1*0b57cec5SDimitry Andric //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// 2*0b57cec5SDimitry Andric // 3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*0b57cec5SDimitry Andric // 7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 8*0b57cec5SDimitry Andric // 9*0b57cec5SDimitry Andric // This file implements the interfaces that Hexagon uses to lower LLVM code 10*0b57cec5SDimitry Andric // into a selection DAG. 11*0b57cec5SDimitry Andric // 12*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 13*0b57cec5SDimitry Andric 14*0b57cec5SDimitry Andric #include "HexagonISelLowering.h" 15*0b57cec5SDimitry Andric #include "Hexagon.h" 16*0b57cec5SDimitry Andric #include "HexagonMachineFunctionInfo.h" 17*0b57cec5SDimitry Andric #include "HexagonRegisterInfo.h" 18*0b57cec5SDimitry Andric #include "HexagonSubtarget.h" 19*0b57cec5SDimitry Andric #include "HexagonTargetMachine.h" 20*0b57cec5SDimitry Andric #include "HexagonTargetObjectFile.h" 21*0b57cec5SDimitry Andric #include "llvm/ADT/APInt.h" 22*0b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 23*0b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 24*0b57cec5SDimitry Andric #include "llvm/ADT/StringSwitch.h" 25*0b57cec5SDimitry Andric #include "llvm/CodeGen/CallingConvLower.h" 26*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h" 27*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h" 28*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineMemOperand.h" 29*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 30*0b57cec5SDimitry Andric #include "llvm/CodeGen/RuntimeLibcalls.h" 31*0b57cec5SDimitry Andric #include "llvm/CodeGen/SelectionDAG.h" 32*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetCallingConv.h" 33*0b57cec5SDimitry Andric #include "llvm/CodeGen/ValueTypes.h" 34*0b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 35*0b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h" 36*0b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 37*0b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 38*0b57cec5SDimitry Andric #include "llvm/IR/Function.h" 39*0b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h" 40*0b57cec5SDimitry Andric #include "llvm/IR/InlineAsm.h" 41*0b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 42*0b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 43*0b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 44*0b57cec5SDimitry Andric #include "llvm/IR/Module.h" 45*0b57cec5SDimitry Andric #include "llvm/IR/Type.h" 46*0b57cec5SDimitry Andric #include "llvm/IR/Value.h" 47*0b57cec5SDimitry Andric #include "llvm/MC/MCRegisterInfo.h" 48*0b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 49*0b57cec5SDimitry Andric #include "llvm/Support/CodeGen.h" 50*0b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 51*0b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 52*0b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 53*0b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h" 54*0b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 55*0b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h" 56*0b57cec5SDimitry Andric #include <algorithm> 57*0b57cec5SDimitry Andric #include <cassert> 58*0b57cec5SDimitry Andric #include <cstddef> 59*0b57cec5SDimitry Andric #include <cstdint> 60*0b57cec5SDimitry Andric #include <limits> 61*0b57cec5SDimitry Andric #include <utility> 62*0b57cec5SDimitry Andric 63*0b57cec5SDimitry Andric using namespace llvm; 64*0b57cec5SDimitry Andric 65*0b57cec5SDimitry Andric #define DEBUG_TYPE "hexagon-lowering" 66*0b57cec5SDimitry Andric 67*0b57cec5SDimitry Andric static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables", 68*0b57cec5SDimitry Andric cl::init(true), cl::Hidden, 69*0b57cec5SDimitry Andric cl::desc("Control jump table emission on Hexagon target")); 70*0b57cec5SDimitry Andric 71*0b57cec5SDimitry Andric static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched", 72*0b57cec5SDimitry Andric cl::Hidden, cl::ZeroOrMore, cl::init(false), 73*0b57cec5SDimitry Andric cl::desc("Enable Hexagon SDNode scheduling")); 74*0b57cec5SDimitry Andric 75*0b57cec5SDimitry Andric static cl::opt<bool> EnableFastMath("ffast-math", 76*0b57cec5SDimitry Andric cl::Hidden, cl::ZeroOrMore, cl::init(false), 77*0b57cec5SDimitry Andric cl::desc("Enable Fast Math processing")); 78*0b57cec5SDimitry Andric 79*0b57cec5SDimitry Andric static cl::opt<int> MinimumJumpTables("minimum-jump-tables", 80*0b57cec5SDimitry Andric cl::Hidden, cl::ZeroOrMore, cl::init(5), 81*0b57cec5SDimitry Andric cl::desc("Set minimum jump tables")); 82*0b57cec5SDimitry Andric 83*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy", 84*0b57cec5SDimitry Andric cl::Hidden, cl::ZeroOrMore, cl::init(6), 85*0b57cec5SDimitry Andric cl::desc("Max #stores to inline memcpy")); 86*0b57cec5SDimitry Andric 87*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", 88*0b57cec5SDimitry Andric cl::Hidden, cl::ZeroOrMore, cl::init(4), 89*0b57cec5SDimitry Andric cl::desc("Max #stores to inline memcpy")); 90*0b57cec5SDimitry Andric 91*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove", 92*0b57cec5SDimitry Andric cl::Hidden, cl::ZeroOrMore, cl::init(6), 93*0b57cec5SDimitry Andric cl::desc("Max #stores to inline memmove")); 94*0b57cec5SDimitry Andric 95*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", 96*0b57cec5SDimitry Andric cl::Hidden, cl::ZeroOrMore, cl::init(4), 97*0b57cec5SDimitry Andric cl::desc("Max #stores to inline memmove")); 98*0b57cec5SDimitry Andric 99*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset", 100*0b57cec5SDimitry Andric cl::Hidden, cl::ZeroOrMore, cl::init(8), 101*0b57cec5SDimitry Andric cl::desc("Max #stores to inline memset")); 102*0b57cec5SDimitry Andric 103*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", 104*0b57cec5SDimitry Andric cl::Hidden, cl::ZeroOrMore, cl::init(4), 105*0b57cec5SDimitry Andric cl::desc("Max #stores to inline memset")); 106*0b57cec5SDimitry Andric 107*0b57cec5SDimitry Andric static cl::opt<bool> AlignLoads("hexagon-align-loads", 108*0b57cec5SDimitry Andric cl::Hidden, cl::init(false), 109*0b57cec5SDimitry Andric cl::desc("Rewrite unaligned loads as a pair of aligned loads")); 110*0b57cec5SDimitry Andric 111*0b57cec5SDimitry Andric 112*0b57cec5SDimitry Andric namespace { 113*0b57cec5SDimitry Andric 114*0b57cec5SDimitry Andric class HexagonCCState : public CCState { 115*0b57cec5SDimitry Andric unsigned NumNamedVarArgParams = 0; 116*0b57cec5SDimitry Andric 117*0b57cec5SDimitry Andric public: 118*0b57cec5SDimitry Andric HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF, 119*0b57cec5SDimitry Andric SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, 120*0b57cec5SDimitry Andric unsigned NumNamedArgs) 121*0b57cec5SDimitry Andric : CCState(CC, IsVarArg, MF, locs, C), 122*0b57cec5SDimitry Andric NumNamedVarArgParams(NumNamedArgs) {} 123*0b57cec5SDimitry Andric unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; } 124*0b57cec5SDimitry Andric }; 125*0b57cec5SDimitry Andric 126*0b57cec5SDimitry Andric } // end anonymous namespace 127*0b57cec5SDimitry Andric 128*0b57cec5SDimitry Andric 129*0b57cec5SDimitry Andric // Implement calling convention for Hexagon. 130*0b57cec5SDimitry Andric 131*0b57cec5SDimitry Andric static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 132*0b57cec5SDimitry Andric CCValAssign::LocInfo &LocInfo, 133*0b57cec5SDimitry Andric ISD::ArgFlagsTy &ArgFlags, CCState &State) { 134*0b57cec5SDimitry Andric static const MCPhysReg ArgRegs[] = { 135*0b57cec5SDimitry Andric Hexagon::R0, Hexagon::R1, Hexagon::R2, 136*0b57cec5SDimitry Andric Hexagon::R3, Hexagon::R4, Hexagon::R5 137*0b57cec5SDimitry Andric }; 138*0b57cec5SDimitry Andric const unsigned NumArgRegs = array_lengthof(ArgRegs); 139*0b57cec5SDimitry Andric unsigned RegNum = State.getFirstUnallocated(ArgRegs); 140*0b57cec5SDimitry Andric 141*0b57cec5SDimitry Andric // RegNum is an index into ArgRegs: skip a register if RegNum is odd. 142*0b57cec5SDimitry Andric if (RegNum != NumArgRegs && RegNum % 2 == 1) 143*0b57cec5SDimitry Andric State.AllocateReg(ArgRegs[RegNum]); 144*0b57cec5SDimitry Andric 145*0b57cec5SDimitry Andric // Always return false here, as this function only makes sure that the first 146*0b57cec5SDimitry Andric // unallocated register has an even register number and does not actually 147*0b57cec5SDimitry Andric // allocate a register for the current argument. 148*0b57cec5SDimitry Andric return false; 149*0b57cec5SDimitry Andric } 150*0b57cec5SDimitry Andric 151*0b57cec5SDimitry Andric #include "HexagonGenCallingConv.inc" 152*0b57cec5SDimitry Andric 153*0b57cec5SDimitry Andric 154*0b57cec5SDimitry Andric SDValue 155*0b57cec5SDimitry Andric HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) 156*0b57cec5SDimitry Andric const { 157*0b57cec5SDimitry Andric return SDValue(); 158*0b57cec5SDimitry Andric } 159*0b57cec5SDimitry Andric 160*0b57cec5SDimitry Andric /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 161*0b57cec5SDimitry Andric /// by "Src" to address "Dst" of size "Size". Alignment information is 162*0b57cec5SDimitry Andric /// specified by the specific parameter attribute. The copy will be passed as 163*0b57cec5SDimitry Andric /// a byval function parameter. Sometimes what we are copying is the end of a 164*0b57cec5SDimitry Andric /// larger object, the part that does not fit in registers. 165*0b57cec5SDimitry Andric static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 166*0b57cec5SDimitry Andric SDValue Chain, ISD::ArgFlagsTy Flags, 167*0b57cec5SDimitry Andric SelectionDAG &DAG, const SDLoc &dl) { 168*0b57cec5SDimitry Andric SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 169*0b57cec5SDimitry Andric return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 170*0b57cec5SDimitry Andric /*isVolatile=*/false, /*AlwaysInline=*/false, 171*0b57cec5SDimitry Andric /*isTailCall=*/false, 172*0b57cec5SDimitry Andric MachinePointerInfo(), MachinePointerInfo()); 173*0b57cec5SDimitry Andric } 174*0b57cec5SDimitry Andric 175*0b57cec5SDimitry Andric bool 176*0b57cec5SDimitry Andric HexagonTargetLowering::CanLowerReturn( 177*0b57cec5SDimitry Andric CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 178*0b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 179*0b57cec5SDimitry Andric LLVMContext &Context) const { 180*0b57cec5SDimitry Andric SmallVector<CCValAssign, 16> RVLocs; 181*0b57cec5SDimitry Andric CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 182*0b57cec5SDimitry Andric 183*0b57cec5SDimitry Andric if (MF.getSubtarget<HexagonSubtarget>().useHVXOps()) 184*0b57cec5SDimitry Andric return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX); 185*0b57cec5SDimitry Andric return CCInfo.CheckReturn(Outs, RetCC_Hexagon); 186*0b57cec5SDimitry Andric } 187*0b57cec5SDimitry Andric 188*0b57cec5SDimitry Andric // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is 189*0b57cec5SDimitry Andric // passed by value, the function prototype is modified to return void and 190*0b57cec5SDimitry Andric // the value is stored in memory pointed by a pointer passed by caller. 191*0b57cec5SDimitry Andric SDValue 192*0b57cec5SDimitry Andric HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 193*0b57cec5SDimitry Andric bool IsVarArg, 194*0b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 195*0b57cec5SDimitry Andric const SmallVectorImpl<SDValue> &OutVals, 196*0b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG) const { 197*0b57cec5SDimitry Andric // CCValAssign - represent the assignment of the return value to locations. 198*0b57cec5SDimitry Andric SmallVector<CCValAssign, 16> RVLocs; 199*0b57cec5SDimitry Andric 200*0b57cec5SDimitry Andric // CCState - Info about the registers and stack slot. 201*0b57cec5SDimitry Andric CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 202*0b57cec5SDimitry Andric *DAG.getContext()); 203*0b57cec5SDimitry Andric 204*0b57cec5SDimitry Andric // Analyze return values of ISD::RET 205*0b57cec5SDimitry Andric if (Subtarget.useHVXOps()) 206*0b57cec5SDimitry Andric CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX); 207*0b57cec5SDimitry Andric else 208*0b57cec5SDimitry Andric CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); 209*0b57cec5SDimitry Andric 210*0b57cec5SDimitry Andric SDValue Flag; 211*0b57cec5SDimitry Andric SmallVector<SDValue, 4> RetOps(1, Chain); 212*0b57cec5SDimitry Andric 213*0b57cec5SDimitry Andric // Copy the result values into the output registers. 214*0b57cec5SDimitry Andric for (unsigned i = 0; i != RVLocs.size(); ++i) { 215*0b57cec5SDimitry Andric CCValAssign &VA = RVLocs[i]; 216*0b57cec5SDimitry Andric 217*0b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 218*0b57cec5SDimitry Andric 219*0b57cec5SDimitry Andric // Guarantee that all emitted copies are stuck together with flags. 220*0b57cec5SDimitry Andric Flag = Chain.getValue(1); 221*0b57cec5SDimitry Andric RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 222*0b57cec5SDimitry Andric } 223*0b57cec5SDimitry Andric 224*0b57cec5SDimitry Andric RetOps[0] = Chain; // Update chain. 225*0b57cec5SDimitry Andric 226*0b57cec5SDimitry Andric // Add the flag if we have it. 227*0b57cec5SDimitry Andric if (Flag.getNode()) 228*0b57cec5SDimitry Andric RetOps.push_back(Flag); 229*0b57cec5SDimitry Andric 230*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps); 231*0b57cec5SDimitry Andric } 232*0b57cec5SDimitry Andric 233*0b57cec5SDimitry Andric bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 234*0b57cec5SDimitry Andric // If either no tail call or told not to tail call at all, don't. 235*0b57cec5SDimitry Andric auto Attr = 236*0b57cec5SDimitry Andric CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); 237*0b57cec5SDimitry Andric if (!CI->isTailCall() || Attr.getValueAsString() == "true") 238*0b57cec5SDimitry Andric return false; 239*0b57cec5SDimitry Andric 240*0b57cec5SDimitry Andric return true; 241*0b57cec5SDimitry Andric } 242*0b57cec5SDimitry Andric 243*0b57cec5SDimitry Andric unsigned HexagonTargetLowering::getRegisterByName(const char* RegName, EVT VT, 244*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 245*0b57cec5SDimitry Andric // Just support r19, the linux kernel uses it. 246*0b57cec5SDimitry Andric unsigned Reg = StringSwitch<unsigned>(RegName) 247*0b57cec5SDimitry Andric .Case("r19", Hexagon::R19) 248*0b57cec5SDimitry Andric .Default(0); 249*0b57cec5SDimitry Andric if (Reg) 250*0b57cec5SDimitry Andric return Reg; 251*0b57cec5SDimitry Andric 252*0b57cec5SDimitry Andric report_fatal_error("Invalid register name global variable"); 253*0b57cec5SDimitry Andric } 254*0b57cec5SDimitry Andric 255*0b57cec5SDimitry Andric /// LowerCallResult - Lower the result values of an ISD::CALL into the 256*0b57cec5SDimitry Andric /// appropriate copies out of appropriate physical registers. This assumes that 257*0b57cec5SDimitry Andric /// Chain/Glue are the input chain/glue to use, and that TheCall is the call 258*0b57cec5SDimitry Andric /// being lowered. Returns a SDNode with the same number of values as the 259*0b57cec5SDimitry Andric /// ISD::CALL. 260*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerCallResult( 261*0b57cec5SDimitry Andric SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg, 262*0b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 263*0b57cec5SDimitry Andric SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 264*0b57cec5SDimitry Andric const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const { 265*0b57cec5SDimitry Andric // Assign locations to each value returned by this call. 266*0b57cec5SDimitry Andric SmallVector<CCValAssign, 16> RVLocs; 267*0b57cec5SDimitry Andric 268*0b57cec5SDimitry Andric CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 269*0b57cec5SDimitry Andric *DAG.getContext()); 270*0b57cec5SDimitry Andric 271*0b57cec5SDimitry Andric if (Subtarget.useHVXOps()) 272*0b57cec5SDimitry Andric CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX); 273*0b57cec5SDimitry Andric else 274*0b57cec5SDimitry Andric CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); 275*0b57cec5SDimitry Andric 276*0b57cec5SDimitry Andric // Copy all of the result registers out of their specified physreg. 277*0b57cec5SDimitry Andric for (unsigned i = 0; i != RVLocs.size(); ++i) { 278*0b57cec5SDimitry Andric SDValue RetVal; 279*0b57cec5SDimitry Andric if (RVLocs[i].getValVT() == MVT::i1) { 280*0b57cec5SDimitry Andric // Return values of type MVT::i1 require special handling. The reason 281*0b57cec5SDimitry Andric // is that MVT::i1 is associated with the PredRegs register class, but 282*0b57cec5SDimitry Andric // values of that type are still returned in R0. Generate an explicit 283*0b57cec5SDimitry Andric // copy into a predicate register from R0, and treat the value of the 284*0b57cec5SDimitry Andric // predicate register as the call result. 285*0b57cec5SDimitry Andric auto &MRI = DAG.getMachineFunction().getRegInfo(); 286*0b57cec5SDimitry Andric SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 287*0b57cec5SDimitry Andric MVT::i32, Glue); 288*0b57cec5SDimitry Andric // FR0 = (Value, Chain, Glue) 289*0b57cec5SDimitry Andric unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); 290*0b57cec5SDimitry Andric SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR, 291*0b57cec5SDimitry Andric FR0.getValue(0), FR0.getValue(2)); 292*0b57cec5SDimitry Andric // TPR = (Chain, Glue) 293*0b57cec5SDimitry Andric // Don't glue this CopyFromReg, because it copies from a virtual 294*0b57cec5SDimitry Andric // register. If it is glued to the call, InstrEmitter will add it 295*0b57cec5SDimitry Andric // as an implicit def to the call (EmitMachineNode). 296*0b57cec5SDimitry Andric RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1); 297*0b57cec5SDimitry Andric Glue = TPR.getValue(1); 298*0b57cec5SDimitry Andric Chain = TPR.getValue(0); 299*0b57cec5SDimitry Andric } else { 300*0b57cec5SDimitry Andric RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 301*0b57cec5SDimitry Andric RVLocs[i].getValVT(), Glue); 302*0b57cec5SDimitry Andric Glue = RetVal.getValue(2); 303*0b57cec5SDimitry Andric Chain = RetVal.getValue(1); 304*0b57cec5SDimitry Andric } 305*0b57cec5SDimitry Andric InVals.push_back(RetVal.getValue(0)); 306*0b57cec5SDimitry Andric } 307*0b57cec5SDimitry Andric 308*0b57cec5SDimitry Andric return Chain; 309*0b57cec5SDimitry Andric } 310*0b57cec5SDimitry Andric 311*0b57cec5SDimitry Andric /// LowerCall - Functions arguments are copied from virtual regs to 312*0b57cec5SDimitry Andric /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 313*0b57cec5SDimitry Andric SDValue 314*0b57cec5SDimitry Andric HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 315*0b57cec5SDimitry Andric SmallVectorImpl<SDValue> &InVals) const { 316*0b57cec5SDimitry Andric SelectionDAG &DAG = CLI.DAG; 317*0b57cec5SDimitry Andric SDLoc &dl = CLI.DL; 318*0b57cec5SDimitry Andric SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 319*0b57cec5SDimitry Andric SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 320*0b57cec5SDimitry Andric SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 321*0b57cec5SDimitry Andric SDValue Chain = CLI.Chain; 322*0b57cec5SDimitry Andric SDValue Callee = CLI.Callee; 323*0b57cec5SDimitry Andric CallingConv::ID CallConv = CLI.CallConv; 324*0b57cec5SDimitry Andric bool IsVarArg = CLI.IsVarArg; 325*0b57cec5SDimitry Andric bool DoesNotReturn = CLI.DoesNotReturn; 326*0b57cec5SDimitry Andric 327*0b57cec5SDimitry Andric bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 328*0b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 329*0b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 330*0b57cec5SDimitry Andric auto PtrVT = getPointerTy(MF.getDataLayout()); 331*0b57cec5SDimitry Andric 332*0b57cec5SDimitry Andric unsigned NumParams = CLI.CS.getInstruction() 333*0b57cec5SDimitry Andric ? CLI.CS.getFunctionType()->getNumParams() 334*0b57cec5SDimitry Andric : 0; 335*0b57cec5SDimitry Andric if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) 336*0b57cec5SDimitry Andric Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32); 337*0b57cec5SDimitry Andric 338*0b57cec5SDimitry Andric // Analyze operands of the call, assigning locations to each operand. 339*0b57cec5SDimitry Andric SmallVector<CCValAssign, 16> ArgLocs; 340*0b57cec5SDimitry Andric HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(), 341*0b57cec5SDimitry Andric NumParams); 342*0b57cec5SDimitry Andric 343*0b57cec5SDimitry Andric if (Subtarget.useHVXOps()) 344*0b57cec5SDimitry Andric CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX); 345*0b57cec5SDimitry Andric else 346*0b57cec5SDimitry Andric CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); 347*0b57cec5SDimitry Andric 348*0b57cec5SDimitry Andric auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls"); 349*0b57cec5SDimitry Andric if (Attr.getValueAsString() == "true") 350*0b57cec5SDimitry Andric CLI.IsTailCall = false; 351*0b57cec5SDimitry Andric 352*0b57cec5SDimitry Andric if (CLI.IsTailCall) { 353*0b57cec5SDimitry Andric bool StructAttrFlag = MF.getFunction().hasStructRetAttr(); 354*0b57cec5SDimitry Andric CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, 355*0b57cec5SDimitry Andric IsVarArg, IsStructRet, StructAttrFlag, Outs, 356*0b57cec5SDimitry Andric OutVals, Ins, DAG); 357*0b57cec5SDimitry Andric for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 358*0b57cec5SDimitry Andric CCValAssign &VA = ArgLocs[i]; 359*0b57cec5SDimitry Andric if (VA.isMemLoc()) { 360*0b57cec5SDimitry Andric CLI.IsTailCall = false; 361*0b57cec5SDimitry Andric break; 362*0b57cec5SDimitry Andric } 363*0b57cec5SDimitry Andric } 364*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n" 365*0b57cec5SDimitry Andric : "Argument must be passed on stack. " 366*0b57cec5SDimitry Andric "Not eligible for Tail Call\n")); 367*0b57cec5SDimitry Andric } 368*0b57cec5SDimitry Andric // Get a count of how many bytes are to be pushed on the stack. 369*0b57cec5SDimitry Andric unsigned NumBytes = CCInfo.getNextStackOffset(); 370*0b57cec5SDimitry Andric SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; 371*0b57cec5SDimitry Andric SmallVector<SDValue, 8> MemOpChains; 372*0b57cec5SDimitry Andric 373*0b57cec5SDimitry Andric const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 374*0b57cec5SDimitry Andric SDValue StackPtr = 375*0b57cec5SDimitry Andric DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT); 376*0b57cec5SDimitry Andric 377*0b57cec5SDimitry Andric bool NeedsArgAlign = false; 378*0b57cec5SDimitry Andric unsigned LargestAlignSeen = 0; 379*0b57cec5SDimitry Andric // Walk the register/memloc assignments, inserting copies/loads. 380*0b57cec5SDimitry Andric for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 381*0b57cec5SDimitry Andric CCValAssign &VA = ArgLocs[i]; 382*0b57cec5SDimitry Andric SDValue Arg = OutVals[i]; 383*0b57cec5SDimitry Andric ISD::ArgFlagsTy Flags = Outs[i].Flags; 384*0b57cec5SDimitry Andric // Record if we need > 8 byte alignment on an argument. 385*0b57cec5SDimitry Andric bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT()); 386*0b57cec5SDimitry Andric NeedsArgAlign |= ArgAlign; 387*0b57cec5SDimitry Andric 388*0b57cec5SDimitry Andric // Promote the value if needed. 389*0b57cec5SDimitry Andric switch (VA.getLocInfo()) { 390*0b57cec5SDimitry Andric default: 391*0b57cec5SDimitry Andric // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt. 392*0b57cec5SDimitry Andric llvm_unreachable("Unknown loc info!"); 393*0b57cec5SDimitry Andric case CCValAssign::Full: 394*0b57cec5SDimitry Andric break; 395*0b57cec5SDimitry Andric case CCValAssign::BCvt: 396*0b57cec5SDimitry Andric Arg = DAG.getBitcast(VA.getLocVT(), Arg); 397*0b57cec5SDimitry Andric break; 398*0b57cec5SDimitry Andric case CCValAssign::SExt: 399*0b57cec5SDimitry Andric Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 400*0b57cec5SDimitry Andric break; 401*0b57cec5SDimitry Andric case CCValAssign::ZExt: 402*0b57cec5SDimitry Andric Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 403*0b57cec5SDimitry Andric break; 404*0b57cec5SDimitry Andric case CCValAssign::AExt: 405*0b57cec5SDimitry Andric Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 406*0b57cec5SDimitry Andric break; 407*0b57cec5SDimitry Andric } 408*0b57cec5SDimitry Andric 409*0b57cec5SDimitry Andric if (VA.isMemLoc()) { 410*0b57cec5SDimitry Andric unsigned LocMemOffset = VA.getLocMemOffset(); 411*0b57cec5SDimitry Andric SDValue MemAddr = DAG.getConstant(LocMemOffset, dl, 412*0b57cec5SDimitry Andric StackPtr.getValueType()); 413*0b57cec5SDimitry Andric MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr); 414*0b57cec5SDimitry Andric if (ArgAlign) 415*0b57cec5SDimitry Andric LargestAlignSeen = std::max(LargestAlignSeen, 416*0b57cec5SDimitry Andric VA.getLocVT().getStoreSizeInBits() >> 3); 417*0b57cec5SDimitry Andric if (Flags.isByVal()) { 418*0b57cec5SDimitry Andric // The argument is a struct passed by value. According to LLVM, "Arg" 419*0b57cec5SDimitry Andric // is a pointer. 420*0b57cec5SDimitry Andric MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain, 421*0b57cec5SDimitry Andric Flags, DAG, dl)); 422*0b57cec5SDimitry Andric } else { 423*0b57cec5SDimitry Andric MachinePointerInfo LocPI = MachinePointerInfo::getStack( 424*0b57cec5SDimitry Andric DAG.getMachineFunction(), LocMemOffset); 425*0b57cec5SDimitry Andric SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI); 426*0b57cec5SDimitry Andric MemOpChains.push_back(S); 427*0b57cec5SDimitry Andric } 428*0b57cec5SDimitry Andric continue; 429*0b57cec5SDimitry Andric } 430*0b57cec5SDimitry Andric 431*0b57cec5SDimitry Andric // Arguments that can be passed on register must be kept at RegsToPass 432*0b57cec5SDimitry Andric // vector. 433*0b57cec5SDimitry Andric if (VA.isRegLoc()) 434*0b57cec5SDimitry Andric RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 435*0b57cec5SDimitry Andric } 436*0b57cec5SDimitry Andric 437*0b57cec5SDimitry Andric if (NeedsArgAlign && Subtarget.hasV60Ops()) { 438*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n"); 439*0b57cec5SDimitry Andric unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); 440*0b57cec5SDimitry Andric LargestAlignSeen = std::max(LargestAlignSeen, VecAlign); 441*0b57cec5SDimitry Andric MFI.ensureMaxAlignment(LargestAlignSeen); 442*0b57cec5SDimitry Andric } 443*0b57cec5SDimitry Andric // Transform all store nodes into one single node because all store 444*0b57cec5SDimitry Andric // nodes are independent of each other. 445*0b57cec5SDimitry Andric if (!MemOpChains.empty()) 446*0b57cec5SDimitry Andric Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 447*0b57cec5SDimitry Andric 448*0b57cec5SDimitry Andric SDValue Glue; 449*0b57cec5SDimitry Andric if (!CLI.IsTailCall) { 450*0b57cec5SDimitry Andric Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 451*0b57cec5SDimitry Andric Glue = Chain.getValue(1); 452*0b57cec5SDimitry Andric } 453*0b57cec5SDimitry Andric 454*0b57cec5SDimitry Andric // Build a sequence of copy-to-reg nodes chained together with token 455*0b57cec5SDimitry Andric // chain and flag operands which copy the outgoing args into registers. 456*0b57cec5SDimitry Andric // The Glue is necessary since all emitted instructions must be 457*0b57cec5SDimitry Andric // stuck together. 458*0b57cec5SDimitry Andric if (!CLI.IsTailCall) { 459*0b57cec5SDimitry Andric for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 460*0b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 461*0b57cec5SDimitry Andric RegsToPass[i].second, Glue); 462*0b57cec5SDimitry Andric Glue = Chain.getValue(1); 463*0b57cec5SDimitry Andric } 464*0b57cec5SDimitry Andric } else { 465*0b57cec5SDimitry Andric // For tail calls lower the arguments to the 'real' stack slot. 466*0b57cec5SDimitry Andric // 467*0b57cec5SDimitry Andric // Force all the incoming stack arguments to be loaded from the stack 468*0b57cec5SDimitry Andric // before any new outgoing arguments are stored to the stack, because the 469*0b57cec5SDimitry Andric // outgoing stack slots may alias the incoming argument stack slots, and 470*0b57cec5SDimitry Andric // the alias isn't otherwise explicit. This is slightly more conservative 471*0b57cec5SDimitry Andric // than necessary, because it means that each store effectively depends 472*0b57cec5SDimitry Andric // on every argument instead of just those arguments it would clobber. 473*0b57cec5SDimitry Andric // 474*0b57cec5SDimitry Andric // Do not flag preceding copytoreg stuff together with the following stuff. 475*0b57cec5SDimitry Andric Glue = SDValue(); 476*0b57cec5SDimitry Andric for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 477*0b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 478*0b57cec5SDimitry Andric RegsToPass[i].second, Glue); 479*0b57cec5SDimitry Andric Glue = Chain.getValue(1); 480*0b57cec5SDimitry Andric } 481*0b57cec5SDimitry Andric Glue = SDValue(); 482*0b57cec5SDimitry Andric } 483*0b57cec5SDimitry Andric 484*0b57cec5SDimitry Andric bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls(); 485*0b57cec5SDimitry Andric unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0; 486*0b57cec5SDimitry Andric 487*0b57cec5SDimitry Andric // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 488*0b57cec5SDimitry Andric // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 489*0b57cec5SDimitry Andric // node so that legalize doesn't hack it. 490*0b57cec5SDimitry Andric if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 491*0b57cec5SDimitry Andric Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags); 492*0b57cec5SDimitry Andric } else if (ExternalSymbolSDNode *S = 493*0b57cec5SDimitry Andric dyn_cast<ExternalSymbolSDNode>(Callee)) { 494*0b57cec5SDimitry Andric Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags); 495*0b57cec5SDimitry Andric } 496*0b57cec5SDimitry Andric 497*0b57cec5SDimitry Andric // Returns a chain & a flag for retval copy to use. 498*0b57cec5SDimitry Andric SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 499*0b57cec5SDimitry Andric SmallVector<SDValue, 8> Ops; 500*0b57cec5SDimitry Andric Ops.push_back(Chain); 501*0b57cec5SDimitry Andric Ops.push_back(Callee); 502*0b57cec5SDimitry Andric 503*0b57cec5SDimitry Andric // Add argument registers to the end of the list so that they are 504*0b57cec5SDimitry Andric // known live into the call. 505*0b57cec5SDimitry Andric for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 506*0b57cec5SDimitry Andric Ops.push_back(DAG.getRegister(RegsToPass[i].first, 507*0b57cec5SDimitry Andric RegsToPass[i].second.getValueType())); 508*0b57cec5SDimitry Andric } 509*0b57cec5SDimitry Andric 510*0b57cec5SDimitry Andric const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv); 511*0b57cec5SDimitry Andric assert(Mask && "Missing call preserved mask for calling convention"); 512*0b57cec5SDimitry Andric Ops.push_back(DAG.getRegisterMask(Mask)); 513*0b57cec5SDimitry Andric 514*0b57cec5SDimitry Andric if (Glue.getNode()) 515*0b57cec5SDimitry Andric Ops.push_back(Glue); 516*0b57cec5SDimitry Andric 517*0b57cec5SDimitry Andric if (CLI.IsTailCall) { 518*0b57cec5SDimitry Andric MFI.setHasTailCall(); 519*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops); 520*0b57cec5SDimitry Andric } 521*0b57cec5SDimitry Andric 522*0b57cec5SDimitry Andric // Set this here because we need to know this for "hasFP" in frame lowering. 523*0b57cec5SDimitry Andric // The target-independent code calls getFrameRegister before setting it, and 524*0b57cec5SDimitry Andric // getFrameRegister uses hasFP to determine whether the function has FP. 525*0b57cec5SDimitry Andric MFI.setHasCalls(true); 526*0b57cec5SDimitry Andric 527*0b57cec5SDimitry Andric unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL; 528*0b57cec5SDimitry Andric Chain = DAG.getNode(OpCode, dl, NodeTys, Ops); 529*0b57cec5SDimitry Andric Glue = Chain.getValue(1); 530*0b57cec5SDimitry Andric 531*0b57cec5SDimitry Andric // Create the CALLSEQ_END node. 532*0b57cec5SDimitry Andric Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 533*0b57cec5SDimitry Andric DAG.getIntPtrConstant(0, dl, true), Glue, dl); 534*0b57cec5SDimitry Andric Glue = Chain.getValue(1); 535*0b57cec5SDimitry Andric 536*0b57cec5SDimitry Andric // Handle result values, copying them out of physregs into vregs that we 537*0b57cec5SDimitry Andric // return. 538*0b57cec5SDimitry Andric return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG, 539*0b57cec5SDimitry Andric InVals, OutVals, Callee); 540*0b57cec5SDimitry Andric } 541*0b57cec5SDimitry Andric 542*0b57cec5SDimitry Andric /// Returns true by value, base pointer and offset pointer and addressing 543*0b57cec5SDimitry Andric /// mode by reference if this node can be combined with a load / store to 544*0b57cec5SDimitry Andric /// form a post-indexed load / store. 545*0b57cec5SDimitry Andric bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 546*0b57cec5SDimitry Andric SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, 547*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 548*0b57cec5SDimitry Andric LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N); 549*0b57cec5SDimitry Andric if (!LSN) 550*0b57cec5SDimitry Andric return false; 551*0b57cec5SDimitry Andric EVT VT = LSN->getMemoryVT(); 552*0b57cec5SDimitry Andric if (!VT.isSimple()) 553*0b57cec5SDimitry Andric return false; 554*0b57cec5SDimitry Andric bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || 555*0b57cec5SDimitry Andric VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 || 556*0b57cec5SDimitry Andric VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 || 557*0b57cec5SDimitry Andric VT == MVT::v4i16 || VT == MVT::v8i8 || 558*0b57cec5SDimitry Andric Subtarget.isHVXVectorType(VT.getSimpleVT()); 559*0b57cec5SDimitry Andric if (!IsLegalType) 560*0b57cec5SDimitry Andric return false; 561*0b57cec5SDimitry Andric 562*0b57cec5SDimitry Andric if (Op->getOpcode() != ISD::ADD) 563*0b57cec5SDimitry Andric return false; 564*0b57cec5SDimitry Andric Base = Op->getOperand(0); 565*0b57cec5SDimitry Andric Offset = Op->getOperand(1); 566*0b57cec5SDimitry Andric if (!isa<ConstantSDNode>(Offset.getNode())) 567*0b57cec5SDimitry Andric return false; 568*0b57cec5SDimitry Andric AM = ISD::POST_INC; 569*0b57cec5SDimitry Andric 570*0b57cec5SDimitry Andric int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 571*0b57cec5SDimitry Andric return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V); 572*0b57cec5SDimitry Andric } 573*0b57cec5SDimitry Andric 574*0b57cec5SDimitry Andric SDValue 575*0b57cec5SDimitry Andric HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 576*0b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 577*0b57cec5SDimitry Andric auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 578*0b57cec5SDimitry Andric const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 579*0b57cec5SDimitry Andric unsigned LR = HRI.getRARegister(); 580*0b57cec5SDimitry Andric 581*0b57cec5SDimitry Andric if ((Op.getOpcode() != ISD::INLINEASM && 582*0b57cec5SDimitry Andric Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR()) 583*0b57cec5SDimitry Andric return Op; 584*0b57cec5SDimitry Andric 585*0b57cec5SDimitry Andric unsigned NumOps = Op.getNumOperands(); 586*0b57cec5SDimitry Andric if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue) 587*0b57cec5SDimitry Andric --NumOps; // Ignore the flag operand. 588*0b57cec5SDimitry Andric 589*0b57cec5SDimitry Andric for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 590*0b57cec5SDimitry Andric unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 591*0b57cec5SDimitry Andric unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 592*0b57cec5SDimitry Andric ++i; // Skip the ID value. 593*0b57cec5SDimitry Andric 594*0b57cec5SDimitry Andric switch (InlineAsm::getKind(Flags)) { 595*0b57cec5SDimitry Andric default: 596*0b57cec5SDimitry Andric llvm_unreachable("Bad flags!"); 597*0b57cec5SDimitry Andric case InlineAsm::Kind_RegUse: 598*0b57cec5SDimitry Andric case InlineAsm::Kind_Imm: 599*0b57cec5SDimitry Andric case InlineAsm::Kind_Mem: 600*0b57cec5SDimitry Andric i += NumVals; 601*0b57cec5SDimitry Andric break; 602*0b57cec5SDimitry Andric case InlineAsm::Kind_Clobber: 603*0b57cec5SDimitry Andric case InlineAsm::Kind_RegDef: 604*0b57cec5SDimitry Andric case InlineAsm::Kind_RegDefEarlyClobber: { 605*0b57cec5SDimitry Andric for (; NumVals; --NumVals, ++i) { 606*0b57cec5SDimitry Andric unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 607*0b57cec5SDimitry Andric if (Reg != LR) 608*0b57cec5SDimitry Andric continue; 609*0b57cec5SDimitry Andric HMFI.setHasClobberLR(true); 610*0b57cec5SDimitry Andric return Op; 611*0b57cec5SDimitry Andric } 612*0b57cec5SDimitry Andric break; 613*0b57cec5SDimitry Andric } 614*0b57cec5SDimitry Andric } 615*0b57cec5SDimitry Andric } 616*0b57cec5SDimitry Andric 617*0b57cec5SDimitry Andric return Op; 618*0b57cec5SDimitry Andric } 619*0b57cec5SDimitry Andric 620*0b57cec5SDimitry Andric // Need to transform ISD::PREFETCH into something that doesn't inherit 621*0b57cec5SDimitry Andric // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and 622*0b57cec5SDimitry Andric // SDNPMayStore. 623*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op, 624*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 625*0b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 626*0b57cec5SDimitry Andric SDValue Addr = Op.getOperand(1); 627*0b57cec5SDimitry Andric // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in, 628*0b57cec5SDimitry Andric // if the "reg" is fed by an "add". 629*0b57cec5SDimitry Andric SDLoc DL(Op); 630*0b57cec5SDimitry Andric SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 631*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); 632*0b57cec5SDimitry Andric } 633*0b57cec5SDimitry Andric 634*0b57cec5SDimitry Andric // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode 635*0b57cec5SDimitry Andric // is marked as having side-effects, while the register read on Hexagon does 636*0b57cec5SDimitry Andric // not have any. TableGen refuses to accept the direct pattern from that node 637*0b57cec5SDimitry Andric // to the A4_tfrcpp. 638*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op, 639*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 640*0b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 641*0b57cec5SDimitry Andric SDLoc dl(Op); 642*0b57cec5SDimitry Andric SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 643*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain); 644*0b57cec5SDimitry Andric } 645*0b57cec5SDimitry Andric 646*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 647*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 648*0b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 649*0b57cec5SDimitry Andric unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 650*0b57cec5SDimitry Andric // Lower the hexagon_prefetch builtin to DCFETCH, as above. 651*0b57cec5SDimitry Andric if (IntNo == Intrinsic::hexagon_prefetch) { 652*0b57cec5SDimitry Andric SDValue Addr = Op.getOperand(2); 653*0b57cec5SDimitry Andric SDLoc DL(Op); 654*0b57cec5SDimitry Andric SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 655*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); 656*0b57cec5SDimitry Andric } 657*0b57cec5SDimitry Andric return SDValue(); 658*0b57cec5SDimitry Andric } 659*0b57cec5SDimitry Andric 660*0b57cec5SDimitry Andric SDValue 661*0b57cec5SDimitry Andric HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 662*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 663*0b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 664*0b57cec5SDimitry Andric SDValue Size = Op.getOperand(1); 665*0b57cec5SDimitry Andric SDValue Align = Op.getOperand(2); 666*0b57cec5SDimitry Andric SDLoc dl(Op); 667*0b57cec5SDimitry Andric 668*0b57cec5SDimitry Andric ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align); 669*0b57cec5SDimitry Andric assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC"); 670*0b57cec5SDimitry Andric 671*0b57cec5SDimitry Andric unsigned A = AlignConst->getSExtValue(); 672*0b57cec5SDimitry Andric auto &HFI = *Subtarget.getFrameLowering(); 673*0b57cec5SDimitry Andric // "Zero" means natural stack alignment. 674*0b57cec5SDimitry Andric if (A == 0) 675*0b57cec5SDimitry Andric A = HFI.getStackAlignment(); 676*0b57cec5SDimitry Andric 677*0b57cec5SDimitry Andric LLVM_DEBUG({ 678*0b57cec5SDimitry Andric dbgs () << __func__ << " Align: " << A << " Size: "; 679*0b57cec5SDimitry Andric Size.getNode()->dump(&DAG); 680*0b57cec5SDimitry Andric dbgs() << "\n"; 681*0b57cec5SDimitry Andric }); 682*0b57cec5SDimitry Andric 683*0b57cec5SDimitry Andric SDValue AC = DAG.getConstant(A, dl, MVT::i32); 684*0b57cec5SDimitry Andric SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 685*0b57cec5SDimitry Andric SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC); 686*0b57cec5SDimitry Andric 687*0b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op, AA); 688*0b57cec5SDimitry Andric return AA; 689*0b57cec5SDimitry Andric } 690*0b57cec5SDimitry Andric 691*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerFormalArguments( 692*0b57cec5SDimitry Andric SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 693*0b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 694*0b57cec5SDimitry Andric SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 695*0b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 696*0b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 697*0b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 698*0b57cec5SDimitry Andric 699*0b57cec5SDimitry Andric // Assign locations to all of the incoming arguments. 700*0b57cec5SDimitry Andric SmallVector<CCValAssign, 16> ArgLocs; 701*0b57cec5SDimitry Andric HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(), 702*0b57cec5SDimitry Andric MF.getFunction().getFunctionType()->getNumParams()); 703*0b57cec5SDimitry Andric 704*0b57cec5SDimitry Andric if (Subtarget.useHVXOps()) 705*0b57cec5SDimitry Andric CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX); 706*0b57cec5SDimitry Andric else 707*0b57cec5SDimitry Andric CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); 708*0b57cec5SDimitry Andric 709*0b57cec5SDimitry Andric // For LLVM, in the case when returning a struct by value (>8byte), 710*0b57cec5SDimitry Andric // the first argument is a pointer that points to the location on caller's 711*0b57cec5SDimitry Andric // stack where the return value will be stored. For Hexagon, the location on 712*0b57cec5SDimitry Andric // caller's stack is passed only when the struct size is smaller than (and 713*0b57cec5SDimitry Andric // equal to) 8 bytes. If not, no address will be passed into callee and 714*0b57cec5SDimitry Andric // callee return the result direclty through R0/R1. 715*0b57cec5SDimitry Andric 716*0b57cec5SDimitry Andric auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 717*0b57cec5SDimitry Andric 718*0b57cec5SDimitry Andric for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 719*0b57cec5SDimitry Andric CCValAssign &VA = ArgLocs[i]; 720*0b57cec5SDimitry Andric ISD::ArgFlagsTy Flags = Ins[i].Flags; 721*0b57cec5SDimitry Andric bool ByVal = Flags.isByVal(); 722*0b57cec5SDimitry Andric 723*0b57cec5SDimitry Andric // Arguments passed in registers: 724*0b57cec5SDimitry Andric // 1. 32- and 64-bit values and HVX vectors are passed directly, 725*0b57cec5SDimitry Andric // 2. Large structs are passed via an address, and the address is 726*0b57cec5SDimitry Andric // passed in a register. 727*0b57cec5SDimitry Andric if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8) 728*0b57cec5SDimitry Andric llvm_unreachable("ByValSize must be bigger than 8 bytes"); 729*0b57cec5SDimitry Andric 730*0b57cec5SDimitry Andric bool InReg = VA.isRegLoc() && 731*0b57cec5SDimitry Andric (!ByVal || (ByVal && Flags.getByValSize() > 8)); 732*0b57cec5SDimitry Andric 733*0b57cec5SDimitry Andric if (InReg) { 734*0b57cec5SDimitry Andric MVT RegVT = VA.getLocVT(); 735*0b57cec5SDimitry Andric if (VA.getLocInfo() == CCValAssign::BCvt) 736*0b57cec5SDimitry Andric RegVT = VA.getValVT(); 737*0b57cec5SDimitry Andric 738*0b57cec5SDimitry Andric const TargetRegisterClass *RC = getRegClassFor(RegVT); 739*0b57cec5SDimitry Andric unsigned VReg = MRI.createVirtualRegister(RC); 740*0b57cec5SDimitry Andric SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 741*0b57cec5SDimitry Andric 742*0b57cec5SDimitry Andric // Treat values of type MVT::i1 specially: they are passed in 743*0b57cec5SDimitry Andric // registers of type i32, but they need to remain as values of 744*0b57cec5SDimitry Andric // type i1 for consistency of the argument lowering. 745*0b57cec5SDimitry Andric if (VA.getValVT() == MVT::i1) { 746*0b57cec5SDimitry Andric assert(RegVT.getSizeInBits() <= 32); 747*0b57cec5SDimitry Andric SDValue T = DAG.getNode(ISD::AND, dl, RegVT, 748*0b57cec5SDimitry Andric Copy, DAG.getConstant(1, dl, RegVT)); 749*0b57cec5SDimitry Andric Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT), 750*0b57cec5SDimitry Andric ISD::SETNE); 751*0b57cec5SDimitry Andric } else { 752*0b57cec5SDimitry Andric #ifndef NDEBUG 753*0b57cec5SDimitry Andric unsigned RegSize = RegVT.getSizeInBits(); 754*0b57cec5SDimitry Andric assert(RegSize == 32 || RegSize == 64 || 755*0b57cec5SDimitry Andric Subtarget.isHVXVectorType(RegVT)); 756*0b57cec5SDimitry Andric #endif 757*0b57cec5SDimitry Andric } 758*0b57cec5SDimitry Andric InVals.push_back(Copy); 759*0b57cec5SDimitry Andric MRI.addLiveIn(VA.getLocReg(), VReg); 760*0b57cec5SDimitry Andric } else { 761*0b57cec5SDimitry Andric assert(VA.isMemLoc() && "Argument should be passed in memory"); 762*0b57cec5SDimitry Andric 763*0b57cec5SDimitry Andric // If it's a byval parameter, then we need to compute the 764*0b57cec5SDimitry Andric // "real" size, not the size of the pointer. 765*0b57cec5SDimitry Andric unsigned ObjSize = Flags.isByVal() 766*0b57cec5SDimitry Andric ? Flags.getByValSize() 767*0b57cec5SDimitry Andric : VA.getLocVT().getStoreSizeInBits() / 8; 768*0b57cec5SDimitry Andric 769*0b57cec5SDimitry Andric // Create the frame index object for this incoming parameter. 770*0b57cec5SDimitry Andric int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); 771*0b57cec5SDimitry Andric int FI = MFI.CreateFixedObject(ObjSize, Offset, true); 772*0b57cec5SDimitry Andric SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 773*0b57cec5SDimitry Andric 774*0b57cec5SDimitry Andric if (Flags.isByVal()) { 775*0b57cec5SDimitry Andric // If it's a pass-by-value aggregate, then do not dereference the stack 776*0b57cec5SDimitry Andric // location. Instead, we should generate a reference to the stack 777*0b57cec5SDimitry Andric // location. 778*0b57cec5SDimitry Andric InVals.push_back(FIN); 779*0b57cec5SDimitry Andric } else { 780*0b57cec5SDimitry Andric SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 781*0b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI, 0)); 782*0b57cec5SDimitry Andric InVals.push_back(L); 783*0b57cec5SDimitry Andric } 784*0b57cec5SDimitry Andric } 785*0b57cec5SDimitry Andric } 786*0b57cec5SDimitry Andric 787*0b57cec5SDimitry Andric 788*0b57cec5SDimitry Andric if (IsVarArg) { 789*0b57cec5SDimitry Andric // This will point to the next argument passed via stack. 790*0b57cec5SDimitry Andric int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset(); 791*0b57cec5SDimitry Andric int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true); 792*0b57cec5SDimitry Andric HMFI.setVarArgsFrameIndex(FI); 793*0b57cec5SDimitry Andric } 794*0b57cec5SDimitry Andric 795*0b57cec5SDimitry Andric return Chain; 796*0b57cec5SDimitry Andric } 797*0b57cec5SDimitry Andric 798*0b57cec5SDimitry Andric SDValue 799*0b57cec5SDimitry Andric HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 800*0b57cec5SDimitry Andric // VASTART stores the address of the VarArgsFrameIndex slot into the 801*0b57cec5SDimitry Andric // memory location argument. 802*0b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 803*0b57cec5SDimitry Andric HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>(); 804*0b57cec5SDimitry Andric SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); 805*0b57cec5SDimitry Andric const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 806*0b57cec5SDimitry Andric return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1), 807*0b57cec5SDimitry Andric MachinePointerInfo(SV)); 808*0b57cec5SDimitry Andric } 809*0b57cec5SDimitry Andric 810*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 811*0b57cec5SDimitry Andric const SDLoc &dl(Op); 812*0b57cec5SDimitry Andric SDValue LHS = Op.getOperand(0); 813*0b57cec5SDimitry Andric SDValue RHS = Op.getOperand(1); 814*0b57cec5SDimitry Andric ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 815*0b57cec5SDimitry Andric MVT ResTy = ty(Op); 816*0b57cec5SDimitry Andric MVT OpTy = ty(LHS); 817*0b57cec5SDimitry Andric 818*0b57cec5SDimitry Andric if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) { 819*0b57cec5SDimitry Andric MVT ElemTy = OpTy.getVectorElementType(); 820*0b57cec5SDimitry Andric assert(ElemTy.isScalarInteger()); 821*0b57cec5SDimitry Andric MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()), 822*0b57cec5SDimitry Andric OpTy.getVectorNumElements()); 823*0b57cec5SDimitry Andric return DAG.getSetCC(dl, ResTy, 824*0b57cec5SDimitry Andric DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy), 825*0b57cec5SDimitry Andric DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC); 826*0b57cec5SDimitry Andric } 827*0b57cec5SDimitry Andric 828*0b57cec5SDimitry Andric // Treat all other vector types as legal. 829*0b57cec5SDimitry Andric if (ResTy.isVector()) 830*0b57cec5SDimitry Andric return Op; 831*0b57cec5SDimitry Andric 832*0b57cec5SDimitry Andric // Comparisons of short integers should use sign-extend, not zero-extend, 833*0b57cec5SDimitry Andric // since we can represent small negative values in the compare instructions. 834*0b57cec5SDimitry Andric // The LLVM default is to use zero-extend arbitrarily in these cases. 835*0b57cec5SDimitry Andric auto isSExtFree = [this](SDValue N) { 836*0b57cec5SDimitry Andric switch (N.getOpcode()) { 837*0b57cec5SDimitry Andric case ISD::TRUNCATE: { 838*0b57cec5SDimitry Andric // A sign-extend of a truncate of a sign-extend is free. 839*0b57cec5SDimitry Andric SDValue Op = N.getOperand(0); 840*0b57cec5SDimitry Andric if (Op.getOpcode() != ISD::AssertSext) 841*0b57cec5SDimitry Andric return false; 842*0b57cec5SDimitry Andric EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT(); 843*0b57cec5SDimitry Andric unsigned ThisBW = ty(N).getSizeInBits(); 844*0b57cec5SDimitry Andric unsigned OrigBW = OrigTy.getSizeInBits(); 845*0b57cec5SDimitry Andric // The type that was sign-extended to get the AssertSext must be 846*0b57cec5SDimitry Andric // narrower than the type of N (so that N has still the same value 847*0b57cec5SDimitry Andric // as the original). 848*0b57cec5SDimitry Andric return ThisBW >= OrigBW; 849*0b57cec5SDimitry Andric } 850*0b57cec5SDimitry Andric case ISD::LOAD: 851*0b57cec5SDimitry Andric // We have sign-extended loads. 852*0b57cec5SDimitry Andric return true; 853*0b57cec5SDimitry Andric } 854*0b57cec5SDimitry Andric return false; 855*0b57cec5SDimitry Andric }; 856*0b57cec5SDimitry Andric 857*0b57cec5SDimitry Andric if (OpTy == MVT::i8 || OpTy == MVT::i16) { 858*0b57cec5SDimitry Andric ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS); 859*0b57cec5SDimitry Andric bool IsNegative = C && C->getAPIntValue().isNegative(); 860*0b57cec5SDimitry Andric if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS)) 861*0b57cec5SDimitry Andric return DAG.getSetCC(dl, ResTy, 862*0b57cec5SDimitry Andric DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32), 863*0b57cec5SDimitry Andric DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC); 864*0b57cec5SDimitry Andric } 865*0b57cec5SDimitry Andric 866*0b57cec5SDimitry Andric return SDValue(); 867*0b57cec5SDimitry Andric } 868*0b57cec5SDimitry Andric 869*0b57cec5SDimitry Andric SDValue 870*0b57cec5SDimitry Andric HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { 871*0b57cec5SDimitry Andric SDValue PredOp = Op.getOperand(0); 872*0b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2); 873*0b57cec5SDimitry Andric EVT OpVT = Op1.getValueType(); 874*0b57cec5SDimitry Andric SDLoc DL(Op); 875*0b57cec5SDimitry Andric 876*0b57cec5SDimitry Andric if (OpVT == MVT::v2i16) { 877*0b57cec5SDimitry Andric SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1); 878*0b57cec5SDimitry Andric SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2); 879*0b57cec5SDimitry Andric SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2); 880*0b57cec5SDimitry Andric SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL); 881*0b57cec5SDimitry Andric return TR; 882*0b57cec5SDimitry Andric } 883*0b57cec5SDimitry Andric 884*0b57cec5SDimitry Andric return SDValue(); 885*0b57cec5SDimitry Andric } 886*0b57cec5SDimitry Andric 887*0b57cec5SDimitry Andric static Constant *convert_i1_to_i8(const Constant *ConstVal) { 888*0b57cec5SDimitry Andric SmallVector<Constant *, 128> NewConst; 889*0b57cec5SDimitry Andric const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal); 890*0b57cec5SDimitry Andric if (!CV) 891*0b57cec5SDimitry Andric return nullptr; 892*0b57cec5SDimitry Andric 893*0b57cec5SDimitry Andric LLVMContext &Ctx = ConstVal->getContext(); 894*0b57cec5SDimitry Andric IRBuilder<> IRB(Ctx); 895*0b57cec5SDimitry Andric unsigned NumVectorElements = CV->getNumOperands(); 896*0b57cec5SDimitry Andric assert(isPowerOf2_32(NumVectorElements) && 897*0b57cec5SDimitry Andric "conversion only supported for pow2 VectorSize!"); 898*0b57cec5SDimitry Andric 899*0b57cec5SDimitry Andric for (unsigned i = 0; i < NumVectorElements / 8; ++i) { 900*0b57cec5SDimitry Andric uint8_t x = 0; 901*0b57cec5SDimitry Andric for (unsigned j = 0; j < 8; ++j) { 902*0b57cec5SDimitry Andric uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue(); 903*0b57cec5SDimitry Andric x |= y << (7 - j); 904*0b57cec5SDimitry Andric } 905*0b57cec5SDimitry Andric assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!"); 906*0b57cec5SDimitry Andric NewConst.push_back(IRB.getInt8(x)); 907*0b57cec5SDimitry Andric } 908*0b57cec5SDimitry Andric return ConstantVector::get(NewConst); 909*0b57cec5SDimitry Andric } 910*0b57cec5SDimitry Andric 911*0b57cec5SDimitry Andric SDValue 912*0b57cec5SDimitry Andric HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { 913*0b57cec5SDimitry Andric EVT ValTy = Op.getValueType(); 914*0b57cec5SDimitry Andric ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op); 915*0b57cec5SDimitry Andric Constant *CVal = nullptr; 916*0b57cec5SDimitry Andric bool isVTi1Type = false; 917*0b57cec5SDimitry Andric if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) { 918*0b57cec5SDimitry Andric Type *CValTy = ConstVal->getType(); 919*0b57cec5SDimitry Andric if (CValTy->isVectorTy() && 920*0b57cec5SDimitry Andric CValTy->getVectorElementType()->isIntegerTy(1)) { 921*0b57cec5SDimitry Andric CVal = convert_i1_to_i8(ConstVal); 922*0b57cec5SDimitry Andric isVTi1Type = (CVal != nullptr); 923*0b57cec5SDimitry Andric } 924*0b57cec5SDimitry Andric } 925*0b57cec5SDimitry Andric unsigned Align = CPN->getAlignment(); 926*0b57cec5SDimitry Andric bool IsPositionIndependent = isPositionIndependent(); 927*0b57cec5SDimitry Andric unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0; 928*0b57cec5SDimitry Andric 929*0b57cec5SDimitry Andric unsigned Offset = 0; 930*0b57cec5SDimitry Andric SDValue T; 931*0b57cec5SDimitry Andric if (CPN->isMachineConstantPoolEntry()) 932*0b57cec5SDimitry Andric T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset, 933*0b57cec5SDimitry Andric TF); 934*0b57cec5SDimitry Andric else if (isVTi1Type) 935*0b57cec5SDimitry Andric T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF); 936*0b57cec5SDimitry Andric else 937*0b57cec5SDimitry Andric T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF); 938*0b57cec5SDimitry Andric 939*0b57cec5SDimitry Andric assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF && 940*0b57cec5SDimitry Andric "Inconsistent target flag encountered"); 941*0b57cec5SDimitry Andric 942*0b57cec5SDimitry Andric if (IsPositionIndependent) 943*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T); 944*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T); 945*0b57cec5SDimitry Andric } 946*0b57cec5SDimitry Andric 947*0b57cec5SDimitry Andric SDValue 948*0b57cec5SDimitry Andric HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 949*0b57cec5SDimitry Andric EVT VT = Op.getValueType(); 950*0b57cec5SDimitry Andric int Idx = cast<JumpTableSDNode>(Op)->getIndex(); 951*0b57cec5SDimitry Andric if (isPositionIndependent()) { 952*0b57cec5SDimitry Andric SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); 953*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T); 954*0b57cec5SDimitry Andric } 955*0b57cec5SDimitry Andric 956*0b57cec5SDimitry Andric SDValue T = DAG.getTargetJumpTable(Idx, VT); 957*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T); 958*0b57cec5SDimitry Andric } 959*0b57cec5SDimitry Andric 960*0b57cec5SDimitry Andric SDValue 961*0b57cec5SDimitry Andric HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 962*0b57cec5SDimitry Andric const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 963*0b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 964*0b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 965*0b57cec5SDimitry Andric MFI.setReturnAddressIsTaken(true); 966*0b57cec5SDimitry Andric 967*0b57cec5SDimitry Andric if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 968*0b57cec5SDimitry Andric return SDValue(); 969*0b57cec5SDimitry Andric 970*0b57cec5SDimitry Andric EVT VT = Op.getValueType(); 971*0b57cec5SDimitry Andric SDLoc dl(Op); 972*0b57cec5SDimitry Andric unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 973*0b57cec5SDimitry Andric if (Depth) { 974*0b57cec5SDimitry Andric SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 975*0b57cec5SDimitry Andric SDValue Offset = DAG.getConstant(4, dl, MVT::i32); 976*0b57cec5SDimitry Andric return DAG.getLoad(VT, dl, DAG.getEntryNode(), 977*0b57cec5SDimitry Andric DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), 978*0b57cec5SDimitry Andric MachinePointerInfo()); 979*0b57cec5SDimitry Andric } 980*0b57cec5SDimitry Andric 981*0b57cec5SDimitry Andric // Return LR, which contains the return address. Mark it an implicit live-in. 982*0b57cec5SDimitry Andric unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32)); 983*0b57cec5SDimitry Andric return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); 984*0b57cec5SDimitry Andric } 985*0b57cec5SDimitry Andric 986*0b57cec5SDimitry Andric SDValue 987*0b57cec5SDimitry Andric HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 988*0b57cec5SDimitry Andric const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 989*0b57cec5SDimitry Andric MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 990*0b57cec5SDimitry Andric MFI.setFrameAddressIsTaken(true); 991*0b57cec5SDimitry Andric 992*0b57cec5SDimitry Andric EVT VT = Op.getValueType(); 993*0b57cec5SDimitry Andric SDLoc dl(Op); 994*0b57cec5SDimitry Andric unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 995*0b57cec5SDimitry Andric SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 996*0b57cec5SDimitry Andric HRI.getFrameRegister(), VT); 997*0b57cec5SDimitry Andric while (Depth--) 998*0b57cec5SDimitry Andric FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 999*0b57cec5SDimitry Andric MachinePointerInfo()); 1000*0b57cec5SDimitry Andric return FrameAddr; 1001*0b57cec5SDimitry Andric } 1002*0b57cec5SDimitry Andric 1003*0b57cec5SDimitry Andric SDValue 1004*0b57cec5SDimitry Andric HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { 1005*0b57cec5SDimitry Andric SDLoc dl(Op); 1006*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); 1007*0b57cec5SDimitry Andric } 1008*0b57cec5SDimitry Andric 1009*0b57cec5SDimitry Andric SDValue 1010*0b57cec5SDimitry Andric HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { 1011*0b57cec5SDimitry Andric SDLoc dl(Op); 1012*0b57cec5SDimitry Andric auto *GAN = cast<GlobalAddressSDNode>(Op); 1013*0b57cec5SDimitry Andric auto PtrVT = getPointerTy(DAG.getDataLayout()); 1014*0b57cec5SDimitry Andric auto *GV = GAN->getGlobal(); 1015*0b57cec5SDimitry Andric int64_t Offset = GAN->getOffset(); 1016*0b57cec5SDimitry Andric 1017*0b57cec5SDimitry Andric auto &HLOF = *HTM.getObjFileLowering(); 1018*0b57cec5SDimitry Andric Reloc::Model RM = HTM.getRelocationModel(); 1019*0b57cec5SDimitry Andric 1020*0b57cec5SDimitry Andric if (RM == Reloc::Static) { 1021*0b57cec5SDimitry Andric SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); 1022*0b57cec5SDimitry Andric const GlobalObject *GO = GV->getBaseObject(); 1023*0b57cec5SDimitry Andric if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM)) 1024*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA); 1025*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA); 1026*0b57cec5SDimitry Andric } 1027*0b57cec5SDimitry Andric 1028*0b57cec5SDimitry Andric bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 1029*0b57cec5SDimitry Andric if (UsePCRel) { 1030*0b57cec5SDimitry Andric SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset, 1031*0b57cec5SDimitry Andric HexagonII::MO_PCREL); 1032*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA); 1033*0b57cec5SDimitry Andric } 1034*0b57cec5SDimitry Andric 1035*0b57cec5SDimitry Andric // Use GOT index. 1036*0b57cec5SDimitry Andric SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 1037*0b57cec5SDimitry Andric SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT); 1038*0b57cec5SDimitry Andric SDValue Off = DAG.getConstant(Offset, dl, MVT::i32); 1039*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off); 1040*0b57cec5SDimitry Andric } 1041*0b57cec5SDimitry Andric 1042*0b57cec5SDimitry Andric // Specifies that for loads and stores VT can be promoted to PromotedLdStVT. 1043*0b57cec5SDimitry Andric SDValue 1044*0b57cec5SDimitry Andric HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { 1045*0b57cec5SDimitry Andric const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1046*0b57cec5SDimitry Andric SDLoc dl(Op); 1047*0b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1048*0b57cec5SDimitry Andric 1049*0b57cec5SDimitry Andric Reloc::Model RM = HTM.getRelocationModel(); 1050*0b57cec5SDimitry Andric if (RM == Reloc::Static) { 1051*0b57cec5SDimitry Andric SDValue A = DAG.getTargetBlockAddress(BA, PtrVT); 1052*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A); 1053*0b57cec5SDimitry Andric } 1054*0b57cec5SDimitry Andric 1055*0b57cec5SDimitry Andric SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL); 1056*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A); 1057*0b57cec5SDimitry Andric } 1058*0b57cec5SDimitry Andric 1059*0b57cec5SDimitry Andric SDValue 1060*0b57cec5SDimitry Andric HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) 1061*0b57cec5SDimitry Andric const { 1062*0b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1063*0b57cec5SDimitry Andric SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT, 1064*0b57cec5SDimitry Andric HexagonII::MO_PCREL); 1065*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym); 1066*0b57cec5SDimitry Andric } 1067*0b57cec5SDimitry Andric 1068*0b57cec5SDimitry Andric SDValue 1069*0b57cec5SDimitry Andric HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain, 1070*0b57cec5SDimitry Andric GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg, 1071*0b57cec5SDimitry Andric unsigned char OperandFlags) const { 1072*0b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 1073*0b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 1074*0b57cec5SDimitry Andric SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1075*0b57cec5SDimitry Andric SDLoc dl(GA); 1076*0b57cec5SDimitry Andric SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, 1077*0b57cec5SDimitry Andric GA->getValueType(0), 1078*0b57cec5SDimitry Andric GA->getOffset(), 1079*0b57cec5SDimitry Andric OperandFlags); 1080*0b57cec5SDimitry Andric // Create Operands for the call.The Operands should have the following: 1081*0b57cec5SDimitry Andric // 1. Chain SDValue 1082*0b57cec5SDimitry Andric // 2. Callee which in this case is the Global address value. 1083*0b57cec5SDimitry Andric // 3. Registers live into the call.In this case its R0, as we 1084*0b57cec5SDimitry Andric // have just one argument to be passed. 1085*0b57cec5SDimitry Andric // 4. Glue. 1086*0b57cec5SDimitry Andric // Note: The order is important. 1087*0b57cec5SDimitry Andric 1088*0b57cec5SDimitry Andric const auto &HRI = *Subtarget.getRegisterInfo(); 1089*0b57cec5SDimitry Andric const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C); 1090*0b57cec5SDimitry Andric assert(Mask && "Missing call preserved mask for calling convention"); 1091*0b57cec5SDimitry Andric SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT), 1092*0b57cec5SDimitry Andric DAG.getRegisterMask(Mask), Glue }; 1093*0b57cec5SDimitry Andric Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops); 1094*0b57cec5SDimitry Andric 1095*0b57cec5SDimitry Andric // Inform MFI that function has calls. 1096*0b57cec5SDimitry Andric MFI.setAdjustsStack(true); 1097*0b57cec5SDimitry Andric 1098*0b57cec5SDimitry Andric Glue = Chain.getValue(1); 1099*0b57cec5SDimitry Andric return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue); 1100*0b57cec5SDimitry Andric } 1101*0b57cec5SDimitry Andric 1102*0b57cec5SDimitry Andric // 1103*0b57cec5SDimitry Andric // Lower using the intial executable model for TLS addresses 1104*0b57cec5SDimitry Andric // 1105*0b57cec5SDimitry Andric SDValue 1106*0b57cec5SDimitry Andric HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA, 1107*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 1108*0b57cec5SDimitry Andric SDLoc dl(GA); 1109*0b57cec5SDimitry Andric int64_t Offset = GA->getOffset(); 1110*0b57cec5SDimitry Andric auto PtrVT = getPointerTy(DAG.getDataLayout()); 1111*0b57cec5SDimitry Andric 1112*0b57cec5SDimitry Andric // Get the thread pointer. 1113*0b57cec5SDimitry Andric SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); 1114*0b57cec5SDimitry Andric 1115*0b57cec5SDimitry Andric bool IsPositionIndependent = isPositionIndependent(); 1116*0b57cec5SDimitry Andric unsigned char TF = 1117*0b57cec5SDimitry Andric IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE; 1118*0b57cec5SDimitry Andric 1119*0b57cec5SDimitry Andric // First generate the TLS symbol address 1120*0b57cec5SDimitry Andric SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, 1121*0b57cec5SDimitry Andric Offset, TF); 1122*0b57cec5SDimitry Andric 1123*0b57cec5SDimitry Andric SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1124*0b57cec5SDimitry Andric 1125*0b57cec5SDimitry Andric if (IsPositionIndependent) { 1126*0b57cec5SDimitry Andric // Generate the GOT pointer in case of position independent code 1127*0b57cec5SDimitry Andric SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG); 1128*0b57cec5SDimitry Andric 1129*0b57cec5SDimitry Andric // Add the TLS Symbol address to GOT pointer.This gives 1130*0b57cec5SDimitry Andric // GOT relative relocation for the symbol. 1131*0b57cec5SDimitry Andric Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); 1132*0b57cec5SDimitry Andric } 1133*0b57cec5SDimitry Andric 1134*0b57cec5SDimitry Andric // Load the offset value for TLS symbol.This offset is relative to 1135*0b57cec5SDimitry Andric // thread pointer. 1136*0b57cec5SDimitry Andric SDValue LoadOffset = 1137*0b57cec5SDimitry Andric DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo()); 1138*0b57cec5SDimitry Andric 1139*0b57cec5SDimitry Andric // Address of the thread local variable is the add of thread 1140*0b57cec5SDimitry Andric // pointer and the offset of the variable. 1141*0b57cec5SDimitry Andric return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset); 1142*0b57cec5SDimitry Andric } 1143*0b57cec5SDimitry Andric 1144*0b57cec5SDimitry Andric // 1145*0b57cec5SDimitry Andric // Lower using the local executable model for TLS addresses 1146*0b57cec5SDimitry Andric // 1147*0b57cec5SDimitry Andric SDValue 1148*0b57cec5SDimitry Andric HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA, 1149*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 1150*0b57cec5SDimitry Andric SDLoc dl(GA); 1151*0b57cec5SDimitry Andric int64_t Offset = GA->getOffset(); 1152*0b57cec5SDimitry Andric auto PtrVT = getPointerTy(DAG.getDataLayout()); 1153*0b57cec5SDimitry Andric 1154*0b57cec5SDimitry Andric // Get the thread pointer. 1155*0b57cec5SDimitry Andric SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); 1156*0b57cec5SDimitry Andric // Generate the TLS symbol address 1157*0b57cec5SDimitry Andric SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, 1158*0b57cec5SDimitry Andric HexagonII::MO_TPREL); 1159*0b57cec5SDimitry Andric SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1160*0b57cec5SDimitry Andric 1161*0b57cec5SDimitry Andric // Address of the thread local variable is the add of thread 1162*0b57cec5SDimitry Andric // pointer and the offset of the variable. 1163*0b57cec5SDimitry Andric return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym); 1164*0b57cec5SDimitry Andric } 1165*0b57cec5SDimitry Andric 1166*0b57cec5SDimitry Andric // 1167*0b57cec5SDimitry Andric // Lower using the general dynamic model for TLS addresses 1168*0b57cec5SDimitry Andric // 1169*0b57cec5SDimitry Andric SDValue 1170*0b57cec5SDimitry Andric HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 1171*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 1172*0b57cec5SDimitry Andric SDLoc dl(GA); 1173*0b57cec5SDimitry Andric int64_t Offset = GA->getOffset(); 1174*0b57cec5SDimitry Andric auto PtrVT = getPointerTy(DAG.getDataLayout()); 1175*0b57cec5SDimitry Andric 1176*0b57cec5SDimitry Andric // First generate the TLS symbol address 1177*0b57cec5SDimitry Andric SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, 1178*0b57cec5SDimitry Andric HexagonII::MO_GDGOT); 1179*0b57cec5SDimitry Andric 1180*0b57cec5SDimitry Andric // Then, generate the GOT pointer 1181*0b57cec5SDimitry Andric SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG); 1182*0b57cec5SDimitry Andric 1183*0b57cec5SDimitry Andric // Add the TLS symbol and the GOT pointer 1184*0b57cec5SDimitry Andric SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1185*0b57cec5SDimitry Andric SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); 1186*0b57cec5SDimitry Andric 1187*0b57cec5SDimitry Andric // Copy over the argument to R0 1188*0b57cec5SDimitry Andric SDValue InFlag; 1189*0b57cec5SDimitry Andric Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag); 1190*0b57cec5SDimitry Andric InFlag = Chain.getValue(1); 1191*0b57cec5SDimitry Andric 1192*0b57cec5SDimitry Andric unsigned Flags = 1193*0b57cec5SDimitry Andric static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls() 1194*0b57cec5SDimitry Andric ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended 1195*0b57cec5SDimitry Andric : HexagonII::MO_GDPLT; 1196*0b57cec5SDimitry Andric 1197*0b57cec5SDimitry Andric return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT, 1198*0b57cec5SDimitry Andric Hexagon::R0, Flags); 1199*0b57cec5SDimitry Andric } 1200*0b57cec5SDimitry Andric 1201*0b57cec5SDimitry Andric // 1202*0b57cec5SDimitry Andric // Lower TLS addresses. 1203*0b57cec5SDimitry Andric // 1204*0b57cec5SDimitry Andric // For now for dynamic models, we only support the general dynamic model. 1205*0b57cec5SDimitry Andric // 1206*0b57cec5SDimitry Andric SDValue 1207*0b57cec5SDimitry Andric HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1208*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 1209*0b57cec5SDimitry Andric GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 1210*0b57cec5SDimitry Andric 1211*0b57cec5SDimitry Andric switch (HTM.getTLSModel(GA->getGlobal())) { 1212*0b57cec5SDimitry Andric case TLSModel::GeneralDynamic: 1213*0b57cec5SDimitry Andric case TLSModel::LocalDynamic: 1214*0b57cec5SDimitry Andric return LowerToTLSGeneralDynamicModel(GA, DAG); 1215*0b57cec5SDimitry Andric case TLSModel::InitialExec: 1216*0b57cec5SDimitry Andric return LowerToTLSInitialExecModel(GA, DAG); 1217*0b57cec5SDimitry Andric case TLSModel::LocalExec: 1218*0b57cec5SDimitry Andric return LowerToTLSLocalExecModel(GA, DAG); 1219*0b57cec5SDimitry Andric } 1220*0b57cec5SDimitry Andric llvm_unreachable("Bogus TLS model"); 1221*0b57cec5SDimitry Andric } 1222*0b57cec5SDimitry Andric 1223*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1224*0b57cec5SDimitry Andric // TargetLowering Implementation 1225*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1226*0b57cec5SDimitry Andric 1227*0b57cec5SDimitry Andric HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM, 1228*0b57cec5SDimitry Andric const HexagonSubtarget &ST) 1229*0b57cec5SDimitry Andric : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)), 1230*0b57cec5SDimitry Andric Subtarget(ST) { 1231*0b57cec5SDimitry Andric auto &HRI = *Subtarget.getRegisterInfo(); 1232*0b57cec5SDimitry Andric 1233*0b57cec5SDimitry Andric setPrefLoopAlignment(4); 1234*0b57cec5SDimitry Andric setPrefFunctionAlignment(4); 1235*0b57cec5SDimitry Andric setMinFunctionAlignment(2); 1236*0b57cec5SDimitry Andric setStackPointerRegisterToSaveRestore(HRI.getStackRegister()); 1237*0b57cec5SDimitry Andric setBooleanContents(TargetLoweringBase::UndefinedBooleanContent); 1238*0b57cec5SDimitry Andric setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent); 1239*0b57cec5SDimitry Andric 1240*0b57cec5SDimitry Andric setMaxAtomicSizeInBitsSupported(64); 1241*0b57cec5SDimitry Andric setMinCmpXchgSizeInBits(32); 1242*0b57cec5SDimitry Andric 1243*0b57cec5SDimitry Andric if (EnableHexSDNodeSched) 1244*0b57cec5SDimitry Andric setSchedulingPreference(Sched::VLIW); 1245*0b57cec5SDimitry Andric else 1246*0b57cec5SDimitry Andric setSchedulingPreference(Sched::Source); 1247*0b57cec5SDimitry Andric 1248*0b57cec5SDimitry Andric // Limits for inline expansion of memcpy/memmove 1249*0b57cec5SDimitry Andric MaxStoresPerMemcpy = MaxStoresPerMemcpyCL; 1250*0b57cec5SDimitry Andric MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL; 1251*0b57cec5SDimitry Andric MaxStoresPerMemmove = MaxStoresPerMemmoveCL; 1252*0b57cec5SDimitry Andric MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL; 1253*0b57cec5SDimitry Andric MaxStoresPerMemset = MaxStoresPerMemsetCL; 1254*0b57cec5SDimitry Andric MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL; 1255*0b57cec5SDimitry Andric 1256*0b57cec5SDimitry Andric // 1257*0b57cec5SDimitry Andric // Set up register classes. 1258*0b57cec5SDimitry Andric // 1259*0b57cec5SDimitry Andric 1260*0b57cec5SDimitry Andric addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); 1261*0b57cec5SDimitry Andric addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa 1262*0b57cec5SDimitry Andric addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa 1263*0b57cec5SDimitry Andric addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba 1264*0b57cec5SDimitry Andric addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); 1265*0b57cec5SDimitry Andric addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass); 1266*0b57cec5SDimitry Andric addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass); 1267*0b57cec5SDimitry Andric addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); 1268*0b57cec5SDimitry Andric addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass); 1269*0b57cec5SDimitry Andric addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass); 1270*0b57cec5SDimitry Andric addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass); 1271*0b57cec5SDimitry Andric 1272*0b57cec5SDimitry Andric addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); 1273*0b57cec5SDimitry Andric addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); 1274*0b57cec5SDimitry Andric 1275*0b57cec5SDimitry Andric // 1276*0b57cec5SDimitry Andric // Handling of scalar operations. 1277*0b57cec5SDimitry Andric // 1278*0b57cec5SDimitry Andric // All operations default to "legal", except: 1279*0b57cec5SDimitry Andric // - indexed loads and stores (pre-/post-incremented), 1280*0b57cec5SDimitry Andric // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS, 1281*0b57cec5SDimitry Andric // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN, 1282*0b57cec5SDimitry Andric // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP, 1283*0b57cec5SDimitry Andric // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, 1284*0b57cec5SDimitry Andric // which default to "expand" for at least one type. 1285*0b57cec5SDimitry Andric 1286*0b57cec5SDimitry Andric // Misc operations. 1287*0b57cec5SDimitry Andric setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 1288*0b57cec5SDimitry Andric setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 1289*0b57cec5SDimitry Andric setOperationAction(ISD::TRAP, MVT::Other, Legal); 1290*0b57cec5SDimitry Andric setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 1291*0b57cec5SDimitry Andric setOperationAction(ISD::JumpTable, MVT::i32, Custom); 1292*0b57cec5SDimitry Andric setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 1293*0b57cec5SDimitry Andric setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 1294*0b57cec5SDimitry Andric setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 1295*0b57cec5SDimitry Andric setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 1296*0b57cec5SDimitry Andric setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 1297*0b57cec5SDimitry Andric setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1298*0b57cec5SDimitry Andric setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 1299*0b57cec5SDimitry Andric setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 1300*0b57cec5SDimitry Andric setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); 1301*0b57cec5SDimitry Andric setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 1302*0b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 1303*0b57cec5SDimitry Andric 1304*0b57cec5SDimitry Andric // Custom legalize GlobalAddress nodes into CONST32. 1305*0b57cec5SDimitry Andric setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 1306*0b57cec5SDimitry Andric setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); 1307*0b57cec5SDimitry Andric setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 1308*0b57cec5SDimitry Andric 1309*0b57cec5SDimitry Andric // Hexagon needs to optimize cases with negative constants. 1310*0b57cec5SDimitry Andric setOperationAction(ISD::SETCC, MVT::i8, Custom); 1311*0b57cec5SDimitry Andric setOperationAction(ISD::SETCC, MVT::i16, Custom); 1312*0b57cec5SDimitry Andric setOperationAction(ISD::SETCC, MVT::v4i8, Custom); 1313*0b57cec5SDimitry Andric setOperationAction(ISD::SETCC, MVT::v2i16, Custom); 1314*0b57cec5SDimitry Andric 1315*0b57cec5SDimitry Andric // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1316*0b57cec5SDimitry Andric setOperationAction(ISD::VASTART, MVT::Other, Custom); 1317*0b57cec5SDimitry Andric setOperationAction(ISD::VAEND, MVT::Other, Expand); 1318*0b57cec5SDimitry Andric setOperationAction(ISD::VAARG, MVT::Other, Expand); 1319*0b57cec5SDimitry Andric setOperationAction(ISD::VACOPY, MVT::Other, Expand); 1320*0b57cec5SDimitry Andric 1321*0b57cec5SDimitry Andric setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 1322*0b57cec5SDimitry Andric setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 1323*0b57cec5SDimitry Andric setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 1324*0b57cec5SDimitry Andric 1325*0b57cec5SDimitry Andric if (EmitJumpTables) 1326*0b57cec5SDimitry Andric setMinimumJumpTableEntries(MinimumJumpTables); 1327*0b57cec5SDimitry Andric else 1328*0b57cec5SDimitry Andric setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max()); 1329*0b57cec5SDimitry Andric setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1330*0b57cec5SDimitry Andric 1331*0b57cec5SDimitry Andric setOperationAction(ISD::ABS, MVT::i32, Legal); 1332*0b57cec5SDimitry Andric setOperationAction(ISD::ABS, MVT::i64, Legal); 1333*0b57cec5SDimitry Andric 1334*0b57cec5SDimitry Andric // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit, 1335*0b57cec5SDimitry Andric // but they only operate on i64. 1336*0b57cec5SDimitry Andric for (MVT VT : MVT::integer_valuetypes()) { 1337*0b57cec5SDimitry Andric setOperationAction(ISD::UADDO, VT, Custom); 1338*0b57cec5SDimitry Andric setOperationAction(ISD::USUBO, VT, Custom); 1339*0b57cec5SDimitry Andric setOperationAction(ISD::SADDO, VT, Expand); 1340*0b57cec5SDimitry Andric setOperationAction(ISD::SSUBO, VT, Expand); 1341*0b57cec5SDimitry Andric setOperationAction(ISD::ADDCARRY, VT, Expand); 1342*0b57cec5SDimitry Andric setOperationAction(ISD::SUBCARRY, VT, Expand); 1343*0b57cec5SDimitry Andric } 1344*0b57cec5SDimitry Andric setOperationAction(ISD::ADDCARRY, MVT::i64, Custom); 1345*0b57cec5SDimitry Andric setOperationAction(ISD::SUBCARRY, MVT::i64, Custom); 1346*0b57cec5SDimitry Andric 1347*0b57cec5SDimitry Andric setOperationAction(ISD::CTLZ, MVT::i8, Promote); 1348*0b57cec5SDimitry Andric setOperationAction(ISD::CTLZ, MVT::i16, Promote); 1349*0b57cec5SDimitry Andric setOperationAction(ISD::CTTZ, MVT::i8, Promote); 1350*0b57cec5SDimitry Andric setOperationAction(ISD::CTTZ, MVT::i16, Promote); 1351*0b57cec5SDimitry Andric 1352*0b57cec5SDimitry Andric // Popcount can count # of 1s in i64 but returns i32. 1353*0b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, MVT::i8, Promote); 1354*0b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, MVT::i16, Promote); 1355*0b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, MVT::i32, Promote); 1356*0b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, MVT::i64, Legal); 1357*0b57cec5SDimitry Andric 1358*0b57cec5SDimitry Andric setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 1359*0b57cec5SDimitry Andric setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 1360*0b57cec5SDimitry Andric setOperationAction(ISD::BSWAP, MVT::i32, Legal); 1361*0b57cec5SDimitry Andric setOperationAction(ISD::BSWAP, MVT::i64, Legal); 1362*0b57cec5SDimitry Andric 1363*0b57cec5SDimitry Andric setOperationAction(ISD::FSHL, MVT::i32, Legal); 1364*0b57cec5SDimitry Andric setOperationAction(ISD::FSHL, MVT::i64, Legal); 1365*0b57cec5SDimitry Andric setOperationAction(ISD::FSHR, MVT::i32, Legal); 1366*0b57cec5SDimitry Andric setOperationAction(ISD::FSHR, MVT::i64, Legal); 1367*0b57cec5SDimitry Andric 1368*0b57cec5SDimitry Andric for (unsigned IntExpOp : 1369*0b57cec5SDimitry Andric {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, 1370*0b57cec5SDimitry Andric ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR, 1371*0b57cec5SDimitry Andric ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, 1372*0b57cec5SDimitry Andric ISD::SMUL_LOHI, ISD::UMUL_LOHI}) { 1373*0b57cec5SDimitry Andric for (MVT VT : MVT::integer_valuetypes()) 1374*0b57cec5SDimitry Andric setOperationAction(IntExpOp, VT, Expand); 1375*0b57cec5SDimitry Andric } 1376*0b57cec5SDimitry Andric 1377*0b57cec5SDimitry Andric for (unsigned FPExpOp : 1378*0b57cec5SDimitry Andric {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS, 1379*0b57cec5SDimitry Andric ISD::FPOW, ISD::FCOPYSIGN}) { 1380*0b57cec5SDimitry Andric for (MVT VT : MVT::fp_valuetypes()) 1381*0b57cec5SDimitry Andric setOperationAction(FPExpOp, VT, Expand); 1382*0b57cec5SDimitry Andric } 1383*0b57cec5SDimitry Andric 1384*0b57cec5SDimitry Andric // No extending loads from i32. 1385*0b57cec5SDimitry Andric for (MVT VT : MVT::integer_valuetypes()) { 1386*0b57cec5SDimitry Andric setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 1387*0b57cec5SDimitry Andric setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 1388*0b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 1389*0b57cec5SDimitry Andric } 1390*0b57cec5SDimitry Andric // Turn FP truncstore into trunc + store. 1391*0b57cec5SDimitry Andric setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1392*0b57cec5SDimitry Andric // Turn FP extload into load/fpextend. 1393*0b57cec5SDimitry Andric for (MVT VT : MVT::fp_valuetypes()) 1394*0b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1395*0b57cec5SDimitry Andric 1396*0b57cec5SDimitry Andric // Expand BR_CC and SELECT_CC for all integer and fp types. 1397*0b57cec5SDimitry Andric for (MVT VT : MVT::integer_valuetypes()) { 1398*0b57cec5SDimitry Andric setOperationAction(ISD::BR_CC, VT, Expand); 1399*0b57cec5SDimitry Andric setOperationAction(ISD::SELECT_CC, VT, Expand); 1400*0b57cec5SDimitry Andric } 1401*0b57cec5SDimitry Andric for (MVT VT : MVT::fp_valuetypes()) { 1402*0b57cec5SDimitry Andric setOperationAction(ISD::BR_CC, VT, Expand); 1403*0b57cec5SDimitry Andric setOperationAction(ISD::SELECT_CC, VT, Expand); 1404*0b57cec5SDimitry Andric } 1405*0b57cec5SDimitry Andric setOperationAction(ISD::BR_CC, MVT::Other, Expand); 1406*0b57cec5SDimitry Andric 1407*0b57cec5SDimitry Andric // 1408*0b57cec5SDimitry Andric // Handling of vector operations. 1409*0b57cec5SDimitry Andric // 1410*0b57cec5SDimitry Andric 1411*0b57cec5SDimitry Andric // Set the action for vector operations to "expand", then override it with 1412*0b57cec5SDimitry Andric // either "custom" or "legal" for specific cases. 1413*0b57cec5SDimitry Andric static const unsigned VectExpOps[] = { 1414*0b57cec5SDimitry Andric // Integer arithmetic: 1415*0b57cec5SDimitry Andric ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV, 1416*0b57cec5SDimitry Andric ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO, 1417*0b57cec5SDimitry Andric ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI, 1418*0b57cec5SDimitry Andric // Logical/bit: 1419*0b57cec5SDimitry Andric ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR, 1420*0b57cec5SDimitry Andric ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, 1421*0b57cec5SDimitry Andric // Floating point arithmetic/math functions: 1422*0b57cec5SDimitry Andric ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, 1423*0b57cec5SDimitry Andric ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN, 1424*0b57cec5SDimitry Andric ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2, 1425*0b57cec5SDimitry Andric ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC, 1426*0b57cec5SDimitry Andric ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR, 1427*0b57cec5SDimitry Andric ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, 1428*0b57cec5SDimitry Andric // Misc: 1429*0b57cec5SDimitry Andric ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool, 1430*0b57cec5SDimitry Andric // Vector: 1431*0b57cec5SDimitry Andric ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR, 1432*0b57cec5SDimitry Andric ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT, 1433*0b57cec5SDimitry Andric ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR, 1434*0b57cec5SDimitry Andric ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE 1435*0b57cec5SDimitry Andric }; 1436*0b57cec5SDimitry Andric 1437*0b57cec5SDimitry Andric for (MVT VT : MVT::vector_valuetypes()) { 1438*0b57cec5SDimitry Andric for (unsigned VectExpOp : VectExpOps) 1439*0b57cec5SDimitry Andric setOperationAction(VectExpOp, VT, Expand); 1440*0b57cec5SDimitry Andric 1441*0b57cec5SDimitry Andric // Expand all extending loads and truncating stores: 1442*0b57cec5SDimitry Andric for (MVT TargetVT : MVT::vector_valuetypes()) { 1443*0b57cec5SDimitry Andric if (TargetVT == VT) 1444*0b57cec5SDimitry Andric continue; 1445*0b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand); 1446*0b57cec5SDimitry Andric setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand); 1447*0b57cec5SDimitry Andric setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand); 1448*0b57cec5SDimitry Andric setTruncStoreAction(VT, TargetVT, Expand); 1449*0b57cec5SDimitry Andric } 1450*0b57cec5SDimitry Andric 1451*0b57cec5SDimitry Andric // Normalize all inputs to SELECT to be vectors of i32. 1452*0b57cec5SDimitry Andric if (VT.getVectorElementType() != MVT::i32) { 1453*0b57cec5SDimitry Andric MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32); 1454*0b57cec5SDimitry Andric setOperationAction(ISD::SELECT, VT, Promote); 1455*0b57cec5SDimitry Andric AddPromotedToType(ISD::SELECT, VT, VT32); 1456*0b57cec5SDimitry Andric } 1457*0b57cec5SDimitry Andric setOperationAction(ISD::SRA, VT, Custom); 1458*0b57cec5SDimitry Andric setOperationAction(ISD::SHL, VT, Custom); 1459*0b57cec5SDimitry Andric setOperationAction(ISD::SRL, VT, Custom); 1460*0b57cec5SDimitry Andric } 1461*0b57cec5SDimitry Andric 1462*0b57cec5SDimitry Andric // Extending loads from (native) vectors of i8 into (native) vectors of i16 1463*0b57cec5SDimitry Andric // are legal. 1464*0b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal); 1465*0b57cec5SDimitry Andric setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); 1466*0b57cec5SDimitry Andric setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); 1467*0b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal); 1468*0b57cec5SDimitry Andric setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); 1469*0b57cec5SDimitry Andric setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); 1470*0b57cec5SDimitry Andric 1471*0b57cec5SDimitry Andric // Types natively supported: 1472*0b57cec5SDimitry Andric for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8, 1473*0b57cec5SDimitry Andric MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) { 1474*0b57cec5SDimitry Andric setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom); 1475*0b57cec5SDimitry Andric setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom); 1476*0b57cec5SDimitry Andric setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom); 1477*0b57cec5SDimitry Andric setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom); 1478*0b57cec5SDimitry Andric setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom); 1479*0b57cec5SDimitry Andric setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom); 1480*0b57cec5SDimitry Andric 1481*0b57cec5SDimitry Andric setOperationAction(ISD::ADD, NativeVT, Legal); 1482*0b57cec5SDimitry Andric setOperationAction(ISD::SUB, NativeVT, Legal); 1483*0b57cec5SDimitry Andric setOperationAction(ISD::MUL, NativeVT, Legal); 1484*0b57cec5SDimitry Andric setOperationAction(ISD::AND, NativeVT, Legal); 1485*0b57cec5SDimitry Andric setOperationAction(ISD::OR, NativeVT, Legal); 1486*0b57cec5SDimitry Andric setOperationAction(ISD::XOR, NativeVT, Legal); 1487*0b57cec5SDimitry Andric } 1488*0b57cec5SDimitry Andric 1489*0b57cec5SDimitry Andric // Custom lower unaligned loads. 1490*0b57cec5SDimitry Andric // Also, for both loads and stores, verify the alignment of the address 1491*0b57cec5SDimitry Andric // in case it is a compile-time constant. This is a usability feature to 1492*0b57cec5SDimitry Andric // provide a meaningful error message to users. 1493*0b57cec5SDimitry Andric for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8, 1494*0b57cec5SDimitry Andric MVT::v2i16, MVT::v4i16, MVT::v2i32}) { 1495*0b57cec5SDimitry Andric setOperationAction(ISD::LOAD, VT, Custom); 1496*0b57cec5SDimitry Andric setOperationAction(ISD::STORE, VT, Custom); 1497*0b57cec5SDimitry Andric } 1498*0b57cec5SDimitry Andric 1499*0b57cec5SDimitry Andric for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v2i32, MVT::v4i16, MVT::v2i32}) { 1500*0b57cec5SDimitry Andric setCondCodeAction(ISD::SETLT, VT, Expand); 1501*0b57cec5SDimitry Andric setCondCodeAction(ISD::SETLE, VT, Expand); 1502*0b57cec5SDimitry Andric setCondCodeAction(ISD::SETULT, VT, Expand); 1503*0b57cec5SDimitry Andric setCondCodeAction(ISD::SETULE, VT, Expand); 1504*0b57cec5SDimitry Andric } 1505*0b57cec5SDimitry Andric 1506*0b57cec5SDimitry Andric // Custom-lower bitcasts from i8 to v8i1. 1507*0b57cec5SDimitry Andric setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1508*0b57cec5SDimitry Andric setOperationAction(ISD::SETCC, MVT::v2i16, Custom); 1509*0b57cec5SDimitry Andric setOperationAction(ISD::VSELECT, MVT::v2i16, Custom); 1510*0b57cec5SDimitry Andric setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom); 1511*0b57cec5SDimitry Andric setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 1512*0b57cec5SDimitry Andric setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); 1513*0b57cec5SDimitry Andric 1514*0b57cec5SDimitry Andric // V5+. 1515*0b57cec5SDimitry Andric setOperationAction(ISD::FMA, MVT::f64, Expand); 1516*0b57cec5SDimitry Andric setOperationAction(ISD::FADD, MVT::f64, Expand); 1517*0b57cec5SDimitry Andric setOperationAction(ISD::FSUB, MVT::f64, Expand); 1518*0b57cec5SDimitry Andric setOperationAction(ISD::FMUL, MVT::f64, Expand); 1519*0b57cec5SDimitry Andric 1520*0b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 1521*0b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 1522*0b57cec5SDimitry Andric 1523*0b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 1524*0b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); 1525*0b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 1526*0b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 1527*0b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); 1528*0b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 1529*0b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 1530*0b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); 1531*0b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); 1532*0b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 1533*0b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); 1534*0b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); 1535*0b57cec5SDimitry Andric 1536*0b57cec5SDimitry Andric // Handling of indexed loads/stores: default is "expand". 1537*0b57cec5SDimitry Andric // 1538*0b57cec5SDimitry Andric for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64, 1539*0b57cec5SDimitry Andric MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) { 1540*0b57cec5SDimitry Andric setIndexedLoadAction(ISD::POST_INC, VT, Legal); 1541*0b57cec5SDimitry Andric setIndexedStoreAction(ISD::POST_INC, VT, Legal); 1542*0b57cec5SDimitry Andric } 1543*0b57cec5SDimitry Andric 1544*0b57cec5SDimitry Andric // Subtarget-specific operation actions. 1545*0b57cec5SDimitry Andric // 1546*0b57cec5SDimitry Andric if (Subtarget.hasV60Ops()) { 1547*0b57cec5SDimitry Andric setOperationAction(ISD::ROTL, MVT::i32, Legal); 1548*0b57cec5SDimitry Andric setOperationAction(ISD::ROTL, MVT::i64, Legal); 1549*0b57cec5SDimitry Andric setOperationAction(ISD::ROTR, MVT::i32, Legal); 1550*0b57cec5SDimitry Andric setOperationAction(ISD::ROTR, MVT::i64, Legal); 1551*0b57cec5SDimitry Andric } 1552*0b57cec5SDimitry Andric if (Subtarget.hasV66Ops()) { 1553*0b57cec5SDimitry Andric setOperationAction(ISD::FADD, MVT::f64, Legal); 1554*0b57cec5SDimitry Andric setOperationAction(ISD::FSUB, MVT::f64, Legal); 1555*0b57cec5SDimitry Andric } 1556*0b57cec5SDimitry Andric 1557*0b57cec5SDimitry Andric if (Subtarget.useHVXOps()) 1558*0b57cec5SDimitry Andric initializeHVXLowering(); 1559*0b57cec5SDimitry Andric 1560*0b57cec5SDimitry Andric computeRegisterProperties(&HRI); 1561*0b57cec5SDimitry Andric 1562*0b57cec5SDimitry Andric // 1563*0b57cec5SDimitry Andric // Library calls for unsupported operations 1564*0b57cec5SDimitry Andric // 1565*0b57cec5SDimitry Andric bool FastMath = EnableFastMath; 1566*0b57cec5SDimitry Andric 1567*0b57cec5SDimitry Andric setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); 1568*0b57cec5SDimitry Andric setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); 1569*0b57cec5SDimitry Andric setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); 1570*0b57cec5SDimitry Andric setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); 1571*0b57cec5SDimitry Andric setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); 1572*0b57cec5SDimitry Andric setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); 1573*0b57cec5SDimitry Andric setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); 1574*0b57cec5SDimitry Andric setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); 1575*0b57cec5SDimitry Andric 1576*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); 1577*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); 1578*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); 1579*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); 1580*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); 1581*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); 1582*0b57cec5SDimitry Andric 1583*0b57cec5SDimitry Andric // This is the only fast library function for sqrtd. 1584*0b57cec5SDimitry Andric if (FastMath) 1585*0b57cec5SDimitry Andric setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2"); 1586*0b57cec5SDimitry Andric 1587*0b57cec5SDimitry Andric // Prefix is: nothing for "slow-math", 1588*0b57cec5SDimitry Andric // "fast2_" for V5+ fast-math double-precision 1589*0b57cec5SDimitry Andric // (actually, keep fast-math and fast-math2 separate for now) 1590*0b57cec5SDimitry Andric if (FastMath) { 1591*0b57cec5SDimitry Andric setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3"); 1592*0b57cec5SDimitry Andric setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3"); 1593*0b57cec5SDimitry Andric setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3"); 1594*0b57cec5SDimitry Andric setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3"); 1595*0b57cec5SDimitry Andric setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3"); 1596*0b57cec5SDimitry Andric } else { 1597*0b57cec5SDimitry Andric setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); 1598*0b57cec5SDimitry Andric setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); 1599*0b57cec5SDimitry Andric setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); 1600*0b57cec5SDimitry Andric setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); 1601*0b57cec5SDimitry Andric setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); 1602*0b57cec5SDimitry Andric } 1603*0b57cec5SDimitry Andric 1604*0b57cec5SDimitry Andric if (FastMath) 1605*0b57cec5SDimitry Andric setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf"); 1606*0b57cec5SDimitry Andric else 1607*0b57cec5SDimitry Andric setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf"); 1608*0b57cec5SDimitry Andric 1609*0b57cec5SDimitry Andric // These cause problems when the shift amount is non-constant. 1610*0b57cec5SDimitry Andric setLibcallName(RTLIB::SHL_I128, nullptr); 1611*0b57cec5SDimitry Andric setLibcallName(RTLIB::SRL_I128, nullptr); 1612*0b57cec5SDimitry Andric setLibcallName(RTLIB::SRA_I128, nullptr); 1613*0b57cec5SDimitry Andric } 1614*0b57cec5SDimitry Andric 1615*0b57cec5SDimitry Andric const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { 1616*0b57cec5SDimitry Andric switch ((HexagonISD::NodeType)Opcode) { 1617*0b57cec5SDimitry Andric case HexagonISD::ADDC: return "HexagonISD::ADDC"; 1618*0b57cec5SDimitry Andric case HexagonISD::SUBC: return "HexagonISD::SUBC"; 1619*0b57cec5SDimitry Andric case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA"; 1620*0b57cec5SDimitry Andric case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT"; 1621*0b57cec5SDimitry Andric case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL"; 1622*0b57cec5SDimitry Andric case HexagonISD::BARRIER: return "HexagonISD::BARRIER"; 1623*0b57cec5SDimitry Andric case HexagonISD::CALL: return "HexagonISD::CALL"; 1624*0b57cec5SDimitry Andric case HexagonISD::CALLnr: return "HexagonISD::CALLnr"; 1625*0b57cec5SDimitry Andric case HexagonISD::CALLR: return "HexagonISD::CALLR"; 1626*0b57cec5SDimitry Andric case HexagonISD::COMBINE: return "HexagonISD::COMBINE"; 1627*0b57cec5SDimitry Andric case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP"; 1628*0b57cec5SDimitry Andric case HexagonISD::CONST32: return "HexagonISD::CONST32"; 1629*0b57cec5SDimitry Andric case HexagonISD::CP: return "HexagonISD::CP"; 1630*0b57cec5SDimitry Andric case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH"; 1631*0b57cec5SDimitry Andric case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN"; 1632*0b57cec5SDimitry Andric case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT"; 1633*0b57cec5SDimitry Andric case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU"; 1634*0b57cec5SDimitry Andric case HexagonISD::INSERT: return "HexagonISD::INSERT"; 1635*0b57cec5SDimitry Andric case HexagonISD::JT: return "HexagonISD::JT"; 1636*0b57cec5SDimitry Andric case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG"; 1637*0b57cec5SDimitry Andric case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; 1638*0b57cec5SDimitry Andric case HexagonISD::VASL: return "HexagonISD::VASL"; 1639*0b57cec5SDimitry Andric case HexagonISD::VASR: return "HexagonISD::VASR"; 1640*0b57cec5SDimitry Andric case HexagonISD::VLSR: return "HexagonISD::VLSR"; 1641*0b57cec5SDimitry Andric case HexagonISD::VSPLAT: return "HexagonISD::VSPLAT"; 1642*0b57cec5SDimitry Andric case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW"; 1643*0b57cec5SDimitry Andric case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0"; 1644*0b57cec5SDimitry Andric case HexagonISD::VROR: return "HexagonISD::VROR"; 1645*0b57cec5SDimitry Andric case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE"; 1646*0b57cec5SDimitry Andric case HexagonISD::VZERO: return "HexagonISD::VZERO"; 1647*0b57cec5SDimitry Andric case HexagonISD::VSPLATW: return "HexagonISD::VSPLATW"; 1648*0b57cec5SDimitry Andric case HexagonISD::D2P: return "HexagonISD::D2P"; 1649*0b57cec5SDimitry Andric case HexagonISD::P2D: return "HexagonISD::P2D"; 1650*0b57cec5SDimitry Andric case HexagonISD::V2Q: return "HexagonISD::V2Q"; 1651*0b57cec5SDimitry Andric case HexagonISD::Q2V: return "HexagonISD::Q2V"; 1652*0b57cec5SDimitry Andric case HexagonISD::QCAT: return "HexagonISD::QCAT"; 1653*0b57cec5SDimitry Andric case HexagonISD::QTRUE: return "HexagonISD::QTRUE"; 1654*0b57cec5SDimitry Andric case HexagonISD::QFALSE: return "HexagonISD::QFALSE"; 1655*0b57cec5SDimitry Andric case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST"; 1656*0b57cec5SDimitry Andric case HexagonISD::VALIGN: return "HexagonISD::VALIGN"; 1657*0b57cec5SDimitry Andric case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR"; 1658*0b57cec5SDimitry Andric case HexagonISD::OP_END: break; 1659*0b57cec5SDimitry Andric } 1660*0b57cec5SDimitry Andric return nullptr; 1661*0b57cec5SDimitry Andric } 1662*0b57cec5SDimitry Andric 1663*0b57cec5SDimitry Andric void 1664*0b57cec5SDimitry Andric HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl, 1665*0b57cec5SDimitry Andric unsigned NeedAlign) const { 1666*0b57cec5SDimitry Andric auto *CA = dyn_cast<ConstantSDNode>(Ptr); 1667*0b57cec5SDimitry Andric if (!CA) 1668*0b57cec5SDimitry Andric return; 1669*0b57cec5SDimitry Andric unsigned Addr = CA->getZExtValue(); 1670*0b57cec5SDimitry Andric unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign; 1671*0b57cec5SDimitry Andric if (HaveAlign < NeedAlign) { 1672*0b57cec5SDimitry Andric std::string ErrMsg; 1673*0b57cec5SDimitry Andric raw_string_ostream O(ErrMsg); 1674*0b57cec5SDimitry Andric O << "Misaligned constant address: " << format_hex(Addr, 10) 1675*0b57cec5SDimitry Andric << " has alignment " << HaveAlign 1676*0b57cec5SDimitry Andric << ", but the memory access requires " << NeedAlign; 1677*0b57cec5SDimitry Andric if (DebugLoc DL = dl.getDebugLoc()) 1678*0b57cec5SDimitry Andric DL.print(O << ", at "); 1679*0b57cec5SDimitry Andric report_fatal_error(O.str()); 1680*0b57cec5SDimitry Andric } 1681*0b57cec5SDimitry Andric } 1682*0b57cec5SDimitry Andric 1683*0b57cec5SDimitry Andric // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load 1684*0b57cec5SDimitry Andric // intrinsic. 1685*0b57cec5SDimitry Andric static bool isBrevLdIntrinsic(const Value *Inst) { 1686*0b57cec5SDimitry Andric unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID(); 1687*0b57cec5SDimitry Andric return (ID == Intrinsic::hexagon_L2_loadrd_pbr || 1688*0b57cec5SDimitry Andric ID == Intrinsic::hexagon_L2_loadri_pbr || 1689*0b57cec5SDimitry Andric ID == Intrinsic::hexagon_L2_loadrh_pbr || 1690*0b57cec5SDimitry Andric ID == Intrinsic::hexagon_L2_loadruh_pbr || 1691*0b57cec5SDimitry Andric ID == Intrinsic::hexagon_L2_loadrb_pbr || 1692*0b57cec5SDimitry Andric ID == Intrinsic::hexagon_L2_loadrub_pbr); 1693*0b57cec5SDimitry Andric } 1694*0b57cec5SDimitry Andric 1695*0b57cec5SDimitry Andric // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous 1696*0b57cec5SDimitry Andric // instruction. So far we only handle bitcast, extract value and bit reverse 1697*0b57cec5SDimitry Andric // load intrinsic instructions. Should we handle CGEP ? 1698*0b57cec5SDimitry Andric static Value *getBrevLdObject(Value *V) { 1699*0b57cec5SDimitry Andric if (Operator::getOpcode(V) == Instruction::ExtractValue || 1700*0b57cec5SDimitry Andric Operator::getOpcode(V) == Instruction::BitCast) 1701*0b57cec5SDimitry Andric V = cast<Operator>(V)->getOperand(0); 1702*0b57cec5SDimitry Andric else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V)) 1703*0b57cec5SDimitry Andric V = cast<Instruction>(V)->getOperand(0); 1704*0b57cec5SDimitry Andric return V; 1705*0b57cec5SDimitry Andric } 1706*0b57cec5SDimitry Andric 1707*0b57cec5SDimitry Andric // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or 1708*0b57cec5SDimitry Andric // a back edge. If the back edge comes from the intrinsic itself, the incoming 1709*0b57cec5SDimitry Andric // edge is returned. 1710*0b57cec5SDimitry Andric static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) { 1711*0b57cec5SDimitry Andric const BasicBlock *Parent = PN->getParent(); 1712*0b57cec5SDimitry Andric int Idx = -1; 1713*0b57cec5SDimitry Andric for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { 1714*0b57cec5SDimitry Andric BasicBlock *Blk = PN->getIncomingBlock(i); 1715*0b57cec5SDimitry Andric // Determine if the back edge is originated from intrinsic. 1716*0b57cec5SDimitry Andric if (Blk == Parent) { 1717*0b57cec5SDimitry Andric Value *BackEdgeVal = PN->getIncomingValue(i); 1718*0b57cec5SDimitry Andric Value *BaseVal; 1719*0b57cec5SDimitry Andric // Loop over till we return the same Value or we hit the IntrBaseVal. 1720*0b57cec5SDimitry Andric do { 1721*0b57cec5SDimitry Andric BaseVal = BackEdgeVal; 1722*0b57cec5SDimitry Andric BackEdgeVal = getBrevLdObject(BackEdgeVal); 1723*0b57cec5SDimitry Andric } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal)); 1724*0b57cec5SDimitry Andric // If the getBrevLdObject returns IntrBaseVal, we should return the 1725*0b57cec5SDimitry Andric // incoming edge. 1726*0b57cec5SDimitry Andric if (IntrBaseVal == BackEdgeVal) 1727*0b57cec5SDimitry Andric continue; 1728*0b57cec5SDimitry Andric Idx = i; 1729*0b57cec5SDimitry Andric break; 1730*0b57cec5SDimitry Andric } else // Set the node to incoming edge. 1731*0b57cec5SDimitry Andric Idx = i; 1732*0b57cec5SDimitry Andric } 1733*0b57cec5SDimitry Andric assert(Idx >= 0 && "Unexpected index to incoming argument in PHI"); 1734*0b57cec5SDimitry Andric return PN->getIncomingValue(Idx); 1735*0b57cec5SDimitry Andric } 1736*0b57cec5SDimitry Andric 1737*0b57cec5SDimitry Andric // Bit-reverse Load Intrinsic: Figure out the underlying object the base 1738*0b57cec5SDimitry Andric // pointer points to, for the bit-reverse load intrinsic. Setting this to 1739*0b57cec5SDimitry Andric // memoperand might help alias analysis to figure out the dependencies. 1740*0b57cec5SDimitry Andric static Value *getUnderLyingObjectForBrevLdIntr(Value *V) { 1741*0b57cec5SDimitry Andric Value *IntrBaseVal = V; 1742*0b57cec5SDimitry Andric Value *BaseVal; 1743*0b57cec5SDimitry Andric // Loop over till we return the same Value, implies we either figure out 1744*0b57cec5SDimitry Andric // the object or we hit a PHI 1745*0b57cec5SDimitry Andric do { 1746*0b57cec5SDimitry Andric BaseVal = V; 1747*0b57cec5SDimitry Andric V = getBrevLdObject(V); 1748*0b57cec5SDimitry Andric } while (BaseVal != V); 1749*0b57cec5SDimitry Andric 1750*0b57cec5SDimitry Andric // Identify the object from PHINode. 1751*0b57cec5SDimitry Andric if (const PHINode *PN = dyn_cast<PHINode>(V)) 1752*0b57cec5SDimitry Andric return returnEdge(PN, IntrBaseVal); 1753*0b57cec5SDimitry Andric // For non PHI nodes, the object is the last value returned by getBrevLdObject 1754*0b57cec5SDimitry Andric else 1755*0b57cec5SDimitry Andric return V; 1756*0b57cec5SDimitry Andric } 1757*0b57cec5SDimitry Andric 1758*0b57cec5SDimitry Andric /// Given an intrinsic, checks if on the target the intrinsic will need to map 1759*0b57cec5SDimitry Andric /// to a MemIntrinsicNode (touches memory). If this is the case, it returns 1760*0b57cec5SDimitry Andric /// true and store the intrinsic information into the IntrinsicInfo that was 1761*0b57cec5SDimitry Andric /// passed to the function. 1762*0b57cec5SDimitry Andric bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1763*0b57cec5SDimitry Andric const CallInst &I, 1764*0b57cec5SDimitry Andric MachineFunction &MF, 1765*0b57cec5SDimitry Andric unsigned Intrinsic) const { 1766*0b57cec5SDimitry Andric switch (Intrinsic) { 1767*0b57cec5SDimitry Andric case Intrinsic::hexagon_L2_loadrd_pbr: 1768*0b57cec5SDimitry Andric case Intrinsic::hexagon_L2_loadri_pbr: 1769*0b57cec5SDimitry Andric case Intrinsic::hexagon_L2_loadrh_pbr: 1770*0b57cec5SDimitry Andric case Intrinsic::hexagon_L2_loadruh_pbr: 1771*0b57cec5SDimitry Andric case Intrinsic::hexagon_L2_loadrb_pbr: 1772*0b57cec5SDimitry Andric case Intrinsic::hexagon_L2_loadrub_pbr: { 1773*0b57cec5SDimitry Andric Info.opc = ISD::INTRINSIC_W_CHAIN; 1774*0b57cec5SDimitry Andric auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); 1775*0b57cec5SDimitry Andric auto &Cont = I.getCalledFunction()->getParent()->getContext(); 1776*0b57cec5SDimitry Andric // The intrinsic function call is of the form { ElTy, i8* } 1777*0b57cec5SDimitry Andric // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type 1778*0b57cec5SDimitry Andric // should be derived from ElTy. 1779*0b57cec5SDimitry Andric Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0); 1780*0b57cec5SDimitry Andric Info.memVT = MVT::getVT(ElTy); 1781*0b57cec5SDimitry Andric llvm::Value *BasePtrVal = I.getOperand(0); 1782*0b57cec5SDimitry Andric Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal); 1783*0b57cec5SDimitry Andric // The offset value comes through Modifier register. For now, assume the 1784*0b57cec5SDimitry Andric // offset is 0. 1785*0b57cec5SDimitry Andric Info.offset = 0; 1786*0b57cec5SDimitry Andric Info.align = DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont)); 1787*0b57cec5SDimitry Andric Info.flags = MachineMemOperand::MOLoad; 1788*0b57cec5SDimitry Andric return true; 1789*0b57cec5SDimitry Andric } 1790*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermw: 1791*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermw_128B: 1792*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermh: 1793*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermh_128B: 1794*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhw: 1795*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhw_128B: 1796*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermwq: 1797*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermwq_128B: 1798*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhq: 1799*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhq_128B: 1800*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhwq: 1801*0b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhwq_128B: { 1802*0b57cec5SDimitry Andric const Module &M = *I.getParent()->getParent()->getParent(); 1803*0b57cec5SDimitry Andric Info.opc = ISD::INTRINSIC_W_CHAIN; 1804*0b57cec5SDimitry Andric Type *VecTy = I.getArgOperand(1)->getType(); 1805*0b57cec5SDimitry Andric Info.memVT = MVT::getVT(VecTy); 1806*0b57cec5SDimitry Andric Info.ptrVal = I.getArgOperand(0); 1807*0b57cec5SDimitry Andric Info.offset = 0; 1808*0b57cec5SDimitry Andric Info.align = M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8; 1809*0b57cec5SDimitry Andric Info.flags = MachineMemOperand::MOLoad | 1810*0b57cec5SDimitry Andric MachineMemOperand::MOStore | 1811*0b57cec5SDimitry Andric MachineMemOperand::MOVolatile; 1812*0b57cec5SDimitry Andric return true; 1813*0b57cec5SDimitry Andric } 1814*0b57cec5SDimitry Andric default: 1815*0b57cec5SDimitry Andric break; 1816*0b57cec5SDimitry Andric } 1817*0b57cec5SDimitry Andric return false; 1818*0b57cec5SDimitry Andric } 1819*0b57cec5SDimitry Andric 1820*0b57cec5SDimitry Andric bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 1821*0b57cec5SDimitry Andric return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2)); 1822*0b57cec5SDimitry Andric } 1823*0b57cec5SDimitry Andric 1824*0b57cec5SDimitry Andric bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 1825*0b57cec5SDimitry Andric if (!VT1.isSimple() || !VT2.isSimple()) 1826*0b57cec5SDimitry Andric return false; 1827*0b57cec5SDimitry Andric return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32; 1828*0b57cec5SDimitry Andric } 1829*0b57cec5SDimitry Andric 1830*0b57cec5SDimitry Andric bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 1831*0b57cec5SDimitry Andric return isOperationLegalOrCustom(ISD::FMA, VT); 1832*0b57cec5SDimitry Andric } 1833*0b57cec5SDimitry Andric 1834*0b57cec5SDimitry Andric // Should we expand the build vector with shuffles? 1835*0b57cec5SDimitry Andric bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT, 1836*0b57cec5SDimitry Andric unsigned DefinedValues) const { 1837*0b57cec5SDimitry Andric return false; 1838*0b57cec5SDimitry Andric } 1839*0b57cec5SDimitry Andric 1840*0b57cec5SDimitry Andric bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask, 1841*0b57cec5SDimitry Andric EVT VT) const { 1842*0b57cec5SDimitry Andric return true; 1843*0b57cec5SDimitry Andric } 1844*0b57cec5SDimitry Andric 1845*0b57cec5SDimitry Andric TargetLoweringBase::LegalizeTypeAction 1846*0b57cec5SDimitry Andric HexagonTargetLowering::getPreferredVectorAction(MVT VT) const { 1847*0b57cec5SDimitry Andric if (VT.getVectorNumElements() == 1) 1848*0b57cec5SDimitry Andric return TargetLoweringBase::TypeScalarizeVector; 1849*0b57cec5SDimitry Andric 1850*0b57cec5SDimitry Andric // Always widen vectors of i1. 1851*0b57cec5SDimitry Andric MVT ElemTy = VT.getVectorElementType(); 1852*0b57cec5SDimitry Andric if (ElemTy == MVT::i1) 1853*0b57cec5SDimitry Andric return TargetLoweringBase::TypeWidenVector; 1854*0b57cec5SDimitry Andric 1855*0b57cec5SDimitry Andric if (Subtarget.useHVXOps()) { 1856*0b57cec5SDimitry Andric // If the size of VT is at least half of the vector length, 1857*0b57cec5SDimitry Andric // widen the vector. Note: the threshold was not selected in 1858*0b57cec5SDimitry Andric // any scientific way. 1859*0b57cec5SDimitry Andric ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes(); 1860*0b57cec5SDimitry Andric if (llvm::find(Tys, ElemTy) != Tys.end()) { 1861*0b57cec5SDimitry Andric unsigned HwWidth = 8*Subtarget.getVectorLength(); 1862*0b57cec5SDimitry Andric unsigned VecWidth = VT.getSizeInBits(); 1863*0b57cec5SDimitry Andric if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) 1864*0b57cec5SDimitry Andric return TargetLoweringBase::TypeWidenVector; 1865*0b57cec5SDimitry Andric } 1866*0b57cec5SDimitry Andric } 1867*0b57cec5SDimitry Andric return TargetLoweringBase::TypeSplitVector; 1868*0b57cec5SDimitry Andric } 1869*0b57cec5SDimitry Andric 1870*0b57cec5SDimitry Andric std::pair<SDValue, int> 1871*0b57cec5SDimitry Andric HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const { 1872*0b57cec5SDimitry Andric if (Addr.getOpcode() == ISD::ADD) { 1873*0b57cec5SDimitry Andric SDValue Op1 = Addr.getOperand(1); 1874*0b57cec5SDimitry Andric if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode())) 1875*0b57cec5SDimitry Andric return { Addr.getOperand(0), CN->getSExtValue() }; 1876*0b57cec5SDimitry Andric } 1877*0b57cec5SDimitry Andric return { Addr, 0 }; 1878*0b57cec5SDimitry Andric } 1879*0b57cec5SDimitry Andric 1880*0b57cec5SDimitry Andric // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors 1881*0b57cec5SDimitry Andric // to select data from, V3 is the permutation. 1882*0b57cec5SDimitry Andric SDValue 1883*0b57cec5SDimitry Andric HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) 1884*0b57cec5SDimitry Andric const { 1885*0b57cec5SDimitry Andric const auto *SVN = cast<ShuffleVectorSDNode>(Op); 1886*0b57cec5SDimitry Andric ArrayRef<int> AM = SVN->getMask(); 1887*0b57cec5SDimitry Andric assert(AM.size() <= 8 && "Unexpected shuffle mask"); 1888*0b57cec5SDimitry Andric unsigned VecLen = AM.size(); 1889*0b57cec5SDimitry Andric 1890*0b57cec5SDimitry Andric MVT VecTy = ty(Op); 1891*0b57cec5SDimitry Andric assert(!Subtarget.isHVXVectorType(VecTy, true) && 1892*0b57cec5SDimitry Andric "HVX shuffles should be legal"); 1893*0b57cec5SDimitry Andric assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length"); 1894*0b57cec5SDimitry Andric 1895*0b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 1896*0b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 1897*0b57cec5SDimitry Andric const SDLoc &dl(Op); 1898*0b57cec5SDimitry Andric 1899*0b57cec5SDimitry Andric // If the inputs are not the same as the output, bail. This is not an 1900*0b57cec5SDimitry Andric // error situation, but complicates the handling and the default expansion 1901*0b57cec5SDimitry Andric // (into BUILD_VECTOR) should be adequate. 1902*0b57cec5SDimitry Andric if (ty(Op0) != VecTy || ty(Op1) != VecTy) 1903*0b57cec5SDimitry Andric return SDValue(); 1904*0b57cec5SDimitry Andric 1905*0b57cec5SDimitry Andric // Normalize the mask so that the first non-negative index comes from 1906*0b57cec5SDimitry Andric // the first operand. 1907*0b57cec5SDimitry Andric SmallVector<int,8> Mask(AM.begin(), AM.end()); 1908*0b57cec5SDimitry Andric unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data(); 1909*0b57cec5SDimitry Andric if (F == AM.size()) 1910*0b57cec5SDimitry Andric return DAG.getUNDEF(VecTy); 1911*0b57cec5SDimitry Andric if (AM[F] >= int(VecLen)) { 1912*0b57cec5SDimitry Andric ShuffleVectorSDNode::commuteMask(Mask); 1913*0b57cec5SDimitry Andric std::swap(Op0, Op1); 1914*0b57cec5SDimitry Andric } 1915*0b57cec5SDimitry Andric 1916*0b57cec5SDimitry Andric // Express the shuffle mask in terms of bytes. 1917*0b57cec5SDimitry Andric SmallVector<int,8> ByteMask; 1918*0b57cec5SDimitry Andric unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8; 1919*0b57cec5SDimitry Andric for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1920*0b57cec5SDimitry Andric int M = Mask[i]; 1921*0b57cec5SDimitry Andric if (M < 0) { 1922*0b57cec5SDimitry Andric for (unsigned j = 0; j != ElemBytes; ++j) 1923*0b57cec5SDimitry Andric ByteMask.push_back(-1); 1924*0b57cec5SDimitry Andric } else { 1925*0b57cec5SDimitry Andric for (unsigned j = 0; j != ElemBytes; ++j) 1926*0b57cec5SDimitry Andric ByteMask.push_back(M*ElemBytes + j); 1927*0b57cec5SDimitry Andric } 1928*0b57cec5SDimitry Andric } 1929*0b57cec5SDimitry Andric assert(ByteMask.size() <= 8); 1930*0b57cec5SDimitry Andric 1931*0b57cec5SDimitry Andric // All non-undef (non-negative) indexes are well within [0..127], so they 1932*0b57cec5SDimitry Andric // fit in a single byte. Build two 64-bit words: 1933*0b57cec5SDimitry Andric // - MaskIdx where each byte is the corresponding index (for non-negative 1934*0b57cec5SDimitry Andric // indexes), and 0xFF for negative indexes, and 1935*0b57cec5SDimitry Andric // - MaskUnd that has 0xFF for each negative index. 1936*0b57cec5SDimitry Andric uint64_t MaskIdx = 0; 1937*0b57cec5SDimitry Andric uint64_t MaskUnd = 0; 1938*0b57cec5SDimitry Andric for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) { 1939*0b57cec5SDimitry Andric unsigned S = 8*i; 1940*0b57cec5SDimitry Andric uint64_t M = ByteMask[i] & 0xFF; 1941*0b57cec5SDimitry Andric if (M == 0xFF) 1942*0b57cec5SDimitry Andric MaskUnd |= M << S; 1943*0b57cec5SDimitry Andric MaskIdx |= M << S; 1944*0b57cec5SDimitry Andric } 1945*0b57cec5SDimitry Andric 1946*0b57cec5SDimitry Andric if (ByteMask.size() == 4) { 1947*0b57cec5SDimitry Andric // Identity. 1948*0b57cec5SDimitry Andric if (MaskIdx == (0x03020100 | MaskUnd)) 1949*0b57cec5SDimitry Andric return Op0; 1950*0b57cec5SDimitry Andric // Byte swap. 1951*0b57cec5SDimitry Andric if (MaskIdx == (0x00010203 | MaskUnd)) { 1952*0b57cec5SDimitry Andric SDValue T0 = DAG.getBitcast(MVT::i32, Op0); 1953*0b57cec5SDimitry Andric SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0); 1954*0b57cec5SDimitry Andric return DAG.getBitcast(VecTy, T1); 1955*0b57cec5SDimitry Andric } 1956*0b57cec5SDimitry Andric 1957*0b57cec5SDimitry Andric // Byte packs. 1958*0b57cec5SDimitry Andric SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl, 1959*0b57cec5SDimitry Andric typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0}); 1960*0b57cec5SDimitry Andric if (MaskIdx == (0x06040200 | MaskUnd)) 1961*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG); 1962*0b57cec5SDimitry Andric if (MaskIdx == (0x07050301 | MaskUnd)) 1963*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG); 1964*0b57cec5SDimitry Andric 1965*0b57cec5SDimitry Andric SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl, 1966*0b57cec5SDimitry Andric typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1}); 1967*0b57cec5SDimitry Andric if (MaskIdx == (0x02000604 | MaskUnd)) 1968*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG); 1969*0b57cec5SDimitry Andric if (MaskIdx == (0x03010705 | MaskUnd)) 1970*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG); 1971*0b57cec5SDimitry Andric } 1972*0b57cec5SDimitry Andric 1973*0b57cec5SDimitry Andric if (ByteMask.size() == 8) { 1974*0b57cec5SDimitry Andric // Identity. 1975*0b57cec5SDimitry Andric if (MaskIdx == (0x0706050403020100ull | MaskUnd)) 1976*0b57cec5SDimitry Andric return Op0; 1977*0b57cec5SDimitry Andric // Byte swap. 1978*0b57cec5SDimitry Andric if (MaskIdx == (0x0001020304050607ull | MaskUnd)) { 1979*0b57cec5SDimitry Andric SDValue T0 = DAG.getBitcast(MVT::i64, Op0); 1980*0b57cec5SDimitry Andric SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0); 1981*0b57cec5SDimitry Andric return DAG.getBitcast(VecTy, T1); 1982*0b57cec5SDimitry Andric } 1983*0b57cec5SDimitry Andric 1984*0b57cec5SDimitry Andric // Halfword picks. 1985*0b57cec5SDimitry Andric if (MaskIdx == (0x0d0c050409080100ull | MaskUnd)) 1986*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG); 1987*0b57cec5SDimitry Andric if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd)) 1988*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG); 1989*0b57cec5SDimitry Andric if (MaskIdx == (0x0d0c090805040100ull | MaskUnd)) 1990*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG); 1991*0b57cec5SDimitry Andric if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd)) 1992*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG); 1993*0b57cec5SDimitry Andric if (MaskIdx == (0x0706030205040100ull | MaskUnd)) { 1994*0b57cec5SDimitry Andric VectorPair P = opSplit(Op0, dl, DAG); 1995*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG); 1996*0b57cec5SDimitry Andric } 1997*0b57cec5SDimitry Andric 1998*0b57cec5SDimitry Andric // Byte packs. 1999*0b57cec5SDimitry Andric if (MaskIdx == (0x0e060c040a020800ull | MaskUnd)) 2000*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG); 2001*0b57cec5SDimitry Andric if (MaskIdx == (0x0f070d050b030901ull | MaskUnd)) 2002*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG); 2003*0b57cec5SDimitry Andric } 2004*0b57cec5SDimitry Andric 2005*0b57cec5SDimitry Andric return SDValue(); 2006*0b57cec5SDimitry Andric } 2007*0b57cec5SDimitry Andric 2008*0b57cec5SDimitry Andric // Create a Hexagon-specific node for shifting a vector by an integer. 2009*0b57cec5SDimitry Andric SDValue 2010*0b57cec5SDimitry Andric HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) 2011*0b57cec5SDimitry Andric const { 2012*0b57cec5SDimitry Andric if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) { 2013*0b57cec5SDimitry Andric if (SDValue S = BVN->getSplatValue()) { 2014*0b57cec5SDimitry Andric unsigned NewOpc; 2015*0b57cec5SDimitry Andric switch (Op.getOpcode()) { 2016*0b57cec5SDimitry Andric case ISD::SHL: 2017*0b57cec5SDimitry Andric NewOpc = HexagonISD::VASL; 2018*0b57cec5SDimitry Andric break; 2019*0b57cec5SDimitry Andric case ISD::SRA: 2020*0b57cec5SDimitry Andric NewOpc = HexagonISD::VASR; 2021*0b57cec5SDimitry Andric break; 2022*0b57cec5SDimitry Andric case ISD::SRL: 2023*0b57cec5SDimitry Andric NewOpc = HexagonISD::VLSR; 2024*0b57cec5SDimitry Andric break; 2025*0b57cec5SDimitry Andric default: 2026*0b57cec5SDimitry Andric llvm_unreachable("Unexpected shift opcode"); 2027*0b57cec5SDimitry Andric } 2028*0b57cec5SDimitry Andric return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S); 2029*0b57cec5SDimitry Andric } 2030*0b57cec5SDimitry Andric } 2031*0b57cec5SDimitry Andric 2032*0b57cec5SDimitry Andric return SDValue(); 2033*0b57cec5SDimitry Andric } 2034*0b57cec5SDimitry Andric 2035*0b57cec5SDimitry Andric SDValue 2036*0b57cec5SDimitry Andric HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const { 2037*0b57cec5SDimitry Andric return getVectorShiftByInt(Op, DAG); 2038*0b57cec5SDimitry Andric } 2039*0b57cec5SDimitry Andric 2040*0b57cec5SDimitry Andric SDValue 2041*0b57cec5SDimitry Andric HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 2042*0b57cec5SDimitry Andric if (isa<ConstantSDNode>(Op.getOperand(1).getNode())) 2043*0b57cec5SDimitry Andric return Op; 2044*0b57cec5SDimitry Andric return SDValue(); 2045*0b57cec5SDimitry Andric } 2046*0b57cec5SDimitry Andric 2047*0b57cec5SDimitry Andric SDValue 2048*0b57cec5SDimitry Andric HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 2049*0b57cec5SDimitry Andric MVT ResTy = ty(Op); 2050*0b57cec5SDimitry Andric SDValue InpV = Op.getOperand(0); 2051*0b57cec5SDimitry Andric MVT InpTy = ty(InpV); 2052*0b57cec5SDimitry Andric assert(ResTy.getSizeInBits() == InpTy.getSizeInBits()); 2053*0b57cec5SDimitry Andric const SDLoc &dl(Op); 2054*0b57cec5SDimitry Andric 2055*0b57cec5SDimitry Andric // Handle conversion from i8 to v8i1. 2056*0b57cec5SDimitry Andric if (ResTy == MVT::v8i1) { 2057*0b57cec5SDimitry Andric SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV); 2058*0b57cec5SDimitry Andric SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32); 2059*0b57cec5SDimitry Andric return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG); 2060*0b57cec5SDimitry Andric } 2061*0b57cec5SDimitry Andric 2062*0b57cec5SDimitry Andric return SDValue(); 2063*0b57cec5SDimitry Andric } 2064*0b57cec5SDimitry Andric 2065*0b57cec5SDimitry Andric bool 2066*0b57cec5SDimitry Andric HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values, 2067*0b57cec5SDimitry Andric MVT VecTy, SelectionDAG &DAG, 2068*0b57cec5SDimitry Andric MutableArrayRef<ConstantInt*> Consts) const { 2069*0b57cec5SDimitry Andric MVT ElemTy = VecTy.getVectorElementType(); 2070*0b57cec5SDimitry Andric unsigned ElemWidth = ElemTy.getSizeInBits(); 2071*0b57cec5SDimitry Andric IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth); 2072*0b57cec5SDimitry Andric bool AllConst = true; 2073*0b57cec5SDimitry Andric 2074*0b57cec5SDimitry Andric for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2075*0b57cec5SDimitry Andric SDValue V = Values[i]; 2076*0b57cec5SDimitry Andric if (V.isUndef()) { 2077*0b57cec5SDimitry Andric Consts[i] = ConstantInt::get(IntTy, 0); 2078*0b57cec5SDimitry Andric continue; 2079*0b57cec5SDimitry Andric } 2080*0b57cec5SDimitry Andric // Make sure to always cast to IntTy. 2081*0b57cec5SDimitry Andric if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) { 2082*0b57cec5SDimitry Andric const ConstantInt *CI = CN->getConstantIntValue(); 2083*0b57cec5SDimitry Andric Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue()); 2084*0b57cec5SDimitry Andric } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) { 2085*0b57cec5SDimitry Andric const ConstantFP *CF = CN->getConstantFPValue(); 2086*0b57cec5SDimitry Andric APInt A = CF->getValueAPF().bitcastToAPInt(); 2087*0b57cec5SDimitry Andric Consts[i] = ConstantInt::get(IntTy, A.getZExtValue()); 2088*0b57cec5SDimitry Andric } else { 2089*0b57cec5SDimitry Andric AllConst = false; 2090*0b57cec5SDimitry Andric } 2091*0b57cec5SDimitry Andric } 2092*0b57cec5SDimitry Andric return AllConst; 2093*0b57cec5SDimitry Andric } 2094*0b57cec5SDimitry Andric 2095*0b57cec5SDimitry Andric SDValue 2096*0b57cec5SDimitry Andric HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, 2097*0b57cec5SDimitry Andric MVT VecTy, SelectionDAG &DAG) const { 2098*0b57cec5SDimitry Andric MVT ElemTy = VecTy.getVectorElementType(); 2099*0b57cec5SDimitry Andric assert(VecTy.getVectorNumElements() == Elem.size()); 2100*0b57cec5SDimitry Andric 2101*0b57cec5SDimitry Andric SmallVector<ConstantInt*,4> Consts(Elem.size()); 2102*0b57cec5SDimitry Andric bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); 2103*0b57cec5SDimitry Andric 2104*0b57cec5SDimitry Andric unsigned First, Num = Elem.size(); 2105*0b57cec5SDimitry Andric for (First = 0; First != Num; ++First) 2106*0b57cec5SDimitry Andric if (!isUndef(Elem[First])) 2107*0b57cec5SDimitry Andric break; 2108*0b57cec5SDimitry Andric if (First == Num) 2109*0b57cec5SDimitry Andric return DAG.getUNDEF(VecTy); 2110*0b57cec5SDimitry Andric 2111*0b57cec5SDimitry Andric if (AllConst && 2112*0b57cec5SDimitry Andric llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) 2113*0b57cec5SDimitry Andric return getZero(dl, VecTy, DAG); 2114*0b57cec5SDimitry Andric 2115*0b57cec5SDimitry Andric if (ElemTy == MVT::i16) { 2116*0b57cec5SDimitry Andric assert(Elem.size() == 2); 2117*0b57cec5SDimitry Andric if (AllConst) { 2118*0b57cec5SDimitry Andric uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) | 2119*0b57cec5SDimitry Andric Consts[1]->getZExtValue() << 16; 2120*0b57cec5SDimitry Andric return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32)); 2121*0b57cec5SDimitry Andric } 2122*0b57cec5SDimitry Andric SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, 2123*0b57cec5SDimitry Andric {Elem[1], Elem[0]}, DAG); 2124*0b57cec5SDimitry Andric return DAG.getBitcast(MVT::v2i16, N); 2125*0b57cec5SDimitry Andric } 2126*0b57cec5SDimitry Andric 2127*0b57cec5SDimitry Andric if (ElemTy == MVT::i8) { 2128*0b57cec5SDimitry Andric // First try generating a constant. 2129*0b57cec5SDimitry Andric if (AllConst) { 2130*0b57cec5SDimitry Andric int32_t V = (Consts[0]->getZExtValue() & 0xFF) | 2131*0b57cec5SDimitry Andric (Consts[1]->getZExtValue() & 0xFF) << 8 | 2132*0b57cec5SDimitry Andric (Consts[1]->getZExtValue() & 0xFF) << 16 | 2133*0b57cec5SDimitry Andric Consts[2]->getZExtValue() << 24; 2134*0b57cec5SDimitry Andric return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32)); 2135*0b57cec5SDimitry Andric } 2136*0b57cec5SDimitry Andric 2137*0b57cec5SDimitry Andric // Then try splat. 2138*0b57cec5SDimitry Andric bool IsSplat = true; 2139*0b57cec5SDimitry Andric for (unsigned i = 0; i != Num; ++i) { 2140*0b57cec5SDimitry Andric if (i == First) 2141*0b57cec5SDimitry Andric continue; 2142*0b57cec5SDimitry Andric if (Elem[i] == Elem[First] || isUndef(Elem[i])) 2143*0b57cec5SDimitry Andric continue; 2144*0b57cec5SDimitry Andric IsSplat = false; 2145*0b57cec5SDimitry Andric break; 2146*0b57cec5SDimitry Andric } 2147*0b57cec5SDimitry Andric if (IsSplat) { 2148*0b57cec5SDimitry Andric // Legalize the operand to VSPLAT. 2149*0b57cec5SDimitry Andric SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); 2150*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext); 2151*0b57cec5SDimitry Andric } 2152*0b57cec5SDimitry Andric 2153*0b57cec5SDimitry Andric // Generate 2154*0b57cec5SDimitry Andric // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) | 2155*0b57cec5SDimitry Andric // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16 2156*0b57cec5SDimitry Andric assert(Elem.size() == 4); 2157*0b57cec5SDimitry Andric SDValue Vs[4]; 2158*0b57cec5SDimitry Andric for (unsigned i = 0; i != 4; ++i) { 2159*0b57cec5SDimitry Andric Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32); 2160*0b57cec5SDimitry Andric Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8); 2161*0b57cec5SDimitry Andric } 2162*0b57cec5SDimitry Andric SDValue S8 = DAG.getConstant(8, dl, MVT::i32); 2163*0b57cec5SDimitry Andric SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8}); 2164*0b57cec5SDimitry Andric SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8}); 2165*0b57cec5SDimitry Andric SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0}); 2166*0b57cec5SDimitry Andric SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1}); 2167*0b57cec5SDimitry Andric 2168*0b57cec5SDimitry Andric SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG); 2169*0b57cec5SDimitry Andric return DAG.getBitcast(MVT::v4i8, R); 2170*0b57cec5SDimitry Andric } 2171*0b57cec5SDimitry Andric 2172*0b57cec5SDimitry Andric #ifndef NDEBUG 2173*0b57cec5SDimitry Andric dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n'; 2174*0b57cec5SDimitry Andric #endif 2175*0b57cec5SDimitry Andric llvm_unreachable("Unexpected vector element type"); 2176*0b57cec5SDimitry Andric } 2177*0b57cec5SDimitry Andric 2178*0b57cec5SDimitry Andric SDValue 2179*0b57cec5SDimitry Andric HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, 2180*0b57cec5SDimitry Andric MVT VecTy, SelectionDAG &DAG) const { 2181*0b57cec5SDimitry Andric MVT ElemTy = VecTy.getVectorElementType(); 2182*0b57cec5SDimitry Andric assert(VecTy.getVectorNumElements() == Elem.size()); 2183*0b57cec5SDimitry Andric 2184*0b57cec5SDimitry Andric SmallVector<ConstantInt*,8> Consts(Elem.size()); 2185*0b57cec5SDimitry Andric bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); 2186*0b57cec5SDimitry Andric 2187*0b57cec5SDimitry Andric unsigned First, Num = Elem.size(); 2188*0b57cec5SDimitry Andric for (First = 0; First != Num; ++First) 2189*0b57cec5SDimitry Andric if (!isUndef(Elem[First])) 2190*0b57cec5SDimitry Andric break; 2191*0b57cec5SDimitry Andric if (First == Num) 2192*0b57cec5SDimitry Andric return DAG.getUNDEF(VecTy); 2193*0b57cec5SDimitry Andric 2194*0b57cec5SDimitry Andric if (AllConst && 2195*0b57cec5SDimitry Andric llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) 2196*0b57cec5SDimitry Andric return getZero(dl, VecTy, DAG); 2197*0b57cec5SDimitry Andric 2198*0b57cec5SDimitry Andric // First try splat if possible. 2199*0b57cec5SDimitry Andric if (ElemTy == MVT::i16) { 2200*0b57cec5SDimitry Andric bool IsSplat = true; 2201*0b57cec5SDimitry Andric for (unsigned i = 0; i != Num; ++i) { 2202*0b57cec5SDimitry Andric if (i == First) 2203*0b57cec5SDimitry Andric continue; 2204*0b57cec5SDimitry Andric if (Elem[i] == Elem[First] || isUndef(Elem[i])) 2205*0b57cec5SDimitry Andric continue; 2206*0b57cec5SDimitry Andric IsSplat = false; 2207*0b57cec5SDimitry Andric break; 2208*0b57cec5SDimitry Andric } 2209*0b57cec5SDimitry Andric if (IsSplat) { 2210*0b57cec5SDimitry Andric // Legalize the operand to VSPLAT. 2211*0b57cec5SDimitry Andric SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); 2212*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext); 2213*0b57cec5SDimitry Andric } 2214*0b57cec5SDimitry Andric } 2215*0b57cec5SDimitry Andric 2216*0b57cec5SDimitry Andric // Then try constant. 2217*0b57cec5SDimitry Andric if (AllConst) { 2218*0b57cec5SDimitry Andric uint64_t Val = 0; 2219*0b57cec5SDimitry Andric unsigned W = ElemTy.getSizeInBits(); 2220*0b57cec5SDimitry Andric uint64_t Mask = (ElemTy == MVT::i8) ? 0xFFull 2221*0b57cec5SDimitry Andric : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull; 2222*0b57cec5SDimitry Andric for (unsigned i = 0; i != Num; ++i) 2223*0b57cec5SDimitry Andric Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask); 2224*0b57cec5SDimitry Andric SDValue V0 = DAG.getConstant(Val, dl, MVT::i64); 2225*0b57cec5SDimitry Andric return DAG.getBitcast(VecTy, V0); 2226*0b57cec5SDimitry Andric } 2227*0b57cec5SDimitry Andric 2228*0b57cec5SDimitry Andric // Build two 32-bit vectors and concatenate. 2229*0b57cec5SDimitry Andric MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2); 2230*0b57cec5SDimitry Andric SDValue L = (ElemTy == MVT::i32) 2231*0b57cec5SDimitry Andric ? Elem[0] 2232*0b57cec5SDimitry Andric : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG); 2233*0b57cec5SDimitry Andric SDValue H = (ElemTy == MVT::i32) 2234*0b57cec5SDimitry Andric ? Elem[1] 2235*0b57cec5SDimitry Andric : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG); 2236*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L}); 2237*0b57cec5SDimitry Andric } 2238*0b57cec5SDimitry Andric 2239*0b57cec5SDimitry Andric SDValue 2240*0b57cec5SDimitry Andric HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV, 2241*0b57cec5SDimitry Andric const SDLoc &dl, MVT ValTy, MVT ResTy, 2242*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2243*0b57cec5SDimitry Andric MVT VecTy = ty(VecV); 2244*0b57cec5SDimitry Andric assert(!ValTy.isVector() || 2245*0b57cec5SDimitry Andric VecTy.getVectorElementType() == ValTy.getVectorElementType()); 2246*0b57cec5SDimitry Andric unsigned VecWidth = VecTy.getSizeInBits(); 2247*0b57cec5SDimitry Andric unsigned ValWidth = ValTy.getSizeInBits(); 2248*0b57cec5SDimitry Andric unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits(); 2249*0b57cec5SDimitry Andric assert((VecWidth % ElemWidth) == 0); 2250*0b57cec5SDimitry Andric auto *IdxN = dyn_cast<ConstantSDNode>(IdxV); 2251*0b57cec5SDimitry Andric 2252*0b57cec5SDimitry Andric // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon 2253*0b57cec5SDimitry Andric // without any coprocessors). 2254*0b57cec5SDimitry Andric if (ElemWidth == 1) { 2255*0b57cec5SDimitry Andric assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure"); 2256*0b57cec5SDimitry Andric assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2); 2257*0b57cec5SDimitry Andric // Check if this is an extract of the lowest bit. 2258*0b57cec5SDimitry Andric if (IdxN) { 2259*0b57cec5SDimitry Andric // Extracting the lowest bit is a no-op, but it changes the type, 2260*0b57cec5SDimitry Andric // so it must be kept as an operation to avoid errors related to 2261*0b57cec5SDimitry Andric // type mismatches. 2262*0b57cec5SDimitry Andric if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1) 2263*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV); 2264*0b57cec5SDimitry Andric } 2265*0b57cec5SDimitry Andric 2266*0b57cec5SDimitry Andric // If the value extracted is a single bit, use tstbit. 2267*0b57cec5SDimitry Andric if (ValWidth == 1) { 2268*0b57cec5SDimitry Andric SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG); 2269*0b57cec5SDimitry Andric SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32); 2270*0b57cec5SDimitry Andric SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0); 2271*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0); 2272*0b57cec5SDimitry Andric } 2273*0b57cec5SDimitry Andric 2274*0b57cec5SDimitry Andric // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in 2275*0b57cec5SDimitry Andric // a predicate register. The elements of the vector are repeated 2276*0b57cec5SDimitry Andric // in the register (if necessary) so that the total number is 8. 2277*0b57cec5SDimitry Andric // The extracted subvector will need to be expanded in such a way. 2278*0b57cec5SDimitry Andric unsigned Scale = VecWidth / ValWidth; 2279*0b57cec5SDimitry Andric 2280*0b57cec5SDimitry Andric // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to 2281*0b57cec5SDimitry Andric // position 0. 2282*0b57cec5SDimitry Andric assert(ty(IdxV) == MVT::i32); 2283*0b57cec5SDimitry Andric unsigned VecRep = 8 / VecWidth; 2284*0b57cec5SDimitry Andric SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 2285*0b57cec5SDimitry Andric DAG.getConstant(8*VecRep, dl, MVT::i32)); 2286*0b57cec5SDimitry Andric SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); 2287*0b57cec5SDimitry Andric SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0); 2288*0b57cec5SDimitry Andric while (Scale > 1) { 2289*0b57cec5SDimitry Andric // The longest possible subvector is at most 32 bits, so it is always 2290*0b57cec5SDimitry Andric // contained in the low subregister. 2291*0b57cec5SDimitry Andric T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1); 2292*0b57cec5SDimitry Andric T1 = expandPredicate(T1, dl, DAG); 2293*0b57cec5SDimitry Andric Scale /= 2; 2294*0b57cec5SDimitry Andric } 2295*0b57cec5SDimitry Andric 2296*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1); 2297*0b57cec5SDimitry Andric } 2298*0b57cec5SDimitry Andric 2299*0b57cec5SDimitry Andric assert(VecWidth == 32 || VecWidth == 64); 2300*0b57cec5SDimitry Andric 2301*0b57cec5SDimitry Andric // Cast everything to scalar integer types. 2302*0b57cec5SDimitry Andric MVT ScalarTy = tyScalar(VecTy); 2303*0b57cec5SDimitry Andric VecV = DAG.getBitcast(ScalarTy, VecV); 2304*0b57cec5SDimitry Andric 2305*0b57cec5SDimitry Andric SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); 2306*0b57cec5SDimitry Andric SDValue ExtV; 2307*0b57cec5SDimitry Andric 2308*0b57cec5SDimitry Andric if (IdxN) { 2309*0b57cec5SDimitry Andric unsigned Off = IdxN->getZExtValue() * ElemWidth; 2310*0b57cec5SDimitry Andric if (VecWidth == 64 && ValWidth == 32) { 2311*0b57cec5SDimitry Andric assert(Off == 0 || Off == 32); 2312*0b57cec5SDimitry Andric unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi; 2313*0b57cec5SDimitry Andric ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV); 2314*0b57cec5SDimitry Andric } else if (Off == 0 && (ValWidth % 8) == 0) { 2315*0b57cec5SDimitry Andric ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy)); 2316*0b57cec5SDimitry Andric } else { 2317*0b57cec5SDimitry Andric SDValue OffV = DAG.getConstant(Off, dl, MVT::i32); 2318*0b57cec5SDimitry Andric // The return type of EXTRACTU must be the same as the type of the 2319*0b57cec5SDimitry Andric // input vector. 2320*0b57cec5SDimitry Andric ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, 2321*0b57cec5SDimitry Andric {VecV, WidthV, OffV}); 2322*0b57cec5SDimitry Andric } 2323*0b57cec5SDimitry Andric } else { 2324*0b57cec5SDimitry Andric if (ty(IdxV) != MVT::i32) 2325*0b57cec5SDimitry Andric IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); 2326*0b57cec5SDimitry Andric SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 2327*0b57cec5SDimitry Andric DAG.getConstant(ElemWidth, dl, MVT::i32)); 2328*0b57cec5SDimitry Andric ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, 2329*0b57cec5SDimitry Andric {VecV, WidthV, OffV}); 2330*0b57cec5SDimitry Andric } 2331*0b57cec5SDimitry Andric 2332*0b57cec5SDimitry Andric // Cast ExtV to the requested result type. 2333*0b57cec5SDimitry Andric ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy)); 2334*0b57cec5SDimitry Andric ExtV = DAG.getBitcast(ResTy, ExtV); 2335*0b57cec5SDimitry Andric return ExtV; 2336*0b57cec5SDimitry Andric } 2337*0b57cec5SDimitry Andric 2338*0b57cec5SDimitry Andric SDValue 2339*0b57cec5SDimitry Andric HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV, 2340*0b57cec5SDimitry Andric const SDLoc &dl, MVT ValTy, 2341*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2342*0b57cec5SDimitry Andric MVT VecTy = ty(VecV); 2343*0b57cec5SDimitry Andric if (VecTy.getVectorElementType() == MVT::i1) { 2344*0b57cec5SDimitry Andric MVT ValTy = ty(ValV); 2345*0b57cec5SDimitry Andric assert(ValTy.getVectorElementType() == MVT::i1); 2346*0b57cec5SDimitry Andric SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV); 2347*0b57cec5SDimitry Andric unsigned VecLen = VecTy.getVectorNumElements(); 2348*0b57cec5SDimitry Andric unsigned Scale = VecLen / ValTy.getVectorNumElements(); 2349*0b57cec5SDimitry Andric assert(Scale > 1); 2350*0b57cec5SDimitry Andric 2351*0b57cec5SDimitry Andric for (unsigned R = Scale; R > 1; R /= 2) { 2352*0b57cec5SDimitry Andric ValR = contractPredicate(ValR, dl, DAG); 2353*0b57cec5SDimitry Andric ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, 2354*0b57cec5SDimitry Andric DAG.getUNDEF(MVT::i32), ValR); 2355*0b57cec5SDimitry Andric } 2356*0b57cec5SDimitry Andric // The longest possible subvector is at most 32 bits, so it is always 2357*0b57cec5SDimitry Andric // contained in the low subregister. 2358*0b57cec5SDimitry Andric ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR); 2359*0b57cec5SDimitry Andric 2360*0b57cec5SDimitry Andric unsigned ValBytes = 64 / Scale; 2361*0b57cec5SDimitry Andric SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32); 2362*0b57cec5SDimitry Andric SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 2363*0b57cec5SDimitry Andric DAG.getConstant(8, dl, MVT::i32)); 2364*0b57cec5SDimitry Andric SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); 2365*0b57cec5SDimitry Andric SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, 2366*0b57cec5SDimitry Andric {VecR, ValR, Width, Idx}); 2367*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins); 2368*0b57cec5SDimitry Andric } 2369*0b57cec5SDimitry Andric 2370*0b57cec5SDimitry Andric unsigned VecWidth = VecTy.getSizeInBits(); 2371*0b57cec5SDimitry Andric unsigned ValWidth = ValTy.getSizeInBits(); 2372*0b57cec5SDimitry Andric assert(VecWidth == 32 || VecWidth == 64); 2373*0b57cec5SDimitry Andric assert((VecWidth % ValWidth) == 0); 2374*0b57cec5SDimitry Andric 2375*0b57cec5SDimitry Andric // Cast everything to scalar integer types. 2376*0b57cec5SDimitry Andric MVT ScalarTy = MVT::getIntegerVT(VecWidth); 2377*0b57cec5SDimitry Andric // The actual type of ValV may be different than ValTy (which is related 2378*0b57cec5SDimitry Andric // to the vector type). 2379*0b57cec5SDimitry Andric unsigned VW = ty(ValV).getSizeInBits(); 2380*0b57cec5SDimitry Andric ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV); 2381*0b57cec5SDimitry Andric VecV = DAG.getBitcast(ScalarTy, VecV); 2382*0b57cec5SDimitry Andric if (VW != VecWidth) 2383*0b57cec5SDimitry Andric ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy); 2384*0b57cec5SDimitry Andric 2385*0b57cec5SDimitry Andric SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); 2386*0b57cec5SDimitry Andric SDValue InsV; 2387*0b57cec5SDimitry Andric 2388*0b57cec5SDimitry Andric if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) { 2389*0b57cec5SDimitry Andric unsigned W = C->getZExtValue() * ValWidth; 2390*0b57cec5SDimitry Andric SDValue OffV = DAG.getConstant(W, dl, MVT::i32); 2391*0b57cec5SDimitry Andric InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, 2392*0b57cec5SDimitry Andric {VecV, ValV, WidthV, OffV}); 2393*0b57cec5SDimitry Andric } else { 2394*0b57cec5SDimitry Andric if (ty(IdxV) != MVT::i32) 2395*0b57cec5SDimitry Andric IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); 2396*0b57cec5SDimitry Andric SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV); 2397*0b57cec5SDimitry Andric InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, 2398*0b57cec5SDimitry Andric {VecV, ValV, WidthV, OffV}); 2399*0b57cec5SDimitry Andric } 2400*0b57cec5SDimitry Andric 2401*0b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV); 2402*0b57cec5SDimitry Andric } 2403*0b57cec5SDimitry Andric 2404*0b57cec5SDimitry Andric SDValue 2405*0b57cec5SDimitry Andric HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl, 2406*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2407*0b57cec5SDimitry Andric assert(ty(Vec32).getSizeInBits() == 32); 2408*0b57cec5SDimitry Andric if (isUndef(Vec32)) 2409*0b57cec5SDimitry Andric return DAG.getUNDEF(MVT::i64); 2410*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG); 2411*0b57cec5SDimitry Andric } 2412*0b57cec5SDimitry Andric 2413*0b57cec5SDimitry Andric SDValue 2414*0b57cec5SDimitry Andric HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl, 2415*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2416*0b57cec5SDimitry Andric assert(ty(Vec64).getSizeInBits() == 64); 2417*0b57cec5SDimitry Andric if (isUndef(Vec64)) 2418*0b57cec5SDimitry Andric return DAG.getUNDEF(MVT::i32); 2419*0b57cec5SDimitry Andric return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG); 2420*0b57cec5SDimitry Andric } 2421*0b57cec5SDimitry Andric 2422*0b57cec5SDimitry Andric SDValue 2423*0b57cec5SDimitry Andric HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) 2424*0b57cec5SDimitry Andric const { 2425*0b57cec5SDimitry Andric if (Ty.isVector()) { 2426*0b57cec5SDimitry Andric assert(Ty.isInteger() && "Only integer vectors are supported here"); 2427*0b57cec5SDimitry Andric unsigned W = Ty.getSizeInBits(); 2428*0b57cec5SDimitry Andric if (W <= 64) 2429*0b57cec5SDimitry Andric return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W))); 2430*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::VZERO, dl, Ty); 2431*0b57cec5SDimitry Andric } 2432*0b57cec5SDimitry Andric 2433*0b57cec5SDimitry Andric if (Ty.isInteger()) 2434*0b57cec5SDimitry Andric return DAG.getConstant(0, dl, Ty); 2435*0b57cec5SDimitry Andric if (Ty.isFloatingPoint()) 2436*0b57cec5SDimitry Andric return DAG.getConstantFP(0.0, dl, Ty); 2437*0b57cec5SDimitry Andric llvm_unreachable("Invalid type for zero"); 2438*0b57cec5SDimitry Andric } 2439*0b57cec5SDimitry Andric 2440*0b57cec5SDimitry Andric SDValue 2441*0b57cec5SDimitry Andric HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { 2442*0b57cec5SDimitry Andric MVT VecTy = ty(Op); 2443*0b57cec5SDimitry Andric unsigned BW = VecTy.getSizeInBits(); 2444*0b57cec5SDimitry Andric const SDLoc &dl(Op); 2445*0b57cec5SDimitry Andric SmallVector<SDValue,8> Ops; 2446*0b57cec5SDimitry Andric for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) 2447*0b57cec5SDimitry Andric Ops.push_back(Op.getOperand(i)); 2448*0b57cec5SDimitry Andric 2449*0b57cec5SDimitry Andric if (BW == 32) 2450*0b57cec5SDimitry Andric return buildVector32(Ops, dl, VecTy, DAG); 2451*0b57cec5SDimitry Andric if (BW == 64) 2452*0b57cec5SDimitry Andric return buildVector64(Ops, dl, VecTy, DAG); 2453*0b57cec5SDimitry Andric 2454*0b57cec5SDimitry Andric if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) { 2455*0b57cec5SDimitry Andric // For each i1 element in the resulting predicate register, put 1 2456*0b57cec5SDimitry Andric // shifted by the index of the element into a general-purpose register, 2457*0b57cec5SDimitry Andric // then or them together and transfer it back into a predicate register. 2458*0b57cec5SDimitry Andric SDValue Rs[8]; 2459*0b57cec5SDimitry Andric SDValue Z = getZero(dl, MVT::i32, DAG); 2460*0b57cec5SDimitry Andric // Always produce 8 bits, repeat inputs if necessary. 2461*0b57cec5SDimitry Andric unsigned Rep = 8 / VecTy.getVectorNumElements(); 2462*0b57cec5SDimitry Andric for (unsigned i = 0; i != 8; ++i) { 2463*0b57cec5SDimitry Andric SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32); 2464*0b57cec5SDimitry Andric Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z); 2465*0b57cec5SDimitry Andric } 2466*0b57cec5SDimitry Andric for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) { 2467*0b57cec5SDimitry Andric for (unsigned i = 0, e = A.size()/2; i != e; ++i) 2468*0b57cec5SDimitry Andric Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]); 2469*0b57cec5SDimitry Andric } 2470*0b57cec5SDimitry Andric // Move the value directly to a predicate register. 2471*0b57cec5SDimitry Andric return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG); 2472*0b57cec5SDimitry Andric } 2473*0b57cec5SDimitry Andric 2474*0b57cec5SDimitry Andric return SDValue(); 2475*0b57cec5SDimitry Andric } 2476*0b57cec5SDimitry Andric 2477*0b57cec5SDimitry Andric SDValue 2478*0b57cec5SDimitry Andric HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 2479*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2480*0b57cec5SDimitry Andric MVT VecTy = ty(Op); 2481*0b57cec5SDimitry Andric const SDLoc &dl(Op); 2482*0b57cec5SDimitry Andric if (VecTy.getSizeInBits() == 64) { 2483*0b57cec5SDimitry Andric assert(Op.getNumOperands() == 2); 2484*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1), 2485*0b57cec5SDimitry Andric Op.getOperand(0)); 2486*0b57cec5SDimitry Andric } 2487*0b57cec5SDimitry Andric 2488*0b57cec5SDimitry Andric MVT ElemTy = VecTy.getVectorElementType(); 2489*0b57cec5SDimitry Andric if (ElemTy == MVT::i1) { 2490*0b57cec5SDimitry Andric assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1); 2491*0b57cec5SDimitry Andric MVT OpTy = ty(Op.getOperand(0)); 2492*0b57cec5SDimitry Andric // Scale is how many times the operands need to be contracted to match 2493*0b57cec5SDimitry Andric // the representation in the target register. 2494*0b57cec5SDimitry Andric unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements(); 2495*0b57cec5SDimitry Andric assert(Scale == Op.getNumOperands() && Scale > 1); 2496*0b57cec5SDimitry Andric 2497*0b57cec5SDimitry Andric // First, convert all bool vectors to integers, then generate pairwise 2498*0b57cec5SDimitry Andric // inserts to form values of doubled length. Up until there are only 2499*0b57cec5SDimitry Andric // two values left to concatenate, all of these values will fit in a 2500*0b57cec5SDimitry Andric // 32-bit integer, so keep them as i32 to use 32-bit inserts. 2501*0b57cec5SDimitry Andric SmallVector<SDValue,4> Words[2]; 2502*0b57cec5SDimitry Andric unsigned IdxW = 0; 2503*0b57cec5SDimitry Andric 2504*0b57cec5SDimitry Andric for (SDValue P : Op.getNode()->op_values()) { 2505*0b57cec5SDimitry Andric SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P); 2506*0b57cec5SDimitry Andric for (unsigned R = Scale; R > 1; R /= 2) { 2507*0b57cec5SDimitry Andric W = contractPredicate(W, dl, DAG); 2508*0b57cec5SDimitry Andric W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, 2509*0b57cec5SDimitry Andric DAG.getUNDEF(MVT::i32), W); 2510*0b57cec5SDimitry Andric } 2511*0b57cec5SDimitry Andric W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W); 2512*0b57cec5SDimitry Andric Words[IdxW].push_back(W); 2513*0b57cec5SDimitry Andric } 2514*0b57cec5SDimitry Andric 2515*0b57cec5SDimitry Andric while (Scale > 2) { 2516*0b57cec5SDimitry Andric SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32); 2517*0b57cec5SDimitry Andric Words[IdxW ^ 1].clear(); 2518*0b57cec5SDimitry Andric 2519*0b57cec5SDimitry Andric for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) { 2520*0b57cec5SDimitry Andric SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1]; 2521*0b57cec5SDimitry Andric // Insert W1 into W0 right next to the significant bits of W0. 2522*0b57cec5SDimitry Andric SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, 2523*0b57cec5SDimitry Andric {W0, W1, WidthV, WidthV}); 2524*0b57cec5SDimitry Andric Words[IdxW ^ 1].push_back(T); 2525*0b57cec5SDimitry Andric } 2526*0b57cec5SDimitry Andric IdxW ^= 1; 2527*0b57cec5SDimitry Andric Scale /= 2; 2528*0b57cec5SDimitry Andric } 2529*0b57cec5SDimitry Andric 2530*0b57cec5SDimitry Andric // Another sanity check. At this point there should only be two words 2531*0b57cec5SDimitry Andric // left, and Scale should be 2. 2532*0b57cec5SDimitry Andric assert(Scale == 2 && Words[IdxW].size() == 2); 2533*0b57cec5SDimitry Andric 2534*0b57cec5SDimitry Andric SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, 2535*0b57cec5SDimitry Andric Words[IdxW][1], Words[IdxW][0]); 2536*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW); 2537*0b57cec5SDimitry Andric } 2538*0b57cec5SDimitry Andric 2539*0b57cec5SDimitry Andric return SDValue(); 2540*0b57cec5SDimitry Andric } 2541*0b57cec5SDimitry Andric 2542*0b57cec5SDimitry Andric SDValue 2543*0b57cec5SDimitry Andric HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 2544*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2545*0b57cec5SDimitry Andric SDValue Vec = Op.getOperand(0); 2546*0b57cec5SDimitry Andric MVT ElemTy = ty(Vec).getVectorElementType(); 2547*0b57cec5SDimitry Andric return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG); 2548*0b57cec5SDimitry Andric } 2549*0b57cec5SDimitry Andric 2550*0b57cec5SDimitry Andric SDValue 2551*0b57cec5SDimitry Andric HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 2552*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2553*0b57cec5SDimitry Andric return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op), 2554*0b57cec5SDimitry Andric ty(Op), ty(Op), DAG); 2555*0b57cec5SDimitry Andric } 2556*0b57cec5SDimitry Andric 2557*0b57cec5SDimitry Andric SDValue 2558*0b57cec5SDimitry Andric HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 2559*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2560*0b57cec5SDimitry Andric return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), 2561*0b57cec5SDimitry Andric SDLoc(Op), ty(Op).getVectorElementType(), DAG); 2562*0b57cec5SDimitry Andric } 2563*0b57cec5SDimitry Andric 2564*0b57cec5SDimitry Andric SDValue 2565*0b57cec5SDimitry Andric HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, 2566*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2567*0b57cec5SDimitry Andric SDValue ValV = Op.getOperand(1); 2568*0b57cec5SDimitry Andric return insertVector(Op.getOperand(0), ValV, Op.getOperand(2), 2569*0b57cec5SDimitry Andric SDLoc(Op), ty(ValV), DAG); 2570*0b57cec5SDimitry Andric } 2571*0b57cec5SDimitry Andric 2572*0b57cec5SDimitry Andric bool 2573*0b57cec5SDimitry Andric HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { 2574*0b57cec5SDimitry Andric // Assuming the caller does not have either a signext or zeroext modifier, and 2575*0b57cec5SDimitry Andric // only one value is accepted, any reasonable truncation is allowed. 2576*0b57cec5SDimitry Andric if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 2577*0b57cec5SDimitry Andric return false; 2578*0b57cec5SDimitry Andric 2579*0b57cec5SDimitry Andric // FIXME: in principle up to 64-bit could be made safe, but it would be very 2580*0b57cec5SDimitry Andric // fragile at the moment: any support for multiple value returns would be 2581*0b57cec5SDimitry Andric // liable to disallow tail calls involving i64 -> iN truncation in many cases. 2582*0b57cec5SDimitry Andric return Ty1->getPrimitiveSizeInBits() <= 32; 2583*0b57cec5SDimitry Andric } 2584*0b57cec5SDimitry Andric 2585*0b57cec5SDimitry Andric SDValue 2586*0b57cec5SDimitry Andric HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const { 2587*0b57cec5SDimitry Andric LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 2588*0b57cec5SDimitry Andric unsigned ClaimAlign = LN->getAlignment(); 2589*0b57cec5SDimitry Andric validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign); 2590*0b57cec5SDimitry Andric // Call LowerUnalignedLoad for all loads, it recognizes loads that 2591*0b57cec5SDimitry Andric // don't need extra aligning. 2592*0b57cec5SDimitry Andric return LowerUnalignedLoad(Op, DAG); 2593*0b57cec5SDimitry Andric } 2594*0b57cec5SDimitry Andric 2595*0b57cec5SDimitry Andric SDValue 2596*0b57cec5SDimitry Andric HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const { 2597*0b57cec5SDimitry Andric StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 2598*0b57cec5SDimitry Andric unsigned ClaimAlign = SN->getAlignment(); 2599*0b57cec5SDimitry Andric SDValue Ptr = SN->getBasePtr(); 2600*0b57cec5SDimitry Andric const SDLoc &dl(Op); 2601*0b57cec5SDimitry Andric validateConstPtrAlignment(Ptr, dl, ClaimAlign); 2602*0b57cec5SDimitry Andric 2603*0b57cec5SDimitry Andric MVT StoreTy = SN->getMemoryVT().getSimpleVT(); 2604*0b57cec5SDimitry Andric unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy); 2605*0b57cec5SDimitry Andric if (ClaimAlign < NeedAlign) 2606*0b57cec5SDimitry Andric return expandUnalignedStore(SN, DAG); 2607*0b57cec5SDimitry Andric return Op; 2608*0b57cec5SDimitry Andric } 2609*0b57cec5SDimitry Andric 2610*0b57cec5SDimitry Andric SDValue 2611*0b57cec5SDimitry Andric HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) 2612*0b57cec5SDimitry Andric const { 2613*0b57cec5SDimitry Andric LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 2614*0b57cec5SDimitry Andric MVT LoadTy = ty(Op); 2615*0b57cec5SDimitry Andric unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy); 2616*0b57cec5SDimitry Andric unsigned HaveAlign = LN->getAlignment(); 2617*0b57cec5SDimitry Andric if (HaveAlign >= NeedAlign) 2618*0b57cec5SDimitry Andric return Op; 2619*0b57cec5SDimitry Andric 2620*0b57cec5SDimitry Andric const SDLoc &dl(Op); 2621*0b57cec5SDimitry Andric const DataLayout &DL = DAG.getDataLayout(); 2622*0b57cec5SDimitry Andric LLVMContext &Ctx = *DAG.getContext(); 2623*0b57cec5SDimitry Andric 2624*0b57cec5SDimitry Andric // If the load aligning is disabled or the load can be broken up into two 2625*0b57cec5SDimitry Andric // smaller legal loads, do the default (target-independent) expansion. 2626*0b57cec5SDimitry Andric bool DoDefault = false; 2627*0b57cec5SDimitry Andric // Handle it in the default way if this is an indexed load. 2628*0b57cec5SDimitry Andric if (!LN->isUnindexed()) 2629*0b57cec5SDimitry Andric DoDefault = true; 2630*0b57cec5SDimitry Andric 2631*0b57cec5SDimitry Andric if (!AlignLoads) { 2632*0b57cec5SDimitry Andric if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), *LN->getMemOperand())) 2633*0b57cec5SDimitry Andric return Op; 2634*0b57cec5SDimitry Andric DoDefault = true; 2635*0b57cec5SDimitry Andric } 2636*0b57cec5SDimitry Andric if (!DoDefault && (2 * HaveAlign) == NeedAlign) { 2637*0b57cec5SDimitry Andric // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)". 2638*0b57cec5SDimitry Andric MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign) 2639*0b57cec5SDimitry Andric : MVT::getVectorVT(MVT::i8, HaveAlign); 2640*0b57cec5SDimitry Andric DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, *LN->getMemOperand()); 2641*0b57cec5SDimitry Andric } 2642*0b57cec5SDimitry Andric if (DoDefault) { 2643*0b57cec5SDimitry Andric std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG); 2644*0b57cec5SDimitry Andric return DAG.getMergeValues({P.first, P.second}, dl); 2645*0b57cec5SDimitry Andric } 2646*0b57cec5SDimitry Andric 2647*0b57cec5SDimitry Andric // The code below generates two loads, both aligned as NeedAlign, and 2648*0b57cec5SDimitry Andric // with the distance of NeedAlign between them. For that to cover the 2649*0b57cec5SDimitry Andric // bits that need to be loaded (and without overlapping), the size of 2650*0b57cec5SDimitry Andric // the loads should be equal to NeedAlign. This is true for all loadable 2651*0b57cec5SDimitry Andric // types, but add an assertion in case something changes in the future. 2652*0b57cec5SDimitry Andric assert(LoadTy.getSizeInBits() == 8*NeedAlign); 2653*0b57cec5SDimitry Andric 2654*0b57cec5SDimitry Andric unsigned LoadLen = NeedAlign; 2655*0b57cec5SDimitry Andric SDValue Base = LN->getBasePtr(); 2656*0b57cec5SDimitry Andric SDValue Chain = LN->getChain(); 2657*0b57cec5SDimitry Andric auto BO = getBaseAndOffset(Base); 2658*0b57cec5SDimitry Andric unsigned BaseOpc = BO.first.getOpcode(); 2659*0b57cec5SDimitry Andric if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0) 2660*0b57cec5SDimitry Andric return Op; 2661*0b57cec5SDimitry Andric 2662*0b57cec5SDimitry Andric if (BO.second % LoadLen != 0) { 2663*0b57cec5SDimitry Andric BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first, 2664*0b57cec5SDimitry Andric DAG.getConstant(BO.second % LoadLen, dl, MVT::i32)); 2665*0b57cec5SDimitry Andric BO.second -= BO.second % LoadLen; 2666*0b57cec5SDimitry Andric } 2667*0b57cec5SDimitry Andric SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR) 2668*0b57cec5SDimitry Andric ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first, 2669*0b57cec5SDimitry Andric DAG.getConstant(NeedAlign, dl, MVT::i32)) 2670*0b57cec5SDimitry Andric : BO.first; 2671*0b57cec5SDimitry Andric SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl); 2672*0b57cec5SDimitry Andric SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl); 2673*0b57cec5SDimitry Andric 2674*0b57cec5SDimitry Andric MachineMemOperand *WideMMO = nullptr; 2675*0b57cec5SDimitry Andric if (MachineMemOperand *MMO = LN->getMemOperand()) { 2676*0b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 2677*0b57cec5SDimitry Andric WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(), 2678*0b57cec5SDimitry Andric 2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(), 2679*0b57cec5SDimitry Andric MMO->getSyncScopeID(), MMO->getOrdering(), 2680*0b57cec5SDimitry Andric MMO->getFailureOrdering()); 2681*0b57cec5SDimitry Andric } 2682*0b57cec5SDimitry Andric 2683*0b57cec5SDimitry Andric SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO); 2684*0b57cec5SDimitry Andric SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO); 2685*0b57cec5SDimitry Andric 2686*0b57cec5SDimitry Andric SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy, 2687*0b57cec5SDimitry Andric {Load1, Load0, BaseNoOff.getOperand(0)}); 2688*0b57cec5SDimitry Andric SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2689*0b57cec5SDimitry Andric Load0.getValue(1), Load1.getValue(1)); 2690*0b57cec5SDimitry Andric SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl); 2691*0b57cec5SDimitry Andric return M; 2692*0b57cec5SDimitry Andric } 2693*0b57cec5SDimitry Andric 2694*0b57cec5SDimitry Andric SDValue 2695*0b57cec5SDimitry Andric HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const { 2696*0b57cec5SDimitry Andric SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 2697*0b57cec5SDimitry Andric auto *CY = dyn_cast<ConstantSDNode>(Y); 2698*0b57cec5SDimitry Andric if (!CY) 2699*0b57cec5SDimitry Andric return SDValue(); 2700*0b57cec5SDimitry Andric 2701*0b57cec5SDimitry Andric const SDLoc &dl(Op); 2702*0b57cec5SDimitry Andric SDVTList VTs = Op.getNode()->getVTList(); 2703*0b57cec5SDimitry Andric assert(VTs.NumVTs == 2); 2704*0b57cec5SDimitry Andric assert(VTs.VTs[1] == MVT::i1); 2705*0b57cec5SDimitry Andric unsigned Opc = Op.getOpcode(); 2706*0b57cec5SDimitry Andric 2707*0b57cec5SDimitry Andric if (CY) { 2708*0b57cec5SDimitry Andric uint32_t VY = CY->getZExtValue(); 2709*0b57cec5SDimitry Andric assert(VY != 0 && "This should have been folded"); 2710*0b57cec5SDimitry Andric // X +/- 1 2711*0b57cec5SDimitry Andric if (VY != 1) 2712*0b57cec5SDimitry Andric return SDValue(); 2713*0b57cec5SDimitry Andric 2714*0b57cec5SDimitry Andric if (Opc == ISD::UADDO) { 2715*0b57cec5SDimitry Andric SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y}); 2716*0b57cec5SDimitry Andric SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG), 2717*0b57cec5SDimitry Andric ISD::SETEQ); 2718*0b57cec5SDimitry Andric return DAG.getMergeValues({Op, Ov}, dl); 2719*0b57cec5SDimitry Andric } 2720*0b57cec5SDimitry Andric if (Opc == ISD::USUBO) { 2721*0b57cec5SDimitry Andric SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y}); 2722*0b57cec5SDimitry Andric SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, 2723*0b57cec5SDimitry Andric DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ); 2724*0b57cec5SDimitry Andric return DAG.getMergeValues({Op, Ov}, dl); 2725*0b57cec5SDimitry Andric } 2726*0b57cec5SDimitry Andric } 2727*0b57cec5SDimitry Andric 2728*0b57cec5SDimitry Andric return SDValue(); 2729*0b57cec5SDimitry Andric } 2730*0b57cec5SDimitry Andric 2731*0b57cec5SDimitry Andric SDValue 2732*0b57cec5SDimitry Andric HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const { 2733*0b57cec5SDimitry Andric const SDLoc &dl(Op); 2734*0b57cec5SDimitry Andric unsigned Opc = Op.getOpcode(); 2735*0b57cec5SDimitry Andric SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2); 2736*0b57cec5SDimitry Andric 2737*0b57cec5SDimitry Andric if (Opc == ISD::ADDCARRY) 2738*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(), 2739*0b57cec5SDimitry Andric { X, Y, C }); 2740*0b57cec5SDimitry Andric 2741*0b57cec5SDimitry Andric EVT CarryTy = C.getValueType(); 2742*0b57cec5SDimitry Andric SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(), 2743*0b57cec5SDimitry Andric { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) }); 2744*0b57cec5SDimitry Andric SDValue Out[] = { SubC.getValue(0), 2745*0b57cec5SDimitry Andric DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) }; 2746*0b57cec5SDimitry Andric return DAG.getMergeValues(Out, dl); 2747*0b57cec5SDimitry Andric } 2748*0b57cec5SDimitry Andric 2749*0b57cec5SDimitry Andric SDValue 2750*0b57cec5SDimitry Andric HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 2751*0b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 2752*0b57cec5SDimitry Andric SDValue Offset = Op.getOperand(1); 2753*0b57cec5SDimitry Andric SDValue Handler = Op.getOperand(2); 2754*0b57cec5SDimitry Andric SDLoc dl(Op); 2755*0b57cec5SDimitry Andric auto PtrVT = getPointerTy(DAG.getDataLayout()); 2756*0b57cec5SDimitry Andric 2757*0b57cec5SDimitry Andric // Mark function as containing a call to EH_RETURN. 2758*0b57cec5SDimitry Andric HexagonMachineFunctionInfo *FuncInfo = 2759*0b57cec5SDimitry Andric DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>(); 2760*0b57cec5SDimitry Andric FuncInfo->setHasEHReturn(); 2761*0b57cec5SDimitry Andric 2762*0b57cec5SDimitry Andric unsigned OffsetReg = Hexagon::R28; 2763*0b57cec5SDimitry Andric 2764*0b57cec5SDimitry Andric SDValue StoreAddr = 2765*0b57cec5SDimitry Andric DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT), 2766*0b57cec5SDimitry Andric DAG.getIntPtrConstant(4, dl)); 2767*0b57cec5SDimitry Andric Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo()); 2768*0b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset); 2769*0b57cec5SDimitry Andric 2770*0b57cec5SDimitry Andric // Not needed we already use it as explict input to EH_RETURN. 2771*0b57cec5SDimitry Andric // MF.getRegInfo().addLiveOut(OffsetReg); 2772*0b57cec5SDimitry Andric 2773*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain); 2774*0b57cec5SDimitry Andric } 2775*0b57cec5SDimitry Andric 2776*0b57cec5SDimitry Andric SDValue 2777*0b57cec5SDimitry Andric HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 2778*0b57cec5SDimitry Andric unsigned Opc = Op.getOpcode(); 2779*0b57cec5SDimitry Andric 2780*0b57cec5SDimitry Andric // Handle INLINEASM first. 2781*0b57cec5SDimitry Andric if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR) 2782*0b57cec5SDimitry Andric return LowerINLINEASM(Op, DAG); 2783*0b57cec5SDimitry Andric 2784*0b57cec5SDimitry Andric if (isHvxOperation(Op)) { 2785*0b57cec5SDimitry Andric // If HVX lowering returns nothing, try the default lowering. 2786*0b57cec5SDimitry Andric if (SDValue V = LowerHvxOperation(Op, DAG)) 2787*0b57cec5SDimitry Andric return V; 2788*0b57cec5SDimitry Andric } 2789*0b57cec5SDimitry Andric 2790*0b57cec5SDimitry Andric switch (Opc) { 2791*0b57cec5SDimitry Andric default: 2792*0b57cec5SDimitry Andric #ifndef NDEBUG 2793*0b57cec5SDimitry Andric Op.getNode()->dumpr(&DAG); 2794*0b57cec5SDimitry Andric if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END) 2795*0b57cec5SDimitry Andric errs() << "Error: check for a non-legal type in this operation\n"; 2796*0b57cec5SDimitry Andric #endif 2797*0b57cec5SDimitry Andric llvm_unreachable("Should not custom lower this!"); 2798*0b57cec5SDimitry Andric case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 2799*0b57cec5SDimitry Andric case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG); 2800*0b57cec5SDimitry Andric case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 2801*0b57cec5SDimitry Andric case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 2802*0b57cec5SDimitry Andric case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 2803*0b57cec5SDimitry Andric case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 2804*0b57cec5SDimitry Andric case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 2805*0b57cec5SDimitry Andric case ISD::BITCAST: return LowerBITCAST(Op, DAG); 2806*0b57cec5SDimitry Andric case ISD::LOAD: return LowerLoad(Op, DAG); 2807*0b57cec5SDimitry Andric case ISD::STORE: return LowerStore(Op, DAG); 2808*0b57cec5SDimitry Andric case ISD::UADDO: 2809*0b57cec5SDimitry Andric case ISD::USUBO: return LowerUAddSubO(Op, DAG); 2810*0b57cec5SDimitry Andric case ISD::ADDCARRY: 2811*0b57cec5SDimitry Andric case ISD::SUBCARRY: return LowerAddSubCarry(Op, DAG); 2812*0b57cec5SDimitry Andric case ISD::SRA: 2813*0b57cec5SDimitry Andric case ISD::SHL: 2814*0b57cec5SDimitry Andric case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG); 2815*0b57cec5SDimitry Andric case ISD::ROTL: return LowerROTL(Op, DAG); 2816*0b57cec5SDimitry Andric case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 2817*0b57cec5SDimitry Andric case ISD::JumpTable: return LowerJumpTable(Op, DAG); 2818*0b57cec5SDimitry Andric case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 2819*0b57cec5SDimitry Andric case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 2820*0b57cec5SDimitry Andric case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 2821*0b57cec5SDimitry Andric case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 2822*0b57cec5SDimitry Andric case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 2823*0b57cec5SDimitry Andric case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); 2824*0b57cec5SDimitry Andric case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 2825*0b57cec5SDimitry Andric case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); 2826*0b57cec5SDimitry Andric case ISD::VASTART: return LowerVASTART(Op, DAG); 2827*0b57cec5SDimitry Andric case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 2828*0b57cec5SDimitry Andric case ISD::SETCC: return LowerSETCC(Op, DAG); 2829*0b57cec5SDimitry Andric case ISD::VSELECT: return LowerVSELECT(Op, DAG); 2830*0b57cec5SDimitry Andric case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2831*0b57cec5SDimitry Andric case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 2832*0b57cec5SDimitry Andric case ISD::PREFETCH: return LowerPREFETCH(Op, DAG); 2833*0b57cec5SDimitry Andric case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); 2834*0b57cec5SDimitry Andric break; 2835*0b57cec5SDimitry Andric } 2836*0b57cec5SDimitry Andric 2837*0b57cec5SDimitry Andric return SDValue(); 2838*0b57cec5SDimitry Andric } 2839*0b57cec5SDimitry Andric 2840*0b57cec5SDimitry Andric void 2841*0b57cec5SDimitry Andric HexagonTargetLowering::LowerOperationWrapper(SDNode *N, 2842*0b57cec5SDimitry Andric SmallVectorImpl<SDValue> &Results, 2843*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2844*0b57cec5SDimitry Andric // We are only custom-lowering stores to verify the alignment of the 2845*0b57cec5SDimitry Andric // address if it is a compile-time constant. Since a store can be modified 2846*0b57cec5SDimitry Andric // during type-legalization (the value being stored may need legalization), 2847*0b57cec5SDimitry Andric // return empty Results here to indicate that we don't really make any 2848*0b57cec5SDimitry Andric // changes in the custom lowering. 2849*0b57cec5SDimitry Andric if (N->getOpcode() != ISD::STORE) 2850*0b57cec5SDimitry Andric return TargetLowering::LowerOperationWrapper(N, Results, DAG); 2851*0b57cec5SDimitry Andric } 2852*0b57cec5SDimitry Andric 2853*0b57cec5SDimitry Andric void 2854*0b57cec5SDimitry Andric HexagonTargetLowering::ReplaceNodeResults(SDNode *N, 2855*0b57cec5SDimitry Andric SmallVectorImpl<SDValue> &Results, 2856*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2857*0b57cec5SDimitry Andric const SDLoc &dl(N); 2858*0b57cec5SDimitry Andric switch (N->getOpcode()) { 2859*0b57cec5SDimitry Andric case ISD::SRL: 2860*0b57cec5SDimitry Andric case ISD::SRA: 2861*0b57cec5SDimitry Andric case ISD::SHL: 2862*0b57cec5SDimitry Andric return; 2863*0b57cec5SDimitry Andric case ISD::BITCAST: 2864*0b57cec5SDimitry Andric // Handle a bitcast from v8i1 to i8. 2865*0b57cec5SDimitry Andric if (N->getValueType(0) == MVT::i8) { 2866*0b57cec5SDimitry Andric SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, 2867*0b57cec5SDimitry Andric N->getOperand(0), DAG); 2868*0b57cec5SDimitry Andric Results.push_back(P); 2869*0b57cec5SDimitry Andric } 2870*0b57cec5SDimitry Andric break; 2871*0b57cec5SDimitry Andric } 2872*0b57cec5SDimitry Andric } 2873*0b57cec5SDimitry Andric 2874*0b57cec5SDimitry Andric /// Returns relocation base for the given PIC jumptable. 2875*0b57cec5SDimitry Andric SDValue 2876*0b57cec5SDimitry Andric HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2877*0b57cec5SDimitry Andric SelectionDAG &DAG) const { 2878*0b57cec5SDimitry Andric int Idx = cast<JumpTableSDNode>(Table)->getIndex(); 2879*0b57cec5SDimitry Andric EVT VT = Table.getValueType(); 2880*0b57cec5SDimitry Andric SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); 2881*0b57cec5SDimitry Andric return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T); 2882*0b57cec5SDimitry Andric } 2883*0b57cec5SDimitry Andric 2884*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 2885*0b57cec5SDimitry Andric // Inline Assembly Support 2886*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 2887*0b57cec5SDimitry Andric 2888*0b57cec5SDimitry Andric TargetLowering::ConstraintType 2889*0b57cec5SDimitry Andric HexagonTargetLowering::getConstraintType(StringRef Constraint) const { 2890*0b57cec5SDimitry Andric if (Constraint.size() == 1) { 2891*0b57cec5SDimitry Andric switch (Constraint[0]) { 2892*0b57cec5SDimitry Andric case 'q': 2893*0b57cec5SDimitry Andric case 'v': 2894*0b57cec5SDimitry Andric if (Subtarget.useHVXOps()) 2895*0b57cec5SDimitry Andric return C_RegisterClass; 2896*0b57cec5SDimitry Andric break; 2897*0b57cec5SDimitry Andric case 'a': 2898*0b57cec5SDimitry Andric return C_RegisterClass; 2899*0b57cec5SDimitry Andric default: 2900*0b57cec5SDimitry Andric break; 2901*0b57cec5SDimitry Andric } 2902*0b57cec5SDimitry Andric } 2903*0b57cec5SDimitry Andric return TargetLowering::getConstraintType(Constraint); 2904*0b57cec5SDimitry Andric } 2905*0b57cec5SDimitry Andric 2906*0b57cec5SDimitry Andric std::pair<unsigned, const TargetRegisterClass*> 2907*0b57cec5SDimitry Andric HexagonTargetLowering::getRegForInlineAsmConstraint( 2908*0b57cec5SDimitry Andric const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 2909*0b57cec5SDimitry Andric 2910*0b57cec5SDimitry Andric if (Constraint.size() == 1) { 2911*0b57cec5SDimitry Andric switch (Constraint[0]) { 2912*0b57cec5SDimitry Andric case 'r': // R0-R31 2913*0b57cec5SDimitry Andric switch (VT.SimpleTy) { 2914*0b57cec5SDimitry Andric default: 2915*0b57cec5SDimitry Andric return {0u, nullptr}; 2916*0b57cec5SDimitry Andric case MVT::i1: 2917*0b57cec5SDimitry Andric case MVT::i8: 2918*0b57cec5SDimitry Andric case MVT::i16: 2919*0b57cec5SDimitry Andric case MVT::i32: 2920*0b57cec5SDimitry Andric case MVT::f32: 2921*0b57cec5SDimitry Andric return {0u, &Hexagon::IntRegsRegClass}; 2922*0b57cec5SDimitry Andric case MVT::i64: 2923*0b57cec5SDimitry Andric case MVT::f64: 2924*0b57cec5SDimitry Andric return {0u, &Hexagon::DoubleRegsRegClass}; 2925*0b57cec5SDimitry Andric } 2926*0b57cec5SDimitry Andric break; 2927*0b57cec5SDimitry Andric case 'a': // M0-M1 2928*0b57cec5SDimitry Andric if (VT != MVT::i32) 2929*0b57cec5SDimitry Andric return {0u, nullptr}; 2930*0b57cec5SDimitry Andric return {0u, &Hexagon::ModRegsRegClass}; 2931*0b57cec5SDimitry Andric case 'q': // q0-q3 2932*0b57cec5SDimitry Andric switch (VT.getSizeInBits()) { 2933*0b57cec5SDimitry Andric default: 2934*0b57cec5SDimitry Andric return {0u, nullptr}; 2935*0b57cec5SDimitry Andric case 512: 2936*0b57cec5SDimitry Andric case 1024: 2937*0b57cec5SDimitry Andric return {0u, &Hexagon::HvxQRRegClass}; 2938*0b57cec5SDimitry Andric } 2939*0b57cec5SDimitry Andric break; 2940*0b57cec5SDimitry Andric case 'v': // V0-V31 2941*0b57cec5SDimitry Andric switch (VT.getSizeInBits()) { 2942*0b57cec5SDimitry Andric default: 2943*0b57cec5SDimitry Andric return {0u, nullptr}; 2944*0b57cec5SDimitry Andric case 512: 2945*0b57cec5SDimitry Andric return {0u, &Hexagon::HvxVRRegClass}; 2946*0b57cec5SDimitry Andric case 1024: 2947*0b57cec5SDimitry Andric if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps()) 2948*0b57cec5SDimitry Andric return {0u, &Hexagon::HvxVRRegClass}; 2949*0b57cec5SDimitry Andric return {0u, &Hexagon::HvxWRRegClass}; 2950*0b57cec5SDimitry Andric case 2048: 2951*0b57cec5SDimitry Andric return {0u, &Hexagon::HvxWRRegClass}; 2952*0b57cec5SDimitry Andric } 2953*0b57cec5SDimitry Andric break; 2954*0b57cec5SDimitry Andric default: 2955*0b57cec5SDimitry Andric return {0u, nullptr}; 2956*0b57cec5SDimitry Andric } 2957*0b57cec5SDimitry Andric } 2958*0b57cec5SDimitry Andric 2959*0b57cec5SDimitry Andric return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2960*0b57cec5SDimitry Andric } 2961*0b57cec5SDimitry Andric 2962*0b57cec5SDimitry Andric /// isFPImmLegal - Returns true if the target can instruction select the 2963*0b57cec5SDimitry Andric /// specified FP immediate natively. If false, the legalizer will 2964*0b57cec5SDimitry Andric /// materialize the FP immediate as a load from a constant pool. 2965*0b57cec5SDimitry Andric bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 2966*0b57cec5SDimitry Andric bool ForCodeSize) const { 2967*0b57cec5SDimitry Andric return true; 2968*0b57cec5SDimitry Andric } 2969*0b57cec5SDimitry Andric 2970*0b57cec5SDimitry Andric /// isLegalAddressingMode - Return true if the addressing mode represented by 2971*0b57cec5SDimitry Andric /// AM is legal for this target, for a load/store of the specified type. 2972*0b57cec5SDimitry Andric bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL, 2973*0b57cec5SDimitry Andric const AddrMode &AM, Type *Ty, 2974*0b57cec5SDimitry Andric unsigned AS, Instruction *I) const { 2975*0b57cec5SDimitry Andric if (Ty->isSized()) { 2976*0b57cec5SDimitry Andric // When LSR detects uses of the same base address to access different 2977*0b57cec5SDimitry Andric // types (e.g. unions), it will assume a conservative type for these 2978*0b57cec5SDimitry Andric // uses: 2979*0b57cec5SDimitry Andric // LSR Use: Kind=Address of void in addrspace(4294967295), ... 2980*0b57cec5SDimitry Andric // The type Ty passed here would then be "void". Skip the alignment 2981*0b57cec5SDimitry Andric // checks, but do not return false right away, since that confuses 2982*0b57cec5SDimitry Andric // LSR into crashing. 2983*0b57cec5SDimitry Andric unsigned A = DL.getABITypeAlignment(Ty); 2984*0b57cec5SDimitry Andric // The base offset must be a multiple of the alignment. 2985*0b57cec5SDimitry Andric if ((AM.BaseOffs % A) != 0) 2986*0b57cec5SDimitry Andric return false; 2987*0b57cec5SDimitry Andric // The shifted offset must fit in 11 bits. 2988*0b57cec5SDimitry Andric if (!isInt<11>(AM.BaseOffs >> Log2_32(A))) 2989*0b57cec5SDimitry Andric return false; 2990*0b57cec5SDimitry Andric } 2991*0b57cec5SDimitry Andric 2992*0b57cec5SDimitry Andric // No global is ever allowed as a base. 2993*0b57cec5SDimitry Andric if (AM.BaseGV) 2994*0b57cec5SDimitry Andric return false; 2995*0b57cec5SDimitry Andric 2996*0b57cec5SDimitry Andric int Scale = AM.Scale; 2997*0b57cec5SDimitry Andric if (Scale < 0) 2998*0b57cec5SDimitry Andric Scale = -Scale; 2999*0b57cec5SDimitry Andric switch (Scale) { 3000*0b57cec5SDimitry Andric case 0: // No scale reg, "r+i", "r", or just "i". 3001*0b57cec5SDimitry Andric break; 3002*0b57cec5SDimitry Andric default: // No scaled addressing mode. 3003*0b57cec5SDimitry Andric return false; 3004*0b57cec5SDimitry Andric } 3005*0b57cec5SDimitry Andric return true; 3006*0b57cec5SDimitry Andric } 3007*0b57cec5SDimitry Andric 3008*0b57cec5SDimitry Andric /// Return true if folding a constant offset with the given GlobalAddress is 3009*0b57cec5SDimitry Andric /// legal. It is frequently not legal in PIC relocation models. 3010*0b57cec5SDimitry Andric bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) 3011*0b57cec5SDimitry Andric const { 3012*0b57cec5SDimitry Andric return HTM.getRelocationModel() == Reloc::Static; 3013*0b57cec5SDimitry Andric } 3014*0b57cec5SDimitry Andric 3015*0b57cec5SDimitry Andric /// isLegalICmpImmediate - Return true if the specified immediate is legal 3016*0b57cec5SDimitry Andric /// icmp immediate, that is the target has icmp instructions which can compare 3017*0b57cec5SDimitry Andric /// a register against the immediate without having to materialize the 3018*0b57cec5SDimitry Andric /// immediate into a register. 3019*0b57cec5SDimitry Andric bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 3020*0b57cec5SDimitry Andric return Imm >= -512 && Imm <= 511; 3021*0b57cec5SDimitry Andric } 3022*0b57cec5SDimitry Andric 3023*0b57cec5SDimitry Andric /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3024*0b57cec5SDimitry Andric /// for tail call optimization. Targets which want to do tail call 3025*0b57cec5SDimitry Andric /// optimization should implement this function. 3026*0b57cec5SDimitry Andric bool HexagonTargetLowering::IsEligibleForTailCallOptimization( 3027*0b57cec5SDimitry Andric SDValue Callee, 3028*0b57cec5SDimitry Andric CallingConv::ID CalleeCC, 3029*0b57cec5SDimitry Andric bool IsVarArg, 3030*0b57cec5SDimitry Andric bool IsCalleeStructRet, 3031*0b57cec5SDimitry Andric bool IsCallerStructRet, 3032*0b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 3033*0b57cec5SDimitry Andric const SmallVectorImpl<SDValue> &OutVals, 3034*0b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, 3035*0b57cec5SDimitry Andric SelectionDAG& DAG) const { 3036*0b57cec5SDimitry Andric const Function &CallerF = DAG.getMachineFunction().getFunction(); 3037*0b57cec5SDimitry Andric CallingConv::ID CallerCC = CallerF.getCallingConv(); 3038*0b57cec5SDimitry Andric bool CCMatch = CallerCC == CalleeCC; 3039*0b57cec5SDimitry Andric 3040*0b57cec5SDimitry Andric // *************************************************************************** 3041*0b57cec5SDimitry Andric // Look for obvious safe cases to perform tail call optimization that do not 3042*0b57cec5SDimitry Andric // require ABI changes. 3043*0b57cec5SDimitry Andric // *************************************************************************** 3044*0b57cec5SDimitry Andric 3045*0b57cec5SDimitry Andric // If this is a tail call via a function pointer, then don't do it! 3046*0b57cec5SDimitry Andric if (!isa<GlobalAddressSDNode>(Callee) && 3047*0b57cec5SDimitry Andric !isa<ExternalSymbolSDNode>(Callee)) { 3048*0b57cec5SDimitry Andric return false; 3049*0b57cec5SDimitry Andric } 3050*0b57cec5SDimitry Andric 3051*0b57cec5SDimitry Andric // Do not optimize if the calling conventions do not match and the conventions 3052*0b57cec5SDimitry Andric // used are not C or Fast. 3053*0b57cec5SDimitry Andric if (!CCMatch) { 3054*0b57cec5SDimitry Andric bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast); 3055*0b57cec5SDimitry Andric bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast); 3056*0b57cec5SDimitry Andric // If R & E, then ok. 3057*0b57cec5SDimitry Andric if (!R || !E) 3058*0b57cec5SDimitry Andric return false; 3059*0b57cec5SDimitry Andric } 3060*0b57cec5SDimitry Andric 3061*0b57cec5SDimitry Andric // Do not tail call optimize vararg calls. 3062*0b57cec5SDimitry Andric if (IsVarArg) 3063*0b57cec5SDimitry Andric return false; 3064*0b57cec5SDimitry Andric 3065*0b57cec5SDimitry Andric // Also avoid tail call optimization if either caller or callee uses struct 3066*0b57cec5SDimitry Andric // return semantics. 3067*0b57cec5SDimitry Andric if (IsCalleeStructRet || IsCallerStructRet) 3068*0b57cec5SDimitry Andric return false; 3069*0b57cec5SDimitry Andric 3070*0b57cec5SDimitry Andric // In addition to the cases above, we also disable Tail Call Optimization if 3071*0b57cec5SDimitry Andric // the calling convention code that at least one outgoing argument needs to 3072*0b57cec5SDimitry Andric // go on the stack. We cannot check that here because at this point that 3073*0b57cec5SDimitry Andric // information is not available. 3074*0b57cec5SDimitry Andric return true; 3075*0b57cec5SDimitry Andric } 3076*0b57cec5SDimitry Andric 3077*0b57cec5SDimitry Andric /// Returns the target specific optimal type for load and store operations as 3078*0b57cec5SDimitry Andric /// a result of memset, memcpy, and memmove lowering. 3079*0b57cec5SDimitry Andric /// 3080*0b57cec5SDimitry Andric /// If DstAlign is zero that means it's safe to destination alignment can 3081*0b57cec5SDimitry Andric /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't 3082*0b57cec5SDimitry Andric /// a need to check it against alignment requirement, probably because the 3083*0b57cec5SDimitry Andric /// source does not need to be loaded. If 'IsMemset' is true, that means it's 3084*0b57cec5SDimitry Andric /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of 3085*0b57cec5SDimitry Andric /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it 3086*0b57cec5SDimitry Andric /// does not need to be loaded. It returns EVT::Other if the type should be 3087*0b57cec5SDimitry Andric /// determined using generic target-independent logic. 3088*0b57cec5SDimitry Andric EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size, 3089*0b57cec5SDimitry Andric unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, 3090*0b57cec5SDimitry Andric bool MemcpyStrSrc, const AttributeList &FuncAttributes) const { 3091*0b57cec5SDimitry Andric 3092*0b57cec5SDimitry Andric auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool { 3093*0b57cec5SDimitry Andric return (GivenA % MinA) == 0; 3094*0b57cec5SDimitry Andric }; 3095*0b57cec5SDimitry Andric 3096*0b57cec5SDimitry Andric if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8))) 3097*0b57cec5SDimitry Andric return MVT::i64; 3098*0b57cec5SDimitry Andric if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4))) 3099*0b57cec5SDimitry Andric return MVT::i32; 3100*0b57cec5SDimitry Andric if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2))) 3101*0b57cec5SDimitry Andric return MVT::i16; 3102*0b57cec5SDimitry Andric 3103*0b57cec5SDimitry Andric return MVT::Other; 3104*0b57cec5SDimitry Andric } 3105*0b57cec5SDimitry Andric 3106*0b57cec5SDimitry Andric bool HexagonTargetLowering::allowsMisalignedMemoryAccesses( 3107*0b57cec5SDimitry Andric EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags, 3108*0b57cec5SDimitry Andric bool *Fast) const { 3109*0b57cec5SDimitry Andric if (Fast) 3110*0b57cec5SDimitry Andric *Fast = false; 3111*0b57cec5SDimitry Andric return Subtarget.isHVXVectorType(VT.getSimpleVT()); 3112*0b57cec5SDimitry Andric } 3113*0b57cec5SDimitry Andric 3114*0b57cec5SDimitry Andric std::pair<const TargetRegisterClass*, uint8_t> 3115*0b57cec5SDimitry Andric HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, 3116*0b57cec5SDimitry Andric MVT VT) const { 3117*0b57cec5SDimitry Andric if (Subtarget.isHVXVectorType(VT, true)) { 3118*0b57cec5SDimitry Andric unsigned BitWidth = VT.getSizeInBits(); 3119*0b57cec5SDimitry Andric unsigned VecWidth = Subtarget.getVectorLength() * 8; 3120*0b57cec5SDimitry Andric 3121*0b57cec5SDimitry Andric if (VT.getVectorElementType() == MVT::i1) 3122*0b57cec5SDimitry Andric return std::make_pair(&Hexagon::HvxQRRegClass, 1); 3123*0b57cec5SDimitry Andric if (BitWidth == VecWidth) 3124*0b57cec5SDimitry Andric return std::make_pair(&Hexagon::HvxVRRegClass, 1); 3125*0b57cec5SDimitry Andric assert(BitWidth == 2 * VecWidth); 3126*0b57cec5SDimitry Andric return std::make_pair(&Hexagon::HvxWRRegClass, 1); 3127*0b57cec5SDimitry Andric } 3128*0b57cec5SDimitry Andric 3129*0b57cec5SDimitry Andric return TargetLowering::findRepresentativeClass(TRI, VT); 3130*0b57cec5SDimitry Andric } 3131*0b57cec5SDimitry Andric 3132*0b57cec5SDimitry Andric bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load, 3133*0b57cec5SDimitry Andric ISD::LoadExtType ExtTy, EVT NewVT) const { 3134*0b57cec5SDimitry Andric // TODO: This may be worth removing. Check regression tests for diffs. 3135*0b57cec5SDimitry Andric if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) 3136*0b57cec5SDimitry Andric return false; 3137*0b57cec5SDimitry Andric 3138*0b57cec5SDimitry Andric auto *L = cast<LoadSDNode>(Load); 3139*0b57cec5SDimitry Andric std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr()); 3140*0b57cec5SDimitry Andric // Small-data object, do not shrink. 3141*0b57cec5SDimitry Andric if (BO.first.getOpcode() == HexagonISD::CONST32_GP) 3142*0b57cec5SDimitry Andric return false; 3143*0b57cec5SDimitry Andric if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) { 3144*0b57cec5SDimitry Andric auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine()); 3145*0b57cec5SDimitry Andric const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal()); 3146*0b57cec5SDimitry Andric return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM); 3147*0b57cec5SDimitry Andric } 3148*0b57cec5SDimitry Andric return true; 3149*0b57cec5SDimitry Andric } 3150*0b57cec5SDimitry Andric 3151*0b57cec5SDimitry Andric Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 3152*0b57cec5SDimitry Andric AtomicOrdering Ord) const { 3153*0b57cec5SDimitry Andric BasicBlock *BB = Builder.GetInsertBlock(); 3154*0b57cec5SDimitry Andric Module *M = BB->getParent()->getParent(); 3155*0b57cec5SDimitry Andric auto PT = cast<PointerType>(Addr->getType()); 3156*0b57cec5SDimitry Andric Type *Ty = PT->getElementType(); 3157*0b57cec5SDimitry Andric unsigned SZ = Ty->getPrimitiveSizeInBits(); 3158*0b57cec5SDimitry Andric assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported"); 3159*0b57cec5SDimitry Andric Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked 3160*0b57cec5SDimitry Andric : Intrinsic::hexagon_L4_loadd_locked; 3161*0b57cec5SDimitry Andric Function *Fn = Intrinsic::getDeclaration(M, IntID); 3162*0b57cec5SDimitry Andric 3163*0b57cec5SDimitry Andric PointerType *NewPtrTy 3164*0b57cec5SDimitry Andric = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace()); 3165*0b57cec5SDimitry Andric Addr = Builder.CreateBitCast(Addr, NewPtrTy); 3166*0b57cec5SDimitry Andric 3167*0b57cec5SDimitry Andric Value *Call = Builder.CreateCall(Fn, Addr, "larx"); 3168*0b57cec5SDimitry Andric 3169*0b57cec5SDimitry Andric return Builder.CreateBitCast(Call, Ty); 3170*0b57cec5SDimitry Andric } 3171*0b57cec5SDimitry Andric 3172*0b57cec5SDimitry Andric /// Perform a store-conditional operation to Addr. Return the status of the 3173*0b57cec5SDimitry Andric /// store. This should be 0 if the store succeeded, non-zero otherwise. 3174*0b57cec5SDimitry Andric Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder, 3175*0b57cec5SDimitry Andric Value *Val, Value *Addr, AtomicOrdering Ord) const { 3176*0b57cec5SDimitry Andric BasicBlock *BB = Builder.GetInsertBlock(); 3177*0b57cec5SDimitry Andric Module *M = BB->getParent()->getParent(); 3178*0b57cec5SDimitry Andric Type *Ty = Val->getType(); 3179*0b57cec5SDimitry Andric unsigned SZ = Ty->getPrimitiveSizeInBits(); 3180*0b57cec5SDimitry Andric 3181*0b57cec5SDimitry Andric Type *CastTy = Builder.getIntNTy(SZ); 3182*0b57cec5SDimitry Andric assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported"); 3183*0b57cec5SDimitry Andric Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked 3184*0b57cec5SDimitry Andric : Intrinsic::hexagon_S4_stored_locked; 3185*0b57cec5SDimitry Andric Function *Fn = Intrinsic::getDeclaration(M, IntID); 3186*0b57cec5SDimitry Andric 3187*0b57cec5SDimitry Andric unsigned AS = Addr->getType()->getPointerAddressSpace(); 3188*0b57cec5SDimitry Andric Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS)); 3189*0b57cec5SDimitry Andric Val = Builder.CreateBitCast(Val, CastTy); 3190*0b57cec5SDimitry Andric 3191*0b57cec5SDimitry Andric Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx"); 3192*0b57cec5SDimitry Andric Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), ""); 3193*0b57cec5SDimitry Andric Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext())); 3194*0b57cec5SDimitry Andric return Ext; 3195*0b57cec5SDimitry Andric } 3196*0b57cec5SDimitry Andric 3197*0b57cec5SDimitry Andric TargetLowering::AtomicExpansionKind 3198*0b57cec5SDimitry Andric HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 3199*0b57cec5SDimitry Andric // Do not expand loads and stores that don't exceed 64 bits. 3200*0b57cec5SDimitry Andric return LI->getType()->getPrimitiveSizeInBits() > 64 3201*0b57cec5SDimitry Andric ? AtomicExpansionKind::LLOnly 3202*0b57cec5SDimitry Andric : AtomicExpansionKind::None; 3203*0b57cec5SDimitry Andric } 3204*0b57cec5SDimitry Andric 3205*0b57cec5SDimitry Andric bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 3206*0b57cec5SDimitry Andric // Do not expand loads and stores that don't exceed 64 bits. 3207*0b57cec5SDimitry Andric return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64; 3208*0b57cec5SDimitry Andric } 3209*0b57cec5SDimitry Andric 3210*0b57cec5SDimitry Andric TargetLowering::AtomicExpansionKind 3211*0b57cec5SDimitry Andric HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR( 3212*0b57cec5SDimitry Andric AtomicCmpXchgInst *AI) const { 3213*0b57cec5SDimitry Andric const DataLayout &DL = AI->getModule()->getDataLayout(); 3214*0b57cec5SDimitry Andric unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 3215*0b57cec5SDimitry Andric if (Size >= 4 && Size <= 8) 3216*0b57cec5SDimitry Andric return AtomicExpansionKind::LLSC; 3217*0b57cec5SDimitry Andric return AtomicExpansionKind::None; 3218*0b57cec5SDimitry Andric } 3219