xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1*0b57cec5SDimitry Andric //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2*0b57cec5SDimitry Andric //
3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*0b57cec5SDimitry Andric //
7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
8*0b57cec5SDimitry Andric //
9*0b57cec5SDimitry Andric // This file implements the interfaces that Hexagon uses to lower LLVM code
10*0b57cec5SDimitry Andric // into a selection DAG.
11*0b57cec5SDimitry Andric //
12*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
13*0b57cec5SDimitry Andric 
14*0b57cec5SDimitry Andric #include "HexagonISelLowering.h"
15*0b57cec5SDimitry Andric #include "Hexagon.h"
16*0b57cec5SDimitry Andric #include "HexagonMachineFunctionInfo.h"
17*0b57cec5SDimitry Andric #include "HexagonRegisterInfo.h"
18*0b57cec5SDimitry Andric #include "HexagonSubtarget.h"
19*0b57cec5SDimitry Andric #include "HexagonTargetMachine.h"
20*0b57cec5SDimitry Andric #include "HexagonTargetObjectFile.h"
21*0b57cec5SDimitry Andric #include "llvm/ADT/APInt.h"
22*0b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h"
23*0b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
24*0b57cec5SDimitry Andric #include "llvm/ADT/StringSwitch.h"
25*0b57cec5SDimitry Andric #include "llvm/CodeGen/CallingConvLower.h"
26*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h"
27*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
28*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineMemOperand.h"
29*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
30*0b57cec5SDimitry Andric #include "llvm/CodeGen/RuntimeLibcalls.h"
31*0b57cec5SDimitry Andric #include "llvm/CodeGen/SelectionDAG.h"
32*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetCallingConv.h"
33*0b57cec5SDimitry Andric #include "llvm/CodeGen/ValueTypes.h"
34*0b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
35*0b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h"
36*0b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
37*0b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
38*0b57cec5SDimitry Andric #include "llvm/IR/Function.h"
39*0b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h"
40*0b57cec5SDimitry Andric #include "llvm/IR/InlineAsm.h"
41*0b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
42*0b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h"
43*0b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
44*0b57cec5SDimitry Andric #include "llvm/IR/Module.h"
45*0b57cec5SDimitry Andric #include "llvm/IR/Type.h"
46*0b57cec5SDimitry Andric #include "llvm/IR/Value.h"
47*0b57cec5SDimitry Andric #include "llvm/MC/MCRegisterInfo.h"
48*0b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
49*0b57cec5SDimitry Andric #include "llvm/Support/CodeGen.h"
50*0b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
51*0b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
52*0b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
53*0b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h"
54*0b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
55*0b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h"
56*0b57cec5SDimitry Andric #include <algorithm>
57*0b57cec5SDimitry Andric #include <cassert>
58*0b57cec5SDimitry Andric #include <cstddef>
59*0b57cec5SDimitry Andric #include <cstdint>
60*0b57cec5SDimitry Andric #include <limits>
61*0b57cec5SDimitry Andric #include <utility>
62*0b57cec5SDimitry Andric 
63*0b57cec5SDimitry Andric using namespace llvm;
64*0b57cec5SDimitry Andric 
65*0b57cec5SDimitry Andric #define DEBUG_TYPE "hexagon-lowering"
66*0b57cec5SDimitry Andric 
67*0b57cec5SDimitry Andric static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
68*0b57cec5SDimitry Andric   cl::init(true), cl::Hidden,
69*0b57cec5SDimitry Andric   cl::desc("Control jump table emission on Hexagon target"));
70*0b57cec5SDimitry Andric 
71*0b57cec5SDimitry Andric static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
72*0b57cec5SDimitry Andric   cl::Hidden, cl::ZeroOrMore, cl::init(false),
73*0b57cec5SDimitry Andric   cl::desc("Enable Hexagon SDNode scheduling"));
74*0b57cec5SDimitry Andric 
75*0b57cec5SDimitry Andric static cl::opt<bool> EnableFastMath("ffast-math",
76*0b57cec5SDimitry Andric   cl::Hidden, cl::ZeroOrMore, cl::init(false),
77*0b57cec5SDimitry Andric   cl::desc("Enable Fast Math processing"));
78*0b57cec5SDimitry Andric 
79*0b57cec5SDimitry Andric static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
80*0b57cec5SDimitry Andric   cl::Hidden, cl::ZeroOrMore, cl::init(5),
81*0b57cec5SDimitry Andric   cl::desc("Set minimum jump tables"));
82*0b57cec5SDimitry Andric 
83*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
84*0b57cec5SDimitry Andric   cl::Hidden, cl::ZeroOrMore, cl::init(6),
85*0b57cec5SDimitry Andric   cl::desc("Max #stores to inline memcpy"));
86*0b57cec5SDimitry Andric 
87*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
88*0b57cec5SDimitry Andric   cl::Hidden, cl::ZeroOrMore, cl::init(4),
89*0b57cec5SDimitry Andric   cl::desc("Max #stores to inline memcpy"));
90*0b57cec5SDimitry Andric 
91*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
92*0b57cec5SDimitry Andric   cl::Hidden, cl::ZeroOrMore, cl::init(6),
93*0b57cec5SDimitry Andric   cl::desc("Max #stores to inline memmove"));
94*0b57cec5SDimitry Andric 
95*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
96*0b57cec5SDimitry Andric   cl::Hidden, cl::ZeroOrMore, cl::init(4),
97*0b57cec5SDimitry Andric   cl::desc("Max #stores to inline memmove"));
98*0b57cec5SDimitry Andric 
99*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
100*0b57cec5SDimitry Andric   cl::Hidden, cl::ZeroOrMore, cl::init(8),
101*0b57cec5SDimitry Andric   cl::desc("Max #stores to inline memset"));
102*0b57cec5SDimitry Andric 
103*0b57cec5SDimitry Andric static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
104*0b57cec5SDimitry Andric   cl::Hidden, cl::ZeroOrMore, cl::init(4),
105*0b57cec5SDimitry Andric   cl::desc("Max #stores to inline memset"));
106*0b57cec5SDimitry Andric 
107*0b57cec5SDimitry Andric static cl::opt<bool> AlignLoads("hexagon-align-loads",
108*0b57cec5SDimitry Andric   cl::Hidden, cl::init(false),
109*0b57cec5SDimitry Andric   cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
110*0b57cec5SDimitry Andric 
111*0b57cec5SDimitry Andric 
112*0b57cec5SDimitry Andric namespace {
113*0b57cec5SDimitry Andric 
114*0b57cec5SDimitry Andric   class HexagonCCState : public CCState {
115*0b57cec5SDimitry Andric     unsigned NumNamedVarArgParams = 0;
116*0b57cec5SDimitry Andric 
117*0b57cec5SDimitry Andric   public:
118*0b57cec5SDimitry Andric     HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
119*0b57cec5SDimitry Andric                    SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
120*0b57cec5SDimitry Andric                    unsigned NumNamedArgs)
121*0b57cec5SDimitry Andric         : CCState(CC, IsVarArg, MF, locs, C),
122*0b57cec5SDimitry Andric           NumNamedVarArgParams(NumNamedArgs) {}
123*0b57cec5SDimitry Andric     unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
124*0b57cec5SDimitry Andric   };
125*0b57cec5SDimitry Andric 
126*0b57cec5SDimitry Andric } // end anonymous namespace
127*0b57cec5SDimitry Andric 
128*0b57cec5SDimitry Andric 
129*0b57cec5SDimitry Andric // Implement calling convention for Hexagon.
130*0b57cec5SDimitry Andric 
131*0b57cec5SDimitry Andric static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
132*0b57cec5SDimitry Andric                        CCValAssign::LocInfo &LocInfo,
133*0b57cec5SDimitry Andric                        ISD::ArgFlagsTy &ArgFlags, CCState &State) {
134*0b57cec5SDimitry Andric   static const MCPhysReg ArgRegs[] = {
135*0b57cec5SDimitry Andric     Hexagon::R0, Hexagon::R1, Hexagon::R2,
136*0b57cec5SDimitry Andric     Hexagon::R3, Hexagon::R4, Hexagon::R5
137*0b57cec5SDimitry Andric   };
138*0b57cec5SDimitry Andric   const unsigned NumArgRegs = array_lengthof(ArgRegs);
139*0b57cec5SDimitry Andric   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
140*0b57cec5SDimitry Andric 
141*0b57cec5SDimitry Andric   // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
142*0b57cec5SDimitry Andric   if (RegNum != NumArgRegs && RegNum % 2 == 1)
143*0b57cec5SDimitry Andric     State.AllocateReg(ArgRegs[RegNum]);
144*0b57cec5SDimitry Andric 
145*0b57cec5SDimitry Andric   // Always return false here, as this function only makes sure that the first
146*0b57cec5SDimitry Andric   // unallocated register has an even register number and does not actually
147*0b57cec5SDimitry Andric   // allocate a register for the current argument.
148*0b57cec5SDimitry Andric   return false;
149*0b57cec5SDimitry Andric }
150*0b57cec5SDimitry Andric 
151*0b57cec5SDimitry Andric #include "HexagonGenCallingConv.inc"
152*0b57cec5SDimitry Andric 
153*0b57cec5SDimitry Andric 
154*0b57cec5SDimitry Andric SDValue
155*0b57cec5SDimitry Andric HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
156*0b57cec5SDimitry Andric       const {
157*0b57cec5SDimitry Andric   return SDValue();
158*0b57cec5SDimitry Andric }
159*0b57cec5SDimitry Andric 
160*0b57cec5SDimitry Andric /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
161*0b57cec5SDimitry Andric /// by "Src" to address "Dst" of size "Size".  Alignment information is
162*0b57cec5SDimitry Andric /// specified by the specific parameter attribute. The copy will be passed as
163*0b57cec5SDimitry Andric /// a byval function parameter.  Sometimes what we are copying is the end of a
164*0b57cec5SDimitry Andric /// larger object, the part that does not fit in registers.
165*0b57cec5SDimitry Andric static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
166*0b57cec5SDimitry Andric                                          SDValue Chain, ISD::ArgFlagsTy Flags,
167*0b57cec5SDimitry Andric                                          SelectionDAG &DAG, const SDLoc &dl) {
168*0b57cec5SDimitry Andric   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
169*0b57cec5SDimitry Andric   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
170*0b57cec5SDimitry Andric                        /*isVolatile=*/false, /*AlwaysInline=*/false,
171*0b57cec5SDimitry Andric                        /*isTailCall=*/false,
172*0b57cec5SDimitry Andric                        MachinePointerInfo(), MachinePointerInfo());
173*0b57cec5SDimitry Andric }
174*0b57cec5SDimitry Andric 
175*0b57cec5SDimitry Andric bool
176*0b57cec5SDimitry Andric HexagonTargetLowering::CanLowerReturn(
177*0b57cec5SDimitry Andric     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
178*0b57cec5SDimitry Andric     const SmallVectorImpl<ISD::OutputArg> &Outs,
179*0b57cec5SDimitry Andric     LLVMContext &Context) const {
180*0b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> RVLocs;
181*0b57cec5SDimitry Andric   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
182*0b57cec5SDimitry Andric 
183*0b57cec5SDimitry Andric   if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
184*0b57cec5SDimitry Andric     return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
185*0b57cec5SDimitry Andric   return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
186*0b57cec5SDimitry Andric }
187*0b57cec5SDimitry Andric 
188*0b57cec5SDimitry Andric // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
189*0b57cec5SDimitry Andric // passed by value, the function prototype is modified to return void and
190*0b57cec5SDimitry Andric // the value is stored in memory pointed by a pointer passed by caller.
191*0b57cec5SDimitry Andric SDValue
192*0b57cec5SDimitry Andric HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
193*0b57cec5SDimitry Andric                                    bool IsVarArg,
194*0b57cec5SDimitry Andric                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
195*0b57cec5SDimitry Andric                                    const SmallVectorImpl<SDValue> &OutVals,
196*0b57cec5SDimitry Andric                                    const SDLoc &dl, SelectionDAG &DAG) const {
197*0b57cec5SDimitry Andric   // CCValAssign - represent the assignment of the return value to locations.
198*0b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> RVLocs;
199*0b57cec5SDimitry Andric 
200*0b57cec5SDimitry Andric   // CCState - Info about the registers and stack slot.
201*0b57cec5SDimitry Andric   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
202*0b57cec5SDimitry Andric                  *DAG.getContext());
203*0b57cec5SDimitry Andric 
204*0b57cec5SDimitry Andric   // Analyze return values of ISD::RET
205*0b57cec5SDimitry Andric   if (Subtarget.useHVXOps())
206*0b57cec5SDimitry Andric     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
207*0b57cec5SDimitry Andric   else
208*0b57cec5SDimitry Andric     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
209*0b57cec5SDimitry Andric 
210*0b57cec5SDimitry Andric   SDValue Flag;
211*0b57cec5SDimitry Andric   SmallVector<SDValue, 4> RetOps(1, Chain);
212*0b57cec5SDimitry Andric 
213*0b57cec5SDimitry Andric   // Copy the result values into the output registers.
214*0b57cec5SDimitry Andric   for (unsigned i = 0; i != RVLocs.size(); ++i) {
215*0b57cec5SDimitry Andric     CCValAssign &VA = RVLocs[i];
216*0b57cec5SDimitry Andric 
217*0b57cec5SDimitry Andric     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
218*0b57cec5SDimitry Andric 
219*0b57cec5SDimitry Andric     // Guarantee that all emitted copies are stuck together with flags.
220*0b57cec5SDimitry Andric     Flag = Chain.getValue(1);
221*0b57cec5SDimitry Andric     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
222*0b57cec5SDimitry Andric   }
223*0b57cec5SDimitry Andric 
224*0b57cec5SDimitry Andric   RetOps[0] = Chain;  // Update chain.
225*0b57cec5SDimitry Andric 
226*0b57cec5SDimitry Andric   // Add the flag if we have it.
227*0b57cec5SDimitry Andric   if (Flag.getNode())
228*0b57cec5SDimitry Andric     RetOps.push_back(Flag);
229*0b57cec5SDimitry Andric 
230*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
231*0b57cec5SDimitry Andric }
232*0b57cec5SDimitry Andric 
233*0b57cec5SDimitry Andric bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
234*0b57cec5SDimitry Andric   // If either no tail call or told not to tail call at all, don't.
235*0b57cec5SDimitry Andric   auto Attr =
236*0b57cec5SDimitry Andric       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
237*0b57cec5SDimitry Andric   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
238*0b57cec5SDimitry Andric     return false;
239*0b57cec5SDimitry Andric 
240*0b57cec5SDimitry Andric   return true;
241*0b57cec5SDimitry Andric }
242*0b57cec5SDimitry Andric 
243*0b57cec5SDimitry Andric unsigned  HexagonTargetLowering::getRegisterByName(const char* RegName, EVT VT,
244*0b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
245*0b57cec5SDimitry Andric   // Just support r19, the linux kernel uses it.
246*0b57cec5SDimitry Andric   unsigned Reg = StringSwitch<unsigned>(RegName)
247*0b57cec5SDimitry Andric                      .Case("r19", Hexagon::R19)
248*0b57cec5SDimitry Andric                      .Default(0);
249*0b57cec5SDimitry Andric   if (Reg)
250*0b57cec5SDimitry Andric     return Reg;
251*0b57cec5SDimitry Andric 
252*0b57cec5SDimitry Andric   report_fatal_error("Invalid register name global variable");
253*0b57cec5SDimitry Andric }
254*0b57cec5SDimitry Andric 
255*0b57cec5SDimitry Andric /// LowerCallResult - Lower the result values of an ISD::CALL into the
256*0b57cec5SDimitry Andric /// appropriate copies out of appropriate physical registers.  This assumes that
257*0b57cec5SDimitry Andric /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
258*0b57cec5SDimitry Andric /// being lowered. Returns a SDNode with the same number of values as the
259*0b57cec5SDimitry Andric /// ISD::CALL.
260*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerCallResult(
261*0b57cec5SDimitry Andric     SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
262*0b57cec5SDimitry Andric     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
263*0b57cec5SDimitry Andric     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
264*0b57cec5SDimitry Andric     const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
265*0b57cec5SDimitry Andric   // Assign locations to each value returned by this call.
266*0b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> RVLocs;
267*0b57cec5SDimitry Andric 
268*0b57cec5SDimitry Andric   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
269*0b57cec5SDimitry Andric                  *DAG.getContext());
270*0b57cec5SDimitry Andric 
271*0b57cec5SDimitry Andric   if (Subtarget.useHVXOps())
272*0b57cec5SDimitry Andric     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
273*0b57cec5SDimitry Andric   else
274*0b57cec5SDimitry Andric     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
275*0b57cec5SDimitry Andric 
276*0b57cec5SDimitry Andric   // Copy all of the result registers out of their specified physreg.
277*0b57cec5SDimitry Andric   for (unsigned i = 0; i != RVLocs.size(); ++i) {
278*0b57cec5SDimitry Andric     SDValue RetVal;
279*0b57cec5SDimitry Andric     if (RVLocs[i].getValVT() == MVT::i1) {
280*0b57cec5SDimitry Andric       // Return values of type MVT::i1 require special handling. The reason
281*0b57cec5SDimitry Andric       // is that MVT::i1 is associated with the PredRegs register class, but
282*0b57cec5SDimitry Andric       // values of that type are still returned in R0. Generate an explicit
283*0b57cec5SDimitry Andric       // copy into a predicate register from R0, and treat the value of the
284*0b57cec5SDimitry Andric       // predicate register as the call result.
285*0b57cec5SDimitry Andric       auto &MRI = DAG.getMachineFunction().getRegInfo();
286*0b57cec5SDimitry Andric       SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
287*0b57cec5SDimitry Andric                                        MVT::i32, Glue);
288*0b57cec5SDimitry Andric       // FR0 = (Value, Chain, Glue)
289*0b57cec5SDimitry Andric       unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
290*0b57cec5SDimitry Andric       SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
291*0b57cec5SDimitry Andric                                      FR0.getValue(0), FR0.getValue(2));
292*0b57cec5SDimitry Andric       // TPR = (Chain, Glue)
293*0b57cec5SDimitry Andric       // Don't glue this CopyFromReg, because it copies from a virtual
294*0b57cec5SDimitry Andric       // register. If it is glued to the call, InstrEmitter will add it
295*0b57cec5SDimitry Andric       // as an implicit def to the call (EmitMachineNode).
296*0b57cec5SDimitry Andric       RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
297*0b57cec5SDimitry Andric       Glue = TPR.getValue(1);
298*0b57cec5SDimitry Andric       Chain = TPR.getValue(0);
299*0b57cec5SDimitry Andric     } else {
300*0b57cec5SDimitry Andric       RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
301*0b57cec5SDimitry Andric                                   RVLocs[i].getValVT(), Glue);
302*0b57cec5SDimitry Andric       Glue = RetVal.getValue(2);
303*0b57cec5SDimitry Andric       Chain = RetVal.getValue(1);
304*0b57cec5SDimitry Andric     }
305*0b57cec5SDimitry Andric     InVals.push_back(RetVal.getValue(0));
306*0b57cec5SDimitry Andric   }
307*0b57cec5SDimitry Andric 
308*0b57cec5SDimitry Andric   return Chain;
309*0b57cec5SDimitry Andric }
310*0b57cec5SDimitry Andric 
311*0b57cec5SDimitry Andric /// LowerCall - Functions arguments are copied from virtual regs to
312*0b57cec5SDimitry Andric /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
313*0b57cec5SDimitry Andric SDValue
314*0b57cec5SDimitry Andric HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
315*0b57cec5SDimitry Andric                                  SmallVectorImpl<SDValue> &InVals) const {
316*0b57cec5SDimitry Andric   SelectionDAG &DAG                     = CLI.DAG;
317*0b57cec5SDimitry Andric   SDLoc &dl                             = CLI.DL;
318*0b57cec5SDimitry Andric   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
319*0b57cec5SDimitry Andric   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
320*0b57cec5SDimitry Andric   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
321*0b57cec5SDimitry Andric   SDValue Chain                         = CLI.Chain;
322*0b57cec5SDimitry Andric   SDValue Callee                        = CLI.Callee;
323*0b57cec5SDimitry Andric   CallingConv::ID CallConv              = CLI.CallConv;
324*0b57cec5SDimitry Andric   bool IsVarArg                         = CLI.IsVarArg;
325*0b57cec5SDimitry Andric   bool DoesNotReturn                    = CLI.DoesNotReturn;
326*0b57cec5SDimitry Andric 
327*0b57cec5SDimitry Andric   bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
328*0b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
329*0b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
330*0b57cec5SDimitry Andric   auto PtrVT = getPointerTy(MF.getDataLayout());
331*0b57cec5SDimitry Andric 
332*0b57cec5SDimitry Andric   unsigned NumParams = CLI.CS.getInstruction()
333*0b57cec5SDimitry Andric                         ? CLI.CS.getFunctionType()->getNumParams()
334*0b57cec5SDimitry Andric                         : 0;
335*0b57cec5SDimitry Andric   if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
336*0b57cec5SDimitry Andric     Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
337*0b57cec5SDimitry Andric 
338*0b57cec5SDimitry Andric   // Analyze operands of the call, assigning locations to each operand.
339*0b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> ArgLocs;
340*0b57cec5SDimitry Andric   HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
341*0b57cec5SDimitry Andric                         NumParams);
342*0b57cec5SDimitry Andric 
343*0b57cec5SDimitry Andric   if (Subtarget.useHVXOps())
344*0b57cec5SDimitry Andric     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
345*0b57cec5SDimitry Andric   else
346*0b57cec5SDimitry Andric     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
347*0b57cec5SDimitry Andric 
348*0b57cec5SDimitry Andric   auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
349*0b57cec5SDimitry Andric   if (Attr.getValueAsString() == "true")
350*0b57cec5SDimitry Andric     CLI.IsTailCall = false;
351*0b57cec5SDimitry Andric 
352*0b57cec5SDimitry Andric   if (CLI.IsTailCall) {
353*0b57cec5SDimitry Andric     bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
354*0b57cec5SDimitry Andric     CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
355*0b57cec5SDimitry Andric                         IsVarArg, IsStructRet, StructAttrFlag, Outs,
356*0b57cec5SDimitry Andric                         OutVals, Ins, DAG);
357*0b57cec5SDimitry Andric     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
358*0b57cec5SDimitry Andric       CCValAssign &VA = ArgLocs[i];
359*0b57cec5SDimitry Andric       if (VA.isMemLoc()) {
360*0b57cec5SDimitry Andric         CLI.IsTailCall = false;
361*0b57cec5SDimitry Andric         break;
362*0b57cec5SDimitry Andric       }
363*0b57cec5SDimitry Andric     }
364*0b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
365*0b57cec5SDimitry Andric                                          : "Argument must be passed on stack. "
366*0b57cec5SDimitry Andric                                            "Not eligible for Tail Call\n"));
367*0b57cec5SDimitry Andric   }
368*0b57cec5SDimitry Andric   // Get a count of how many bytes are to be pushed on the stack.
369*0b57cec5SDimitry Andric   unsigned NumBytes = CCInfo.getNextStackOffset();
370*0b57cec5SDimitry Andric   SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
371*0b57cec5SDimitry Andric   SmallVector<SDValue, 8> MemOpChains;
372*0b57cec5SDimitry Andric 
373*0b57cec5SDimitry Andric   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
374*0b57cec5SDimitry Andric   SDValue StackPtr =
375*0b57cec5SDimitry Andric       DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
376*0b57cec5SDimitry Andric 
377*0b57cec5SDimitry Andric   bool NeedsArgAlign = false;
378*0b57cec5SDimitry Andric   unsigned LargestAlignSeen = 0;
379*0b57cec5SDimitry Andric   // Walk the register/memloc assignments, inserting copies/loads.
380*0b57cec5SDimitry Andric   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
381*0b57cec5SDimitry Andric     CCValAssign &VA = ArgLocs[i];
382*0b57cec5SDimitry Andric     SDValue Arg = OutVals[i];
383*0b57cec5SDimitry Andric     ISD::ArgFlagsTy Flags = Outs[i].Flags;
384*0b57cec5SDimitry Andric     // Record if we need > 8 byte alignment on an argument.
385*0b57cec5SDimitry Andric     bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
386*0b57cec5SDimitry Andric     NeedsArgAlign |= ArgAlign;
387*0b57cec5SDimitry Andric 
388*0b57cec5SDimitry Andric     // Promote the value if needed.
389*0b57cec5SDimitry Andric     switch (VA.getLocInfo()) {
390*0b57cec5SDimitry Andric       default:
391*0b57cec5SDimitry Andric         // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
392*0b57cec5SDimitry Andric         llvm_unreachable("Unknown loc info!");
393*0b57cec5SDimitry Andric       case CCValAssign::Full:
394*0b57cec5SDimitry Andric         break;
395*0b57cec5SDimitry Andric       case CCValAssign::BCvt:
396*0b57cec5SDimitry Andric         Arg = DAG.getBitcast(VA.getLocVT(), Arg);
397*0b57cec5SDimitry Andric         break;
398*0b57cec5SDimitry Andric       case CCValAssign::SExt:
399*0b57cec5SDimitry Andric         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
400*0b57cec5SDimitry Andric         break;
401*0b57cec5SDimitry Andric       case CCValAssign::ZExt:
402*0b57cec5SDimitry Andric         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
403*0b57cec5SDimitry Andric         break;
404*0b57cec5SDimitry Andric       case CCValAssign::AExt:
405*0b57cec5SDimitry Andric         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
406*0b57cec5SDimitry Andric         break;
407*0b57cec5SDimitry Andric     }
408*0b57cec5SDimitry Andric 
409*0b57cec5SDimitry Andric     if (VA.isMemLoc()) {
410*0b57cec5SDimitry Andric       unsigned LocMemOffset = VA.getLocMemOffset();
411*0b57cec5SDimitry Andric       SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
412*0b57cec5SDimitry Andric                                         StackPtr.getValueType());
413*0b57cec5SDimitry Andric       MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
414*0b57cec5SDimitry Andric       if (ArgAlign)
415*0b57cec5SDimitry Andric         LargestAlignSeen = std::max(LargestAlignSeen,
416*0b57cec5SDimitry Andric                                     VA.getLocVT().getStoreSizeInBits() >> 3);
417*0b57cec5SDimitry Andric       if (Flags.isByVal()) {
418*0b57cec5SDimitry Andric         // The argument is a struct passed by value. According to LLVM, "Arg"
419*0b57cec5SDimitry Andric         // is a pointer.
420*0b57cec5SDimitry Andric         MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
421*0b57cec5SDimitry Andric                                                         Flags, DAG, dl));
422*0b57cec5SDimitry Andric       } else {
423*0b57cec5SDimitry Andric         MachinePointerInfo LocPI = MachinePointerInfo::getStack(
424*0b57cec5SDimitry Andric             DAG.getMachineFunction(), LocMemOffset);
425*0b57cec5SDimitry Andric         SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
426*0b57cec5SDimitry Andric         MemOpChains.push_back(S);
427*0b57cec5SDimitry Andric       }
428*0b57cec5SDimitry Andric       continue;
429*0b57cec5SDimitry Andric     }
430*0b57cec5SDimitry Andric 
431*0b57cec5SDimitry Andric     // Arguments that can be passed on register must be kept at RegsToPass
432*0b57cec5SDimitry Andric     // vector.
433*0b57cec5SDimitry Andric     if (VA.isRegLoc())
434*0b57cec5SDimitry Andric       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
435*0b57cec5SDimitry Andric   }
436*0b57cec5SDimitry Andric 
437*0b57cec5SDimitry Andric   if (NeedsArgAlign && Subtarget.hasV60Ops()) {
438*0b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
439*0b57cec5SDimitry Andric     unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
440*0b57cec5SDimitry Andric     LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
441*0b57cec5SDimitry Andric     MFI.ensureMaxAlignment(LargestAlignSeen);
442*0b57cec5SDimitry Andric   }
443*0b57cec5SDimitry Andric   // Transform all store nodes into one single node because all store
444*0b57cec5SDimitry Andric   // nodes are independent of each other.
445*0b57cec5SDimitry Andric   if (!MemOpChains.empty())
446*0b57cec5SDimitry Andric     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
447*0b57cec5SDimitry Andric 
448*0b57cec5SDimitry Andric   SDValue Glue;
449*0b57cec5SDimitry Andric   if (!CLI.IsTailCall) {
450*0b57cec5SDimitry Andric     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
451*0b57cec5SDimitry Andric     Glue = Chain.getValue(1);
452*0b57cec5SDimitry Andric   }
453*0b57cec5SDimitry Andric 
454*0b57cec5SDimitry Andric   // Build a sequence of copy-to-reg nodes chained together with token
455*0b57cec5SDimitry Andric   // chain and flag operands which copy the outgoing args into registers.
456*0b57cec5SDimitry Andric   // The Glue is necessary since all emitted instructions must be
457*0b57cec5SDimitry Andric   // stuck together.
458*0b57cec5SDimitry Andric   if (!CLI.IsTailCall) {
459*0b57cec5SDimitry Andric     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
460*0b57cec5SDimitry Andric       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
461*0b57cec5SDimitry Andric                                RegsToPass[i].second, Glue);
462*0b57cec5SDimitry Andric       Glue = Chain.getValue(1);
463*0b57cec5SDimitry Andric     }
464*0b57cec5SDimitry Andric   } else {
465*0b57cec5SDimitry Andric     // For tail calls lower the arguments to the 'real' stack slot.
466*0b57cec5SDimitry Andric     //
467*0b57cec5SDimitry Andric     // Force all the incoming stack arguments to be loaded from the stack
468*0b57cec5SDimitry Andric     // before any new outgoing arguments are stored to the stack, because the
469*0b57cec5SDimitry Andric     // outgoing stack slots may alias the incoming argument stack slots, and
470*0b57cec5SDimitry Andric     // the alias isn't otherwise explicit. This is slightly more conservative
471*0b57cec5SDimitry Andric     // than necessary, because it means that each store effectively depends
472*0b57cec5SDimitry Andric     // on every argument instead of just those arguments it would clobber.
473*0b57cec5SDimitry Andric     //
474*0b57cec5SDimitry Andric     // Do not flag preceding copytoreg stuff together with the following stuff.
475*0b57cec5SDimitry Andric     Glue = SDValue();
476*0b57cec5SDimitry Andric     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
477*0b57cec5SDimitry Andric       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
478*0b57cec5SDimitry Andric                                RegsToPass[i].second, Glue);
479*0b57cec5SDimitry Andric       Glue = Chain.getValue(1);
480*0b57cec5SDimitry Andric     }
481*0b57cec5SDimitry Andric     Glue = SDValue();
482*0b57cec5SDimitry Andric   }
483*0b57cec5SDimitry Andric 
484*0b57cec5SDimitry Andric   bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
485*0b57cec5SDimitry Andric   unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
486*0b57cec5SDimitry Andric 
487*0b57cec5SDimitry Andric   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
488*0b57cec5SDimitry Andric   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
489*0b57cec5SDimitry Andric   // node so that legalize doesn't hack it.
490*0b57cec5SDimitry Andric   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
491*0b57cec5SDimitry Andric     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
492*0b57cec5SDimitry Andric   } else if (ExternalSymbolSDNode *S =
493*0b57cec5SDimitry Andric              dyn_cast<ExternalSymbolSDNode>(Callee)) {
494*0b57cec5SDimitry Andric     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
495*0b57cec5SDimitry Andric   }
496*0b57cec5SDimitry Andric 
497*0b57cec5SDimitry Andric   // Returns a chain & a flag for retval copy to use.
498*0b57cec5SDimitry Andric   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
499*0b57cec5SDimitry Andric   SmallVector<SDValue, 8> Ops;
500*0b57cec5SDimitry Andric   Ops.push_back(Chain);
501*0b57cec5SDimitry Andric   Ops.push_back(Callee);
502*0b57cec5SDimitry Andric 
503*0b57cec5SDimitry Andric   // Add argument registers to the end of the list so that they are
504*0b57cec5SDimitry Andric   // known live into the call.
505*0b57cec5SDimitry Andric   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
506*0b57cec5SDimitry Andric     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
507*0b57cec5SDimitry Andric                                   RegsToPass[i].second.getValueType()));
508*0b57cec5SDimitry Andric   }
509*0b57cec5SDimitry Andric 
510*0b57cec5SDimitry Andric   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
511*0b57cec5SDimitry Andric   assert(Mask && "Missing call preserved mask for calling convention");
512*0b57cec5SDimitry Andric   Ops.push_back(DAG.getRegisterMask(Mask));
513*0b57cec5SDimitry Andric 
514*0b57cec5SDimitry Andric   if (Glue.getNode())
515*0b57cec5SDimitry Andric     Ops.push_back(Glue);
516*0b57cec5SDimitry Andric 
517*0b57cec5SDimitry Andric   if (CLI.IsTailCall) {
518*0b57cec5SDimitry Andric     MFI.setHasTailCall();
519*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
520*0b57cec5SDimitry Andric   }
521*0b57cec5SDimitry Andric 
522*0b57cec5SDimitry Andric   // Set this here because we need to know this for "hasFP" in frame lowering.
523*0b57cec5SDimitry Andric   // The target-independent code calls getFrameRegister before setting it, and
524*0b57cec5SDimitry Andric   // getFrameRegister uses hasFP to determine whether the function has FP.
525*0b57cec5SDimitry Andric   MFI.setHasCalls(true);
526*0b57cec5SDimitry Andric 
527*0b57cec5SDimitry Andric   unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
528*0b57cec5SDimitry Andric   Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
529*0b57cec5SDimitry Andric   Glue = Chain.getValue(1);
530*0b57cec5SDimitry Andric 
531*0b57cec5SDimitry Andric   // Create the CALLSEQ_END node.
532*0b57cec5SDimitry Andric   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
533*0b57cec5SDimitry Andric                              DAG.getIntPtrConstant(0, dl, true), Glue, dl);
534*0b57cec5SDimitry Andric   Glue = Chain.getValue(1);
535*0b57cec5SDimitry Andric 
536*0b57cec5SDimitry Andric   // Handle result values, copying them out of physregs into vregs that we
537*0b57cec5SDimitry Andric   // return.
538*0b57cec5SDimitry Andric   return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
539*0b57cec5SDimitry Andric                          InVals, OutVals, Callee);
540*0b57cec5SDimitry Andric }
541*0b57cec5SDimitry Andric 
542*0b57cec5SDimitry Andric /// Returns true by value, base pointer and offset pointer and addressing
543*0b57cec5SDimitry Andric /// mode by reference if this node can be combined with a load / store to
544*0b57cec5SDimitry Andric /// form a post-indexed load / store.
545*0b57cec5SDimitry Andric bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
546*0b57cec5SDimitry Andric       SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
547*0b57cec5SDimitry Andric       SelectionDAG &DAG) const {
548*0b57cec5SDimitry Andric   LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
549*0b57cec5SDimitry Andric   if (!LSN)
550*0b57cec5SDimitry Andric     return false;
551*0b57cec5SDimitry Andric   EVT VT = LSN->getMemoryVT();
552*0b57cec5SDimitry Andric   if (!VT.isSimple())
553*0b57cec5SDimitry Andric     return false;
554*0b57cec5SDimitry Andric   bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
555*0b57cec5SDimitry Andric                      VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
556*0b57cec5SDimitry Andric                      VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
557*0b57cec5SDimitry Andric                      VT == MVT::v4i16 || VT == MVT::v8i8 ||
558*0b57cec5SDimitry Andric                      Subtarget.isHVXVectorType(VT.getSimpleVT());
559*0b57cec5SDimitry Andric   if (!IsLegalType)
560*0b57cec5SDimitry Andric     return false;
561*0b57cec5SDimitry Andric 
562*0b57cec5SDimitry Andric   if (Op->getOpcode() != ISD::ADD)
563*0b57cec5SDimitry Andric     return false;
564*0b57cec5SDimitry Andric   Base = Op->getOperand(0);
565*0b57cec5SDimitry Andric   Offset = Op->getOperand(1);
566*0b57cec5SDimitry Andric   if (!isa<ConstantSDNode>(Offset.getNode()))
567*0b57cec5SDimitry Andric     return false;
568*0b57cec5SDimitry Andric   AM = ISD::POST_INC;
569*0b57cec5SDimitry Andric 
570*0b57cec5SDimitry Andric   int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
571*0b57cec5SDimitry Andric   return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
572*0b57cec5SDimitry Andric }
573*0b57cec5SDimitry Andric 
574*0b57cec5SDimitry Andric SDValue
575*0b57cec5SDimitry Andric HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
576*0b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
577*0b57cec5SDimitry Andric   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
578*0b57cec5SDimitry Andric   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
579*0b57cec5SDimitry Andric   unsigned LR = HRI.getRARegister();
580*0b57cec5SDimitry Andric 
581*0b57cec5SDimitry Andric   if ((Op.getOpcode() != ISD::INLINEASM &&
582*0b57cec5SDimitry Andric        Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
583*0b57cec5SDimitry Andric     return Op;
584*0b57cec5SDimitry Andric 
585*0b57cec5SDimitry Andric   unsigned NumOps = Op.getNumOperands();
586*0b57cec5SDimitry Andric   if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
587*0b57cec5SDimitry Andric     --NumOps;  // Ignore the flag operand.
588*0b57cec5SDimitry Andric 
589*0b57cec5SDimitry Andric   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
590*0b57cec5SDimitry Andric     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
591*0b57cec5SDimitry Andric     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
592*0b57cec5SDimitry Andric     ++i;  // Skip the ID value.
593*0b57cec5SDimitry Andric 
594*0b57cec5SDimitry Andric     switch (InlineAsm::getKind(Flags)) {
595*0b57cec5SDimitry Andric       default:
596*0b57cec5SDimitry Andric         llvm_unreachable("Bad flags!");
597*0b57cec5SDimitry Andric       case InlineAsm::Kind_RegUse:
598*0b57cec5SDimitry Andric       case InlineAsm::Kind_Imm:
599*0b57cec5SDimitry Andric       case InlineAsm::Kind_Mem:
600*0b57cec5SDimitry Andric         i += NumVals;
601*0b57cec5SDimitry Andric         break;
602*0b57cec5SDimitry Andric       case InlineAsm::Kind_Clobber:
603*0b57cec5SDimitry Andric       case InlineAsm::Kind_RegDef:
604*0b57cec5SDimitry Andric       case InlineAsm::Kind_RegDefEarlyClobber: {
605*0b57cec5SDimitry Andric         for (; NumVals; --NumVals, ++i) {
606*0b57cec5SDimitry Andric           unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
607*0b57cec5SDimitry Andric           if (Reg != LR)
608*0b57cec5SDimitry Andric             continue;
609*0b57cec5SDimitry Andric           HMFI.setHasClobberLR(true);
610*0b57cec5SDimitry Andric           return Op;
611*0b57cec5SDimitry Andric         }
612*0b57cec5SDimitry Andric         break;
613*0b57cec5SDimitry Andric       }
614*0b57cec5SDimitry Andric     }
615*0b57cec5SDimitry Andric   }
616*0b57cec5SDimitry Andric 
617*0b57cec5SDimitry Andric   return Op;
618*0b57cec5SDimitry Andric }
619*0b57cec5SDimitry Andric 
620*0b57cec5SDimitry Andric // Need to transform ISD::PREFETCH into something that doesn't inherit
621*0b57cec5SDimitry Andric // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
622*0b57cec5SDimitry Andric // SDNPMayStore.
623*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
624*0b57cec5SDimitry Andric                                              SelectionDAG &DAG) const {
625*0b57cec5SDimitry Andric   SDValue Chain = Op.getOperand(0);
626*0b57cec5SDimitry Andric   SDValue Addr = Op.getOperand(1);
627*0b57cec5SDimitry Andric   // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
628*0b57cec5SDimitry Andric   // if the "reg" is fed by an "add".
629*0b57cec5SDimitry Andric   SDLoc DL(Op);
630*0b57cec5SDimitry Andric   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
631*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
632*0b57cec5SDimitry Andric }
633*0b57cec5SDimitry Andric 
634*0b57cec5SDimitry Andric // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
635*0b57cec5SDimitry Andric // is marked as having side-effects, while the register read on Hexagon does
636*0b57cec5SDimitry Andric // not have any. TableGen refuses to accept the direct pattern from that node
637*0b57cec5SDimitry Andric // to the A4_tfrcpp.
638*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
639*0b57cec5SDimitry Andric                                                      SelectionDAG &DAG) const {
640*0b57cec5SDimitry Andric   SDValue Chain = Op.getOperand(0);
641*0b57cec5SDimitry Andric   SDLoc dl(Op);
642*0b57cec5SDimitry Andric   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
643*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
644*0b57cec5SDimitry Andric }
645*0b57cec5SDimitry Andric 
646*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
647*0b57cec5SDimitry Andric       SelectionDAG &DAG) const {
648*0b57cec5SDimitry Andric   SDValue Chain = Op.getOperand(0);
649*0b57cec5SDimitry Andric   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
650*0b57cec5SDimitry Andric   // Lower the hexagon_prefetch builtin to DCFETCH, as above.
651*0b57cec5SDimitry Andric   if (IntNo == Intrinsic::hexagon_prefetch) {
652*0b57cec5SDimitry Andric     SDValue Addr = Op.getOperand(2);
653*0b57cec5SDimitry Andric     SDLoc DL(Op);
654*0b57cec5SDimitry Andric     SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
655*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
656*0b57cec5SDimitry Andric   }
657*0b57cec5SDimitry Andric   return SDValue();
658*0b57cec5SDimitry Andric }
659*0b57cec5SDimitry Andric 
660*0b57cec5SDimitry Andric SDValue
661*0b57cec5SDimitry Andric HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
662*0b57cec5SDimitry Andric                                                SelectionDAG &DAG) const {
663*0b57cec5SDimitry Andric   SDValue Chain = Op.getOperand(0);
664*0b57cec5SDimitry Andric   SDValue Size = Op.getOperand(1);
665*0b57cec5SDimitry Andric   SDValue Align = Op.getOperand(2);
666*0b57cec5SDimitry Andric   SDLoc dl(Op);
667*0b57cec5SDimitry Andric 
668*0b57cec5SDimitry Andric   ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
669*0b57cec5SDimitry Andric   assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
670*0b57cec5SDimitry Andric 
671*0b57cec5SDimitry Andric   unsigned A = AlignConst->getSExtValue();
672*0b57cec5SDimitry Andric   auto &HFI = *Subtarget.getFrameLowering();
673*0b57cec5SDimitry Andric   // "Zero" means natural stack alignment.
674*0b57cec5SDimitry Andric   if (A == 0)
675*0b57cec5SDimitry Andric     A = HFI.getStackAlignment();
676*0b57cec5SDimitry Andric 
677*0b57cec5SDimitry Andric   LLVM_DEBUG({
678*0b57cec5SDimitry Andric     dbgs () << __func__ << " Align: " << A << " Size: ";
679*0b57cec5SDimitry Andric     Size.getNode()->dump(&DAG);
680*0b57cec5SDimitry Andric     dbgs() << "\n";
681*0b57cec5SDimitry Andric   });
682*0b57cec5SDimitry Andric 
683*0b57cec5SDimitry Andric   SDValue AC = DAG.getConstant(A, dl, MVT::i32);
684*0b57cec5SDimitry Andric   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
685*0b57cec5SDimitry Andric   SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
686*0b57cec5SDimitry Andric 
687*0b57cec5SDimitry Andric   DAG.ReplaceAllUsesOfValueWith(Op, AA);
688*0b57cec5SDimitry Andric   return AA;
689*0b57cec5SDimitry Andric }
690*0b57cec5SDimitry Andric 
691*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerFormalArguments(
692*0b57cec5SDimitry Andric     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
693*0b57cec5SDimitry Andric     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
694*0b57cec5SDimitry Andric     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
695*0b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
696*0b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
697*0b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
698*0b57cec5SDimitry Andric 
699*0b57cec5SDimitry Andric   // Assign locations to all of the incoming arguments.
700*0b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> ArgLocs;
701*0b57cec5SDimitry Andric   HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
702*0b57cec5SDimitry Andric                         MF.getFunction().getFunctionType()->getNumParams());
703*0b57cec5SDimitry Andric 
704*0b57cec5SDimitry Andric   if (Subtarget.useHVXOps())
705*0b57cec5SDimitry Andric     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
706*0b57cec5SDimitry Andric   else
707*0b57cec5SDimitry Andric     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
708*0b57cec5SDimitry Andric 
709*0b57cec5SDimitry Andric   // For LLVM, in the case when returning a struct by value (>8byte),
710*0b57cec5SDimitry Andric   // the first argument is a pointer that points to the location on caller's
711*0b57cec5SDimitry Andric   // stack where the return value will be stored. For Hexagon, the location on
712*0b57cec5SDimitry Andric   // caller's stack is passed only when the struct size is smaller than (and
713*0b57cec5SDimitry Andric   // equal to) 8 bytes. If not, no address will be passed into callee and
714*0b57cec5SDimitry Andric   // callee return the result direclty through R0/R1.
715*0b57cec5SDimitry Andric 
716*0b57cec5SDimitry Andric   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
717*0b57cec5SDimitry Andric 
718*0b57cec5SDimitry Andric   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
719*0b57cec5SDimitry Andric     CCValAssign &VA = ArgLocs[i];
720*0b57cec5SDimitry Andric     ISD::ArgFlagsTy Flags = Ins[i].Flags;
721*0b57cec5SDimitry Andric     bool ByVal = Flags.isByVal();
722*0b57cec5SDimitry Andric 
723*0b57cec5SDimitry Andric     // Arguments passed in registers:
724*0b57cec5SDimitry Andric     // 1. 32- and 64-bit values and HVX vectors are passed directly,
725*0b57cec5SDimitry Andric     // 2. Large structs are passed via an address, and the address is
726*0b57cec5SDimitry Andric     //    passed in a register.
727*0b57cec5SDimitry Andric     if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
728*0b57cec5SDimitry Andric       llvm_unreachable("ByValSize must be bigger than 8 bytes");
729*0b57cec5SDimitry Andric 
730*0b57cec5SDimitry Andric     bool InReg = VA.isRegLoc() &&
731*0b57cec5SDimitry Andric                  (!ByVal || (ByVal && Flags.getByValSize() > 8));
732*0b57cec5SDimitry Andric 
733*0b57cec5SDimitry Andric     if (InReg) {
734*0b57cec5SDimitry Andric       MVT RegVT = VA.getLocVT();
735*0b57cec5SDimitry Andric       if (VA.getLocInfo() == CCValAssign::BCvt)
736*0b57cec5SDimitry Andric         RegVT = VA.getValVT();
737*0b57cec5SDimitry Andric 
738*0b57cec5SDimitry Andric       const TargetRegisterClass *RC = getRegClassFor(RegVT);
739*0b57cec5SDimitry Andric       unsigned VReg = MRI.createVirtualRegister(RC);
740*0b57cec5SDimitry Andric       SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
741*0b57cec5SDimitry Andric 
742*0b57cec5SDimitry Andric       // Treat values of type MVT::i1 specially: they are passed in
743*0b57cec5SDimitry Andric       // registers of type i32, but they need to remain as values of
744*0b57cec5SDimitry Andric       // type i1 for consistency of the argument lowering.
745*0b57cec5SDimitry Andric       if (VA.getValVT() == MVT::i1) {
746*0b57cec5SDimitry Andric         assert(RegVT.getSizeInBits() <= 32);
747*0b57cec5SDimitry Andric         SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
748*0b57cec5SDimitry Andric                                 Copy, DAG.getConstant(1, dl, RegVT));
749*0b57cec5SDimitry Andric         Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
750*0b57cec5SDimitry Andric                             ISD::SETNE);
751*0b57cec5SDimitry Andric       } else {
752*0b57cec5SDimitry Andric #ifndef NDEBUG
753*0b57cec5SDimitry Andric         unsigned RegSize = RegVT.getSizeInBits();
754*0b57cec5SDimitry Andric         assert(RegSize == 32 || RegSize == 64 ||
755*0b57cec5SDimitry Andric                Subtarget.isHVXVectorType(RegVT));
756*0b57cec5SDimitry Andric #endif
757*0b57cec5SDimitry Andric       }
758*0b57cec5SDimitry Andric       InVals.push_back(Copy);
759*0b57cec5SDimitry Andric       MRI.addLiveIn(VA.getLocReg(), VReg);
760*0b57cec5SDimitry Andric     } else {
761*0b57cec5SDimitry Andric       assert(VA.isMemLoc() && "Argument should be passed in memory");
762*0b57cec5SDimitry Andric 
763*0b57cec5SDimitry Andric       // If it's a byval parameter, then we need to compute the
764*0b57cec5SDimitry Andric       // "real" size, not the size of the pointer.
765*0b57cec5SDimitry Andric       unsigned ObjSize = Flags.isByVal()
766*0b57cec5SDimitry Andric                             ? Flags.getByValSize()
767*0b57cec5SDimitry Andric                             : VA.getLocVT().getStoreSizeInBits() / 8;
768*0b57cec5SDimitry Andric 
769*0b57cec5SDimitry Andric       // Create the frame index object for this incoming parameter.
770*0b57cec5SDimitry Andric       int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
771*0b57cec5SDimitry Andric       int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
772*0b57cec5SDimitry Andric       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
773*0b57cec5SDimitry Andric 
774*0b57cec5SDimitry Andric       if (Flags.isByVal()) {
775*0b57cec5SDimitry Andric         // If it's a pass-by-value aggregate, then do not dereference the stack
776*0b57cec5SDimitry Andric         // location. Instead, we should generate a reference to the stack
777*0b57cec5SDimitry Andric         // location.
778*0b57cec5SDimitry Andric         InVals.push_back(FIN);
779*0b57cec5SDimitry Andric       } else {
780*0b57cec5SDimitry Andric         SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
781*0b57cec5SDimitry Andric                                 MachinePointerInfo::getFixedStack(MF, FI, 0));
782*0b57cec5SDimitry Andric         InVals.push_back(L);
783*0b57cec5SDimitry Andric       }
784*0b57cec5SDimitry Andric     }
785*0b57cec5SDimitry Andric   }
786*0b57cec5SDimitry Andric 
787*0b57cec5SDimitry Andric 
788*0b57cec5SDimitry Andric   if (IsVarArg) {
789*0b57cec5SDimitry Andric     // This will point to the next argument passed via stack.
790*0b57cec5SDimitry Andric     int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
791*0b57cec5SDimitry Andric     int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
792*0b57cec5SDimitry Andric     HMFI.setVarArgsFrameIndex(FI);
793*0b57cec5SDimitry Andric   }
794*0b57cec5SDimitry Andric 
795*0b57cec5SDimitry Andric   return Chain;
796*0b57cec5SDimitry Andric }
797*0b57cec5SDimitry Andric 
798*0b57cec5SDimitry Andric SDValue
799*0b57cec5SDimitry Andric HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
800*0b57cec5SDimitry Andric   // VASTART stores the address of the VarArgsFrameIndex slot into the
801*0b57cec5SDimitry Andric   // memory location argument.
802*0b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
803*0b57cec5SDimitry Andric   HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
804*0b57cec5SDimitry Andric   SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
805*0b57cec5SDimitry Andric   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
806*0b57cec5SDimitry Andric   return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
807*0b57cec5SDimitry Andric                       MachinePointerInfo(SV));
808*0b57cec5SDimitry Andric }
809*0b57cec5SDimitry Andric 
810*0b57cec5SDimitry Andric SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
811*0b57cec5SDimitry Andric   const SDLoc &dl(Op);
812*0b57cec5SDimitry Andric   SDValue LHS = Op.getOperand(0);
813*0b57cec5SDimitry Andric   SDValue RHS = Op.getOperand(1);
814*0b57cec5SDimitry Andric   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
815*0b57cec5SDimitry Andric   MVT ResTy = ty(Op);
816*0b57cec5SDimitry Andric   MVT OpTy = ty(LHS);
817*0b57cec5SDimitry Andric 
818*0b57cec5SDimitry Andric   if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
819*0b57cec5SDimitry Andric     MVT ElemTy = OpTy.getVectorElementType();
820*0b57cec5SDimitry Andric     assert(ElemTy.isScalarInteger());
821*0b57cec5SDimitry Andric     MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
822*0b57cec5SDimitry Andric                                   OpTy.getVectorNumElements());
823*0b57cec5SDimitry Andric     return DAG.getSetCC(dl, ResTy,
824*0b57cec5SDimitry Andric                         DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
825*0b57cec5SDimitry Andric                         DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
826*0b57cec5SDimitry Andric   }
827*0b57cec5SDimitry Andric 
828*0b57cec5SDimitry Andric   // Treat all other vector types as legal.
829*0b57cec5SDimitry Andric   if (ResTy.isVector())
830*0b57cec5SDimitry Andric     return Op;
831*0b57cec5SDimitry Andric 
832*0b57cec5SDimitry Andric   // Comparisons of short integers should use sign-extend, not zero-extend,
833*0b57cec5SDimitry Andric   // since we can represent small negative values in the compare instructions.
834*0b57cec5SDimitry Andric   // The LLVM default is to use zero-extend arbitrarily in these cases.
835*0b57cec5SDimitry Andric   auto isSExtFree = [this](SDValue N) {
836*0b57cec5SDimitry Andric     switch (N.getOpcode()) {
837*0b57cec5SDimitry Andric       case ISD::TRUNCATE: {
838*0b57cec5SDimitry Andric         // A sign-extend of a truncate of a sign-extend is free.
839*0b57cec5SDimitry Andric         SDValue Op = N.getOperand(0);
840*0b57cec5SDimitry Andric         if (Op.getOpcode() != ISD::AssertSext)
841*0b57cec5SDimitry Andric           return false;
842*0b57cec5SDimitry Andric         EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
843*0b57cec5SDimitry Andric         unsigned ThisBW = ty(N).getSizeInBits();
844*0b57cec5SDimitry Andric         unsigned OrigBW = OrigTy.getSizeInBits();
845*0b57cec5SDimitry Andric         // The type that was sign-extended to get the AssertSext must be
846*0b57cec5SDimitry Andric         // narrower than the type of N (so that N has still the same value
847*0b57cec5SDimitry Andric         // as the original).
848*0b57cec5SDimitry Andric         return ThisBW >= OrigBW;
849*0b57cec5SDimitry Andric       }
850*0b57cec5SDimitry Andric       case ISD::LOAD:
851*0b57cec5SDimitry Andric         // We have sign-extended loads.
852*0b57cec5SDimitry Andric         return true;
853*0b57cec5SDimitry Andric     }
854*0b57cec5SDimitry Andric     return false;
855*0b57cec5SDimitry Andric   };
856*0b57cec5SDimitry Andric 
857*0b57cec5SDimitry Andric   if (OpTy == MVT::i8 || OpTy == MVT::i16) {
858*0b57cec5SDimitry Andric     ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
859*0b57cec5SDimitry Andric     bool IsNegative = C && C->getAPIntValue().isNegative();
860*0b57cec5SDimitry Andric     if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
861*0b57cec5SDimitry Andric       return DAG.getSetCC(dl, ResTy,
862*0b57cec5SDimitry Andric                           DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
863*0b57cec5SDimitry Andric                           DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
864*0b57cec5SDimitry Andric   }
865*0b57cec5SDimitry Andric 
866*0b57cec5SDimitry Andric   return SDValue();
867*0b57cec5SDimitry Andric }
868*0b57cec5SDimitry Andric 
869*0b57cec5SDimitry Andric SDValue
870*0b57cec5SDimitry Andric HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
871*0b57cec5SDimitry Andric   SDValue PredOp = Op.getOperand(0);
872*0b57cec5SDimitry Andric   SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
873*0b57cec5SDimitry Andric   EVT OpVT = Op1.getValueType();
874*0b57cec5SDimitry Andric   SDLoc DL(Op);
875*0b57cec5SDimitry Andric 
876*0b57cec5SDimitry Andric   if (OpVT == MVT::v2i16) {
877*0b57cec5SDimitry Andric     SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
878*0b57cec5SDimitry Andric     SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
879*0b57cec5SDimitry Andric     SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
880*0b57cec5SDimitry Andric     SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
881*0b57cec5SDimitry Andric     return TR;
882*0b57cec5SDimitry Andric   }
883*0b57cec5SDimitry Andric 
884*0b57cec5SDimitry Andric   return SDValue();
885*0b57cec5SDimitry Andric }
886*0b57cec5SDimitry Andric 
887*0b57cec5SDimitry Andric static Constant *convert_i1_to_i8(const Constant *ConstVal) {
888*0b57cec5SDimitry Andric   SmallVector<Constant *, 128> NewConst;
889*0b57cec5SDimitry Andric   const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal);
890*0b57cec5SDimitry Andric   if (!CV)
891*0b57cec5SDimitry Andric     return nullptr;
892*0b57cec5SDimitry Andric 
893*0b57cec5SDimitry Andric   LLVMContext &Ctx = ConstVal->getContext();
894*0b57cec5SDimitry Andric   IRBuilder<> IRB(Ctx);
895*0b57cec5SDimitry Andric   unsigned NumVectorElements = CV->getNumOperands();
896*0b57cec5SDimitry Andric   assert(isPowerOf2_32(NumVectorElements) &&
897*0b57cec5SDimitry Andric          "conversion only supported for pow2 VectorSize!");
898*0b57cec5SDimitry Andric 
899*0b57cec5SDimitry Andric   for (unsigned i = 0; i < NumVectorElements / 8; ++i) {
900*0b57cec5SDimitry Andric     uint8_t x = 0;
901*0b57cec5SDimitry Andric     for (unsigned j = 0; j < 8; ++j) {
902*0b57cec5SDimitry Andric       uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue();
903*0b57cec5SDimitry Andric       x |= y << (7 - j);
904*0b57cec5SDimitry Andric     }
905*0b57cec5SDimitry Andric     assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!");
906*0b57cec5SDimitry Andric     NewConst.push_back(IRB.getInt8(x));
907*0b57cec5SDimitry Andric   }
908*0b57cec5SDimitry Andric   return ConstantVector::get(NewConst);
909*0b57cec5SDimitry Andric }
910*0b57cec5SDimitry Andric 
911*0b57cec5SDimitry Andric SDValue
912*0b57cec5SDimitry Andric HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
913*0b57cec5SDimitry Andric   EVT ValTy = Op.getValueType();
914*0b57cec5SDimitry Andric   ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
915*0b57cec5SDimitry Andric   Constant *CVal = nullptr;
916*0b57cec5SDimitry Andric   bool isVTi1Type = false;
917*0b57cec5SDimitry Andric   if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) {
918*0b57cec5SDimitry Andric     Type *CValTy = ConstVal->getType();
919*0b57cec5SDimitry Andric     if (CValTy->isVectorTy() &&
920*0b57cec5SDimitry Andric         CValTy->getVectorElementType()->isIntegerTy(1)) {
921*0b57cec5SDimitry Andric       CVal = convert_i1_to_i8(ConstVal);
922*0b57cec5SDimitry Andric       isVTi1Type = (CVal != nullptr);
923*0b57cec5SDimitry Andric     }
924*0b57cec5SDimitry Andric   }
925*0b57cec5SDimitry Andric   unsigned Align = CPN->getAlignment();
926*0b57cec5SDimitry Andric   bool IsPositionIndependent = isPositionIndependent();
927*0b57cec5SDimitry Andric   unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
928*0b57cec5SDimitry Andric 
929*0b57cec5SDimitry Andric   unsigned Offset = 0;
930*0b57cec5SDimitry Andric   SDValue T;
931*0b57cec5SDimitry Andric   if (CPN->isMachineConstantPoolEntry())
932*0b57cec5SDimitry Andric     T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
933*0b57cec5SDimitry Andric                                   TF);
934*0b57cec5SDimitry Andric   else if (isVTi1Type)
935*0b57cec5SDimitry Andric     T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
936*0b57cec5SDimitry Andric   else
937*0b57cec5SDimitry Andric     T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);
938*0b57cec5SDimitry Andric 
939*0b57cec5SDimitry Andric   assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
940*0b57cec5SDimitry Andric          "Inconsistent target flag encountered");
941*0b57cec5SDimitry Andric 
942*0b57cec5SDimitry Andric   if (IsPositionIndependent)
943*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
944*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
945*0b57cec5SDimitry Andric }
946*0b57cec5SDimitry Andric 
947*0b57cec5SDimitry Andric SDValue
948*0b57cec5SDimitry Andric HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
949*0b57cec5SDimitry Andric   EVT VT = Op.getValueType();
950*0b57cec5SDimitry Andric   int Idx = cast<JumpTableSDNode>(Op)->getIndex();
951*0b57cec5SDimitry Andric   if (isPositionIndependent()) {
952*0b57cec5SDimitry Andric     SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
953*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
954*0b57cec5SDimitry Andric   }
955*0b57cec5SDimitry Andric 
956*0b57cec5SDimitry Andric   SDValue T = DAG.getTargetJumpTable(Idx, VT);
957*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
958*0b57cec5SDimitry Andric }
959*0b57cec5SDimitry Andric 
960*0b57cec5SDimitry Andric SDValue
961*0b57cec5SDimitry Andric HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
962*0b57cec5SDimitry Andric   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
963*0b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
964*0b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
965*0b57cec5SDimitry Andric   MFI.setReturnAddressIsTaken(true);
966*0b57cec5SDimitry Andric 
967*0b57cec5SDimitry Andric   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
968*0b57cec5SDimitry Andric     return SDValue();
969*0b57cec5SDimitry Andric 
970*0b57cec5SDimitry Andric   EVT VT = Op.getValueType();
971*0b57cec5SDimitry Andric   SDLoc dl(Op);
972*0b57cec5SDimitry Andric   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
973*0b57cec5SDimitry Andric   if (Depth) {
974*0b57cec5SDimitry Andric     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
975*0b57cec5SDimitry Andric     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
976*0b57cec5SDimitry Andric     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
977*0b57cec5SDimitry Andric                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
978*0b57cec5SDimitry Andric                        MachinePointerInfo());
979*0b57cec5SDimitry Andric   }
980*0b57cec5SDimitry Andric 
981*0b57cec5SDimitry Andric   // Return LR, which contains the return address. Mark it an implicit live-in.
982*0b57cec5SDimitry Andric   unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
983*0b57cec5SDimitry Andric   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
984*0b57cec5SDimitry Andric }
985*0b57cec5SDimitry Andric 
986*0b57cec5SDimitry Andric SDValue
987*0b57cec5SDimitry Andric HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
988*0b57cec5SDimitry Andric   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
989*0b57cec5SDimitry Andric   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
990*0b57cec5SDimitry Andric   MFI.setFrameAddressIsTaken(true);
991*0b57cec5SDimitry Andric 
992*0b57cec5SDimitry Andric   EVT VT = Op.getValueType();
993*0b57cec5SDimitry Andric   SDLoc dl(Op);
994*0b57cec5SDimitry Andric   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
995*0b57cec5SDimitry Andric   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
996*0b57cec5SDimitry Andric                                          HRI.getFrameRegister(), VT);
997*0b57cec5SDimitry Andric   while (Depth--)
998*0b57cec5SDimitry Andric     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
999*0b57cec5SDimitry Andric                             MachinePointerInfo());
1000*0b57cec5SDimitry Andric   return FrameAddr;
1001*0b57cec5SDimitry Andric }
1002*0b57cec5SDimitry Andric 
1003*0b57cec5SDimitry Andric SDValue
1004*0b57cec5SDimitry Andric HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1005*0b57cec5SDimitry Andric   SDLoc dl(Op);
1006*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1007*0b57cec5SDimitry Andric }
1008*0b57cec5SDimitry Andric 
1009*0b57cec5SDimitry Andric SDValue
1010*0b57cec5SDimitry Andric HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1011*0b57cec5SDimitry Andric   SDLoc dl(Op);
1012*0b57cec5SDimitry Andric   auto *GAN = cast<GlobalAddressSDNode>(Op);
1013*0b57cec5SDimitry Andric   auto PtrVT = getPointerTy(DAG.getDataLayout());
1014*0b57cec5SDimitry Andric   auto *GV = GAN->getGlobal();
1015*0b57cec5SDimitry Andric   int64_t Offset = GAN->getOffset();
1016*0b57cec5SDimitry Andric 
1017*0b57cec5SDimitry Andric   auto &HLOF = *HTM.getObjFileLowering();
1018*0b57cec5SDimitry Andric   Reloc::Model RM = HTM.getRelocationModel();
1019*0b57cec5SDimitry Andric 
1020*0b57cec5SDimitry Andric   if (RM == Reloc::Static) {
1021*0b57cec5SDimitry Andric     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1022*0b57cec5SDimitry Andric     const GlobalObject *GO = GV->getBaseObject();
1023*0b57cec5SDimitry Andric     if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1024*0b57cec5SDimitry Andric       return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1025*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1026*0b57cec5SDimitry Andric   }
1027*0b57cec5SDimitry Andric 
1028*0b57cec5SDimitry Andric   bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1029*0b57cec5SDimitry Andric   if (UsePCRel) {
1030*0b57cec5SDimitry Andric     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1031*0b57cec5SDimitry Andric                                             HexagonII::MO_PCREL);
1032*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1033*0b57cec5SDimitry Andric   }
1034*0b57cec5SDimitry Andric 
1035*0b57cec5SDimitry Andric   // Use GOT index.
1036*0b57cec5SDimitry Andric   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1037*0b57cec5SDimitry Andric   SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1038*0b57cec5SDimitry Andric   SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1039*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1040*0b57cec5SDimitry Andric }
1041*0b57cec5SDimitry Andric 
1042*0b57cec5SDimitry Andric // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1043*0b57cec5SDimitry Andric SDValue
1044*0b57cec5SDimitry Andric HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1045*0b57cec5SDimitry Andric   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1046*0b57cec5SDimitry Andric   SDLoc dl(Op);
1047*0b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1048*0b57cec5SDimitry Andric 
1049*0b57cec5SDimitry Andric   Reloc::Model RM = HTM.getRelocationModel();
1050*0b57cec5SDimitry Andric   if (RM == Reloc::Static) {
1051*0b57cec5SDimitry Andric     SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1052*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1053*0b57cec5SDimitry Andric   }
1054*0b57cec5SDimitry Andric 
1055*0b57cec5SDimitry Andric   SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1056*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1057*0b57cec5SDimitry Andric }
1058*0b57cec5SDimitry Andric 
1059*0b57cec5SDimitry Andric SDValue
1060*0b57cec5SDimitry Andric HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1061*0b57cec5SDimitry Andric       const {
1062*0b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1063*0b57cec5SDimitry Andric   SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1064*0b57cec5SDimitry Andric                                                HexagonII::MO_PCREL);
1065*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1066*0b57cec5SDimitry Andric }
1067*0b57cec5SDimitry Andric 
1068*0b57cec5SDimitry Andric SDValue
1069*0b57cec5SDimitry Andric HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1070*0b57cec5SDimitry Andric       GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1071*0b57cec5SDimitry Andric       unsigned char OperandFlags) const {
1072*0b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
1073*0b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
1074*0b57cec5SDimitry Andric   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1075*0b57cec5SDimitry Andric   SDLoc dl(GA);
1076*0b57cec5SDimitry Andric   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1077*0b57cec5SDimitry Andric                                            GA->getValueType(0),
1078*0b57cec5SDimitry Andric                                            GA->getOffset(),
1079*0b57cec5SDimitry Andric                                            OperandFlags);
1080*0b57cec5SDimitry Andric   // Create Operands for the call.The Operands should have the following:
1081*0b57cec5SDimitry Andric   // 1. Chain SDValue
1082*0b57cec5SDimitry Andric   // 2. Callee which in this case is the Global address value.
1083*0b57cec5SDimitry Andric   // 3. Registers live into the call.In this case its R0, as we
1084*0b57cec5SDimitry Andric   //    have just one argument to be passed.
1085*0b57cec5SDimitry Andric   // 4. Glue.
1086*0b57cec5SDimitry Andric   // Note: The order is important.
1087*0b57cec5SDimitry Andric 
1088*0b57cec5SDimitry Andric   const auto &HRI = *Subtarget.getRegisterInfo();
1089*0b57cec5SDimitry Andric   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1090*0b57cec5SDimitry Andric   assert(Mask && "Missing call preserved mask for calling convention");
1091*0b57cec5SDimitry Andric   SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1092*0b57cec5SDimitry Andric                     DAG.getRegisterMask(Mask), Glue };
1093*0b57cec5SDimitry Andric   Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1094*0b57cec5SDimitry Andric 
1095*0b57cec5SDimitry Andric   // Inform MFI that function has calls.
1096*0b57cec5SDimitry Andric   MFI.setAdjustsStack(true);
1097*0b57cec5SDimitry Andric 
1098*0b57cec5SDimitry Andric   Glue = Chain.getValue(1);
1099*0b57cec5SDimitry Andric   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1100*0b57cec5SDimitry Andric }
1101*0b57cec5SDimitry Andric 
1102*0b57cec5SDimitry Andric //
1103*0b57cec5SDimitry Andric // Lower using the intial executable model for TLS addresses
1104*0b57cec5SDimitry Andric //
1105*0b57cec5SDimitry Andric SDValue
1106*0b57cec5SDimitry Andric HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1107*0b57cec5SDimitry Andric       SelectionDAG &DAG) const {
1108*0b57cec5SDimitry Andric   SDLoc dl(GA);
1109*0b57cec5SDimitry Andric   int64_t Offset = GA->getOffset();
1110*0b57cec5SDimitry Andric   auto PtrVT = getPointerTy(DAG.getDataLayout());
1111*0b57cec5SDimitry Andric 
1112*0b57cec5SDimitry Andric   // Get the thread pointer.
1113*0b57cec5SDimitry Andric   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1114*0b57cec5SDimitry Andric 
1115*0b57cec5SDimitry Andric   bool IsPositionIndependent = isPositionIndependent();
1116*0b57cec5SDimitry Andric   unsigned char TF =
1117*0b57cec5SDimitry Andric       IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1118*0b57cec5SDimitry Andric 
1119*0b57cec5SDimitry Andric   // First generate the TLS symbol address
1120*0b57cec5SDimitry Andric   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1121*0b57cec5SDimitry Andric                                            Offset, TF);
1122*0b57cec5SDimitry Andric 
1123*0b57cec5SDimitry Andric   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1124*0b57cec5SDimitry Andric 
1125*0b57cec5SDimitry Andric   if (IsPositionIndependent) {
1126*0b57cec5SDimitry Andric     // Generate the GOT pointer in case of position independent code
1127*0b57cec5SDimitry Andric     SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1128*0b57cec5SDimitry Andric 
1129*0b57cec5SDimitry Andric     // Add the TLS Symbol address to GOT pointer.This gives
1130*0b57cec5SDimitry Andric     // GOT relative relocation for the symbol.
1131*0b57cec5SDimitry Andric     Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1132*0b57cec5SDimitry Andric   }
1133*0b57cec5SDimitry Andric 
1134*0b57cec5SDimitry Andric   // Load the offset value for TLS symbol.This offset is relative to
1135*0b57cec5SDimitry Andric   // thread pointer.
1136*0b57cec5SDimitry Andric   SDValue LoadOffset =
1137*0b57cec5SDimitry Andric       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1138*0b57cec5SDimitry Andric 
1139*0b57cec5SDimitry Andric   // Address of the thread local variable is the add of thread
1140*0b57cec5SDimitry Andric   // pointer and the offset of the variable.
1141*0b57cec5SDimitry Andric   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1142*0b57cec5SDimitry Andric }
1143*0b57cec5SDimitry Andric 
1144*0b57cec5SDimitry Andric //
1145*0b57cec5SDimitry Andric // Lower using the local executable model for TLS addresses
1146*0b57cec5SDimitry Andric //
1147*0b57cec5SDimitry Andric SDValue
1148*0b57cec5SDimitry Andric HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1149*0b57cec5SDimitry Andric       SelectionDAG &DAG) const {
1150*0b57cec5SDimitry Andric   SDLoc dl(GA);
1151*0b57cec5SDimitry Andric   int64_t Offset = GA->getOffset();
1152*0b57cec5SDimitry Andric   auto PtrVT = getPointerTy(DAG.getDataLayout());
1153*0b57cec5SDimitry Andric 
1154*0b57cec5SDimitry Andric   // Get the thread pointer.
1155*0b57cec5SDimitry Andric   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1156*0b57cec5SDimitry Andric   // Generate the TLS symbol address
1157*0b57cec5SDimitry Andric   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1158*0b57cec5SDimitry Andric                                            HexagonII::MO_TPREL);
1159*0b57cec5SDimitry Andric   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1160*0b57cec5SDimitry Andric 
1161*0b57cec5SDimitry Andric   // Address of the thread local variable is the add of thread
1162*0b57cec5SDimitry Andric   // pointer and the offset of the variable.
1163*0b57cec5SDimitry Andric   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1164*0b57cec5SDimitry Andric }
1165*0b57cec5SDimitry Andric 
1166*0b57cec5SDimitry Andric //
1167*0b57cec5SDimitry Andric // Lower using the general dynamic model for TLS addresses
1168*0b57cec5SDimitry Andric //
1169*0b57cec5SDimitry Andric SDValue
1170*0b57cec5SDimitry Andric HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1171*0b57cec5SDimitry Andric       SelectionDAG &DAG) const {
1172*0b57cec5SDimitry Andric   SDLoc dl(GA);
1173*0b57cec5SDimitry Andric   int64_t Offset = GA->getOffset();
1174*0b57cec5SDimitry Andric   auto PtrVT = getPointerTy(DAG.getDataLayout());
1175*0b57cec5SDimitry Andric 
1176*0b57cec5SDimitry Andric   // First generate the TLS symbol address
1177*0b57cec5SDimitry Andric   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1178*0b57cec5SDimitry Andric                                            HexagonII::MO_GDGOT);
1179*0b57cec5SDimitry Andric 
1180*0b57cec5SDimitry Andric   // Then, generate the GOT pointer
1181*0b57cec5SDimitry Andric   SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1182*0b57cec5SDimitry Andric 
1183*0b57cec5SDimitry Andric   // Add the TLS symbol and the GOT pointer
1184*0b57cec5SDimitry Andric   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1185*0b57cec5SDimitry Andric   SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1186*0b57cec5SDimitry Andric 
1187*0b57cec5SDimitry Andric   // Copy over the argument to R0
1188*0b57cec5SDimitry Andric   SDValue InFlag;
1189*0b57cec5SDimitry Andric   Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1190*0b57cec5SDimitry Andric   InFlag = Chain.getValue(1);
1191*0b57cec5SDimitry Andric 
1192*0b57cec5SDimitry Andric   unsigned Flags =
1193*0b57cec5SDimitry Andric       static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
1194*0b57cec5SDimitry Andric           ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1195*0b57cec5SDimitry Andric           : HexagonII::MO_GDPLT;
1196*0b57cec5SDimitry Andric 
1197*0b57cec5SDimitry Andric   return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
1198*0b57cec5SDimitry Andric                            Hexagon::R0, Flags);
1199*0b57cec5SDimitry Andric }
1200*0b57cec5SDimitry Andric 
1201*0b57cec5SDimitry Andric //
1202*0b57cec5SDimitry Andric // Lower TLS addresses.
1203*0b57cec5SDimitry Andric //
1204*0b57cec5SDimitry Andric // For now for dynamic models, we only support the general dynamic model.
1205*0b57cec5SDimitry Andric //
1206*0b57cec5SDimitry Andric SDValue
1207*0b57cec5SDimitry Andric HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1208*0b57cec5SDimitry Andric       SelectionDAG &DAG) const {
1209*0b57cec5SDimitry Andric   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1210*0b57cec5SDimitry Andric 
1211*0b57cec5SDimitry Andric   switch (HTM.getTLSModel(GA->getGlobal())) {
1212*0b57cec5SDimitry Andric     case TLSModel::GeneralDynamic:
1213*0b57cec5SDimitry Andric     case TLSModel::LocalDynamic:
1214*0b57cec5SDimitry Andric       return LowerToTLSGeneralDynamicModel(GA, DAG);
1215*0b57cec5SDimitry Andric     case TLSModel::InitialExec:
1216*0b57cec5SDimitry Andric       return LowerToTLSInitialExecModel(GA, DAG);
1217*0b57cec5SDimitry Andric     case TLSModel::LocalExec:
1218*0b57cec5SDimitry Andric       return LowerToTLSLocalExecModel(GA, DAG);
1219*0b57cec5SDimitry Andric   }
1220*0b57cec5SDimitry Andric   llvm_unreachable("Bogus TLS model");
1221*0b57cec5SDimitry Andric }
1222*0b57cec5SDimitry Andric 
1223*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1224*0b57cec5SDimitry Andric // TargetLowering Implementation
1225*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1226*0b57cec5SDimitry Andric 
1227*0b57cec5SDimitry Andric HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1228*0b57cec5SDimitry Andric                                              const HexagonSubtarget &ST)
1229*0b57cec5SDimitry Andric     : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1230*0b57cec5SDimitry Andric       Subtarget(ST) {
1231*0b57cec5SDimitry Andric   auto &HRI = *Subtarget.getRegisterInfo();
1232*0b57cec5SDimitry Andric 
1233*0b57cec5SDimitry Andric   setPrefLoopAlignment(4);
1234*0b57cec5SDimitry Andric   setPrefFunctionAlignment(4);
1235*0b57cec5SDimitry Andric   setMinFunctionAlignment(2);
1236*0b57cec5SDimitry Andric   setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1237*0b57cec5SDimitry Andric   setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1238*0b57cec5SDimitry Andric   setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1239*0b57cec5SDimitry Andric 
1240*0b57cec5SDimitry Andric   setMaxAtomicSizeInBitsSupported(64);
1241*0b57cec5SDimitry Andric   setMinCmpXchgSizeInBits(32);
1242*0b57cec5SDimitry Andric 
1243*0b57cec5SDimitry Andric   if (EnableHexSDNodeSched)
1244*0b57cec5SDimitry Andric     setSchedulingPreference(Sched::VLIW);
1245*0b57cec5SDimitry Andric   else
1246*0b57cec5SDimitry Andric     setSchedulingPreference(Sched::Source);
1247*0b57cec5SDimitry Andric 
1248*0b57cec5SDimitry Andric   // Limits for inline expansion of memcpy/memmove
1249*0b57cec5SDimitry Andric   MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1250*0b57cec5SDimitry Andric   MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1251*0b57cec5SDimitry Andric   MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1252*0b57cec5SDimitry Andric   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1253*0b57cec5SDimitry Andric   MaxStoresPerMemset = MaxStoresPerMemsetCL;
1254*0b57cec5SDimitry Andric   MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1255*0b57cec5SDimitry Andric 
1256*0b57cec5SDimitry Andric   //
1257*0b57cec5SDimitry Andric   // Set up register classes.
1258*0b57cec5SDimitry Andric   //
1259*0b57cec5SDimitry Andric 
1260*0b57cec5SDimitry Andric   addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
1261*0b57cec5SDimitry Andric   addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
1262*0b57cec5SDimitry Andric   addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
1263*0b57cec5SDimitry Andric   addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
1264*0b57cec5SDimitry Andric   addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
1265*0b57cec5SDimitry Andric   addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1266*0b57cec5SDimitry Andric   addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
1267*0b57cec5SDimitry Andric   addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
1268*0b57cec5SDimitry Andric   addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
1269*0b57cec5SDimitry Andric   addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1270*0b57cec5SDimitry Andric   addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1271*0b57cec5SDimitry Andric 
1272*0b57cec5SDimitry Andric   addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1273*0b57cec5SDimitry Andric   addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1274*0b57cec5SDimitry Andric 
1275*0b57cec5SDimitry Andric   //
1276*0b57cec5SDimitry Andric   // Handling of scalar operations.
1277*0b57cec5SDimitry Andric   //
1278*0b57cec5SDimitry Andric   // All operations default to "legal", except:
1279*0b57cec5SDimitry Andric   // - indexed loads and stores (pre-/post-incremented),
1280*0b57cec5SDimitry Andric   // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1281*0b57cec5SDimitry Andric   //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1282*0b57cec5SDimitry Andric   //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1283*0b57cec5SDimitry Andric   //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1284*0b57cec5SDimitry Andric   // which default to "expand" for at least one type.
1285*0b57cec5SDimitry Andric 
1286*0b57cec5SDimitry Andric   // Misc operations.
1287*0b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
1288*0b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
1289*0b57cec5SDimitry Andric   setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
1290*0b57cec5SDimitry Andric   setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
1291*0b57cec5SDimitry Andric   setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
1292*0b57cec5SDimitry Andric   setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
1293*0b57cec5SDimitry Andric   setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
1294*0b57cec5SDimitry Andric   setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
1295*0b57cec5SDimitry Andric   setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
1296*0b57cec5SDimitry Andric   setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
1297*0b57cec5SDimitry Andric   setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
1298*0b57cec5SDimitry Andric   setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
1299*0b57cec5SDimitry Andric   setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
1300*0b57cec5SDimitry Andric   setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
1301*0b57cec5SDimitry Andric   setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
1302*0b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);
1303*0b57cec5SDimitry Andric 
1304*0b57cec5SDimitry Andric   // Custom legalize GlobalAddress nodes into CONST32.
1305*0b57cec5SDimitry Andric   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1306*0b57cec5SDimitry Andric   setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
1307*0b57cec5SDimitry Andric   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
1308*0b57cec5SDimitry Andric 
1309*0b57cec5SDimitry Andric   // Hexagon needs to optimize cases with negative constants.
1310*0b57cec5SDimitry Andric   setOperationAction(ISD::SETCC, MVT::i8,    Custom);
1311*0b57cec5SDimitry Andric   setOperationAction(ISD::SETCC, MVT::i16,   Custom);
1312*0b57cec5SDimitry Andric   setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
1313*0b57cec5SDimitry Andric   setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1314*0b57cec5SDimitry Andric 
1315*0b57cec5SDimitry Andric   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1316*0b57cec5SDimitry Andric   setOperationAction(ISD::VASTART, MVT::Other, Custom);
1317*0b57cec5SDimitry Andric   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
1318*0b57cec5SDimitry Andric   setOperationAction(ISD::VAARG,   MVT::Other, Expand);
1319*0b57cec5SDimitry Andric   setOperationAction(ISD::VACOPY,  MVT::Other, Expand);
1320*0b57cec5SDimitry Andric 
1321*0b57cec5SDimitry Andric   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1322*0b57cec5SDimitry Andric   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1323*0b57cec5SDimitry Andric   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1324*0b57cec5SDimitry Andric 
1325*0b57cec5SDimitry Andric   if (EmitJumpTables)
1326*0b57cec5SDimitry Andric     setMinimumJumpTableEntries(MinimumJumpTables);
1327*0b57cec5SDimitry Andric   else
1328*0b57cec5SDimitry Andric     setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1329*0b57cec5SDimitry Andric   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1330*0b57cec5SDimitry Andric 
1331*0b57cec5SDimitry Andric   setOperationAction(ISD::ABS, MVT::i32, Legal);
1332*0b57cec5SDimitry Andric   setOperationAction(ISD::ABS, MVT::i64, Legal);
1333*0b57cec5SDimitry Andric 
1334*0b57cec5SDimitry Andric   // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1335*0b57cec5SDimitry Andric   // but they only operate on i64.
1336*0b57cec5SDimitry Andric   for (MVT VT : MVT::integer_valuetypes()) {
1337*0b57cec5SDimitry Andric     setOperationAction(ISD::UADDO,    VT, Custom);
1338*0b57cec5SDimitry Andric     setOperationAction(ISD::USUBO,    VT, Custom);
1339*0b57cec5SDimitry Andric     setOperationAction(ISD::SADDO,    VT, Expand);
1340*0b57cec5SDimitry Andric     setOperationAction(ISD::SSUBO,    VT, Expand);
1341*0b57cec5SDimitry Andric     setOperationAction(ISD::ADDCARRY, VT, Expand);
1342*0b57cec5SDimitry Andric     setOperationAction(ISD::SUBCARRY, VT, Expand);
1343*0b57cec5SDimitry Andric   }
1344*0b57cec5SDimitry Andric   setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
1345*0b57cec5SDimitry Andric   setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
1346*0b57cec5SDimitry Andric 
1347*0b57cec5SDimitry Andric   setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
1348*0b57cec5SDimitry Andric   setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1349*0b57cec5SDimitry Andric   setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
1350*0b57cec5SDimitry Andric   setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1351*0b57cec5SDimitry Andric 
1352*0b57cec5SDimitry Andric   // Popcount can count # of 1s in i64 but returns i32.
1353*0b57cec5SDimitry Andric   setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
1354*0b57cec5SDimitry Andric   setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1355*0b57cec5SDimitry Andric   setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1356*0b57cec5SDimitry Andric   setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1357*0b57cec5SDimitry Andric 
1358*0b57cec5SDimitry Andric   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1359*0b57cec5SDimitry Andric   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1360*0b57cec5SDimitry Andric   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1361*0b57cec5SDimitry Andric   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1362*0b57cec5SDimitry Andric 
1363*0b57cec5SDimitry Andric   setOperationAction(ISD::FSHL, MVT::i32, Legal);
1364*0b57cec5SDimitry Andric   setOperationAction(ISD::FSHL, MVT::i64, Legal);
1365*0b57cec5SDimitry Andric   setOperationAction(ISD::FSHR, MVT::i32, Legal);
1366*0b57cec5SDimitry Andric   setOperationAction(ISD::FSHR, MVT::i64, Legal);
1367*0b57cec5SDimitry Andric 
1368*0b57cec5SDimitry Andric   for (unsigned IntExpOp :
1369*0b57cec5SDimitry Andric        {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
1370*0b57cec5SDimitry Andric         ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
1371*0b57cec5SDimitry Andric         ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1372*0b57cec5SDimitry Andric         ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1373*0b57cec5SDimitry Andric     for (MVT VT : MVT::integer_valuetypes())
1374*0b57cec5SDimitry Andric       setOperationAction(IntExpOp, VT, Expand);
1375*0b57cec5SDimitry Andric   }
1376*0b57cec5SDimitry Andric 
1377*0b57cec5SDimitry Andric   for (unsigned FPExpOp :
1378*0b57cec5SDimitry Andric        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1379*0b57cec5SDimitry Andric         ISD::FPOW, ISD::FCOPYSIGN}) {
1380*0b57cec5SDimitry Andric     for (MVT VT : MVT::fp_valuetypes())
1381*0b57cec5SDimitry Andric       setOperationAction(FPExpOp, VT, Expand);
1382*0b57cec5SDimitry Andric   }
1383*0b57cec5SDimitry Andric 
1384*0b57cec5SDimitry Andric   // No extending loads from i32.
1385*0b57cec5SDimitry Andric   for (MVT VT : MVT::integer_valuetypes()) {
1386*0b57cec5SDimitry Andric     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1387*0b57cec5SDimitry Andric     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1388*0b57cec5SDimitry Andric     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
1389*0b57cec5SDimitry Andric   }
1390*0b57cec5SDimitry Andric   // Turn FP truncstore into trunc + store.
1391*0b57cec5SDimitry Andric   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1392*0b57cec5SDimitry Andric   // Turn FP extload into load/fpextend.
1393*0b57cec5SDimitry Andric   for (MVT VT : MVT::fp_valuetypes())
1394*0b57cec5SDimitry Andric     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1395*0b57cec5SDimitry Andric 
1396*0b57cec5SDimitry Andric   // Expand BR_CC and SELECT_CC for all integer and fp types.
1397*0b57cec5SDimitry Andric   for (MVT VT : MVT::integer_valuetypes()) {
1398*0b57cec5SDimitry Andric     setOperationAction(ISD::BR_CC,     VT, Expand);
1399*0b57cec5SDimitry Andric     setOperationAction(ISD::SELECT_CC, VT, Expand);
1400*0b57cec5SDimitry Andric   }
1401*0b57cec5SDimitry Andric   for (MVT VT : MVT::fp_valuetypes()) {
1402*0b57cec5SDimitry Andric     setOperationAction(ISD::BR_CC,     VT, Expand);
1403*0b57cec5SDimitry Andric     setOperationAction(ISD::SELECT_CC, VT, Expand);
1404*0b57cec5SDimitry Andric   }
1405*0b57cec5SDimitry Andric   setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1406*0b57cec5SDimitry Andric 
1407*0b57cec5SDimitry Andric   //
1408*0b57cec5SDimitry Andric   // Handling of vector operations.
1409*0b57cec5SDimitry Andric   //
1410*0b57cec5SDimitry Andric 
1411*0b57cec5SDimitry Andric   // Set the action for vector operations to "expand", then override it with
1412*0b57cec5SDimitry Andric   // either "custom" or "legal" for specific cases.
1413*0b57cec5SDimitry Andric   static const unsigned VectExpOps[] = {
1414*0b57cec5SDimitry Andric     // Integer arithmetic:
1415*0b57cec5SDimitry Andric     ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
1416*0b57cec5SDimitry Andric     ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
1417*0b57cec5SDimitry Andric     ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1418*0b57cec5SDimitry Andric     // Logical/bit:
1419*0b57cec5SDimitry Andric     ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
1420*0b57cec5SDimitry Andric     ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,
1421*0b57cec5SDimitry Andric     // Floating point arithmetic/math functions:
1422*0b57cec5SDimitry Andric     ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
1423*0b57cec5SDimitry Andric     ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
1424*0b57cec5SDimitry Andric     ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
1425*0b57cec5SDimitry Andric     ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
1426*0b57cec5SDimitry Andric     ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
1427*0b57cec5SDimitry Andric     ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1428*0b57cec5SDimitry Andric     // Misc:
1429*0b57cec5SDimitry Andric     ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
1430*0b57cec5SDimitry Andric     // Vector:
1431*0b57cec5SDimitry Andric     ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
1432*0b57cec5SDimitry Andric     ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
1433*0b57cec5SDimitry Andric     ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
1434*0b57cec5SDimitry Andric     ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE
1435*0b57cec5SDimitry Andric   };
1436*0b57cec5SDimitry Andric 
1437*0b57cec5SDimitry Andric   for (MVT VT : MVT::vector_valuetypes()) {
1438*0b57cec5SDimitry Andric     for (unsigned VectExpOp : VectExpOps)
1439*0b57cec5SDimitry Andric       setOperationAction(VectExpOp, VT, Expand);
1440*0b57cec5SDimitry Andric 
1441*0b57cec5SDimitry Andric     // Expand all extending loads and truncating stores:
1442*0b57cec5SDimitry Andric     for (MVT TargetVT : MVT::vector_valuetypes()) {
1443*0b57cec5SDimitry Andric       if (TargetVT == VT)
1444*0b57cec5SDimitry Andric         continue;
1445*0b57cec5SDimitry Andric       setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1446*0b57cec5SDimitry Andric       setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1447*0b57cec5SDimitry Andric       setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1448*0b57cec5SDimitry Andric       setTruncStoreAction(VT, TargetVT, Expand);
1449*0b57cec5SDimitry Andric     }
1450*0b57cec5SDimitry Andric 
1451*0b57cec5SDimitry Andric     // Normalize all inputs to SELECT to be vectors of i32.
1452*0b57cec5SDimitry Andric     if (VT.getVectorElementType() != MVT::i32) {
1453*0b57cec5SDimitry Andric       MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1454*0b57cec5SDimitry Andric       setOperationAction(ISD::SELECT, VT, Promote);
1455*0b57cec5SDimitry Andric       AddPromotedToType(ISD::SELECT, VT, VT32);
1456*0b57cec5SDimitry Andric     }
1457*0b57cec5SDimitry Andric     setOperationAction(ISD::SRA, VT, Custom);
1458*0b57cec5SDimitry Andric     setOperationAction(ISD::SHL, VT, Custom);
1459*0b57cec5SDimitry Andric     setOperationAction(ISD::SRL, VT, Custom);
1460*0b57cec5SDimitry Andric   }
1461*0b57cec5SDimitry Andric 
1462*0b57cec5SDimitry Andric   // Extending loads from (native) vectors of i8 into (native) vectors of i16
1463*0b57cec5SDimitry Andric   // are legal.
1464*0b57cec5SDimitry Andric   setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
1465*0b57cec5SDimitry Andric   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1466*0b57cec5SDimitry Andric   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1467*0b57cec5SDimitry Andric   setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
1468*0b57cec5SDimitry Andric   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1469*0b57cec5SDimitry Andric   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1470*0b57cec5SDimitry Andric 
1471*0b57cec5SDimitry Andric   // Types natively supported:
1472*0b57cec5SDimitry Andric   for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1473*0b57cec5SDimitry Andric                        MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1474*0b57cec5SDimitry Andric     setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
1475*0b57cec5SDimitry Andric     setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1476*0b57cec5SDimitry Andric     setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
1477*0b57cec5SDimitry Andric     setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
1478*0b57cec5SDimitry Andric     setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
1479*0b57cec5SDimitry Andric     setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
1480*0b57cec5SDimitry Andric 
1481*0b57cec5SDimitry Andric     setOperationAction(ISD::ADD, NativeVT, Legal);
1482*0b57cec5SDimitry Andric     setOperationAction(ISD::SUB, NativeVT, Legal);
1483*0b57cec5SDimitry Andric     setOperationAction(ISD::MUL, NativeVT, Legal);
1484*0b57cec5SDimitry Andric     setOperationAction(ISD::AND, NativeVT, Legal);
1485*0b57cec5SDimitry Andric     setOperationAction(ISD::OR,  NativeVT, Legal);
1486*0b57cec5SDimitry Andric     setOperationAction(ISD::XOR, NativeVT, Legal);
1487*0b57cec5SDimitry Andric   }
1488*0b57cec5SDimitry Andric 
1489*0b57cec5SDimitry Andric   // Custom lower unaligned loads.
1490*0b57cec5SDimitry Andric   // Also, for both loads and stores, verify the alignment of the address
1491*0b57cec5SDimitry Andric   // in case it is a compile-time constant. This is a usability feature to
1492*0b57cec5SDimitry Andric   // provide a meaningful error message to users.
1493*0b57cec5SDimitry Andric   for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1494*0b57cec5SDimitry Andric                  MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1495*0b57cec5SDimitry Andric     setOperationAction(ISD::LOAD,  VT, Custom);
1496*0b57cec5SDimitry Andric     setOperationAction(ISD::STORE, VT, Custom);
1497*0b57cec5SDimitry Andric   }
1498*0b57cec5SDimitry Andric 
1499*0b57cec5SDimitry Andric   for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v2i32, MVT::v4i16, MVT::v2i32}) {
1500*0b57cec5SDimitry Andric     setCondCodeAction(ISD::SETLT,  VT, Expand);
1501*0b57cec5SDimitry Andric     setCondCodeAction(ISD::SETLE,  VT, Expand);
1502*0b57cec5SDimitry Andric     setCondCodeAction(ISD::SETULT, VT, Expand);
1503*0b57cec5SDimitry Andric     setCondCodeAction(ISD::SETULE, VT, Expand);
1504*0b57cec5SDimitry Andric   }
1505*0b57cec5SDimitry Andric 
1506*0b57cec5SDimitry Andric   // Custom-lower bitcasts from i8 to v8i1.
1507*0b57cec5SDimitry Andric   setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
1508*0b57cec5SDimitry Andric   setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
1509*0b57cec5SDimitry Andric   setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
1510*0b57cec5SDimitry Andric   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
1511*0b57cec5SDimitry Andric   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1512*0b57cec5SDimitry Andric   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
1513*0b57cec5SDimitry Andric 
1514*0b57cec5SDimitry Andric   // V5+.
1515*0b57cec5SDimitry Andric   setOperationAction(ISD::FMA,  MVT::f64, Expand);
1516*0b57cec5SDimitry Andric   setOperationAction(ISD::FADD, MVT::f64, Expand);
1517*0b57cec5SDimitry Andric   setOperationAction(ISD::FSUB, MVT::f64, Expand);
1518*0b57cec5SDimitry Andric   setOperationAction(ISD::FMUL, MVT::f64, Expand);
1519*0b57cec5SDimitry Andric 
1520*0b57cec5SDimitry Andric   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1521*0b57cec5SDimitry Andric   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1522*0b57cec5SDimitry Andric 
1523*0b57cec5SDimitry Andric   setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
1524*0b57cec5SDimitry Andric   setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
1525*0b57cec5SDimitry Andric   setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1526*0b57cec5SDimitry Andric   setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
1527*0b57cec5SDimitry Andric   setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
1528*0b57cec5SDimitry Andric   setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1529*0b57cec5SDimitry Andric   setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
1530*0b57cec5SDimitry Andric   setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
1531*0b57cec5SDimitry Andric   setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1532*0b57cec5SDimitry Andric   setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
1533*0b57cec5SDimitry Andric   setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
1534*0b57cec5SDimitry Andric   setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1535*0b57cec5SDimitry Andric 
1536*0b57cec5SDimitry Andric   // Handling of indexed loads/stores: default is "expand".
1537*0b57cec5SDimitry Andric   //
1538*0b57cec5SDimitry Andric   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1539*0b57cec5SDimitry Andric                  MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1540*0b57cec5SDimitry Andric     setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1541*0b57cec5SDimitry Andric     setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1542*0b57cec5SDimitry Andric   }
1543*0b57cec5SDimitry Andric 
1544*0b57cec5SDimitry Andric   // Subtarget-specific operation actions.
1545*0b57cec5SDimitry Andric   //
1546*0b57cec5SDimitry Andric   if (Subtarget.hasV60Ops()) {
1547*0b57cec5SDimitry Andric     setOperationAction(ISD::ROTL, MVT::i32, Legal);
1548*0b57cec5SDimitry Andric     setOperationAction(ISD::ROTL, MVT::i64, Legal);
1549*0b57cec5SDimitry Andric     setOperationAction(ISD::ROTR, MVT::i32, Legal);
1550*0b57cec5SDimitry Andric     setOperationAction(ISD::ROTR, MVT::i64, Legal);
1551*0b57cec5SDimitry Andric   }
1552*0b57cec5SDimitry Andric   if (Subtarget.hasV66Ops()) {
1553*0b57cec5SDimitry Andric     setOperationAction(ISD::FADD, MVT::f64, Legal);
1554*0b57cec5SDimitry Andric     setOperationAction(ISD::FSUB, MVT::f64, Legal);
1555*0b57cec5SDimitry Andric   }
1556*0b57cec5SDimitry Andric 
1557*0b57cec5SDimitry Andric   if (Subtarget.useHVXOps())
1558*0b57cec5SDimitry Andric     initializeHVXLowering();
1559*0b57cec5SDimitry Andric 
1560*0b57cec5SDimitry Andric   computeRegisterProperties(&HRI);
1561*0b57cec5SDimitry Andric 
1562*0b57cec5SDimitry Andric   //
1563*0b57cec5SDimitry Andric   // Library calls for unsupported operations
1564*0b57cec5SDimitry Andric   //
1565*0b57cec5SDimitry Andric   bool FastMath  = EnableFastMath;
1566*0b57cec5SDimitry Andric 
1567*0b57cec5SDimitry Andric   setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1568*0b57cec5SDimitry Andric   setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1569*0b57cec5SDimitry Andric   setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1570*0b57cec5SDimitry Andric   setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1571*0b57cec5SDimitry Andric   setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1572*0b57cec5SDimitry Andric   setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1573*0b57cec5SDimitry Andric   setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1574*0b57cec5SDimitry Andric   setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1575*0b57cec5SDimitry Andric 
1576*0b57cec5SDimitry Andric   setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1577*0b57cec5SDimitry Andric   setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1578*0b57cec5SDimitry Andric   setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1579*0b57cec5SDimitry Andric   setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1580*0b57cec5SDimitry Andric   setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1581*0b57cec5SDimitry Andric   setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1582*0b57cec5SDimitry Andric 
1583*0b57cec5SDimitry Andric   // This is the only fast library function for sqrtd.
1584*0b57cec5SDimitry Andric   if (FastMath)
1585*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1586*0b57cec5SDimitry Andric 
1587*0b57cec5SDimitry Andric   // Prefix is: nothing  for "slow-math",
1588*0b57cec5SDimitry Andric   //            "fast2_" for V5+ fast-math double-precision
1589*0b57cec5SDimitry Andric   // (actually, keep fast-math and fast-math2 separate for now)
1590*0b57cec5SDimitry Andric   if (FastMath) {
1591*0b57cec5SDimitry Andric     setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1592*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1593*0b57cec5SDimitry Andric     setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1594*0b57cec5SDimitry Andric     setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1595*0b57cec5SDimitry Andric     setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1596*0b57cec5SDimitry Andric   } else {
1597*0b57cec5SDimitry Andric     setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1598*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1599*0b57cec5SDimitry Andric     setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1600*0b57cec5SDimitry Andric     setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1601*0b57cec5SDimitry Andric     setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1602*0b57cec5SDimitry Andric   }
1603*0b57cec5SDimitry Andric 
1604*0b57cec5SDimitry Andric   if (FastMath)
1605*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1606*0b57cec5SDimitry Andric   else
1607*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1608*0b57cec5SDimitry Andric 
1609*0b57cec5SDimitry Andric   // These cause problems when the shift amount is non-constant.
1610*0b57cec5SDimitry Andric   setLibcallName(RTLIB::SHL_I128, nullptr);
1611*0b57cec5SDimitry Andric   setLibcallName(RTLIB::SRL_I128, nullptr);
1612*0b57cec5SDimitry Andric   setLibcallName(RTLIB::SRA_I128, nullptr);
1613*0b57cec5SDimitry Andric }
1614*0b57cec5SDimitry Andric 
1615*0b57cec5SDimitry Andric const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1616*0b57cec5SDimitry Andric   switch ((HexagonISD::NodeType)Opcode) {
1617*0b57cec5SDimitry Andric   case HexagonISD::ADDC:          return "HexagonISD::ADDC";
1618*0b57cec5SDimitry Andric   case HexagonISD::SUBC:          return "HexagonISD::SUBC";
1619*0b57cec5SDimitry Andric   case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
1620*0b57cec5SDimitry Andric   case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
1621*0b57cec5SDimitry Andric   case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
1622*0b57cec5SDimitry Andric   case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
1623*0b57cec5SDimitry Andric   case HexagonISD::CALL:          return "HexagonISD::CALL";
1624*0b57cec5SDimitry Andric   case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
1625*0b57cec5SDimitry Andric   case HexagonISD::CALLR:         return "HexagonISD::CALLR";
1626*0b57cec5SDimitry Andric   case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
1627*0b57cec5SDimitry Andric   case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
1628*0b57cec5SDimitry Andric   case HexagonISD::CONST32:       return "HexagonISD::CONST32";
1629*0b57cec5SDimitry Andric   case HexagonISD::CP:            return "HexagonISD::CP";
1630*0b57cec5SDimitry Andric   case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
1631*0b57cec5SDimitry Andric   case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
1632*0b57cec5SDimitry Andric   case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
1633*0b57cec5SDimitry Andric   case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
1634*0b57cec5SDimitry Andric   case HexagonISD::INSERT:        return "HexagonISD::INSERT";
1635*0b57cec5SDimitry Andric   case HexagonISD::JT:            return "HexagonISD::JT";
1636*0b57cec5SDimitry Andric   case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
1637*0b57cec5SDimitry Andric   case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
1638*0b57cec5SDimitry Andric   case HexagonISD::VASL:          return "HexagonISD::VASL";
1639*0b57cec5SDimitry Andric   case HexagonISD::VASR:          return "HexagonISD::VASR";
1640*0b57cec5SDimitry Andric   case HexagonISD::VLSR:          return "HexagonISD::VLSR";
1641*0b57cec5SDimitry Andric   case HexagonISD::VSPLAT:        return "HexagonISD::VSPLAT";
1642*0b57cec5SDimitry Andric   case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
1643*0b57cec5SDimitry Andric   case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
1644*0b57cec5SDimitry Andric   case HexagonISD::VROR:          return "HexagonISD::VROR";
1645*0b57cec5SDimitry Andric   case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
1646*0b57cec5SDimitry Andric   case HexagonISD::VZERO:         return "HexagonISD::VZERO";
1647*0b57cec5SDimitry Andric   case HexagonISD::VSPLATW:       return "HexagonISD::VSPLATW";
1648*0b57cec5SDimitry Andric   case HexagonISD::D2P:           return "HexagonISD::D2P";
1649*0b57cec5SDimitry Andric   case HexagonISD::P2D:           return "HexagonISD::P2D";
1650*0b57cec5SDimitry Andric   case HexagonISD::V2Q:           return "HexagonISD::V2Q";
1651*0b57cec5SDimitry Andric   case HexagonISD::Q2V:           return "HexagonISD::Q2V";
1652*0b57cec5SDimitry Andric   case HexagonISD::QCAT:          return "HexagonISD::QCAT";
1653*0b57cec5SDimitry Andric   case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
1654*0b57cec5SDimitry Andric   case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
1655*0b57cec5SDimitry Andric   case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
1656*0b57cec5SDimitry Andric   case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
1657*0b57cec5SDimitry Andric   case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
1658*0b57cec5SDimitry Andric   case HexagonISD::OP_END:        break;
1659*0b57cec5SDimitry Andric   }
1660*0b57cec5SDimitry Andric   return nullptr;
1661*0b57cec5SDimitry Andric }
1662*0b57cec5SDimitry Andric 
1663*0b57cec5SDimitry Andric void
1664*0b57cec5SDimitry Andric HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
1665*0b57cec5SDimitry Andric       unsigned NeedAlign) const {
1666*0b57cec5SDimitry Andric   auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1667*0b57cec5SDimitry Andric   if (!CA)
1668*0b57cec5SDimitry Andric     return;
1669*0b57cec5SDimitry Andric   unsigned Addr = CA->getZExtValue();
1670*0b57cec5SDimitry Andric   unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
1671*0b57cec5SDimitry Andric   if (HaveAlign < NeedAlign) {
1672*0b57cec5SDimitry Andric     std::string ErrMsg;
1673*0b57cec5SDimitry Andric     raw_string_ostream O(ErrMsg);
1674*0b57cec5SDimitry Andric     O << "Misaligned constant address: " << format_hex(Addr, 10)
1675*0b57cec5SDimitry Andric       << " has alignment " << HaveAlign
1676*0b57cec5SDimitry Andric       << ", but the memory access requires " << NeedAlign;
1677*0b57cec5SDimitry Andric     if (DebugLoc DL = dl.getDebugLoc())
1678*0b57cec5SDimitry Andric       DL.print(O << ", at ");
1679*0b57cec5SDimitry Andric     report_fatal_error(O.str());
1680*0b57cec5SDimitry Andric   }
1681*0b57cec5SDimitry Andric }
1682*0b57cec5SDimitry Andric 
1683*0b57cec5SDimitry Andric // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
1684*0b57cec5SDimitry Andric // intrinsic.
1685*0b57cec5SDimitry Andric static bool isBrevLdIntrinsic(const Value *Inst) {
1686*0b57cec5SDimitry Andric   unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
1687*0b57cec5SDimitry Andric   return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
1688*0b57cec5SDimitry Andric           ID == Intrinsic::hexagon_L2_loadri_pbr ||
1689*0b57cec5SDimitry Andric           ID == Intrinsic::hexagon_L2_loadrh_pbr ||
1690*0b57cec5SDimitry Andric           ID == Intrinsic::hexagon_L2_loadruh_pbr ||
1691*0b57cec5SDimitry Andric           ID == Intrinsic::hexagon_L2_loadrb_pbr ||
1692*0b57cec5SDimitry Andric           ID == Intrinsic::hexagon_L2_loadrub_pbr);
1693*0b57cec5SDimitry Andric }
1694*0b57cec5SDimitry Andric 
1695*0b57cec5SDimitry Andric // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
1696*0b57cec5SDimitry Andric // instruction. So far we only handle bitcast, extract value and bit reverse
1697*0b57cec5SDimitry Andric // load intrinsic instructions. Should we handle CGEP ?
1698*0b57cec5SDimitry Andric static Value *getBrevLdObject(Value *V) {
1699*0b57cec5SDimitry Andric   if (Operator::getOpcode(V) == Instruction::ExtractValue ||
1700*0b57cec5SDimitry Andric       Operator::getOpcode(V) == Instruction::BitCast)
1701*0b57cec5SDimitry Andric     V = cast<Operator>(V)->getOperand(0);
1702*0b57cec5SDimitry Andric   else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
1703*0b57cec5SDimitry Andric     V = cast<Instruction>(V)->getOperand(0);
1704*0b57cec5SDimitry Andric   return V;
1705*0b57cec5SDimitry Andric }
1706*0b57cec5SDimitry Andric 
1707*0b57cec5SDimitry Andric // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
1708*0b57cec5SDimitry Andric // a back edge. If the back edge comes from the intrinsic itself, the incoming
1709*0b57cec5SDimitry Andric // edge is returned.
1710*0b57cec5SDimitry Andric static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
1711*0b57cec5SDimitry Andric   const BasicBlock *Parent = PN->getParent();
1712*0b57cec5SDimitry Andric   int Idx = -1;
1713*0b57cec5SDimitry Andric   for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1714*0b57cec5SDimitry Andric     BasicBlock *Blk = PN->getIncomingBlock(i);
1715*0b57cec5SDimitry Andric     // Determine if the back edge is originated from intrinsic.
1716*0b57cec5SDimitry Andric     if (Blk == Parent) {
1717*0b57cec5SDimitry Andric       Value *BackEdgeVal = PN->getIncomingValue(i);
1718*0b57cec5SDimitry Andric       Value *BaseVal;
1719*0b57cec5SDimitry Andric       // Loop over till we return the same Value or we hit the IntrBaseVal.
1720*0b57cec5SDimitry Andric       do {
1721*0b57cec5SDimitry Andric         BaseVal = BackEdgeVal;
1722*0b57cec5SDimitry Andric         BackEdgeVal = getBrevLdObject(BackEdgeVal);
1723*0b57cec5SDimitry Andric       } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
1724*0b57cec5SDimitry Andric       // If the getBrevLdObject returns IntrBaseVal, we should return the
1725*0b57cec5SDimitry Andric       // incoming edge.
1726*0b57cec5SDimitry Andric       if (IntrBaseVal == BackEdgeVal)
1727*0b57cec5SDimitry Andric         continue;
1728*0b57cec5SDimitry Andric       Idx = i;
1729*0b57cec5SDimitry Andric       break;
1730*0b57cec5SDimitry Andric     } else // Set the node to incoming edge.
1731*0b57cec5SDimitry Andric       Idx = i;
1732*0b57cec5SDimitry Andric   }
1733*0b57cec5SDimitry Andric   assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
1734*0b57cec5SDimitry Andric   return PN->getIncomingValue(Idx);
1735*0b57cec5SDimitry Andric }
1736*0b57cec5SDimitry Andric 
1737*0b57cec5SDimitry Andric // Bit-reverse Load Intrinsic: Figure out the underlying object the base
1738*0b57cec5SDimitry Andric // pointer points to, for the bit-reverse load intrinsic. Setting this to
1739*0b57cec5SDimitry Andric // memoperand might help alias analysis to figure out the dependencies.
1740*0b57cec5SDimitry Andric static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
1741*0b57cec5SDimitry Andric   Value *IntrBaseVal = V;
1742*0b57cec5SDimitry Andric   Value *BaseVal;
1743*0b57cec5SDimitry Andric   // Loop over till we return the same Value, implies we either figure out
1744*0b57cec5SDimitry Andric   // the object or we hit a PHI
1745*0b57cec5SDimitry Andric   do {
1746*0b57cec5SDimitry Andric     BaseVal = V;
1747*0b57cec5SDimitry Andric     V = getBrevLdObject(V);
1748*0b57cec5SDimitry Andric   } while (BaseVal != V);
1749*0b57cec5SDimitry Andric 
1750*0b57cec5SDimitry Andric   // Identify the object from PHINode.
1751*0b57cec5SDimitry Andric   if (const PHINode *PN = dyn_cast<PHINode>(V))
1752*0b57cec5SDimitry Andric     return returnEdge(PN, IntrBaseVal);
1753*0b57cec5SDimitry Andric   // For non PHI nodes, the object is the last value returned by getBrevLdObject
1754*0b57cec5SDimitry Andric   else
1755*0b57cec5SDimitry Andric     return V;
1756*0b57cec5SDimitry Andric }
1757*0b57cec5SDimitry Andric 
1758*0b57cec5SDimitry Andric /// Given an intrinsic, checks if on the target the intrinsic will need to map
1759*0b57cec5SDimitry Andric /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1760*0b57cec5SDimitry Andric /// true and store the intrinsic information into the IntrinsicInfo that was
1761*0b57cec5SDimitry Andric /// passed to the function.
1762*0b57cec5SDimitry Andric bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1763*0b57cec5SDimitry Andric                                                const CallInst &I,
1764*0b57cec5SDimitry Andric                                                MachineFunction &MF,
1765*0b57cec5SDimitry Andric                                                unsigned Intrinsic) const {
1766*0b57cec5SDimitry Andric   switch (Intrinsic) {
1767*0b57cec5SDimitry Andric   case Intrinsic::hexagon_L2_loadrd_pbr:
1768*0b57cec5SDimitry Andric   case Intrinsic::hexagon_L2_loadri_pbr:
1769*0b57cec5SDimitry Andric   case Intrinsic::hexagon_L2_loadrh_pbr:
1770*0b57cec5SDimitry Andric   case Intrinsic::hexagon_L2_loadruh_pbr:
1771*0b57cec5SDimitry Andric   case Intrinsic::hexagon_L2_loadrb_pbr:
1772*0b57cec5SDimitry Andric   case Intrinsic::hexagon_L2_loadrub_pbr: {
1773*0b57cec5SDimitry Andric     Info.opc = ISD::INTRINSIC_W_CHAIN;
1774*0b57cec5SDimitry Andric     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
1775*0b57cec5SDimitry Andric     auto &Cont = I.getCalledFunction()->getParent()->getContext();
1776*0b57cec5SDimitry Andric     // The intrinsic function call is of the form { ElTy, i8* }
1777*0b57cec5SDimitry Andric     // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
1778*0b57cec5SDimitry Andric     // should be derived from ElTy.
1779*0b57cec5SDimitry Andric     Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
1780*0b57cec5SDimitry Andric     Info.memVT = MVT::getVT(ElTy);
1781*0b57cec5SDimitry Andric     llvm::Value *BasePtrVal = I.getOperand(0);
1782*0b57cec5SDimitry Andric     Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
1783*0b57cec5SDimitry Andric     // The offset value comes through Modifier register. For now, assume the
1784*0b57cec5SDimitry Andric     // offset is 0.
1785*0b57cec5SDimitry Andric     Info.offset = 0;
1786*0b57cec5SDimitry Andric     Info.align = DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont));
1787*0b57cec5SDimitry Andric     Info.flags = MachineMemOperand::MOLoad;
1788*0b57cec5SDimitry Andric     return true;
1789*0b57cec5SDimitry Andric   }
1790*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermw:
1791*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermw_128B:
1792*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermh:
1793*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermh_128B:
1794*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermhw:
1795*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermhw_128B:
1796*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermwq:
1797*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermwq_128B:
1798*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermhq:
1799*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermhq_128B:
1800*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermhwq:
1801*0b57cec5SDimitry Andric   case Intrinsic::hexagon_V6_vgathermhwq_128B: {
1802*0b57cec5SDimitry Andric     const Module &M = *I.getParent()->getParent()->getParent();
1803*0b57cec5SDimitry Andric     Info.opc = ISD::INTRINSIC_W_CHAIN;
1804*0b57cec5SDimitry Andric     Type *VecTy = I.getArgOperand(1)->getType();
1805*0b57cec5SDimitry Andric     Info.memVT = MVT::getVT(VecTy);
1806*0b57cec5SDimitry Andric     Info.ptrVal = I.getArgOperand(0);
1807*0b57cec5SDimitry Andric     Info.offset = 0;
1808*0b57cec5SDimitry Andric     Info.align = M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8;
1809*0b57cec5SDimitry Andric     Info.flags = MachineMemOperand::MOLoad |
1810*0b57cec5SDimitry Andric                  MachineMemOperand::MOStore |
1811*0b57cec5SDimitry Andric                  MachineMemOperand::MOVolatile;
1812*0b57cec5SDimitry Andric     return true;
1813*0b57cec5SDimitry Andric   }
1814*0b57cec5SDimitry Andric   default:
1815*0b57cec5SDimitry Andric     break;
1816*0b57cec5SDimitry Andric   }
1817*0b57cec5SDimitry Andric   return false;
1818*0b57cec5SDimitry Andric }
1819*0b57cec5SDimitry Andric 
1820*0b57cec5SDimitry Andric bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1821*0b57cec5SDimitry Andric   return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
1822*0b57cec5SDimitry Andric }
1823*0b57cec5SDimitry Andric 
1824*0b57cec5SDimitry Andric bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1825*0b57cec5SDimitry Andric   if (!VT1.isSimple() || !VT2.isSimple())
1826*0b57cec5SDimitry Andric     return false;
1827*0b57cec5SDimitry Andric   return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
1828*0b57cec5SDimitry Andric }
1829*0b57cec5SDimitry Andric 
1830*0b57cec5SDimitry Andric bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
1831*0b57cec5SDimitry Andric   return isOperationLegalOrCustom(ISD::FMA, VT);
1832*0b57cec5SDimitry Andric }
1833*0b57cec5SDimitry Andric 
1834*0b57cec5SDimitry Andric // Should we expand the build vector with shuffles?
1835*0b57cec5SDimitry Andric bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
1836*0b57cec5SDimitry Andric       unsigned DefinedValues) const {
1837*0b57cec5SDimitry Andric   return false;
1838*0b57cec5SDimitry Andric }
1839*0b57cec5SDimitry Andric 
1840*0b57cec5SDimitry Andric bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
1841*0b57cec5SDimitry Andric                                                EVT VT) const {
1842*0b57cec5SDimitry Andric   return true;
1843*0b57cec5SDimitry Andric }
1844*0b57cec5SDimitry Andric 
1845*0b57cec5SDimitry Andric TargetLoweringBase::LegalizeTypeAction
1846*0b57cec5SDimitry Andric HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
1847*0b57cec5SDimitry Andric   if (VT.getVectorNumElements() == 1)
1848*0b57cec5SDimitry Andric     return TargetLoweringBase::TypeScalarizeVector;
1849*0b57cec5SDimitry Andric 
1850*0b57cec5SDimitry Andric   // Always widen vectors of i1.
1851*0b57cec5SDimitry Andric   MVT ElemTy = VT.getVectorElementType();
1852*0b57cec5SDimitry Andric   if (ElemTy == MVT::i1)
1853*0b57cec5SDimitry Andric     return TargetLoweringBase::TypeWidenVector;
1854*0b57cec5SDimitry Andric 
1855*0b57cec5SDimitry Andric   if (Subtarget.useHVXOps()) {
1856*0b57cec5SDimitry Andric     // If the size of VT is at least half of the vector length,
1857*0b57cec5SDimitry Andric     // widen the vector. Note: the threshold was not selected in
1858*0b57cec5SDimitry Andric     // any scientific way.
1859*0b57cec5SDimitry Andric     ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
1860*0b57cec5SDimitry Andric     if (llvm::find(Tys, ElemTy) != Tys.end()) {
1861*0b57cec5SDimitry Andric       unsigned HwWidth = 8*Subtarget.getVectorLength();
1862*0b57cec5SDimitry Andric       unsigned VecWidth = VT.getSizeInBits();
1863*0b57cec5SDimitry Andric       if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
1864*0b57cec5SDimitry Andric         return TargetLoweringBase::TypeWidenVector;
1865*0b57cec5SDimitry Andric     }
1866*0b57cec5SDimitry Andric   }
1867*0b57cec5SDimitry Andric   return TargetLoweringBase::TypeSplitVector;
1868*0b57cec5SDimitry Andric }
1869*0b57cec5SDimitry Andric 
1870*0b57cec5SDimitry Andric std::pair<SDValue, int>
1871*0b57cec5SDimitry Andric HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
1872*0b57cec5SDimitry Andric   if (Addr.getOpcode() == ISD::ADD) {
1873*0b57cec5SDimitry Andric     SDValue Op1 = Addr.getOperand(1);
1874*0b57cec5SDimitry Andric     if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
1875*0b57cec5SDimitry Andric       return { Addr.getOperand(0), CN->getSExtValue() };
1876*0b57cec5SDimitry Andric   }
1877*0b57cec5SDimitry Andric   return { Addr, 0 };
1878*0b57cec5SDimitry Andric }
1879*0b57cec5SDimitry Andric 
1880*0b57cec5SDimitry Andric // Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
1881*0b57cec5SDimitry Andric // to select data from, V3 is the permutation.
1882*0b57cec5SDimitry Andric SDValue
1883*0b57cec5SDimitry Andric HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
1884*0b57cec5SDimitry Andric       const {
1885*0b57cec5SDimitry Andric   const auto *SVN = cast<ShuffleVectorSDNode>(Op);
1886*0b57cec5SDimitry Andric   ArrayRef<int> AM = SVN->getMask();
1887*0b57cec5SDimitry Andric   assert(AM.size() <= 8 && "Unexpected shuffle mask");
1888*0b57cec5SDimitry Andric   unsigned VecLen = AM.size();
1889*0b57cec5SDimitry Andric 
1890*0b57cec5SDimitry Andric   MVT VecTy = ty(Op);
1891*0b57cec5SDimitry Andric   assert(!Subtarget.isHVXVectorType(VecTy, true) &&
1892*0b57cec5SDimitry Andric          "HVX shuffles should be legal");
1893*0b57cec5SDimitry Andric   assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
1894*0b57cec5SDimitry Andric 
1895*0b57cec5SDimitry Andric   SDValue Op0 = Op.getOperand(0);
1896*0b57cec5SDimitry Andric   SDValue Op1 = Op.getOperand(1);
1897*0b57cec5SDimitry Andric   const SDLoc &dl(Op);
1898*0b57cec5SDimitry Andric 
1899*0b57cec5SDimitry Andric   // If the inputs are not the same as the output, bail. This is not an
1900*0b57cec5SDimitry Andric   // error situation, but complicates the handling and the default expansion
1901*0b57cec5SDimitry Andric   // (into BUILD_VECTOR) should be adequate.
1902*0b57cec5SDimitry Andric   if (ty(Op0) != VecTy || ty(Op1) != VecTy)
1903*0b57cec5SDimitry Andric     return SDValue();
1904*0b57cec5SDimitry Andric 
1905*0b57cec5SDimitry Andric   // Normalize the mask so that the first non-negative index comes from
1906*0b57cec5SDimitry Andric   // the first operand.
1907*0b57cec5SDimitry Andric   SmallVector<int,8> Mask(AM.begin(), AM.end());
1908*0b57cec5SDimitry Andric   unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
1909*0b57cec5SDimitry Andric   if (F == AM.size())
1910*0b57cec5SDimitry Andric     return DAG.getUNDEF(VecTy);
1911*0b57cec5SDimitry Andric   if (AM[F] >= int(VecLen)) {
1912*0b57cec5SDimitry Andric     ShuffleVectorSDNode::commuteMask(Mask);
1913*0b57cec5SDimitry Andric     std::swap(Op0, Op1);
1914*0b57cec5SDimitry Andric   }
1915*0b57cec5SDimitry Andric 
1916*0b57cec5SDimitry Andric   // Express the shuffle mask in terms of bytes.
1917*0b57cec5SDimitry Andric   SmallVector<int,8> ByteMask;
1918*0b57cec5SDimitry Andric   unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
1919*0b57cec5SDimitry Andric   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1920*0b57cec5SDimitry Andric     int M = Mask[i];
1921*0b57cec5SDimitry Andric     if (M < 0) {
1922*0b57cec5SDimitry Andric       for (unsigned j = 0; j != ElemBytes; ++j)
1923*0b57cec5SDimitry Andric         ByteMask.push_back(-1);
1924*0b57cec5SDimitry Andric     } else {
1925*0b57cec5SDimitry Andric       for (unsigned j = 0; j != ElemBytes; ++j)
1926*0b57cec5SDimitry Andric         ByteMask.push_back(M*ElemBytes + j);
1927*0b57cec5SDimitry Andric     }
1928*0b57cec5SDimitry Andric   }
1929*0b57cec5SDimitry Andric   assert(ByteMask.size() <= 8);
1930*0b57cec5SDimitry Andric 
1931*0b57cec5SDimitry Andric   // All non-undef (non-negative) indexes are well within [0..127], so they
1932*0b57cec5SDimitry Andric   // fit in a single byte. Build two 64-bit words:
1933*0b57cec5SDimitry Andric   // - MaskIdx where each byte is the corresponding index (for non-negative
1934*0b57cec5SDimitry Andric   //   indexes), and 0xFF for negative indexes, and
1935*0b57cec5SDimitry Andric   // - MaskUnd that has 0xFF for each negative index.
1936*0b57cec5SDimitry Andric   uint64_t MaskIdx = 0;
1937*0b57cec5SDimitry Andric   uint64_t MaskUnd = 0;
1938*0b57cec5SDimitry Andric   for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
1939*0b57cec5SDimitry Andric     unsigned S = 8*i;
1940*0b57cec5SDimitry Andric     uint64_t M = ByteMask[i] & 0xFF;
1941*0b57cec5SDimitry Andric     if (M == 0xFF)
1942*0b57cec5SDimitry Andric       MaskUnd |= M << S;
1943*0b57cec5SDimitry Andric     MaskIdx |= M << S;
1944*0b57cec5SDimitry Andric   }
1945*0b57cec5SDimitry Andric 
1946*0b57cec5SDimitry Andric   if (ByteMask.size() == 4) {
1947*0b57cec5SDimitry Andric     // Identity.
1948*0b57cec5SDimitry Andric     if (MaskIdx == (0x03020100 | MaskUnd))
1949*0b57cec5SDimitry Andric       return Op0;
1950*0b57cec5SDimitry Andric     // Byte swap.
1951*0b57cec5SDimitry Andric     if (MaskIdx == (0x00010203 | MaskUnd)) {
1952*0b57cec5SDimitry Andric       SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
1953*0b57cec5SDimitry Andric       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
1954*0b57cec5SDimitry Andric       return DAG.getBitcast(VecTy, T1);
1955*0b57cec5SDimitry Andric     }
1956*0b57cec5SDimitry Andric 
1957*0b57cec5SDimitry Andric     // Byte packs.
1958*0b57cec5SDimitry Andric     SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
1959*0b57cec5SDimitry Andric                                    typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
1960*0b57cec5SDimitry Andric     if (MaskIdx == (0x06040200 | MaskUnd))
1961*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
1962*0b57cec5SDimitry Andric     if (MaskIdx == (0x07050301 | MaskUnd))
1963*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
1964*0b57cec5SDimitry Andric 
1965*0b57cec5SDimitry Andric     SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
1966*0b57cec5SDimitry Andric                                    typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
1967*0b57cec5SDimitry Andric     if (MaskIdx == (0x02000604 | MaskUnd))
1968*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
1969*0b57cec5SDimitry Andric     if (MaskIdx == (0x03010705 | MaskUnd))
1970*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
1971*0b57cec5SDimitry Andric   }
1972*0b57cec5SDimitry Andric 
1973*0b57cec5SDimitry Andric   if (ByteMask.size() == 8) {
1974*0b57cec5SDimitry Andric     // Identity.
1975*0b57cec5SDimitry Andric     if (MaskIdx == (0x0706050403020100ull | MaskUnd))
1976*0b57cec5SDimitry Andric       return Op0;
1977*0b57cec5SDimitry Andric     // Byte swap.
1978*0b57cec5SDimitry Andric     if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
1979*0b57cec5SDimitry Andric       SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
1980*0b57cec5SDimitry Andric       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
1981*0b57cec5SDimitry Andric       return DAG.getBitcast(VecTy, T1);
1982*0b57cec5SDimitry Andric     }
1983*0b57cec5SDimitry Andric 
1984*0b57cec5SDimitry Andric     // Halfword picks.
1985*0b57cec5SDimitry Andric     if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
1986*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
1987*0b57cec5SDimitry Andric     if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
1988*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
1989*0b57cec5SDimitry Andric     if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
1990*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
1991*0b57cec5SDimitry Andric     if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
1992*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
1993*0b57cec5SDimitry Andric     if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
1994*0b57cec5SDimitry Andric       VectorPair P = opSplit(Op0, dl, DAG);
1995*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
1996*0b57cec5SDimitry Andric     }
1997*0b57cec5SDimitry Andric 
1998*0b57cec5SDimitry Andric     // Byte packs.
1999*0b57cec5SDimitry Andric     if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2000*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2001*0b57cec5SDimitry Andric     if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2002*0b57cec5SDimitry Andric       return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2003*0b57cec5SDimitry Andric   }
2004*0b57cec5SDimitry Andric 
2005*0b57cec5SDimitry Andric   return SDValue();
2006*0b57cec5SDimitry Andric }
2007*0b57cec5SDimitry Andric 
2008*0b57cec5SDimitry Andric // Create a Hexagon-specific node for shifting a vector by an integer.
2009*0b57cec5SDimitry Andric SDValue
2010*0b57cec5SDimitry Andric HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2011*0b57cec5SDimitry Andric       const {
2012*0b57cec5SDimitry Andric   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
2013*0b57cec5SDimitry Andric     if (SDValue S = BVN->getSplatValue()) {
2014*0b57cec5SDimitry Andric       unsigned NewOpc;
2015*0b57cec5SDimitry Andric       switch (Op.getOpcode()) {
2016*0b57cec5SDimitry Andric         case ISD::SHL:
2017*0b57cec5SDimitry Andric           NewOpc = HexagonISD::VASL;
2018*0b57cec5SDimitry Andric           break;
2019*0b57cec5SDimitry Andric         case ISD::SRA:
2020*0b57cec5SDimitry Andric           NewOpc = HexagonISD::VASR;
2021*0b57cec5SDimitry Andric           break;
2022*0b57cec5SDimitry Andric         case ISD::SRL:
2023*0b57cec5SDimitry Andric           NewOpc = HexagonISD::VLSR;
2024*0b57cec5SDimitry Andric           break;
2025*0b57cec5SDimitry Andric         default:
2026*0b57cec5SDimitry Andric           llvm_unreachable("Unexpected shift opcode");
2027*0b57cec5SDimitry Andric       }
2028*0b57cec5SDimitry Andric       return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
2029*0b57cec5SDimitry Andric     }
2030*0b57cec5SDimitry Andric   }
2031*0b57cec5SDimitry Andric 
2032*0b57cec5SDimitry Andric   return SDValue();
2033*0b57cec5SDimitry Andric }
2034*0b57cec5SDimitry Andric 
2035*0b57cec5SDimitry Andric SDValue
2036*0b57cec5SDimitry Andric HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2037*0b57cec5SDimitry Andric   return getVectorShiftByInt(Op, DAG);
2038*0b57cec5SDimitry Andric }
2039*0b57cec5SDimitry Andric 
2040*0b57cec5SDimitry Andric SDValue
2041*0b57cec5SDimitry Andric HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2042*0b57cec5SDimitry Andric   if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2043*0b57cec5SDimitry Andric     return Op;
2044*0b57cec5SDimitry Andric   return SDValue();
2045*0b57cec5SDimitry Andric }
2046*0b57cec5SDimitry Andric 
2047*0b57cec5SDimitry Andric SDValue
2048*0b57cec5SDimitry Andric HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2049*0b57cec5SDimitry Andric   MVT ResTy = ty(Op);
2050*0b57cec5SDimitry Andric   SDValue InpV = Op.getOperand(0);
2051*0b57cec5SDimitry Andric   MVT InpTy = ty(InpV);
2052*0b57cec5SDimitry Andric   assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2053*0b57cec5SDimitry Andric   const SDLoc &dl(Op);
2054*0b57cec5SDimitry Andric 
2055*0b57cec5SDimitry Andric   // Handle conversion from i8 to v8i1.
2056*0b57cec5SDimitry Andric   if (ResTy == MVT::v8i1) {
2057*0b57cec5SDimitry Andric     SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2058*0b57cec5SDimitry Andric     SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2059*0b57cec5SDimitry Andric     return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2060*0b57cec5SDimitry Andric   }
2061*0b57cec5SDimitry Andric 
2062*0b57cec5SDimitry Andric   return SDValue();
2063*0b57cec5SDimitry Andric }
2064*0b57cec5SDimitry Andric 
2065*0b57cec5SDimitry Andric bool
2066*0b57cec5SDimitry Andric HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2067*0b57cec5SDimitry Andric       MVT VecTy, SelectionDAG &DAG,
2068*0b57cec5SDimitry Andric       MutableArrayRef<ConstantInt*> Consts) const {
2069*0b57cec5SDimitry Andric   MVT ElemTy = VecTy.getVectorElementType();
2070*0b57cec5SDimitry Andric   unsigned ElemWidth = ElemTy.getSizeInBits();
2071*0b57cec5SDimitry Andric   IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2072*0b57cec5SDimitry Andric   bool AllConst = true;
2073*0b57cec5SDimitry Andric 
2074*0b57cec5SDimitry Andric   for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2075*0b57cec5SDimitry Andric     SDValue V = Values[i];
2076*0b57cec5SDimitry Andric     if (V.isUndef()) {
2077*0b57cec5SDimitry Andric       Consts[i] = ConstantInt::get(IntTy, 0);
2078*0b57cec5SDimitry Andric       continue;
2079*0b57cec5SDimitry Andric     }
2080*0b57cec5SDimitry Andric     // Make sure to always cast to IntTy.
2081*0b57cec5SDimitry Andric     if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2082*0b57cec5SDimitry Andric       const ConstantInt *CI = CN->getConstantIntValue();
2083*0b57cec5SDimitry Andric       Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2084*0b57cec5SDimitry Andric     } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2085*0b57cec5SDimitry Andric       const ConstantFP *CF = CN->getConstantFPValue();
2086*0b57cec5SDimitry Andric       APInt A = CF->getValueAPF().bitcastToAPInt();
2087*0b57cec5SDimitry Andric       Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2088*0b57cec5SDimitry Andric     } else {
2089*0b57cec5SDimitry Andric       AllConst = false;
2090*0b57cec5SDimitry Andric     }
2091*0b57cec5SDimitry Andric   }
2092*0b57cec5SDimitry Andric   return AllConst;
2093*0b57cec5SDimitry Andric }
2094*0b57cec5SDimitry Andric 
2095*0b57cec5SDimitry Andric SDValue
2096*0b57cec5SDimitry Andric HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2097*0b57cec5SDimitry Andric                                      MVT VecTy, SelectionDAG &DAG) const {
2098*0b57cec5SDimitry Andric   MVT ElemTy = VecTy.getVectorElementType();
2099*0b57cec5SDimitry Andric   assert(VecTy.getVectorNumElements() == Elem.size());
2100*0b57cec5SDimitry Andric 
2101*0b57cec5SDimitry Andric   SmallVector<ConstantInt*,4> Consts(Elem.size());
2102*0b57cec5SDimitry Andric   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2103*0b57cec5SDimitry Andric 
2104*0b57cec5SDimitry Andric   unsigned First, Num = Elem.size();
2105*0b57cec5SDimitry Andric   for (First = 0; First != Num; ++First)
2106*0b57cec5SDimitry Andric     if (!isUndef(Elem[First]))
2107*0b57cec5SDimitry Andric       break;
2108*0b57cec5SDimitry Andric   if (First == Num)
2109*0b57cec5SDimitry Andric     return DAG.getUNDEF(VecTy);
2110*0b57cec5SDimitry Andric 
2111*0b57cec5SDimitry Andric   if (AllConst &&
2112*0b57cec5SDimitry Andric       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2113*0b57cec5SDimitry Andric     return getZero(dl, VecTy, DAG);
2114*0b57cec5SDimitry Andric 
2115*0b57cec5SDimitry Andric   if (ElemTy == MVT::i16) {
2116*0b57cec5SDimitry Andric     assert(Elem.size() == 2);
2117*0b57cec5SDimitry Andric     if (AllConst) {
2118*0b57cec5SDimitry Andric       uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2119*0b57cec5SDimitry Andric                    Consts[1]->getZExtValue() << 16;
2120*0b57cec5SDimitry Andric       return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
2121*0b57cec5SDimitry Andric     }
2122*0b57cec5SDimitry Andric     SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
2123*0b57cec5SDimitry Andric                          {Elem[1], Elem[0]}, DAG);
2124*0b57cec5SDimitry Andric     return DAG.getBitcast(MVT::v2i16, N);
2125*0b57cec5SDimitry Andric   }
2126*0b57cec5SDimitry Andric 
2127*0b57cec5SDimitry Andric   if (ElemTy == MVT::i8) {
2128*0b57cec5SDimitry Andric     // First try generating a constant.
2129*0b57cec5SDimitry Andric     if (AllConst) {
2130*0b57cec5SDimitry Andric       int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2131*0b57cec5SDimitry Andric                   (Consts[1]->getZExtValue() & 0xFF) << 8 |
2132*0b57cec5SDimitry Andric                   (Consts[1]->getZExtValue() & 0xFF) << 16 |
2133*0b57cec5SDimitry Andric                   Consts[2]->getZExtValue() << 24;
2134*0b57cec5SDimitry Andric       return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2135*0b57cec5SDimitry Andric     }
2136*0b57cec5SDimitry Andric 
2137*0b57cec5SDimitry Andric     // Then try splat.
2138*0b57cec5SDimitry Andric     bool IsSplat = true;
2139*0b57cec5SDimitry Andric     for (unsigned i = 0; i != Num; ++i) {
2140*0b57cec5SDimitry Andric       if (i == First)
2141*0b57cec5SDimitry Andric         continue;
2142*0b57cec5SDimitry Andric       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2143*0b57cec5SDimitry Andric         continue;
2144*0b57cec5SDimitry Andric       IsSplat = false;
2145*0b57cec5SDimitry Andric       break;
2146*0b57cec5SDimitry Andric     }
2147*0b57cec5SDimitry Andric     if (IsSplat) {
2148*0b57cec5SDimitry Andric       // Legalize the operand to VSPLAT.
2149*0b57cec5SDimitry Andric       SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2150*0b57cec5SDimitry Andric       return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2151*0b57cec5SDimitry Andric     }
2152*0b57cec5SDimitry Andric 
2153*0b57cec5SDimitry Andric     // Generate
2154*0b57cec5SDimitry Andric     //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2155*0b57cec5SDimitry Andric     //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2156*0b57cec5SDimitry Andric     assert(Elem.size() == 4);
2157*0b57cec5SDimitry Andric     SDValue Vs[4];
2158*0b57cec5SDimitry Andric     for (unsigned i = 0; i != 4; ++i) {
2159*0b57cec5SDimitry Andric       Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2160*0b57cec5SDimitry Andric       Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2161*0b57cec5SDimitry Andric     }
2162*0b57cec5SDimitry Andric     SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2163*0b57cec5SDimitry Andric     SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2164*0b57cec5SDimitry Andric     SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2165*0b57cec5SDimitry Andric     SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2166*0b57cec5SDimitry Andric     SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2167*0b57cec5SDimitry Andric 
2168*0b57cec5SDimitry Andric     SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2169*0b57cec5SDimitry Andric     return DAG.getBitcast(MVT::v4i8, R);
2170*0b57cec5SDimitry Andric   }
2171*0b57cec5SDimitry Andric 
2172*0b57cec5SDimitry Andric #ifndef NDEBUG
2173*0b57cec5SDimitry Andric   dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
2174*0b57cec5SDimitry Andric #endif
2175*0b57cec5SDimitry Andric   llvm_unreachable("Unexpected vector element type");
2176*0b57cec5SDimitry Andric }
2177*0b57cec5SDimitry Andric 
2178*0b57cec5SDimitry Andric SDValue
2179*0b57cec5SDimitry Andric HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2180*0b57cec5SDimitry Andric                                      MVT VecTy, SelectionDAG &DAG) const {
2181*0b57cec5SDimitry Andric   MVT ElemTy = VecTy.getVectorElementType();
2182*0b57cec5SDimitry Andric   assert(VecTy.getVectorNumElements() == Elem.size());
2183*0b57cec5SDimitry Andric 
2184*0b57cec5SDimitry Andric   SmallVector<ConstantInt*,8> Consts(Elem.size());
2185*0b57cec5SDimitry Andric   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2186*0b57cec5SDimitry Andric 
2187*0b57cec5SDimitry Andric   unsigned First, Num = Elem.size();
2188*0b57cec5SDimitry Andric   for (First = 0; First != Num; ++First)
2189*0b57cec5SDimitry Andric     if (!isUndef(Elem[First]))
2190*0b57cec5SDimitry Andric       break;
2191*0b57cec5SDimitry Andric   if (First == Num)
2192*0b57cec5SDimitry Andric     return DAG.getUNDEF(VecTy);
2193*0b57cec5SDimitry Andric 
2194*0b57cec5SDimitry Andric   if (AllConst &&
2195*0b57cec5SDimitry Andric       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2196*0b57cec5SDimitry Andric     return getZero(dl, VecTy, DAG);
2197*0b57cec5SDimitry Andric 
2198*0b57cec5SDimitry Andric   // First try splat if possible.
2199*0b57cec5SDimitry Andric   if (ElemTy == MVT::i16) {
2200*0b57cec5SDimitry Andric     bool IsSplat = true;
2201*0b57cec5SDimitry Andric     for (unsigned i = 0; i != Num; ++i) {
2202*0b57cec5SDimitry Andric       if (i == First)
2203*0b57cec5SDimitry Andric         continue;
2204*0b57cec5SDimitry Andric       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2205*0b57cec5SDimitry Andric         continue;
2206*0b57cec5SDimitry Andric       IsSplat = false;
2207*0b57cec5SDimitry Andric       break;
2208*0b57cec5SDimitry Andric     }
2209*0b57cec5SDimitry Andric     if (IsSplat) {
2210*0b57cec5SDimitry Andric       // Legalize the operand to VSPLAT.
2211*0b57cec5SDimitry Andric       SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2212*0b57cec5SDimitry Andric       return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2213*0b57cec5SDimitry Andric     }
2214*0b57cec5SDimitry Andric   }
2215*0b57cec5SDimitry Andric 
2216*0b57cec5SDimitry Andric   // Then try constant.
2217*0b57cec5SDimitry Andric   if (AllConst) {
2218*0b57cec5SDimitry Andric     uint64_t Val = 0;
2219*0b57cec5SDimitry Andric     unsigned W = ElemTy.getSizeInBits();
2220*0b57cec5SDimitry Andric     uint64_t Mask = (ElemTy == MVT::i8)  ? 0xFFull
2221*0b57cec5SDimitry Andric                   : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
2222*0b57cec5SDimitry Andric     for (unsigned i = 0; i != Num; ++i)
2223*0b57cec5SDimitry Andric       Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2224*0b57cec5SDimitry Andric     SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2225*0b57cec5SDimitry Andric     return DAG.getBitcast(VecTy, V0);
2226*0b57cec5SDimitry Andric   }
2227*0b57cec5SDimitry Andric 
2228*0b57cec5SDimitry Andric   // Build two 32-bit vectors and concatenate.
2229*0b57cec5SDimitry Andric   MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2230*0b57cec5SDimitry Andric   SDValue L = (ElemTy == MVT::i32)
2231*0b57cec5SDimitry Andric                 ? Elem[0]
2232*0b57cec5SDimitry Andric                 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2233*0b57cec5SDimitry Andric   SDValue H = (ElemTy == MVT::i32)
2234*0b57cec5SDimitry Andric                 ? Elem[1]
2235*0b57cec5SDimitry Andric                 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2236*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
2237*0b57cec5SDimitry Andric }
2238*0b57cec5SDimitry Andric 
2239*0b57cec5SDimitry Andric SDValue
2240*0b57cec5SDimitry Andric HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2241*0b57cec5SDimitry Andric                                      const SDLoc &dl, MVT ValTy, MVT ResTy,
2242*0b57cec5SDimitry Andric                                      SelectionDAG &DAG) const {
2243*0b57cec5SDimitry Andric   MVT VecTy = ty(VecV);
2244*0b57cec5SDimitry Andric   assert(!ValTy.isVector() ||
2245*0b57cec5SDimitry Andric          VecTy.getVectorElementType() == ValTy.getVectorElementType());
2246*0b57cec5SDimitry Andric   unsigned VecWidth = VecTy.getSizeInBits();
2247*0b57cec5SDimitry Andric   unsigned ValWidth = ValTy.getSizeInBits();
2248*0b57cec5SDimitry Andric   unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2249*0b57cec5SDimitry Andric   assert((VecWidth % ElemWidth) == 0);
2250*0b57cec5SDimitry Andric   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
2251*0b57cec5SDimitry Andric 
2252*0b57cec5SDimitry Andric   // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2253*0b57cec5SDimitry Andric   // without any coprocessors).
2254*0b57cec5SDimitry Andric   if (ElemWidth == 1) {
2255*0b57cec5SDimitry Andric     assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
2256*0b57cec5SDimitry Andric     assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2257*0b57cec5SDimitry Andric     // Check if this is an extract of the lowest bit.
2258*0b57cec5SDimitry Andric     if (IdxN) {
2259*0b57cec5SDimitry Andric       // Extracting the lowest bit is a no-op, but it changes the type,
2260*0b57cec5SDimitry Andric       // so it must be kept as an operation to avoid errors related to
2261*0b57cec5SDimitry Andric       // type mismatches.
2262*0b57cec5SDimitry Andric       if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
2263*0b57cec5SDimitry Andric         return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2264*0b57cec5SDimitry Andric     }
2265*0b57cec5SDimitry Andric 
2266*0b57cec5SDimitry Andric     // If the value extracted is a single bit, use tstbit.
2267*0b57cec5SDimitry Andric     if (ValWidth == 1) {
2268*0b57cec5SDimitry Andric       SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2269*0b57cec5SDimitry Andric       SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2270*0b57cec5SDimitry Andric       SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2271*0b57cec5SDimitry Andric       return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2272*0b57cec5SDimitry Andric     }
2273*0b57cec5SDimitry Andric 
2274*0b57cec5SDimitry Andric     // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2275*0b57cec5SDimitry Andric     // a predicate register. The elements of the vector are repeated
2276*0b57cec5SDimitry Andric     // in the register (if necessary) so that the total number is 8.
2277*0b57cec5SDimitry Andric     // The extracted subvector will need to be expanded in such a way.
2278*0b57cec5SDimitry Andric     unsigned Scale = VecWidth / ValWidth;
2279*0b57cec5SDimitry Andric 
2280*0b57cec5SDimitry Andric     // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2281*0b57cec5SDimitry Andric     // position 0.
2282*0b57cec5SDimitry Andric     assert(ty(IdxV) == MVT::i32);
2283*0b57cec5SDimitry Andric     unsigned VecRep = 8 / VecWidth;
2284*0b57cec5SDimitry Andric     SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2285*0b57cec5SDimitry Andric                              DAG.getConstant(8*VecRep, dl, MVT::i32));
2286*0b57cec5SDimitry Andric     SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2287*0b57cec5SDimitry Andric     SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2288*0b57cec5SDimitry Andric     while (Scale > 1) {
2289*0b57cec5SDimitry Andric       // The longest possible subvector is at most 32 bits, so it is always
2290*0b57cec5SDimitry Andric       // contained in the low subregister.
2291*0b57cec5SDimitry Andric       T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
2292*0b57cec5SDimitry Andric       T1 = expandPredicate(T1, dl, DAG);
2293*0b57cec5SDimitry Andric       Scale /= 2;
2294*0b57cec5SDimitry Andric     }
2295*0b57cec5SDimitry Andric 
2296*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2297*0b57cec5SDimitry Andric   }
2298*0b57cec5SDimitry Andric 
2299*0b57cec5SDimitry Andric   assert(VecWidth == 32 || VecWidth == 64);
2300*0b57cec5SDimitry Andric 
2301*0b57cec5SDimitry Andric   // Cast everything to scalar integer types.
2302*0b57cec5SDimitry Andric   MVT ScalarTy = tyScalar(VecTy);
2303*0b57cec5SDimitry Andric   VecV = DAG.getBitcast(ScalarTy, VecV);
2304*0b57cec5SDimitry Andric 
2305*0b57cec5SDimitry Andric   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2306*0b57cec5SDimitry Andric   SDValue ExtV;
2307*0b57cec5SDimitry Andric 
2308*0b57cec5SDimitry Andric   if (IdxN) {
2309*0b57cec5SDimitry Andric     unsigned Off = IdxN->getZExtValue() * ElemWidth;
2310*0b57cec5SDimitry Andric     if (VecWidth == 64 && ValWidth == 32) {
2311*0b57cec5SDimitry Andric       assert(Off == 0 || Off == 32);
2312*0b57cec5SDimitry Andric       unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
2313*0b57cec5SDimitry Andric       ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
2314*0b57cec5SDimitry Andric     } else if (Off == 0 && (ValWidth % 8) == 0) {
2315*0b57cec5SDimitry Andric       ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2316*0b57cec5SDimitry Andric     } else {
2317*0b57cec5SDimitry Andric       SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2318*0b57cec5SDimitry Andric       // The return type of EXTRACTU must be the same as the type of the
2319*0b57cec5SDimitry Andric       // input vector.
2320*0b57cec5SDimitry Andric       ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2321*0b57cec5SDimitry Andric                          {VecV, WidthV, OffV});
2322*0b57cec5SDimitry Andric     }
2323*0b57cec5SDimitry Andric   } else {
2324*0b57cec5SDimitry Andric     if (ty(IdxV) != MVT::i32)
2325*0b57cec5SDimitry Andric       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2326*0b57cec5SDimitry Andric     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2327*0b57cec5SDimitry Andric                                DAG.getConstant(ElemWidth, dl, MVT::i32));
2328*0b57cec5SDimitry Andric     ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2329*0b57cec5SDimitry Andric                        {VecV, WidthV, OffV});
2330*0b57cec5SDimitry Andric   }
2331*0b57cec5SDimitry Andric 
2332*0b57cec5SDimitry Andric   // Cast ExtV to the requested result type.
2333*0b57cec5SDimitry Andric   ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2334*0b57cec5SDimitry Andric   ExtV = DAG.getBitcast(ResTy, ExtV);
2335*0b57cec5SDimitry Andric   return ExtV;
2336*0b57cec5SDimitry Andric }
2337*0b57cec5SDimitry Andric 
2338*0b57cec5SDimitry Andric SDValue
2339*0b57cec5SDimitry Andric HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2340*0b57cec5SDimitry Andric                                     const SDLoc &dl, MVT ValTy,
2341*0b57cec5SDimitry Andric                                     SelectionDAG &DAG) const {
2342*0b57cec5SDimitry Andric   MVT VecTy = ty(VecV);
2343*0b57cec5SDimitry Andric   if (VecTy.getVectorElementType() == MVT::i1) {
2344*0b57cec5SDimitry Andric     MVT ValTy = ty(ValV);
2345*0b57cec5SDimitry Andric     assert(ValTy.getVectorElementType() == MVT::i1);
2346*0b57cec5SDimitry Andric     SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
2347*0b57cec5SDimitry Andric     unsigned VecLen = VecTy.getVectorNumElements();
2348*0b57cec5SDimitry Andric     unsigned Scale = VecLen / ValTy.getVectorNumElements();
2349*0b57cec5SDimitry Andric     assert(Scale > 1);
2350*0b57cec5SDimitry Andric 
2351*0b57cec5SDimitry Andric     for (unsigned R = Scale; R > 1; R /= 2) {
2352*0b57cec5SDimitry Andric       ValR = contractPredicate(ValR, dl, DAG);
2353*0b57cec5SDimitry Andric       ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2354*0b57cec5SDimitry Andric                          DAG.getUNDEF(MVT::i32), ValR);
2355*0b57cec5SDimitry Andric     }
2356*0b57cec5SDimitry Andric     // The longest possible subvector is at most 32 bits, so it is always
2357*0b57cec5SDimitry Andric     // contained in the low subregister.
2358*0b57cec5SDimitry Andric     ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
2359*0b57cec5SDimitry Andric 
2360*0b57cec5SDimitry Andric     unsigned ValBytes = 64 / Scale;
2361*0b57cec5SDimitry Andric     SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
2362*0b57cec5SDimitry Andric     SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2363*0b57cec5SDimitry Andric                               DAG.getConstant(8, dl, MVT::i32));
2364*0b57cec5SDimitry Andric     SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2365*0b57cec5SDimitry Andric     SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2366*0b57cec5SDimitry Andric                               {VecR, ValR, Width, Idx});
2367*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2368*0b57cec5SDimitry Andric   }
2369*0b57cec5SDimitry Andric 
2370*0b57cec5SDimitry Andric   unsigned VecWidth = VecTy.getSizeInBits();
2371*0b57cec5SDimitry Andric   unsigned ValWidth = ValTy.getSizeInBits();
2372*0b57cec5SDimitry Andric   assert(VecWidth == 32 || VecWidth == 64);
2373*0b57cec5SDimitry Andric   assert((VecWidth % ValWidth) == 0);
2374*0b57cec5SDimitry Andric 
2375*0b57cec5SDimitry Andric   // Cast everything to scalar integer types.
2376*0b57cec5SDimitry Andric   MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2377*0b57cec5SDimitry Andric   // The actual type of ValV may be different than ValTy (which is related
2378*0b57cec5SDimitry Andric   // to the vector type).
2379*0b57cec5SDimitry Andric   unsigned VW = ty(ValV).getSizeInBits();
2380*0b57cec5SDimitry Andric   ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2381*0b57cec5SDimitry Andric   VecV = DAG.getBitcast(ScalarTy, VecV);
2382*0b57cec5SDimitry Andric   if (VW != VecWidth)
2383*0b57cec5SDimitry Andric     ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2384*0b57cec5SDimitry Andric 
2385*0b57cec5SDimitry Andric   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2386*0b57cec5SDimitry Andric   SDValue InsV;
2387*0b57cec5SDimitry Andric 
2388*0b57cec5SDimitry Andric   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2389*0b57cec5SDimitry Andric     unsigned W = C->getZExtValue() * ValWidth;
2390*0b57cec5SDimitry Andric     SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2391*0b57cec5SDimitry Andric     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2392*0b57cec5SDimitry Andric                        {VecV, ValV, WidthV, OffV});
2393*0b57cec5SDimitry Andric   } else {
2394*0b57cec5SDimitry Andric     if (ty(IdxV) != MVT::i32)
2395*0b57cec5SDimitry Andric       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2396*0b57cec5SDimitry Andric     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2397*0b57cec5SDimitry Andric     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2398*0b57cec5SDimitry Andric                        {VecV, ValV, WidthV, OffV});
2399*0b57cec5SDimitry Andric   }
2400*0b57cec5SDimitry Andric 
2401*0b57cec5SDimitry Andric   return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2402*0b57cec5SDimitry Andric }
2403*0b57cec5SDimitry Andric 
2404*0b57cec5SDimitry Andric SDValue
2405*0b57cec5SDimitry Andric HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2406*0b57cec5SDimitry Andric                                        SelectionDAG &DAG) const {
2407*0b57cec5SDimitry Andric   assert(ty(Vec32).getSizeInBits() == 32);
2408*0b57cec5SDimitry Andric   if (isUndef(Vec32))
2409*0b57cec5SDimitry Andric     return DAG.getUNDEF(MVT::i64);
2410*0b57cec5SDimitry Andric   return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
2411*0b57cec5SDimitry Andric }
2412*0b57cec5SDimitry Andric 
2413*0b57cec5SDimitry Andric SDValue
2414*0b57cec5SDimitry Andric HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2415*0b57cec5SDimitry Andric                                          SelectionDAG &DAG) const {
2416*0b57cec5SDimitry Andric   assert(ty(Vec64).getSizeInBits() == 64);
2417*0b57cec5SDimitry Andric   if (isUndef(Vec64))
2418*0b57cec5SDimitry Andric     return DAG.getUNDEF(MVT::i32);
2419*0b57cec5SDimitry Andric   return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
2420*0b57cec5SDimitry Andric }
2421*0b57cec5SDimitry Andric 
2422*0b57cec5SDimitry Andric SDValue
2423*0b57cec5SDimitry Andric HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2424*0b57cec5SDimitry Andric       const {
2425*0b57cec5SDimitry Andric   if (Ty.isVector()) {
2426*0b57cec5SDimitry Andric     assert(Ty.isInteger() && "Only integer vectors are supported here");
2427*0b57cec5SDimitry Andric     unsigned W = Ty.getSizeInBits();
2428*0b57cec5SDimitry Andric     if (W <= 64)
2429*0b57cec5SDimitry Andric       return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2430*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::VZERO, dl, Ty);
2431*0b57cec5SDimitry Andric   }
2432*0b57cec5SDimitry Andric 
2433*0b57cec5SDimitry Andric   if (Ty.isInteger())
2434*0b57cec5SDimitry Andric     return DAG.getConstant(0, dl, Ty);
2435*0b57cec5SDimitry Andric   if (Ty.isFloatingPoint())
2436*0b57cec5SDimitry Andric     return DAG.getConstantFP(0.0, dl, Ty);
2437*0b57cec5SDimitry Andric   llvm_unreachable("Invalid type for zero");
2438*0b57cec5SDimitry Andric }
2439*0b57cec5SDimitry Andric 
2440*0b57cec5SDimitry Andric SDValue
2441*0b57cec5SDimitry Andric HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2442*0b57cec5SDimitry Andric   MVT VecTy = ty(Op);
2443*0b57cec5SDimitry Andric   unsigned BW = VecTy.getSizeInBits();
2444*0b57cec5SDimitry Andric   const SDLoc &dl(Op);
2445*0b57cec5SDimitry Andric   SmallVector<SDValue,8> Ops;
2446*0b57cec5SDimitry Andric   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2447*0b57cec5SDimitry Andric     Ops.push_back(Op.getOperand(i));
2448*0b57cec5SDimitry Andric 
2449*0b57cec5SDimitry Andric   if (BW == 32)
2450*0b57cec5SDimitry Andric     return buildVector32(Ops, dl, VecTy, DAG);
2451*0b57cec5SDimitry Andric   if (BW == 64)
2452*0b57cec5SDimitry Andric     return buildVector64(Ops, dl, VecTy, DAG);
2453*0b57cec5SDimitry Andric 
2454*0b57cec5SDimitry Andric   if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2455*0b57cec5SDimitry Andric     // For each i1 element in the resulting predicate register, put 1
2456*0b57cec5SDimitry Andric     // shifted by the index of the element into a general-purpose register,
2457*0b57cec5SDimitry Andric     // then or them together and transfer it back into a predicate register.
2458*0b57cec5SDimitry Andric     SDValue Rs[8];
2459*0b57cec5SDimitry Andric     SDValue Z = getZero(dl, MVT::i32, DAG);
2460*0b57cec5SDimitry Andric     // Always produce 8 bits, repeat inputs if necessary.
2461*0b57cec5SDimitry Andric     unsigned Rep = 8 / VecTy.getVectorNumElements();
2462*0b57cec5SDimitry Andric     for (unsigned i = 0; i != 8; ++i) {
2463*0b57cec5SDimitry Andric       SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2464*0b57cec5SDimitry Andric       Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2465*0b57cec5SDimitry Andric     }
2466*0b57cec5SDimitry Andric     for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2467*0b57cec5SDimitry Andric       for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2468*0b57cec5SDimitry Andric         Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2469*0b57cec5SDimitry Andric     }
2470*0b57cec5SDimitry Andric     // Move the value directly to a predicate register.
2471*0b57cec5SDimitry Andric     return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2472*0b57cec5SDimitry Andric   }
2473*0b57cec5SDimitry Andric 
2474*0b57cec5SDimitry Andric   return SDValue();
2475*0b57cec5SDimitry Andric }
2476*0b57cec5SDimitry Andric 
2477*0b57cec5SDimitry Andric SDValue
2478*0b57cec5SDimitry Andric HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2479*0b57cec5SDimitry Andric                                            SelectionDAG &DAG) const {
2480*0b57cec5SDimitry Andric   MVT VecTy = ty(Op);
2481*0b57cec5SDimitry Andric   const SDLoc &dl(Op);
2482*0b57cec5SDimitry Andric   if (VecTy.getSizeInBits() == 64) {
2483*0b57cec5SDimitry Andric     assert(Op.getNumOperands() == 2);
2484*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
2485*0b57cec5SDimitry Andric                        Op.getOperand(0));
2486*0b57cec5SDimitry Andric   }
2487*0b57cec5SDimitry Andric 
2488*0b57cec5SDimitry Andric   MVT ElemTy = VecTy.getVectorElementType();
2489*0b57cec5SDimitry Andric   if (ElemTy == MVT::i1) {
2490*0b57cec5SDimitry Andric     assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2491*0b57cec5SDimitry Andric     MVT OpTy = ty(Op.getOperand(0));
2492*0b57cec5SDimitry Andric     // Scale is how many times the operands need to be contracted to match
2493*0b57cec5SDimitry Andric     // the representation in the target register.
2494*0b57cec5SDimitry Andric     unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2495*0b57cec5SDimitry Andric     assert(Scale == Op.getNumOperands() && Scale > 1);
2496*0b57cec5SDimitry Andric 
2497*0b57cec5SDimitry Andric     // First, convert all bool vectors to integers, then generate pairwise
2498*0b57cec5SDimitry Andric     // inserts to form values of doubled length. Up until there are only
2499*0b57cec5SDimitry Andric     // two values left to concatenate, all of these values will fit in a
2500*0b57cec5SDimitry Andric     // 32-bit integer, so keep them as i32 to use 32-bit inserts.
2501*0b57cec5SDimitry Andric     SmallVector<SDValue,4> Words[2];
2502*0b57cec5SDimitry Andric     unsigned IdxW = 0;
2503*0b57cec5SDimitry Andric 
2504*0b57cec5SDimitry Andric     for (SDValue P : Op.getNode()->op_values()) {
2505*0b57cec5SDimitry Andric       SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
2506*0b57cec5SDimitry Andric       for (unsigned R = Scale; R > 1; R /= 2) {
2507*0b57cec5SDimitry Andric         W = contractPredicate(W, dl, DAG);
2508*0b57cec5SDimitry Andric         W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2509*0b57cec5SDimitry Andric                         DAG.getUNDEF(MVT::i32), W);
2510*0b57cec5SDimitry Andric       }
2511*0b57cec5SDimitry Andric       W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
2512*0b57cec5SDimitry Andric       Words[IdxW].push_back(W);
2513*0b57cec5SDimitry Andric     }
2514*0b57cec5SDimitry Andric 
2515*0b57cec5SDimitry Andric     while (Scale > 2) {
2516*0b57cec5SDimitry Andric       SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
2517*0b57cec5SDimitry Andric       Words[IdxW ^ 1].clear();
2518*0b57cec5SDimitry Andric 
2519*0b57cec5SDimitry Andric       for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
2520*0b57cec5SDimitry Andric         SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
2521*0b57cec5SDimitry Andric         // Insert W1 into W0 right next to the significant bits of W0.
2522*0b57cec5SDimitry Andric         SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2523*0b57cec5SDimitry Andric                                 {W0, W1, WidthV, WidthV});
2524*0b57cec5SDimitry Andric         Words[IdxW ^ 1].push_back(T);
2525*0b57cec5SDimitry Andric       }
2526*0b57cec5SDimitry Andric       IdxW ^= 1;
2527*0b57cec5SDimitry Andric       Scale /= 2;
2528*0b57cec5SDimitry Andric     }
2529*0b57cec5SDimitry Andric 
2530*0b57cec5SDimitry Andric     // Another sanity check. At this point there should only be two words
2531*0b57cec5SDimitry Andric     // left, and Scale should be 2.
2532*0b57cec5SDimitry Andric     assert(Scale == 2 && Words[IdxW].size() == 2);
2533*0b57cec5SDimitry Andric 
2534*0b57cec5SDimitry Andric     SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2535*0b57cec5SDimitry Andric                              Words[IdxW][1], Words[IdxW][0]);
2536*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
2537*0b57cec5SDimitry Andric   }
2538*0b57cec5SDimitry Andric 
2539*0b57cec5SDimitry Andric   return SDValue();
2540*0b57cec5SDimitry Andric }
2541*0b57cec5SDimitry Andric 
2542*0b57cec5SDimitry Andric SDValue
2543*0b57cec5SDimitry Andric HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2544*0b57cec5SDimitry Andric                                                SelectionDAG &DAG) const {
2545*0b57cec5SDimitry Andric   SDValue Vec = Op.getOperand(0);
2546*0b57cec5SDimitry Andric   MVT ElemTy = ty(Vec).getVectorElementType();
2547*0b57cec5SDimitry Andric   return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
2548*0b57cec5SDimitry Andric }
2549*0b57cec5SDimitry Andric 
2550*0b57cec5SDimitry Andric SDValue
2551*0b57cec5SDimitry Andric HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
2552*0b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
2553*0b57cec5SDimitry Andric   return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
2554*0b57cec5SDimitry Andric                        ty(Op), ty(Op), DAG);
2555*0b57cec5SDimitry Andric }
2556*0b57cec5SDimitry Andric 
2557*0b57cec5SDimitry Andric SDValue
2558*0b57cec5SDimitry Andric HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2559*0b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
2560*0b57cec5SDimitry Andric   return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
2561*0b57cec5SDimitry Andric                       SDLoc(Op), ty(Op).getVectorElementType(), DAG);
2562*0b57cec5SDimitry Andric }
2563*0b57cec5SDimitry Andric 
2564*0b57cec5SDimitry Andric SDValue
2565*0b57cec5SDimitry Andric HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
2566*0b57cec5SDimitry Andric                                              SelectionDAG &DAG) const {
2567*0b57cec5SDimitry Andric   SDValue ValV = Op.getOperand(1);
2568*0b57cec5SDimitry Andric   return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
2569*0b57cec5SDimitry Andric                       SDLoc(Op), ty(ValV), DAG);
2570*0b57cec5SDimitry Andric }
2571*0b57cec5SDimitry Andric 
2572*0b57cec5SDimitry Andric bool
2573*0b57cec5SDimitry Andric HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2574*0b57cec5SDimitry Andric   // Assuming the caller does not have either a signext or zeroext modifier, and
2575*0b57cec5SDimitry Andric   // only one value is accepted, any reasonable truncation is allowed.
2576*0b57cec5SDimitry Andric   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2577*0b57cec5SDimitry Andric     return false;
2578*0b57cec5SDimitry Andric 
2579*0b57cec5SDimitry Andric   // FIXME: in principle up to 64-bit could be made safe, but it would be very
2580*0b57cec5SDimitry Andric   // fragile at the moment: any support for multiple value returns would be
2581*0b57cec5SDimitry Andric   // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2582*0b57cec5SDimitry Andric   return Ty1->getPrimitiveSizeInBits() <= 32;
2583*0b57cec5SDimitry Andric }
2584*0b57cec5SDimitry Andric 
2585*0b57cec5SDimitry Andric SDValue
2586*0b57cec5SDimitry Andric HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
2587*0b57cec5SDimitry Andric   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2588*0b57cec5SDimitry Andric   unsigned ClaimAlign = LN->getAlignment();
2589*0b57cec5SDimitry Andric   validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign);
2590*0b57cec5SDimitry Andric   // Call LowerUnalignedLoad for all loads, it recognizes loads that
2591*0b57cec5SDimitry Andric   // don't need extra aligning.
2592*0b57cec5SDimitry Andric   return LowerUnalignedLoad(Op, DAG);
2593*0b57cec5SDimitry Andric }
2594*0b57cec5SDimitry Andric 
2595*0b57cec5SDimitry Andric SDValue
2596*0b57cec5SDimitry Andric HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
2597*0b57cec5SDimitry Andric   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
2598*0b57cec5SDimitry Andric   unsigned ClaimAlign = SN->getAlignment();
2599*0b57cec5SDimitry Andric   SDValue Ptr = SN->getBasePtr();
2600*0b57cec5SDimitry Andric   const SDLoc &dl(Op);
2601*0b57cec5SDimitry Andric   validateConstPtrAlignment(Ptr, dl, ClaimAlign);
2602*0b57cec5SDimitry Andric 
2603*0b57cec5SDimitry Andric   MVT StoreTy = SN->getMemoryVT().getSimpleVT();
2604*0b57cec5SDimitry Andric   unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
2605*0b57cec5SDimitry Andric   if (ClaimAlign < NeedAlign)
2606*0b57cec5SDimitry Andric     return expandUnalignedStore(SN, DAG);
2607*0b57cec5SDimitry Andric   return Op;
2608*0b57cec5SDimitry Andric }
2609*0b57cec5SDimitry Andric 
2610*0b57cec5SDimitry Andric SDValue
2611*0b57cec5SDimitry Andric HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
2612*0b57cec5SDimitry Andric       const {
2613*0b57cec5SDimitry Andric   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2614*0b57cec5SDimitry Andric   MVT LoadTy = ty(Op);
2615*0b57cec5SDimitry Andric   unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
2616*0b57cec5SDimitry Andric   unsigned HaveAlign = LN->getAlignment();
2617*0b57cec5SDimitry Andric   if (HaveAlign >= NeedAlign)
2618*0b57cec5SDimitry Andric     return Op;
2619*0b57cec5SDimitry Andric 
2620*0b57cec5SDimitry Andric   const SDLoc &dl(Op);
2621*0b57cec5SDimitry Andric   const DataLayout &DL = DAG.getDataLayout();
2622*0b57cec5SDimitry Andric   LLVMContext &Ctx = *DAG.getContext();
2623*0b57cec5SDimitry Andric 
2624*0b57cec5SDimitry Andric   // If the load aligning is disabled or the load can be broken up into two
2625*0b57cec5SDimitry Andric   // smaller legal loads, do the default (target-independent) expansion.
2626*0b57cec5SDimitry Andric   bool DoDefault = false;
2627*0b57cec5SDimitry Andric   // Handle it in the default way if this is an indexed load.
2628*0b57cec5SDimitry Andric   if (!LN->isUnindexed())
2629*0b57cec5SDimitry Andric     DoDefault = true;
2630*0b57cec5SDimitry Andric 
2631*0b57cec5SDimitry Andric   if (!AlignLoads) {
2632*0b57cec5SDimitry Andric     if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), *LN->getMemOperand()))
2633*0b57cec5SDimitry Andric       return Op;
2634*0b57cec5SDimitry Andric     DoDefault = true;
2635*0b57cec5SDimitry Andric   }
2636*0b57cec5SDimitry Andric   if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
2637*0b57cec5SDimitry Andric     // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
2638*0b57cec5SDimitry Andric     MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
2639*0b57cec5SDimitry Andric                                 : MVT::getVectorVT(MVT::i8, HaveAlign);
2640*0b57cec5SDimitry Andric     DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, *LN->getMemOperand());
2641*0b57cec5SDimitry Andric   }
2642*0b57cec5SDimitry Andric   if (DoDefault) {
2643*0b57cec5SDimitry Andric     std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
2644*0b57cec5SDimitry Andric     return DAG.getMergeValues({P.first, P.second}, dl);
2645*0b57cec5SDimitry Andric   }
2646*0b57cec5SDimitry Andric 
2647*0b57cec5SDimitry Andric   // The code below generates two loads, both aligned as NeedAlign, and
2648*0b57cec5SDimitry Andric   // with the distance of NeedAlign between them. For that to cover the
2649*0b57cec5SDimitry Andric   // bits that need to be loaded (and without overlapping), the size of
2650*0b57cec5SDimitry Andric   // the loads should be equal to NeedAlign. This is true for all loadable
2651*0b57cec5SDimitry Andric   // types, but add an assertion in case something changes in the future.
2652*0b57cec5SDimitry Andric   assert(LoadTy.getSizeInBits() == 8*NeedAlign);
2653*0b57cec5SDimitry Andric 
2654*0b57cec5SDimitry Andric   unsigned LoadLen = NeedAlign;
2655*0b57cec5SDimitry Andric   SDValue Base = LN->getBasePtr();
2656*0b57cec5SDimitry Andric   SDValue Chain = LN->getChain();
2657*0b57cec5SDimitry Andric   auto BO = getBaseAndOffset(Base);
2658*0b57cec5SDimitry Andric   unsigned BaseOpc = BO.first.getOpcode();
2659*0b57cec5SDimitry Andric   if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
2660*0b57cec5SDimitry Andric     return Op;
2661*0b57cec5SDimitry Andric 
2662*0b57cec5SDimitry Andric   if (BO.second % LoadLen != 0) {
2663*0b57cec5SDimitry Andric     BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
2664*0b57cec5SDimitry Andric                            DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
2665*0b57cec5SDimitry Andric     BO.second -= BO.second % LoadLen;
2666*0b57cec5SDimitry Andric   }
2667*0b57cec5SDimitry Andric   SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
2668*0b57cec5SDimitry Andric       ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
2669*0b57cec5SDimitry Andric                     DAG.getConstant(NeedAlign, dl, MVT::i32))
2670*0b57cec5SDimitry Andric       : BO.first;
2671*0b57cec5SDimitry Andric   SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
2672*0b57cec5SDimitry Andric   SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);
2673*0b57cec5SDimitry Andric 
2674*0b57cec5SDimitry Andric   MachineMemOperand *WideMMO = nullptr;
2675*0b57cec5SDimitry Andric   if (MachineMemOperand *MMO = LN->getMemOperand()) {
2676*0b57cec5SDimitry Andric     MachineFunction &MF = DAG.getMachineFunction();
2677*0b57cec5SDimitry Andric     WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(),
2678*0b57cec5SDimitry Andric                     2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(),
2679*0b57cec5SDimitry Andric                     MMO->getSyncScopeID(), MMO->getOrdering(),
2680*0b57cec5SDimitry Andric                     MMO->getFailureOrdering());
2681*0b57cec5SDimitry Andric   }
2682*0b57cec5SDimitry Andric 
2683*0b57cec5SDimitry Andric   SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
2684*0b57cec5SDimitry Andric   SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
2685*0b57cec5SDimitry Andric 
2686*0b57cec5SDimitry Andric   SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
2687*0b57cec5SDimitry Andric                                 {Load1, Load0, BaseNoOff.getOperand(0)});
2688*0b57cec5SDimitry Andric   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2689*0b57cec5SDimitry Andric                                  Load0.getValue(1), Load1.getValue(1));
2690*0b57cec5SDimitry Andric   SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
2691*0b57cec5SDimitry Andric   return M;
2692*0b57cec5SDimitry Andric }
2693*0b57cec5SDimitry Andric 
2694*0b57cec5SDimitry Andric SDValue
2695*0b57cec5SDimitry Andric HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
2696*0b57cec5SDimitry Andric   SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
2697*0b57cec5SDimitry Andric   auto *CY = dyn_cast<ConstantSDNode>(Y);
2698*0b57cec5SDimitry Andric   if (!CY)
2699*0b57cec5SDimitry Andric     return SDValue();
2700*0b57cec5SDimitry Andric 
2701*0b57cec5SDimitry Andric   const SDLoc &dl(Op);
2702*0b57cec5SDimitry Andric   SDVTList VTs = Op.getNode()->getVTList();
2703*0b57cec5SDimitry Andric   assert(VTs.NumVTs == 2);
2704*0b57cec5SDimitry Andric   assert(VTs.VTs[1] == MVT::i1);
2705*0b57cec5SDimitry Andric   unsigned Opc = Op.getOpcode();
2706*0b57cec5SDimitry Andric 
2707*0b57cec5SDimitry Andric   if (CY) {
2708*0b57cec5SDimitry Andric     uint32_t VY = CY->getZExtValue();
2709*0b57cec5SDimitry Andric     assert(VY != 0 && "This should have been folded");
2710*0b57cec5SDimitry Andric     // X +/- 1
2711*0b57cec5SDimitry Andric     if (VY != 1)
2712*0b57cec5SDimitry Andric       return SDValue();
2713*0b57cec5SDimitry Andric 
2714*0b57cec5SDimitry Andric     if (Opc == ISD::UADDO) {
2715*0b57cec5SDimitry Andric       SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
2716*0b57cec5SDimitry Andric       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
2717*0b57cec5SDimitry Andric                                 ISD::SETEQ);
2718*0b57cec5SDimitry Andric       return DAG.getMergeValues({Op, Ov}, dl);
2719*0b57cec5SDimitry Andric     }
2720*0b57cec5SDimitry Andric     if (Opc == ISD::USUBO) {
2721*0b57cec5SDimitry Andric       SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
2722*0b57cec5SDimitry Andric       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
2723*0b57cec5SDimitry Andric                                 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
2724*0b57cec5SDimitry Andric       return DAG.getMergeValues({Op, Ov}, dl);
2725*0b57cec5SDimitry Andric     }
2726*0b57cec5SDimitry Andric   }
2727*0b57cec5SDimitry Andric 
2728*0b57cec5SDimitry Andric   return SDValue();
2729*0b57cec5SDimitry Andric }
2730*0b57cec5SDimitry Andric 
2731*0b57cec5SDimitry Andric SDValue
2732*0b57cec5SDimitry Andric HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
2733*0b57cec5SDimitry Andric   const SDLoc &dl(Op);
2734*0b57cec5SDimitry Andric   unsigned Opc = Op.getOpcode();
2735*0b57cec5SDimitry Andric   SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
2736*0b57cec5SDimitry Andric 
2737*0b57cec5SDimitry Andric   if (Opc == ISD::ADDCARRY)
2738*0b57cec5SDimitry Andric     return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
2739*0b57cec5SDimitry Andric                        { X, Y, C });
2740*0b57cec5SDimitry Andric 
2741*0b57cec5SDimitry Andric   EVT CarryTy = C.getValueType();
2742*0b57cec5SDimitry Andric   SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
2743*0b57cec5SDimitry Andric                              { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
2744*0b57cec5SDimitry Andric   SDValue Out[] = { SubC.getValue(0),
2745*0b57cec5SDimitry Andric                     DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
2746*0b57cec5SDimitry Andric   return DAG.getMergeValues(Out, dl);
2747*0b57cec5SDimitry Andric }
2748*0b57cec5SDimitry Andric 
2749*0b57cec5SDimitry Andric SDValue
2750*0b57cec5SDimitry Andric HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
2751*0b57cec5SDimitry Andric   SDValue Chain     = Op.getOperand(0);
2752*0b57cec5SDimitry Andric   SDValue Offset    = Op.getOperand(1);
2753*0b57cec5SDimitry Andric   SDValue Handler   = Op.getOperand(2);
2754*0b57cec5SDimitry Andric   SDLoc dl(Op);
2755*0b57cec5SDimitry Andric   auto PtrVT = getPointerTy(DAG.getDataLayout());
2756*0b57cec5SDimitry Andric 
2757*0b57cec5SDimitry Andric   // Mark function as containing a call to EH_RETURN.
2758*0b57cec5SDimitry Andric   HexagonMachineFunctionInfo *FuncInfo =
2759*0b57cec5SDimitry Andric     DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
2760*0b57cec5SDimitry Andric   FuncInfo->setHasEHReturn();
2761*0b57cec5SDimitry Andric 
2762*0b57cec5SDimitry Andric   unsigned OffsetReg = Hexagon::R28;
2763*0b57cec5SDimitry Andric 
2764*0b57cec5SDimitry Andric   SDValue StoreAddr =
2765*0b57cec5SDimitry Andric       DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
2766*0b57cec5SDimitry Andric                   DAG.getIntPtrConstant(4, dl));
2767*0b57cec5SDimitry Andric   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
2768*0b57cec5SDimitry Andric   Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
2769*0b57cec5SDimitry Andric 
2770*0b57cec5SDimitry Andric   // Not needed we already use it as explict input to EH_RETURN.
2771*0b57cec5SDimitry Andric   // MF.getRegInfo().addLiveOut(OffsetReg);
2772*0b57cec5SDimitry Andric 
2773*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
2774*0b57cec5SDimitry Andric }
2775*0b57cec5SDimitry Andric 
2776*0b57cec5SDimitry Andric SDValue
2777*0b57cec5SDimitry Andric HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2778*0b57cec5SDimitry Andric   unsigned Opc = Op.getOpcode();
2779*0b57cec5SDimitry Andric 
2780*0b57cec5SDimitry Andric   // Handle INLINEASM first.
2781*0b57cec5SDimitry Andric   if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
2782*0b57cec5SDimitry Andric     return LowerINLINEASM(Op, DAG);
2783*0b57cec5SDimitry Andric 
2784*0b57cec5SDimitry Andric   if (isHvxOperation(Op)) {
2785*0b57cec5SDimitry Andric     // If HVX lowering returns nothing, try the default lowering.
2786*0b57cec5SDimitry Andric     if (SDValue V = LowerHvxOperation(Op, DAG))
2787*0b57cec5SDimitry Andric       return V;
2788*0b57cec5SDimitry Andric   }
2789*0b57cec5SDimitry Andric 
2790*0b57cec5SDimitry Andric   switch (Opc) {
2791*0b57cec5SDimitry Andric     default:
2792*0b57cec5SDimitry Andric #ifndef NDEBUG
2793*0b57cec5SDimitry Andric       Op.getNode()->dumpr(&DAG);
2794*0b57cec5SDimitry Andric       if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
2795*0b57cec5SDimitry Andric         errs() << "Error: check for a non-legal type in this operation\n";
2796*0b57cec5SDimitry Andric #endif
2797*0b57cec5SDimitry Andric       llvm_unreachable("Should not custom lower this!");
2798*0b57cec5SDimitry Andric     case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
2799*0b57cec5SDimitry Andric     case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
2800*0b57cec5SDimitry Andric     case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
2801*0b57cec5SDimitry Andric     case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
2802*0b57cec5SDimitry Andric     case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2803*0b57cec5SDimitry Andric     case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
2804*0b57cec5SDimitry Andric     case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
2805*0b57cec5SDimitry Andric     case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
2806*0b57cec5SDimitry Andric     case ISD::LOAD:                 return LowerLoad(Op, DAG);
2807*0b57cec5SDimitry Andric     case ISD::STORE:                return LowerStore(Op, DAG);
2808*0b57cec5SDimitry Andric     case ISD::UADDO:
2809*0b57cec5SDimitry Andric     case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
2810*0b57cec5SDimitry Andric     case ISD::ADDCARRY:
2811*0b57cec5SDimitry Andric     case ISD::SUBCARRY:             return LowerAddSubCarry(Op, DAG);
2812*0b57cec5SDimitry Andric     case ISD::SRA:
2813*0b57cec5SDimitry Andric     case ISD::SHL:
2814*0b57cec5SDimitry Andric     case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
2815*0b57cec5SDimitry Andric     case ISD::ROTL:                 return LowerROTL(Op, DAG);
2816*0b57cec5SDimitry Andric     case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
2817*0b57cec5SDimitry Andric     case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
2818*0b57cec5SDimitry Andric     case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
2819*0b57cec5SDimitry Andric     case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
2820*0b57cec5SDimitry Andric     case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
2821*0b57cec5SDimitry Andric     case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
2822*0b57cec5SDimitry Andric     case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
2823*0b57cec5SDimitry Andric     case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
2824*0b57cec5SDimitry Andric     case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
2825*0b57cec5SDimitry Andric     case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2826*0b57cec5SDimitry Andric     case ISD::VASTART:              return LowerVASTART(Op, DAG);
2827*0b57cec5SDimitry Andric     case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
2828*0b57cec5SDimitry Andric     case ISD::SETCC:                return LowerSETCC(Op, DAG);
2829*0b57cec5SDimitry Andric     case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
2830*0b57cec5SDimitry Andric     case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2831*0b57cec5SDimitry Andric     case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
2832*0b57cec5SDimitry Andric     case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
2833*0b57cec5SDimitry Andric     case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
2834*0b57cec5SDimitry Andric       break;
2835*0b57cec5SDimitry Andric   }
2836*0b57cec5SDimitry Andric 
2837*0b57cec5SDimitry Andric   return SDValue();
2838*0b57cec5SDimitry Andric }
2839*0b57cec5SDimitry Andric 
2840*0b57cec5SDimitry Andric void
2841*0b57cec5SDimitry Andric HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
2842*0b57cec5SDimitry Andric                                              SmallVectorImpl<SDValue> &Results,
2843*0b57cec5SDimitry Andric                                              SelectionDAG &DAG) const {
2844*0b57cec5SDimitry Andric   // We are only custom-lowering stores to verify the alignment of the
2845*0b57cec5SDimitry Andric   // address if it is a compile-time constant. Since a store can be modified
2846*0b57cec5SDimitry Andric   // during type-legalization (the value being stored may need legalization),
2847*0b57cec5SDimitry Andric   // return empty Results here to indicate that we don't really make any
2848*0b57cec5SDimitry Andric   // changes in the custom lowering.
2849*0b57cec5SDimitry Andric   if (N->getOpcode() != ISD::STORE)
2850*0b57cec5SDimitry Andric     return TargetLowering::LowerOperationWrapper(N, Results, DAG);
2851*0b57cec5SDimitry Andric }
2852*0b57cec5SDimitry Andric 
2853*0b57cec5SDimitry Andric void
2854*0b57cec5SDimitry Andric HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
2855*0b57cec5SDimitry Andric                                           SmallVectorImpl<SDValue> &Results,
2856*0b57cec5SDimitry Andric                                           SelectionDAG &DAG) const {
2857*0b57cec5SDimitry Andric   const SDLoc &dl(N);
2858*0b57cec5SDimitry Andric   switch (N->getOpcode()) {
2859*0b57cec5SDimitry Andric     case ISD::SRL:
2860*0b57cec5SDimitry Andric     case ISD::SRA:
2861*0b57cec5SDimitry Andric     case ISD::SHL:
2862*0b57cec5SDimitry Andric       return;
2863*0b57cec5SDimitry Andric     case ISD::BITCAST:
2864*0b57cec5SDimitry Andric       // Handle a bitcast from v8i1 to i8.
2865*0b57cec5SDimitry Andric       if (N->getValueType(0) == MVT::i8) {
2866*0b57cec5SDimitry Andric         SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
2867*0b57cec5SDimitry Andric                              N->getOperand(0), DAG);
2868*0b57cec5SDimitry Andric         Results.push_back(P);
2869*0b57cec5SDimitry Andric       }
2870*0b57cec5SDimitry Andric       break;
2871*0b57cec5SDimitry Andric   }
2872*0b57cec5SDimitry Andric }
2873*0b57cec5SDimitry Andric 
2874*0b57cec5SDimitry Andric /// Returns relocation base for the given PIC jumptable.
2875*0b57cec5SDimitry Andric SDValue
2876*0b57cec5SDimitry Andric HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2877*0b57cec5SDimitry Andric                                                 SelectionDAG &DAG) const {
2878*0b57cec5SDimitry Andric   int Idx = cast<JumpTableSDNode>(Table)->getIndex();
2879*0b57cec5SDimitry Andric   EVT VT = Table.getValueType();
2880*0b57cec5SDimitry Andric   SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
2881*0b57cec5SDimitry Andric   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
2882*0b57cec5SDimitry Andric }
2883*0b57cec5SDimitry Andric 
2884*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
2885*0b57cec5SDimitry Andric // Inline Assembly Support
2886*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
2887*0b57cec5SDimitry Andric 
2888*0b57cec5SDimitry Andric TargetLowering::ConstraintType
2889*0b57cec5SDimitry Andric HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
2890*0b57cec5SDimitry Andric   if (Constraint.size() == 1) {
2891*0b57cec5SDimitry Andric     switch (Constraint[0]) {
2892*0b57cec5SDimitry Andric       case 'q':
2893*0b57cec5SDimitry Andric       case 'v':
2894*0b57cec5SDimitry Andric         if (Subtarget.useHVXOps())
2895*0b57cec5SDimitry Andric           return C_RegisterClass;
2896*0b57cec5SDimitry Andric         break;
2897*0b57cec5SDimitry Andric       case 'a':
2898*0b57cec5SDimitry Andric         return C_RegisterClass;
2899*0b57cec5SDimitry Andric       default:
2900*0b57cec5SDimitry Andric         break;
2901*0b57cec5SDimitry Andric     }
2902*0b57cec5SDimitry Andric   }
2903*0b57cec5SDimitry Andric   return TargetLowering::getConstraintType(Constraint);
2904*0b57cec5SDimitry Andric }
2905*0b57cec5SDimitry Andric 
2906*0b57cec5SDimitry Andric std::pair<unsigned, const TargetRegisterClass*>
2907*0b57cec5SDimitry Andric HexagonTargetLowering::getRegForInlineAsmConstraint(
2908*0b57cec5SDimitry Andric     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
2909*0b57cec5SDimitry Andric 
2910*0b57cec5SDimitry Andric   if (Constraint.size() == 1) {
2911*0b57cec5SDimitry Andric     switch (Constraint[0]) {
2912*0b57cec5SDimitry Andric     case 'r':   // R0-R31
2913*0b57cec5SDimitry Andric       switch (VT.SimpleTy) {
2914*0b57cec5SDimitry Andric       default:
2915*0b57cec5SDimitry Andric         return {0u, nullptr};
2916*0b57cec5SDimitry Andric       case MVT::i1:
2917*0b57cec5SDimitry Andric       case MVT::i8:
2918*0b57cec5SDimitry Andric       case MVT::i16:
2919*0b57cec5SDimitry Andric       case MVT::i32:
2920*0b57cec5SDimitry Andric       case MVT::f32:
2921*0b57cec5SDimitry Andric         return {0u, &Hexagon::IntRegsRegClass};
2922*0b57cec5SDimitry Andric       case MVT::i64:
2923*0b57cec5SDimitry Andric       case MVT::f64:
2924*0b57cec5SDimitry Andric         return {0u, &Hexagon::DoubleRegsRegClass};
2925*0b57cec5SDimitry Andric       }
2926*0b57cec5SDimitry Andric       break;
2927*0b57cec5SDimitry Andric     case 'a': // M0-M1
2928*0b57cec5SDimitry Andric       if (VT != MVT::i32)
2929*0b57cec5SDimitry Andric         return {0u, nullptr};
2930*0b57cec5SDimitry Andric       return {0u, &Hexagon::ModRegsRegClass};
2931*0b57cec5SDimitry Andric     case 'q': // q0-q3
2932*0b57cec5SDimitry Andric       switch (VT.getSizeInBits()) {
2933*0b57cec5SDimitry Andric       default:
2934*0b57cec5SDimitry Andric         return {0u, nullptr};
2935*0b57cec5SDimitry Andric       case 512:
2936*0b57cec5SDimitry Andric       case 1024:
2937*0b57cec5SDimitry Andric         return {0u, &Hexagon::HvxQRRegClass};
2938*0b57cec5SDimitry Andric       }
2939*0b57cec5SDimitry Andric       break;
2940*0b57cec5SDimitry Andric     case 'v': // V0-V31
2941*0b57cec5SDimitry Andric       switch (VT.getSizeInBits()) {
2942*0b57cec5SDimitry Andric       default:
2943*0b57cec5SDimitry Andric         return {0u, nullptr};
2944*0b57cec5SDimitry Andric       case 512:
2945*0b57cec5SDimitry Andric         return {0u, &Hexagon::HvxVRRegClass};
2946*0b57cec5SDimitry Andric       case 1024:
2947*0b57cec5SDimitry Andric         if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
2948*0b57cec5SDimitry Andric           return {0u, &Hexagon::HvxVRRegClass};
2949*0b57cec5SDimitry Andric         return {0u, &Hexagon::HvxWRRegClass};
2950*0b57cec5SDimitry Andric       case 2048:
2951*0b57cec5SDimitry Andric         return {0u, &Hexagon::HvxWRRegClass};
2952*0b57cec5SDimitry Andric       }
2953*0b57cec5SDimitry Andric       break;
2954*0b57cec5SDimitry Andric     default:
2955*0b57cec5SDimitry Andric       return {0u, nullptr};
2956*0b57cec5SDimitry Andric     }
2957*0b57cec5SDimitry Andric   }
2958*0b57cec5SDimitry Andric 
2959*0b57cec5SDimitry Andric   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2960*0b57cec5SDimitry Andric }
2961*0b57cec5SDimitry Andric 
2962*0b57cec5SDimitry Andric /// isFPImmLegal - Returns true if the target can instruction select the
2963*0b57cec5SDimitry Andric /// specified FP immediate natively. If false, the legalizer will
2964*0b57cec5SDimitry Andric /// materialize the FP immediate as a load from a constant pool.
2965*0b57cec5SDimitry Andric bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
2966*0b57cec5SDimitry Andric                                          bool ForCodeSize) const {
2967*0b57cec5SDimitry Andric   return true;
2968*0b57cec5SDimitry Andric }
2969*0b57cec5SDimitry Andric 
2970*0b57cec5SDimitry Andric /// isLegalAddressingMode - Return true if the addressing mode represented by
2971*0b57cec5SDimitry Andric /// AM is legal for this target, for a load/store of the specified type.
2972*0b57cec5SDimitry Andric bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
2973*0b57cec5SDimitry Andric                                                   const AddrMode &AM, Type *Ty,
2974*0b57cec5SDimitry Andric                                                   unsigned AS, Instruction *I) const {
2975*0b57cec5SDimitry Andric   if (Ty->isSized()) {
2976*0b57cec5SDimitry Andric     // When LSR detects uses of the same base address to access different
2977*0b57cec5SDimitry Andric     // types (e.g. unions), it will assume a conservative type for these
2978*0b57cec5SDimitry Andric     // uses:
2979*0b57cec5SDimitry Andric     //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
2980*0b57cec5SDimitry Andric     // The type Ty passed here would then be "void". Skip the alignment
2981*0b57cec5SDimitry Andric     // checks, but do not return false right away, since that confuses
2982*0b57cec5SDimitry Andric     // LSR into crashing.
2983*0b57cec5SDimitry Andric     unsigned A = DL.getABITypeAlignment(Ty);
2984*0b57cec5SDimitry Andric     // The base offset must be a multiple of the alignment.
2985*0b57cec5SDimitry Andric     if ((AM.BaseOffs % A) != 0)
2986*0b57cec5SDimitry Andric       return false;
2987*0b57cec5SDimitry Andric     // The shifted offset must fit in 11 bits.
2988*0b57cec5SDimitry Andric     if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
2989*0b57cec5SDimitry Andric       return false;
2990*0b57cec5SDimitry Andric   }
2991*0b57cec5SDimitry Andric 
2992*0b57cec5SDimitry Andric   // No global is ever allowed as a base.
2993*0b57cec5SDimitry Andric   if (AM.BaseGV)
2994*0b57cec5SDimitry Andric     return false;
2995*0b57cec5SDimitry Andric 
2996*0b57cec5SDimitry Andric   int Scale = AM.Scale;
2997*0b57cec5SDimitry Andric   if (Scale < 0)
2998*0b57cec5SDimitry Andric     Scale = -Scale;
2999*0b57cec5SDimitry Andric   switch (Scale) {
3000*0b57cec5SDimitry Andric   case 0:  // No scale reg, "r+i", "r", or just "i".
3001*0b57cec5SDimitry Andric     break;
3002*0b57cec5SDimitry Andric   default: // No scaled addressing mode.
3003*0b57cec5SDimitry Andric     return false;
3004*0b57cec5SDimitry Andric   }
3005*0b57cec5SDimitry Andric   return true;
3006*0b57cec5SDimitry Andric }
3007*0b57cec5SDimitry Andric 
3008*0b57cec5SDimitry Andric /// Return true if folding a constant offset with the given GlobalAddress is
3009*0b57cec5SDimitry Andric /// legal.  It is frequently not legal in PIC relocation models.
3010*0b57cec5SDimitry Andric bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3011*0b57cec5SDimitry Andric       const {
3012*0b57cec5SDimitry Andric   return HTM.getRelocationModel() == Reloc::Static;
3013*0b57cec5SDimitry Andric }
3014*0b57cec5SDimitry Andric 
3015*0b57cec5SDimitry Andric /// isLegalICmpImmediate - Return true if the specified immediate is legal
3016*0b57cec5SDimitry Andric /// icmp immediate, that is the target has icmp instructions which can compare
3017*0b57cec5SDimitry Andric /// a register against the immediate without having to materialize the
3018*0b57cec5SDimitry Andric /// immediate into a register.
3019*0b57cec5SDimitry Andric bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3020*0b57cec5SDimitry Andric   return Imm >= -512 && Imm <= 511;
3021*0b57cec5SDimitry Andric }
3022*0b57cec5SDimitry Andric 
3023*0b57cec5SDimitry Andric /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3024*0b57cec5SDimitry Andric /// for tail call optimization. Targets which want to do tail call
3025*0b57cec5SDimitry Andric /// optimization should implement this function.
3026*0b57cec5SDimitry Andric bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3027*0b57cec5SDimitry Andric                                  SDValue Callee,
3028*0b57cec5SDimitry Andric                                  CallingConv::ID CalleeCC,
3029*0b57cec5SDimitry Andric                                  bool IsVarArg,
3030*0b57cec5SDimitry Andric                                  bool IsCalleeStructRet,
3031*0b57cec5SDimitry Andric                                  bool IsCallerStructRet,
3032*0b57cec5SDimitry Andric                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3033*0b57cec5SDimitry Andric                                  const SmallVectorImpl<SDValue> &OutVals,
3034*0b57cec5SDimitry Andric                                  const SmallVectorImpl<ISD::InputArg> &Ins,
3035*0b57cec5SDimitry Andric                                  SelectionDAG& DAG) const {
3036*0b57cec5SDimitry Andric   const Function &CallerF = DAG.getMachineFunction().getFunction();
3037*0b57cec5SDimitry Andric   CallingConv::ID CallerCC = CallerF.getCallingConv();
3038*0b57cec5SDimitry Andric   bool CCMatch = CallerCC == CalleeCC;
3039*0b57cec5SDimitry Andric 
3040*0b57cec5SDimitry Andric   // ***************************************************************************
3041*0b57cec5SDimitry Andric   //  Look for obvious safe cases to perform tail call optimization that do not
3042*0b57cec5SDimitry Andric   //  require ABI changes.
3043*0b57cec5SDimitry Andric   // ***************************************************************************
3044*0b57cec5SDimitry Andric 
3045*0b57cec5SDimitry Andric   // If this is a tail call via a function pointer, then don't do it!
3046*0b57cec5SDimitry Andric   if (!isa<GlobalAddressSDNode>(Callee) &&
3047*0b57cec5SDimitry Andric       !isa<ExternalSymbolSDNode>(Callee)) {
3048*0b57cec5SDimitry Andric     return false;
3049*0b57cec5SDimitry Andric   }
3050*0b57cec5SDimitry Andric 
3051*0b57cec5SDimitry Andric   // Do not optimize if the calling conventions do not match and the conventions
3052*0b57cec5SDimitry Andric   // used are not C or Fast.
3053*0b57cec5SDimitry Andric   if (!CCMatch) {
3054*0b57cec5SDimitry Andric     bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3055*0b57cec5SDimitry Andric     bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3056*0b57cec5SDimitry Andric     // If R & E, then ok.
3057*0b57cec5SDimitry Andric     if (!R || !E)
3058*0b57cec5SDimitry Andric       return false;
3059*0b57cec5SDimitry Andric   }
3060*0b57cec5SDimitry Andric 
3061*0b57cec5SDimitry Andric   // Do not tail call optimize vararg calls.
3062*0b57cec5SDimitry Andric   if (IsVarArg)
3063*0b57cec5SDimitry Andric     return false;
3064*0b57cec5SDimitry Andric 
3065*0b57cec5SDimitry Andric   // Also avoid tail call optimization if either caller or callee uses struct
3066*0b57cec5SDimitry Andric   // return semantics.
3067*0b57cec5SDimitry Andric   if (IsCalleeStructRet || IsCallerStructRet)
3068*0b57cec5SDimitry Andric     return false;
3069*0b57cec5SDimitry Andric 
3070*0b57cec5SDimitry Andric   // In addition to the cases above, we also disable Tail Call Optimization if
3071*0b57cec5SDimitry Andric   // the calling convention code that at least one outgoing argument needs to
3072*0b57cec5SDimitry Andric   // go on the stack. We cannot check that here because at this point that
3073*0b57cec5SDimitry Andric   // information is not available.
3074*0b57cec5SDimitry Andric   return true;
3075*0b57cec5SDimitry Andric }
3076*0b57cec5SDimitry Andric 
3077*0b57cec5SDimitry Andric /// Returns the target specific optimal type for load and store operations as
3078*0b57cec5SDimitry Andric /// a result of memset, memcpy, and memmove lowering.
3079*0b57cec5SDimitry Andric ///
3080*0b57cec5SDimitry Andric /// If DstAlign is zero that means it's safe to destination alignment can
3081*0b57cec5SDimitry Andric /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3082*0b57cec5SDimitry Andric /// a need to check it against alignment requirement, probably because the
3083*0b57cec5SDimitry Andric /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3084*0b57cec5SDimitry Andric /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3085*0b57cec5SDimitry Andric /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3086*0b57cec5SDimitry Andric /// does not need to be loaded.  It returns EVT::Other if the type should be
3087*0b57cec5SDimitry Andric /// determined using generic target-independent logic.
3088*0b57cec5SDimitry Andric EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
3089*0b57cec5SDimitry Andric       unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
3090*0b57cec5SDimitry Andric       bool MemcpyStrSrc, const AttributeList &FuncAttributes) const {
3091*0b57cec5SDimitry Andric 
3092*0b57cec5SDimitry Andric   auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
3093*0b57cec5SDimitry Andric     return (GivenA % MinA) == 0;
3094*0b57cec5SDimitry Andric   };
3095*0b57cec5SDimitry Andric 
3096*0b57cec5SDimitry Andric   if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
3097*0b57cec5SDimitry Andric     return MVT::i64;
3098*0b57cec5SDimitry Andric   if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
3099*0b57cec5SDimitry Andric     return MVT::i32;
3100*0b57cec5SDimitry Andric   if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
3101*0b57cec5SDimitry Andric     return MVT::i16;
3102*0b57cec5SDimitry Andric 
3103*0b57cec5SDimitry Andric   return MVT::Other;
3104*0b57cec5SDimitry Andric }
3105*0b57cec5SDimitry Andric 
3106*0b57cec5SDimitry Andric bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3107*0b57cec5SDimitry Andric     EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags,
3108*0b57cec5SDimitry Andric     bool *Fast) const {
3109*0b57cec5SDimitry Andric   if (Fast)
3110*0b57cec5SDimitry Andric     *Fast = false;
3111*0b57cec5SDimitry Andric   return Subtarget.isHVXVectorType(VT.getSimpleVT());
3112*0b57cec5SDimitry Andric }
3113*0b57cec5SDimitry Andric 
3114*0b57cec5SDimitry Andric std::pair<const TargetRegisterClass*, uint8_t>
3115*0b57cec5SDimitry Andric HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3116*0b57cec5SDimitry Andric       MVT VT) const {
3117*0b57cec5SDimitry Andric   if (Subtarget.isHVXVectorType(VT, true)) {
3118*0b57cec5SDimitry Andric     unsigned BitWidth = VT.getSizeInBits();
3119*0b57cec5SDimitry Andric     unsigned VecWidth = Subtarget.getVectorLength() * 8;
3120*0b57cec5SDimitry Andric 
3121*0b57cec5SDimitry Andric     if (VT.getVectorElementType() == MVT::i1)
3122*0b57cec5SDimitry Andric       return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3123*0b57cec5SDimitry Andric     if (BitWidth == VecWidth)
3124*0b57cec5SDimitry Andric       return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3125*0b57cec5SDimitry Andric     assert(BitWidth == 2 * VecWidth);
3126*0b57cec5SDimitry Andric     return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3127*0b57cec5SDimitry Andric   }
3128*0b57cec5SDimitry Andric 
3129*0b57cec5SDimitry Andric   return TargetLowering::findRepresentativeClass(TRI, VT);
3130*0b57cec5SDimitry Andric }
3131*0b57cec5SDimitry Andric 
3132*0b57cec5SDimitry Andric bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3133*0b57cec5SDimitry Andric       ISD::LoadExtType ExtTy, EVT NewVT) const {
3134*0b57cec5SDimitry Andric   // TODO: This may be worth removing. Check regression tests for diffs.
3135*0b57cec5SDimitry Andric   if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3136*0b57cec5SDimitry Andric     return false;
3137*0b57cec5SDimitry Andric 
3138*0b57cec5SDimitry Andric   auto *L = cast<LoadSDNode>(Load);
3139*0b57cec5SDimitry Andric   std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3140*0b57cec5SDimitry Andric   // Small-data object, do not shrink.
3141*0b57cec5SDimitry Andric   if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3142*0b57cec5SDimitry Andric     return false;
3143*0b57cec5SDimitry Andric   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3144*0b57cec5SDimitry Andric     auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3145*0b57cec5SDimitry Andric     const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3146*0b57cec5SDimitry Andric     return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3147*0b57cec5SDimitry Andric   }
3148*0b57cec5SDimitry Andric   return true;
3149*0b57cec5SDimitry Andric }
3150*0b57cec5SDimitry Andric 
3151*0b57cec5SDimitry Andric Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
3152*0b57cec5SDimitry Andric       AtomicOrdering Ord) const {
3153*0b57cec5SDimitry Andric   BasicBlock *BB = Builder.GetInsertBlock();
3154*0b57cec5SDimitry Andric   Module *M = BB->getParent()->getParent();
3155*0b57cec5SDimitry Andric   auto PT = cast<PointerType>(Addr->getType());
3156*0b57cec5SDimitry Andric   Type *Ty = PT->getElementType();
3157*0b57cec5SDimitry Andric   unsigned SZ = Ty->getPrimitiveSizeInBits();
3158*0b57cec5SDimitry Andric   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3159*0b57cec5SDimitry Andric   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3160*0b57cec5SDimitry Andric                                    : Intrinsic::hexagon_L4_loadd_locked;
3161*0b57cec5SDimitry Andric   Function *Fn = Intrinsic::getDeclaration(M, IntID);
3162*0b57cec5SDimitry Andric 
3163*0b57cec5SDimitry Andric   PointerType *NewPtrTy
3164*0b57cec5SDimitry Andric     = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
3165*0b57cec5SDimitry Andric   Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3166*0b57cec5SDimitry Andric 
3167*0b57cec5SDimitry Andric   Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3168*0b57cec5SDimitry Andric 
3169*0b57cec5SDimitry Andric   return Builder.CreateBitCast(Call, Ty);
3170*0b57cec5SDimitry Andric }
3171*0b57cec5SDimitry Andric 
3172*0b57cec5SDimitry Andric /// Perform a store-conditional operation to Addr. Return the status of the
3173*0b57cec5SDimitry Andric /// store. This should be 0 if the store succeeded, non-zero otherwise.
3174*0b57cec5SDimitry Andric Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
3175*0b57cec5SDimitry Andric       Value *Val, Value *Addr, AtomicOrdering Ord) const {
3176*0b57cec5SDimitry Andric   BasicBlock *BB = Builder.GetInsertBlock();
3177*0b57cec5SDimitry Andric   Module *M = BB->getParent()->getParent();
3178*0b57cec5SDimitry Andric   Type *Ty = Val->getType();
3179*0b57cec5SDimitry Andric   unsigned SZ = Ty->getPrimitiveSizeInBits();
3180*0b57cec5SDimitry Andric 
3181*0b57cec5SDimitry Andric   Type *CastTy = Builder.getIntNTy(SZ);
3182*0b57cec5SDimitry Andric   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3183*0b57cec5SDimitry Andric   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3184*0b57cec5SDimitry Andric                                    : Intrinsic::hexagon_S4_stored_locked;
3185*0b57cec5SDimitry Andric   Function *Fn = Intrinsic::getDeclaration(M, IntID);
3186*0b57cec5SDimitry Andric 
3187*0b57cec5SDimitry Andric   unsigned AS = Addr->getType()->getPointerAddressSpace();
3188*0b57cec5SDimitry Andric   Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3189*0b57cec5SDimitry Andric   Val = Builder.CreateBitCast(Val, CastTy);
3190*0b57cec5SDimitry Andric 
3191*0b57cec5SDimitry Andric   Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3192*0b57cec5SDimitry Andric   Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3193*0b57cec5SDimitry Andric   Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3194*0b57cec5SDimitry Andric   return Ext;
3195*0b57cec5SDimitry Andric }
3196*0b57cec5SDimitry Andric 
3197*0b57cec5SDimitry Andric TargetLowering::AtomicExpansionKind
3198*0b57cec5SDimitry Andric HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3199*0b57cec5SDimitry Andric   // Do not expand loads and stores that don't exceed 64 bits.
3200*0b57cec5SDimitry Andric   return LI->getType()->getPrimitiveSizeInBits() > 64
3201*0b57cec5SDimitry Andric              ? AtomicExpansionKind::LLOnly
3202*0b57cec5SDimitry Andric              : AtomicExpansionKind::None;
3203*0b57cec5SDimitry Andric }
3204*0b57cec5SDimitry Andric 
3205*0b57cec5SDimitry Andric bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3206*0b57cec5SDimitry Andric   // Do not expand loads and stores that don't exceed 64 bits.
3207*0b57cec5SDimitry Andric   return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
3208*0b57cec5SDimitry Andric }
3209*0b57cec5SDimitry Andric 
3210*0b57cec5SDimitry Andric TargetLowering::AtomicExpansionKind
3211*0b57cec5SDimitry Andric HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3212*0b57cec5SDimitry Andric     AtomicCmpXchgInst *AI) const {
3213*0b57cec5SDimitry Andric   const DataLayout &DL = AI->getModule()->getDataLayout();
3214*0b57cec5SDimitry Andric   unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
3215*0b57cec5SDimitry Andric   if (Size >= 4 && Size <= 8)
3216*0b57cec5SDimitry Andric     return AtomicExpansionKind::LLSC;
3217*0b57cec5SDimitry Andric   return AtomicExpansionKind::None;
3218*0b57cec5SDimitry Andric }
3219