  CallingConv::ID CalleeCC,
3726                                  bool IsVarArg,
3727                                  bool IsCalleeStructRet,
3728                                  bool IsCallerStructRet,
3729                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3730                                  const SmallVectorImpl<SDValue> &OutVals,
3731                                  const SmallVectorImpl<ISD::InputArg> &Ins,
3732                                  SelectionDAG& DAG) const {
3733   const Function &CallerF = DAG.getMachineFunction().getFunction();
3734   CallingConv::ID CallerCC = CallerF.getCallingConv();
3735   bool CCMatch = CallerCC == CalleeCC;
3736 
3737   // ***************************************************************************
3738   //  Look for obvious safe cases to perform tail call optimization that do not
3739   //  require ABI changes.
3740   // ***************************************************************************
3741 
3742   // If this is a tail call via a function pointer, then don't do it!
3743   if (!isa<GlobalAddressSDNode>(Callee) &&
3744       !isa<ExternalSymbolSDNode>(Callee)) {
3745     return false;
3746   }
3747 
3748   // Do not optimize if the calling conventions do not match and the conventions
3749   // used are not C or Fast.
3750   if (!CCMatch) {
3751     bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3752     bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3753     // If R & E, then ok.
3754     if (!R || !E)
3755       return false;
3756   }
3757 
3758   // Do not tail call optimize vararg calls.
3759   if (IsVarArg)
3760     return false;
3761 
3762   // Also avoid tail call optimization if either caller or callee uses struct
3763   // return semantics.
3764   if (IsCalleeStructRet || IsCallerStructRet)
3765     return false;
3766 
3767   // In addition to the cases above, we also disable Tail Call Optimization if
3768   // the calling convention code that at least one outgoing argument needs to
3769   // go on the stack. We cannot check that here because at this point that
3770   // information is not available.
3771   return true;
3772 }
3773 
3774 /// Returns the target specific optimal type for load and store operations as
3775 /// a result of memset, memcpy, and memmove lowering.
3776 ///
3777 /// If DstAlign is zero that means it's safe to destination alignment can
3778 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3779 /// a need to check it against alignment requirement, probably because the
3780 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3781 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3782 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3783 /// does not need to be loaded.  It returns EVT::Other if the type should be
3784 /// determined using generic target-independent logic.
3785 EVT HexagonTargetLowering::getOptimalMemOpType(
3786     const MemOp &Op, const AttributeList &FuncAttributes) const {
3787   if (Op.size() >= 8 && Op.isAligned(Align(8)))
3788     return MVT::i64;
3789   if (Op.size() >= 4 && Op.isAligned(Align(4)))
3790     return MVT::i32;
3791   if (Op.size() >= 2 && Op.isAligned(Align(2)))
3792     return MVT::i16;
3793   return MVT::Other;
3794 }
3795 
3796 bool HexagonTargetLowering::allowsMemoryAccess(
3797     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
3798     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
3799   MVT SVT = VT.getSimpleVT();
3800   if (Subtarget.isHVXVectorType(SVT, true))
3801     return allowsHvxMemoryAccess(SVT, Flags, Fast);
3802   return TargetLoweringBase::allowsMemoryAccess(
3803               Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
3804 }
3805 
3806 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3807     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
3808     unsigned *Fast) const {
3809   MVT SVT = VT.getSimpleVT();
3810   if (Subtarget.isHVXVectorType(SVT, true))
3811     return allowsHvxMisalignedMemoryAccesses(SVT, Flags, Fast);
3812   if (Fast)
3813     *Fast = 0;
3814   return false;
3815 }
3816 
3817 std::pair<const TargetRegisterClass*, uint8_t>
3818 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3819       MVT VT) const {
3820   if (Subtarget.isHVXVectorType(VT, true)) {
3821     unsigned BitWidth = VT.getSizeInBits();
3822     unsigned VecWidth = Subtarget.getVectorLength() * 8;
3823 
3824     if (VT.getVectorElementType() == MVT::i1)
3825       return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3826     if (BitWidth == VecWidth)
3827       return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3828     assert(BitWidth == 2 * VecWidth);
3829     return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3830   }
3831 
3832   return TargetLowering::findRepresentativeClass(TRI, VT);
3833 }
3834 
3835 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3836       ISD::LoadExtType ExtTy, EVT NewVT) const {
3837   // TODO: This may be worth removing. Check regression tests for diffs.
3838   if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3839     return false;
3840 
3841   auto *L = cast<LoadSDNode>(Load);
3842   std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3843   // Small-data object, do not shrink.
3844   if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3845     return false;
3846   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3847     auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3848     const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3849     return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3850   }
3851   return true;
3852 }
3853 
3854 void HexagonTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3855       SDNode *Node) const {
3856   AdjustHvxInstrPostInstrSelection(MI, Node);
3857 }
3858 
3859 Value *HexagonTargetLowering::emitLoadLinked(IRBuilderBase &Builder,
3860                                              Type *ValueTy, Value *Addr,
3861                                              AtomicOrdering Ord) const {
3862   BasicBlock *BB = Builder.GetInsertBlock();
3863   Module *M = BB->getParent()->getParent();
3864   unsigned SZ = ValueTy->getPrimitiveSizeInBits();
3865   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3866   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3867                                    : Intrinsic::hexagon_L4_loadd_locked;
3868   Function *Fn = Intrinsic::getDeclaration(M, IntID);
3869 
3870   Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3871 
3872   return Builder.CreateBitCast(Call, ValueTy);
3873 }
3874 
3875 /// Perform a store-conditional operation to Addr. Return the status of the
3876 /// store. This should be 0 if the store succeeded, non-zero otherwise.
3877 Value *HexagonTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
3878                                                    Value *Val, Value *Addr,
3879                                                    AtomicOrdering Ord) const {
3880   BasicBlock *BB = Builder.GetInsertBlock();
3881   Module *M = BB->getParent()->getParent();
3882   Type *Ty = Val->getType();
3883   unsigned SZ = Ty->getPrimitiveSizeInBits();
3884 
3885   Type *CastTy = Builder.getIntNTy(SZ);
3886   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3887   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3888                                    : Intrinsic::hexagon_S4_stored_locked;
3889   Function *Fn = Intrinsic::getDeclaration(M, IntID);
3890 
3891   Val = Builder.CreateBitCast(Val, CastTy);
3892 
3893   Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3894   Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3895   Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3896   return Ext;
3897 }
3898 
3899 TargetLowering::AtomicExpansionKind
3900 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3901   // Do not expand loads and stores that don't exceed 64 bits.
3902   return LI->getType()->getPrimitiveSizeInBits() > 64
3903              ? AtomicExpansionKind::LLOnly
3904              : AtomicExpansionKind::None;
3905 }
3906 
3907 TargetLowering::AtomicExpansionKind
3908 HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3909   // Do not expand loads and stores that don't exceed 64 bits.
3910   return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64
3911              ? AtomicExpansionKind::Expand
3912              : AtomicExpansionKind::None;
3913 }
3914 
3915 TargetLowering::AtomicExpansionKind
3916 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3917     AtomicCmpXchgInst *AI) const {
3918   return AtomicExpansionKind::LLSC;
3919 }
3920