xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelDAGToDAGHVX.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Hexagon.h"
10 #include "HexagonISelDAGToDAG.h"
11 #include "HexagonISelLowering.h"
12 #include "HexagonTargetMachine.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/CodeGen/MachineInstrBuilder.h"
15 #include "llvm/CodeGen/SelectionDAGISel.h"
16 #include "llvm/IR/Intrinsics.h"
17 #include "llvm/IR/IntrinsicsHexagon.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 
21 #include <deque>
22 #include <map>
23 #include <set>
24 #include <utility>
25 #include <vector>
26 
27 #define DEBUG_TYPE "hexagon-isel"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 // --------------------------------------------------------------------
34 // Implementation of permutation networks.
35 
36 // Implementation of the node routing through butterfly networks:
37 // - Forward delta.
38 // - Reverse delta.
39 // - Benes.
40 //
41 //
42 // Forward delta network consists of log(N) steps, where N is the number
43 // of inputs. In each step, an input can stay in place, or it can get
44 // routed to another position[1]. The step after that consists of two
45 // networks, each half in size in terms of the number of nodes. In those
46 // terms, in the given step, an input can go to either the upper or the
47 // lower network in the next step.
48 //
49 // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both
50 // positions as long as there is no conflict.
51 
52 // Here's a delta network for 8 inputs, only the switching routes are
53 // shown:
54 //
55 //         Steps:
56 //         |- 1 ---------------|- 2 -----|- 3 -|
57 //
58 // Inp[0] ***                 ***       ***   *** Out[0]
59 //           \               /   \     /   \ /
60 //            \             /     \   /     X
61 //             \           /       \ /     / \
62 // Inp[1] ***   \         /   ***   X   ***   *** Out[1]
63 //           \   \       /   /   \ / \ /
64 //            \   \     /   /     X   X
65 //             \   \   /   /     / \ / \
66 // Inp[2] ***   \   \ /   /   ***   X   ***   *** Out[2]
67 //           \   \   X   /   /     / \     \ /
68 //            \   \ / \ /   /     /   \     X
69 //             \   X   X   /     /     \   / \
70 // Inp[3] ***   \ / \ / \ /   ***       ***   *** Out[3]
71 //           \   X   X   X   /
72 //            \ / \ / \ / \ /
73 //             X   X   X   X
74 //            / \ / \ / \ / \
75 //           /   X   X   X   \
76 // Inp[4] ***   / \ / \ / \   ***       ***   *** Out[4]
77 //             /   X   X   \     \     /   \ /
78 //            /   / \ / \   \     \   /     X
79 //           /   /   X   \   \     \ /     / \
80 // Inp[5] ***   /   / \   \   ***   X   ***   *** Out[5]
81 //             /   /   \   \     \ / \ /
82 //            /   /     \   \     X   X
83 //           /   /       \   \   / \ / \
84 // Inp[6] ***   /         \   ***   X   ***   *** Out[6]
85 //             /           \       / \     \ /
86 //            /             \     /   \     X
87 //           /               \   /     \   / \
88 // Inp[7] ***                 ***       ***   *** Out[7]
89 //
90 //
91 // Reverse delta network is same as delta network, with the steps in
92 // the opposite order.
93 //
94 //
95 // Benes network is a forward delta network immediately followed by
96 // a reverse delta network.
97 
98 enum class ColorKind { None, Red, Black };
99 
100 // Graph coloring utility used to partition nodes into two groups:
101 // they will correspond to nodes routed to the upper and lower networks.
102 struct Coloring {
103   using Node = int;
104   using MapType = std::map<Node, ColorKind>;
105   static constexpr Node Ignore = Node(-1);
106 
107   Coloring(ArrayRef<Node> Ord) : Order(Ord) {
108     build();
109     if (!color())
110       Colors.clear();
111   }
112 
113   const MapType &colors() const {
114     return Colors;
115   }
116 
117   ColorKind other(ColorKind Color) {
118     if (Color == ColorKind::None)
119       return ColorKind::Red;
120     return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red;
121   }
122 
123   LLVM_DUMP_METHOD void dump() const;
124 
125 private:
126   ArrayRef<Node> Order;
127   MapType Colors;
128   std::set<Node> Needed;
129 
130   using NodeSet = std::set<Node>;
131   std::map<Node,NodeSet> Edges;
132 
133   Node conj(Node Pos) {
134     Node Num = Order.size();
135     return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2;
136   }
137 
138   ColorKind getColor(Node N) {
139     auto F = Colors.find(N);
140     return F != Colors.end() ? F->second : ColorKind::None;
141   }
142 
143   std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes);
144 
145   void build();
146   bool color();
147 };
148 } // namespace
149 
150 std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) {
151   auto Color = ColorKind::None;
152   for (Node N : Nodes) {
153     ColorKind ColorN = getColor(N);
154     if (ColorN == ColorKind::None)
155       continue;
156     if (Color == ColorKind::None)
157       Color = ColorN;
158     else if (Color != ColorKind::None && Color != ColorN)
159       return { false, ColorKind::None };
160   }
161   return { true, Color };
162 }
163 
164 void Coloring::build() {
165   // Add Order[P] and Order[conj(P)] to Edges.
166   for (unsigned P = 0; P != Order.size(); ++P) {
167     Node I = Order[P];
168     if (I != Ignore) {
169       Needed.insert(I);
170       Node PC = Order[conj(P)];
171       if (PC != Ignore && PC != I)
172         Edges[I].insert(PC);
173     }
174   }
175   // Add I and conj(I) to Edges.
176   for (unsigned I = 0; I != Order.size(); ++I) {
177     if (!Needed.count(I))
178       continue;
179     Node C = conj(I);
180     // This will create an entry in the edge table, even if I is not
181     // connected to any other node. This is necessary, because it still
182     // needs to be colored.
183     NodeSet &Is = Edges[I];
184     if (Needed.count(C))
185       Is.insert(C);
186   }
187 }
188 
189 bool Coloring::color() {
190   SetVector<Node> FirstQ;
191   auto Enqueue = [this,&FirstQ] (Node N) {
192     SetVector<Node> Q;
193     Q.insert(N);
194     for (unsigned I = 0; I != Q.size(); ++I) {
195       NodeSet &Ns = Edges[Q[I]];
196       Q.insert(Ns.begin(), Ns.end());
197     }
198     FirstQ.insert(Q.begin(), Q.end());
199   };
200   for (Node N : Needed)
201     Enqueue(N);
202 
203   for (Node N : FirstQ) {
204     if (Colors.count(N))
205       continue;
206     NodeSet &Ns = Edges[N];
207     auto P = getUniqueColor(Ns);
208     if (!P.first)
209       return false;
210     Colors[N] = other(P.second);
211   }
212 
213   // First, color nodes that don't have any dups.
214   for (auto E : Edges) {
215     Node N = E.first;
216     if (!Needed.count(conj(N)) || Colors.count(N))
217       continue;
218     auto P = getUniqueColor(E.second);
219     if (!P.first)
220       return false;
221     Colors[N] = other(P.second);
222   }
223 
224   // Now, nodes that are still uncolored. Since the graph can be modified
225   // in this step, create a work queue.
226   std::vector<Node> WorkQ;
227   for (auto E : Edges) {
228     Node N = E.first;
229     if (!Colors.count(N))
230       WorkQ.push_back(N);
231   }
232 
233   for (Node N : WorkQ) {
234     NodeSet &Ns = Edges[N];
235     auto P = getUniqueColor(Ns);
236     if (P.first) {
237       Colors[N] = other(P.second);
238       continue;
239     }
240 
241     // Coloring failed. Split this node.
242     Node C = conj(N);
243     ColorKind ColorN = other(ColorKind::None);
244     ColorKind ColorC = other(ColorN);
245     NodeSet &Cs = Edges[C];
246     NodeSet CopyNs = Ns;
247     for (Node M : CopyNs) {
248       ColorKind ColorM = getColor(M);
249       if (ColorM == ColorC) {
250         // Connect M with C, disconnect M from N.
251         Cs.insert(M);
252         Edges[M].insert(C);
253         Ns.erase(M);
254         Edges[M].erase(N);
255       }
256     }
257     Colors[N] = ColorN;
258     Colors[C] = ColorC;
259   }
260 
261   // Explicitly assign "None" to all uncolored nodes.
262   for (unsigned I = 0; I != Order.size(); ++I)
263     if (Colors.count(I) == 0)
264       Colors[I] = ColorKind::None;
265 
266   return true;
267 }
268 
269 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
270 void Coloring::dump() const {
271   dbgs() << "{ Order:   {";
272   for (Node P : Order) {
273     if (P != Ignore)
274       dbgs() << ' ' << P;
275     else
276       dbgs() << " -";
277   }
278   dbgs() << " }\n";
279   dbgs() << "  Needed: {";
280   for (Node N : Needed)
281     dbgs() << ' ' << N;
282   dbgs() << " }\n";
283 
284   dbgs() << "  Edges: {\n";
285   for (auto E : Edges) {
286     dbgs() << "    " << E.first << " -> {";
287     for (auto N : E.second)
288       dbgs() << ' ' << N;
289     dbgs() << " }\n";
290   }
291   dbgs() << "  }\n";
292 
293   auto ColorKindToName = [](ColorKind C) {
294     switch (C) {
295     case ColorKind::None:
296       return "None";
297     case ColorKind::Red:
298       return "Red";
299     case ColorKind::Black:
300       return "Black";
301     }
302     llvm_unreachable("all ColorKinds should be handled by the switch above");
303   };
304 
305   dbgs() << "  Colors: {\n";
306   for (auto C : Colors)
307     dbgs() << "    " << C.first << " -> " << ColorKindToName(C.second) << "\n";
308   dbgs() << "  }\n}\n";
309 }
310 #endif
311 
312 namespace {
313 // Base class of for reordering networks. They don't strictly need to be
314 // permutations, as outputs with repeated occurrences of an input element
315 // are allowed.
316 struct PermNetwork {
317   using Controls = std::vector<uint8_t>;
318   using ElemType = int;
319   static constexpr ElemType Ignore = ElemType(-1);
320 
321   enum : uint8_t {
322     None,
323     Pass,
324     Switch
325   };
326   enum : uint8_t {
327     Forward,
328     Reverse
329   };
330 
331   PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) {
332     Order.assign(Ord.data(), Ord.data()+Ord.size());
333     Log = 0;
334 
335     unsigned S = Order.size();
336     while (S >>= 1)
337       ++Log;
338 
339     Table.resize(Order.size());
340     for (RowType &Row : Table)
341       Row.resize(Mult*Log, None);
342   }
343 
344   void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const {
345     unsigned Size = Order.size();
346     V.resize(Size);
347     for (unsigned I = 0; I != Size; ++I) {
348       unsigned W = 0;
349       for (unsigned L = 0; L != Log; ++L) {
350         unsigned C = ctl(I, StartAt+L) == Switch;
351         if (Dir == Forward)
352           W |= C << (Log-1-L);
353         else
354           W |= C << L;
355       }
356       assert(isUInt<8>(W));
357       V[I] = uint8_t(W);
358     }
359   }
360 
361   uint8_t ctl(ElemType Pos, unsigned Step) const {
362     return Table[Pos][Step];
363   }
364   unsigned size() const {
365     return Order.size();
366   }
367   unsigned steps() const {
368     return Log;
369   }
370 
371 protected:
372   unsigned Log;
373   std::vector<ElemType> Order;
374   using RowType = std::vector<uint8_t>;
375   std::vector<RowType> Table;
376 };
377 
378 struct ForwardDeltaNetwork : public PermNetwork {
379   ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
380 
381   bool run(Controls &V) {
382     if (!route(Order.data(), Table.data(), size(), 0))
383       return false;
384     getControls(V, 0, Forward);
385     return true;
386   }
387 
388 private:
389   bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
390 };
391 
392 struct ReverseDeltaNetwork : public PermNetwork {
393   ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
394 
395   bool run(Controls &V) {
396     if (!route(Order.data(), Table.data(), size(), 0))
397       return false;
398     getControls(V, 0, Reverse);
399     return true;
400   }
401 
402 private:
403   bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
404 };
405 
406 struct BenesNetwork : public PermNetwork {
407   BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {}
408 
409   bool run(Controls &F, Controls &R) {
410     if (!route(Order.data(), Table.data(), size(), 0))
411       return false;
412 
413     getControls(F, 0, Forward);
414     getControls(R, Log, Reverse);
415     return true;
416   }
417 
418 private:
419   bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
420 };
421 } // namespace
422 
423 bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
424                                 unsigned Step) {
425   bool UseUp = false, UseDown = false;
426   ElemType Num = Size;
427 
428   // Cannot use coloring here, because coloring is used to determine
429   // the "big" switch, i.e. the one that changes halves, and in a forward
430   // network, a color can be simultaneously routed to both halves in the
431   // step we're working on.
432   for (ElemType J = 0; J != Num; ++J) {
433     ElemType I = P[J];
434     // I is the position in the input,
435     // J is the position in the output.
436     if (I == Ignore)
437       continue;
438     uint8_t S;
439     if (I < Num/2)
440       S = (J < Num/2) ? Pass : Switch;
441     else
442       S = (J < Num/2) ? Switch : Pass;
443 
444     // U is the element in the table that needs to be updated.
445     ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2);
446     if (U < Num/2)
447       UseUp = true;
448     else
449       UseDown = true;
450     if (T[U][Step] != S && T[U][Step] != None)
451       return false;
452     T[U][Step] = S;
453   }
454 
455   for (ElemType J = 0; J != Num; ++J)
456     if (P[J] != Ignore && P[J] >= Num/2)
457       P[J] -= Num/2;
458 
459   if (Step+1 < Log) {
460     if (UseUp   && !route(P,        T,        Size/2, Step+1))
461       return false;
462     if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
463       return false;
464   }
465   return true;
466 }
467 
468 bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
469                                 unsigned Step) {
470   unsigned Pets = Log-1 - Step;
471   bool UseUp = false, UseDown = false;
472   ElemType Num = Size;
473 
474   // In this step half-switching occurs, so coloring can be used.
475   Coloring G({P,Size});
476   const Coloring::MapType &M = G.colors();
477   if (M.empty())
478     return false;
479 
480   ColorKind ColorUp = ColorKind::None;
481   for (ElemType J = 0; J != Num; ++J) {
482     ElemType I = P[J];
483     // I is the position in the input,
484     // J is the position in the output.
485     if (I == Ignore)
486       continue;
487     ColorKind C = M.at(I);
488     if (C == ColorKind::None)
489       continue;
490     // During "Step", inputs cannot switch halves, so if the "up" color
491     // is still unknown, make sure that it is selected in such a way that
492     // "I" will stay in the same half.
493     bool InpUp = I < Num/2;
494     if (ColorUp == ColorKind::None)
495       ColorUp = InpUp ? C : G.other(C);
496     if ((C == ColorUp) != InpUp) {
497       // If I should go to a different half than where is it now, give up.
498       return false;
499     }
500 
501     uint8_t S;
502     if (InpUp) {
503       S = (J < Num/2) ? Pass : Switch;
504       UseUp = true;
505     } else {
506       S = (J < Num/2) ? Switch : Pass;
507       UseDown = true;
508     }
509     T[J][Pets] = S;
510   }
511 
512   // Reorder the working permutation according to the computed switch table
513   // for the last step (i.e. Pets).
514   for (ElemType J = 0, E = Size / 2; J != E; ++J) {
515     ElemType PJ = P[J];         // Current values of P[J]
516     ElemType PC = P[J+Size/2];  // and P[conj(J)]
517     ElemType QJ = PJ;           // New values of P[J]
518     ElemType QC = PC;           // and P[conj(J)]
519     if (T[J][Pets] == Switch)
520       QC = PJ;
521     if (T[J+Size/2][Pets] == Switch)
522       QJ = PC;
523     P[J] = QJ;
524     P[J+Size/2] = QC;
525   }
526 
527   for (ElemType J = 0; J != Num; ++J)
528     if (P[J] != Ignore && P[J] >= Num/2)
529       P[J] -= Num/2;
530 
531   if (Step+1 < Log) {
532     if (UseUp && !route(P, T, Size/2, Step+1))
533       return false;
534     if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
535       return false;
536   }
537   return true;
538 }
539 
540 bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size,
541                          unsigned Step) {
542   Coloring G({P,Size});
543   const Coloring::MapType &M = G.colors();
544   if (M.empty())
545     return false;
546   ElemType Num = Size;
547 
548   unsigned Pets = 2*Log-1 - Step;
549   bool UseUp = false, UseDown = false;
550 
551   // Both assignments, i.e. Red->Up and Red->Down are valid, but they will
552   // result in different controls. Let's pick the one where the first
553   // control will be "Pass".
554   ColorKind ColorUp = ColorKind::None;
555   for (ElemType J = 0; J != Num; ++J) {
556     ElemType I = P[J];
557     if (I == Ignore)
558       continue;
559     ColorKind C = M.at(I);
560     if (C == ColorKind::None)
561       continue;
562     if (ColorUp == ColorKind::None) {
563       ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black;
564     }
565     unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2;
566     if (C == ColorUp) {
567       if (I < Num/2)
568         T[I][Step] = Pass;
569       else
570         T[CI][Step] = Switch;
571       T[J][Pets] = (J < Num/2) ? Pass : Switch;
572       UseUp = true;
573     } else { // Down
574       if (I < Num/2)
575         T[CI][Step] = Switch;
576       else
577         T[I][Step] = Pass;
578       T[J][Pets] = (J < Num/2) ? Switch : Pass;
579       UseDown = true;
580     }
581   }
582 
583   // Reorder the working permutation according to the computed switch table
584   // for the last step (i.e. Pets).
585   for (ElemType J = 0; J != Num/2; ++J) {
586     ElemType PJ = P[J];         // Current values of P[J]
587     ElemType PC = P[J+Num/2];   // and P[conj(J)]
588     ElemType QJ = PJ;           // New values of P[J]
589     ElemType QC = PC;           // and P[conj(J)]
590     if (T[J][Pets] == Switch)
591       QC = PJ;
592     if (T[J+Num/2][Pets] == Switch)
593       QJ = PC;
594     P[J] = QJ;
595     P[J+Num/2] = QC;
596   }
597 
598   for (ElemType J = 0; J != Num; ++J)
599     if (P[J] != Ignore && P[J] >= Num/2)
600       P[J] -= Num/2;
601 
602   if (Step+1 < Log) {
603     if (UseUp && !route(P, T, Size/2, Step+1))
604       return false;
605     if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
606       return false;
607   }
608   return true;
609 }
610 
611 // --------------------------------------------------------------------
612 // Support for building selection results (output instructions that are
613 // parts of the final selection).
614 
615 namespace {
616 struct OpRef {
617   OpRef(SDValue V) : OpV(V) {}
618   bool isValue() const { return OpV.getNode() != nullptr; }
619   bool isValid() const { return isValue() || !(OpN & Invalid); }
620   static OpRef res(int N) { return OpRef(Whole | (N & Index)); }
621   static OpRef fail() { return OpRef(Invalid); }
622 
623   static OpRef lo(const OpRef &R) {
624     assert(!R.isValue());
625     return OpRef(R.OpN & (Undef | Index | LoHalf));
626   }
627   static OpRef hi(const OpRef &R) {
628     assert(!R.isValue());
629     return OpRef(R.OpN & (Undef | Index | HiHalf));
630   }
631   static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); }
632 
633   // Direct value.
634   SDValue OpV = SDValue();
635 
636   // Reference to the operand of the input node:
637   // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the
638   // operand index:
639   // If bit 30 is set, it's the high half of the operand.
640   // If bit 29 is set, it's the low half of the operand.
641   unsigned OpN = 0;
642 
643   enum : unsigned {
644     Invalid = 0x10000000,
645     LoHalf  = 0x20000000,
646     HiHalf  = 0x40000000,
647     Whole   = LoHalf | HiHalf,
648     Undef   = 0x80000000,
649     Index   = 0x0FFFFFFF,  // Mask of the index value.
650     IndexBits = 28,
651   };
652 
653   LLVM_DUMP_METHOD
654   void print(raw_ostream &OS, const SelectionDAG &G) const;
655 
656 private:
657   OpRef(unsigned N) : OpN(N) {}
658 };
659 
660 struct NodeTemplate {
661   NodeTemplate() = default;
662   unsigned Opc = 0;
663   MVT Ty = MVT::Other;
664   std::vector<OpRef> Ops;
665 
666   LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const;
667 };
668 
669 struct ResultStack {
670   ResultStack(SDNode *Inp)
671     : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {}
672   SDNode *InpNode;
673   MVT InpTy;
674   unsigned push(const NodeTemplate &Res) {
675     List.push_back(Res);
676     return List.size()-1;
677   }
678   unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) {
679     NodeTemplate Res;
680     Res.Opc = Opc;
681     Res.Ty = Ty;
682     Res.Ops = Ops;
683     return push(Res);
684   }
685   bool empty() const { return List.empty(); }
686   unsigned size() const { return List.size(); }
687   unsigned top() const { return size()-1; }
688   const NodeTemplate &operator[](unsigned I) const { return List[I]; }
689   unsigned reset(unsigned NewTop) {
690     List.resize(NewTop+1);
691     return NewTop;
692   }
693 
694   using BaseType = std::vector<NodeTemplate>;
695   BaseType::iterator begin() { return List.begin(); }
696   BaseType::iterator end()   { return List.end(); }
697   BaseType::const_iterator begin() const { return List.begin(); }
698   BaseType::const_iterator end() const   { return List.end(); }
699 
700   BaseType List;
701 
702   LLVM_DUMP_METHOD
703   void print(raw_ostream &OS, const SelectionDAG &G) const;
704 };
705 } // namespace
706 
707 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
708 void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const {
709   if (isValue()) {
710     OpV.getNode()->print(OS, &G);
711     return;
712   }
713   if (OpN & Invalid) {
714     OS << "invalid";
715     return;
716   }
717   if (OpN & Undef) {
718     OS << "undef";
719     return;
720   }
721   if ((OpN & Whole) != Whole) {
722     assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf);
723     if (OpN & LoHalf)
724       OS << "lo ";
725     else
726       OS << "hi ";
727   }
728   OS << '#' << SignExtend32(OpN & Index, IndexBits);
729 }
730 
731 void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const {
732   const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo();
733   OS << format("%8s", EVT(Ty).getEVTString().c_str()) << "  "
734      << TII.getName(Opc);
735   bool Comma = false;
736   for (const auto &R : Ops) {
737     if (Comma)
738       OS << ',';
739     Comma = true;
740     OS << ' ';
741     R.print(OS, G);
742   }
743 }
744 
745 void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const {
746   OS << "Input node:\n";
747 #ifndef NDEBUG
748   InpNode->dumpr(&G);
749 #endif
750   OS << "Result templates:\n";
751   for (unsigned I = 0, E = List.size(); I != E; ++I) {
752     OS << '[' << I << "] ";
753     List[I].print(OS, G);
754     OS << '\n';
755   }
756 }
757 #endif
758 
759 namespace {
760 struct ShuffleMask {
761   ShuffleMask(ArrayRef<int> M) : Mask(M) {
762     for (int M : Mask) {
763       if (M == -1)
764         continue;
765       MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M);
766       MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M);
767     }
768   }
769 
770   ArrayRef<int> Mask;
771   int MinSrc = -1, MaxSrc = -1;
772 
773   ShuffleMask lo() const {
774     size_t H = Mask.size()/2;
775     return ShuffleMask(Mask.take_front(H));
776   }
777   ShuffleMask hi() const {
778     size_t H = Mask.size()/2;
779     return ShuffleMask(Mask.take_back(H));
780   }
781 
782   void print(raw_ostream &OS) const {
783     OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {";
784     for (int M : Mask)
785       OS << ' ' << M;
786     OS << " }";
787   }
788 };
789 
790 LLVM_ATTRIBUTE_UNUSED
791 raw_ostream &operator<<(raw_ostream &OS, const ShuffleMask &SM) {
792   SM.print(OS);
793   return OS;
794 }
795 } // namespace
796 
797 // --------------------------------------------------------------------
798 // The HvxSelector class.
799 
800 static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) {
801   return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo());
802 }
803 static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) {
804   return static_cast<const HexagonSubtarget&>(G.getSubtarget());
805 }
806 
807 namespace llvm {
808   struct HvxSelector {
809     const HexagonTargetLowering &Lower;
810     HexagonDAGToDAGISel &ISel;
811     SelectionDAG &DAG;
812     const HexagonSubtarget &HST;
813     const unsigned HwLen;
814 
815     HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G)
816       : Lower(getHexagonLowering(G)),  ISel(HS), DAG(G),
817         HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {}
818 
819     MVT getSingleVT(MVT ElemTy) const {
820       assert(ElemTy != MVT::i1 && "Use getBoolVT for predicates");
821       unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8);
822       return MVT::getVectorVT(ElemTy, NumElems);
823     }
824 
825     MVT getPairVT(MVT ElemTy) const {
826       assert(ElemTy != MVT::i1); // Suspicious: there are no predicate pairs.
827       unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8);
828       return MVT::getVectorVT(ElemTy, NumElems);
829     }
830 
831     MVT getBoolVT() const {
832       // Return HwLen x i1.
833       return MVT::getVectorVT(MVT::i1, HwLen);
834     }
835 
836     void selectShuffle(SDNode *N);
837     void selectRor(SDNode *N);
838     void selectVAlign(SDNode *N);
839 
840   private:
841     void select(SDNode *ISelN);
842     void materialize(const ResultStack &Results);
843 
844     SDValue getConst32(int Val, const SDLoc &dl);
845     SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl);
846 
847     enum : unsigned {
848       None,
849       PackMux,
850     };
851     OpRef concats(OpRef Va, OpRef Vb, ResultStack &Results);
852     OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
853                  MutableArrayRef<int> NewMask, unsigned Options = None);
854     OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
855                 MutableArrayRef<int> NewMask);
856     OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
857                 ResultStack &Results);
858     OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
859                 ResultStack &Results);
860 
861     OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results);
862     OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
863     OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results);
864     OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
865 
866     OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results);
867     OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
868     OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results);
869     OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results);
870 
871     bool selectVectorConstants(SDNode *N);
872     bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy,
873                           SDValue Va, SDValue Vb, SDNode *N);
874 
875   };
876 }
877 
878 static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL,
879                       MutableArrayRef<int> MaskR) {
880   unsigned VecLen = Mask.size();
881   assert(MaskL.size() == VecLen && MaskR.size() == VecLen);
882   for (unsigned I = 0; I != VecLen; ++I) {
883     int M = Mask[I];
884     if (M < 0) {
885       MaskL[I] = MaskR[I] = -1;
886     } else if (unsigned(M) < VecLen) {
887       MaskL[I] = M;
888       MaskR[I] = -1;
889     } else {
890       MaskL[I] = -1;
891       MaskR[I] = M-VecLen;
892     }
893   }
894 }
895 
896 static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc,
897                                          unsigned MaxLen) {
898   assert(A.size() > 0 && A.size() >= MaxLen);
899   int F = A[0];
900   int E = F;
901   for (unsigned I = 1; I != MaxLen; ++I) {
902     if (A[I] - E != Inc)
903       return { F, I };
904     E = A[I];
905   }
906   return { F, MaxLen };
907 }
908 
909 static bool isUndef(ArrayRef<int> Mask) {
910   for (int Idx : Mask)
911     if (Idx != -1)
912       return false;
913   return true;
914 }
915 
916 static bool isIdentity(ArrayRef<int> Mask) {
917   for (int I = 0, E = Mask.size(); I != E; ++I) {
918     int M = Mask[I];
919     if (M >= 0 && M != I)
920       return false;
921   }
922   return true;
923 }
924 
925 static SmallVector<unsigned, 4> getInputSegmentList(ShuffleMask SM,
926                                                     unsigned SegLen) {
927   assert(isPowerOf2_32(SegLen));
928   SmallVector<unsigned, 4> SegList;
929   if (SM.MaxSrc == -1)
930     return SegList;
931 
932   unsigned Shift = Log2_32(SegLen);
933   BitVector Segs(alignTo(SM.MaxSrc + 1, SegLen) >> Shift);
934 
935   for (int M : SM.Mask) {
936     if (M >= 0)
937       Segs.set(M >> Shift);
938   }
939 
940   for (unsigned B : Segs.set_bits())
941     SegList.push_back(B);
942   return SegList;
943 }
944 
945 static SmallVector<unsigned, 4> getOutputSegmentMap(ShuffleMask SM,
946                                                     unsigned SegLen) {
947   // Calculate the layout of the output segments in terms of the input
948   // segments.
949   // For example [1,3,1,0] means that the output consists of 4 output
950   // segments, where the first output segment has only elements of the
951   // input segment at index 1. The next output segment only has elements
952   // of the input segment 3, etc.
953   // If an output segment only has undef elements, the value will be ~0u.
954   // If an output segment has elements from more than one input segment,
955   // the corresponding value will be ~1u.
956   unsigned MaskLen = SM.Mask.size();
957   assert(MaskLen % SegLen == 0);
958   SmallVector<unsigned, 4> Map(MaskLen / SegLen);
959 
960   for (int S = 0, E = Map.size(); S != E; ++S) {
961     unsigned Idx = ~0u;
962     for (int I = 0; I != static_cast<int>(SegLen); ++I) {
963       int M = SM.Mask[S*SegLen + I];
964       if (M < 0)
965         continue;
966       unsigned G = M / SegLen; // Input segment of this element.
967       if (Idx == ~0u) {
968         Idx = G;
969       } else if (Idx != G) {
970         Idx = ~1u;
971         break;
972       }
973     }
974     Map[S] = Idx;
975   }
976 
977   return Map;
978 }
979 
980 static void packSegmentMask(ArrayRef<int> Mask, ArrayRef<unsigned> OutSegMap,
981                             unsigned SegLen, MutableArrayRef<int> PackedMask) {
982   SmallVector<unsigned, 4> InvMap;
983   for (int I = OutSegMap.size() - 1; I >= 0; --I) {
984     unsigned S = OutSegMap[I];
985     assert(S != ~0u && "Unexpected undef");
986     assert(S != ~1u && "Unexpected multi");
987     if (InvMap.size() <= S)
988       InvMap.resize(S+1);
989     InvMap[S] = I;
990   }
991 
992   unsigned Shift = Log2_32(SegLen);
993   for (int I = 0, E = Mask.size(); I != E; ++I) {
994     int M = Mask[I];
995     if (M >= 0) {
996       int OutIdx = InvMap[M >> Shift];
997       M = (M & (SegLen-1)) + SegLen*OutIdx;
998     }
999     PackedMask[I] = M;
1000   }
1001 }
1002 
1003 static bool isPermutation(ArrayRef<int> Mask) {
1004   // Check by adding all numbers only works if there is no overflow.
1005   assert(Mask.size() < 0x00007FFF && "Overflow failure");
1006   int Sum = 0;
1007   for (int Idx : Mask) {
1008     if (Idx == -1)
1009       return false;
1010     Sum += Idx;
1011   }
1012   int N = Mask.size();
1013   return 2*Sum == N*(N-1);
1014 }
1015 
1016 bool HvxSelector::selectVectorConstants(SDNode *N) {
1017   // Constant vectors are generated as loads from constant pools or as
1018   // splats of a constant value. Since they are generated during the
1019   // selection process, the main selection algorithm is not aware of them.
1020   // Select them directly here.
1021   SmallVector<SDNode*,4> Nodes;
1022   SetVector<SDNode*> WorkQ;
1023 
1024   // The DAG can change (due to CSE) during selection, so cache all the
1025   // unselected nodes first to avoid traversing a mutating DAG.
1026   WorkQ.insert(N);
1027   for (unsigned i = 0; i != WorkQ.size(); ++i) {
1028     SDNode *W = WorkQ[i];
1029     if (!W->isMachineOpcode() && W->getOpcode() == HexagonISD::ISEL)
1030       Nodes.push_back(W);
1031     for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j)
1032       WorkQ.insert(W->getOperand(j).getNode());
1033   }
1034 
1035   for (SDNode *L : Nodes)
1036     select(L);
1037 
1038   return !Nodes.empty();
1039 }
1040 
1041 void HvxSelector::materialize(const ResultStack &Results) {
1042   DEBUG_WITH_TYPE("isel", {
1043     dbgs() << "Materializing\n";
1044     Results.print(dbgs(), DAG);
1045   });
1046   if (Results.empty())
1047     return;
1048   const SDLoc &dl(Results.InpNode);
1049   std::vector<SDValue> Output;
1050 
1051   for (unsigned I = 0, E = Results.size(); I != E; ++I) {
1052     const NodeTemplate &Node = Results[I];
1053     std::vector<SDValue> Ops;
1054     for (const OpRef &R : Node.Ops) {
1055       assert(R.isValid());
1056       if (R.isValue()) {
1057         Ops.push_back(R.OpV);
1058         continue;
1059       }
1060       if (R.OpN & OpRef::Undef) {
1061         MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index);
1062         Ops.push_back(ISel.selectUndef(dl, MVT(SVT)));
1063         continue;
1064       }
1065       // R is an index of a result.
1066       unsigned Part = R.OpN & OpRef::Whole;
1067       int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits);
1068       if (Idx < 0)
1069         Idx += I;
1070       assert(Idx >= 0 && unsigned(Idx) < Output.size());
1071       SDValue Op = Output[Idx];
1072       MVT OpTy = Op.getValueType().getSimpleVT();
1073       if (Part != OpRef::Whole) {
1074         assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf);
1075         MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(),
1076                                       OpTy.getVectorNumElements()/2);
1077         unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo
1078                                                : Hexagon::vsub_hi;
1079         Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op);
1080       }
1081       Ops.push_back(Op);
1082     } // for (Node : Results)
1083 
1084     assert(Node.Ty != MVT::Other);
1085     SDNode *ResN = (Node.Opc == TargetOpcode::COPY)
1086                       ? Ops.front().getNode()
1087                       : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops);
1088     Output.push_back(SDValue(ResN, 0));
1089   }
1090 
1091   SDNode *OutN = Output.back().getNode();
1092   SDNode *InpN = Results.InpNode;
1093   DEBUG_WITH_TYPE("isel", {
1094     dbgs() << "Generated node:\n";
1095     OutN->dumpr(&DAG);
1096   });
1097 
1098   ISel.ReplaceNode(InpN, OutN);
1099   selectVectorConstants(OutN);
1100   DAG.RemoveDeadNodes();
1101 }
1102 
1103 OpRef HvxSelector::concats(OpRef Lo, OpRef Hi, ResultStack &Results) {
1104   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1105   const SDLoc &dl(Results.InpNode);
1106   Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), {
1107     getConst32(Hexagon::HvxWRRegClassID, dl),
1108     Lo, getConst32(Hexagon::vsub_lo, dl),
1109     Hi, getConst32(Hexagon::vsub_hi, dl),
1110   });
1111   return OpRef::res(Results.top());
1112 }
1113 
1114 // Va, Vb are single vectors. If SM only uses two vector halves from Va/Vb,
1115 // pack these halves into a single vector, and remap SM into NewMask to use
1116 // the new vector instead.
1117 OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb,
1118                          ResultStack &Results, MutableArrayRef<int> NewMask,
1119                          unsigned Options) {
1120   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1121   if (!Va.isValid() || !Vb.isValid())
1122     return OpRef::fail();
1123 
1124   MVT Ty = getSingleVT(MVT::i8);
1125   MVT PairTy = getPairVT(MVT::i8);
1126   OpRef Inp[2] = {Va, Vb};
1127   unsigned VecLen = SM.Mask.size();
1128 
1129   auto valign = [this](OpRef Lo, OpRef Hi, unsigned Amt, MVT Ty,
1130                        ResultStack &Results) {
1131     if (Amt == 0)
1132       return Lo;
1133     const SDLoc &dl(Results.InpNode);
1134     if (isUInt<3>(Amt) || isUInt<3>(HwLen - Amt)) {
1135       bool IsRight = isUInt<3>(Amt); // Right align.
1136       SDValue S = getConst32(IsRight ? Amt : HwLen - Amt, dl);
1137       unsigned Opc = IsRight ? Hexagon::V6_valignbi : Hexagon::V6_vlalignbi;
1138       Results.push(Opc, Ty, {Hi, Lo, S});
1139       return OpRef::res(Results.top());
1140     }
1141     Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(Amt, dl)});
1142     OpRef A = OpRef::res(Results.top());
1143     Results.push(Hexagon::V6_valignb, Ty, {Hi, Lo, A});
1144     return OpRef::res(Results.top());
1145   };
1146 
1147   // Segment is a vector half.
1148   unsigned SegLen = HwLen / 2;
1149 
1150   // Check if we can shuffle vector halves around to get the used elements
1151   // into a single vector.
1152   SmallVector<int,128> MaskH(SM.Mask.begin(), SM.Mask.end());
1153   SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, SegLen);
1154   unsigned SegCount = SegList.size();
1155   SmallVector<unsigned, 4> SegMap = getOutputSegmentMap(SM.Mask, SegLen);
1156 
1157   if (SegList.empty())
1158     return OpRef::undef(Ty);
1159 
1160   // NOTE:
1161   // In the following part of the function, where the segments are rearranged,
1162   // the shuffle mask SM can be of any length that is a multiple of a vector
1163   // (i.e. a multiple of 2*SegLen), and non-zero.
1164   // The output segment map is computed, and it may have any even number of
1165   // entries, but the rearrangement of input segments will be done based only
1166   // on the first two (non-undef) entries in the segment map.
1167   // For example, if the output map is 3, 1, 1, 3 (it can have at most two
1168   // distinct entries!), the segments 1 and 3 of Va/Vb will be packaged into
1169   // a single vector V = 3:1. The output mask will then be updated to use
1170   // seg(0,V), seg(1,V), seg(1,V), seg(0,V).
1171   //
1172   // Picking the segments based on the output map is an optimization. For
1173   // correctness it is only necessary that Seg0 and Seg1 are the two input
1174   // segments that are used in the output.
1175 
1176   unsigned Seg0 = ~0u, Seg1 = ~0u;
1177   for (int I = 0, E = SegMap.size(); I != E; ++I) {
1178     unsigned X = SegMap[I];
1179     if (X == ~0u)
1180       continue;
1181     if (Seg0 == ~0u)
1182       Seg0 = X;
1183     else if (Seg1 != ~0u)
1184       break;
1185     if (X == ~1u || X != Seg0)
1186       Seg1 = X;
1187   }
1188 
1189   if (SegCount == 1) {
1190     unsigned SrcOp = SegList[0] / 2;
1191     for (int I = 0; I != static_cast<int>(VecLen); ++I) {
1192       int M = SM.Mask[I];
1193       if (M >= 0) {
1194         M -= SrcOp * HwLen;
1195         assert(M >= 0);
1196       }
1197       NewMask[I] = M;
1198     }
1199     return Inp[SrcOp];
1200   }
1201 
1202   if (SegCount == 2) {
1203     // Seg0 should not be undef here: this would imply a SegList
1204     // with <= 1 elements, which was checked earlier.
1205     assert(Seg0 != ~0u);
1206 
1207     // If Seg0 or Seg1 are "multi-defined", pick them from the input
1208     // segment list instead.
1209     if (Seg0 == ~1u || Seg1 == ~1u) {
1210       if (Seg0 == Seg1) {
1211         Seg0 = SegList[0];
1212         Seg1 = SegList[1];
1213       } else if (Seg0 == ~1u) {
1214         Seg0 = SegList[0] != Seg1 ? SegList[0] : SegList[1];
1215       } else {
1216         assert(Seg1 == ~1u);
1217         Seg1 = SegList[0] != Seg0 ? SegList[0] : SegList[1];
1218       }
1219     }
1220     assert(Seg0 != ~1u && Seg1 != ~1u);
1221 
1222     assert(Seg0 != Seg1 && "Expecting different segments");
1223     const SDLoc &dl(Results.InpNode);
1224     Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(SegLen, dl)});
1225     OpRef HL = OpRef::res(Results.top());
1226 
1227     // Va = AB, Vb = CD
1228 
1229     if (Seg0 / 2 == Seg1 / 2) {
1230       // Same input vector.
1231       Va = Inp[Seg0 / 2];
1232       if (Seg0 > Seg1) {
1233         // Swap halves.
1234         Results.push(Hexagon::V6_vror, Ty, {Inp[Seg0 / 2], HL});
1235         Va = OpRef::res(Results.top());
1236       }
1237       packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
1238     } else if (Seg0 % 2 == Seg1 % 2) {
1239       // Picking AC, BD, CA, or DB.
1240       // vshuff(CD,AB,HL) -> BD:AC
1241       // vshuff(AB,CD,HL) -> DB:CA
1242       auto Vs = (Seg0 == 0 || Seg0 == 1) ? std::make_pair(Vb, Va)  // AC or BD
1243                                          : std::make_pair(Va, Vb); // CA or DB
1244       Results.push(Hexagon::V6_vshuffvdd, PairTy, {Vs.first, Vs.second, HL});
1245       OpRef P = OpRef::res(Results.top());
1246       Va = (Seg0 == 0 || Seg0 == 2) ? OpRef::lo(P) : OpRef::hi(P);
1247       packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
1248     } else {
1249       // Picking AD, BC, CB, or DA.
1250       if ((Seg0 == 0 && Seg1 == 3) || (Seg0 == 2 && Seg1 == 1)) {
1251         // AD or BC: this can be done using vmux.
1252         // Q = V6_pred_scalar2 SegLen
1253         // V = V6_vmux Q, (Va, Vb) or (Vb, Va)
1254         Results.push(Hexagon::V6_pred_scalar2, getBoolVT(), {HL});
1255         OpRef Qt = OpRef::res(Results.top());
1256         auto Vs = (Seg0 == 0) ? std::make_pair(Va, Vb)  // AD
1257                               : std::make_pair(Vb, Va); // CB
1258         Results.push(Hexagon::V6_vmux, Ty, {Qt, Vs.first, Vs.second});
1259         Va = OpRef::res(Results.top());
1260         packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
1261       } else {
1262         // BC or DA: this could be done via valign by SegLen.
1263         // Do nothing here, because valign (if possible) will be generated
1264         // later on (make sure the Seg0 values are as expected).
1265         assert(Seg0 == 1 || Seg0 == 3);
1266       }
1267     }
1268   }
1269 
1270   // Check if the arguments can be packed by valign(Va,Vb) or valign(Vb,Va).
1271 
1272   ShuffleMask SMH(MaskH);
1273   assert(SMH.Mask.size() == VecLen);
1274   SmallVector<int,128> MaskA(SMH.Mask.begin(), SMH.Mask.end());
1275 
1276   if (SMH.MaxSrc - SMH.MinSrc >= static_cast<int>(HwLen)) {
1277     // valign(Lo=Va,Hi=Vb) won't work. Try swapping Va/Vb.
1278     SmallVector<int,128> Swapped(SMH.Mask.begin(), SMH.Mask.end());
1279     ShuffleVectorSDNode::commuteMask(Swapped);
1280     ShuffleMask SW(Swapped);
1281     if (SW.MaxSrc - SW.MinSrc < static_cast<int>(HwLen)) {
1282       MaskA.assign(SW.Mask.begin(), SW.Mask.end());
1283       std::swap(Va, Vb);
1284     }
1285   }
1286   ShuffleMask SMA(MaskA);
1287   assert(SMA.Mask.size() == VecLen);
1288 
1289   if (SMA.MaxSrc - SMA.MinSrc < static_cast<int>(HwLen)) {
1290     int ShiftR = SMA.MinSrc;
1291     if (ShiftR >= static_cast<int>(HwLen)) {
1292       Va = Vb;
1293       Vb = OpRef::undef(Ty);
1294       ShiftR -= HwLen;
1295     }
1296     OpRef RetVal = valign(Va, Vb, ShiftR, Ty, Results);
1297 
1298     for (int I = 0; I != static_cast<int>(VecLen); ++I) {
1299       int M = SMA.Mask[I];
1300       if (M != -1)
1301         M -= SMA.MinSrc;
1302       NewMask[I] = M;
1303     }
1304     return RetVal;
1305   }
1306 
1307   // By here, packing by segment (half-vector) shuffling, and vector alignment
1308   // failed. Try vmux.
1309   // Note: since this is using the original mask, Va and Vb must not have been
1310   // modified.
1311 
1312   if (Options & PackMux) {
1313     // If elements picked from Va and Vb have all different (source) indexes
1314     // (relative to the start of the argument), do a mux, and update the mask.
1315     BitVector Picked(HwLen);
1316     SmallVector<uint8_t,128> MuxBytes(HwLen);
1317     bool CanMux = true;
1318     for (int I = 0; I != static_cast<int>(VecLen); ++I) {
1319       int M = SM.Mask[I];
1320       if (M == -1)
1321         continue;
1322       if (M >= static_cast<int>(HwLen))
1323         M -= HwLen;
1324       else
1325         MuxBytes[M] = 0xFF;
1326       if (Picked[M]) {
1327         CanMux = false;
1328         break;
1329       }
1330       NewMask[I] = M;
1331     }
1332     if (CanMux)
1333       return vmuxs(MuxBytes, Va, Vb, Results);
1334   }
1335   return OpRef::fail();
1336 }
1337 
1338 // Va, Vb are vector pairs. If SM only uses two single vectors from Va/Vb,
1339 // pack these vectors into a pair, and remap SM into NewMask to use the
1340 // new pair instead.
1341 OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb,
1342                          ResultStack &Results, MutableArrayRef<int> NewMask) {
1343   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1344   SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, HwLen);
1345   if (SegList.empty())
1346     return OpRef::undef(getPairVT(MVT::i8));
1347 
1348   // If more than two halves are used, bail.
1349   // TODO: be more aggressive here?
1350   unsigned SegCount = SegList.size();
1351   if (SegCount > 2)
1352     return OpRef::fail();
1353 
1354   MVT HalfTy = getSingleVT(MVT::i8);
1355 
1356   OpRef Inp[2] = { Va, Vb };
1357   OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) };
1358 
1359   // Really make sure we have at most 2 vectors used in the mask.
1360   assert(SegCount <= 2);
1361 
1362   for (int I = 0, E = SegList.size(); I != E; ++I) {
1363     unsigned S = SegList[I];
1364     OpRef Op = Inp[S / 2];
1365     Out[I] = (S & 1) ? OpRef::hi(Op) : OpRef::lo(Op);
1366   }
1367 
1368   // NOTE: Using SegList as the packing map here (not SegMap). This works,
1369   // because we're not concerned here about the order of the segments (i.e.
1370   // single vectors) in the output pair. Changing the order of vectors is
1371   // free (as opposed to changing the order of vector halves as in packs),
1372   // and so there is no extra cost added in case the order needs to be
1373   // changed later.
1374   packSegmentMask(SM.Mask, SegList, HwLen, NewMask);
1375   return concats(Out[0], Out[1], Results);
1376 }
1377 
1378 OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1379                          ResultStack &Results) {
1380   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1381   MVT ByteTy = getSingleVT(MVT::i8);
1382   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1383   const SDLoc &dl(Results.InpNode);
1384   SDValue B = getVectorConstant(Bytes, dl);
1385   Results.push(Hexagon::V6_vd0, ByteTy, {});
1386   Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)});
1387   Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va});
1388   return OpRef::res(Results.top());
1389 }
1390 
1391 OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1392                          ResultStack &Results) {
1393   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1394   size_t S = Bytes.size() / 2;
1395   OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results);
1396   OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results);
1397   return concats(L, H, Results);
1398 }
1399 
1400 OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1401   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1402   unsigned VecLen = SM.Mask.size();
1403   assert(HwLen == VecLen);
1404   (void)VecLen;
1405   assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); }));
1406 
1407   if (isIdentity(SM.Mask))
1408     return Va;
1409   if (isUndef(SM.Mask))
1410     return OpRef::undef(getSingleVT(MVT::i8));
1411 
1412   unsigned HalfLen = HwLen / 2;
1413   assert(isPowerOf2_32(HalfLen));
1414 
1415   // Handle special case where the output is the same half of the input
1416   // repeated twice, i.e. if Va = AB, then handle the output of AA or BB.
1417   std::pair<int, unsigned> Strip1 = findStrip(SM.Mask, 1, HalfLen);
1418   if ((Strip1.first & ~HalfLen) == 0 && Strip1.second == HalfLen) {
1419     std::pair<int, unsigned> Strip2 =
1420         findStrip(SM.Mask.drop_front(HalfLen), 1, HalfLen);
1421     if (Strip1 == Strip2) {
1422       const SDLoc &dl(Results.InpNode);
1423       Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(HalfLen, dl)});
1424       Results.push(Hexagon::V6_vshuffvdd, getPairVT(MVT::i8),
1425                    {Va, Va, OpRef::res(Results.top())});
1426       OpRef S = OpRef::res(Results.top());
1427       return (Strip1.first == 0) ? OpRef::lo(S) : OpRef::hi(S);
1428     }
1429   }
1430 
1431   OpRef P = perfect(SM, Va, Results);
1432   if (P.isValid())
1433     return P;
1434   return butterfly(SM, Va, Results);
1435 }
1436 
1437 OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb,
1438                            ResultStack &Results) {
1439   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1440   if (isUndef(SM.Mask))
1441     return OpRef::undef(getSingleVT(MVT::i8));
1442 
1443   OpRef C = contracting(SM, Va, Vb, Results);
1444   if (C.isValid())
1445     return C;
1446 
1447   int VecLen = SM.Mask.size();
1448   SmallVector<int,128> PackedMask(VecLen);
1449   OpRef P = packs(SM, Va, Vb, Results, PackedMask);
1450   if (P.isValid())
1451     return shuffs1(ShuffleMask(PackedMask), P, Results);
1452 
1453   // TODO: Before we split the mask, try perfect shuffle on concatenated
1454   // operands. This won't work now, because the perfect code does not
1455   // tolerate undefs in the mask.
1456 
1457   SmallVector<int,128> MaskL(VecLen), MaskR(VecLen);
1458   splitMask(SM.Mask, MaskL, MaskR);
1459 
1460   OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results);
1461   OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results);
1462   if (!L.isValid() || !R.isValid())
1463     return OpRef::fail();
1464 
1465   SmallVector<uint8_t,128> Bytes(VecLen);
1466   for (int I = 0; I != VecLen; ++I) {
1467     if (MaskL[I] != -1)
1468       Bytes[I] = 0xFF;
1469   }
1470   return vmuxs(Bytes, L, R, Results);
1471 }
1472 
1473 OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1474   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1475   int VecLen = SM.Mask.size();
1476 
1477   if (isIdentity(SM.Mask))
1478     return Va;
1479   if (isUndef(SM.Mask))
1480     return OpRef::undef(getPairVT(MVT::i8));
1481 
1482   SmallVector<int,128> PackedMask(VecLen);
1483   OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask);
1484   if (P.isValid()) {
1485     ShuffleMask PM(PackedMask);
1486     OpRef E = expanding(PM, P, Results);
1487     if (E.isValid())
1488       return E;
1489 
1490     OpRef L = shuffs1(PM.lo(), P, Results);
1491     OpRef H = shuffs1(PM.hi(), P, Results);
1492     if (L.isValid() && H.isValid())
1493       return concats(L, H, Results);
1494   }
1495 
1496   OpRef R = perfect(SM, Va, Results);
1497   if (R.isValid())
1498     return R;
1499   // TODO commute the mask and try the opposite order of the halves.
1500 
1501   OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results);
1502   OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results);
1503   if (L.isValid() && H.isValid())
1504     return concats(L, H, Results);
1505 
1506   return OpRef::fail();
1507 }
1508 
1509 OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb,
1510                            ResultStack &Results) {
1511   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1512   if (isUndef(SM.Mask))
1513     return OpRef::undef(getPairVT(MVT::i8));
1514 
1515   int VecLen = SM.Mask.size();
1516   SmallVector<int,256> PackedMask(VecLen);
1517   OpRef P = packp(SM, Va, Vb, Results, PackedMask);
1518   if (P.isValid())
1519     return shuffp1(ShuffleMask(PackedMask), P, Results);
1520 
1521   SmallVector<int,256> MaskL(VecLen), MaskR(VecLen);
1522   splitMask(SM.Mask, MaskL, MaskR);
1523 
1524   OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results);
1525   OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results);
1526   if (!L.isValid() || !R.isValid())
1527     return OpRef::fail();
1528 
1529   // Mux the results.
1530   SmallVector<uint8_t,256> Bytes(VecLen);
1531   for (int I = 0; I != VecLen; ++I) {
1532     if (MaskL[I] != -1)
1533       Bytes[I] = 0xFF;
1534   }
1535   return vmuxp(Bytes, L, R, Results);
1536 }
1537 
1538 namespace {
1539   struct Deleter : public SelectionDAG::DAGNodeDeletedListener {
1540     template <typename T>
1541     Deleter(SelectionDAG &D, T &C)
1542       : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) {
1543                                                   C.erase(N);
1544                                                 }) {}
1545   };
1546 
1547   template <typename T>
1548   struct NullifyingVector : public T {
1549     DenseMap<SDNode*, SDNode**> Refs;
1550     NullifyingVector(T &&V) : T(V) {
1551       for (unsigned i = 0, e = T::size(); i != e; ++i) {
1552         SDNode *&N = T::operator[](i);
1553         Refs[N] = &N;
1554       }
1555     }
1556     void erase(SDNode *N) {
1557       auto F = Refs.find(N);
1558       if (F != Refs.end())
1559         *F->second = nullptr;
1560     }
1561   };
1562 }
1563 
1564 void HvxSelector::select(SDNode *ISelN) {
1565   // What's important here is to select the right set of nodes. The main
1566   // selection algorithm loops over nodes in a topological order, i.e. users
1567   // are visited before their operands.
1568   //
1569   // It is an error to have an unselected node with a selected operand, and
1570   // there is an assertion in the main selector code to enforce that.
1571   //
1572   // Such a situation could occur if we selected a node, which is both a
1573   // subnode of ISelN, and a subnode of an unrelated (and yet unselected)
1574   // node in the DAG.
1575   assert(ISelN->getOpcode() == HexagonISD::ISEL);
1576   SDNode *N0 = ISelN->getOperand(0).getNode();
1577   if (N0->isMachineOpcode()) {
1578     ISel.ReplaceNode(ISelN, N0);
1579     return;
1580   }
1581 
1582   // There could have been nodes created (i.e. inserted into the DAG)
1583   // that are now dead. Remove them, in case they use any of the nodes
1584   // to select (and make them look shared).
1585   DAG.RemoveDeadNodes();
1586 
1587   SetVector<SDNode*> SubNodes, TmpQ;
1588   std::map<SDNode*,unsigned> NumOps;
1589 
1590   // Don't want to select N0 if it's shared with another node, except if
1591   // it's shared with other ISELs.
1592   auto IsISelN = [](SDNode *T) { return T->getOpcode() == HexagonISD::ISEL; };
1593   if (llvm::all_of(N0->uses(), IsISelN))
1594     SubNodes.insert(N0);
1595 
1596   auto InSubNodes = [&SubNodes](SDNode *T) { return SubNodes.count(T); };
1597   for (unsigned I = 0; I != SubNodes.size(); ++I) {
1598     SDNode *S = SubNodes[I];
1599     unsigned OpN = 0;
1600     // Only add subnodes that are only reachable from N0.
1601     for (SDValue Op : S->ops()) {
1602       SDNode *O = Op.getNode();
1603       if (llvm::all_of(O->uses(), InSubNodes)) {
1604         SubNodes.insert(O);
1605         ++OpN;
1606       }
1607     }
1608     NumOps.insert({S, OpN});
1609     if (OpN == 0)
1610       TmpQ.insert(S);
1611   }
1612 
1613   for (unsigned I = 0; I != TmpQ.size(); ++I) {
1614     SDNode *S = TmpQ[I];
1615     for (SDNode *U : S->uses()) {
1616       if (U == ISelN)
1617         continue;
1618       auto F = NumOps.find(U);
1619       assert(F != NumOps.end());
1620       if (F->second > 0 && !--F->second)
1621         TmpQ.insert(F->first);
1622     }
1623   }
1624 
1625   // Remove the marker.
1626   ISel.ReplaceNode(ISelN, N0);
1627 
1628   assert(SubNodes.size() == TmpQ.size());
1629   NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector());
1630 
1631   Deleter DUQ(DAG, Queue);
1632   for (SDNode *S : reverse(Queue)) {
1633     if (S == nullptr)
1634       continue;
1635     DEBUG_WITH_TYPE("isel", {dbgs() << "HVX selecting: "; S->dump(&DAG);});
1636     ISel.Select(S);
1637   }
1638 }
1639 
1640 bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl,
1641                                    MVT ResTy, SDValue Va, SDValue Vb,
1642                                    SDNode *N) {
1643   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1644   MVT ElemTy = ResTy.getVectorElementType();
1645   assert(ElemTy == MVT::i8);
1646   unsigned VecLen = Mask.size();
1647   bool HavePairs = (2*HwLen == VecLen);
1648   MVT SingleTy = getSingleVT(MVT::i8);
1649 
1650   // The prior attempts to handle this shuffle may have left a bunch of
1651   // dead nodes in the DAG (such as constants). These nodes will be added
1652   // at the end of DAG's node list, which at that point had already been
1653   // sorted topologically. In the main selection loop, the node list is
1654   // traversed backwards from the root node, which means that any new
1655   // nodes (from the end of the list) will not be visited.
1656   // Scalarization will replace the shuffle node with the scalarized
1657   // expression, and if that expression reused any if the leftoever (dead)
1658   // nodes, these nodes would not be selected (since the "local" selection
1659   // only visits nodes that are not in AllNodes).
1660   // To avoid this issue, remove all dead nodes from the DAG now.
1661 //  DAG.RemoveDeadNodes();
1662 
1663   SmallVector<SDValue,128> Ops;
1664   LLVMContext &Ctx = *DAG.getContext();
1665   MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT();
1666   for (int I : Mask) {
1667     if (I < 0) {
1668       Ops.push_back(ISel.selectUndef(dl, LegalTy));
1669       continue;
1670     }
1671     SDValue Vec;
1672     unsigned M = I;
1673     if (M < VecLen) {
1674       Vec = Va;
1675     } else {
1676       Vec = Vb;
1677       M -= VecLen;
1678     }
1679     if (HavePairs) {
1680       if (M < HwLen) {
1681         Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec);
1682       } else {
1683         Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec);
1684         M -= HwLen;
1685       }
1686     }
1687     SDValue Idx = DAG.getConstant(M, dl, MVT::i32);
1688     SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx});
1689     SDValue L = Lower.LowerOperation(Ex, DAG);
1690     assert(L.getNode());
1691     Ops.push_back(L);
1692   }
1693 
1694   SDValue LV;
1695   if (2*HwLen == VecLen) {
1696     SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen});
1697     SDValue L0 = Lower.LowerOperation(B0, DAG);
1698     SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen});
1699     SDValue L1 = Lower.LowerOperation(B1, DAG);
1700     // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering)
1701     // functions may expect to be called only for illegal operations, so
1702     // make sure that they are not called for legal ones. Develop a better
1703     // mechanism for dealing with this.
1704     LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1});
1705   } else {
1706     SDValue BV = DAG.getBuildVector(ResTy, dl, Ops);
1707     LV = Lower.LowerOperation(BV, DAG);
1708   }
1709 
1710   assert(!N->use_empty());
1711   SDValue IS = DAG.getNode(HexagonISD::ISEL, dl, ResTy, LV);
1712   ISel.ReplaceNode(N, IS.getNode());
1713   select(IS.getNode());
1714   DAG.RemoveDeadNodes();
1715   return true;
1716 }
1717 
1718 OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb,
1719                                ResultStack &Results) {
1720   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1721   if (!Va.isValid() || !Vb.isValid())
1722     return OpRef::fail();
1723 
1724   // Contracting shuffles, i.e. instructions that always discard some bytes
1725   // from the operand vectors.
1726   //
1727   // V6_vshuff{e,o}b
1728   // V6_vdealb4w
1729   // V6_vpack{e,o}{b,h}
1730 
1731   int VecLen = SM.Mask.size();
1732   std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1733   MVT ResTy = getSingleVT(MVT::i8);
1734 
1735   // The following shuffles only work for bytes and halfwords. This requires
1736   // the strip length to be 1 or 2.
1737   if (Strip.second != 1 && Strip.second != 2)
1738     return OpRef::fail();
1739 
1740   // The patterns for the shuffles, in terms of the starting offsets of the
1741   // consecutive strips (L = length of the strip, N = VecLen):
1742   //
1743   // vpacke:    0, 2L, 4L ... N+0, N+2L, N+4L ...      L = 1 or 2
1744   // vpacko:    L, 3L, 5L ... N+L, N+3L, N+5L ...      L = 1 or 2
1745   //
1746   // vshuffe:   0, N+0, 2L, N+2L, 4L ...               L = 1 or 2
1747   // vshuffo:   L, N+L, 3L, N+3L, 5L ...               L = 1 or 2
1748   //
1749   // vdealb4w:  0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ...
1750 
1751   // The value of the element in the mask following the strip will decide
1752   // what kind of a shuffle this can be.
1753   int NextInMask = SM.Mask[Strip.second];
1754 
1755   // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask
1756   // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would
1757   // satisfy this.
1758   if (NextInMask < VecLen) {
1759     // vpack{e,o} or vdealb4w
1760     if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) {
1761       int N = VecLen;
1762       // Check if this is vdealb4w (L=1).
1763       for (int I = 0; I != N/4; ++I)
1764         if (SM.Mask[I] != 4*I)
1765           return OpRef::fail();
1766       for (int I = 0; I != N/4; ++I)
1767         if (SM.Mask[I+N/4] != 2 + 4*I)
1768           return OpRef::fail();
1769       for (int I = 0; I != N/4; ++I)
1770         if (SM.Mask[I+N/2] != N + 4*I)
1771           return OpRef::fail();
1772       for (int I = 0; I != N/4; ++I)
1773         if (SM.Mask[I+3*N/4] != N+2 + 4*I)
1774           return OpRef::fail();
1775       // Matched mask for vdealb4w.
1776       Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va});
1777       return OpRef::res(Results.top());
1778     }
1779 
1780     // Check if this is vpack{e,o}.
1781     int N = VecLen;
1782     int L = Strip.second;
1783     // Check if the first strip starts at 0 or at L.
1784     if (Strip.first != 0 && Strip.first != L)
1785       return OpRef::fail();
1786     // Examine the rest of the mask.
1787     for (int I = L; I < N; I += L) {
1788       auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1789       // Check whether the mask element at the beginning of each strip
1790       // increases by 2L each time.
1791       if (S.first - Strip.first != 2*I)
1792         return OpRef::fail();
1793       // Check whether each strip is of the same length.
1794       if (S.second != unsigned(L))
1795         return OpRef::fail();
1796     }
1797 
1798     // Strip.first == 0  =>  vpacke
1799     // Strip.first == L  =>  vpacko
1800     assert(Strip.first == 0 || Strip.first == L);
1801     using namespace Hexagon;
1802     NodeTemplate Res;
1803     Res.Opc = Strip.second == 1 // Number of bytes.
1804                   ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob)
1805                   : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh);
1806     Res.Ty = ResTy;
1807     Res.Ops = { Vb, Va };
1808     Results.push(Res);
1809     return OpRef::res(Results.top());
1810   }
1811 
1812   // Check if this is vshuff{e,o}.
1813   int N = VecLen;
1814   int L = Strip.second;
1815   std::pair<int,unsigned> PrevS = Strip;
1816   bool Flip = false;
1817   for (int I = L; I < N; I += L) {
1818     auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1819     if (S.second != PrevS.second)
1820       return OpRef::fail();
1821     int Diff = Flip ? PrevS.first - S.first + 2*L
1822                     : S.first - PrevS.first;
1823     if (Diff != N)
1824       return OpRef::fail();
1825     Flip ^= true;
1826     PrevS = S;
1827   }
1828   // Strip.first == 0  =>  vshuffe
1829   // Strip.first == L  =>  vshuffo
1830   assert(Strip.first == 0 || Strip.first == L);
1831   using namespace Hexagon;
1832   NodeTemplate Res;
1833   Res.Opc = Strip.second == 1 // Number of bytes.
1834                 ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob)
1835                 : (Strip.first == 0 ?  V6_vshufeh :  V6_vshufoh);
1836   Res.Ty = ResTy;
1837   Res.Ops = { Vb, Va };
1838   Results.push(Res);
1839   return OpRef::res(Results.top());
1840 }
1841 
1842 OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1843   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1844   // Expanding shuffles (using all elements and inserting into larger vector):
1845   //
1846   // V6_vunpacku{b,h} [*]
1847   //
1848   // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask.
1849   //
1850   // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so
1851   // they are not shuffles.
1852   //
1853   // The argument is a single vector.
1854 
1855   int VecLen = SM.Mask.size();
1856   assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type");
1857 
1858   std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1859 
1860   // The patterns for the unpacks, in terms of the starting offsets of the
1861   // consecutive strips (L = length of the strip, N = VecLen):
1862   //
1863   // vunpacku:  0, -1, L, -1, 2L, -1 ...
1864 
1865   if (Strip.first != 0)
1866     return OpRef::fail();
1867 
1868   // The vunpackus only handle byte and half-word.
1869   if (Strip.second != 1 && Strip.second != 2)
1870     return OpRef::fail();
1871 
1872   int N = VecLen;
1873   int L = Strip.second;
1874 
1875   // First, check the non-ignored strips.
1876   for (int I = 2*L; I < N; I += 2*L) {
1877     auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1878     if (S.second != unsigned(L))
1879       return OpRef::fail();
1880     if (2*S.first != I)
1881       return OpRef::fail();
1882   }
1883   // Check the -1s.
1884   for (int I = L; I < N; I += 2*L) {
1885     auto S = findStrip(SM.Mask.drop_front(I), 0, N-I);
1886     if (S.first != -1 || S.second != unsigned(L))
1887       return OpRef::fail();
1888   }
1889 
1890   unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub
1891                                    : Hexagon::V6_vunpackuh;
1892   Results.push(Opc, getPairVT(MVT::i8), {Va});
1893   return OpRef::res(Results.top());
1894 }
1895 
1896 OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1897   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1898   // V6_vdeal{b,h}
1899   // V6_vshuff{b,h}
1900 
1901   // V6_vshufoe{b,h}  those are quivalent to vshuffvdd(..,{1,2})
1902   // V6_vshuffvdd (V6_vshuff)
1903   // V6_dealvdd (V6_vdeal)
1904 
1905   int VecLen = SM.Mask.size();
1906   assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8);
1907   unsigned LogLen = Log2_32(VecLen);
1908   unsigned HwLog = Log2_32(HwLen);
1909   // The result length must be the same as the length of a single vector,
1910   // or a vector pair.
1911   assert(LogLen == HwLog || LogLen == HwLog+1);
1912   bool HavePairs = LogLen == HwLog+1;
1913 
1914   if (!isPermutation(SM.Mask))
1915     return OpRef::fail();
1916 
1917   SmallVector<unsigned,8> Perm(LogLen);
1918 
1919   // Check if this could be a perfect shuffle, or a combination of perfect
1920   // shuffles.
1921   //
1922   // Consider this permutation (using hex digits to make the ASCII diagrams
1923   // easier to read):
1924   //   { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }.
1925   // This is a "deal" operation: divide the input into two halves, and
1926   // create the output by picking elements by alternating between these two
1927   // halves:
1928   //   0 1 2 3 4 5 6 7    -->    0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F  [*]
1929   //   8 9 A B C D E F
1930   //
1931   // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides
1932   // a somwehat different mechanism that could be used to perform shuffle/
1933   // deal operations: a 2x2 transpose.
1934   // Consider the halves of inputs again, they can be interpreted as a 2x8
1935   // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated
1936   // together. Now, when considering 2 elements at a time, it will be a 2x4
1937   // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices:
1938   //   01 23  45 67
1939   //   89 AB  CD EF
1940   // With groups of 4, this will become a single 2x2 matrix, and so on.
1941   //
1942   // The 2x2 transpose instruction works by transposing each of the 2x2
1943   // matrices (or "sub-matrices"), given a specific group size. For example,
1944   // if the group size is 1 (i.e. each element is its own group), there
1945   // will be four transposes of the four 2x2 matrices that form the 2x8.
1946   // For example, with the inputs as above, the result will be:
1947   //   0 8  2 A  4 C  6 E
1948   //   1 9  3 B  5 D  7 F
1949   // Now, this result can be tranposed again, but with the group size of 2:
1950   //   08 19  4C 5D
1951   //   2A 3B  6E 7F
1952   // If we then transpose that result, but with the group size of 4, we get:
1953   //   0819 2A3B
1954   //   4C5D 6E7F
1955   // If we concatenate these two rows, it will be
1956   //   0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F
1957   // which is the same as the "deal" [*] above.
1958   //
1959   // In general, a "deal" of individual elements is a series of 2x2 transposes,
1960   // with changing group size. HVX has two instructions:
1961   //   Vdd = V6_vdealvdd Vu, Vv, Rt
1962   //   Vdd = V6_shufvdd  Vu, Vv, Rt
1963   // that perform exactly that. The register Rt controls which transposes are
1964   // going to happen: a bit at position n (counting from 0) indicates that a
1965   // transpose with a group size of 2^n will take place. If multiple bits are
1966   // set, multiple transposes will happen: vdealvdd will perform them starting
1967   // with the largest group size, vshuffvdd will do them in the reverse order.
1968   //
1969   // The main observation is that each 2x2 transpose corresponds to swapping
1970   // columns of bits in the binary representation of the values.
1971   //
1972   // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits
1973   // in a given column. The * denote the columns that will be swapped.
1974   // The transpose with the group size 2^n corresponds to swapping columns
1975   // 3 (the highest log) and log2(n):
1976   //
1977   //     3 2 1 0         0 2 1 3         0 2 3 1
1978   //     *     *             * *           * *
1979   //  0  0 0 0 0      0  0 0 0 0      0  0 0 0 0      0  0 0 0 0
1980   //  1  0 0 0 1      8  1 0 0 0      8  1 0 0 0      8  1 0 0 0
1981   //  2  0 0 1 0      2  0 0 1 0      1  0 0 0 1      1  0 0 0 1
1982   //  3  0 0 1 1      A  1 0 1 0      9  1 0 0 1      9  1 0 0 1
1983   //  4  0 1 0 0      4  0 1 0 0      4  0 1 0 0      2  0 0 1 0
1984   //  5  0 1 0 1      C  1 1 0 0      C  1 1 0 0      A  1 0 1 0
1985   //  6  0 1 1 0      6  0 1 1 0      5  0 1 0 1      3  0 0 1 1
1986   //  7  0 1 1 1      E  1 1 1 0      D  1 1 0 1      B  1 0 1 1
1987   //  8  1 0 0 0      1  0 0 0 1      2  0 0 1 0      4  0 1 0 0
1988   //  9  1 0 0 1      9  1 0 0 1      A  1 0 1 0      C  1 1 0 0
1989   //  A  1 0 1 0      3  0 0 1 1      3  0 0 1 1      5  0 1 0 1
1990   //  B  1 0 1 1      B  1 0 1 1      B  1 0 1 1      D  1 1 0 1
1991   //  C  1 1 0 0      5  0 1 0 1      6  0 1 1 0      6  0 1 1 0
1992   //  D  1 1 0 1      D  1 1 0 1      E  1 1 1 0      E  1 1 1 0
1993   //  E  1 1 1 0      7  0 1 1 1      7  0 1 1 1      7  0 1 1 1
1994   //  F  1 1 1 1      F  1 1 1 1      F  1 1 1 1      F  1 1 1 1
1995 
1996   // There is one special case that is not a perfect shuffle, but
1997   // can be turned into one easily: when the shuffle operates on
1998   // a vector pair, but the two vectors in the pair are swapped.
1999   // The code below that identifies perfect shuffles will reject
2000   // it, unless the order is reversed.
2001   SmallVector<int,128> MaskStorage(SM.Mask.begin(), SM.Mask.end());
2002   bool InvertedPair = false;
2003   if (HavePairs && SM.Mask[0] >= int(HwLen)) {
2004     for (int i = 0, e = SM.Mask.size(); i != e; ++i) {
2005       int M = SM.Mask[i];
2006       MaskStorage[i] = M >= int(HwLen) ? M-HwLen : M+HwLen;
2007     }
2008     InvertedPair = true;
2009   }
2010   ArrayRef<int> LocalMask(MaskStorage);
2011 
2012   auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) {
2013     unsigned X = Mask[0] ^ Mask[Num/2];
2014     // Check that the first half has the X's bits clear.
2015     if ((Mask[0] & X) != 0)
2016       return 0u;
2017     for (unsigned I = 1; I != Num/2; ++I) {
2018       if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X)
2019         return 0u;
2020       if ((Mask[I] & X) != 0)
2021         return 0u;
2022     }
2023     return X;
2024   };
2025 
2026   // Create a vector of log2's for each column: Perm[i] corresponds to
2027   // the i-th bit (lsb is 0).
2028   assert(VecLen > 2);
2029   for (unsigned I = VecLen; I >= 2; I >>= 1) {
2030     // Examine the initial segment of Mask of size I.
2031     unsigned X = XorPow2(LocalMask, I);
2032     if (!isPowerOf2_32(X))
2033       return OpRef::fail();
2034     // Check the other segments of Mask.
2035     for (int J = I; J < VecLen; J += I) {
2036       if (XorPow2(LocalMask.slice(J, I), I) != X)
2037         return OpRef::fail();
2038     }
2039     Perm[Log2_32(X)] = Log2_32(I)-1;
2040   }
2041 
2042   // Once we have Perm, represent it as cycles. Denote the maximum log2
2043   // (equal to log2(VecLen)-1) as M. The cycle containing M can then be
2044   // written as (M a1 a2 a3 ... an). That cycle can be broken up into
2045   // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition
2046   // order being from left to right. Any (contiguous) segment where the
2047   // values ai, ai+1...aj are either all increasing or all decreasing,
2048   // can be implemented via a single vshuffvdd/vdealvdd respectively.
2049   //
2050   // If there is a cycle (a1 a2 ... an) that does not involve M, it can
2051   // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can
2052   // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure
2053   // can be used to generate a sequence of vshuffvdd/vdealvdd.
2054   //
2055   // Example:
2056   // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written
2057   // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply
2058   //   (4 0 1)(4 0)(4 2 3)(4 2).
2059   // It can then be expanded into swaps as
2060   //   (4 0)(4 1)(4 0)(4 2)(4 3)(4 2),
2061   // and broken up into "increasing" segments as
2062   //   [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)].
2063   // This is equivalent to
2064   //   (4 0 1)(4 0 2 3)(4 2),
2065   // which can be implemented as 3 vshufvdd instructions.
2066 
2067   using CycleType = SmallVector<unsigned,8>;
2068   std::set<CycleType> Cycles;
2069   std::set<unsigned> All;
2070 
2071   for (unsigned I : Perm)
2072     All.insert(I);
2073 
2074   // If the cycle contains LogLen-1, move it to the front of the cycle.
2075   // Otherwise, return the cycle unchanged.
2076   auto canonicalize = [LogLen](const CycleType &C) -> CycleType {
2077     unsigned LogPos, N = C.size();
2078     for (LogPos = 0; LogPos != N; ++LogPos)
2079       if (C[LogPos] == LogLen-1)
2080         break;
2081     if (LogPos == N)
2082       return C;
2083 
2084     CycleType NewC(C.begin()+LogPos, C.end());
2085     NewC.append(C.begin(), C.begin()+LogPos);
2086     return NewC;
2087   };
2088 
2089   auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) {
2090     // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6),
2091     // for bytes zero is included, for halfwords is not.
2092     if (Cs.size() != 1)
2093       return 0u;
2094     const CycleType &C = *Cs.begin();
2095     if (C[0] != Len-1)
2096       return 0u;
2097     int D = Len - C.size();
2098     if (D != 0 && D != 1)
2099       return 0u;
2100 
2101     bool IsDeal = true, IsShuff = true;
2102     for (unsigned I = 1; I != Len-D; ++I) {
2103       if (C[I] != Len-1-I)
2104         IsDeal = false;
2105       if (C[I] != I-(1-D))  // I-1, I
2106         IsShuff = false;
2107     }
2108     // At most one, IsDeal or IsShuff, can be non-zero.
2109     assert(!(IsDeal || IsShuff) || IsDeal != IsShuff);
2110     static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh };
2111     static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh };
2112     return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0);
2113   };
2114 
2115   while (!All.empty()) {
2116     unsigned A = *All.begin();
2117     All.erase(A);
2118     CycleType C;
2119     C.push_back(A);
2120     for (unsigned B = Perm[A]; B != A; B = Perm[B]) {
2121       C.push_back(B);
2122       All.erase(B);
2123     }
2124     if (C.size() <= 1)
2125       continue;
2126     Cycles.insert(canonicalize(C));
2127   }
2128 
2129   MVT SingleTy = getSingleVT(MVT::i8);
2130   MVT PairTy = getPairVT(MVT::i8);
2131 
2132   // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}.
2133   if (unsigned(VecLen) == HwLen) {
2134     if (unsigned SingleOpc = pfs(Cycles, LogLen)) {
2135       Results.push(SingleOpc, SingleTy, {Va});
2136       return OpRef::res(Results.top());
2137     }
2138   }
2139 
2140   // From the cycles, construct the sequence of values that will
2141   // then form the control values for vdealvdd/vshuffvdd, i.e.
2142   // (M a1 a2)(M a3 a4 a5)... -> a1 a2 a3 a4 a5
2143   // This essentially strips the M value from the cycles where
2144   // it's present, and performs the insertion of M (then stripping)
2145   // for cycles without M (as described in an earlier comment).
2146   SmallVector<unsigned,8> SwapElems;
2147   // When the input is extended (i.e. single vector becomes a pair),
2148   // this is done by using an "undef" vector as the second input.
2149   // However, then we get
2150   //   input 1: GOODBITS
2151   //   input 2: ........
2152   // but we need
2153   //   input 1: ....BITS
2154   //   input 2: ....GOOD
2155   // Then at the end, this needs to be undone. To accomplish this,
2156   // artificially add "LogLen-1" at both ends of the sequence.
2157   if (!HavePairs)
2158     SwapElems.push_back(LogLen-1);
2159   for (const CycleType &C : Cycles) {
2160     // Do the transformation: (a1..an) -> (M a1..an)(M a1).
2161     unsigned First = (C[0] == LogLen-1) ? 1 : 0;
2162     SwapElems.append(C.begin()+First, C.end());
2163     if (First == 0)
2164       SwapElems.push_back(C[0]);
2165   }
2166   if (!HavePairs)
2167     SwapElems.push_back(LogLen-1);
2168 
2169   const SDLoc &dl(Results.InpNode);
2170   OpRef Arg = HavePairs ? Va
2171                         : concats(Va, OpRef::undef(SingleTy), Results);
2172   if (InvertedPair)
2173     Arg = concats(OpRef::hi(Arg), OpRef::lo(Arg), Results);
2174 
2175   for (unsigned I = 0, E = SwapElems.size(); I != E; ) {
2176     bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1];
2177     unsigned S = (1u << SwapElems[I]);
2178     if (I < E-1) {
2179       while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1]))
2180         S |= 1u << SwapElems[I];
2181       // The above loop will not add a bit for the final SwapElems[I+1],
2182       // so add it here.
2183       S |= 1u << SwapElems[I];
2184     }
2185     ++I;
2186 
2187     NodeTemplate Res;
2188     Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(S, dl)});
2189     Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd;
2190     Res.Ty = PairTy;
2191     Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) };
2192     Results.push(Res);
2193     Arg = OpRef::res(Results.top());
2194   }
2195 
2196   return HavePairs ? Arg : OpRef::lo(Arg);
2197 }
2198 
2199 OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) {
2200   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
2201   // Butterfly shuffles.
2202   //
2203   // V6_vdelta
2204   // V6_vrdelta
2205   // V6_vror
2206 
2207   // The assumption here is that all elements picked by Mask are in the
2208   // first operand to the vector_shuffle. This assumption is enforced
2209   // by the caller.
2210 
2211   MVT ResTy = getSingleVT(MVT::i8);
2212   PermNetwork::Controls FC, RC;
2213   const SDLoc &dl(Results.InpNode);
2214   int VecLen = SM.Mask.size();
2215 
2216   for (int M : SM.Mask) {
2217     if (M != -1 && M >= VecLen)
2218       return OpRef::fail();
2219   }
2220 
2221   // Try the deltas/benes for both single vectors and vector pairs.
2222   ForwardDeltaNetwork FN(SM.Mask);
2223   if (FN.run(FC)) {
2224     SDValue Ctl = getVectorConstant(FC, dl);
2225     Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)});
2226     return OpRef::res(Results.top());
2227   }
2228 
2229   // Try reverse delta.
2230   ReverseDeltaNetwork RN(SM.Mask);
2231   if (RN.run(RC)) {
2232     SDValue Ctl = getVectorConstant(RC, dl);
2233     Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)});
2234     return OpRef::res(Results.top());
2235   }
2236 
2237   // Do Benes.
2238   BenesNetwork BN(SM.Mask);
2239   if (BN.run(FC, RC)) {
2240     SDValue CtlF = getVectorConstant(FC, dl);
2241     SDValue CtlR = getVectorConstant(RC, dl);
2242     Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)});
2243     Results.push(Hexagon::V6_vrdelta, ResTy,
2244                  {OpRef::res(-1), OpRef(CtlR)});
2245     return OpRef::res(Results.top());
2246   }
2247 
2248   return OpRef::fail();
2249 }
2250 
2251 SDValue HvxSelector::getConst32(int Val, const SDLoc &dl) {
2252   return DAG.getTargetConstant(Val, dl, MVT::i32);
2253 }
2254 
2255 SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data,
2256                                        const SDLoc &dl) {
2257   SmallVector<SDValue, 128> Elems;
2258   for (uint8_t C : Data)
2259     Elems.push_back(DAG.getConstant(C, dl, MVT::i8));
2260   MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size());
2261   SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
2262   SDValue LV = Lower.LowerOperation(BV, DAG);
2263   DAG.RemoveDeadNode(BV.getNode());
2264   return DAG.getNode(HexagonISD::ISEL, dl, VecTy, LV);
2265 }
2266 
2267 void HvxSelector::selectShuffle(SDNode *N) {
2268   DEBUG_WITH_TYPE("isel", {
2269     dbgs() << "Starting " << __func__ << " on node:\n";
2270     N->dump(&DAG);
2271   });
2272   MVT ResTy = N->getValueType(0).getSimpleVT();
2273   // Assume that vector shuffles operate on vectors of bytes.
2274   assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8);
2275 
2276   auto *SN = cast<ShuffleVectorSDNode>(N);
2277   std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end());
2278   // This shouldn't really be necessary. Is it?
2279   for (int &Idx : Mask)
2280     if (Idx != -1 && Idx < 0)
2281       Idx = -1;
2282 
2283   unsigned VecLen = Mask.size();
2284   bool HavePairs = (2*HwLen == VecLen);
2285   assert(ResTy.getSizeInBits() / 8 == VecLen);
2286 
2287   // Vd = vector_shuffle Va, Vb, Mask
2288   //
2289 
2290   bool UseLeft = false, UseRight = false;
2291   for (unsigned I = 0; I != VecLen; ++I) {
2292     if (Mask[I] == -1)
2293       continue;
2294     unsigned Idx = Mask[I];
2295     assert(Idx < 2*VecLen);
2296     if (Idx < VecLen)
2297       UseLeft = true;
2298     else
2299       UseRight = true;
2300   }
2301 
2302   DEBUG_WITH_TYPE("isel", {
2303     dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft="
2304            << UseLeft << " UseRight=" << UseRight << " HavePairs="
2305            << HavePairs << '\n';
2306   });
2307   // If the mask is all -1's, generate "undef".
2308   if (!UseLeft && !UseRight) {
2309     ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode());
2310     return;
2311   }
2312 
2313   SDValue Vec0 = N->getOperand(0);
2314   SDValue Vec1 = N->getOperand(1);
2315   ResultStack Results(SN);
2316   Results.push(TargetOpcode::COPY, ResTy, {Vec0});
2317   Results.push(TargetOpcode::COPY, ResTy, {Vec1});
2318   OpRef Va = OpRef::res(Results.top()-1);
2319   OpRef Vb = OpRef::res(Results.top());
2320 
2321   OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results)
2322                          : shuffp2(ShuffleMask(Mask), Va, Vb, Results);
2323 
2324   bool Done = Res.isValid();
2325   if (Done) {
2326     // Make sure that Res is on the stack before materializing.
2327     Results.push(TargetOpcode::COPY, ResTy, {Res});
2328     materialize(Results);
2329   } else {
2330     Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N);
2331   }
2332 
2333   if (!Done) {
2334 #ifndef NDEBUG
2335     dbgs() << "Unhandled shuffle:\n";
2336     SN->dumpr(&DAG);
2337 #endif
2338     llvm_unreachable("Failed to select vector shuffle");
2339   }
2340 }
2341 
2342 void HvxSelector::selectRor(SDNode *N) {
2343   // If this is a rotation by less than 8, use V6_valignbi.
2344   MVT Ty = N->getValueType(0).getSimpleVT();
2345   const SDLoc &dl(N);
2346   SDValue VecV = N->getOperand(0);
2347   SDValue RotV = N->getOperand(1);
2348   SDNode *NewN = nullptr;
2349 
2350   if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) {
2351     unsigned S = CN->getZExtValue() % HST.getVectorLength();
2352     if (S == 0) {
2353       NewN = VecV.getNode();
2354     } else if (isUInt<3>(S)) {
2355       NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty,
2356                                 {VecV, VecV, getConst32(S, dl)});
2357     }
2358   }
2359 
2360   if (!NewN)
2361     NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV});
2362 
2363   ISel.ReplaceNode(N, NewN);
2364 }
2365 
2366 void HvxSelector::selectVAlign(SDNode *N) {
2367   SDValue Vv = N->getOperand(0);
2368   SDValue Vu = N->getOperand(1);
2369   SDValue Rt = N->getOperand(2);
2370   SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N),
2371                                     N->getValueType(0), {Vv, Vu, Rt});
2372   ISel.ReplaceNode(N, NewN);
2373   DAG.RemoveDeadNode(N);
2374 }
2375 
2376 void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) {
2377   HvxSelector(*this, *CurDAG).selectShuffle(N);
2378 }
2379 
2380 void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) {
2381   HvxSelector(*this, *CurDAG).selectRor(N);
2382 }
2383 
2384 void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) {
2385   HvxSelector(*this, *CurDAG).selectVAlign(N);
2386 }
2387 
2388 void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) {
2389   const SDLoc &dl(N);
2390   SDValue Chain = N->getOperand(0);
2391   SDValue Address = N->getOperand(2);
2392   SDValue Predicate = N->getOperand(3);
2393   SDValue Base = N->getOperand(4);
2394   SDValue Modifier = N->getOperand(5);
2395   SDValue Offset = N->getOperand(6);
2396   SDValue ImmOperand = CurDAG->getTargetConstant(0, dl, MVT::i32);
2397 
2398   unsigned Opcode;
2399   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2400   switch (IntNo) {
2401   default:
2402     llvm_unreachable("Unexpected HVX gather intrinsic.");
2403   case Intrinsic::hexagon_V6_vgathermhq:
2404   case Intrinsic::hexagon_V6_vgathermhq_128B:
2405     Opcode = Hexagon::V6_vgathermhq_pseudo;
2406     break;
2407   case Intrinsic::hexagon_V6_vgathermwq:
2408   case Intrinsic::hexagon_V6_vgathermwq_128B:
2409     Opcode = Hexagon::V6_vgathermwq_pseudo;
2410     break;
2411   case Intrinsic::hexagon_V6_vgathermhwq:
2412   case Intrinsic::hexagon_V6_vgathermhwq_128B:
2413     Opcode = Hexagon::V6_vgathermhwq_pseudo;
2414     break;
2415   }
2416 
2417   SDVTList VTs = CurDAG->getVTList(MVT::Other);
2418   SDValue Ops[] = { Address, ImmOperand,
2419                     Predicate, Base, Modifier, Offset, Chain };
2420   SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2421 
2422   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2423   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
2424 
2425   ReplaceNode(N, Result);
2426 }
2427 
2428 void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) {
2429   const SDLoc &dl(N);
2430   SDValue Chain = N->getOperand(0);
2431   SDValue Address = N->getOperand(2);
2432   SDValue Base = N->getOperand(3);
2433   SDValue Modifier = N->getOperand(4);
2434   SDValue Offset = N->getOperand(5);
2435   SDValue ImmOperand = CurDAG->getTargetConstant(0, dl, MVT::i32);
2436 
2437   unsigned Opcode;
2438   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2439   switch (IntNo) {
2440   default:
2441     llvm_unreachable("Unexpected HVX gather intrinsic.");
2442   case Intrinsic::hexagon_V6_vgathermh:
2443   case Intrinsic::hexagon_V6_vgathermh_128B:
2444     Opcode = Hexagon::V6_vgathermh_pseudo;
2445     break;
2446   case Intrinsic::hexagon_V6_vgathermw:
2447   case Intrinsic::hexagon_V6_vgathermw_128B:
2448     Opcode = Hexagon::V6_vgathermw_pseudo;
2449     break;
2450   case Intrinsic::hexagon_V6_vgathermhw:
2451   case Intrinsic::hexagon_V6_vgathermhw_128B:
2452     Opcode = Hexagon::V6_vgathermhw_pseudo;
2453     break;
2454   }
2455 
2456   SDVTList VTs = CurDAG->getVTList(MVT::Other);
2457   SDValue Ops[] = { Address, ImmOperand, Base, Modifier, Offset, Chain };
2458   SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2459 
2460   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2461   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
2462 
2463   ReplaceNode(N, Result);
2464 }
2465 
2466 void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) {
2467   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2468   SDNode *Result;
2469   switch (IID) {
2470   case Intrinsic::hexagon_V6_vaddcarry: {
2471     std::array<SDValue, 3> Ops = {
2472         {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2473     SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1);
2474     Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2475     break;
2476   }
2477   case Intrinsic::hexagon_V6_vaddcarry_128B: {
2478     std::array<SDValue, 3> Ops = {
2479         {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2480     SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1);
2481     Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2482     break;
2483   }
2484   case Intrinsic::hexagon_V6_vsubcarry: {
2485     std::array<SDValue, 3> Ops = {
2486         {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2487     SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1);
2488     Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2489     break;
2490   }
2491   case Intrinsic::hexagon_V6_vsubcarry_128B: {
2492     std::array<SDValue, 3> Ops = {
2493         {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2494     SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1);
2495     Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2496     break;
2497   }
2498   default:
2499     llvm_unreachable("Unexpected HVX dual output intrinsic.");
2500   }
2501   ReplaceUses(N, Result);
2502   ReplaceUses(SDValue(N, 0), SDValue(Result, 0));
2503   ReplaceUses(SDValue(N, 1), SDValue(Result, 1));
2504   CurDAG->RemoveDeadNode(N);
2505 }
2506