1 //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Hexagon.h" 10 #include "HexagonISelDAGToDAG.h" 11 #include "HexagonISelLowering.h" 12 #include "HexagonTargetMachine.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/CodeGen/MachineInstrBuilder.h" 15 #include "llvm/CodeGen/SelectionDAGISel.h" 16 #include "llvm/IR/Intrinsics.h" 17 #include "llvm/IR/IntrinsicsHexagon.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/Support/Debug.h" 20 21 #include <deque> 22 #include <map> 23 #include <set> 24 #include <utility> 25 #include <vector> 26 27 #define DEBUG_TYPE "hexagon-isel" 28 29 using namespace llvm; 30 31 namespace { 32 33 // -------------------------------------------------------------------- 34 // Implementation of permutation networks. 35 36 // Implementation of the node routing through butterfly networks: 37 // - Forward delta. 38 // - Reverse delta. 39 // - Benes. 40 // 41 // 42 // Forward delta network consists of log(N) steps, where N is the number 43 // of inputs. In each step, an input can stay in place, or it can get 44 // routed to another position[1]. The step after that consists of two 45 // networks, each half in size in terms of the number of nodes. In those 46 // terms, in the given step, an input can go to either the upper or the 47 // lower network in the next step. 48 // 49 // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both 50 // positions as long as there is no conflict. 51 52 // Here's a delta network for 8 inputs, only the switching routes are 53 // shown: 54 // 55 // Steps: 56 // |- 1 ---------------|- 2 -----|- 3 -| 57 // 58 // Inp[0] *** *** *** *** Out[0] 59 // \ / \ / \ / 60 // \ / \ / X 61 // \ / \ / / \ 62 // Inp[1] *** \ / *** X *** *** Out[1] 63 // \ \ / / \ / \ / 64 // \ \ / / X X 65 // \ \ / / / \ / \ 66 // Inp[2] *** \ \ / / *** X *** *** Out[2] 67 // \ \ X / / / \ \ / 68 // \ \ / \ / / / \ X 69 // \ X X / / \ / \ 70 // Inp[3] *** \ / \ / \ / *** *** *** Out[3] 71 // \ X X X / 72 // \ / \ / \ / \ / 73 // X X X X 74 // / \ / \ / \ / \ 75 // / X X X \ 76 // Inp[4] *** / \ / \ / \ *** *** *** Out[4] 77 // / X X \ \ / \ / 78 // / / \ / \ \ \ / X 79 // / / X \ \ \ / / \ 80 // Inp[5] *** / / \ \ *** X *** *** Out[5] 81 // / / \ \ \ / \ / 82 // / / \ \ X X 83 // / / \ \ / \ / \ 84 // Inp[6] *** / \ *** X *** *** Out[6] 85 // / \ / \ \ / 86 // / \ / \ X 87 // / \ / \ / \ 88 // Inp[7] *** *** *** *** Out[7] 89 // 90 // 91 // Reverse delta network is same as delta network, with the steps in 92 // the opposite order. 93 // 94 // 95 // Benes network is a forward delta network immediately followed by 96 // a reverse delta network. 97 98 enum class ColorKind { None, Red, Black }; 99 100 // Graph coloring utility used to partition nodes into two groups: 101 // they will correspond to nodes routed to the upper and lower networks. 102 struct Coloring { 103 using Node = int; 104 using MapType = std::map<Node, ColorKind>; 105 static constexpr Node Ignore = Node(-1); 106 107 Coloring(ArrayRef<Node> Ord) : Order(Ord) { 108 build(); 109 if (!color()) 110 Colors.clear(); 111 } 112 113 const MapType &colors() const { 114 return Colors; 115 } 116 117 ColorKind other(ColorKind Color) { 118 if (Color == ColorKind::None) 119 return ColorKind::Red; 120 return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red; 121 } 122 123 LLVM_DUMP_METHOD void dump() const; 124 125 private: 126 ArrayRef<Node> Order; 127 MapType Colors; 128 std::set<Node> Needed; 129 130 using NodeSet = std::set<Node>; 131 std::map<Node,NodeSet> Edges; 132 133 Node conj(Node Pos) { 134 Node Num = Order.size(); 135 return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2; 136 } 137 138 ColorKind getColor(Node N) { 139 auto F = Colors.find(N); 140 return F != Colors.end() ? F->second : ColorKind::None; 141 } 142 143 std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes); 144 145 void build(); 146 bool color(); 147 }; 148 } // namespace 149 150 std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) { 151 auto Color = ColorKind::None; 152 for (Node N : Nodes) { 153 ColorKind ColorN = getColor(N); 154 if (ColorN == ColorKind::None) 155 continue; 156 if (Color == ColorKind::None) 157 Color = ColorN; 158 else if (Color != ColorKind::None && Color != ColorN) 159 return { false, ColorKind::None }; 160 } 161 return { true, Color }; 162 } 163 164 void Coloring::build() { 165 // Add Order[P] and Order[conj(P)] to Edges. 166 for (unsigned P = 0; P != Order.size(); ++P) { 167 Node I = Order[P]; 168 if (I != Ignore) { 169 Needed.insert(I); 170 Node PC = Order[conj(P)]; 171 if (PC != Ignore && PC != I) 172 Edges[I].insert(PC); 173 } 174 } 175 // Add I and conj(I) to Edges. 176 for (unsigned I = 0; I != Order.size(); ++I) { 177 if (!Needed.count(I)) 178 continue; 179 Node C = conj(I); 180 // This will create an entry in the edge table, even if I is not 181 // connected to any other node. This is necessary, because it still 182 // needs to be colored. 183 NodeSet &Is = Edges[I]; 184 if (Needed.count(C)) 185 Is.insert(C); 186 } 187 } 188 189 bool Coloring::color() { 190 SetVector<Node> FirstQ; 191 auto Enqueue = [this,&FirstQ] (Node N) { 192 SetVector<Node> Q; 193 Q.insert(N); 194 for (unsigned I = 0; I != Q.size(); ++I) { 195 NodeSet &Ns = Edges[Q[I]]; 196 Q.insert(Ns.begin(), Ns.end()); 197 } 198 FirstQ.insert(Q.begin(), Q.end()); 199 }; 200 for (Node N : Needed) 201 Enqueue(N); 202 203 for (Node N : FirstQ) { 204 if (Colors.count(N)) 205 continue; 206 NodeSet &Ns = Edges[N]; 207 auto P = getUniqueColor(Ns); 208 if (!P.first) 209 return false; 210 Colors[N] = other(P.second); 211 } 212 213 // First, color nodes that don't have any dups. 214 for (auto E : Edges) { 215 Node N = E.first; 216 if (!Needed.count(conj(N)) || Colors.count(N)) 217 continue; 218 auto P = getUniqueColor(E.second); 219 if (!P.first) 220 return false; 221 Colors[N] = other(P.second); 222 } 223 224 // Now, nodes that are still uncolored. Since the graph can be modified 225 // in this step, create a work queue. 226 std::vector<Node> WorkQ; 227 for (auto E : Edges) { 228 Node N = E.first; 229 if (!Colors.count(N)) 230 WorkQ.push_back(N); 231 } 232 233 for (Node N : WorkQ) { 234 NodeSet &Ns = Edges[N]; 235 auto P = getUniqueColor(Ns); 236 if (P.first) { 237 Colors[N] = other(P.second); 238 continue; 239 } 240 241 // Coloring failed. Split this node. 242 Node C = conj(N); 243 ColorKind ColorN = other(ColorKind::None); 244 ColorKind ColorC = other(ColorN); 245 NodeSet &Cs = Edges[C]; 246 NodeSet CopyNs = Ns; 247 for (Node M : CopyNs) { 248 ColorKind ColorM = getColor(M); 249 if (ColorM == ColorC) { 250 // Connect M with C, disconnect M from N. 251 Cs.insert(M); 252 Edges[M].insert(C); 253 Ns.erase(M); 254 Edges[M].erase(N); 255 } 256 } 257 Colors[N] = ColorN; 258 Colors[C] = ColorC; 259 } 260 261 // Explicitly assign "None" to all uncolored nodes. 262 for (unsigned I = 0; I != Order.size(); ++I) 263 if (Colors.count(I) == 0) 264 Colors[I] = ColorKind::None; 265 266 return true; 267 } 268 269 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 270 void Coloring::dump() const { 271 dbgs() << "{ Order: {"; 272 for (Node P : Order) { 273 if (P != Ignore) 274 dbgs() << ' ' << P; 275 else 276 dbgs() << " -"; 277 } 278 dbgs() << " }\n"; 279 dbgs() << " Needed: {"; 280 for (Node N : Needed) 281 dbgs() << ' ' << N; 282 dbgs() << " }\n"; 283 284 dbgs() << " Edges: {\n"; 285 for (auto E : Edges) { 286 dbgs() << " " << E.first << " -> {"; 287 for (auto N : E.second) 288 dbgs() << ' ' << N; 289 dbgs() << " }\n"; 290 } 291 dbgs() << " }\n"; 292 293 auto ColorKindToName = [](ColorKind C) { 294 switch (C) { 295 case ColorKind::None: 296 return "None"; 297 case ColorKind::Red: 298 return "Red"; 299 case ColorKind::Black: 300 return "Black"; 301 } 302 llvm_unreachable("all ColorKinds should be handled by the switch above"); 303 }; 304 305 dbgs() << " Colors: {\n"; 306 for (auto C : Colors) 307 dbgs() << " " << C.first << " -> " << ColorKindToName(C.second) << "\n"; 308 dbgs() << " }\n}\n"; 309 } 310 #endif 311 312 namespace { 313 // Base class of for reordering networks. They don't strictly need to be 314 // permutations, as outputs with repeated occurrences of an input element 315 // are allowed. 316 struct PermNetwork { 317 using Controls = std::vector<uint8_t>; 318 using ElemType = int; 319 static constexpr ElemType Ignore = ElemType(-1); 320 321 enum : uint8_t { 322 None, 323 Pass, 324 Switch 325 }; 326 enum : uint8_t { 327 Forward, 328 Reverse 329 }; 330 331 PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) { 332 Order.assign(Ord.data(), Ord.data()+Ord.size()); 333 Log = 0; 334 335 unsigned S = Order.size(); 336 while (S >>= 1) 337 ++Log; 338 339 Table.resize(Order.size()); 340 for (RowType &Row : Table) 341 Row.resize(Mult*Log, None); 342 } 343 344 void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const { 345 unsigned Size = Order.size(); 346 V.resize(Size); 347 for (unsigned I = 0; I != Size; ++I) { 348 unsigned W = 0; 349 for (unsigned L = 0; L != Log; ++L) { 350 unsigned C = ctl(I, StartAt+L) == Switch; 351 if (Dir == Forward) 352 W |= C << (Log-1-L); 353 else 354 W |= C << L; 355 } 356 assert(isUInt<8>(W)); 357 V[I] = uint8_t(W); 358 } 359 } 360 361 uint8_t ctl(ElemType Pos, unsigned Step) const { 362 return Table[Pos][Step]; 363 } 364 unsigned size() const { 365 return Order.size(); 366 } 367 unsigned steps() const { 368 return Log; 369 } 370 371 protected: 372 unsigned Log; 373 std::vector<ElemType> Order; 374 using RowType = std::vector<uint8_t>; 375 std::vector<RowType> Table; 376 }; 377 378 struct ForwardDeltaNetwork : public PermNetwork { 379 ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} 380 381 bool run(Controls &V) { 382 if (!route(Order.data(), Table.data(), size(), 0)) 383 return false; 384 getControls(V, 0, Forward); 385 return true; 386 } 387 388 private: 389 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 390 }; 391 392 struct ReverseDeltaNetwork : public PermNetwork { 393 ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} 394 395 bool run(Controls &V) { 396 if (!route(Order.data(), Table.data(), size(), 0)) 397 return false; 398 getControls(V, 0, Reverse); 399 return true; 400 } 401 402 private: 403 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 404 }; 405 406 struct BenesNetwork : public PermNetwork { 407 BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {} 408 409 bool run(Controls &F, Controls &R) { 410 if (!route(Order.data(), Table.data(), size(), 0)) 411 return false; 412 413 getControls(F, 0, Forward); 414 getControls(R, Log, Reverse); 415 return true; 416 } 417 418 private: 419 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 420 }; 421 } // namespace 422 423 bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, 424 unsigned Step) { 425 bool UseUp = false, UseDown = false; 426 ElemType Num = Size; 427 428 // Cannot use coloring here, because coloring is used to determine 429 // the "big" switch, i.e. the one that changes halves, and in a forward 430 // network, a color can be simultaneously routed to both halves in the 431 // step we're working on. 432 for (ElemType J = 0; J != Num; ++J) { 433 ElemType I = P[J]; 434 // I is the position in the input, 435 // J is the position in the output. 436 if (I == Ignore) 437 continue; 438 uint8_t S; 439 if (I < Num/2) 440 S = (J < Num/2) ? Pass : Switch; 441 else 442 S = (J < Num/2) ? Switch : Pass; 443 444 // U is the element in the table that needs to be updated. 445 ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2); 446 if (U < Num/2) 447 UseUp = true; 448 else 449 UseDown = true; 450 if (T[U][Step] != S && T[U][Step] != None) 451 return false; 452 T[U][Step] = S; 453 } 454 455 for (ElemType J = 0; J != Num; ++J) 456 if (P[J] != Ignore && P[J] >= Num/2) 457 P[J] -= Num/2; 458 459 if (Step+1 < Log) { 460 if (UseUp && !route(P, T, Size/2, Step+1)) 461 return false; 462 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 463 return false; 464 } 465 return true; 466 } 467 468 bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, 469 unsigned Step) { 470 unsigned Pets = Log-1 - Step; 471 bool UseUp = false, UseDown = false; 472 ElemType Num = Size; 473 474 // In this step half-switching occurs, so coloring can be used. 475 Coloring G({P,Size}); 476 const Coloring::MapType &M = G.colors(); 477 if (M.empty()) 478 return false; 479 480 ColorKind ColorUp = ColorKind::None; 481 for (ElemType J = 0; J != Num; ++J) { 482 ElemType I = P[J]; 483 // I is the position in the input, 484 // J is the position in the output. 485 if (I == Ignore) 486 continue; 487 ColorKind C = M.at(I); 488 if (C == ColorKind::None) 489 continue; 490 // During "Step", inputs cannot switch halves, so if the "up" color 491 // is still unknown, make sure that it is selected in such a way that 492 // "I" will stay in the same half. 493 bool InpUp = I < Num/2; 494 if (ColorUp == ColorKind::None) 495 ColorUp = InpUp ? C : G.other(C); 496 if ((C == ColorUp) != InpUp) { 497 // If I should go to a different half than where is it now, give up. 498 return false; 499 } 500 501 uint8_t S; 502 if (InpUp) { 503 S = (J < Num/2) ? Pass : Switch; 504 UseUp = true; 505 } else { 506 S = (J < Num/2) ? Switch : Pass; 507 UseDown = true; 508 } 509 T[J][Pets] = S; 510 } 511 512 // Reorder the working permutation according to the computed switch table 513 // for the last step (i.e. Pets). 514 for (ElemType J = 0, E = Size / 2; J != E; ++J) { 515 ElemType PJ = P[J]; // Current values of P[J] 516 ElemType PC = P[J+Size/2]; // and P[conj(J)] 517 ElemType QJ = PJ; // New values of P[J] 518 ElemType QC = PC; // and P[conj(J)] 519 if (T[J][Pets] == Switch) 520 QC = PJ; 521 if (T[J+Size/2][Pets] == Switch) 522 QJ = PC; 523 P[J] = QJ; 524 P[J+Size/2] = QC; 525 } 526 527 for (ElemType J = 0; J != Num; ++J) 528 if (P[J] != Ignore && P[J] >= Num/2) 529 P[J] -= Num/2; 530 531 if (Step+1 < Log) { 532 if (UseUp && !route(P, T, Size/2, Step+1)) 533 return false; 534 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 535 return false; 536 } 537 return true; 538 } 539 540 bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size, 541 unsigned Step) { 542 Coloring G({P,Size}); 543 const Coloring::MapType &M = G.colors(); 544 if (M.empty()) 545 return false; 546 ElemType Num = Size; 547 548 unsigned Pets = 2*Log-1 - Step; 549 bool UseUp = false, UseDown = false; 550 551 // Both assignments, i.e. Red->Up and Red->Down are valid, but they will 552 // result in different controls. Let's pick the one where the first 553 // control will be "Pass". 554 ColorKind ColorUp = ColorKind::None; 555 for (ElemType J = 0; J != Num; ++J) { 556 ElemType I = P[J]; 557 if (I == Ignore) 558 continue; 559 ColorKind C = M.at(I); 560 if (C == ColorKind::None) 561 continue; 562 if (ColorUp == ColorKind::None) { 563 ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black; 564 } 565 unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2; 566 if (C == ColorUp) { 567 if (I < Num/2) 568 T[I][Step] = Pass; 569 else 570 T[CI][Step] = Switch; 571 T[J][Pets] = (J < Num/2) ? Pass : Switch; 572 UseUp = true; 573 } else { // Down 574 if (I < Num/2) 575 T[CI][Step] = Switch; 576 else 577 T[I][Step] = Pass; 578 T[J][Pets] = (J < Num/2) ? Switch : Pass; 579 UseDown = true; 580 } 581 } 582 583 // Reorder the working permutation according to the computed switch table 584 // for the last step (i.e. Pets). 585 for (ElemType J = 0; J != Num/2; ++J) { 586 ElemType PJ = P[J]; // Current values of P[J] 587 ElemType PC = P[J+Num/2]; // and P[conj(J)] 588 ElemType QJ = PJ; // New values of P[J] 589 ElemType QC = PC; // and P[conj(J)] 590 if (T[J][Pets] == Switch) 591 QC = PJ; 592 if (T[J+Num/2][Pets] == Switch) 593 QJ = PC; 594 P[J] = QJ; 595 P[J+Num/2] = QC; 596 } 597 598 for (ElemType J = 0; J != Num; ++J) 599 if (P[J] != Ignore && P[J] >= Num/2) 600 P[J] -= Num/2; 601 602 if (Step+1 < Log) { 603 if (UseUp && !route(P, T, Size/2, Step+1)) 604 return false; 605 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 606 return false; 607 } 608 return true; 609 } 610 611 // -------------------------------------------------------------------- 612 // Support for building selection results (output instructions that are 613 // parts of the final selection). 614 615 namespace { 616 struct OpRef { 617 OpRef(SDValue V) : OpV(V) {} 618 bool isValue() const { return OpV.getNode() != nullptr; } 619 bool isValid() const { return isValue() || !(OpN & Invalid); } 620 static OpRef res(int N) { return OpRef(Whole | (N & Index)); } 621 static OpRef fail() { return OpRef(Invalid); } 622 623 static OpRef lo(const OpRef &R) { 624 assert(!R.isValue()); 625 return OpRef(R.OpN & (Undef | Index | LoHalf)); 626 } 627 static OpRef hi(const OpRef &R) { 628 assert(!R.isValue()); 629 return OpRef(R.OpN & (Undef | Index | HiHalf)); 630 } 631 static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); } 632 633 // Direct value. 634 SDValue OpV = SDValue(); 635 636 // Reference to the operand of the input node: 637 // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the 638 // operand index: 639 // If bit 30 is set, it's the high half of the operand. 640 // If bit 29 is set, it's the low half of the operand. 641 unsigned OpN = 0; 642 643 enum : unsigned { 644 Invalid = 0x10000000, 645 LoHalf = 0x20000000, 646 HiHalf = 0x40000000, 647 Whole = LoHalf | HiHalf, 648 Undef = 0x80000000, 649 Index = 0x0FFFFFFF, // Mask of the index value. 650 IndexBits = 28, 651 }; 652 653 LLVM_DUMP_METHOD 654 void print(raw_ostream &OS, const SelectionDAG &G) const; 655 656 private: 657 OpRef(unsigned N) : OpN(N) {} 658 }; 659 660 struct NodeTemplate { 661 NodeTemplate() = default; 662 unsigned Opc = 0; 663 MVT Ty = MVT::Other; 664 std::vector<OpRef> Ops; 665 666 LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const; 667 }; 668 669 struct ResultStack { 670 ResultStack(SDNode *Inp) 671 : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {} 672 SDNode *InpNode; 673 MVT InpTy; 674 unsigned push(const NodeTemplate &Res) { 675 List.push_back(Res); 676 return List.size()-1; 677 } 678 unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) { 679 NodeTemplate Res; 680 Res.Opc = Opc; 681 Res.Ty = Ty; 682 Res.Ops = Ops; 683 return push(Res); 684 } 685 bool empty() const { return List.empty(); } 686 unsigned size() const { return List.size(); } 687 unsigned top() const { return size()-1; } 688 const NodeTemplate &operator[](unsigned I) const { return List[I]; } 689 unsigned reset(unsigned NewTop) { 690 List.resize(NewTop+1); 691 return NewTop; 692 } 693 694 using BaseType = std::vector<NodeTemplate>; 695 BaseType::iterator begin() { return List.begin(); } 696 BaseType::iterator end() { return List.end(); } 697 BaseType::const_iterator begin() const { return List.begin(); } 698 BaseType::const_iterator end() const { return List.end(); } 699 700 BaseType List; 701 702 LLVM_DUMP_METHOD 703 void print(raw_ostream &OS, const SelectionDAG &G) const; 704 }; 705 } // namespace 706 707 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 708 void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const { 709 if (isValue()) { 710 OpV.getNode()->print(OS, &G); 711 return; 712 } 713 if (OpN & Invalid) { 714 OS << "invalid"; 715 return; 716 } 717 if (OpN & Undef) { 718 OS << "undef"; 719 return; 720 } 721 if ((OpN & Whole) != Whole) { 722 assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf); 723 if (OpN & LoHalf) 724 OS << "lo "; 725 else 726 OS << "hi "; 727 } 728 OS << '#' << SignExtend32(OpN & Index, IndexBits); 729 } 730 731 void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const { 732 const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo(); 733 OS << format("%8s", EVT(Ty).getEVTString().c_str()) << " " 734 << TII.getName(Opc); 735 bool Comma = false; 736 for (const auto &R : Ops) { 737 if (Comma) 738 OS << ','; 739 Comma = true; 740 OS << ' '; 741 R.print(OS, G); 742 } 743 } 744 745 void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const { 746 OS << "Input node:\n"; 747 #ifndef NDEBUG 748 InpNode->dumpr(&G); 749 #endif 750 OS << "Result templates:\n"; 751 for (unsigned I = 0, E = List.size(); I != E; ++I) { 752 OS << '[' << I << "] "; 753 List[I].print(OS, G); 754 OS << '\n'; 755 } 756 } 757 #endif 758 759 namespace { 760 struct ShuffleMask { 761 ShuffleMask(ArrayRef<int> M) : Mask(M) { 762 for (int M : Mask) { 763 if (M == -1) 764 continue; 765 MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M); 766 MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M); 767 } 768 } 769 770 ArrayRef<int> Mask; 771 int MinSrc = -1, MaxSrc = -1; 772 773 ShuffleMask lo() const { 774 size_t H = Mask.size()/2; 775 return ShuffleMask(Mask.take_front(H)); 776 } 777 ShuffleMask hi() const { 778 size_t H = Mask.size()/2; 779 return ShuffleMask(Mask.take_back(H)); 780 } 781 782 void print(raw_ostream &OS) const { 783 OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {"; 784 for (int M : Mask) 785 OS << ' ' << M; 786 OS << " }"; 787 } 788 }; 789 790 LLVM_ATTRIBUTE_UNUSED 791 raw_ostream &operator<<(raw_ostream &OS, const ShuffleMask &SM) { 792 SM.print(OS); 793 return OS; 794 } 795 } // namespace 796 797 // -------------------------------------------------------------------- 798 // The HvxSelector class. 799 800 static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) { 801 return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo()); 802 } 803 static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) { 804 return static_cast<const HexagonSubtarget&>(G.getSubtarget()); 805 } 806 807 namespace llvm { 808 struct HvxSelector { 809 const HexagonTargetLowering &Lower; 810 HexagonDAGToDAGISel &ISel; 811 SelectionDAG &DAG; 812 const HexagonSubtarget &HST; 813 const unsigned HwLen; 814 815 HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G) 816 : Lower(getHexagonLowering(G)), ISel(HS), DAG(G), 817 HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {} 818 819 MVT getSingleVT(MVT ElemTy) const { 820 assert(ElemTy != MVT::i1 && "Use getBoolVT for predicates"); 821 unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8); 822 return MVT::getVectorVT(ElemTy, NumElems); 823 } 824 825 MVT getPairVT(MVT ElemTy) const { 826 assert(ElemTy != MVT::i1); // Suspicious: there are no predicate pairs. 827 unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8); 828 return MVT::getVectorVT(ElemTy, NumElems); 829 } 830 831 MVT getBoolVT() const { 832 // Return HwLen x i1. 833 return MVT::getVectorVT(MVT::i1, HwLen); 834 } 835 836 void selectShuffle(SDNode *N); 837 void selectRor(SDNode *N); 838 void selectVAlign(SDNode *N); 839 840 private: 841 void select(SDNode *ISelN); 842 void materialize(const ResultStack &Results); 843 844 SDValue getConst32(int Val, const SDLoc &dl); 845 SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl); 846 847 enum : unsigned { 848 None, 849 PackMux, 850 }; 851 OpRef concats(OpRef Va, OpRef Vb, ResultStack &Results); 852 OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, 853 MutableArrayRef<int> NewMask, unsigned Options = None); 854 OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, 855 MutableArrayRef<int> NewMask); 856 OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 857 ResultStack &Results); 858 OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 859 ResultStack &Results); 860 861 OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results); 862 OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 863 OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results); 864 OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 865 866 OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results); 867 OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 868 OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results); 869 OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results); 870 871 bool selectVectorConstants(SDNode *N); 872 bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy, 873 SDValue Va, SDValue Vb, SDNode *N); 874 875 }; 876 } 877 878 static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL, 879 MutableArrayRef<int> MaskR) { 880 unsigned VecLen = Mask.size(); 881 assert(MaskL.size() == VecLen && MaskR.size() == VecLen); 882 for (unsigned I = 0; I != VecLen; ++I) { 883 int M = Mask[I]; 884 if (M < 0) { 885 MaskL[I] = MaskR[I] = -1; 886 } else if (unsigned(M) < VecLen) { 887 MaskL[I] = M; 888 MaskR[I] = -1; 889 } else { 890 MaskL[I] = -1; 891 MaskR[I] = M-VecLen; 892 } 893 } 894 } 895 896 static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc, 897 unsigned MaxLen) { 898 assert(A.size() > 0 && A.size() >= MaxLen); 899 int F = A[0]; 900 int E = F; 901 for (unsigned I = 1; I != MaxLen; ++I) { 902 if (A[I] - E != Inc) 903 return { F, I }; 904 E = A[I]; 905 } 906 return { F, MaxLen }; 907 } 908 909 static bool isUndef(ArrayRef<int> Mask) { 910 for (int Idx : Mask) 911 if (Idx != -1) 912 return false; 913 return true; 914 } 915 916 static bool isIdentity(ArrayRef<int> Mask) { 917 for (int I = 0, E = Mask.size(); I != E; ++I) { 918 int M = Mask[I]; 919 if (M >= 0 && M != I) 920 return false; 921 } 922 return true; 923 } 924 925 static SmallVector<unsigned, 4> getInputSegmentList(ShuffleMask SM, 926 unsigned SegLen) { 927 assert(isPowerOf2_32(SegLen)); 928 SmallVector<unsigned, 4> SegList; 929 if (SM.MaxSrc == -1) 930 return SegList; 931 932 unsigned Shift = Log2_32(SegLen); 933 BitVector Segs(alignTo(SM.MaxSrc + 1, SegLen) >> Shift); 934 935 for (int M : SM.Mask) { 936 if (M >= 0) 937 Segs.set(M >> Shift); 938 } 939 940 for (unsigned B : Segs.set_bits()) 941 SegList.push_back(B); 942 return SegList; 943 } 944 945 static SmallVector<unsigned, 4> getOutputSegmentMap(ShuffleMask SM, 946 unsigned SegLen) { 947 // Calculate the layout of the output segments in terms of the input 948 // segments. 949 // For example [1,3,1,0] means that the output consists of 4 output 950 // segments, where the first output segment has only elements of the 951 // input segment at index 1. The next output segment only has elements 952 // of the input segment 3, etc. 953 // If an output segment only has undef elements, the value will be ~0u. 954 // If an output segment has elements from more than one input segment, 955 // the corresponding value will be ~1u. 956 unsigned MaskLen = SM.Mask.size(); 957 assert(MaskLen % SegLen == 0); 958 SmallVector<unsigned, 4> Map(MaskLen / SegLen); 959 960 for (int S = 0, E = Map.size(); S != E; ++S) { 961 unsigned Idx = ~0u; 962 for (int I = 0; I != static_cast<int>(SegLen); ++I) { 963 int M = SM.Mask[S*SegLen + I]; 964 if (M < 0) 965 continue; 966 unsigned G = M / SegLen; // Input segment of this element. 967 if (Idx == ~0u) { 968 Idx = G; 969 } else if (Idx != G) { 970 Idx = ~1u; 971 break; 972 } 973 } 974 Map[S] = Idx; 975 } 976 977 return Map; 978 } 979 980 static void packSegmentMask(ArrayRef<int> Mask, ArrayRef<unsigned> OutSegMap, 981 unsigned SegLen, MutableArrayRef<int> PackedMask) { 982 SmallVector<unsigned, 4> InvMap; 983 for (int I = OutSegMap.size() - 1; I >= 0; --I) { 984 unsigned S = OutSegMap[I]; 985 assert(S != ~0u && "Unexpected undef"); 986 assert(S != ~1u && "Unexpected multi"); 987 if (InvMap.size() <= S) 988 InvMap.resize(S+1); 989 InvMap[S] = I; 990 } 991 992 unsigned Shift = Log2_32(SegLen); 993 for (int I = 0, E = Mask.size(); I != E; ++I) { 994 int M = Mask[I]; 995 if (M >= 0) { 996 int OutIdx = InvMap[M >> Shift]; 997 M = (M & (SegLen-1)) + SegLen*OutIdx; 998 } 999 PackedMask[I] = M; 1000 } 1001 } 1002 1003 static bool isPermutation(ArrayRef<int> Mask) { 1004 // Check by adding all numbers only works if there is no overflow. 1005 assert(Mask.size() < 0x00007FFF && "Overflow failure"); 1006 int Sum = 0; 1007 for (int Idx : Mask) { 1008 if (Idx == -1) 1009 return false; 1010 Sum += Idx; 1011 } 1012 int N = Mask.size(); 1013 return 2*Sum == N*(N-1); 1014 } 1015 1016 bool HvxSelector::selectVectorConstants(SDNode *N) { 1017 // Constant vectors are generated as loads from constant pools or as 1018 // splats of a constant value. Since they are generated during the 1019 // selection process, the main selection algorithm is not aware of them. 1020 // Select them directly here. 1021 SmallVector<SDNode*,4> Nodes; 1022 SetVector<SDNode*> WorkQ; 1023 1024 // The DAG can change (due to CSE) during selection, so cache all the 1025 // unselected nodes first to avoid traversing a mutating DAG. 1026 WorkQ.insert(N); 1027 for (unsigned i = 0; i != WorkQ.size(); ++i) { 1028 SDNode *W = WorkQ[i]; 1029 if (!W->isMachineOpcode() && W->getOpcode() == HexagonISD::ISEL) 1030 Nodes.push_back(W); 1031 for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j) 1032 WorkQ.insert(W->getOperand(j).getNode()); 1033 } 1034 1035 for (SDNode *L : Nodes) 1036 select(L); 1037 1038 return !Nodes.empty(); 1039 } 1040 1041 void HvxSelector::materialize(const ResultStack &Results) { 1042 DEBUG_WITH_TYPE("isel", { 1043 dbgs() << "Materializing\n"; 1044 Results.print(dbgs(), DAG); 1045 }); 1046 if (Results.empty()) 1047 return; 1048 const SDLoc &dl(Results.InpNode); 1049 std::vector<SDValue> Output; 1050 1051 for (unsigned I = 0, E = Results.size(); I != E; ++I) { 1052 const NodeTemplate &Node = Results[I]; 1053 std::vector<SDValue> Ops; 1054 for (const OpRef &R : Node.Ops) { 1055 assert(R.isValid()); 1056 if (R.isValue()) { 1057 Ops.push_back(R.OpV); 1058 continue; 1059 } 1060 if (R.OpN & OpRef::Undef) { 1061 MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index); 1062 Ops.push_back(ISel.selectUndef(dl, MVT(SVT))); 1063 continue; 1064 } 1065 // R is an index of a result. 1066 unsigned Part = R.OpN & OpRef::Whole; 1067 int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits); 1068 if (Idx < 0) 1069 Idx += I; 1070 assert(Idx >= 0 && unsigned(Idx) < Output.size()); 1071 SDValue Op = Output[Idx]; 1072 MVT OpTy = Op.getValueType().getSimpleVT(); 1073 if (Part != OpRef::Whole) { 1074 assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf); 1075 MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(), 1076 OpTy.getVectorNumElements()/2); 1077 unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo 1078 : Hexagon::vsub_hi; 1079 Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op); 1080 } 1081 Ops.push_back(Op); 1082 } // for (Node : Results) 1083 1084 assert(Node.Ty != MVT::Other); 1085 SDNode *ResN = (Node.Opc == TargetOpcode::COPY) 1086 ? Ops.front().getNode() 1087 : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops); 1088 Output.push_back(SDValue(ResN, 0)); 1089 } 1090 1091 SDNode *OutN = Output.back().getNode(); 1092 SDNode *InpN = Results.InpNode; 1093 DEBUG_WITH_TYPE("isel", { 1094 dbgs() << "Generated node:\n"; 1095 OutN->dumpr(&DAG); 1096 }); 1097 1098 ISel.ReplaceNode(InpN, OutN); 1099 selectVectorConstants(OutN); 1100 DAG.RemoveDeadNodes(); 1101 } 1102 1103 OpRef HvxSelector::concats(OpRef Lo, OpRef Hi, ResultStack &Results) { 1104 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1105 const SDLoc &dl(Results.InpNode); 1106 Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), { 1107 getConst32(Hexagon::HvxWRRegClassID, dl), 1108 Lo, getConst32(Hexagon::vsub_lo, dl), 1109 Hi, getConst32(Hexagon::vsub_hi, dl), 1110 }); 1111 return OpRef::res(Results.top()); 1112 } 1113 1114 // Va, Vb are single vectors. If SM only uses two vector halves from Va/Vb, 1115 // pack these halves into a single vector, and remap SM into NewMask to use 1116 // the new vector instead. 1117 OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb, 1118 ResultStack &Results, MutableArrayRef<int> NewMask, 1119 unsigned Options) { 1120 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1121 if (!Va.isValid() || !Vb.isValid()) 1122 return OpRef::fail(); 1123 1124 MVT Ty = getSingleVT(MVT::i8); 1125 MVT PairTy = getPairVT(MVT::i8); 1126 OpRef Inp[2] = {Va, Vb}; 1127 unsigned VecLen = SM.Mask.size(); 1128 1129 auto valign = [this](OpRef Lo, OpRef Hi, unsigned Amt, MVT Ty, 1130 ResultStack &Results) { 1131 if (Amt == 0) 1132 return Lo; 1133 const SDLoc &dl(Results.InpNode); 1134 if (isUInt<3>(Amt) || isUInt<3>(HwLen - Amt)) { 1135 bool IsRight = isUInt<3>(Amt); // Right align. 1136 SDValue S = getConst32(IsRight ? Amt : HwLen - Amt, dl); 1137 unsigned Opc = IsRight ? Hexagon::V6_valignbi : Hexagon::V6_vlalignbi; 1138 Results.push(Opc, Ty, {Hi, Lo, S}); 1139 return OpRef::res(Results.top()); 1140 } 1141 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(Amt, dl)}); 1142 OpRef A = OpRef::res(Results.top()); 1143 Results.push(Hexagon::V6_valignb, Ty, {Hi, Lo, A}); 1144 return OpRef::res(Results.top()); 1145 }; 1146 1147 // Segment is a vector half. 1148 unsigned SegLen = HwLen / 2; 1149 1150 // Check if we can shuffle vector halves around to get the used elements 1151 // into a single vector. 1152 SmallVector<int,128> MaskH(SM.Mask.begin(), SM.Mask.end()); 1153 SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, SegLen); 1154 unsigned SegCount = SegList.size(); 1155 SmallVector<unsigned, 4> SegMap = getOutputSegmentMap(SM.Mask, SegLen); 1156 1157 if (SegList.empty()) 1158 return OpRef::undef(Ty); 1159 1160 // NOTE: 1161 // In the following part of the function, where the segments are rearranged, 1162 // the shuffle mask SM can be of any length that is a multiple of a vector 1163 // (i.e. a multiple of 2*SegLen), and non-zero. 1164 // The output segment map is computed, and it may have any even number of 1165 // entries, but the rearrangement of input segments will be done based only 1166 // on the first two (non-undef) entries in the segment map. 1167 // For example, if the output map is 3, 1, 1, 3 (it can have at most two 1168 // distinct entries!), the segments 1 and 3 of Va/Vb will be packaged into 1169 // a single vector V = 3:1. The output mask will then be updated to use 1170 // seg(0,V), seg(1,V), seg(1,V), seg(0,V). 1171 // 1172 // Picking the segments based on the output map is an optimization. For 1173 // correctness it is only necessary that Seg0 and Seg1 are the two input 1174 // segments that are used in the output. 1175 1176 unsigned Seg0 = ~0u, Seg1 = ~0u; 1177 for (int I = 0, E = SegMap.size(); I != E; ++I) { 1178 unsigned X = SegMap[I]; 1179 if (X == ~0u) 1180 continue; 1181 if (Seg0 == ~0u) 1182 Seg0 = X; 1183 else if (Seg1 != ~0u) 1184 break; 1185 if (X == ~1u || X != Seg0) 1186 Seg1 = X; 1187 } 1188 1189 if (SegCount == 1) { 1190 unsigned SrcOp = SegList[0] / 2; 1191 for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1192 int M = SM.Mask[I]; 1193 if (M >= 0) { 1194 M -= SrcOp * HwLen; 1195 assert(M >= 0); 1196 } 1197 NewMask[I] = M; 1198 } 1199 return Inp[SrcOp]; 1200 } 1201 1202 if (SegCount == 2) { 1203 // Seg0 should not be undef here: this would imply a SegList 1204 // with <= 1 elements, which was checked earlier. 1205 assert(Seg0 != ~0u); 1206 1207 // If Seg0 or Seg1 are "multi-defined", pick them from the input 1208 // segment list instead. 1209 if (Seg0 == ~1u || Seg1 == ~1u) { 1210 if (Seg0 == Seg1) { 1211 Seg0 = SegList[0]; 1212 Seg1 = SegList[1]; 1213 } else if (Seg0 == ~1u) { 1214 Seg0 = SegList[0] != Seg1 ? SegList[0] : SegList[1]; 1215 } else { 1216 assert(Seg1 == ~1u); 1217 Seg1 = SegList[0] != Seg0 ? SegList[0] : SegList[1]; 1218 } 1219 } 1220 assert(Seg0 != ~1u && Seg1 != ~1u); 1221 1222 assert(Seg0 != Seg1 && "Expecting different segments"); 1223 const SDLoc &dl(Results.InpNode); 1224 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(SegLen, dl)}); 1225 OpRef HL = OpRef::res(Results.top()); 1226 1227 // Va = AB, Vb = CD 1228 1229 if (Seg0 / 2 == Seg1 / 2) { 1230 // Same input vector. 1231 Va = Inp[Seg0 / 2]; 1232 if (Seg0 > Seg1) { 1233 // Swap halves. 1234 Results.push(Hexagon::V6_vror, Ty, {Inp[Seg0 / 2], HL}); 1235 Va = OpRef::res(Results.top()); 1236 } 1237 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1238 } else if (Seg0 % 2 == Seg1 % 2) { 1239 // Picking AC, BD, CA, or DB. 1240 // vshuff(CD,AB,HL) -> BD:AC 1241 // vshuff(AB,CD,HL) -> DB:CA 1242 auto Vs = (Seg0 == 0 || Seg0 == 1) ? std::make_pair(Vb, Va) // AC or BD 1243 : std::make_pair(Va, Vb); // CA or DB 1244 Results.push(Hexagon::V6_vshuffvdd, PairTy, {Vs.first, Vs.second, HL}); 1245 OpRef P = OpRef::res(Results.top()); 1246 Va = (Seg0 == 0 || Seg0 == 2) ? OpRef::lo(P) : OpRef::hi(P); 1247 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1248 } else { 1249 // Picking AD, BC, CB, or DA. 1250 if ((Seg0 == 0 && Seg1 == 3) || (Seg0 == 2 && Seg1 == 1)) { 1251 // AD or BC: this can be done using vmux. 1252 // Q = V6_pred_scalar2 SegLen 1253 // V = V6_vmux Q, (Va, Vb) or (Vb, Va) 1254 Results.push(Hexagon::V6_pred_scalar2, getBoolVT(), {HL}); 1255 OpRef Qt = OpRef::res(Results.top()); 1256 auto Vs = (Seg0 == 0) ? std::make_pair(Va, Vb) // AD 1257 : std::make_pair(Vb, Va); // CB 1258 Results.push(Hexagon::V6_vmux, Ty, {Qt, Vs.first, Vs.second}); 1259 Va = OpRef::res(Results.top()); 1260 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1261 } else { 1262 // BC or DA: this could be done via valign by SegLen. 1263 // Do nothing here, because valign (if possible) will be generated 1264 // later on (make sure the Seg0 values are as expected). 1265 assert(Seg0 == 1 || Seg0 == 3); 1266 } 1267 } 1268 } 1269 1270 // Check if the arguments can be packed by valign(Va,Vb) or valign(Vb,Va). 1271 1272 ShuffleMask SMH(MaskH); 1273 assert(SMH.Mask.size() == VecLen); 1274 SmallVector<int,128> MaskA(SMH.Mask.begin(), SMH.Mask.end()); 1275 1276 if (SMH.MaxSrc - SMH.MinSrc >= static_cast<int>(HwLen)) { 1277 // valign(Lo=Va,Hi=Vb) won't work. Try swapping Va/Vb. 1278 SmallVector<int,128> Swapped(SMH.Mask.begin(), SMH.Mask.end()); 1279 ShuffleVectorSDNode::commuteMask(Swapped); 1280 ShuffleMask SW(Swapped); 1281 if (SW.MaxSrc - SW.MinSrc < static_cast<int>(HwLen)) { 1282 MaskA.assign(SW.Mask.begin(), SW.Mask.end()); 1283 std::swap(Va, Vb); 1284 } 1285 } 1286 ShuffleMask SMA(MaskA); 1287 assert(SMA.Mask.size() == VecLen); 1288 1289 if (SMA.MaxSrc - SMA.MinSrc < static_cast<int>(HwLen)) { 1290 int ShiftR = SMA.MinSrc; 1291 if (ShiftR >= static_cast<int>(HwLen)) { 1292 Va = Vb; 1293 Vb = OpRef::undef(Ty); 1294 ShiftR -= HwLen; 1295 } 1296 OpRef RetVal = valign(Va, Vb, ShiftR, Ty, Results); 1297 1298 for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1299 int M = SMA.Mask[I]; 1300 if (M != -1) 1301 M -= SMA.MinSrc; 1302 NewMask[I] = M; 1303 } 1304 return RetVal; 1305 } 1306 1307 // By here, packing by segment (half-vector) shuffling, and vector alignment 1308 // failed. Try vmux. 1309 // Note: since this is using the original mask, Va and Vb must not have been 1310 // modified. 1311 1312 if (Options & PackMux) { 1313 // If elements picked from Va and Vb have all different (source) indexes 1314 // (relative to the start of the argument), do a mux, and update the mask. 1315 BitVector Picked(HwLen); 1316 SmallVector<uint8_t,128> MuxBytes(HwLen); 1317 bool CanMux = true; 1318 for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1319 int M = SM.Mask[I]; 1320 if (M == -1) 1321 continue; 1322 if (M >= static_cast<int>(HwLen)) 1323 M -= HwLen; 1324 else 1325 MuxBytes[M] = 0xFF; 1326 if (Picked[M]) { 1327 CanMux = false; 1328 break; 1329 } 1330 NewMask[I] = M; 1331 } 1332 if (CanMux) 1333 return vmuxs(MuxBytes, Va, Vb, Results); 1334 } 1335 return OpRef::fail(); 1336 } 1337 1338 // Va, Vb are vector pairs. If SM only uses two single vectors from Va/Vb, 1339 // pack these vectors into a pair, and remap SM into NewMask to use the 1340 // new pair instead. 1341 OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb, 1342 ResultStack &Results, MutableArrayRef<int> NewMask) { 1343 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1344 SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, HwLen); 1345 if (SegList.empty()) 1346 return OpRef::undef(getPairVT(MVT::i8)); 1347 1348 // If more than two halves are used, bail. 1349 // TODO: be more aggressive here? 1350 unsigned SegCount = SegList.size(); 1351 if (SegCount > 2) 1352 return OpRef::fail(); 1353 1354 MVT HalfTy = getSingleVT(MVT::i8); 1355 1356 OpRef Inp[2] = { Va, Vb }; 1357 OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) }; 1358 1359 // Really make sure we have at most 2 vectors used in the mask. 1360 assert(SegCount <= 2); 1361 1362 for (int I = 0, E = SegList.size(); I != E; ++I) { 1363 unsigned S = SegList[I]; 1364 OpRef Op = Inp[S / 2]; 1365 Out[I] = (S & 1) ? OpRef::hi(Op) : OpRef::lo(Op); 1366 } 1367 1368 // NOTE: Using SegList as the packing map here (not SegMap). This works, 1369 // because we're not concerned here about the order of the segments (i.e. 1370 // single vectors) in the output pair. Changing the order of vectors is 1371 // free (as opposed to changing the order of vector halves as in packs), 1372 // and so there is no extra cost added in case the order needs to be 1373 // changed later. 1374 packSegmentMask(SM.Mask, SegList, HwLen, NewMask); 1375 return concats(Out[0], Out[1], Results); 1376 } 1377 1378 OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 1379 ResultStack &Results) { 1380 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1381 MVT ByteTy = getSingleVT(MVT::i8); 1382 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); 1383 const SDLoc &dl(Results.InpNode); 1384 SDValue B = getVectorConstant(Bytes, dl); 1385 Results.push(Hexagon::V6_vd0, ByteTy, {}); 1386 Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)}); 1387 Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va}); 1388 return OpRef::res(Results.top()); 1389 } 1390 1391 OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 1392 ResultStack &Results) { 1393 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1394 size_t S = Bytes.size() / 2; 1395 OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results); 1396 OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results); 1397 return concats(L, H, Results); 1398 } 1399 1400 OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1401 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1402 unsigned VecLen = SM.Mask.size(); 1403 assert(HwLen == VecLen); 1404 (void)VecLen; 1405 assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); })); 1406 1407 if (isIdentity(SM.Mask)) 1408 return Va; 1409 if (isUndef(SM.Mask)) 1410 return OpRef::undef(getSingleVT(MVT::i8)); 1411 1412 unsigned HalfLen = HwLen / 2; 1413 assert(isPowerOf2_32(HalfLen)); 1414 1415 // Handle special case where the output is the same half of the input 1416 // repeated twice, i.e. if Va = AB, then handle the output of AA or BB. 1417 std::pair<int, unsigned> Strip1 = findStrip(SM.Mask, 1, HalfLen); 1418 if ((Strip1.first & ~HalfLen) == 0 && Strip1.second == HalfLen) { 1419 std::pair<int, unsigned> Strip2 = 1420 findStrip(SM.Mask.drop_front(HalfLen), 1, HalfLen); 1421 if (Strip1 == Strip2) { 1422 const SDLoc &dl(Results.InpNode); 1423 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(HalfLen, dl)}); 1424 Results.push(Hexagon::V6_vshuffvdd, getPairVT(MVT::i8), 1425 {Va, Va, OpRef::res(Results.top())}); 1426 OpRef S = OpRef::res(Results.top()); 1427 return (Strip1.first == 0) ? OpRef::lo(S) : OpRef::hi(S); 1428 } 1429 } 1430 1431 OpRef P = perfect(SM, Va, Results); 1432 if (P.isValid()) 1433 return P; 1434 return butterfly(SM, Va, Results); 1435 } 1436 1437 OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, 1438 ResultStack &Results) { 1439 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1440 if (isUndef(SM.Mask)) 1441 return OpRef::undef(getSingleVT(MVT::i8)); 1442 1443 OpRef C = contracting(SM, Va, Vb, Results); 1444 if (C.isValid()) 1445 return C; 1446 1447 int VecLen = SM.Mask.size(); 1448 SmallVector<int,128> PackedMask(VecLen); 1449 OpRef P = packs(SM, Va, Vb, Results, PackedMask); 1450 if (P.isValid()) 1451 return shuffs1(ShuffleMask(PackedMask), P, Results); 1452 1453 // TODO: Before we split the mask, try perfect shuffle on concatenated 1454 // operands. This won't work now, because the perfect code does not 1455 // tolerate undefs in the mask. 1456 1457 SmallVector<int,128> MaskL(VecLen), MaskR(VecLen); 1458 splitMask(SM.Mask, MaskL, MaskR); 1459 1460 OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results); 1461 OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results); 1462 if (!L.isValid() || !R.isValid()) 1463 return OpRef::fail(); 1464 1465 SmallVector<uint8_t,128> Bytes(VecLen); 1466 for (int I = 0; I != VecLen; ++I) { 1467 if (MaskL[I] != -1) 1468 Bytes[I] = 0xFF; 1469 } 1470 return vmuxs(Bytes, L, R, Results); 1471 } 1472 1473 OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1474 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1475 int VecLen = SM.Mask.size(); 1476 1477 if (isIdentity(SM.Mask)) 1478 return Va; 1479 if (isUndef(SM.Mask)) 1480 return OpRef::undef(getPairVT(MVT::i8)); 1481 1482 SmallVector<int,128> PackedMask(VecLen); 1483 OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask); 1484 if (P.isValid()) { 1485 ShuffleMask PM(PackedMask); 1486 OpRef E = expanding(PM, P, Results); 1487 if (E.isValid()) 1488 return E; 1489 1490 OpRef L = shuffs1(PM.lo(), P, Results); 1491 OpRef H = shuffs1(PM.hi(), P, Results); 1492 if (L.isValid() && H.isValid()) 1493 return concats(L, H, Results); 1494 } 1495 1496 OpRef R = perfect(SM, Va, Results); 1497 if (R.isValid()) 1498 return R; 1499 // TODO commute the mask and try the opposite order of the halves. 1500 1501 OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results); 1502 OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results); 1503 if (L.isValid() && H.isValid()) 1504 return concats(L, H, Results); 1505 1506 return OpRef::fail(); 1507 } 1508 1509 OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, 1510 ResultStack &Results) { 1511 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1512 if (isUndef(SM.Mask)) 1513 return OpRef::undef(getPairVT(MVT::i8)); 1514 1515 int VecLen = SM.Mask.size(); 1516 SmallVector<int,256> PackedMask(VecLen); 1517 OpRef P = packp(SM, Va, Vb, Results, PackedMask); 1518 if (P.isValid()) 1519 return shuffp1(ShuffleMask(PackedMask), P, Results); 1520 1521 SmallVector<int,256> MaskL(VecLen), MaskR(VecLen); 1522 splitMask(SM.Mask, MaskL, MaskR); 1523 1524 OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results); 1525 OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results); 1526 if (!L.isValid() || !R.isValid()) 1527 return OpRef::fail(); 1528 1529 // Mux the results. 1530 SmallVector<uint8_t,256> Bytes(VecLen); 1531 for (int I = 0; I != VecLen; ++I) { 1532 if (MaskL[I] != -1) 1533 Bytes[I] = 0xFF; 1534 } 1535 return vmuxp(Bytes, L, R, Results); 1536 } 1537 1538 namespace { 1539 struct Deleter : public SelectionDAG::DAGNodeDeletedListener { 1540 template <typename T> 1541 Deleter(SelectionDAG &D, T &C) 1542 : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) { 1543 C.erase(N); 1544 }) {} 1545 }; 1546 1547 template <typename T> 1548 struct NullifyingVector : public T { 1549 DenseMap<SDNode*, SDNode**> Refs; 1550 NullifyingVector(T &&V) : T(V) { 1551 for (unsigned i = 0, e = T::size(); i != e; ++i) { 1552 SDNode *&N = T::operator[](i); 1553 Refs[N] = &N; 1554 } 1555 } 1556 void erase(SDNode *N) { 1557 auto F = Refs.find(N); 1558 if (F != Refs.end()) 1559 *F->second = nullptr; 1560 } 1561 }; 1562 } 1563 1564 void HvxSelector::select(SDNode *ISelN) { 1565 // What's important here is to select the right set of nodes. The main 1566 // selection algorithm loops over nodes in a topological order, i.e. users 1567 // are visited before their operands. 1568 // 1569 // It is an error to have an unselected node with a selected operand, and 1570 // there is an assertion in the main selector code to enforce that. 1571 // 1572 // Such a situation could occur if we selected a node, which is both a 1573 // subnode of ISelN, and a subnode of an unrelated (and yet unselected) 1574 // node in the DAG. 1575 assert(ISelN->getOpcode() == HexagonISD::ISEL); 1576 SDNode *N0 = ISelN->getOperand(0).getNode(); 1577 if (N0->isMachineOpcode()) { 1578 ISel.ReplaceNode(ISelN, N0); 1579 return; 1580 } 1581 1582 // There could have been nodes created (i.e. inserted into the DAG) 1583 // that are now dead. Remove them, in case they use any of the nodes 1584 // to select (and make them look shared). 1585 DAG.RemoveDeadNodes(); 1586 1587 SetVector<SDNode*> SubNodes, TmpQ; 1588 std::map<SDNode*,unsigned> NumOps; 1589 1590 // Don't want to select N0 if it's shared with another node, except if 1591 // it's shared with other ISELs. 1592 auto IsISelN = [](SDNode *T) { return T->getOpcode() == HexagonISD::ISEL; }; 1593 if (llvm::all_of(N0->uses(), IsISelN)) 1594 SubNodes.insert(N0); 1595 1596 auto InSubNodes = [&SubNodes](SDNode *T) { return SubNodes.count(T); }; 1597 for (unsigned I = 0; I != SubNodes.size(); ++I) { 1598 SDNode *S = SubNodes[I]; 1599 unsigned OpN = 0; 1600 // Only add subnodes that are only reachable from N0. 1601 for (SDValue Op : S->ops()) { 1602 SDNode *O = Op.getNode(); 1603 if (llvm::all_of(O->uses(), InSubNodes)) { 1604 SubNodes.insert(O); 1605 ++OpN; 1606 } 1607 } 1608 NumOps.insert({S, OpN}); 1609 if (OpN == 0) 1610 TmpQ.insert(S); 1611 } 1612 1613 for (unsigned I = 0; I != TmpQ.size(); ++I) { 1614 SDNode *S = TmpQ[I]; 1615 for (SDNode *U : S->uses()) { 1616 if (U == ISelN) 1617 continue; 1618 auto F = NumOps.find(U); 1619 assert(F != NumOps.end()); 1620 if (F->second > 0 && !--F->second) 1621 TmpQ.insert(F->first); 1622 } 1623 } 1624 1625 // Remove the marker. 1626 ISel.ReplaceNode(ISelN, N0); 1627 1628 assert(SubNodes.size() == TmpQ.size()); 1629 NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector()); 1630 1631 Deleter DUQ(DAG, Queue); 1632 for (SDNode *S : reverse(Queue)) { 1633 if (S == nullptr) 1634 continue; 1635 DEBUG_WITH_TYPE("isel", {dbgs() << "HVX selecting: "; S->dump(&DAG);}); 1636 ISel.Select(S); 1637 } 1638 } 1639 1640 bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, 1641 MVT ResTy, SDValue Va, SDValue Vb, 1642 SDNode *N) { 1643 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1644 MVT ElemTy = ResTy.getVectorElementType(); 1645 assert(ElemTy == MVT::i8); 1646 unsigned VecLen = Mask.size(); 1647 bool HavePairs = (2*HwLen == VecLen); 1648 MVT SingleTy = getSingleVT(MVT::i8); 1649 1650 // The prior attempts to handle this shuffle may have left a bunch of 1651 // dead nodes in the DAG (such as constants). These nodes will be added 1652 // at the end of DAG's node list, which at that point had already been 1653 // sorted topologically. In the main selection loop, the node list is 1654 // traversed backwards from the root node, which means that any new 1655 // nodes (from the end of the list) will not be visited. 1656 // Scalarization will replace the shuffle node with the scalarized 1657 // expression, and if that expression reused any if the leftoever (dead) 1658 // nodes, these nodes would not be selected (since the "local" selection 1659 // only visits nodes that are not in AllNodes). 1660 // To avoid this issue, remove all dead nodes from the DAG now. 1661 // DAG.RemoveDeadNodes(); 1662 1663 SmallVector<SDValue,128> Ops; 1664 LLVMContext &Ctx = *DAG.getContext(); 1665 MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT(); 1666 for (int I : Mask) { 1667 if (I < 0) { 1668 Ops.push_back(ISel.selectUndef(dl, LegalTy)); 1669 continue; 1670 } 1671 SDValue Vec; 1672 unsigned M = I; 1673 if (M < VecLen) { 1674 Vec = Va; 1675 } else { 1676 Vec = Vb; 1677 M -= VecLen; 1678 } 1679 if (HavePairs) { 1680 if (M < HwLen) { 1681 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec); 1682 } else { 1683 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec); 1684 M -= HwLen; 1685 } 1686 } 1687 SDValue Idx = DAG.getConstant(M, dl, MVT::i32); 1688 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx}); 1689 SDValue L = Lower.LowerOperation(Ex, DAG); 1690 assert(L.getNode()); 1691 Ops.push_back(L); 1692 } 1693 1694 SDValue LV; 1695 if (2*HwLen == VecLen) { 1696 SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen}); 1697 SDValue L0 = Lower.LowerOperation(B0, DAG); 1698 SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen}); 1699 SDValue L1 = Lower.LowerOperation(B1, DAG); 1700 // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering) 1701 // functions may expect to be called only for illegal operations, so 1702 // make sure that they are not called for legal ones. Develop a better 1703 // mechanism for dealing with this. 1704 LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1}); 1705 } else { 1706 SDValue BV = DAG.getBuildVector(ResTy, dl, Ops); 1707 LV = Lower.LowerOperation(BV, DAG); 1708 } 1709 1710 assert(!N->use_empty()); 1711 SDValue IS = DAG.getNode(HexagonISD::ISEL, dl, ResTy, LV); 1712 ISel.ReplaceNode(N, IS.getNode()); 1713 select(IS.getNode()); 1714 DAG.RemoveDeadNodes(); 1715 return true; 1716 } 1717 1718 OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb, 1719 ResultStack &Results) { 1720 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1721 if (!Va.isValid() || !Vb.isValid()) 1722 return OpRef::fail(); 1723 1724 // Contracting shuffles, i.e. instructions that always discard some bytes 1725 // from the operand vectors. 1726 // 1727 // V6_vshuff{e,o}b 1728 // V6_vdealb4w 1729 // V6_vpack{e,o}{b,h} 1730 1731 int VecLen = SM.Mask.size(); 1732 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); 1733 MVT ResTy = getSingleVT(MVT::i8); 1734 1735 // The following shuffles only work for bytes and halfwords. This requires 1736 // the strip length to be 1 or 2. 1737 if (Strip.second != 1 && Strip.second != 2) 1738 return OpRef::fail(); 1739 1740 // The patterns for the shuffles, in terms of the starting offsets of the 1741 // consecutive strips (L = length of the strip, N = VecLen): 1742 // 1743 // vpacke: 0, 2L, 4L ... N+0, N+2L, N+4L ... L = 1 or 2 1744 // vpacko: L, 3L, 5L ... N+L, N+3L, N+5L ... L = 1 or 2 1745 // 1746 // vshuffe: 0, N+0, 2L, N+2L, 4L ... L = 1 or 2 1747 // vshuffo: L, N+L, 3L, N+3L, 5L ... L = 1 or 2 1748 // 1749 // vdealb4w: 0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ... 1750 1751 // The value of the element in the mask following the strip will decide 1752 // what kind of a shuffle this can be. 1753 int NextInMask = SM.Mask[Strip.second]; 1754 1755 // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask 1756 // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would 1757 // satisfy this. 1758 if (NextInMask < VecLen) { 1759 // vpack{e,o} or vdealb4w 1760 if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) { 1761 int N = VecLen; 1762 // Check if this is vdealb4w (L=1). 1763 for (int I = 0; I != N/4; ++I) 1764 if (SM.Mask[I] != 4*I) 1765 return OpRef::fail(); 1766 for (int I = 0; I != N/4; ++I) 1767 if (SM.Mask[I+N/4] != 2 + 4*I) 1768 return OpRef::fail(); 1769 for (int I = 0; I != N/4; ++I) 1770 if (SM.Mask[I+N/2] != N + 4*I) 1771 return OpRef::fail(); 1772 for (int I = 0; I != N/4; ++I) 1773 if (SM.Mask[I+3*N/4] != N+2 + 4*I) 1774 return OpRef::fail(); 1775 // Matched mask for vdealb4w. 1776 Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va}); 1777 return OpRef::res(Results.top()); 1778 } 1779 1780 // Check if this is vpack{e,o}. 1781 int N = VecLen; 1782 int L = Strip.second; 1783 // Check if the first strip starts at 0 or at L. 1784 if (Strip.first != 0 && Strip.first != L) 1785 return OpRef::fail(); 1786 // Examine the rest of the mask. 1787 for (int I = L; I < N; I += L) { 1788 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 1789 // Check whether the mask element at the beginning of each strip 1790 // increases by 2L each time. 1791 if (S.first - Strip.first != 2*I) 1792 return OpRef::fail(); 1793 // Check whether each strip is of the same length. 1794 if (S.second != unsigned(L)) 1795 return OpRef::fail(); 1796 } 1797 1798 // Strip.first == 0 => vpacke 1799 // Strip.first == L => vpacko 1800 assert(Strip.first == 0 || Strip.first == L); 1801 using namespace Hexagon; 1802 NodeTemplate Res; 1803 Res.Opc = Strip.second == 1 // Number of bytes. 1804 ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob) 1805 : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh); 1806 Res.Ty = ResTy; 1807 Res.Ops = { Vb, Va }; 1808 Results.push(Res); 1809 return OpRef::res(Results.top()); 1810 } 1811 1812 // Check if this is vshuff{e,o}. 1813 int N = VecLen; 1814 int L = Strip.second; 1815 std::pair<int,unsigned> PrevS = Strip; 1816 bool Flip = false; 1817 for (int I = L; I < N; I += L) { 1818 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 1819 if (S.second != PrevS.second) 1820 return OpRef::fail(); 1821 int Diff = Flip ? PrevS.first - S.first + 2*L 1822 : S.first - PrevS.first; 1823 if (Diff != N) 1824 return OpRef::fail(); 1825 Flip ^= true; 1826 PrevS = S; 1827 } 1828 // Strip.first == 0 => vshuffe 1829 // Strip.first == L => vshuffo 1830 assert(Strip.first == 0 || Strip.first == L); 1831 using namespace Hexagon; 1832 NodeTemplate Res; 1833 Res.Opc = Strip.second == 1 // Number of bytes. 1834 ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob) 1835 : (Strip.first == 0 ? V6_vshufeh : V6_vshufoh); 1836 Res.Ty = ResTy; 1837 Res.Ops = { Vb, Va }; 1838 Results.push(Res); 1839 return OpRef::res(Results.top()); 1840 } 1841 1842 OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1843 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1844 // Expanding shuffles (using all elements and inserting into larger vector): 1845 // 1846 // V6_vunpacku{b,h} [*] 1847 // 1848 // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask. 1849 // 1850 // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so 1851 // they are not shuffles. 1852 // 1853 // The argument is a single vector. 1854 1855 int VecLen = SM.Mask.size(); 1856 assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type"); 1857 1858 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); 1859 1860 // The patterns for the unpacks, in terms of the starting offsets of the 1861 // consecutive strips (L = length of the strip, N = VecLen): 1862 // 1863 // vunpacku: 0, -1, L, -1, 2L, -1 ... 1864 1865 if (Strip.first != 0) 1866 return OpRef::fail(); 1867 1868 // The vunpackus only handle byte and half-word. 1869 if (Strip.second != 1 && Strip.second != 2) 1870 return OpRef::fail(); 1871 1872 int N = VecLen; 1873 int L = Strip.second; 1874 1875 // First, check the non-ignored strips. 1876 for (int I = 2*L; I < N; I += 2*L) { 1877 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 1878 if (S.second != unsigned(L)) 1879 return OpRef::fail(); 1880 if (2*S.first != I) 1881 return OpRef::fail(); 1882 } 1883 // Check the -1s. 1884 for (int I = L; I < N; I += 2*L) { 1885 auto S = findStrip(SM.Mask.drop_front(I), 0, N-I); 1886 if (S.first != -1 || S.second != unsigned(L)) 1887 return OpRef::fail(); 1888 } 1889 1890 unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub 1891 : Hexagon::V6_vunpackuh; 1892 Results.push(Opc, getPairVT(MVT::i8), {Va}); 1893 return OpRef::res(Results.top()); 1894 } 1895 1896 OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1897 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1898 // V6_vdeal{b,h} 1899 // V6_vshuff{b,h} 1900 1901 // V6_vshufoe{b,h} those are quivalent to vshuffvdd(..,{1,2}) 1902 // V6_vshuffvdd (V6_vshuff) 1903 // V6_dealvdd (V6_vdeal) 1904 1905 int VecLen = SM.Mask.size(); 1906 assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8); 1907 unsigned LogLen = Log2_32(VecLen); 1908 unsigned HwLog = Log2_32(HwLen); 1909 // The result length must be the same as the length of a single vector, 1910 // or a vector pair. 1911 assert(LogLen == HwLog || LogLen == HwLog+1); 1912 bool HavePairs = LogLen == HwLog+1; 1913 1914 if (!isPermutation(SM.Mask)) 1915 return OpRef::fail(); 1916 1917 SmallVector<unsigned,8> Perm(LogLen); 1918 1919 // Check if this could be a perfect shuffle, or a combination of perfect 1920 // shuffles. 1921 // 1922 // Consider this permutation (using hex digits to make the ASCII diagrams 1923 // easier to read): 1924 // { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }. 1925 // This is a "deal" operation: divide the input into two halves, and 1926 // create the output by picking elements by alternating between these two 1927 // halves: 1928 // 0 1 2 3 4 5 6 7 --> 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F [*] 1929 // 8 9 A B C D E F 1930 // 1931 // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides 1932 // a somwehat different mechanism that could be used to perform shuffle/ 1933 // deal operations: a 2x2 transpose. 1934 // Consider the halves of inputs again, they can be interpreted as a 2x8 1935 // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated 1936 // together. Now, when considering 2 elements at a time, it will be a 2x4 1937 // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices: 1938 // 01 23 45 67 1939 // 89 AB CD EF 1940 // With groups of 4, this will become a single 2x2 matrix, and so on. 1941 // 1942 // The 2x2 transpose instruction works by transposing each of the 2x2 1943 // matrices (or "sub-matrices"), given a specific group size. For example, 1944 // if the group size is 1 (i.e. each element is its own group), there 1945 // will be four transposes of the four 2x2 matrices that form the 2x8. 1946 // For example, with the inputs as above, the result will be: 1947 // 0 8 2 A 4 C 6 E 1948 // 1 9 3 B 5 D 7 F 1949 // Now, this result can be tranposed again, but with the group size of 2: 1950 // 08 19 4C 5D 1951 // 2A 3B 6E 7F 1952 // If we then transpose that result, but with the group size of 4, we get: 1953 // 0819 2A3B 1954 // 4C5D 6E7F 1955 // If we concatenate these two rows, it will be 1956 // 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F 1957 // which is the same as the "deal" [*] above. 1958 // 1959 // In general, a "deal" of individual elements is a series of 2x2 transposes, 1960 // with changing group size. HVX has two instructions: 1961 // Vdd = V6_vdealvdd Vu, Vv, Rt 1962 // Vdd = V6_shufvdd Vu, Vv, Rt 1963 // that perform exactly that. The register Rt controls which transposes are 1964 // going to happen: a bit at position n (counting from 0) indicates that a 1965 // transpose with a group size of 2^n will take place. If multiple bits are 1966 // set, multiple transposes will happen: vdealvdd will perform them starting 1967 // with the largest group size, vshuffvdd will do them in the reverse order. 1968 // 1969 // The main observation is that each 2x2 transpose corresponds to swapping 1970 // columns of bits in the binary representation of the values. 1971 // 1972 // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits 1973 // in a given column. The * denote the columns that will be swapped. 1974 // The transpose with the group size 2^n corresponds to swapping columns 1975 // 3 (the highest log) and log2(n): 1976 // 1977 // 3 2 1 0 0 2 1 3 0 2 3 1 1978 // * * * * * * 1979 // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1980 // 1 0 0 0 1 8 1 0 0 0 8 1 0 0 0 8 1 0 0 0 1981 // 2 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1982 // 3 0 0 1 1 A 1 0 1 0 9 1 0 0 1 9 1 0 0 1 1983 // 4 0 1 0 0 4 0 1 0 0 4 0 1 0 0 2 0 0 1 0 1984 // 5 0 1 0 1 C 1 1 0 0 C 1 1 0 0 A 1 0 1 0 1985 // 6 0 1 1 0 6 0 1 1 0 5 0 1 0 1 3 0 0 1 1 1986 // 7 0 1 1 1 E 1 1 1 0 D 1 1 0 1 B 1 0 1 1 1987 // 8 1 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 1 0 0 1988 // 9 1 0 0 1 9 1 0 0 1 A 1 0 1 0 C 1 1 0 0 1989 // A 1 0 1 0 3 0 0 1 1 3 0 0 1 1 5 0 1 0 1 1990 // B 1 0 1 1 B 1 0 1 1 B 1 0 1 1 D 1 1 0 1 1991 // C 1 1 0 0 5 0 1 0 1 6 0 1 1 0 6 0 1 1 0 1992 // D 1 1 0 1 D 1 1 0 1 E 1 1 1 0 E 1 1 1 0 1993 // E 1 1 1 0 7 0 1 1 1 7 0 1 1 1 7 0 1 1 1 1994 // F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 1995 1996 // There is one special case that is not a perfect shuffle, but 1997 // can be turned into one easily: when the shuffle operates on 1998 // a vector pair, but the two vectors in the pair are swapped. 1999 // The code below that identifies perfect shuffles will reject 2000 // it, unless the order is reversed. 2001 SmallVector<int,128> MaskStorage(SM.Mask.begin(), SM.Mask.end()); 2002 bool InvertedPair = false; 2003 if (HavePairs && SM.Mask[0] >= int(HwLen)) { 2004 for (int i = 0, e = SM.Mask.size(); i != e; ++i) { 2005 int M = SM.Mask[i]; 2006 MaskStorage[i] = M >= int(HwLen) ? M-HwLen : M+HwLen; 2007 } 2008 InvertedPair = true; 2009 } 2010 ArrayRef<int> LocalMask(MaskStorage); 2011 2012 auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) { 2013 unsigned X = Mask[0] ^ Mask[Num/2]; 2014 // Check that the first half has the X's bits clear. 2015 if ((Mask[0] & X) != 0) 2016 return 0u; 2017 for (unsigned I = 1; I != Num/2; ++I) { 2018 if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X) 2019 return 0u; 2020 if ((Mask[I] & X) != 0) 2021 return 0u; 2022 } 2023 return X; 2024 }; 2025 2026 // Create a vector of log2's for each column: Perm[i] corresponds to 2027 // the i-th bit (lsb is 0). 2028 assert(VecLen > 2); 2029 for (unsigned I = VecLen; I >= 2; I >>= 1) { 2030 // Examine the initial segment of Mask of size I. 2031 unsigned X = XorPow2(LocalMask, I); 2032 if (!isPowerOf2_32(X)) 2033 return OpRef::fail(); 2034 // Check the other segments of Mask. 2035 for (int J = I; J < VecLen; J += I) { 2036 if (XorPow2(LocalMask.slice(J, I), I) != X) 2037 return OpRef::fail(); 2038 } 2039 Perm[Log2_32(X)] = Log2_32(I)-1; 2040 } 2041 2042 // Once we have Perm, represent it as cycles. Denote the maximum log2 2043 // (equal to log2(VecLen)-1) as M. The cycle containing M can then be 2044 // written as (M a1 a2 a3 ... an). That cycle can be broken up into 2045 // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition 2046 // order being from left to right. Any (contiguous) segment where the 2047 // values ai, ai+1...aj are either all increasing or all decreasing, 2048 // can be implemented via a single vshuffvdd/vdealvdd respectively. 2049 // 2050 // If there is a cycle (a1 a2 ... an) that does not involve M, it can 2051 // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can 2052 // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure 2053 // can be used to generate a sequence of vshuffvdd/vdealvdd. 2054 // 2055 // Example: 2056 // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written 2057 // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply 2058 // (4 0 1)(4 0)(4 2 3)(4 2). 2059 // It can then be expanded into swaps as 2060 // (4 0)(4 1)(4 0)(4 2)(4 3)(4 2), 2061 // and broken up into "increasing" segments as 2062 // [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)]. 2063 // This is equivalent to 2064 // (4 0 1)(4 0 2 3)(4 2), 2065 // which can be implemented as 3 vshufvdd instructions. 2066 2067 using CycleType = SmallVector<unsigned,8>; 2068 std::set<CycleType> Cycles; 2069 std::set<unsigned> All; 2070 2071 for (unsigned I : Perm) 2072 All.insert(I); 2073 2074 // If the cycle contains LogLen-1, move it to the front of the cycle. 2075 // Otherwise, return the cycle unchanged. 2076 auto canonicalize = [LogLen](const CycleType &C) -> CycleType { 2077 unsigned LogPos, N = C.size(); 2078 for (LogPos = 0; LogPos != N; ++LogPos) 2079 if (C[LogPos] == LogLen-1) 2080 break; 2081 if (LogPos == N) 2082 return C; 2083 2084 CycleType NewC(C.begin()+LogPos, C.end()); 2085 NewC.append(C.begin(), C.begin()+LogPos); 2086 return NewC; 2087 }; 2088 2089 auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) { 2090 // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6), 2091 // for bytes zero is included, for halfwords is not. 2092 if (Cs.size() != 1) 2093 return 0u; 2094 const CycleType &C = *Cs.begin(); 2095 if (C[0] != Len-1) 2096 return 0u; 2097 int D = Len - C.size(); 2098 if (D != 0 && D != 1) 2099 return 0u; 2100 2101 bool IsDeal = true, IsShuff = true; 2102 for (unsigned I = 1; I != Len-D; ++I) { 2103 if (C[I] != Len-1-I) 2104 IsDeal = false; 2105 if (C[I] != I-(1-D)) // I-1, I 2106 IsShuff = false; 2107 } 2108 // At most one, IsDeal or IsShuff, can be non-zero. 2109 assert(!(IsDeal || IsShuff) || IsDeal != IsShuff); 2110 static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh }; 2111 static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh }; 2112 return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0); 2113 }; 2114 2115 while (!All.empty()) { 2116 unsigned A = *All.begin(); 2117 All.erase(A); 2118 CycleType C; 2119 C.push_back(A); 2120 for (unsigned B = Perm[A]; B != A; B = Perm[B]) { 2121 C.push_back(B); 2122 All.erase(B); 2123 } 2124 if (C.size() <= 1) 2125 continue; 2126 Cycles.insert(canonicalize(C)); 2127 } 2128 2129 MVT SingleTy = getSingleVT(MVT::i8); 2130 MVT PairTy = getPairVT(MVT::i8); 2131 2132 // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}. 2133 if (unsigned(VecLen) == HwLen) { 2134 if (unsigned SingleOpc = pfs(Cycles, LogLen)) { 2135 Results.push(SingleOpc, SingleTy, {Va}); 2136 return OpRef::res(Results.top()); 2137 } 2138 } 2139 2140 // From the cycles, construct the sequence of values that will 2141 // then form the control values for vdealvdd/vshuffvdd, i.e. 2142 // (M a1 a2)(M a3 a4 a5)... -> a1 a2 a3 a4 a5 2143 // This essentially strips the M value from the cycles where 2144 // it's present, and performs the insertion of M (then stripping) 2145 // for cycles without M (as described in an earlier comment). 2146 SmallVector<unsigned,8> SwapElems; 2147 // When the input is extended (i.e. single vector becomes a pair), 2148 // this is done by using an "undef" vector as the second input. 2149 // However, then we get 2150 // input 1: GOODBITS 2151 // input 2: ........ 2152 // but we need 2153 // input 1: ....BITS 2154 // input 2: ....GOOD 2155 // Then at the end, this needs to be undone. To accomplish this, 2156 // artificially add "LogLen-1" at both ends of the sequence. 2157 if (!HavePairs) 2158 SwapElems.push_back(LogLen-1); 2159 for (const CycleType &C : Cycles) { 2160 // Do the transformation: (a1..an) -> (M a1..an)(M a1). 2161 unsigned First = (C[0] == LogLen-1) ? 1 : 0; 2162 SwapElems.append(C.begin()+First, C.end()); 2163 if (First == 0) 2164 SwapElems.push_back(C[0]); 2165 } 2166 if (!HavePairs) 2167 SwapElems.push_back(LogLen-1); 2168 2169 const SDLoc &dl(Results.InpNode); 2170 OpRef Arg = HavePairs ? Va 2171 : concats(Va, OpRef::undef(SingleTy), Results); 2172 if (InvertedPair) 2173 Arg = concats(OpRef::hi(Arg), OpRef::lo(Arg), Results); 2174 2175 for (unsigned I = 0, E = SwapElems.size(); I != E; ) { 2176 bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1]; 2177 unsigned S = (1u << SwapElems[I]); 2178 if (I < E-1) { 2179 while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1])) 2180 S |= 1u << SwapElems[I]; 2181 // The above loop will not add a bit for the final SwapElems[I+1], 2182 // so add it here. 2183 S |= 1u << SwapElems[I]; 2184 } 2185 ++I; 2186 2187 NodeTemplate Res; 2188 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(S, dl)}); 2189 Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd; 2190 Res.Ty = PairTy; 2191 Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) }; 2192 Results.push(Res); 2193 Arg = OpRef::res(Results.top()); 2194 } 2195 2196 return HavePairs ? Arg : OpRef::lo(Arg); 2197 } 2198 2199 OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) { 2200 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 2201 // Butterfly shuffles. 2202 // 2203 // V6_vdelta 2204 // V6_vrdelta 2205 // V6_vror 2206 2207 // The assumption here is that all elements picked by Mask are in the 2208 // first operand to the vector_shuffle. This assumption is enforced 2209 // by the caller. 2210 2211 MVT ResTy = getSingleVT(MVT::i8); 2212 PermNetwork::Controls FC, RC; 2213 const SDLoc &dl(Results.InpNode); 2214 int VecLen = SM.Mask.size(); 2215 2216 for (int M : SM.Mask) { 2217 if (M != -1 && M >= VecLen) 2218 return OpRef::fail(); 2219 } 2220 2221 // Try the deltas/benes for both single vectors and vector pairs. 2222 ForwardDeltaNetwork FN(SM.Mask); 2223 if (FN.run(FC)) { 2224 SDValue Ctl = getVectorConstant(FC, dl); 2225 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)}); 2226 return OpRef::res(Results.top()); 2227 } 2228 2229 // Try reverse delta. 2230 ReverseDeltaNetwork RN(SM.Mask); 2231 if (RN.run(RC)) { 2232 SDValue Ctl = getVectorConstant(RC, dl); 2233 Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)}); 2234 return OpRef::res(Results.top()); 2235 } 2236 2237 // Do Benes. 2238 BenesNetwork BN(SM.Mask); 2239 if (BN.run(FC, RC)) { 2240 SDValue CtlF = getVectorConstant(FC, dl); 2241 SDValue CtlR = getVectorConstant(RC, dl); 2242 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)}); 2243 Results.push(Hexagon::V6_vrdelta, ResTy, 2244 {OpRef::res(-1), OpRef(CtlR)}); 2245 return OpRef::res(Results.top()); 2246 } 2247 2248 return OpRef::fail(); 2249 } 2250 2251 SDValue HvxSelector::getConst32(int Val, const SDLoc &dl) { 2252 return DAG.getTargetConstant(Val, dl, MVT::i32); 2253 } 2254 2255 SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data, 2256 const SDLoc &dl) { 2257 SmallVector<SDValue, 128> Elems; 2258 for (uint8_t C : Data) 2259 Elems.push_back(DAG.getConstant(C, dl, MVT::i8)); 2260 MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size()); 2261 SDValue BV = DAG.getBuildVector(VecTy, dl, Elems); 2262 SDValue LV = Lower.LowerOperation(BV, DAG); 2263 DAG.RemoveDeadNode(BV.getNode()); 2264 return DAG.getNode(HexagonISD::ISEL, dl, VecTy, LV); 2265 } 2266 2267 void HvxSelector::selectShuffle(SDNode *N) { 2268 DEBUG_WITH_TYPE("isel", { 2269 dbgs() << "Starting " << __func__ << " on node:\n"; 2270 N->dump(&DAG); 2271 }); 2272 MVT ResTy = N->getValueType(0).getSimpleVT(); 2273 // Assume that vector shuffles operate on vectors of bytes. 2274 assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8); 2275 2276 auto *SN = cast<ShuffleVectorSDNode>(N); 2277 std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end()); 2278 // This shouldn't really be necessary. Is it? 2279 for (int &Idx : Mask) 2280 if (Idx != -1 && Idx < 0) 2281 Idx = -1; 2282 2283 unsigned VecLen = Mask.size(); 2284 bool HavePairs = (2*HwLen == VecLen); 2285 assert(ResTy.getSizeInBits() / 8 == VecLen); 2286 2287 // Vd = vector_shuffle Va, Vb, Mask 2288 // 2289 2290 bool UseLeft = false, UseRight = false; 2291 for (unsigned I = 0; I != VecLen; ++I) { 2292 if (Mask[I] == -1) 2293 continue; 2294 unsigned Idx = Mask[I]; 2295 assert(Idx < 2*VecLen); 2296 if (Idx < VecLen) 2297 UseLeft = true; 2298 else 2299 UseRight = true; 2300 } 2301 2302 DEBUG_WITH_TYPE("isel", { 2303 dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft=" 2304 << UseLeft << " UseRight=" << UseRight << " HavePairs=" 2305 << HavePairs << '\n'; 2306 }); 2307 // If the mask is all -1's, generate "undef". 2308 if (!UseLeft && !UseRight) { 2309 ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode()); 2310 return; 2311 } 2312 2313 SDValue Vec0 = N->getOperand(0); 2314 SDValue Vec1 = N->getOperand(1); 2315 ResultStack Results(SN); 2316 Results.push(TargetOpcode::COPY, ResTy, {Vec0}); 2317 Results.push(TargetOpcode::COPY, ResTy, {Vec1}); 2318 OpRef Va = OpRef::res(Results.top()-1); 2319 OpRef Vb = OpRef::res(Results.top()); 2320 2321 OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results) 2322 : shuffp2(ShuffleMask(Mask), Va, Vb, Results); 2323 2324 bool Done = Res.isValid(); 2325 if (Done) { 2326 // Make sure that Res is on the stack before materializing. 2327 Results.push(TargetOpcode::COPY, ResTy, {Res}); 2328 materialize(Results); 2329 } else { 2330 Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N); 2331 } 2332 2333 if (!Done) { 2334 #ifndef NDEBUG 2335 dbgs() << "Unhandled shuffle:\n"; 2336 SN->dumpr(&DAG); 2337 #endif 2338 llvm_unreachable("Failed to select vector shuffle"); 2339 } 2340 } 2341 2342 void HvxSelector::selectRor(SDNode *N) { 2343 // If this is a rotation by less than 8, use V6_valignbi. 2344 MVT Ty = N->getValueType(0).getSimpleVT(); 2345 const SDLoc &dl(N); 2346 SDValue VecV = N->getOperand(0); 2347 SDValue RotV = N->getOperand(1); 2348 SDNode *NewN = nullptr; 2349 2350 if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) { 2351 unsigned S = CN->getZExtValue() % HST.getVectorLength(); 2352 if (S == 0) { 2353 NewN = VecV.getNode(); 2354 } else if (isUInt<3>(S)) { 2355 NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty, 2356 {VecV, VecV, getConst32(S, dl)}); 2357 } 2358 } 2359 2360 if (!NewN) 2361 NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV}); 2362 2363 ISel.ReplaceNode(N, NewN); 2364 } 2365 2366 void HvxSelector::selectVAlign(SDNode *N) { 2367 SDValue Vv = N->getOperand(0); 2368 SDValue Vu = N->getOperand(1); 2369 SDValue Rt = N->getOperand(2); 2370 SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N), 2371 N->getValueType(0), {Vv, Vu, Rt}); 2372 ISel.ReplaceNode(N, NewN); 2373 DAG.RemoveDeadNode(N); 2374 } 2375 2376 void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) { 2377 HvxSelector(*this, *CurDAG).selectShuffle(N); 2378 } 2379 2380 void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) { 2381 HvxSelector(*this, *CurDAG).selectRor(N); 2382 } 2383 2384 void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) { 2385 HvxSelector(*this, *CurDAG).selectVAlign(N); 2386 } 2387 2388 void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) { 2389 const SDLoc &dl(N); 2390 SDValue Chain = N->getOperand(0); 2391 SDValue Address = N->getOperand(2); 2392 SDValue Predicate = N->getOperand(3); 2393 SDValue Base = N->getOperand(4); 2394 SDValue Modifier = N->getOperand(5); 2395 SDValue Offset = N->getOperand(6); 2396 SDValue ImmOperand = CurDAG->getTargetConstant(0, dl, MVT::i32); 2397 2398 unsigned Opcode; 2399 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2400 switch (IntNo) { 2401 default: 2402 llvm_unreachable("Unexpected HVX gather intrinsic."); 2403 case Intrinsic::hexagon_V6_vgathermhq: 2404 case Intrinsic::hexagon_V6_vgathermhq_128B: 2405 Opcode = Hexagon::V6_vgathermhq_pseudo; 2406 break; 2407 case Intrinsic::hexagon_V6_vgathermwq: 2408 case Intrinsic::hexagon_V6_vgathermwq_128B: 2409 Opcode = Hexagon::V6_vgathermwq_pseudo; 2410 break; 2411 case Intrinsic::hexagon_V6_vgathermhwq: 2412 case Intrinsic::hexagon_V6_vgathermhwq_128B: 2413 Opcode = Hexagon::V6_vgathermhwq_pseudo; 2414 break; 2415 } 2416 2417 SDVTList VTs = CurDAG->getVTList(MVT::Other); 2418 SDValue Ops[] = { Address, ImmOperand, 2419 Predicate, Base, Modifier, Offset, Chain }; 2420 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 2421 2422 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2423 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 2424 2425 ReplaceNode(N, Result); 2426 } 2427 2428 void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) { 2429 const SDLoc &dl(N); 2430 SDValue Chain = N->getOperand(0); 2431 SDValue Address = N->getOperand(2); 2432 SDValue Base = N->getOperand(3); 2433 SDValue Modifier = N->getOperand(4); 2434 SDValue Offset = N->getOperand(5); 2435 SDValue ImmOperand = CurDAG->getTargetConstant(0, dl, MVT::i32); 2436 2437 unsigned Opcode; 2438 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2439 switch (IntNo) { 2440 default: 2441 llvm_unreachable("Unexpected HVX gather intrinsic."); 2442 case Intrinsic::hexagon_V6_vgathermh: 2443 case Intrinsic::hexagon_V6_vgathermh_128B: 2444 Opcode = Hexagon::V6_vgathermh_pseudo; 2445 break; 2446 case Intrinsic::hexagon_V6_vgathermw: 2447 case Intrinsic::hexagon_V6_vgathermw_128B: 2448 Opcode = Hexagon::V6_vgathermw_pseudo; 2449 break; 2450 case Intrinsic::hexagon_V6_vgathermhw: 2451 case Intrinsic::hexagon_V6_vgathermhw_128B: 2452 Opcode = Hexagon::V6_vgathermhw_pseudo; 2453 break; 2454 } 2455 2456 SDVTList VTs = CurDAG->getVTList(MVT::Other); 2457 SDValue Ops[] = { Address, ImmOperand, Base, Modifier, Offset, Chain }; 2458 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 2459 2460 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2461 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 2462 2463 ReplaceNode(N, Result); 2464 } 2465 2466 void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) { 2467 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2468 SDNode *Result; 2469 switch (IID) { 2470 case Intrinsic::hexagon_V6_vaddcarry: { 2471 std::array<SDValue, 3> Ops = { 2472 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2473 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1); 2474 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); 2475 break; 2476 } 2477 case Intrinsic::hexagon_V6_vaddcarry_128B: { 2478 std::array<SDValue, 3> Ops = { 2479 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2480 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1); 2481 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); 2482 break; 2483 } 2484 case Intrinsic::hexagon_V6_vsubcarry: { 2485 std::array<SDValue, 3> Ops = { 2486 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2487 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1); 2488 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); 2489 break; 2490 } 2491 case Intrinsic::hexagon_V6_vsubcarry_128B: { 2492 std::array<SDValue, 3> Ops = { 2493 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2494 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1); 2495 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); 2496 break; 2497 } 2498 default: 2499 llvm_unreachable("Unexpected HVX dual output intrinsic."); 2500 } 2501 ReplaceUses(N, Result); 2502 ReplaceUses(SDValue(N, 0), SDValue(Result, 0)); 2503 ReplaceUses(SDValue(N, 1), SDValue(Result, 1)); 2504 CurDAG->RemoveDeadNode(N); 2505 } 2506