1 //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Hexagon.h" 10 #include "HexagonISelDAGToDAG.h" 11 #include "HexagonISelLowering.h" 12 #include "HexagonTargetMachine.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/CodeGen/MachineInstrBuilder.h" 15 #include "llvm/CodeGen/SelectionDAGISel.h" 16 #include "llvm/IR/Intrinsics.h" 17 #include "llvm/IR/IntrinsicsHexagon.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/Support/Debug.h" 20 21 #include <deque> 22 #include <map> 23 #include <set> 24 #include <utility> 25 #include <vector> 26 27 #define DEBUG_TYPE "hexagon-isel" 28 29 using namespace llvm; 30 31 namespace { 32 33 // -------------------------------------------------------------------- 34 // Implementation of permutation networks. 35 36 // Implementation of the node routing through butterfly networks: 37 // - Forward delta. 38 // - Reverse delta. 39 // - Benes. 40 // 41 // 42 // Forward delta network consists of log(N) steps, where N is the number 43 // of inputs. In each step, an input can stay in place, or it can get 44 // routed to another position[1]. The step after that consists of two 45 // networks, each half in size in terms of the number of nodes. In those 46 // terms, in the given step, an input can go to either the upper or the 47 // lower network in the next step. 48 // 49 // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both 50 // positions as long as there is no conflict. 51 52 // Here's a delta network for 8 inputs, only the switching routes are 53 // shown: 54 // 55 // Steps: 56 // |- 1 ---------------|- 2 -----|- 3 -| 57 // 58 // Inp[0] *** *** *** *** Out[0] 59 // \ / \ / \ / 60 // \ / \ / X 61 // \ / \ / / \ 62 // Inp[1] *** \ / *** X *** *** Out[1] 63 // \ \ / / \ / \ / 64 // \ \ / / X X 65 // \ \ / / / \ / \ 66 // Inp[2] *** \ \ / / *** X *** *** Out[2] 67 // \ \ X / / / \ \ / 68 // \ \ / \ / / / \ X 69 // \ X X / / \ / \ 70 // Inp[3] *** \ / \ / \ / *** *** *** Out[3] 71 // \ X X X / 72 // \ / \ / \ / \ / 73 // X X X X 74 // / \ / \ / \ / \ 75 // / X X X \ 76 // Inp[4] *** / \ / \ / \ *** *** *** Out[4] 77 // / X X \ \ / \ / 78 // / / \ / \ \ \ / X 79 // / / X \ \ \ / / \ 80 // Inp[5] *** / / \ \ *** X *** *** Out[5] 81 // / / \ \ \ / \ / 82 // / / \ \ X X 83 // / / \ \ / \ / \ 84 // Inp[6] *** / \ *** X *** *** Out[6] 85 // / \ / \ \ / 86 // / \ / \ X 87 // / \ / \ / \ 88 // Inp[7] *** *** *** *** Out[7] 89 // 90 // 91 // Reverse delta network is same as delta network, with the steps in 92 // the opposite order. 93 // 94 // 95 // Benes network is a forward delta network immediately followed by 96 // a reverse delta network. 97 98 enum class ColorKind { None, Red, Black }; 99 100 // Graph coloring utility used to partition nodes into two groups: 101 // they will correspond to nodes routed to the upper and lower networks. 102 struct Coloring { 103 using Node = int; 104 using MapType = std::map<Node, ColorKind>; 105 static constexpr Node Ignore = Node(-1); 106 107 Coloring(ArrayRef<Node> Ord) : Order(Ord) { 108 build(); 109 if (!color()) 110 Colors.clear(); 111 } 112 113 const MapType &colors() const { 114 return Colors; 115 } 116 117 ColorKind other(ColorKind Color) { 118 if (Color == ColorKind::None) 119 return ColorKind::Red; 120 return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red; 121 } 122 123 LLVM_DUMP_METHOD void dump() const; 124 125 private: 126 ArrayRef<Node> Order; 127 MapType Colors; 128 std::set<Node> Needed; 129 130 using NodeSet = std::set<Node>; 131 std::map<Node,NodeSet> Edges; 132 133 Node conj(Node Pos) { 134 Node Num = Order.size(); 135 return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2; 136 } 137 138 ColorKind getColor(Node N) { 139 auto F = Colors.find(N); 140 return F != Colors.end() ? F->second : ColorKind::None; 141 } 142 143 std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes); 144 145 void build(); 146 bool color(); 147 }; 148 } // namespace 149 150 std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) { 151 auto Color = ColorKind::None; 152 for (Node N : Nodes) { 153 ColorKind ColorN = getColor(N); 154 if (ColorN == ColorKind::None) 155 continue; 156 if (Color == ColorKind::None) 157 Color = ColorN; 158 else if (Color != ColorKind::None && Color != ColorN) 159 return { false, ColorKind::None }; 160 } 161 return { true, Color }; 162 } 163 164 void Coloring::build() { 165 // Add Order[P] and Order[conj(P)] to Edges. 166 for (unsigned P = 0; P != Order.size(); ++P) { 167 Node I = Order[P]; 168 if (I != Ignore) { 169 Needed.insert(I); 170 Node PC = Order[conj(P)]; 171 if (PC != Ignore && PC != I) 172 Edges[I].insert(PC); 173 } 174 } 175 // Add I and conj(I) to Edges. 176 for (unsigned I = 0; I != Order.size(); ++I) { 177 if (!Needed.count(I)) 178 continue; 179 Node C = conj(I); 180 // This will create an entry in the edge table, even if I is not 181 // connected to any other node. This is necessary, because it still 182 // needs to be colored. 183 NodeSet &Is = Edges[I]; 184 if (Needed.count(C)) 185 Is.insert(C); 186 } 187 } 188 189 bool Coloring::color() { 190 SetVector<Node> FirstQ; 191 auto Enqueue = [this,&FirstQ] (Node N) { 192 SetVector<Node> Q; 193 Q.insert(N); 194 for (unsigned I = 0; I != Q.size(); ++I) { 195 NodeSet &Ns = Edges[Q[I]]; 196 Q.insert(Ns.begin(), Ns.end()); 197 } 198 FirstQ.insert(Q.begin(), Q.end()); 199 }; 200 for (Node N : Needed) 201 Enqueue(N); 202 203 for (Node N : FirstQ) { 204 if (Colors.count(N)) 205 continue; 206 NodeSet &Ns = Edges[N]; 207 auto P = getUniqueColor(Ns); 208 if (!P.first) 209 return false; 210 Colors[N] = other(P.second); 211 } 212 213 // First, color nodes that don't have any dups. 214 for (auto E : Edges) { 215 Node N = E.first; 216 if (!Needed.count(conj(N)) || Colors.count(N)) 217 continue; 218 auto P = getUniqueColor(E.second); 219 if (!P.first) 220 return false; 221 Colors[N] = other(P.second); 222 } 223 224 // Now, nodes that are still uncolored. Since the graph can be modified 225 // in this step, create a work queue. 226 std::vector<Node> WorkQ; 227 for (auto E : Edges) { 228 Node N = E.first; 229 if (!Colors.count(N)) 230 WorkQ.push_back(N); 231 } 232 233 for (unsigned I = 0; I < WorkQ.size(); ++I) { 234 Node N = WorkQ[I]; 235 NodeSet &Ns = Edges[N]; 236 auto P = getUniqueColor(Ns); 237 if (P.first) { 238 Colors[N] = other(P.second); 239 continue; 240 } 241 242 // Coloring failed. Split this node. 243 Node C = conj(N); 244 ColorKind ColorN = other(ColorKind::None); 245 ColorKind ColorC = other(ColorN); 246 NodeSet &Cs = Edges[C]; 247 NodeSet CopyNs = Ns; 248 for (Node M : CopyNs) { 249 ColorKind ColorM = getColor(M); 250 if (ColorM == ColorC) { 251 // Connect M with C, disconnect M from N. 252 Cs.insert(M); 253 Edges[M].insert(C); 254 Ns.erase(M); 255 Edges[M].erase(N); 256 } 257 } 258 Colors[N] = ColorN; 259 Colors[C] = ColorC; 260 } 261 262 // Explicitly assign "None" to all uncolored nodes. 263 for (unsigned I = 0; I != Order.size(); ++I) 264 if (Colors.count(I) == 0) 265 Colors[I] = ColorKind::None; 266 267 return true; 268 } 269 270 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 271 void Coloring::dump() const { 272 dbgs() << "{ Order: {"; 273 for (unsigned I = 0; I != Order.size(); ++I) { 274 Node P = Order[I]; 275 if (P != Ignore) 276 dbgs() << ' ' << P; 277 else 278 dbgs() << " -"; 279 } 280 dbgs() << " }\n"; 281 dbgs() << " Needed: {"; 282 for (Node N : Needed) 283 dbgs() << ' ' << N; 284 dbgs() << " }\n"; 285 286 dbgs() << " Edges: {\n"; 287 for (auto E : Edges) { 288 dbgs() << " " << E.first << " -> {"; 289 for (auto N : E.second) 290 dbgs() << ' ' << N; 291 dbgs() << " }\n"; 292 } 293 dbgs() << " }\n"; 294 295 auto ColorKindToName = [](ColorKind C) { 296 switch (C) { 297 case ColorKind::None: 298 return "None"; 299 case ColorKind::Red: 300 return "Red"; 301 case ColorKind::Black: 302 return "Black"; 303 } 304 llvm_unreachable("all ColorKinds should be handled by the switch above"); 305 }; 306 307 dbgs() << " Colors: {\n"; 308 for (auto C : Colors) 309 dbgs() << " " << C.first << " -> " << ColorKindToName(C.second) << "\n"; 310 dbgs() << " }\n}\n"; 311 } 312 #endif 313 314 namespace { 315 // Base class of for reordering networks. They don't strictly need to be 316 // permutations, as outputs with repeated occurrences of an input element 317 // are allowed. 318 struct PermNetwork { 319 using Controls = std::vector<uint8_t>; 320 using ElemType = int; 321 static constexpr ElemType Ignore = ElemType(-1); 322 323 enum : uint8_t { 324 None, 325 Pass, 326 Switch 327 }; 328 enum : uint8_t { 329 Forward, 330 Reverse 331 }; 332 333 PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) { 334 Order.assign(Ord.data(), Ord.data()+Ord.size()); 335 Log = 0; 336 337 unsigned S = Order.size(); 338 while (S >>= 1) 339 ++Log; 340 341 Table.resize(Order.size()); 342 for (RowType &Row : Table) 343 Row.resize(Mult*Log, None); 344 } 345 346 void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const { 347 unsigned Size = Order.size(); 348 V.resize(Size); 349 for (unsigned I = 0; I != Size; ++I) { 350 unsigned W = 0; 351 for (unsigned L = 0; L != Log; ++L) { 352 unsigned C = ctl(I, StartAt+L) == Switch; 353 if (Dir == Forward) 354 W |= C << (Log-1-L); 355 else 356 W |= C << L; 357 } 358 assert(isUInt<8>(W)); 359 V[I] = uint8_t(W); 360 } 361 } 362 363 uint8_t ctl(ElemType Pos, unsigned Step) const { 364 return Table[Pos][Step]; 365 } 366 unsigned size() const { 367 return Order.size(); 368 } 369 unsigned steps() const { 370 return Log; 371 } 372 373 protected: 374 unsigned Log; 375 std::vector<ElemType> Order; 376 using RowType = std::vector<uint8_t>; 377 std::vector<RowType> Table; 378 }; 379 380 struct ForwardDeltaNetwork : public PermNetwork { 381 ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} 382 383 bool run(Controls &V) { 384 if (!route(Order.data(), Table.data(), size(), 0)) 385 return false; 386 getControls(V, 0, Forward); 387 return true; 388 } 389 390 private: 391 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 392 }; 393 394 struct ReverseDeltaNetwork : public PermNetwork { 395 ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} 396 397 bool run(Controls &V) { 398 if (!route(Order.data(), Table.data(), size(), 0)) 399 return false; 400 getControls(V, 0, Reverse); 401 return true; 402 } 403 404 private: 405 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 406 }; 407 408 struct BenesNetwork : public PermNetwork { 409 BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {} 410 411 bool run(Controls &F, Controls &R) { 412 if (!route(Order.data(), Table.data(), size(), 0)) 413 return false; 414 415 getControls(F, 0, Forward); 416 getControls(R, Log, Reverse); 417 return true; 418 } 419 420 private: 421 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 422 }; 423 } // namespace 424 425 bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, 426 unsigned Step) { 427 bool UseUp = false, UseDown = false; 428 ElemType Num = Size; 429 430 // Cannot use coloring here, because coloring is used to determine 431 // the "big" switch, i.e. the one that changes halves, and in a forward 432 // network, a color can be simultaneously routed to both halves in the 433 // step we're working on. 434 for (ElemType J = 0; J != Num; ++J) { 435 ElemType I = P[J]; 436 // I is the position in the input, 437 // J is the position in the output. 438 if (I == Ignore) 439 continue; 440 uint8_t S; 441 if (I < Num/2) 442 S = (J < Num/2) ? Pass : Switch; 443 else 444 S = (J < Num/2) ? Switch : Pass; 445 446 // U is the element in the table that needs to be updated. 447 ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2); 448 if (U < Num/2) 449 UseUp = true; 450 else 451 UseDown = true; 452 if (T[U][Step] != S && T[U][Step] != None) 453 return false; 454 T[U][Step] = S; 455 } 456 457 for (ElemType J = 0; J != Num; ++J) 458 if (P[J] != Ignore && P[J] >= Num/2) 459 P[J] -= Num/2; 460 461 if (Step+1 < Log) { 462 if (UseUp && !route(P, T, Size/2, Step+1)) 463 return false; 464 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 465 return false; 466 } 467 return true; 468 } 469 470 bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, 471 unsigned Step) { 472 unsigned Pets = Log-1 - Step; 473 bool UseUp = false, UseDown = false; 474 ElemType Num = Size; 475 476 // In this step half-switching occurs, so coloring can be used. 477 Coloring G({P,Size}); 478 const Coloring::MapType &M = G.colors(); 479 if (M.empty()) 480 return false; 481 482 ColorKind ColorUp = ColorKind::None; 483 for (ElemType J = 0; J != Num; ++J) { 484 ElemType I = P[J]; 485 // I is the position in the input, 486 // J is the position in the output. 487 if (I == Ignore) 488 continue; 489 ColorKind C = M.at(I); 490 if (C == ColorKind::None) 491 continue; 492 // During "Step", inputs cannot switch halves, so if the "up" color 493 // is still unknown, make sure that it is selected in such a way that 494 // "I" will stay in the same half. 495 bool InpUp = I < Num/2; 496 if (ColorUp == ColorKind::None) 497 ColorUp = InpUp ? C : G.other(C); 498 if ((C == ColorUp) != InpUp) { 499 // If I should go to a different half than where is it now, give up. 500 return false; 501 } 502 503 uint8_t S; 504 if (InpUp) { 505 S = (J < Num/2) ? Pass : Switch; 506 UseUp = true; 507 } else { 508 S = (J < Num/2) ? Switch : Pass; 509 UseDown = true; 510 } 511 T[J][Pets] = S; 512 } 513 514 // Reorder the working permutation according to the computed switch table 515 // for the last step (i.e. Pets). 516 for (ElemType J = 0, E = Size / 2; J != E; ++J) { 517 ElemType PJ = P[J]; // Current values of P[J] 518 ElemType PC = P[J+Size/2]; // and P[conj(J)] 519 ElemType QJ = PJ; // New values of P[J] 520 ElemType QC = PC; // and P[conj(J)] 521 if (T[J][Pets] == Switch) 522 QC = PJ; 523 if (T[J+Size/2][Pets] == Switch) 524 QJ = PC; 525 P[J] = QJ; 526 P[J+Size/2] = QC; 527 } 528 529 for (ElemType J = 0; J != Num; ++J) 530 if (P[J] != Ignore && P[J] >= Num/2) 531 P[J] -= Num/2; 532 533 if (Step+1 < Log) { 534 if (UseUp && !route(P, T, Size/2, Step+1)) 535 return false; 536 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 537 return false; 538 } 539 return true; 540 } 541 542 bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size, 543 unsigned Step) { 544 Coloring G({P,Size}); 545 const Coloring::MapType &M = G.colors(); 546 if (M.empty()) 547 return false; 548 ElemType Num = Size; 549 550 unsigned Pets = 2*Log-1 - Step; 551 bool UseUp = false, UseDown = false; 552 553 // Both assignments, i.e. Red->Up and Red->Down are valid, but they will 554 // result in different controls. Let's pick the one where the first 555 // control will be "Pass". 556 ColorKind ColorUp = ColorKind::None; 557 for (ElemType J = 0; J != Num; ++J) { 558 ElemType I = P[J]; 559 if (I == Ignore) 560 continue; 561 ColorKind C = M.at(I); 562 if (C == ColorKind::None) 563 continue; 564 if (ColorUp == ColorKind::None) { 565 ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black; 566 } 567 unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2; 568 if (C == ColorUp) { 569 if (I < Num/2) 570 T[I][Step] = Pass; 571 else 572 T[CI][Step] = Switch; 573 T[J][Pets] = (J < Num/2) ? Pass : Switch; 574 UseUp = true; 575 } else { // Down 576 if (I < Num/2) 577 T[CI][Step] = Switch; 578 else 579 T[I][Step] = Pass; 580 T[J][Pets] = (J < Num/2) ? Switch : Pass; 581 UseDown = true; 582 } 583 } 584 585 // Reorder the working permutation according to the computed switch table 586 // for the last step (i.e. Pets). 587 for (ElemType J = 0; J != Num/2; ++J) { 588 ElemType PJ = P[J]; // Current values of P[J] 589 ElemType PC = P[J+Num/2]; // and P[conj(J)] 590 ElemType QJ = PJ; // New values of P[J] 591 ElemType QC = PC; // and P[conj(J)] 592 if (T[J][Pets] == Switch) 593 QC = PJ; 594 if (T[J+Num/2][Pets] == Switch) 595 QJ = PC; 596 P[J] = QJ; 597 P[J+Num/2] = QC; 598 } 599 600 for (ElemType J = 0; J != Num; ++J) 601 if (P[J] != Ignore && P[J] >= Num/2) 602 P[J] -= Num/2; 603 604 if (Step+1 < Log) { 605 if (UseUp && !route(P, T, Size/2, Step+1)) 606 return false; 607 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 608 return false; 609 } 610 return true; 611 } 612 613 // -------------------------------------------------------------------- 614 // Support for building selection results (output instructions that are 615 // parts of the final selection). 616 617 namespace { 618 struct OpRef { 619 OpRef(SDValue V) : OpV(V) {} 620 bool isValue() const { return OpV.getNode() != nullptr; } 621 bool isValid() const { return isValue() || !(OpN & Invalid); } 622 static OpRef res(int N) { return OpRef(Whole | (N & Index)); } 623 static OpRef fail() { return OpRef(Invalid); } 624 625 static OpRef lo(const OpRef &R) { 626 assert(!R.isValue()); 627 return OpRef(R.OpN & (Undef | Index | LoHalf)); 628 } 629 static OpRef hi(const OpRef &R) { 630 assert(!R.isValue()); 631 return OpRef(R.OpN & (Undef | Index | HiHalf)); 632 } 633 static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); } 634 635 // Direct value. 636 SDValue OpV = SDValue(); 637 638 // Reference to the operand of the input node: 639 // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the 640 // operand index: 641 // If bit 30 is set, it's the high half of the operand. 642 // If bit 29 is set, it's the low half of the operand. 643 unsigned OpN = 0; 644 645 enum : unsigned { 646 Invalid = 0x10000000, 647 LoHalf = 0x20000000, 648 HiHalf = 0x40000000, 649 Whole = LoHalf | HiHalf, 650 Undef = 0x80000000, 651 Index = 0x0FFFFFFF, // Mask of the index value. 652 IndexBits = 28, 653 }; 654 655 LLVM_DUMP_METHOD 656 void print(raw_ostream &OS, const SelectionDAG &G) const; 657 658 private: 659 OpRef(unsigned N) : OpN(N) {} 660 }; 661 662 struct NodeTemplate { 663 NodeTemplate() = default; 664 unsigned Opc = 0; 665 MVT Ty = MVT::Other; 666 std::vector<OpRef> Ops; 667 668 LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const; 669 }; 670 671 struct ResultStack { 672 ResultStack(SDNode *Inp) 673 : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {} 674 SDNode *InpNode; 675 MVT InpTy; 676 unsigned push(const NodeTemplate &Res) { 677 List.push_back(Res); 678 return List.size()-1; 679 } 680 unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) { 681 NodeTemplate Res; 682 Res.Opc = Opc; 683 Res.Ty = Ty; 684 Res.Ops = Ops; 685 return push(Res); 686 } 687 bool empty() const { return List.empty(); } 688 unsigned size() const { return List.size(); } 689 unsigned top() const { return size()-1; } 690 const NodeTemplate &operator[](unsigned I) const { return List[I]; } 691 unsigned reset(unsigned NewTop) { 692 List.resize(NewTop+1); 693 return NewTop; 694 } 695 696 using BaseType = std::vector<NodeTemplate>; 697 BaseType::iterator begin() { return List.begin(); } 698 BaseType::iterator end() { return List.end(); } 699 BaseType::const_iterator begin() const { return List.begin(); } 700 BaseType::const_iterator end() const { return List.end(); } 701 702 BaseType List; 703 704 LLVM_DUMP_METHOD 705 void print(raw_ostream &OS, const SelectionDAG &G) const; 706 }; 707 } // namespace 708 709 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 710 void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const { 711 if (isValue()) { 712 OpV.getNode()->print(OS, &G); 713 return; 714 } 715 if (OpN & Invalid) { 716 OS << "invalid"; 717 return; 718 } 719 if (OpN & Undef) { 720 OS << "undef"; 721 return; 722 } 723 if ((OpN & Whole) != Whole) { 724 assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf); 725 if (OpN & LoHalf) 726 OS << "lo "; 727 else 728 OS << "hi "; 729 } 730 OS << '#' << SignExtend32(OpN & Index, IndexBits); 731 } 732 733 void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const { 734 const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo(); 735 OS << format("%8s", EVT(Ty).getEVTString().c_str()) << " " 736 << TII.getName(Opc); 737 bool Comma = false; 738 for (const auto &R : Ops) { 739 if (Comma) 740 OS << ','; 741 Comma = true; 742 OS << ' '; 743 R.print(OS, G); 744 } 745 } 746 747 void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const { 748 OS << "Input node:\n"; 749 #ifndef NDEBUG 750 InpNode->dumpr(&G); 751 #endif 752 OS << "Result templates:\n"; 753 for (unsigned I = 0, E = List.size(); I != E; ++I) { 754 OS << '[' << I << "] "; 755 List[I].print(OS, G); 756 OS << '\n'; 757 } 758 } 759 #endif 760 761 namespace { 762 struct ShuffleMask { 763 ShuffleMask(ArrayRef<int> M) : Mask(M) { 764 for (unsigned I = 0, E = Mask.size(); I != E; ++I) { 765 int M = Mask[I]; 766 if (M == -1) 767 continue; 768 MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M); 769 MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M); 770 } 771 } 772 773 ArrayRef<int> Mask; 774 int MinSrc = -1, MaxSrc = -1; 775 776 ShuffleMask lo() const { 777 size_t H = Mask.size()/2; 778 return ShuffleMask(Mask.take_front(H)); 779 } 780 ShuffleMask hi() const { 781 size_t H = Mask.size()/2; 782 return ShuffleMask(Mask.take_back(H)); 783 } 784 785 void print(raw_ostream &OS) const { 786 OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {"; 787 for (int M : Mask) 788 OS << ' ' << M; 789 OS << " }"; 790 } 791 }; 792 } // namespace 793 794 // -------------------------------------------------------------------- 795 // The HvxSelector class. 796 797 static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) { 798 return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo()); 799 } 800 static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) { 801 return static_cast<const HexagonSubtarget&>(G.getSubtarget()); 802 } 803 804 namespace llvm { 805 struct HvxSelector { 806 const HexagonTargetLowering &Lower; 807 HexagonDAGToDAGISel &ISel; 808 SelectionDAG &DAG; 809 const HexagonSubtarget &HST; 810 const unsigned HwLen; 811 812 HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G) 813 : Lower(getHexagonLowering(G)), ISel(HS), DAG(G), 814 HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {} 815 816 MVT getSingleVT(MVT ElemTy) const { 817 unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8); 818 return MVT::getVectorVT(ElemTy, NumElems); 819 } 820 821 MVT getPairVT(MVT ElemTy) const { 822 unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8); 823 return MVT::getVectorVT(ElemTy, NumElems); 824 } 825 826 void selectShuffle(SDNode *N); 827 void selectRor(SDNode *N); 828 void selectVAlign(SDNode *N); 829 830 private: 831 void materialize(const ResultStack &Results); 832 833 SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl); 834 835 enum : unsigned { 836 None, 837 PackMux, 838 }; 839 OpRef concat(OpRef Va, OpRef Vb, ResultStack &Results); 840 OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, 841 MutableArrayRef<int> NewMask, unsigned Options = None); 842 OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, 843 MutableArrayRef<int> NewMask); 844 OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 845 ResultStack &Results); 846 OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 847 ResultStack &Results); 848 849 OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results); 850 OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 851 OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results); 852 OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 853 854 OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results); 855 OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 856 OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results); 857 OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results); 858 859 bool selectVectorConstants(SDNode *N); 860 bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy, 861 SDValue Va, SDValue Vb, SDNode *N); 862 863 }; 864 } 865 866 static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL, 867 MutableArrayRef<int> MaskR) { 868 unsigned VecLen = Mask.size(); 869 assert(MaskL.size() == VecLen && MaskR.size() == VecLen); 870 for (unsigned I = 0; I != VecLen; ++I) { 871 int M = Mask[I]; 872 if (M < 0) { 873 MaskL[I] = MaskR[I] = -1; 874 } else if (unsigned(M) < VecLen) { 875 MaskL[I] = M; 876 MaskR[I] = -1; 877 } else { 878 MaskL[I] = -1; 879 MaskR[I] = M-VecLen; 880 } 881 } 882 } 883 884 static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc, 885 unsigned MaxLen) { 886 assert(A.size() > 0 && A.size() >= MaxLen); 887 int F = A[0]; 888 int E = F; 889 for (unsigned I = 1; I != MaxLen; ++I) { 890 if (A[I] - E != Inc) 891 return { F, I }; 892 E = A[I]; 893 } 894 return { F, MaxLen }; 895 } 896 897 static bool isUndef(ArrayRef<int> Mask) { 898 for (int Idx : Mask) 899 if (Idx != -1) 900 return false; 901 return true; 902 } 903 904 static bool isIdentity(ArrayRef<int> Mask) { 905 for (int I = 0, E = Mask.size(); I != E; ++I) { 906 int M = Mask[I]; 907 if (M >= 0 && M != I) 908 return false; 909 } 910 return true; 911 } 912 913 static bool isPermutation(ArrayRef<int> Mask) { 914 // Check by adding all numbers only works if there is no overflow. 915 assert(Mask.size() < 0x00007FFF && "Sanity failure"); 916 int Sum = 0; 917 for (int Idx : Mask) { 918 if (Idx == -1) 919 return false; 920 Sum += Idx; 921 } 922 int N = Mask.size(); 923 return 2*Sum == N*(N-1); 924 } 925 926 bool HvxSelector::selectVectorConstants(SDNode *N) { 927 // Constant vectors are generated as loads from constant pools or as 928 // splats of a constant value. Since they are generated during the 929 // selection process, the main selection algorithm is not aware of them. 930 // Select them directly here. 931 SmallVector<SDNode*,4> Nodes; 932 SetVector<SDNode*> WorkQ; 933 934 // The one-use test for VSPLATW's operand may fail due to dead nodes 935 // left over in the DAG. 936 DAG.RemoveDeadNodes(); 937 938 // The DAG can change (due to CSE) during selection, so cache all the 939 // unselected nodes first to avoid traversing a mutating DAG. 940 941 auto IsNodeToSelect = [] (SDNode *N) { 942 if (N->isMachineOpcode()) 943 return false; 944 switch (N->getOpcode()) { 945 case HexagonISD::VZERO: 946 case HexagonISD::VSPLATW: 947 return true; 948 case ISD::LOAD: { 949 SDValue Addr = cast<LoadSDNode>(N)->getBasePtr(); 950 unsigned AddrOpc = Addr.getOpcode(); 951 if (AddrOpc == HexagonISD::AT_PCREL || AddrOpc == HexagonISD::CP) 952 if (Addr.getOperand(0).getOpcode() == ISD::TargetConstantPool) 953 return true; 954 } 955 break; 956 } 957 // Make sure to select the operand of VSPLATW. 958 bool IsSplatOp = N->hasOneUse() && 959 N->use_begin()->getOpcode() == HexagonISD::VSPLATW; 960 return IsSplatOp; 961 }; 962 963 WorkQ.insert(N); 964 for (unsigned i = 0; i != WorkQ.size(); ++i) { 965 SDNode *W = WorkQ[i]; 966 if (IsNodeToSelect(W)) 967 Nodes.push_back(W); 968 for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j) 969 WorkQ.insert(W->getOperand(j).getNode()); 970 } 971 972 for (SDNode *L : Nodes) 973 ISel.Select(L); 974 975 return !Nodes.empty(); 976 } 977 978 void HvxSelector::materialize(const ResultStack &Results) { 979 DEBUG_WITH_TYPE("isel", { 980 dbgs() << "Materializing\n"; 981 Results.print(dbgs(), DAG); 982 }); 983 if (Results.empty()) 984 return; 985 const SDLoc &dl(Results.InpNode); 986 std::vector<SDValue> Output; 987 988 for (unsigned I = 0, E = Results.size(); I != E; ++I) { 989 const NodeTemplate &Node = Results[I]; 990 std::vector<SDValue> Ops; 991 for (const OpRef &R : Node.Ops) { 992 assert(R.isValid()); 993 if (R.isValue()) { 994 Ops.push_back(R.OpV); 995 continue; 996 } 997 if (R.OpN & OpRef::Undef) { 998 MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index); 999 Ops.push_back(ISel.selectUndef(dl, MVT(SVT))); 1000 continue; 1001 } 1002 // R is an index of a result. 1003 unsigned Part = R.OpN & OpRef::Whole; 1004 int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits); 1005 if (Idx < 0) 1006 Idx += I; 1007 assert(Idx >= 0 && unsigned(Idx) < Output.size()); 1008 SDValue Op = Output[Idx]; 1009 MVT OpTy = Op.getValueType().getSimpleVT(); 1010 if (Part != OpRef::Whole) { 1011 assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf); 1012 MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(), 1013 OpTy.getVectorNumElements()/2); 1014 unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo 1015 : Hexagon::vsub_hi; 1016 Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op); 1017 } 1018 Ops.push_back(Op); 1019 } // for (Node : Results) 1020 1021 assert(Node.Ty != MVT::Other); 1022 SDNode *ResN = (Node.Opc == TargetOpcode::COPY) 1023 ? Ops.front().getNode() 1024 : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops); 1025 Output.push_back(SDValue(ResN, 0)); 1026 } 1027 1028 SDNode *OutN = Output.back().getNode(); 1029 SDNode *InpN = Results.InpNode; 1030 DEBUG_WITH_TYPE("isel", { 1031 dbgs() << "Generated node:\n"; 1032 OutN->dumpr(&DAG); 1033 }); 1034 1035 ISel.ReplaceNode(InpN, OutN); 1036 selectVectorConstants(OutN); 1037 DAG.RemoveDeadNodes(); 1038 } 1039 1040 OpRef HvxSelector::concat(OpRef Lo, OpRef Hi, ResultStack &Results) { 1041 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1042 const SDLoc &dl(Results.InpNode); 1043 Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), { 1044 DAG.getTargetConstant(Hexagon::HvxWRRegClassID, dl, MVT::i32), 1045 Lo, DAG.getTargetConstant(Hexagon::vsub_lo, dl, MVT::i32), 1046 Hi, DAG.getTargetConstant(Hexagon::vsub_hi, dl, MVT::i32), 1047 }); 1048 return OpRef::res(Results.top()); 1049 } 1050 1051 // Va, Vb are single vectors, SM can be arbitrarily long. 1052 OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb, 1053 ResultStack &Results, MutableArrayRef<int> NewMask, 1054 unsigned Options) { 1055 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1056 if (!Va.isValid() || !Vb.isValid()) 1057 return OpRef::fail(); 1058 1059 int VecLen = SM.Mask.size(); 1060 MVT Ty = getSingleVT(MVT::i8); 1061 1062 auto IsExtSubvector = [] (ShuffleMask M) { 1063 assert(M.MinSrc >= 0 && M.MaxSrc >= 0); 1064 for (int I = 0, E = M.Mask.size(); I != E; ++I) { 1065 if (M.Mask[I] >= 0 && M.Mask[I]-I != M.MinSrc) 1066 return false; 1067 } 1068 return true; 1069 }; 1070 1071 if (SM.MaxSrc - SM.MinSrc < int(HwLen)) { 1072 if (SM.MinSrc == 0 || SM.MinSrc == int(HwLen) || !IsExtSubvector(SM)) { 1073 // If the mask picks elements from only one of the operands, return 1074 // that operand, and update the mask to use index 0 to refer to the 1075 // first element of that operand. 1076 // If the mask extracts a subvector, it will be handled below, so 1077 // skip it here. 1078 if (SM.MaxSrc < int(HwLen)) { 1079 memcpy(NewMask.data(), SM.Mask.data(), sizeof(int)*VecLen); 1080 return Va; 1081 } 1082 if (SM.MinSrc >= int(HwLen)) { 1083 for (int I = 0; I != VecLen; ++I) { 1084 int M = SM.Mask[I]; 1085 if (M != -1) 1086 M -= HwLen; 1087 NewMask[I] = M; 1088 } 1089 return Vb; 1090 } 1091 } 1092 int MinSrc = SM.MinSrc; 1093 if (SM.MaxSrc < int(HwLen)) { 1094 Vb = Va; 1095 } else if (SM.MinSrc > int(HwLen)) { 1096 Va = Vb; 1097 MinSrc = SM.MinSrc - HwLen; 1098 } 1099 const SDLoc &dl(Results.InpNode); 1100 if (isUInt<3>(MinSrc) || isUInt<3>(HwLen-MinSrc)) { 1101 bool IsRight = isUInt<3>(MinSrc); // Right align. 1102 SDValue S = DAG.getTargetConstant(IsRight ? MinSrc : HwLen-MinSrc, 1103 dl, MVT::i32); 1104 unsigned Opc = IsRight ? Hexagon::V6_valignbi 1105 : Hexagon::V6_vlalignbi; 1106 Results.push(Opc, Ty, {Vb, Va, S}); 1107 } else { 1108 SDValue S = DAG.getTargetConstant(MinSrc, dl, MVT::i32); 1109 Results.push(Hexagon::A2_tfrsi, MVT::i32, {S}); 1110 unsigned Top = Results.top(); 1111 Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(Top)}); 1112 } 1113 for (int I = 0; I != VecLen; ++I) { 1114 int M = SM.Mask[I]; 1115 if (M != -1) 1116 M -= SM.MinSrc; 1117 NewMask[I] = M; 1118 } 1119 return OpRef::res(Results.top()); 1120 } 1121 1122 if (Options & PackMux) { 1123 // If elements picked from Va and Vb have all different (source) indexes 1124 // (relative to the start of the argument), do a mux, and update the mask. 1125 BitVector Picked(HwLen); 1126 SmallVector<uint8_t,128> MuxBytes(HwLen); 1127 bool CanMux = true; 1128 for (int I = 0; I != VecLen; ++I) { 1129 int M = SM.Mask[I]; 1130 if (M == -1) 1131 continue; 1132 if (M >= int(HwLen)) 1133 M -= HwLen; 1134 else 1135 MuxBytes[M] = 0xFF; 1136 if (Picked[M]) { 1137 CanMux = false; 1138 break; 1139 } 1140 NewMask[I] = M; 1141 } 1142 if (CanMux) 1143 return vmuxs(MuxBytes, Va, Vb, Results); 1144 } 1145 1146 return OpRef::fail(); 1147 } 1148 1149 OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb, 1150 ResultStack &Results, MutableArrayRef<int> NewMask) { 1151 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1152 unsigned HalfMask = 0; 1153 unsigned LogHw = Log2_32(HwLen); 1154 for (int M : SM.Mask) { 1155 if (M == -1) 1156 continue; 1157 HalfMask |= (1u << (M >> LogHw)); 1158 } 1159 1160 if (HalfMask == 0) 1161 return OpRef::undef(getPairVT(MVT::i8)); 1162 1163 // If more than two halves are used, bail. 1164 // TODO: be more aggressive here? 1165 if (countPopulation(HalfMask) > 2) 1166 return OpRef::fail(); 1167 1168 MVT HalfTy = getSingleVT(MVT::i8); 1169 1170 OpRef Inp[2] = { Va, Vb }; 1171 OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) }; 1172 1173 uint8_t HalfIdx[4] = { 0xFF, 0xFF, 0xFF, 0xFF }; 1174 unsigned Idx = 0; 1175 for (unsigned I = 0; I != 4; ++I) { 1176 if ((HalfMask & (1u << I)) == 0) 1177 continue; 1178 assert(Idx < 2); 1179 OpRef Op = Inp[I/2]; 1180 Out[Idx] = (I & 1) ? OpRef::hi(Op) : OpRef::lo(Op); 1181 HalfIdx[I] = Idx++; 1182 } 1183 1184 int VecLen = SM.Mask.size(); 1185 for (int I = 0; I != VecLen; ++I) { 1186 int M = SM.Mask[I]; 1187 if (M >= 0) { 1188 uint8_t Idx = HalfIdx[M >> LogHw]; 1189 assert(Idx == 0 || Idx == 1); 1190 M = (M & (HwLen-1)) + HwLen*Idx; 1191 } 1192 NewMask[I] = M; 1193 } 1194 1195 return concat(Out[0], Out[1], Results); 1196 } 1197 1198 OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 1199 ResultStack &Results) { 1200 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1201 MVT ByteTy = getSingleVT(MVT::i8); 1202 MVT BoolTy = MVT::getVectorVT(MVT::i1, 8*HwLen); // XXX 1203 const SDLoc &dl(Results.InpNode); 1204 SDValue B = getVectorConstant(Bytes, dl); 1205 Results.push(Hexagon::V6_vd0, ByteTy, {}); 1206 Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)}); 1207 Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va}); 1208 return OpRef::res(Results.top()); 1209 } 1210 1211 OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 1212 ResultStack &Results) { 1213 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1214 size_t S = Bytes.size() / 2; 1215 OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results); 1216 OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results); 1217 return concat(L, H, Results); 1218 } 1219 1220 OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1221 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1222 unsigned VecLen = SM.Mask.size(); 1223 assert(HwLen == VecLen); 1224 (void)VecLen; 1225 assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); })); 1226 1227 if (isIdentity(SM.Mask)) 1228 return Va; 1229 if (isUndef(SM.Mask)) 1230 return OpRef::undef(getSingleVT(MVT::i8)); 1231 1232 OpRef P = perfect(SM, Va, Results); 1233 if (P.isValid()) 1234 return P; 1235 return butterfly(SM, Va, Results); 1236 } 1237 1238 OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, 1239 ResultStack &Results) { 1240 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1241 if (isUndef(SM.Mask)) 1242 return OpRef::undef(getSingleVT(MVT::i8)); 1243 1244 OpRef C = contracting(SM, Va, Vb, Results); 1245 if (C.isValid()) 1246 return C; 1247 1248 int VecLen = SM.Mask.size(); 1249 SmallVector<int,128> NewMask(VecLen); 1250 OpRef P = packs(SM, Va, Vb, Results, NewMask); 1251 if (P.isValid()) 1252 return shuffs1(ShuffleMask(NewMask), P, Results); 1253 1254 SmallVector<int,128> MaskL(VecLen), MaskR(VecLen); 1255 splitMask(SM.Mask, MaskL, MaskR); 1256 1257 OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results); 1258 OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results); 1259 if (!L.isValid() || !R.isValid()) 1260 return OpRef::fail(); 1261 1262 SmallVector<uint8_t,128> Bytes(VecLen); 1263 for (int I = 0; I != VecLen; ++I) { 1264 if (MaskL[I] != -1) 1265 Bytes[I] = 0xFF; 1266 } 1267 return vmuxs(Bytes, L, R, Results); 1268 } 1269 1270 OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1271 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1272 int VecLen = SM.Mask.size(); 1273 1274 if (isIdentity(SM.Mask)) 1275 return Va; 1276 if (isUndef(SM.Mask)) 1277 return OpRef::undef(getPairVT(MVT::i8)); 1278 1279 SmallVector<int,128> PackedMask(VecLen); 1280 OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask); 1281 if (P.isValid()) { 1282 ShuffleMask PM(PackedMask); 1283 OpRef E = expanding(PM, P, Results); 1284 if (E.isValid()) 1285 return E; 1286 1287 OpRef L = shuffs1(PM.lo(), P, Results); 1288 OpRef H = shuffs1(PM.hi(), P, Results); 1289 if (L.isValid() && H.isValid()) 1290 return concat(L, H, Results); 1291 } 1292 1293 OpRef R = perfect(SM, Va, Results); 1294 if (R.isValid()) 1295 return R; 1296 // TODO commute the mask and try the opposite order of the halves. 1297 1298 OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results); 1299 OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results); 1300 if (L.isValid() && H.isValid()) 1301 return concat(L, H, Results); 1302 1303 return OpRef::fail(); 1304 } 1305 1306 OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, 1307 ResultStack &Results) { 1308 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1309 if (isUndef(SM.Mask)) 1310 return OpRef::undef(getPairVT(MVT::i8)); 1311 1312 int VecLen = SM.Mask.size(); 1313 SmallVector<int,256> PackedMask(VecLen); 1314 OpRef P = packp(SM, Va, Vb, Results, PackedMask); 1315 if (P.isValid()) 1316 return shuffp1(ShuffleMask(PackedMask), P, Results); 1317 1318 SmallVector<int,256> MaskL(VecLen), MaskR(VecLen); 1319 splitMask(SM.Mask, MaskL, MaskR); 1320 1321 OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results); 1322 OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results); 1323 if (!L.isValid() || !R.isValid()) 1324 return OpRef::fail(); 1325 1326 // Mux the results. 1327 SmallVector<uint8_t,256> Bytes(VecLen); 1328 for (int I = 0; I != VecLen; ++I) { 1329 if (MaskL[I] != -1) 1330 Bytes[I] = 0xFF; 1331 } 1332 return vmuxp(Bytes, L, R, Results); 1333 } 1334 1335 namespace { 1336 struct Deleter : public SelectionDAG::DAGNodeDeletedListener { 1337 template <typename T> 1338 Deleter(SelectionDAG &D, T &C) 1339 : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) { 1340 C.erase(N); 1341 }) {} 1342 }; 1343 1344 template <typename T> 1345 struct NullifyingVector : public T { 1346 DenseMap<SDNode*, SDNode**> Refs; 1347 NullifyingVector(T &&V) : T(V) { 1348 for (unsigned i = 0, e = T::size(); i != e; ++i) { 1349 SDNode *&N = T::operator[](i); 1350 Refs[N] = &N; 1351 } 1352 } 1353 void erase(SDNode *N) { 1354 auto F = Refs.find(N); 1355 if (F != Refs.end()) 1356 *F->second = nullptr; 1357 } 1358 }; 1359 } 1360 1361 bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, 1362 MVT ResTy, SDValue Va, SDValue Vb, 1363 SDNode *N) { 1364 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1365 MVT ElemTy = ResTy.getVectorElementType(); 1366 assert(ElemTy == MVT::i8); 1367 unsigned VecLen = Mask.size(); 1368 bool HavePairs = (2*HwLen == VecLen); 1369 MVT SingleTy = getSingleVT(MVT::i8); 1370 1371 // The prior attempts to handle this shuffle may have left a bunch of 1372 // dead nodes in the DAG (such as constants). These nodes will be added 1373 // at the end of DAG's node list, which at that point had already been 1374 // sorted topologically. In the main selection loop, the node list is 1375 // traversed backwards from the root node, which means that any new 1376 // nodes (from the end of the list) will not be visited. 1377 // Scalarization will replace the shuffle node with the scalarized 1378 // expression, and if that expression reused any if the leftoever (dead) 1379 // nodes, these nodes would not be selected (since the "local" selection 1380 // only visits nodes that are not in AllNodes). 1381 // To avoid this issue, remove all dead nodes from the DAG now. 1382 DAG.RemoveDeadNodes(); 1383 DenseSet<SDNode*> AllNodes; 1384 for (SDNode &S : DAG.allnodes()) 1385 AllNodes.insert(&S); 1386 1387 Deleter DUA(DAG, AllNodes); 1388 1389 SmallVector<SDValue,128> Ops; 1390 LLVMContext &Ctx = *DAG.getContext(); 1391 MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT(); 1392 for (int I : Mask) { 1393 if (I < 0) { 1394 Ops.push_back(ISel.selectUndef(dl, LegalTy)); 1395 continue; 1396 } 1397 SDValue Vec; 1398 unsigned M = I; 1399 if (M < VecLen) { 1400 Vec = Va; 1401 } else { 1402 Vec = Vb; 1403 M -= VecLen; 1404 } 1405 if (HavePairs) { 1406 if (M < HwLen) { 1407 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec); 1408 } else { 1409 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec); 1410 M -= HwLen; 1411 } 1412 } 1413 SDValue Idx = DAG.getConstant(M, dl, MVT::i32); 1414 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx}); 1415 SDValue L = Lower.LowerOperation(Ex, DAG); 1416 assert(L.getNode()); 1417 Ops.push_back(L); 1418 } 1419 1420 SDValue LV; 1421 if (2*HwLen == VecLen) { 1422 SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen}); 1423 SDValue L0 = Lower.LowerOperation(B0, DAG); 1424 SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen}); 1425 SDValue L1 = Lower.LowerOperation(B1, DAG); 1426 // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering) 1427 // functions may expect to be called only for illegal operations, so 1428 // make sure that they are not called for legal ones. Develop a better 1429 // mechanism for dealing with this. 1430 LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1}); 1431 } else { 1432 SDValue BV = DAG.getBuildVector(ResTy, dl, Ops); 1433 LV = Lower.LowerOperation(BV, DAG); 1434 } 1435 1436 assert(!N->use_empty()); 1437 ISel.ReplaceNode(N, LV.getNode()); 1438 1439 if (AllNodes.count(LV.getNode())) { 1440 DAG.RemoveDeadNodes(); 1441 return true; 1442 } 1443 1444 // The lowered build-vector node will now need to be selected. It needs 1445 // to be done here because this node and its submodes are not included 1446 // in the main selection loop. 1447 // Implement essentially the same topological ordering algorithm as is 1448 // used in SelectionDAGISel. 1449 1450 SetVector<SDNode*> SubNodes, TmpQ; 1451 std::map<SDNode*,unsigned> NumOps; 1452 1453 SubNodes.insert(LV.getNode()); 1454 for (unsigned I = 0; I != SubNodes.size(); ++I) { 1455 unsigned OpN = 0; 1456 SDNode *S = SubNodes[I]; 1457 for (SDValue Op : S->ops()) { 1458 if (AllNodes.count(Op.getNode())) 1459 continue; 1460 SubNodes.insert(Op.getNode()); 1461 ++OpN; 1462 } 1463 NumOps.insert({S, OpN}); 1464 if (OpN == 0) 1465 TmpQ.insert(S); 1466 } 1467 1468 for (unsigned I = 0; I != TmpQ.size(); ++I) { 1469 SDNode *S = TmpQ[I]; 1470 for (SDNode *U : S->uses()) { 1471 if (!SubNodes.count(U)) 1472 continue; 1473 auto F = NumOps.find(U); 1474 assert(F != NumOps.end()); 1475 assert(F->second > 0); 1476 if (!--F->second) 1477 TmpQ.insert(F->first); 1478 } 1479 } 1480 assert(SubNodes.size() == TmpQ.size()); 1481 NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector()); 1482 1483 Deleter DUQ(DAG, Queue); 1484 for (SDNode *S : reverse(Queue)) 1485 if (S != nullptr) 1486 ISel.Select(S); 1487 1488 DAG.RemoveDeadNodes(); 1489 return true; 1490 } 1491 1492 OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb, 1493 ResultStack &Results) { 1494 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1495 if (!Va.isValid() || !Vb.isValid()) 1496 return OpRef::fail(); 1497 1498 // Contracting shuffles, i.e. instructions that always discard some bytes 1499 // from the operand vectors. 1500 // 1501 // V6_vshuff{e,o}b 1502 // V6_vdealb4w 1503 // V6_vpack{e,o}{b,h} 1504 1505 int VecLen = SM.Mask.size(); 1506 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); 1507 MVT ResTy = getSingleVT(MVT::i8); 1508 1509 // The following shuffles only work for bytes and halfwords. This requires 1510 // the strip length to be 1 or 2. 1511 if (Strip.second != 1 && Strip.second != 2) 1512 return OpRef::fail(); 1513 1514 // The patterns for the shuffles, in terms of the starting offsets of the 1515 // consecutive strips (L = length of the strip, N = VecLen): 1516 // 1517 // vpacke: 0, 2L, 4L ... N+0, N+2L, N+4L ... L = 1 or 2 1518 // vpacko: L, 3L, 5L ... N+L, N+3L, N+5L ... L = 1 or 2 1519 // 1520 // vshuffe: 0, N+0, 2L, N+2L, 4L ... L = 1 or 2 1521 // vshuffo: L, N+L, 3L, N+3L, 5L ... L = 1 or 2 1522 // 1523 // vdealb4w: 0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ... 1524 1525 // The value of the element in the mask following the strip will decide 1526 // what kind of a shuffle this can be. 1527 int NextInMask = SM.Mask[Strip.second]; 1528 1529 // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask 1530 // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would 1531 // satisfy this. 1532 if (NextInMask < VecLen) { 1533 // vpack{e,o} or vdealb4w 1534 if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) { 1535 int N = VecLen; 1536 // Check if this is vdealb4w (L=1). 1537 for (int I = 0; I != N/4; ++I) 1538 if (SM.Mask[I] != 4*I) 1539 return OpRef::fail(); 1540 for (int I = 0; I != N/4; ++I) 1541 if (SM.Mask[I+N/4] != 2 + 4*I) 1542 return OpRef::fail(); 1543 for (int I = 0; I != N/4; ++I) 1544 if (SM.Mask[I+N/2] != N + 4*I) 1545 return OpRef::fail(); 1546 for (int I = 0; I != N/4; ++I) 1547 if (SM.Mask[I+3*N/4] != N+2 + 4*I) 1548 return OpRef::fail(); 1549 // Matched mask for vdealb4w. 1550 Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va}); 1551 return OpRef::res(Results.top()); 1552 } 1553 1554 // Check if this is vpack{e,o}. 1555 int N = VecLen; 1556 int L = Strip.second; 1557 // Check if the first strip starts at 0 or at L. 1558 if (Strip.first != 0 && Strip.first != L) 1559 return OpRef::fail(); 1560 // Examine the rest of the mask. 1561 for (int I = L; I < N; I += L) { 1562 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 1563 // Check whether the mask element at the beginning of each strip 1564 // increases by 2L each time. 1565 if (S.first - Strip.first != 2*I) 1566 return OpRef::fail(); 1567 // Check whether each strip is of the same length. 1568 if (S.second != unsigned(L)) 1569 return OpRef::fail(); 1570 } 1571 1572 // Strip.first == 0 => vpacke 1573 // Strip.first == L => vpacko 1574 assert(Strip.first == 0 || Strip.first == L); 1575 using namespace Hexagon; 1576 NodeTemplate Res; 1577 Res.Opc = Strip.second == 1 // Number of bytes. 1578 ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob) 1579 : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh); 1580 Res.Ty = ResTy; 1581 Res.Ops = { Vb, Va }; 1582 Results.push(Res); 1583 return OpRef::res(Results.top()); 1584 } 1585 1586 // Check if this is vshuff{e,o}. 1587 int N = VecLen; 1588 int L = Strip.second; 1589 std::pair<int,unsigned> PrevS = Strip; 1590 bool Flip = false; 1591 for (int I = L; I < N; I += L) { 1592 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 1593 if (S.second != PrevS.second) 1594 return OpRef::fail(); 1595 int Diff = Flip ? PrevS.first - S.first + 2*L 1596 : S.first - PrevS.first; 1597 if (Diff != N) 1598 return OpRef::fail(); 1599 Flip ^= true; 1600 PrevS = S; 1601 } 1602 // Strip.first == 0 => vshuffe 1603 // Strip.first == L => vshuffo 1604 assert(Strip.first == 0 || Strip.first == L); 1605 using namespace Hexagon; 1606 NodeTemplate Res; 1607 Res.Opc = Strip.second == 1 // Number of bytes. 1608 ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob) 1609 : (Strip.first == 0 ? V6_vshufeh : V6_vshufoh); 1610 Res.Ty = ResTy; 1611 Res.Ops = { Vb, Va }; 1612 Results.push(Res); 1613 return OpRef::res(Results.top()); 1614 } 1615 1616 OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1617 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1618 // Expanding shuffles (using all elements and inserting into larger vector): 1619 // 1620 // V6_vunpacku{b,h} [*] 1621 // 1622 // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask. 1623 // 1624 // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so 1625 // they are not shuffles. 1626 // 1627 // The argument is a single vector. 1628 1629 int VecLen = SM.Mask.size(); 1630 assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type"); 1631 1632 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); 1633 1634 // The patterns for the unpacks, in terms of the starting offsets of the 1635 // consecutive strips (L = length of the strip, N = VecLen): 1636 // 1637 // vunpacku: 0, -1, L, -1, 2L, -1 ... 1638 1639 if (Strip.first != 0) 1640 return OpRef::fail(); 1641 1642 // The vunpackus only handle byte and half-word. 1643 if (Strip.second != 1 && Strip.second != 2) 1644 return OpRef::fail(); 1645 1646 int N = VecLen; 1647 int L = Strip.second; 1648 1649 // First, check the non-ignored strips. 1650 for (int I = 2*L; I < 2*N; I += 2*L) { 1651 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 1652 if (S.second != unsigned(L)) 1653 return OpRef::fail(); 1654 if (2*S.first != I) 1655 return OpRef::fail(); 1656 } 1657 // Check the -1s. 1658 for (int I = L; I < 2*N; I += 2*L) { 1659 auto S = findStrip(SM.Mask.drop_front(I), 0, N-I); 1660 if (S.first != -1 || S.second != unsigned(L)) 1661 return OpRef::fail(); 1662 } 1663 1664 unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub 1665 : Hexagon::V6_vunpackuh; 1666 Results.push(Opc, getPairVT(MVT::i8), {Va}); 1667 return OpRef::res(Results.top()); 1668 } 1669 1670 OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1671 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1672 // V6_vdeal{b,h} 1673 // V6_vshuff{b,h} 1674 1675 // V6_vshufoe{b,h} those are quivalent to vshuffvdd(..,{1,2}) 1676 // V6_vshuffvdd (V6_vshuff) 1677 // V6_dealvdd (V6_vdeal) 1678 1679 int VecLen = SM.Mask.size(); 1680 assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8); 1681 unsigned LogLen = Log2_32(VecLen); 1682 unsigned HwLog = Log2_32(HwLen); 1683 // The result length must be the same as the length of a single vector, 1684 // or a vector pair. 1685 assert(LogLen == HwLog || LogLen == HwLog+1); 1686 bool Extend = (LogLen == HwLog); 1687 1688 if (!isPermutation(SM.Mask)) 1689 return OpRef::fail(); 1690 1691 SmallVector<unsigned,8> Perm(LogLen); 1692 1693 // Check if this could be a perfect shuffle, or a combination of perfect 1694 // shuffles. 1695 // 1696 // Consider this permutation (using hex digits to make the ASCII diagrams 1697 // easier to read): 1698 // { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }. 1699 // This is a "deal" operation: divide the input into two halves, and 1700 // create the output by picking elements by alternating between these two 1701 // halves: 1702 // 0 1 2 3 4 5 6 7 --> 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F [*] 1703 // 8 9 A B C D E F 1704 // 1705 // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides 1706 // a somwehat different mechanism that could be used to perform shuffle/ 1707 // deal operations: a 2x2 transpose. 1708 // Consider the halves of inputs again, they can be interpreted as a 2x8 1709 // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated 1710 // together. Now, when considering 2 elements at a time, it will be a 2x4 1711 // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices: 1712 // 01 23 45 67 1713 // 89 AB CD EF 1714 // With groups of 4, this will become a single 2x2 matrix, and so on. 1715 // 1716 // The 2x2 transpose instruction works by transposing each of the 2x2 1717 // matrices (or "sub-matrices"), given a specific group size. For example, 1718 // if the group size is 1 (i.e. each element is its own group), there 1719 // will be four transposes of the four 2x2 matrices that form the 2x8. 1720 // For example, with the inputs as above, the result will be: 1721 // 0 8 2 A 4 C 6 E 1722 // 1 9 3 B 5 D 7 F 1723 // Now, this result can be tranposed again, but with the group size of 2: 1724 // 08 19 4C 5D 1725 // 2A 3B 6E 7F 1726 // If we then transpose that result, but with the group size of 4, we get: 1727 // 0819 2A3B 1728 // 4C5D 6E7F 1729 // If we concatenate these two rows, it will be 1730 // 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F 1731 // which is the same as the "deal" [*] above. 1732 // 1733 // In general, a "deal" of individual elements is a series of 2x2 transposes, 1734 // with changing group size. HVX has two instructions: 1735 // Vdd = V6_vdealvdd Vu, Vv, Rt 1736 // Vdd = V6_shufvdd Vu, Vv, Rt 1737 // that perform exactly that. The register Rt controls which transposes are 1738 // going to happen: a bit at position n (counting from 0) indicates that a 1739 // transpose with a group size of 2^n will take place. If multiple bits are 1740 // set, multiple transposes will happen: vdealvdd will perform them starting 1741 // with the largest group size, vshuffvdd will do them in the reverse order. 1742 // 1743 // The main observation is that each 2x2 transpose corresponds to swapping 1744 // columns of bits in the binary representation of the values. 1745 // 1746 // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits 1747 // in a given column. The * denote the columns that will be swapped. 1748 // The transpose with the group size 2^n corresponds to swapping columns 1749 // 3 (the highest log) and log2(n): 1750 // 1751 // 3 2 1 0 0 2 1 3 0 2 3 1 1752 // * * * * * * 1753 // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1754 // 1 0 0 0 1 8 1 0 0 0 8 1 0 0 0 8 1 0 0 0 1755 // 2 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1756 // 3 0 0 1 1 A 1 0 1 0 9 1 0 0 1 9 1 0 0 1 1757 // 4 0 1 0 0 4 0 1 0 0 4 0 1 0 0 2 0 0 1 0 1758 // 5 0 1 0 1 C 1 1 0 0 C 1 1 0 0 A 1 0 1 0 1759 // 6 0 1 1 0 6 0 1 1 0 5 0 1 0 1 3 0 0 1 1 1760 // 7 0 1 1 1 E 1 1 1 0 D 1 1 0 1 B 1 0 1 1 1761 // 8 1 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 1 0 0 1762 // 9 1 0 0 1 9 1 0 0 1 A 1 0 1 0 C 1 1 0 0 1763 // A 1 0 1 0 3 0 0 1 1 3 0 0 1 1 5 0 1 0 1 1764 // B 1 0 1 1 B 1 0 1 1 B 1 0 1 1 D 1 1 0 1 1765 // C 1 1 0 0 5 0 1 0 1 6 0 1 1 0 6 0 1 1 0 1766 // D 1 1 0 1 D 1 1 0 1 E 1 1 1 0 E 1 1 1 0 1767 // E 1 1 1 0 7 0 1 1 1 7 0 1 1 1 7 0 1 1 1 1768 // F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 1769 1770 auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) { 1771 unsigned X = Mask[0] ^ Mask[Num/2]; 1772 // Check that the first half has the X's bits clear. 1773 if ((Mask[0] & X) != 0) 1774 return 0u; 1775 for (unsigned I = 1; I != Num/2; ++I) { 1776 if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X) 1777 return 0u; 1778 if ((Mask[I] & X) != 0) 1779 return 0u; 1780 } 1781 return X; 1782 }; 1783 1784 // Create a vector of log2's for each column: Perm[i] corresponds to 1785 // the i-th bit (lsb is 0). 1786 assert(VecLen > 2); 1787 for (unsigned I = VecLen; I >= 2; I >>= 1) { 1788 // Examine the initial segment of Mask of size I. 1789 unsigned X = XorPow2(SM.Mask, I); 1790 if (!isPowerOf2_32(X)) 1791 return OpRef::fail(); 1792 // Check the other segments of Mask. 1793 for (int J = I; J < VecLen; J += I) { 1794 if (XorPow2(SM.Mask.slice(J, I), I) != X) 1795 return OpRef::fail(); 1796 } 1797 Perm[Log2_32(X)] = Log2_32(I)-1; 1798 } 1799 1800 // Once we have Perm, represent it as cycles. Denote the maximum log2 1801 // (equal to log2(VecLen)-1) as M. The cycle containing M can then be 1802 // written as (M a1 a2 a3 ... an). That cycle can be broken up into 1803 // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition 1804 // order being from left to right. Any (contiguous) segment where the 1805 // values ai, ai+1...aj are either all increasing or all decreasing, 1806 // can be implemented via a single vshuffvdd/vdealvdd respectively. 1807 // 1808 // If there is a cycle (a1 a2 ... an) that does not involve M, it can 1809 // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can 1810 // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure 1811 // can be used to generate a sequence of vshuffvdd/vdealvdd. 1812 // 1813 // Example: 1814 // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written 1815 // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply 1816 // (4 0 1)(4 0)(4 2 3)(4 2). 1817 // It can then be expanded into swaps as 1818 // (4 0)(4 1)(4 0)(4 2)(4 3)(4 2), 1819 // and broken up into "increasing" segments as 1820 // [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)]. 1821 // This is equivalent to 1822 // (4 0 1)(4 0 2 3)(4 2), 1823 // which can be implemented as 3 vshufvdd instructions. 1824 1825 using CycleType = SmallVector<unsigned,8>; 1826 std::set<CycleType> Cycles; 1827 std::set<unsigned> All; 1828 1829 for (unsigned I : Perm) 1830 All.insert(I); 1831 1832 // If the cycle contains LogLen-1, move it to the front of the cycle. 1833 // Otherwise, return the cycle unchanged. 1834 auto canonicalize = [LogLen](const CycleType &C) -> CycleType { 1835 unsigned LogPos, N = C.size(); 1836 for (LogPos = 0; LogPos != N; ++LogPos) 1837 if (C[LogPos] == LogLen-1) 1838 break; 1839 if (LogPos == N) 1840 return C; 1841 1842 CycleType NewC(C.begin()+LogPos, C.end()); 1843 NewC.append(C.begin(), C.begin()+LogPos); 1844 return NewC; 1845 }; 1846 1847 auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) { 1848 // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6), 1849 // for bytes zero is included, for halfwords is not. 1850 if (Cs.size() != 1) 1851 return 0u; 1852 const CycleType &C = *Cs.begin(); 1853 if (C[0] != Len-1) 1854 return 0u; 1855 int D = Len - C.size(); 1856 if (D != 0 && D != 1) 1857 return 0u; 1858 1859 bool IsDeal = true, IsShuff = true; 1860 for (unsigned I = 1; I != Len-D; ++I) { 1861 if (C[I] != Len-1-I) 1862 IsDeal = false; 1863 if (C[I] != I-(1-D)) // I-1, I 1864 IsShuff = false; 1865 } 1866 // At most one, IsDeal or IsShuff, can be non-zero. 1867 assert(!(IsDeal || IsShuff) || IsDeal != IsShuff); 1868 static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh }; 1869 static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh }; 1870 return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0); 1871 }; 1872 1873 while (!All.empty()) { 1874 unsigned A = *All.begin(); 1875 All.erase(A); 1876 CycleType C; 1877 C.push_back(A); 1878 for (unsigned B = Perm[A]; B != A; B = Perm[B]) { 1879 C.push_back(B); 1880 All.erase(B); 1881 } 1882 if (C.size() <= 1) 1883 continue; 1884 Cycles.insert(canonicalize(C)); 1885 } 1886 1887 MVT SingleTy = getSingleVT(MVT::i8); 1888 MVT PairTy = getPairVT(MVT::i8); 1889 1890 // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}. 1891 if (unsigned(VecLen) == HwLen) { 1892 if (unsigned SingleOpc = pfs(Cycles, LogLen)) { 1893 Results.push(SingleOpc, SingleTy, {Va}); 1894 return OpRef::res(Results.top()); 1895 } 1896 } 1897 1898 SmallVector<unsigned,8> SwapElems; 1899 if (HwLen == unsigned(VecLen)) 1900 SwapElems.push_back(LogLen-1); 1901 1902 for (const CycleType &C : Cycles) { 1903 unsigned First = (C[0] == LogLen-1) ? 1 : 0; 1904 SwapElems.append(C.begin()+First, C.end()); 1905 if (First == 0) 1906 SwapElems.push_back(C[0]); 1907 } 1908 1909 const SDLoc &dl(Results.InpNode); 1910 OpRef Arg = !Extend ? Va 1911 : concat(Va, OpRef::undef(SingleTy), Results); 1912 1913 for (unsigned I = 0, E = SwapElems.size(); I != E; ) { 1914 bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1]; 1915 unsigned S = (1u << SwapElems[I]); 1916 if (I < E-1) { 1917 while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1])) 1918 S |= 1u << SwapElems[I]; 1919 // The above loop will not add a bit for the final SwapElems[I+1], 1920 // so add it here. 1921 S |= 1u << SwapElems[I]; 1922 } 1923 ++I; 1924 1925 NodeTemplate Res; 1926 Results.push(Hexagon::A2_tfrsi, MVT::i32, 1927 { DAG.getTargetConstant(S, dl, MVT::i32) }); 1928 Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd; 1929 Res.Ty = PairTy; 1930 Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) }; 1931 Results.push(Res); 1932 Arg = OpRef::res(Results.top()); 1933 } 1934 1935 return !Extend ? Arg : OpRef::lo(Arg); 1936 } 1937 1938 OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1939 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1940 // Butterfly shuffles. 1941 // 1942 // V6_vdelta 1943 // V6_vrdelta 1944 // V6_vror 1945 1946 // The assumption here is that all elements picked by Mask are in the 1947 // first operand to the vector_shuffle. This assumption is enforced 1948 // by the caller. 1949 1950 MVT ResTy = getSingleVT(MVT::i8); 1951 PermNetwork::Controls FC, RC; 1952 const SDLoc &dl(Results.InpNode); 1953 int VecLen = SM.Mask.size(); 1954 1955 for (int M : SM.Mask) { 1956 if (M != -1 && M >= VecLen) 1957 return OpRef::fail(); 1958 } 1959 1960 // Try the deltas/benes for both single vectors and vector pairs. 1961 ForwardDeltaNetwork FN(SM.Mask); 1962 if (FN.run(FC)) { 1963 SDValue Ctl = getVectorConstant(FC, dl); 1964 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)}); 1965 return OpRef::res(Results.top()); 1966 } 1967 1968 // Try reverse delta. 1969 ReverseDeltaNetwork RN(SM.Mask); 1970 if (RN.run(RC)) { 1971 SDValue Ctl = getVectorConstant(RC, dl); 1972 Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)}); 1973 return OpRef::res(Results.top()); 1974 } 1975 1976 // Do Benes. 1977 BenesNetwork BN(SM.Mask); 1978 if (BN.run(FC, RC)) { 1979 SDValue CtlF = getVectorConstant(FC, dl); 1980 SDValue CtlR = getVectorConstant(RC, dl); 1981 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)}); 1982 Results.push(Hexagon::V6_vrdelta, ResTy, 1983 {OpRef::res(-1), OpRef(CtlR)}); 1984 return OpRef::res(Results.top()); 1985 } 1986 1987 return OpRef::fail(); 1988 } 1989 1990 SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data, 1991 const SDLoc &dl) { 1992 SmallVector<SDValue, 128> Elems; 1993 for (uint8_t C : Data) 1994 Elems.push_back(DAG.getConstant(C, dl, MVT::i8)); 1995 MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size()); 1996 SDValue BV = DAG.getBuildVector(VecTy, dl, Elems); 1997 SDValue LV = Lower.LowerOperation(BV, DAG); 1998 DAG.RemoveDeadNode(BV.getNode()); 1999 return LV; 2000 } 2001 2002 void HvxSelector::selectShuffle(SDNode *N) { 2003 DEBUG_WITH_TYPE("isel", { 2004 dbgs() << "Starting " << __func__ << " on node:\n"; 2005 N->dump(&DAG); 2006 }); 2007 MVT ResTy = N->getValueType(0).getSimpleVT(); 2008 // Assume that vector shuffles operate on vectors of bytes. 2009 assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8); 2010 2011 auto *SN = cast<ShuffleVectorSDNode>(N); 2012 std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end()); 2013 // This shouldn't really be necessary. Is it? 2014 for (int &Idx : Mask) 2015 if (Idx != -1 && Idx < 0) 2016 Idx = -1; 2017 2018 unsigned VecLen = Mask.size(); 2019 bool HavePairs = (2*HwLen == VecLen); 2020 assert(ResTy.getSizeInBits() / 8 == VecLen); 2021 2022 // Vd = vector_shuffle Va, Vb, Mask 2023 // 2024 2025 bool UseLeft = false, UseRight = false; 2026 for (unsigned I = 0; I != VecLen; ++I) { 2027 if (Mask[I] == -1) 2028 continue; 2029 unsigned Idx = Mask[I]; 2030 assert(Idx < 2*VecLen); 2031 if (Idx < VecLen) 2032 UseLeft = true; 2033 else 2034 UseRight = true; 2035 } 2036 2037 DEBUG_WITH_TYPE("isel", { 2038 dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft=" 2039 << UseLeft << " UseRight=" << UseRight << " HavePairs=" 2040 << HavePairs << '\n'; 2041 }); 2042 // If the mask is all -1's, generate "undef". 2043 if (!UseLeft && !UseRight) { 2044 ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode()); 2045 return; 2046 } 2047 2048 SDValue Vec0 = N->getOperand(0); 2049 SDValue Vec1 = N->getOperand(1); 2050 ResultStack Results(SN); 2051 Results.push(TargetOpcode::COPY, ResTy, {Vec0}); 2052 Results.push(TargetOpcode::COPY, ResTy, {Vec1}); 2053 OpRef Va = OpRef::res(Results.top()-1); 2054 OpRef Vb = OpRef::res(Results.top()); 2055 2056 OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results) 2057 : shuffp2(ShuffleMask(Mask), Va, Vb, Results); 2058 2059 bool Done = Res.isValid(); 2060 if (Done) { 2061 // Make sure that Res is on the stack before materializing. 2062 Results.push(TargetOpcode::COPY, ResTy, {Res}); 2063 materialize(Results); 2064 } else { 2065 Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N); 2066 } 2067 2068 if (!Done) { 2069 #ifndef NDEBUG 2070 dbgs() << "Unhandled shuffle:\n"; 2071 SN->dumpr(&DAG); 2072 #endif 2073 llvm_unreachable("Failed to select vector shuffle"); 2074 } 2075 } 2076 2077 void HvxSelector::selectRor(SDNode *N) { 2078 // If this is a rotation by less than 8, use V6_valignbi. 2079 MVT Ty = N->getValueType(0).getSimpleVT(); 2080 const SDLoc &dl(N); 2081 SDValue VecV = N->getOperand(0); 2082 SDValue RotV = N->getOperand(1); 2083 SDNode *NewN = nullptr; 2084 2085 if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) { 2086 unsigned S = CN->getZExtValue() % HST.getVectorLength(); 2087 if (S == 0) { 2088 NewN = VecV.getNode(); 2089 } else if (isUInt<3>(S)) { 2090 SDValue C = DAG.getTargetConstant(S, dl, MVT::i32); 2091 NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty, 2092 {VecV, VecV, C}); 2093 } 2094 } 2095 2096 if (!NewN) 2097 NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV}); 2098 2099 ISel.ReplaceNode(N, NewN); 2100 } 2101 2102 void HvxSelector::selectVAlign(SDNode *N) { 2103 SDValue Vv = N->getOperand(0); 2104 SDValue Vu = N->getOperand(1); 2105 SDValue Rt = N->getOperand(2); 2106 SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N), 2107 N->getValueType(0), {Vv, Vu, Rt}); 2108 ISel.ReplaceNode(N, NewN); 2109 DAG.RemoveDeadNode(N); 2110 } 2111 2112 void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) { 2113 HvxSelector(*this, *CurDAG).selectShuffle(N); 2114 } 2115 2116 void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) { 2117 HvxSelector(*this, *CurDAG).selectRor(N); 2118 } 2119 2120 void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) { 2121 HvxSelector(*this, *CurDAG).selectVAlign(N); 2122 } 2123 2124 void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) { 2125 const SDLoc &dl(N); 2126 SDValue Chain = N->getOperand(0); 2127 SDValue Address = N->getOperand(2); 2128 SDValue Predicate = N->getOperand(3); 2129 SDValue Base = N->getOperand(4); 2130 SDValue Modifier = N->getOperand(5); 2131 SDValue Offset = N->getOperand(6); 2132 2133 unsigned Opcode; 2134 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2135 switch (IntNo) { 2136 default: 2137 llvm_unreachable("Unexpected HVX gather intrinsic."); 2138 case Intrinsic::hexagon_V6_vgathermhq: 2139 case Intrinsic::hexagon_V6_vgathermhq_128B: 2140 Opcode = Hexagon::V6_vgathermhq_pseudo; 2141 break; 2142 case Intrinsic::hexagon_V6_vgathermwq: 2143 case Intrinsic::hexagon_V6_vgathermwq_128B: 2144 Opcode = Hexagon::V6_vgathermwq_pseudo; 2145 break; 2146 case Intrinsic::hexagon_V6_vgathermhwq: 2147 case Intrinsic::hexagon_V6_vgathermhwq_128B: 2148 Opcode = Hexagon::V6_vgathermhwq_pseudo; 2149 break; 2150 } 2151 2152 SDVTList VTs = CurDAG->getVTList(MVT::Other); 2153 SDValue Ops[] = { Address, Predicate, Base, Modifier, Offset, Chain }; 2154 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 2155 2156 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2157 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 2158 2159 ReplaceNode(N, Result); 2160 } 2161 2162 void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) { 2163 const SDLoc &dl(N); 2164 SDValue Chain = N->getOperand(0); 2165 SDValue Address = N->getOperand(2); 2166 SDValue Base = N->getOperand(3); 2167 SDValue Modifier = N->getOperand(4); 2168 SDValue Offset = N->getOperand(5); 2169 2170 unsigned Opcode; 2171 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2172 switch (IntNo) { 2173 default: 2174 llvm_unreachable("Unexpected HVX gather intrinsic."); 2175 case Intrinsic::hexagon_V6_vgathermh: 2176 case Intrinsic::hexagon_V6_vgathermh_128B: 2177 Opcode = Hexagon::V6_vgathermh_pseudo; 2178 break; 2179 case Intrinsic::hexagon_V6_vgathermw: 2180 case Intrinsic::hexagon_V6_vgathermw_128B: 2181 Opcode = Hexagon::V6_vgathermw_pseudo; 2182 break; 2183 case Intrinsic::hexagon_V6_vgathermhw: 2184 case Intrinsic::hexagon_V6_vgathermhw_128B: 2185 Opcode = Hexagon::V6_vgathermhw_pseudo; 2186 break; 2187 } 2188 2189 SDVTList VTs = CurDAG->getVTList(MVT::Other); 2190 SDValue Ops[] = { Address, Base, Modifier, Offset, Chain }; 2191 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 2192 2193 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2194 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 2195 2196 ReplaceNode(N, Result); 2197 } 2198 2199 void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) { 2200 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2201 SDNode *Result; 2202 switch (IID) { 2203 case Intrinsic::hexagon_V6_vaddcarry: { 2204 SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), 2205 N->getOperand(3) }; 2206 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1); 2207 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); 2208 break; 2209 } 2210 case Intrinsic::hexagon_V6_vaddcarry_128B: { 2211 SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), 2212 N->getOperand(3) }; 2213 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1); 2214 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); 2215 break; 2216 } 2217 case Intrinsic::hexagon_V6_vsubcarry: { 2218 SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), 2219 N->getOperand(3) }; 2220 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1); 2221 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); 2222 break; 2223 } 2224 case Intrinsic::hexagon_V6_vsubcarry_128B: { 2225 SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), 2226 N->getOperand(3) }; 2227 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1); 2228 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); 2229 break; 2230 } 2231 default: 2232 llvm_unreachable("Unexpected HVX dual output intrinsic."); 2233 } 2234 ReplaceUses(N, Result); 2235 ReplaceUses(SDValue(N, 0), SDValue(Result, 0)); 2236 ReplaceUses(SDValue(N, 1), SDValue(Result, 1)); 2237 CurDAG->RemoveDeadNode(N); 2238 } 2239