xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <limits>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "hexagon-lowering"
66 
67 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
68   cl::init(true), cl::Hidden,
69   cl::desc("Control jump table emission on Hexagon target"));
70 
71 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
72   cl::Hidden, cl::ZeroOrMore, cl::init(false),
73   cl::desc("Enable Hexagon SDNode scheduling"));
74 
75 static cl::opt<bool> EnableFastMath("ffast-math",
76   cl::Hidden, cl::ZeroOrMore, cl::init(false),
77   cl::desc("Enable Fast Math processing"));
78 
79 static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
80   cl::Hidden, cl::ZeroOrMore, cl::init(5),
81   cl::desc("Set minimum jump tables"));
82 
83 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
84   cl::Hidden, cl::ZeroOrMore, cl::init(6),
85   cl::desc("Max #stores to inline memcpy"));
86 
87 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
88   cl::Hidden, cl::ZeroOrMore, cl::init(4),
89   cl::desc("Max #stores to inline memcpy"));
90 
91 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
92   cl::Hidden, cl::ZeroOrMore, cl::init(6),
93   cl::desc("Max #stores to inline memmove"));
94 
95 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
96   cl::Hidden, cl::ZeroOrMore, cl::init(4),
97   cl::desc("Max #stores to inline memmove"));
98 
99 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
100   cl::Hidden, cl::ZeroOrMore, cl::init(8),
101   cl::desc("Max #stores to inline memset"));
102 
103 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
104   cl::Hidden, cl::ZeroOrMore, cl::init(4),
105   cl::desc("Max #stores to inline memset"));
106 
107 static cl::opt<bool> AlignLoads("hexagon-align-loads",
108   cl::Hidden, cl::init(false),
109   cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
110 
111 
112 namespace {
113 
114   class HexagonCCState : public CCState {
115     unsigned NumNamedVarArgParams = 0;
116 
117   public:
118     HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
119                    SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
120                    unsigned NumNamedArgs)
121         : CCState(CC, IsVarArg, MF, locs, C),
122           NumNamedVarArgParams(NumNamedArgs) {}
123     unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
124   };
125 
126 } // end anonymous namespace
127 
128 
129 // Implement calling convention for Hexagon.
130 
131 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
132                        CCValAssign::LocInfo &LocInfo,
133                        ISD::ArgFlagsTy &ArgFlags, CCState &State) {
134   static const MCPhysReg ArgRegs[] = {
135     Hexagon::R0, Hexagon::R1, Hexagon::R2,
136     Hexagon::R3, Hexagon::R4, Hexagon::R5
137   };
138   const unsigned NumArgRegs = array_lengthof(ArgRegs);
139   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
140 
141   // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
142   if (RegNum != NumArgRegs && RegNum % 2 == 1)
143     State.AllocateReg(ArgRegs[RegNum]);
144 
145   // Always return false here, as this function only makes sure that the first
146   // unallocated register has an even register number and does not actually
147   // allocate a register for the current argument.
148   return false;
149 }
150 
151 #include "HexagonGenCallingConv.inc"
152 
153 
154 SDValue
155 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
156       const {
157   return SDValue();
158 }
159 
160 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
161 /// by "Src" to address "Dst" of size "Size".  Alignment information is
162 /// specified by the specific parameter attribute. The copy will be passed as
163 /// a byval function parameter.  Sometimes what we are copying is the end of a
164 /// larger object, the part that does not fit in registers.
165 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
166                                          SDValue Chain, ISD::ArgFlagsTy Flags,
167                                          SelectionDAG &DAG, const SDLoc &dl) {
168   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
169   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
170                        /*isVolatile=*/false, /*AlwaysInline=*/false,
171                        /*isTailCall=*/false,
172                        MachinePointerInfo(), MachinePointerInfo());
173 }
174 
175 bool
176 HexagonTargetLowering::CanLowerReturn(
177     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
178     const SmallVectorImpl<ISD::OutputArg> &Outs,
179     LLVMContext &Context) const {
180   SmallVector<CCValAssign, 16> RVLocs;
181   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
182 
183   if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
184     return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
185   return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
186 }
187 
188 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
189 // passed by value, the function prototype is modified to return void and
190 // the value is stored in memory pointed by a pointer passed by caller.
191 SDValue
192 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
193                                    bool IsVarArg,
194                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
195                                    const SmallVectorImpl<SDValue> &OutVals,
196                                    const SDLoc &dl, SelectionDAG &DAG) const {
197   // CCValAssign - represent the assignment of the return value to locations.
198   SmallVector<CCValAssign, 16> RVLocs;
199 
200   // CCState - Info about the registers and stack slot.
201   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
202                  *DAG.getContext());
203 
204   // Analyze return values of ISD::RET
205   if (Subtarget.useHVXOps())
206     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
207   else
208     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
209 
210   SDValue Flag;
211   SmallVector<SDValue, 4> RetOps(1, Chain);
212 
213   // Copy the result values into the output registers.
214   for (unsigned i = 0; i != RVLocs.size(); ++i) {
215     CCValAssign &VA = RVLocs[i];
216 
217     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
218 
219     // Guarantee that all emitted copies are stuck together with flags.
220     Flag = Chain.getValue(1);
221     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
222   }
223 
224   RetOps[0] = Chain;  // Update chain.
225 
226   // Add the flag if we have it.
227   if (Flag.getNode())
228     RetOps.push_back(Flag);
229 
230   return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
231 }
232 
233 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
234   // If either no tail call or told not to tail call at all, don't.
235   auto Attr =
236       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
237   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
238     return false;
239 
240   return true;
241 }
242 
243 unsigned  HexagonTargetLowering::getRegisterByName(const char* RegName, EVT VT,
244                                               SelectionDAG &DAG) const {
245   // Just support r19, the linux kernel uses it.
246   unsigned Reg = StringSwitch<unsigned>(RegName)
247                      .Case("r19", Hexagon::R19)
248                      .Default(0);
249   if (Reg)
250     return Reg;
251 
252   report_fatal_error("Invalid register name global variable");
253 }
254 
255 /// LowerCallResult - Lower the result values of an ISD::CALL into the
256 /// appropriate copies out of appropriate physical registers.  This assumes that
257 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
258 /// being lowered. Returns a SDNode with the same number of values as the
259 /// ISD::CALL.
260 SDValue HexagonTargetLowering::LowerCallResult(
261     SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
262     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
263     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
264     const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
265   // Assign locations to each value returned by this call.
266   SmallVector<CCValAssign, 16> RVLocs;
267 
268   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
269                  *DAG.getContext());
270 
271   if (Subtarget.useHVXOps())
272     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
273   else
274     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
275 
276   // Copy all of the result registers out of their specified physreg.
277   for (unsigned i = 0; i != RVLocs.size(); ++i) {
278     SDValue RetVal;
279     if (RVLocs[i].getValVT() == MVT::i1) {
280       // Return values of type MVT::i1 require special handling. The reason
281       // is that MVT::i1 is associated with the PredRegs register class, but
282       // values of that type are still returned in R0. Generate an explicit
283       // copy into a predicate register from R0, and treat the value of the
284       // predicate register as the call result.
285       auto &MRI = DAG.getMachineFunction().getRegInfo();
286       SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
287                                        MVT::i32, Glue);
288       // FR0 = (Value, Chain, Glue)
289       unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
290       SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
291                                      FR0.getValue(0), FR0.getValue(2));
292       // TPR = (Chain, Glue)
293       // Don't glue this CopyFromReg, because it copies from a virtual
294       // register. If it is glued to the call, InstrEmitter will add it
295       // as an implicit def to the call (EmitMachineNode).
296       RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
297       Glue = TPR.getValue(1);
298       Chain = TPR.getValue(0);
299     } else {
300       RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
301                                   RVLocs[i].getValVT(), Glue);
302       Glue = RetVal.getValue(2);
303       Chain = RetVal.getValue(1);
304     }
305     InVals.push_back(RetVal.getValue(0));
306   }
307 
308   return Chain;
309 }
310 
311 /// LowerCall - Functions arguments are copied from virtual regs to
312 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
313 SDValue
314 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
315                                  SmallVectorImpl<SDValue> &InVals) const {
316   SelectionDAG &DAG                     = CLI.DAG;
317   SDLoc &dl                             = CLI.DL;
318   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
319   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
320   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
321   SDValue Chain                         = CLI.Chain;
322   SDValue Callee                        = CLI.Callee;
323   CallingConv::ID CallConv              = CLI.CallConv;
324   bool IsVarArg                         = CLI.IsVarArg;
325   bool DoesNotReturn                    = CLI.DoesNotReturn;
326 
327   bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
328   MachineFunction &MF = DAG.getMachineFunction();
329   MachineFrameInfo &MFI = MF.getFrameInfo();
330   auto PtrVT = getPointerTy(MF.getDataLayout());
331 
332   unsigned NumParams = CLI.CS.getInstruction()
333                         ? CLI.CS.getFunctionType()->getNumParams()
334                         : 0;
335   if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
336     Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
337 
338   // Analyze operands of the call, assigning locations to each operand.
339   SmallVector<CCValAssign, 16> ArgLocs;
340   HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
341                         NumParams);
342 
343   if (Subtarget.useHVXOps())
344     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
345   else
346     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
347 
348   auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
349   if (Attr.getValueAsString() == "true")
350     CLI.IsTailCall = false;
351 
352   if (CLI.IsTailCall) {
353     bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
354     CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
355                         IsVarArg, IsStructRet, StructAttrFlag, Outs,
356                         OutVals, Ins, DAG);
357     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
358       CCValAssign &VA = ArgLocs[i];
359       if (VA.isMemLoc()) {
360         CLI.IsTailCall = false;
361         break;
362       }
363     }
364     LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
365                                          : "Argument must be passed on stack. "
366                                            "Not eligible for Tail Call\n"));
367   }
368   // Get a count of how many bytes are to be pushed on the stack.
369   unsigned NumBytes = CCInfo.getNextStackOffset();
370   SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
371   SmallVector<SDValue, 8> MemOpChains;
372 
373   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
374   SDValue StackPtr =
375       DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
376 
377   bool NeedsArgAlign = false;
378   unsigned LargestAlignSeen = 0;
379   // Walk the register/memloc assignments, inserting copies/loads.
380   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
381     CCValAssign &VA = ArgLocs[i];
382     SDValue Arg = OutVals[i];
383     ISD::ArgFlagsTy Flags = Outs[i].Flags;
384     // Record if we need > 8 byte alignment on an argument.
385     bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
386     NeedsArgAlign |= ArgAlign;
387 
388     // Promote the value if needed.
389     switch (VA.getLocInfo()) {
390       default:
391         // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
392         llvm_unreachable("Unknown loc info!");
393       case CCValAssign::Full:
394         break;
395       case CCValAssign::BCvt:
396         Arg = DAG.getBitcast(VA.getLocVT(), Arg);
397         break;
398       case CCValAssign::SExt:
399         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
400         break;
401       case CCValAssign::ZExt:
402         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
403         break;
404       case CCValAssign::AExt:
405         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
406         break;
407     }
408 
409     if (VA.isMemLoc()) {
410       unsigned LocMemOffset = VA.getLocMemOffset();
411       SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
412                                         StackPtr.getValueType());
413       MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
414       if (ArgAlign)
415         LargestAlignSeen = std::max(LargestAlignSeen,
416                                     VA.getLocVT().getStoreSizeInBits() >> 3);
417       if (Flags.isByVal()) {
418         // The argument is a struct passed by value. According to LLVM, "Arg"
419         // is a pointer.
420         MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
421                                                         Flags, DAG, dl));
422       } else {
423         MachinePointerInfo LocPI = MachinePointerInfo::getStack(
424             DAG.getMachineFunction(), LocMemOffset);
425         SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
426         MemOpChains.push_back(S);
427       }
428       continue;
429     }
430 
431     // Arguments that can be passed on register must be kept at RegsToPass
432     // vector.
433     if (VA.isRegLoc())
434       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
435   }
436 
437   if (NeedsArgAlign && Subtarget.hasV60Ops()) {
438     LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
439     unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
440     LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
441     MFI.ensureMaxAlignment(LargestAlignSeen);
442   }
443   // Transform all store nodes into one single node because all store
444   // nodes are independent of each other.
445   if (!MemOpChains.empty())
446     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
447 
448   SDValue Glue;
449   if (!CLI.IsTailCall) {
450     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
451     Glue = Chain.getValue(1);
452   }
453 
454   // Build a sequence of copy-to-reg nodes chained together with token
455   // chain and flag operands which copy the outgoing args into registers.
456   // The Glue is necessary since all emitted instructions must be
457   // stuck together.
458   if (!CLI.IsTailCall) {
459     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
460       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
461                                RegsToPass[i].second, Glue);
462       Glue = Chain.getValue(1);
463     }
464   } else {
465     // For tail calls lower the arguments to the 'real' stack slot.
466     //
467     // Force all the incoming stack arguments to be loaded from the stack
468     // before any new outgoing arguments are stored to the stack, because the
469     // outgoing stack slots may alias the incoming argument stack slots, and
470     // the alias isn't otherwise explicit. This is slightly more conservative
471     // than necessary, because it means that each store effectively depends
472     // on every argument instead of just those arguments it would clobber.
473     //
474     // Do not flag preceding copytoreg stuff together with the following stuff.
475     Glue = SDValue();
476     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
477       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
478                                RegsToPass[i].second, Glue);
479       Glue = Chain.getValue(1);
480     }
481     Glue = SDValue();
482   }
483 
484   bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
485   unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
486 
487   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
488   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
489   // node so that legalize doesn't hack it.
490   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
491     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
492   } else if (ExternalSymbolSDNode *S =
493              dyn_cast<ExternalSymbolSDNode>(Callee)) {
494     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
495   }
496 
497   // Returns a chain & a flag for retval copy to use.
498   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
499   SmallVector<SDValue, 8> Ops;
500   Ops.push_back(Chain);
501   Ops.push_back(Callee);
502 
503   // Add argument registers to the end of the list so that they are
504   // known live into the call.
505   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
506     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
507                                   RegsToPass[i].second.getValueType()));
508   }
509 
510   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
511   assert(Mask && "Missing call preserved mask for calling convention");
512   Ops.push_back(DAG.getRegisterMask(Mask));
513 
514   if (Glue.getNode())
515     Ops.push_back(Glue);
516 
517   if (CLI.IsTailCall) {
518     MFI.setHasTailCall();
519     return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
520   }
521 
522   // Set this here because we need to know this for "hasFP" in frame lowering.
523   // The target-independent code calls getFrameRegister before setting it, and
524   // getFrameRegister uses hasFP to determine whether the function has FP.
525   MFI.setHasCalls(true);
526 
527   unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
528   Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
529   Glue = Chain.getValue(1);
530 
531   // Create the CALLSEQ_END node.
532   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
533                              DAG.getIntPtrConstant(0, dl, true), Glue, dl);
534   Glue = Chain.getValue(1);
535 
536   // Handle result values, copying them out of physregs into vregs that we
537   // return.
538   return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
539                          InVals, OutVals, Callee);
540 }
541 
542 /// Returns true by value, base pointer and offset pointer and addressing
543 /// mode by reference if this node can be combined with a load / store to
544 /// form a post-indexed load / store.
545 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
546       SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
547       SelectionDAG &DAG) const {
548   LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
549   if (!LSN)
550     return false;
551   EVT VT = LSN->getMemoryVT();
552   if (!VT.isSimple())
553     return false;
554   bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
555                      VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
556                      VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
557                      VT == MVT::v4i16 || VT == MVT::v8i8 ||
558                      Subtarget.isHVXVectorType(VT.getSimpleVT());
559   if (!IsLegalType)
560     return false;
561 
562   if (Op->getOpcode() != ISD::ADD)
563     return false;
564   Base = Op->getOperand(0);
565   Offset = Op->getOperand(1);
566   if (!isa<ConstantSDNode>(Offset.getNode()))
567     return false;
568   AM = ISD::POST_INC;
569 
570   int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
571   return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
572 }
573 
574 SDValue
575 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
576   MachineFunction &MF = DAG.getMachineFunction();
577   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
578   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
579   unsigned LR = HRI.getRARegister();
580 
581   if ((Op.getOpcode() != ISD::INLINEASM &&
582        Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
583     return Op;
584 
585   unsigned NumOps = Op.getNumOperands();
586   if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
587     --NumOps;  // Ignore the flag operand.
588 
589   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
590     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
591     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
592     ++i;  // Skip the ID value.
593 
594     switch (InlineAsm::getKind(Flags)) {
595       default:
596         llvm_unreachable("Bad flags!");
597       case InlineAsm::Kind_RegUse:
598       case InlineAsm::Kind_Imm:
599       case InlineAsm::Kind_Mem:
600         i += NumVals;
601         break;
602       case InlineAsm::Kind_Clobber:
603       case InlineAsm::Kind_RegDef:
604       case InlineAsm::Kind_RegDefEarlyClobber: {
605         for (; NumVals; --NumVals, ++i) {
606           unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
607           if (Reg != LR)
608             continue;
609           HMFI.setHasClobberLR(true);
610           return Op;
611         }
612         break;
613       }
614     }
615   }
616 
617   return Op;
618 }
619 
620 // Need to transform ISD::PREFETCH into something that doesn't inherit
621 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
622 // SDNPMayStore.
623 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
624                                              SelectionDAG &DAG) const {
625   SDValue Chain = Op.getOperand(0);
626   SDValue Addr = Op.getOperand(1);
627   // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
628   // if the "reg" is fed by an "add".
629   SDLoc DL(Op);
630   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
631   return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
632 }
633 
634 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
635 // is marked as having side-effects, while the register read on Hexagon does
636 // not have any. TableGen refuses to accept the direct pattern from that node
637 // to the A4_tfrcpp.
638 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
639                                                      SelectionDAG &DAG) const {
640   SDValue Chain = Op.getOperand(0);
641   SDLoc dl(Op);
642   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
643   return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
644 }
645 
646 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
647       SelectionDAG &DAG) const {
648   SDValue Chain = Op.getOperand(0);
649   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
650   // Lower the hexagon_prefetch builtin to DCFETCH, as above.
651   if (IntNo == Intrinsic::hexagon_prefetch) {
652     SDValue Addr = Op.getOperand(2);
653     SDLoc DL(Op);
654     SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
655     return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
656   }
657   return SDValue();
658 }
659 
660 SDValue
661 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
662                                                SelectionDAG &DAG) const {
663   SDValue Chain = Op.getOperand(0);
664   SDValue Size = Op.getOperand(1);
665   SDValue Align = Op.getOperand(2);
666   SDLoc dl(Op);
667 
668   ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
669   assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
670 
671   unsigned A = AlignConst->getSExtValue();
672   auto &HFI = *Subtarget.getFrameLowering();
673   // "Zero" means natural stack alignment.
674   if (A == 0)
675     A = HFI.getStackAlignment();
676 
677   LLVM_DEBUG({
678     dbgs () << __func__ << " Align: " << A << " Size: ";
679     Size.getNode()->dump(&DAG);
680     dbgs() << "\n";
681   });
682 
683   SDValue AC = DAG.getConstant(A, dl, MVT::i32);
684   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
685   SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
686 
687   DAG.ReplaceAllUsesOfValueWith(Op, AA);
688   return AA;
689 }
690 
691 SDValue HexagonTargetLowering::LowerFormalArguments(
692     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
693     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
694     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
695   MachineFunction &MF = DAG.getMachineFunction();
696   MachineFrameInfo &MFI = MF.getFrameInfo();
697   MachineRegisterInfo &MRI = MF.getRegInfo();
698 
699   // Assign locations to all of the incoming arguments.
700   SmallVector<CCValAssign, 16> ArgLocs;
701   HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
702                         MF.getFunction().getFunctionType()->getNumParams());
703 
704   if (Subtarget.useHVXOps())
705     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
706   else
707     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
708 
709   // For LLVM, in the case when returning a struct by value (>8byte),
710   // the first argument is a pointer that points to the location on caller's
711   // stack where the return value will be stored. For Hexagon, the location on
712   // caller's stack is passed only when the struct size is smaller than (and
713   // equal to) 8 bytes. If not, no address will be passed into callee and
714   // callee return the result direclty through R0/R1.
715 
716   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
717 
718   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
719     CCValAssign &VA = ArgLocs[i];
720     ISD::ArgFlagsTy Flags = Ins[i].Flags;
721     bool ByVal = Flags.isByVal();
722 
723     // Arguments passed in registers:
724     // 1. 32- and 64-bit values and HVX vectors are passed directly,
725     // 2. Large structs are passed via an address, and the address is
726     //    passed in a register.
727     if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
728       llvm_unreachable("ByValSize must be bigger than 8 bytes");
729 
730     bool InReg = VA.isRegLoc() &&
731                  (!ByVal || (ByVal && Flags.getByValSize() > 8));
732 
733     if (InReg) {
734       MVT RegVT = VA.getLocVT();
735       if (VA.getLocInfo() == CCValAssign::BCvt)
736         RegVT = VA.getValVT();
737 
738       const TargetRegisterClass *RC = getRegClassFor(RegVT);
739       unsigned VReg = MRI.createVirtualRegister(RC);
740       SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
741 
742       // Treat values of type MVT::i1 specially: they are passed in
743       // registers of type i32, but they need to remain as values of
744       // type i1 for consistency of the argument lowering.
745       if (VA.getValVT() == MVT::i1) {
746         assert(RegVT.getSizeInBits() <= 32);
747         SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
748                                 Copy, DAG.getConstant(1, dl, RegVT));
749         Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
750                             ISD::SETNE);
751       } else {
752 #ifndef NDEBUG
753         unsigned RegSize = RegVT.getSizeInBits();
754         assert(RegSize == 32 || RegSize == 64 ||
755                Subtarget.isHVXVectorType(RegVT));
756 #endif
757       }
758       InVals.push_back(Copy);
759       MRI.addLiveIn(VA.getLocReg(), VReg);
760     } else {
761       assert(VA.isMemLoc() && "Argument should be passed in memory");
762 
763       // If it's a byval parameter, then we need to compute the
764       // "real" size, not the size of the pointer.
765       unsigned ObjSize = Flags.isByVal()
766                             ? Flags.getByValSize()
767                             : VA.getLocVT().getStoreSizeInBits() / 8;
768 
769       // Create the frame index object for this incoming parameter.
770       int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
771       int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
772       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
773 
774       if (Flags.isByVal()) {
775         // If it's a pass-by-value aggregate, then do not dereference the stack
776         // location. Instead, we should generate a reference to the stack
777         // location.
778         InVals.push_back(FIN);
779       } else {
780         SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
781                                 MachinePointerInfo::getFixedStack(MF, FI, 0));
782         InVals.push_back(L);
783       }
784     }
785   }
786 
787 
788   if (IsVarArg) {
789     // This will point to the next argument passed via stack.
790     int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
791     int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
792     HMFI.setVarArgsFrameIndex(FI);
793   }
794 
795   return Chain;
796 }
797 
798 SDValue
799 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
800   // VASTART stores the address of the VarArgsFrameIndex slot into the
801   // memory location argument.
802   MachineFunction &MF = DAG.getMachineFunction();
803   HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
804   SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
805   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
806   return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
807                       MachinePointerInfo(SV));
808 }
809 
810 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
811   const SDLoc &dl(Op);
812   SDValue LHS = Op.getOperand(0);
813   SDValue RHS = Op.getOperand(1);
814   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
815   MVT ResTy = ty(Op);
816   MVT OpTy = ty(LHS);
817 
818   if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
819     MVT ElemTy = OpTy.getVectorElementType();
820     assert(ElemTy.isScalarInteger());
821     MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
822                                   OpTy.getVectorNumElements());
823     return DAG.getSetCC(dl, ResTy,
824                         DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
825                         DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
826   }
827 
828   // Treat all other vector types as legal.
829   if (ResTy.isVector())
830     return Op;
831 
832   // Comparisons of short integers should use sign-extend, not zero-extend,
833   // since we can represent small negative values in the compare instructions.
834   // The LLVM default is to use zero-extend arbitrarily in these cases.
835   auto isSExtFree = [this](SDValue N) {
836     switch (N.getOpcode()) {
837       case ISD::TRUNCATE: {
838         // A sign-extend of a truncate of a sign-extend is free.
839         SDValue Op = N.getOperand(0);
840         if (Op.getOpcode() != ISD::AssertSext)
841           return false;
842         EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
843         unsigned ThisBW = ty(N).getSizeInBits();
844         unsigned OrigBW = OrigTy.getSizeInBits();
845         // The type that was sign-extended to get the AssertSext must be
846         // narrower than the type of N (so that N has still the same value
847         // as the original).
848         return ThisBW >= OrigBW;
849       }
850       case ISD::LOAD:
851         // We have sign-extended loads.
852         return true;
853     }
854     return false;
855   };
856 
857   if (OpTy == MVT::i8 || OpTy == MVT::i16) {
858     ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
859     bool IsNegative = C && C->getAPIntValue().isNegative();
860     if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
861       return DAG.getSetCC(dl, ResTy,
862                           DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
863                           DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
864   }
865 
866   return SDValue();
867 }
868 
869 SDValue
870 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
871   SDValue PredOp = Op.getOperand(0);
872   SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
873   EVT OpVT = Op1.getValueType();
874   SDLoc DL(Op);
875 
876   if (OpVT == MVT::v2i16) {
877     SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
878     SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
879     SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
880     SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
881     return TR;
882   }
883 
884   return SDValue();
885 }
886 
887 static Constant *convert_i1_to_i8(const Constant *ConstVal) {
888   SmallVector<Constant *, 128> NewConst;
889   const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal);
890   if (!CV)
891     return nullptr;
892 
893   LLVMContext &Ctx = ConstVal->getContext();
894   IRBuilder<> IRB(Ctx);
895   unsigned NumVectorElements = CV->getNumOperands();
896   assert(isPowerOf2_32(NumVectorElements) &&
897          "conversion only supported for pow2 VectorSize!");
898 
899   for (unsigned i = 0; i < NumVectorElements / 8; ++i) {
900     uint8_t x = 0;
901     for (unsigned j = 0; j < 8; ++j) {
902       uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue();
903       x |= y << (7 - j);
904     }
905     assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!");
906     NewConst.push_back(IRB.getInt8(x));
907   }
908   return ConstantVector::get(NewConst);
909 }
910 
911 SDValue
912 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
913   EVT ValTy = Op.getValueType();
914   ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
915   Constant *CVal = nullptr;
916   bool isVTi1Type = false;
917   if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) {
918     Type *CValTy = ConstVal->getType();
919     if (CValTy->isVectorTy() &&
920         CValTy->getVectorElementType()->isIntegerTy(1)) {
921       CVal = convert_i1_to_i8(ConstVal);
922       isVTi1Type = (CVal != nullptr);
923     }
924   }
925   unsigned Align = CPN->getAlignment();
926   bool IsPositionIndependent = isPositionIndependent();
927   unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
928 
929   unsigned Offset = 0;
930   SDValue T;
931   if (CPN->isMachineConstantPoolEntry())
932     T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
933                                   TF);
934   else if (isVTi1Type)
935     T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
936   else
937     T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);
938 
939   assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
940          "Inconsistent target flag encountered");
941 
942   if (IsPositionIndependent)
943     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
944   return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
945 }
946 
947 SDValue
948 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
949   EVT VT = Op.getValueType();
950   int Idx = cast<JumpTableSDNode>(Op)->getIndex();
951   if (isPositionIndependent()) {
952     SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
953     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
954   }
955 
956   SDValue T = DAG.getTargetJumpTable(Idx, VT);
957   return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
958 }
959 
960 SDValue
961 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
962   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
963   MachineFunction &MF = DAG.getMachineFunction();
964   MachineFrameInfo &MFI = MF.getFrameInfo();
965   MFI.setReturnAddressIsTaken(true);
966 
967   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
968     return SDValue();
969 
970   EVT VT = Op.getValueType();
971   SDLoc dl(Op);
972   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
973   if (Depth) {
974     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
975     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
976     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
977                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
978                        MachinePointerInfo());
979   }
980 
981   // Return LR, which contains the return address. Mark it an implicit live-in.
982   unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
983   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
984 }
985 
986 SDValue
987 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
988   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
989   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
990   MFI.setFrameAddressIsTaken(true);
991 
992   EVT VT = Op.getValueType();
993   SDLoc dl(Op);
994   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
995   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
996                                          HRI.getFrameRegister(), VT);
997   while (Depth--)
998     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
999                             MachinePointerInfo());
1000   return FrameAddr;
1001 }
1002 
1003 SDValue
1004 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1005   SDLoc dl(Op);
1006   return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1007 }
1008 
1009 SDValue
1010 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1011   SDLoc dl(Op);
1012   auto *GAN = cast<GlobalAddressSDNode>(Op);
1013   auto PtrVT = getPointerTy(DAG.getDataLayout());
1014   auto *GV = GAN->getGlobal();
1015   int64_t Offset = GAN->getOffset();
1016 
1017   auto &HLOF = *HTM.getObjFileLowering();
1018   Reloc::Model RM = HTM.getRelocationModel();
1019 
1020   if (RM == Reloc::Static) {
1021     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1022     const GlobalObject *GO = GV->getBaseObject();
1023     if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1024       return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1025     return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1026   }
1027 
1028   bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1029   if (UsePCRel) {
1030     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1031                                             HexagonII::MO_PCREL);
1032     return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1033   }
1034 
1035   // Use GOT index.
1036   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1037   SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1038   SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1039   return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1040 }
1041 
1042 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1043 SDValue
1044 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1045   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1046   SDLoc dl(Op);
1047   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1048 
1049   Reloc::Model RM = HTM.getRelocationModel();
1050   if (RM == Reloc::Static) {
1051     SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1052     return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1053   }
1054 
1055   SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1056   return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1057 }
1058 
1059 SDValue
1060 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1061       const {
1062   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1063   SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1064                                                HexagonII::MO_PCREL);
1065   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1066 }
1067 
1068 SDValue
1069 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1070       GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1071       unsigned char OperandFlags) const {
1072   MachineFunction &MF = DAG.getMachineFunction();
1073   MachineFrameInfo &MFI = MF.getFrameInfo();
1074   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1075   SDLoc dl(GA);
1076   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1077                                            GA->getValueType(0),
1078                                            GA->getOffset(),
1079                                            OperandFlags);
1080   // Create Operands for the call.The Operands should have the following:
1081   // 1. Chain SDValue
1082   // 2. Callee which in this case is the Global address value.
1083   // 3. Registers live into the call.In this case its R0, as we
1084   //    have just one argument to be passed.
1085   // 4. Glue.
1086   // Note: The order is important.
1087 
1088   const auto &HRI = *Subtarget.getRegisterInfo();
1089   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1090   assert(Mask && "Missing call preserved mask for calling convention");
1091   SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1092                     DAG.getRegisterMask(Mask), Glue };
1093   Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1094 
1095   // Inform MFI that function has calls.
1096   MFI.setAdjustsStack(true);
1097 
1098   Glue = Chain.getValue(1);
1099   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1100 }
1101 
1102 //
1103 // Lower using the intial executable model for TLS addresses
1104 //
1105 SDValue
1106 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1107       SelectionDAG &DAG) const {
1108   SDLoc dl(GA);
1109   int64_t Offset = GA->getOffset();
1110   auto PtrVT = getPointerTy(DAG.getDataLayout());
1111 
1112   // Get the thread pointer.
1113   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1114 
1115   bool IsPositionIndependent = isPositionIndependent();
1116   unsigned char TF =
1117       IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1118 
1119   // First generate the TLS symbol address
1120   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1121                                            Offset, TF);
1122 
1123   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1124 
1125   if (IsPositionIndependent) {
1126     // Generate the GOT pointer in case of position independent code
1127     SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1128 
1129     // Add the TLS Symbol address to GOT pointer.This gives
1130     // GOT relative relocation for the symbol.
1131     Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1132   }
1133 
1134   // Load the offset value for TLS symbol.This offset is relative to
1135   // thread pointer.
1136   SDValue LoadOffset =
1137       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1138 
1139   // Address of the thread local variable is the add of thread
1140   // pointer and the offset of the variable.
1141   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1142 }
1143 
1144 //
1145 // Lower using the local executable model for TLS addresses
1146 //
1147 SDValue
1148 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1149       SelectionDAG &DAG) const {
1150   SDLoc dl(GA);
1151   int64_t Offset = GA->getOffset();
1152   auto PtrVT = getPointerTy(DAG.getDataLayout());
1153 
1154   // Get the thread pointer.
1155   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1156   // Generate the TLS symbol address
1157   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1158                                            HexagonII::MO_TPREL);
1159   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1160 
1161   // Address of the thread local variable is the add of thread
1162   // pointer and the offset of the variable.
1163   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1164 }
1165 
1166 //
1167 // Lower using the general dynamic model for TLS addresses
1168 //
1169 SDValue
1170 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1171       SelectionDAG &DAG) const {
1172   SDLoc dl(GA);
1173   int64_t Offset = GA->getOffset();
1174   auto PtrVT = getPointerTy(DAG.getDataLayout());
1175 
1176   // First generate the TLS symbol address
1177   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1178                                            HexagonII::MO_GDGOT);
1179 
1180   // Then, generate the GOT pointer
1181   SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1182 
1183   // Add the TLS symbol and the GOT pointer
1184   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1185   SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1186 
1187   // Copy over the argument to R0
1188   SDValue InFlag;
1189   Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1190   InFlag = Chain.getValue(1);
1191 
1192   unsigned Flags =
1193       static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
1194           ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1195           : HexagonII::MO_GDPLT;
1196 
1197   return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
1198                            Hexagon::R0, Flags);
1199 }
1200 
1201 //
1202 // Lower TLS addresses.
1203 //
1204 // For now for dynamic models, we only support the general dynamic model.
1205 //
1206 SDValue
1207 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1208       SelectionDAG &DAG) const {
1209   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1210 
1211   switch (HTM.getTLSModel(GA->getGlobal())) {
1212     case TLSModel::GeneralDynamic:
1213     case TLSModel::LocalDynamic:
1214       return LowerToTLSGeneralDynamicModel(GA, DAG);
1215     case TLSModel::InitialExec:
1216       return LowerToTLSInitialExecModel(GA, DAG);
1217     case TLSModel::LocalExec:
1218       return LowerToTLSLocalExecModel(GA, DAG);
1219   }
1220   llvm_unreachable("Bogus TLS model");
1221 }
1222 
1223 //===----------------------------------------------------------------------===//
1224 // TargetLowering Implementation
1225 //===----------------------------------------------------------------------===//
1226 
1227 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1228                                              const HexagonSubtarget &ST)
1229     : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1230       Subtarget(ST) {
1231   auto &HRI = *Subtarget.getRegisterInfo();
1232 
1233   setPrefLoopAlignment(4);
1234   setPrefFunctionAlignment(4);
1235   setMinFunctionAlignment(2);
1236   setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1237   setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1238   setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1239 
1240   setMaxAtomicSizeInBitsSupported(64);
1241   setMinCmpXchgSizeInBits(32);
1242 
1243   if (EnableHexSDNodeSched)
1244     setSchedulingPreference(Sched::VLIW);
1245   else
1246     setSchedulingPreference(Sched::Source);
1247 
1248   // Limits for inline expansion of memcpy/memmove
1249   MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1250   MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1251   MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1252   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1253   MaxStoresPerMemset = MaxStoresPerMemsetCL;
1254   MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1255 
1256   //
1257   // Set up register classes.
1258   //
1259 
1260   addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
1261   addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
1262   addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
1263   addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
1264   addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
1265   addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1266   addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
1267   addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
1268   addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
1269   addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1270   addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1271 
1272   addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1273   addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1274 
1275   //
1276   // Handling of scalar operations.
1277   //
1278   // All operations default to "legal", except:
1279   // - indexed loads and stores (pre-/post-incremented),
1280   // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1281   //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1282   //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1283   //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1284   // which default to "expand" for at least one type.
1285 
1286   // Misc operations.
1287   setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
1288   setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
1289   setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
1290   setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
1291   setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
1292   setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
1293   setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
1294   setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
1295   setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
1296   setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
1297   setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
1298   setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
1299   setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
1300   setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
1301   setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
1302   setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);
1303 
1304   // Custom legalize GlobalAddress nodes into CONST32.
1305   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1306   setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
1307   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
1308 
1309   // Hexagon needs to optimize cases with negative constants.
1310   setOperationAction(ISD::SETCC, MVT::i8,    Custom);
1311   setOperationAction(ISD::SETCC, MVT::i16,   Custom);
1312   setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
1313   setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1314 
1315   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1316   setOperationAction(ISD::VASTART, MVT::Other, Custom);
1317   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
1318   setOperationAction(ISD::VAARG,   MVT::Other, Expand);
1319   setOperationAction(ISD::VACOPY,  MVT::Other, Expand);
1320 
1321   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1322   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1323   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1324 
1325   if (EmitJumpTables)
1326     setMinimumJumpTableEntries(MinimumJumpTables);
1327   else
1328     setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1329   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1330 
1331   setOperationAction(ISD::ABS, MVT::i32, Legal);
1332   setOperationAction(ISD::ABS, MVT::i64, Legal);
1333 
1334   // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1335   // but they only operate on i64.
1336   for (MVT VT : MVT::integer_valuetypes()) {
1337     setOperationAction(ISD::UADDO,    VT, Custom);
1338     setOperationAction(ISD::USUBO,    VT, Custom);
1339     setOperationAction(ISD::SADDO,    VT, Expand);
1340     setOperationAction(ISD::SSUBO,    VT, Expand);
1341     setOperationAction(ISD::ADDCARRY, VT, Expand);
1342     setOperationAction(ISD::SUBCARRY, VT, Expand);
1343   }
1344   setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
1345   setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
1346 
1347   setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
1348   setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1349   setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
1350   setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1351 
1352   // Popcount can count # of 1s in i64 but returns i32.
1353   setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
1354   setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1355   setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1356   setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1357 
1358   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1359   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1360   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1361   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1362 
1363   setOperationAction(ISD::FSHL, MVT::i32, Legal);
1364   setOperationAction(ISD::FSHL, MVT::i64, Legal);
1365   setOperationAction(ISD::FSHR, MVT::i32, Legal);
1366   setOperationAction(ISD::FSHR, MVT::i64, Legal);
1367 
1368   for (unsigned IntExpOp :
1369        {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
1370         ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
1371         ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1372         ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1373     for (MVT VT : MVT::integer_valuetypes())
1374       setOperationAction(IntExpOp, VT, Expand);
1375   }
1376 
1377   for (unsigned FPExpOp :
1378        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1379         ISD::FPOW, ISD::FCOPYSIGN}) {
1380     for (MVT VT : MVT::fp_valuetypes())
1381       setOperationAction(FPExpOp, VT, Expand);
1382   }
1383 
1384   // No extending loads from i32.
1385   for (MVT VT : MVT::integer_valuetypes()) {
1386     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1387     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1388     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
1389   }
1390   // Turn FP truncstore into trunc + store.
1391   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1392   // Turn FP extload into load/fpextend.
1393   for (MVT VT : MVT::fp_valuetypes())
1394     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1395 
1396   // Expand BR_CC and SELECT_CC for all integer and fp types.
1397   for (MVT VT : MVT::integer_valuetypes()) {
1398     setOperationAction(ISD::BR_CC,     VT, Expand);
1399     setOperationAction(ISD::SELECT_CC, VT, Expand);
1400   }
1401   for (MVT VT : MVT::fp_valuetypes()) {
1402     setOperationAction(ISD::BR_CC,     VT, Expand);
1403     setOperationAction(ISD::SELECT_CC, VT, Expand);
1404   }
1405   setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1406 
1407   //
1408   // Handling of vector operations.
1409   //
1410 
1411   // Set the action for vector operations to "expand", then override it with
1412   // either "custom" or "legal" for specific cases.
1413   static const unsigned VectExpOps[] = {
1414     // Integer arithmetic:
1415     ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
1416     ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
1417     ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1418     // Logical/bit:
1419     ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
1420     ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,
1421     // Floating point arithmetic/math functions:
1422     ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
1423     ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
1424     ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
1425     ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
1426     ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
1427     ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1428     // Misc:
1429     ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
1430     // Vector:
1431     ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
1432     ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
1433     ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
1434     ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE
1435   };
1436 
1437   for (MVT VT : MVT::vector_valuetypes()) {
1438     for (unsigned VectExpOp : VectExpOps)
1439       setOperationAction(VectExpOp, VT, Expand);
1440 
1441     // Expand all extending loads and truncating stores:
1442     for (MVT TargetVT : MVT::vector_valuetypes()) {
1443       if (TargetVT == VT)
1444         continue;
1445       setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1446       setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1447       setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1448       setTruncStoreAction(VT, TargetVT, Expand);
1449     }
1450 
1451     // Normalize all inputs to SELECT to be vectors of i32.
1452     if (VT.getVectorElementType() != MVT::i32) {
1453       MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1454       setOperationAction(ISD::SELECT, VT, Promote);
1455       AddPromotedToType(ISD::SELECT, VT, VT32);
1456     }
1457     setOperationAction(ISD::SRA, VT, Custom);
1458     setOperationAction(ISD::SHL, VT, Custom);
1459     setOperationAction(ISD::SRL, VT, Custom);
1460   }
1461 
1462   // Extending loads from (native) vectors of i8 into (native) vectors of i16
1463   // are legal.
1464   setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
1465   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1466   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1467   setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
1468   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1469   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1470 
1471   // Types natively supported:
1472   for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1473                        MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1474     setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
1475     setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1476     setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
1477     setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
1478     setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
1479     setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
1480 
1481     setOperationAction(ISD::ADD, NativeVT, Legal);
1482     setOperationAction(ISD::SUB, NativeVT, Legal);
1483     setOperationAction(ISD::MUL, NativeVT, Legal);
1484     setOperationAction(ISD::AND, NativeVT, Legal);
1485     setOperationAction(ISD::OR,  NativeVT, Legal);
1486     setOperationAction(ISD::XOR, NativeVT, Legal);
1487   }
1488 
1489   // Custom lower unaligned loads.
1490   // Also, for both loads and stores, verify the alignment of the address
1491   // in case it is a compile-time constant. This is a usability feature to
1492   // provide a meaningful error message to users.
1493   for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1494                  MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1495     setOperationAction(ISD::LOAD,  VT, Custom);
1496     setOperationAction(ISD::STORE, VT, Custom);
1497   }
1498 
1499   for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v2i32, MVT::v4i16, MVT::v2i32}) {
1500     setCondCodeAction(ISD::SETLT,  VT, Expand);
1501     setCondCodeAction(ISD::SETLE,  VT, Expand);
1502     setCondCodeAction(ISD::SETULT, VT, Expand);
1503     setCondCodeAction(ISD::SETULE, VT, Expand);
1504   }
1505 
1506   // Custom-lower bitcasts from i8 to v8i1.
1507   setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
1508   setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
1509   setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
1510   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
1511   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1512   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
1513 
1514   // V5+.
1515   setOperationAction(ISD::FMA,  MVT::f64, Expand);
1516   setOperationAction(ISD::FADD, MVT::f64, Expand);
1517   setOperationAction(ISD::FSUB, MVT::f64, Expand);
1518   setOperationAction(ISD::FMUL, MVT::f64, Expand);
1519 
1520   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1521   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1522 
1523   setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
1524   setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
1525   setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1526   setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
1527   setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
1528   setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1529   setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
1530   setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
1531   setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1532   setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
1533   setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
1534   setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1535 
1536   // Handling of indexed loads/stores: default is "expand".
1537   //
1538   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1539                  MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1540     setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1541     setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1542   }
1543 
1544   // Subtarget-specific operation actions.
1545   //
1546   if (Subtarget.hasV60Ops()) {
1547     setOperationAction(ISD::ROTL, MVT::i32, Legal);
1548     setOperationAction(ISD::ROTL, MVT::i64, Legal);
1549     setOperationAction(ISD::ROTR, MVT::i32, Legal);
1550     setOperationAction(ISD::ROTR, MVT::i64, Legal);
1551   }
1552   if (Subtarget.hasV66Ops()) {
1553     setOperationAction(ISD::FADD, MVT::f64, Legal);
1554     setOperationAction(ISD::FSUB, MVT::f64, Legal);
1555   }
1556 
1557   if (Subtarget.useHVXOps())
1558     initializeHVXLowering();
1559 
1560   computeRegisterProperties(&HRI);
1561 
1562   //
1563   // Library calls for unsupported operations
1564   //
1565   bool FastMath  = EnableFastMath;
1566 
1567   setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1568   setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1569   setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1570   setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1571   setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1572   setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1573   setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1574   setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1575 
1576   setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1577   setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1578   setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1579   setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1580   setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1581   setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1582 
1583   // This is the only fast library function for sqrtd.
1584   if (FastMath)
1585     setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1586 
1587   // Prefix is: nothing  for "slow-math",
1588   //            "fast2_" for V5+ fast-math double-precision
1589   // (actually, keep fast-math and fast-math2 separate for now)
1590   if (FastMath) {
1591     setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1592     setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1593     setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1594     setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1595     setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1596   } else {
1597     setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1598     setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1599     setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1600     setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1601     setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1602   }
1603 
1604   if (FastMath)
1605     setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1606   else
1607     setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1608 
1609   // These cause problems when the shift amount is non-constant.
1610   setLibcallName(RTLIB::SHL_I128, nullptr);
1611   setLibcallName(RTLIB::SRL_I128, nullptr);
1612   setLibcallName(RTLIB::SRA_I128, nullptr);
1613 }
1614 
1615 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1616   switch ((HexagonISD::NodeType)Opcode) {
1617   case HexagonISD::ADDC:          return "HexagonISD::ADDC";
1618   case HexagonISD::SUBC:          return "HexagonISD::SUBC";
1619   case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
1620   case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
1621   case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
1622   case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
1623   case HexagonISD::CALL:          return "HexagonISD::CALL";
1624   case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
1625   case HexagonISD::CALLR:         return "HexagonISD::CALLR";
1626   case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
1627   case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
1628   case HexagonISD::CONST32:       return "HexagonISD::CONST32";
1629   case HexagonISD::CP:            return "HexagonISD::CP";
1630   case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
1631   case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
1632   case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
1633   case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
1634   case HexagonISD::INSERT:        return "HexagonISD::INSERT";
1635   case HexagonISD::JT:            return "HexagonISD::JT";
1636   case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
1637   case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
1638   case HexagonISD::VASL:          return "HexagonISD::VASL";
1639   case HexagonISD::VASR:          return "HexagonISD::VASR";
1640   case HexagonISD::VLSR:          return "HexagonISD::VLSR";
1641   case HexagonISD::VSPLAT:        return "HexagonISD::VSPLAT";
1642   case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
1643   case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
1644   case HexagonISD::VROR:          return "HexagonISD::VROR";
1645   case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
1646   case HexagonISD::VZERO:         return "HexagonISD::VZERO";
1647   case HexagonISD::VSPLATW:       return "HexagonISD::VSPLATW";
1648   case HexagonISD::D2P:           return "HexagonISD::D2P";
1649   case HexagonISD::P2D:           return "HexagonISD::P2D";
1650   case HexagonISD::V2Q:           return "HexagonISD::V2Q";
1651   case HexagonISD::Q2V:           return "HexagonISD::Q2V";
1652   case HexagonISD::QCAT:          return "HexagonISD::QCAT";
1653   case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
1654   case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
1655   case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
1656   case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
1657   case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
1658   case HexagonISD::OP_END:        break;
1659   }
1660   return nullptr;
1661 }
1662 
1663 void
1664 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
1665       unsigned NeedAlign) const {
1666   auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1667   if (!CA)
1668     return;
1669   unsigned Addr = CA->getZExtValue();
1670   unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
1671   if (HaveAlign < NeedAlign) {
1672     std::string ErrMsg;
1673     raw_string_ostream O(ErrMsg);
1674     O << "Misaligned constant address: " << format_hex(Addr, 10)
1675       << " has alignment " << HaveAlign
1676       << ", but the memory access requires " << NeedAlign;
1677     if (DebugLoc DL = dl.getDebugLoc())
1678       DL.print(O << ", at ");
1679     report_fatal_error(O.str());
1680   }
1681 }
1682 
1683 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
1684 // intrinsic.
1685 static bool isBrevLdIntrinsic(const Value *Inst) {
1686   unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
1687   return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
1688           ID == Intrinsic::hexagon_L2_loadri_pbr ||
1689           ID == Intrinsic::hexagon_L2_loadrh_pbr ||
1690           ID == Intrinsic::hexagon_L2_loadruh_pbr ||
1691           ID == Intrinsic::hexagon_L2_loadrb_pbr ||
1692           ID == Intrinsic::hexagon_L2_loadrub_pbr);
1693 }
1694 
1695 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
1696 // instruction. So far we only handle bitcast, extract value and bit reverse
1697 // load intrinsic instructions. Should we handle CGEP ?
1698 static Value *getBrevLdObject(Value *V) {
1699   if (Operator::getOpcode(V) == Instruction::ExtractValue ||
1700       Operator::getOpcode(V) == Instruction::BitCast)
1701     V = cast<Operator>(V)->getOperand(0);
1702   else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
1703     V = cast<Instruction>(V)->getOperand(0);
1704   return V;
1705 }
1706 
1707 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
1708 // a back edge. If the back edge comes from the intrinsic itself, the incoming
1709 // edge is returned.
1710 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
1711   const BasicBlock *Parent = PN->getParent();
1712   int Idx = -1;
1713   for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1714     BasicBlock *Blk = PN->getIncomingBlock(i);
1715     // Determine if the back edge is originated from intrinsic.
1716     if (Blk == Parent) {
1717       Value *BackEdgeVal = PN->getIncomingValue(i);
1718       Value *BaseVal;
1719       // Loop over till we return the same Value or we hit the IntrBaseVal.
1720       do {
1721         BaseVal = BackEdgeVal;
1722         BackEdgeVal = getBrevLdObject(BackEdgeVal);
1723       } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
1724       // If the getBrevLdObject returns IntrBaseVal, we should return the
1725       // incoming edge.
1726       if (IntrBaseVal == BackEdgeVal)
1727         continue;
1728       Idx = i;
1729       break;
1730     } else // Set the node to incoming edge.
1731       Idx = i;
1732   }
1733   assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
1734   return PN->getIncomingValue(Idx);
1735 }
1736 
1737 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
1738 // pointer points to, for the bit-reverse load intrinsic. Setting this to
1739 // memoperand might help alias analysis to figure out the dependencies.
1740 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
1741   Value *IntrBaseVal = V;
1742   Value *BaseVal;
1743   // Loop over till we return the same Value, implies we either figure out
1744   // the object or we hit a PHI
1745   do {
1746     BaseVal = V;
1747     V = getBrevLdObject(V);
1748   } while (BaseVal != V);
1749 
1750   // Identify the object from PHINode.
1751   if (const PHINode *PN = dyn_cast<PHINode>(V))
1752     return returnEdge(PN, IntrBaseVal);
1753   // For non PHI nodes, the object is the last value returned by getBrevLdObject
1754   else
1755     return V;
1756 }
1757 
1758 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1759 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1760 /// true and store the intrinsic information into the IntrinsicInfo that was
1761 /// passed to the function.
1762 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1763                                                const CallInst &I,
1764                                                MachineFunction &MF,
1765                                                unsigned Intrinsic) const {
1766   switch (Intrinsic) {
1767   case Intrinsic::hexagon_L2_loadrd_pbr:
1768   case Intrinsic::hexagon_L2_loadri_pbr:
1769   case Intrinsic::hexagon_L2_loadrh_pbr:
1770   case Intrinsic::hexagon_L2_loadruh_pbr:
1771   case Intrinsic::hexagon_L2_loadrb_pbr:
1772   case Intrinsic::hexagon_L2_loadrub_pbr: {
1773     Info.opc = ISD::INTRINSIC_W_CHAIN;
1774     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
1775     auto &Cont = I.getCalledFunction()->getParent()->getContext();
1776     // The intrinsic function call is of the form { ElTy, i8* }
1777     // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
1778     // should be derived from ElTy.
1779     Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
1780     Info.memVT = MVT::getVT(ElTy);
1781     llvm::Value *BasePtrVal = I.getOperand(0);
1782     Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
1783     // The offset value comes through Modifier register. For now, assume the
1784     // offset is 0.
1785     Info.offset = 0;
1786     Info.align = DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont));
1787     Info.flags = MachineMemOperand::MOLoad;
1788     return true;
1789   }
1790   case Intrinsic::hexagon_V6_vgathermw:
1791   case Intrinsic::hexagon_V6_vgathermw_128B:
1792   case Intrinsic::hexagon_V6_vgathermh:
1793   case Intrinsic::hexagon_V6_vgathermh_128B:
1794   case Intrinsic::hexagon_V6_vgathermhw:
1795   case Intrinsic::hexagon_V6_vgathermhw_128B:
1796   case Intrinsic::hexagon_V6_vgathermwq:
1797   case Intrinsic::hexagon_V6_vgathermwq_128B:
1798   case Intrinsic::hexagon_V6_vgathermhq:
1799   case Intrinsic::hexagon_V6_vgathermhq_128B:
1800   case Intrinsic::hexagon_V6_vgathermhwq:
1801   case Intrinsic::hexagon_V6_vgathermhwq_128B: {
1802     const Module &M = *I.getParent()->getParent()->getParent();
1803     Info.opc = ISD::INTRINSIC_W_CHAIN;
1804     Type *VecTy = I.getArgOperand(1)->getType();
1805     Info.memVT = MVT::getVT(VecTy);
1806     Info.ptrVal = I.getArgOperand(0);
1807     Info.offset = 0;
1808     Info.align = M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8;
1809     Info.flags = MachineMemOperand::MOLoad |
1810                  MachineMemOperand::MOStore |
1811                  MachineMemOperand::MOVolatile;
1812     return true;
1813   }
1814   default:
1815     break;
1816   }
1817   return false;
1818 }
1819 
1820 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1821   return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
1822 }
1823 
1824 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1825   if (!VT1.isSimple() || !VT2.isSimple())
1826     return false;
1827   return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
1828 }
1829 
1830 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
1831   return isOperationLegalOrCustom(ISD::FMA, VT);
1832 }
1833 
1834 // Should we expand the build vector with shuffles?
1835 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
1836       unsigned DefinedValues) const {
1837   return false;
1838 }
1839 
1840 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
1841                                                EVT VT) const {
1842   return true;
1843 }
1844 
1845 TargetLoweringBase::LegalizeTypeAction
1846 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
1847   if (VT.getVectorNumElements() == 1)
1848     return TargetLoweringBase::TypeScalarizeVector;
1849 
1850   // Always widen vectors of i1.
1851   MVT ElemTy = VT.getVectorElementType();
1852   if (ElemTy == MVT::i1)
1853     return TargetLoweringBase::TypeWidenVector;
1854 
1855   if (Subtarget.useHVXOps()) {
1856     // If the size of VT is at least half of the vector length,
1857     // widen the vector. Note: the threshold was not selected in
1858     // any scientific way.
1859     ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
1860     if (llvm::find(Tys, ElemTy) != Tys.end()) {
1861       unsigned HwWidth = 8*Subtarget.getVectorLength();
1862       unsigned VecWidth = VT.getSizeInBits();
1863       if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
1864         return TargetLoweringBase::TypeWidenVector;
1865     }
1866   }
1867   return TargetLoweringBase::TypeSplitVector;
1868 }
1869 
1870 std::pair<SDValue, int>
1871 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
1872   if (Addr.getOpcode() == ISD::ADD) {
1873     SDValue Op1 = Addr.getOperand(1);
1874     if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
1875       return { Addr.getOperand(0), CN->getSExtValue() };
1876   }
1877   return { Addr, 0 };
1878 }
1879 
1880 // Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
1881 // to select data from, V3 is the permutation.
1882 SDValue
1883 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
1884       const {
1885   const auto *SVN = cast<ShuffleVectorSDNode>(Op);
1886   ArrayRef<int> AM = SVN->getMask();
1887   assert(AM.size() <= 8 && "Unexpected shuffle mask");
1888   unsigned VecLen = AM.size();
1889 
1890   MVT VecTy = ty(Op);
1891   assert(!Subtarget.isHVXVectorType(VecTy, true) &&
1892          "HVX shuffles should be legal");
1893   assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
1894 
1895   SDValue Op0 = Op.getOperand(0);
1896   SDValue Op1 = Op.getOperand(1);
1897   const SDLoc &dl(Op);
1898 
1899   // If the inputs are not the same as the output, bail. This is not an
1900   // error situation, but complicates the handling and the default expansion
1901   // (into BUILD_VECTOR) should be adequate.
1902   if (ty(Op0) != VecTy || ty(Op1) != VecTy)
1903     return SDValue();
1904 
1905   // Normalize the mask so that the first non-negative index comes from
1906   // the first operand.
1907   SmallVector<int,8> Mask(AM.begin(), AM.end());
1908   unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
1909   if (F == AM.size())
1910     return DAG.getUNDEF(VecTy);
1911   if (AM[F] >= int(VecLen)) {
1912     ShuffleVectorSDNode::commuteMask(Mask);
1913     std::swap(Op0, Op1);
1914   }
1915 
1916   // Express the shuffle mask in terms of bytes.
1917   SmallVector<int,8> ByteMask;
1918   unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
1919   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1920     int M = Mask[i];
1921     if (M < 0) {
1922       for (unsigned j = 0; j != ElemBytes; ++j)
1923         ByteMask.push_back(-1);
1924     } else {
1925       for (unsigned j = 0; j != ElemBytes; ++j)
1926         ByteMask.push_back(M*ElemBytes + j);
1927     }
1928   }
1929   assert(ByteMask.size() <= 8);
1930 
1931   // All non-undef (non-negative) indexes are well within [0..127], so they
1932   // fit in a single byte. Build two 64-bit words:
1933   // - MaskIdx where each byte is the corresponding index (for non-negative
1934   //   indexes), and 0xFF for negative indexes, and
1935   // - MaskUnd that has 0xFF for each negative index.
1936   uint64_t MaskIdx = 0;
1937   uint64_t MaskUnd = 0;
1938   for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
1939     unsigned S = 8*i;
1940     uint64_t M = ByteMask[i] & 0xFF;
1941     if (M == 0xFF)
1942       MaskUnd |= M << S;
1943     MaskIdx |= M << S;
1944   }
1945 
1946   if (ByteMask.size() == 4) {
1947     // Identity.
1948     if (MaskIdx == (0x03020100 | MaskUnd))
1949       return Op0;
1950     // Byte swap.
1951     if (MaskIdx == (0x00010203 | MaskUnd)) {
1952       SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
1953       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
1954       return DAG.getBitcast(VecTy, T1);
1955     }
1956 
1957     // Byte packs.
1958     SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
1959                                    typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
1960     if (MaskIdx == (0x06040200 | MaskUnd))
1961       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
1962     if (MaskIdx == (0x07050301 | MaskUnd))
1963       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
1964 
1965     SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
1966                                    typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
1967     if (MaskIdx == (0x02000604 | MaskUnd))
1968       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
1969     if (MaskIdx == (0x03010705 | MaskUnd))
1970       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
1971   }
1972 
1973   if (ByteMask.size() == 8) {
1974     // Identity.
1975     if (MaskIdx == (0x0706050403020100ull | MaskUnd))
1976       return Op0;
1977     // Byte swap.
1978     if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
1979       SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
1980       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
1981       return DAG.getBitcast(VecTy, T1);
1982     }
1983 
1984     // Halfword picks.
1985     if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
1986       return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
1987     if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
1988       return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
1989     if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
1990       return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
1991     if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
1992       return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
1993     if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
1994       VectorPair P = opSplit(Op0, dl, DAG);
1995       return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
1996     }
1997 
1998     // Byte packs.
1999     if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2000       return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2001     if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2002       return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2003   }
2004 
2005   return SDValue();
2006 }
2007 
2008 // Create a Hexagon-specific node for shifting a vector by an integer.
2009 SDValue
2010 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2011       const {
2012   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
2013     if (SDValue S = BVN->getSplatValue()) {
2014       unsigned NewOpc;
2015       switch (Op.getOpcode()) {
2016         case ISD::SHL:
2017           NewOpc = HexagonISD::VASL;
2018           break;
2019         case ISD::SRA:
2020           NewOpc = HexagonISD::VASR;
2021           break;
2022         case ISD::SRL:
2023           NewOpc = HexagonISD::VLSR;
2024           break;
2025         default:
2026           llvm_unreachable("Unexpected shift opcode");
2027       }
2028       return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
2029     }
2030   }
2031 
2032   return SDValue();
2033 }
2034 
2035 SDValue
2036 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2037   return getVectorShiftByInt(Op, DAG);
2038 }
2039 
2040 SDValue
2041 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2042   if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2043     return Op;
2044   return SDValue();
2045 }
2046 
2047 SDValue
2048 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2049   MVT ResTy = ty(Op);
2050   SDValue InpV = Op.getOperand(0);
2051   MVT InpTy = ty(InpV);
2052   assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2053   const SDLoc &dl(Op);
2054 
2055   // Handle conversion from i8 to v8i1.
2056   if (ResTy == MVT::v8i1) {
2057     SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2058     SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2059     return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2060   }
2061 
2062   return SDValue();
2063 }
2064 
2065 bool
2066 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2067       MVT VecTy, SelectionDAG &DAG,
2068       MutableArrayRef<ConstantInt*> Consts) const {
2069   MVT ElemTy = VecTy.getVectorElementType();
2070   unsigned ElemWidth = ElemTy.getSizeInBits();
2071   IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2072   bool AllConst = true;
2073 
2074   for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2075     SDValue V = Values[i];
2076     if (V.isUndef()) {
2077       Consts[i] = ConstantInt::get(IntTy, 0);
2078       continue;
2079     }
2080     // Make sure to always cast to IntTy.
2081     if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2082       const ConstantInt *CI = CN->getConstantIntValue();
2083       Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2084     } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2085       const ConstantFP *CF = CN->getConstantFPValue();
2086       APInt A = CF->getValueAPF().bitcastToAPInt();
2087       Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2088     } else {
2089       AllConst = false;
2090     }
2091   }
2092   return AllConst;
2093 }
2094 
2095 SDValue
2096 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2097                                      MVT VecTy, SelectionDAG &DAG) const {
2098   MVT ElemTy = VecTy.getVectorElementType();
2099   assert(VecTy.getVectorNumElements() == Elem.size());
2100 
2101   SmallVector<ConstantInt*,4> Consts(Elem.size());
2102   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2103 
2104   unsigned First, Num = Elem.size();
2105   for (First = 0; First != Num; ++First)
2106     if (!isUndef(Elem[First]))
2107       break;
2108   if (First == Num)
2109     return DAG.getUNDEF(VecTy);
2110 
2111   if (AllConst &&
2112       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2113     return getZero(dl, VecTy, DAG);
2114 
2115   if (ElemTy == MVT::i16) {
2116     assert(Elem.size() == 2);
2117     if (AllConst) {
2118       uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2119                    Consts[1]->getZExtValue() << 16;
2120       return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
2121     }
2122     SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
2123                          {Elem[1], Elem[0]}, DAG);
2124     return DAG.getBitcast(MVT::v2i16, N);
2125   }
2126 
2127   if (ElemTy == MVT::i8) {
2128     // First try generating a constant.
2129     if (AllConst) {
2130       int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2131                   (Consts[1]->getZExtValue() & 0xFF) << 8 |
2132                   (Consts[1]->getZExtValue() & 0xFF) << 16 |
2133                   Consts[2]->getZExtValue() << 24;
2134       return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2135     }
2136 
2137     // Then try splat.
2138     bool IsSplat = true;
2139     for (unsigned i = 0; i != Num; ++i) {
2140       if (i == First)
2141         continue;
2142       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2143         continue;
2144       IsSplat = false;
2145       break;
2146     }
2147     if (IsSplat) {
2148       // Legalize the operand to VSPLAT.
2149       SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2150       return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2151     }
2152 
2153     // Generate
2154     //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2155     //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2156     assert(Elem.size() == 4);
2157     SDValue Vs[4];
2158     for (unsigned i = 0; i != 4; ++i) {
2159       Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2160       Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2161     }
2162     SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2163     SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2164     SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2165     SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2166     SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2167 
2168     SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2169     return DAG.getBitcast(MVT::v4i8, R);
2170   }
2171 
2172 #ifndef NDEBUG
2173   dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
2174 #endif
2175   llvm_unreachable("Unexpected vector element type");
2176 }
2177 
2178 SDValue
2179 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2180                                      MVT VecTy, SelectionDAG &DAG) const {
2181   MVT ElemTy = VecTy.getVectorElementType();
2182   assert(VecTy.getVectorNumElements() == Elem.size());
2183 
2184   SmallVector<ConstantInt*,8> Consts(Elem.size());
2185   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2186 
2187   unsigned First, Num = Elem.size();
2188   for (First = 0; First != Num; ++First)
2189     if (!isUndef(Elem[First]))
2190       break;
2191   if (First == Num)
2192     return DAG.getUNDEF(VecTy);
2193 
2194   if (AllConst &&
2195       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2196     return getZero(dl, VecTy, DAG);
2197 
2198   // First try splat if possible.
2199   if (ElemTy == MVT::i16) {
2200     bool IsSplat = true;
2201     for (unsigned i = 0; i != Num; ++i) {
2202       if (i == First)
2203         continue;
2204       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2205         continue;
2206       IsSplat = false;
2207       break;
2208     }
2209     if (IsSplat) {
2210       // Legalize the operand to VSPLAT.
2211       SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2212       return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2213     }
2214   }
2215 
2216   // Then try constant.
2217   if (AllConst) {
2218     uint64_t Val = 0;
2219     unsigned W = ElemTy.getSizeInBits();
2220     uint64_t Mask = (ElemTy == MVT::i8)  ? 0xFFull
2221                   : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
2222     for (unsigned i = 0; i != Num; ++i)
2223       Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2224     SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2225     return DAG.getBitcast(VecTy, V0);
2226   }
2227 
2228   // Build two 32-bit vectors and concatenate.
2229   MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2230   SDValue L = (ElemTy == MVT::i32)
2231                 ? Elem[0]
2232                 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2233   SDValue H = (ElemTy == MVT::i32)
2234                 ? Elem[1]
2235                 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2236   return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
2237 }
2238 
2239 SDValue
2240 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2241                                      const SDLoc &dl, MVT ValTy, MVT ResTy,
2242                                      SelectionDAG &DAG) const {
2243   MVT VecTy = ty(VecV);
2244   assert(!ValTy.isVector() ||
2245          VecTy.getVectorElementType() == ValTy.getVectorElementType());
2246   unsigned VecWidth = VecTy.getSizeInBits();
2247   unsigned ValWidth = ValTy.getSizeInBits();
2248   unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2249   assert((VecWidth % ElemWidth) == 0);
2250   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
2251 
2252   // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2253   // without any coprocessors).
2254   if (ElemWidth == 1) {
2255     assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
2256     assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2257     // Check if this is an extract of the lowest bit.
2258     if (IdxN) {
2259       // Extracting the lowest bit is a no-op, but it changes the type,
2260       // so it must be kept as an operation to avoid errors related to
2261       // type mismatches.
2262       if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
2263         return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2264     }
2265 
2266     // If the value extracted is a single bit, use tstbit.
2267     if (ValWidth == 1) {
2268       SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2269       SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2270       SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2271       return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2272     }
2273 
2274     // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2275     // a predicate register. The elements of the vector are repeated
2276     // in the register (if necessary) so that the total number is 8.
2277     // The extracted subvector will need to be expanded in such a way.
2278     unsigned Scale = VecWidth / ValWidth;
2279 
2280     // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2281     // position 0.
2282     assert(ty(IdxV) == MVT::i32);
2283     unsigned VecRep = 8 / VecWidth;
2284     SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2285                              DAG.getConstant(8*VecRep, dl, MVT::i32));
2286     SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2287     SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2288     while (Scale > 1) {
2289       // The longest possible subvector is at most 32 bits, so it is always
2290       // contained in the low subregister.
2291       T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
2292       T1 = expandPredicate(T1, dl, DAG);
2293       Scale /= 2;
2294     }
2295 
2296     return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2297   }
2298 
2299   assert(VecWidth == 32 || VecWidth == 64);
2300 
2301   // Cast everything to scalar integer types.
2302   MVT ScalarTy = tyScalar(VecTy);
2303   VecV = DAG.getBitcast(ScalarTy, VecV);
2304 
2305   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2306   SDValue ExtV;
2307 
2308   if (IdxN) {
2309     unsigned Off = IdxN->getZExtValue() * ElemWidth;
2310     if (VecWidth == 64 && ValWidth == 32) {
2311       assert(Off == 0 || Off == 32);
2312       unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
2313       ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
2314     } else if (Off == 0 && (ValWidth % 8) == 0) {
2315       ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2316     } else {
2317       SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2318       // The return type of EXTRACTU must be the same as the type of the
2319       // input vector.
2320       ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2321                          {VecV, WidthV, OffV});
2322     }
2323   } else {
2324     if (ty(IdxV) != MVT::i32)
2325       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2326     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2327                                DAG.getConstant(ElemWidth, dl, MVT::i32));
2328     ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2329                        {VecV, WidthV, OffV});
2330   }
2331 
2332   // Cast ExtV to the requested result type.
2333   ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2334   ExtV = DAG.getBitcast(ResTy, ExtV);
2335   return ExtV;
2336 }
2337 
2338 SDValue
2339 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2340                                     const SDLoc &dl, MVT ValTy,
2341                                     SelectionDAG &DAG) const {
2342   MVT VecTy = ty(VecV);
2343   if (VecTy.getVectorElementType() == MVT::i1) {
2344     MVT ValTy = ty(ValV);
2345     assert(ValTy.getVectorElementType() == MVT::i1);
2346     SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
2347     unsigned VecLen = VecTy.getVectorNumElements();
2348     unsigned Scale = VecLen / ValTy.getVectorNumElements();
2349     assert(Scale > 1);
2350 
2351     for (unsigned R = Scale; R > 1; R /= 2) {
2352       ValR = contractPredicate(ValR, dl, DAG);
2353       ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2354                          DAG.getUNDEF(MVT::i32), ValR);
2355     }
2356     // The longest possible subvector is at most 32 bits, so it is always
2357     // contained in the low subregister.
2358     ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
2359 
2360     unsigned ValBytes = 64 / Scale;
2361     SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
2362     SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2363                               DAG.getConstant(8, dl, MVT::i32));
2364     SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2365     SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2366                               {VecR, ValR, Width, Idx});
2367     return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2368   }
2369 
2370   unsigned VecWidth = VecTy.getSizeInBits();
2371   unsigned ValWidth = ValTy.getSizeInBits();
2372   assert(VecWidth == 32 || VecWidth == 64);
2373   assert((VecWidth % ValWidth) == 0);
2374 
2375   // Cast everything to scalar integer types.
2376   MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2377   // The actual type of ValV may be different than ValTy (which is related
2378   // to the vector type).
2379   unsigned VW = ty(ValV).getSizeInBits();
2380   ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2381   VecV = DAG.getBitcast(ScalarTy, VecV);
2382   if (VW != VecWidth)
2383     ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2384 
2385   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2386   SDValue InsV;
2387 
2388   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2389     unsigned W = C->getZExtValue() * ValWidth;
2390     SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2391     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2392                        {VecV, ValV, WidthV, OffV});
2393   } else {
2394     if (ty(IdxV) != MVT::i32)
2395       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2396     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2397     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2398                        {VecV, ValV, WidthV, OffV});
2399   }
2400 
2401   return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2402 }
2403 
2404 SDValue
2405 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2406                                        SelectionDAG &DAG) const {
2407   assert(ty(Vec32).getSizeInBits() == 32);
2408   if (isUndef(Vec32))
2409     return DAG.getUNDEF(MVT::i64);
2410   return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
2411 }
2412 
2413 SDValue
2414 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2415                                          SelectionDAG &DAG) const {
2416   assert(ty(Vec64).getSizeInBits() == 64);
2417   if (isUndef(Vec64))
2418     return DAG.getUNDEF(MVT::i32);
2419   return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
2420 }
2421 
2422 SDValue
2423 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2424       const {
2425   if (Ty.isVector()) {
2426     assert(Ty.isInteger() && "Only integer vectors are supported here");
2427     unsigned W = Ty.getSizeInBits();
2428     if (W <= 64)
2429       return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2430     return DAG.getNode(HexagonISD::VZERO, dl, Ty);
2431   }
2432 
2433   if (Ty.isInteger())
2434     return DAG.getConstant(0, dl, Ty);
2435   if (Ty.isFloatingPoint())
2436     return DAG.getConstantFP(0.0, dl, Ty);
2437   llvm_unreachable("Invalid type for zero");
2438 }
2439 
2440 SDValue
2441 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2442   MVT VecTy = ty(Op);
2443   unsigned BW = VecTy.getSizeInBits();
2444   const SDLoc &dl(Op);
2445   SmallVector<SDValue,8> Ops;
2446   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2447     Ops.push_back(Op.getOperand(i));
2448 
2449   if (BW == 32)
2450     return buildVector32(Ops, dl, VecTy, DAG);
2451   if (BW == 64)
2452     return buildVector64(Ops, dl, VecTy, DAG);
2453 
2454   if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2455     // For each i1 element in the resulting predicate register, put 1
2456     // shifted by the index of the element into a general-purpose register,
2457     // then or them together and transfer it back into a predicate register.
2458     SDValue Rs[8];
2459     SDValue Z = getZero(dl, MVT::i32, DAG);
2460     // Always produce 8 bits, repeat inputs if necessary.
2461     unsigned Rep = 8 / VecTy.getVectorNumElements();
2462     for (unsigned i = 0; i != 8; ++i) {
2463       SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2464       Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2465     }
2466     for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2467       for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2468         Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2469     }
2470     // Move the value directly to a predicate register.
2471     return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2472   }
2473 
2474   return SDValue();
2475 }
2476 
2477 SDValue
2478 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2479                                            SelectionDAG &DAG) const {
2480   MVT VecTy = ty(Op);
2481   const SDLoc &dl(Op);
2482   if (VecTy.getSizeInBits() == 64) {
2483     assert(Op.getNumOperands() == 2);
2484     return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
2485                        Op.getOperand(0));
2486   }
2487 
2488   MVT ElemTy = VecTy.getVectorElementType();
2489   if (ElemTy == MVT::i1) {
2490     assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2491     MVT OpTy = ty(Op.getOperand(0));
2492     // Scale is how many times the operands need to be contracted to match
2493     // the representation in the target register.
2494     unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2495     assert(Scale == Op.getNumOperands() && Scale > 1);
2496 
2497     // First, convert all bool vectors to integers, then generate pairwise
2498     // inserts to form values of doubled length. Up until there are only
2499     // two values left to concatenate, all of these values will fit in a
2500     // 32-bit integer, so keep them as i32 to use 32-bit inserts.
2501     SmallVector<SDValue,4> Words[2];
2502     unsigned IdxW = 0;
2503 
2504     for (SDValue P : Op.getNode()->op_values()) {
2505       SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
2506       for (unsigned R = Scale; R > 1; R /= 2) {
2507         W = contractPredicate(W, dl, DAG);
2508         W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2509                         DAG.getUNDEF(MVT::i32), W);
2510       }
2511       W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
2512       Words[IdxW].push_back(W);
2513     }
2514 
2515     while (Scale > 2) {
2516       SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
2517       Words[IdxW ^ 1].clear();
2518 
2519       for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
2520         SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
2521         // Insert W1 into W0 right next to the significant bits of W0.
2522         SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2523                                 {W0, W1, WidthV, WidthV});
2524         Words[IdxW ^ 1].push_back(T);
2525       }
2526       IdxW ^= 1;
2527       Scale /= 2;
2528     }
2529 
2530     // Another sanity check. At this point there should only be two words
2531     // left, and Scale should be 2.
2532     assert(Scale == 2 && Words[IdxW].size() == 2);
2533 
2534     SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2535                              Words[IdxW][1], Words[IdxW][0]);
2536     return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
2537   }
2538 
2539   return SDValue();
2540 }
2541 
2542 SDValue
2543 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2544                                                SelectionDAG &DAG) const {
2545   SDValue Vec = Op.getOperand(0);
2546   MVT ElemTy = ty(Vec).getVectorElementType();
2547   return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
2548 }
2549 
2550 SDValue
2551 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
2552                                               SelectionDAG &DAG) const {
2553   return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
2554                        ty(Op), ty(Op), DAG);
2555 }
2556 
2557 SDValue
2558 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2559                                               SelectionDAG &DAG) const {
2560   return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
2561                       SDLoc(Op), ty(Op).getVectorElementType(), DAG);
2562 }
2563 
2564 SDValue
2565 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
2566                                              SelectionDAG &DAG) const {
2567   SDValue ValV = Op.getOperand(1);
2568   return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
2569                       SDLoc(Op), ty(ValV), DAG);
2570 }
2571 
2572 bool
2573 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2574   // Assuming the caller does not have either a signext or zeroext modifier, and
2575   // only one value is accepted, any reasonable truncation is allowed.
2576   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2577     return false;
2578 
2579   // FIXME: in principle up to 64-bit could be made safe, but it would be very
2580   // fragile at the moment: any support for multiple value returns would be
2581   // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2582   return Ty1->getPrimitiveSizeInBits() <= 32;
2583 }
2584 
2585 SDValue
2586 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
2587   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2588   unsigned ClaimAlign = LN->getAlignment();
2589   validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign);
2590   // Call LowerUnalignedLoad for all loads, it recognizes loads that
2591   // don't need extra aligning.
2592   return LowerUnalignedLoad(Op, DAG);
2593 }
2594 
2595 SDValue
2596 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
2597   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
2598   unsigned ClaimAlign = SN->getAlignment();
2599   SDValue Ptr = SN->getBasePtr();
2600   const SDLoc &dl(Op);
2601   validateConstPtrAlignment(Ptr, dl, ClaimAlign);
2602 
2603   MVT StoreTy = SN->getMemoryVT().getSimpleVT();
2604   unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
2605   if (ClaimAlign < NeedAlign)
2606     return expandUnalignedStore(SN, DAG);
2607   return Op;
2608 }
2609 
2610 SDValue
2611 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
2612       const {
2613   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2614   MVT LoadTy = ty(Op);
2615   unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
2616   unsigned HaveAlign = LN->getAlignment();
2617   if (HaveAlign >= NeedAlign)
2618     return Op;
2619 
2620   const SDLoc &dl(Op);
2621   const DataLayout &DL = DAG.getDataLayout();
2622   LLVMContext &Ctx = *DAG.getContext();
2623 
2624   // If the load aligning is disabled or the load can be broken up into two
2625   // smaller legal loads, do the default (target-independent) expansion.
2626   bool DoDefault = false;
2627   // Handle it in the default way if this is an indexed load.
2628   if (!LN->isUnindexed())
2629     DoDefault = true;
2630 
2631   if (!AlignLoads) {
2632     if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), *LN->getMemOperand()))
2633       return Op;
2634     DoDefault = true;
2635   }
2636   if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
2637     // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
2638     MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
2639                                 : MVT::getVectorVT(MVT::i8, HaveAlign);
2640     DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, *LN->getMemOperand());
2641   }
2642   if (DoDefault) {
2643     std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
2644     return DAG.getMergeValues({P.first, P.second}, dl);
2645   }
2646 
2647   // The code below generates two loads, both aligned as NeedAlign, and
2648   // with the distance of NeedAlign between them. For that to cover the
2649   // bits that need to be loaded (and without overlapping), the size of
2650   // the loads should be equal to NeedAlign. This is true for all loadable
2651   // types, but add an assertion in case something changes in the future.
2652   assert(LoadTy.getSizeInBits() == 8*NeedAlign);
2653 
2654   unsigned LoadLen = NeedAlign;
2655   SDValue Base = LN->getBasePtr();
2656   SDValue Chain = LN->getChain();
2657   auto BO = getBaseAndOffset(Base);
2658   unsigned BaseOpc = BO.first.getOpcode();
2659   if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
2660     return Op;
2661 
2662   if (BO.second % LoadLen != 0) {
2663     BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
2664                            DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
2665     BO.second -= BO.second % LoadLen;
2666   }
2667   SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
2668       ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
2669                     DAG.getConstant(NeedAlign, dl, MVT::i32))
2670       : BO.first;
2671   SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
2672   SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);
2673 
2674   MachineMemOperand *WideMMO = nullptr;
2675   if (MachineMemOperand *MMO = LN->getMemOperand()) {
2676     MachineFunction &MF = DAG.getMachineFunction();
2677     WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(),
2678                     2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(),
2679                     MMO->getSyncScopeID(), MMO->getOrdering(),
2680                     MMO->getFailureOrdering());
2681   }
2682 
2683   SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
2684   SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
2685 
2686   SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
2687                                 {Load1, Load0, BaseNoOff.getOperand(0)});
2688   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2689                                  Load0.getValue(1), Load1.getValue(1));
2690   SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
2691   return M;
2692 }
2693 
2694 SDValue
2695 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
2696   SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
2697   auto *CY = dyn_cast<ConstantSDNode>(Y);
2698   if (!CY)
2699     return SDValue();
2700 
2701   const SDLoc &dl(Op);
2702   SDVTList VTs = Op.getNode()->getVTList();
2703   assert(VTs.NumVTs == 2);
2704   assert(VTs.VTs[1] == MVT::i1);
2705   unsigned Opc = Op.getOpcode();
2706 
2707   if (CY) {
2708     uint32_t VY = CY->getZExtValue();
2709     assert(VY != 0 && "This should have been folded");
2710     // X +/- 1
2711     if (VY != 1)
2712       return SDValue();
2713 
2714     if (Opc == ISD::UADDO) {
2715       SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
2716       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
2717                                 ISD::SETEQ);
2718       return DAG.getMergeValues({Op, Ov}, dl);
2719     }
2720     if (Opc == ISD::USUBO) {
2721       SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
2722       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
2723                                 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
2724       return DAG.getMergeValues({Op, Ov}, dl);
2725     }
2726   }
2727 
2728   return SDValue();
2729 }
2730 
2731 SDValue
2732 HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
2733   const SDLoc &dl(Op);
2734   unsigned Opc = Op.getOpcode();
2735   SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
2736 
2737   if (Opc == ISD::ADDCARRY)
2738     return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
2739                        { X, Y, C });
2740 
2741   EVT CarryTy = C.getValueType();
2742   SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
2743                              { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
2744   SDValue Out[] = { SubC.getValue(0),
2745                     DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
2746   return DAG.getMergeValues(Out, dl);
2747 }
2748 
2749 SDValue
2750 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
2751   SDValue Chain     = Op.getOperand(0);
2752   SDValue Offset    = Op.getOperand(1);
2753   SDValue Handler   = Op.getOperand(2);
2754   SDLoc dl(Op);
2755   auto PtrVT = getPointerTy(DAG.getDataLayout());
2756 
2757   // Mark function as containing a call to EH_RETURN.
2758   HexagonMachineFunctionInfo *FuncInfo =
2759     DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
2760   FuncInfo->setHasEHReturn();
2761 
2762   unsigned OffsetReg = Hexagon::R28;
2763 
2764   SDValue StoreAddr =
2765       DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
2766                   DAG.getIntPtrConstant(4, dl));
2767   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
2768   Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
2769 
2770   // Not needed we already use it as explict input to EH_RETURN.
2771   // MF.getRegInfo().addLiveOut(OffsetReg);
2772 
2773   return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
2774 }
2775 
2776 SDValue
2777 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2778   unsigned Opc = Op.getOpcode();
2779 
2780   // Handle INLINEASM first.
2781   if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
2782     return LowerINLINEASM(Op, DAG);
2783 
2784   if (isHvxOperation(Op)) {
2785     // If HVX lowering returns nothing, try the default lowering.
2786     if (SDValue V = LowerHvxOperation(Op, DAG))
2787       return V;
2788   }
2789 
2790   switch (Opc) {
2791     default:
2792 #ifndef NDEBUG
2793       Op.getNode()->dumpr(&DAG);
2794       if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
2795         errs() << "Error: check for a non-legal type in this operation\n";
2796 #endif
2797       llvm_unreachable("Should not custom lower this!");
2798     case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
2799     case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
2800     case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
2801     case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
2802     case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2803     case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
2804     case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
2805     case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
2806     case ISD::LOAD:                 return LowerLoad(Op, DAG);
2807     case ISD::STORE:                return LowerStore(Op, DAG);
2808     case ISD::UADDO:
2809     case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
2810     case ISD::ADDCARRY:
2811     case ISD::SUBCARRY:             return LowerAddSubCarry(Op, DAG);
2812     case ISD::SRA:
2813     case ISD::SHL:
2814     case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
2815     case ISD::ROTL:                 return LowerROTL(Op, DAG);
2816     case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
2817     case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
2818     case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
2819     case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
2820     case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
2821     case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
2822     case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
2823     case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
2824     case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
2825     case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2826     case ISD::VASTART:              return LowerVASTART(Op, DAG);
2827     case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
2828     case ISD::SETCC:                return LowerSETCC(Op, DAG);
2829     case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
2830     case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2831     case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
2832     case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
2833     case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
2834       break;
2835   }
2836 
2837   return SDValue();
2838 }
2839 
2840 void
2841 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
2842                                              SmallVectorImpl<SDValue> &Results,
2843                                              SelectionDAG &DAG) const {
2844   // We are only custom-lowering stores to verify the alignment of the
2845   // address if it is a compile-time constant. Since a store can be modified
2846   // during type-legalization (the value being stored may need legalization),
2847   // return empty Results here to indicate that we don't really make any
2848   // changes in the custom lowering.
2849   if (N->getOpcode() != ISD::STORE)
2850     return TargetLowering::LowerOperationWrapper(N, Results, DAG);
2851 }
2852 
2853 void
2854 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
2855                                           SmallVectorImpl<SDValue> &Results,
2856                                           SelectionDAG &DAG) const {
2857   const SDLoc &dl(N);
2858   switch (N->getOpcode()) {
2859     case ISD::SRL:
2860     case ISD::SRA:
2861     case ISD::SHL:
2862       return;
2863     case ISD::BITCAST:
2864       // Handle a bitcast from v8i1 to i8.
2865       if (N->getValueType(0) == MVT::i8) {
2866         SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
2867                              N->getOperand(0), DAG);
2868         Results.push_back(P);
2869       }
2870       break;
2871   }
2872 }
2873 
2874 /// Returns relocation base for the given PIC jumptable.
2875 SDValue
2876 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2877                                                 SelectionDAG &DAG) const {
2878   int Idx = cast<JumpTableSDNode>(Table)->getIndex();
2879   EVT VT = Table.getValueType();
2880   SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
2881   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
2882 }
2883 
2884 //===----------------------------------------------------------------------===//
2885 // Inline Assembly Support
2886 //===----------------------------------------------------------------------===//
2887 
2888 TargetLowering::ConstraintType
2889 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
2890   if (Constraint.size() == 1) {
2891     switch (Constraint[0]) {
2892       case 'q':
2893       case 'v':
2894         if (Subtarget.useHVXOps())
2895           return C_RegisterClass;
2896         break;
2897       case 'a':
2898         return C_RegisterClass;
2899       default:
2900         break;
2901     }
2902   }
2903   return TargetLowering::getConstraintType(Constraint);
2904 }
2905 
2906 std::pair<unsigned, const TargetRegisterClass*>
2907 HexagonTargetLowering::getRegForInlineAsmConstraint(
2908     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
2909 
2910   if (Constraint.size() == 1) {
2911     switch (Constraint[0]) {
2912     case 'r':   // R0-R31
2913       switch (VT.SimpleTy) {
2914       default:
2915         return {0u, nullptr};
2916       case MVT::i1:
2917       case MVT::i8:
2918       case MVT::i16:
2919       case MVT::i32:
2920       case MVT::f32:
2921         return {0u, &Hexagon::IntRegsRegClass};
2922       case MVT::i64:
2923       case MVT::f64:
2924         return {0u, &Hexagon::DoubleRegsRegClass};
2925       }
2926       break;
2927     case 'a': // M0-M1
2928       if (VT != MVT::i32)
2929         return {0u, nullptr};
2930       return {0u, &Hexagon::ModRegsRegClass};
2931     case 'q': // q0-q3
2932       switch (VT.getSizeInBits()) {
2933       default:
2934         return {0u, nullptr};
2935       case 512:
2936       case 1024:
2937         return {0u, &Hexagon::HvxQRRegClass};
2938       }
2939       break;
2940     case 'v': // V0-V31
2941       switch (VT.getSizeInBits()) {
2942       default:
2943         return {0u, nullptr};
2944       case 512:
2945         return {0u, &Hexagon::HvxVRRegClass};
2946       case 1024:
2947         if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
2948           return {0u, &Hexagon::HvxVRRegClass};
2949         return {0u, &Hexagon::HvxWRRegClass};
2950       case 2048:
2951         return {0u, &Hexagon::HvxWRRegClass};
2952       }
2953       break;
2954     default:
2955       return {0u, nullptr};
2956     }
2957   }
2958 
2959   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2960 }
2961 
2962 /// isFPImmLegal - Returns true if the target can instruction select the
2963 /// specified FP immediate natively. If false, the legalizer will
2964 /// materialize the FP immediate as a load from a constant pool.
2965 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
2966                                          bool ForCodeSize) const {
2967   return true;
2968 }
2969 
2970 /// isLegalAddressingMode - Return true if the addressing mode represented by
2971 /// AM is legal for this target, for a load/store of the specified type.
2972 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
2973                                                   const AddrMode &AM, Type *Ty,
2974                                                   unsigned AS, Instruction *I) const {
2975   if (Ty->isSized()) {
2976     // When LSR detects uses of the same base address to access different
2977     // types (e.g. unions), it will assume a conservative type for these
2978     // uses:
2979     //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
2980     // The type Ty passed here would then be "void". Skip the alignment
2981     // checks, but do not return false right away, since that confuses
2982     // LSR into crashing.
2983     unsigned A = DL.getABITypeAlignment(Ty);
2984     // The base offset must be a multiple of the alignment.
2985     if ((AM.BaseOffs % A) != 0)
2986       return false;
2987     // The shifted offset must fit in 11 bits.
2988     if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
2989       return false;
2990   }
2991 
2992   // No global is ever allowed as a base.
2993   if (AM.BaseGV)
2994     return false;
2995 
2996   int Scale = AM.Scale;
2997   if (Scale < 0)
2998     Scale = -Scale;
2999   switch (Scale) {
3000   case 0:  // No scale reg, "r+i", "r", or just "i".
3001     break;
3002   default: // No scaled addressing mode.
3003     return false;
3004   }
3005   return true;
3006 }
3007 
3008 /// Return true if folding a constant offset with the given GlobalAddress is
3009 /// legal.  It is frequently not legal in PIC relocation models.
3010 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3011       const {
3012   return HTM.getRelocationModel() == Reloc::Static;
3013 }
3014 
3015 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3016 /// icmp immediate, that is the target has icmp instructions which can compare
3017 /// a register against the immediate without having to materialize the
3018 /// immediate into a register.
3019 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3020   return Imm >= -512 && Imm <= 511;
3021 }
3022 
3023 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3024 /// for tail call optimization. Targets which want to do tail call
3025 /// optimization should implement this function.
3026 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3027                                  SDValue Callee,
3028                                  CallingConv::ID CalleeCC,
3029                                  bool IsVarArg,
3030                                  bool IsCalleeStructRet,
3031                                  bool IsCallerStructRet,
3032                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3033                                  const SmallVectorImpl<SDValue> &OutVals,
3034                                  const SmallVectorImpl<ISD::InputArg> &Ins,
3035                                  SelectionDAG& DAG) const {
3036   const Function &CallerF = DAG.getMachineFunction().getFunction();
3037   CallingConv::ID CallerCC = CallerF.getCallingConv();
3038   bool CCMatch = CallerCC == CalleeCC;
3039 
3040   // ***************************************************************************
3041   //  Look for obvious safe cases to perform tail call optimization that do not
3042   //  require ABI changes.
3043   // ***************************************************************************
3044 
3045   // If this is a tail call via a function pointer, then don't do it!
3046   if (!isa<GlobalAddressSDNode>(Callee) &&
3047       !isa<ExternalSymbolSDNode>(Callee)) {
3048     return false;
3049   }
3050 
3051   // Do not optimize if the calling conventions do not match and the conventions
3052   // used are not C or Fast.
3053   if (!CCMatch) {
3054     bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3055     bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3056     // If R & E, then ok.
3057     if (!R || !E)
3058       return false;
3059   }
3060 
3061   // Do not tail call optimize vararg calls.
3062   if (IsVarArg)
3063     return false;
3064 
3065   // Also avoid tail call optimization if either caller or callee uses struct
3066   // return semantics.
3067   if (IsCalleeStructRet || IsCallerStructRet)
3068     return false;
3069 
3070   // In addition to the cases above, we also disable Tail Call Optimization if
3071   // the calling convention code that at least one outgoing argument needs to
3072   // go on the stack. We cannot check that here because at this point that
3073   // information is not available.
3074   return true;
3075 }
3076 
3077 /// Returns the target specific optimal type for load and store operations as
3078 /// a result of memset, memcpy, and memmove lowering.
3079 ///
3080 /// If DstAlign is zero that means it's safe to destination alignment can
3081 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3082 /// a need to check it against alignment requirement, probably because the
3083 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3084 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3085 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3086 /// does not need to be loaded.  It returns EVT::Other if the type should be
3087 /// determined using generic target-independent logic.
3088 EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
3089       unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
3090       bool MemcpyStrSrc, const AttributeList &FuncAttributes) const {
3091 
3092   auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
3093     return (GivenA % MinA) == 0;
3094   };
3095 
3096   if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
3097     return MVT::i64;
3098   if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
3099     return MVT::i32;
3100   if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
3101     return MVT::i16;
3102 
3103   return MVT::Other;
3104 }
3105 
3106 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3107     EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags,
3108     bool *Fast) const {
3109   if (Fast)
3110     *Fast = false;
3111   return Subtarget.isHVXVectorType(VT.getSimpleVT());
3112 }
3113 
3114 std::pair<const TargetRegisterClass*, uint8_t>
3115 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3116       MVT VT) const {
3117   if (Subtarget.isHVXVectorType(VT, true)) {
3118     unsigned BitWidth = VT.getSizeInBits();
3119     unsigned VecWidth = Subtarget.getVectorLength() * 8;
3120 
3121     if (VT.getVectorElementType() == MVT::i1)
3122       return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3123     if (BitWidth == VecWidth)
3124       return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3125     assert(BitWidth == 2 * VecWidth);
3126     return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3127   }
3128 
3129   return TargetLowering::findRepresentativeClass(TRI, VT);
3130 }
3131 
3132 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3133       ISD::LoadExtType ExtTy, EVT NewVT) const {
3134   // TODO: This may be worth removing. Check regression tests for diffs.
3135   if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3136     return false;
3137 
3138   auto *L = cast<LoadSDNode>(Load);
3139   std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3140   // Small-data object, do not shrink.
3141   if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3142     return false;
3143   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3144     auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3145     const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3146     return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3147   }
3148   return true;
3149 }
3150 
3151 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
3152       AtomicOrdering Ord) const {
3153   BasicBlock *BB = Builder.GetInsertBlock();
3154   Module *M = BB->getParent()->getParent();
3155   auto PT = cast<PointerType>(Addr->getType());
3156   Type *Ty = PT->getElementType();
3157   unsigned SZ = Ty->getPrimitiveSizeInBits();
3158   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3159   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3160                                    : Intrinsic::hexagon_L4_loadd_locked;
3161   Function *Fn = Intrinsic::getDeclaration(M, IntID);
3162 
3163   PointerType *NewPtrTy
3164     = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
3165   Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3166 
3167   Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3168 
3169   return Builder.CreateBitCast(Call, Ty);
3170 }
3171 
3172 /// Perform a store-conditional operation to Addr. Return the status of the
3173 /// store. This should be 0 if the store succeeded, non-zero otherwise.
3174 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
3175       Value *Val, Value *Addr, AtomicOrdering Ord) const {
3176   BasicBlock *BB = Builder.GetInsertBlock();
3177   Module *M = BB->getParent()->getParent();
3178   Type *Ty = Val->getType();
3179   unsigned SZ = Ty->getPrimitiveSizeInBits();
3180 
3181   Type *CastTy = Builder.getIntNTy(SZ);
3182   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3183   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3184                                    : Intrinsic::hexagon_S4_stored_locked;
3185   Function *Fn = Intrinsic::getDeclaration(M, IntID);
3186 
3187   unsigned AS = Addr->getType()->getPointerAddressSpace();
3188   Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3189   Val = Builder.CreateBitCast(Val, CastTy);
3190 
3191   Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3192   Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3193   Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3194   return Ext;
3195 }
3196 
3197 TargetLowering::AtomicExpansionKind
3198 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3199   // Do not expand loads and stores that don't exceed 64 bits.
3200   return LI->getType()->getPrimitiveSizeInBits() > 64
3201              ? AtomicExpansionKind::LLOnly
3202              : AtomicExpansionKind::None;
3203 }
3204 
3205 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3206   // Do not expand loads and stores that don't exceed 64 bits.
3207   return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
3208 }
3209 
3210 TargetLowering::AtomicExpansionKind
3211 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3212     AtomicCmpXchgInst *AI) const {
3213   const DataLayout &DL = AI->getModule()->getDataLayout();
3214   unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
3215   if (Size >= 4 && Size <= 8)
3216     return AtomicExpansionKind::LLSC;
3217   return AtomicExpansionKind::None;
3218 }
3219