1 //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Hexagon.h" 10 #include "HexagonISelDAGToDAG.h" 11 #include "HexagonISelLowering.h" 12 #include "HexagonTargetMachine.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/CodeGen/MachineInstrBuilder.h" 15 #include "llvm/CodeGen/SelectionDAGISel.h" 16 #include "llvm/IR/Intrinsics.h" 17 #include "llvm/IR/IntrinsicsHexagon.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/Support/Debug.h" 20 21 #include <deque> 22 #include <map> 23 #include <set> 24 #include <utility> 25 #include <vector> 26 27 #define DEBUG_TYPE "hexagon-isel" 28 29 using namespace llvm; 30 31 namespace { 32 33 // -------------------------------------------------------------------- 34 // Implementation of permutation networks. 35 36 // Implementation of the node routing through butterfly networks: 37 // - Forward delta. 38 // - Reverse delta. 39 // - Benes. 40 // 41 // 42 // Forward delta network consists of log(N) steps, where N is the number 43 // of inputs. In each step, an input can stay in place, or it can get 44 // routed to another position[1]. The step after that consists of two 45 // networks, each half in size in terms of the number of nodes. In those 46 // terms, in the given step, an input can go to either the upper or the 47 // lower network in the next step. 48 // 49 // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both 50 // positions as long as there is no conflict. 51 52 // Here's a delta network for 8 inputs, only the switching routes are 53 // shown: 54 // 55 // Steps: 56 // |- 1 ---------------|- 2 -----|- 3 -| 57 // 58 // Inp[0] *** *** *** *** Out[0] 59 // \ / \ / \ / 60 // \ / \ / X 61 // \ / \ / / \ 62 // Inp[1] *** \ / *** X *** *** Out[1] 63 // \ \ / / \ / \ / 64 // \ \ / / X X 65 // \ \ / / / \ / \ 66 // Inp[2] *** \ \ / / *** X *** *** Out[2] 67 // \ \ X / / / \ \ / 68 // \ \ / \ / / / \ X 69 // \ X X / / \ / \ 70 // Inp[3] *** \ / \ / \ / *** *** *** Out[3] 71 // \ X X X / 72 // \ / \ / \ / \ / 73 // X X X X 74 // / \ / \ / \ / \ 75 // / X X X \ 76 // Inp[4] *** / \ / \ / \ *** *** *** Out[4] 77 // / X X \ \ / \ / 78 // / / \ / \ \ \ / X 79 // / / X \ \ \ / / \ 80 // Inp[5] *** / / \ \ *** X *** *** Out[5] 81 // / / \ \ \ / \ / 82 // / / \ \ X X 83 // / / \ \ / \ / \ 84 // Inp[6] *** / \ *** X *** *** Out[6] 85 // / \ / \ \ / 86 // / \ / \ X 87 // / \ / \ / \ 88 // Inp[7] *** *** *** *** Out[7] 89 // 90 // 91 // Reverse delta network is same as delta network, with the steps in 92 // the opposite order. 93 // 94 // 95 // Benes network is a forward delta network immediately followed by 96 // a reverse delta network. 97 98 enum class ColorKind { None, Red, Black }; 99 100 // Graph coloring utility used to partition nodes into two groups: 101 // they will correspond to nodes routed to the upper and lower networks. 102 struct Coloring { 103 using Node = int; 104 using MapType = std::map<Node, ColorKind>; 105 static constexpr Node Ignore = Node(-1); 106 107 Coloring(ArrayRef<Node> Ord) : Order(Ord) { 108 build(); 109 if (!color()) 110 Colors.clear(); 111 } 112 113 const MapType &colors() const { 114 return Colors; 115 } 116 117 ColorKind other(ColorKind Color) { 118 if (Color == ColorKind::None) 119 return ColorKind::Red; 120 return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red; 121 } 122 123 LLVM_DUMP_METHOD void dump() const; 124 125 private: 126 ArrayRef<Node> Order; 127 MapType Colors; 128 std::set<Node> Needed; 129 130 using NodeSet = std::set<Node>; 131 std::map<Node,NodeSet> Edges; 132 133 Node conj(Node Pos) { 134 Node Num = Order.size(); 135 return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2; 136 } 137 138 ColorKind getColor(Node N) { 139 auto F = Colors.find(N); 140 return F != Colors.end() ? F->second : ColorKind::None; 141 } 142 143 std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes); 144 145 void build(); 146 bool color(); 147 }; 148 } // namespace 149 150 std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) { 151 auto Color = ColorKind::None; 152 for (Node N : Nodes) { 153 ColorKind ColorN = getColor(N); 154 if (ColorN == ColorKind::None) 155 continue; 156 if (Color == ColorKind::None) 157 Color = ColorN; 158 else if (Color != ColorKind::None && Color != ColorN) 159 return { false, ColorKind::None }; 160 } 161 return { true, Color }; 162 } 163 164 void Coloring::build() { 165 // Add Order[P] and Order[conj(P)] to Edges. 166 for (unsigned P = 0; P != Order.size(); ++P) { 167 Node I = Order[P]; 168 if (I != Ignore) { 169 Needed.insert(I); 170 Node PC = Order[conj(P)]; 171 if (PC != Ignore && PC != I) 172 Edges[I].insert(PC); 173 } 174 } 175 // Add I and conj(I) to Edges. 176 for (unsigned I = 0; I != Order.size(); ++I) { 177 if (!Needed.count(I)) 178 continue; 179 Node C = conj(I); 180 // This will create an entry in the edge table, even if I is not 181 // connected to any other node. This is necessary, because it still 182 // needs to be colored. 183 NodeSet &Is = Edges[I]; 184 if (Needed.count(C)) 185 Is.insert(C); 186 } 187 } 188 189 bool Coloring::color() { 190 SetVector<Node> FirstQ; 191 auto Enqueue = [this,&FirstQ] (Node N) { 192 SetVector<Node> Q; 193 Q.insert(N); 194 for (unsigned I = 0; I != Q.size(); ++I) { 195 NodeSet &Ns = Edges[Q[I]]; 196 Q.insert(Ns.begin(), Ns.end()); 197 } 198 FirstQ.insert(Q.begin(), Q.end()); 199 }; 200 for (Node N : Needed) 201 Enqueue(N); 202 203 for (Node N : FirstQ) { 204 if (Colors.count(N)) 205 continue; 206 NodeSet &Ns = Edges[N]; 207 auto P = getUniqueColor(Ns); 208 if (!P.first) 209 return false; 210 Colors[N] = other(P.second); 211 } 212 213 // First, color nodes that don't have any dups. 214 for (auto E : Edges) { 215 Node N = E.first; 216 if (!Needed.count(conj(N)) || Colors.count(N)) 217 continue; 218 auto P = getUniqueColor(E.second); 219 if (!P.first) 220 return false; 221 Colors[N] = other(P.second); 222 } 223 224 // Now, nodes that are still uncolored. Since the graph can be modified 225 // in this step, create a work queue. 226 std::vector<Node> WorkQ; 227 for (auto E : Edges) { 228 Node N = E.first; 229 if (!Colors.count(N)) 230 WorkQ.push_back(N); 231 } 232 233 for (unsigned I = 0; I < WorkQ.size(); ++I) { 234 Node N = WorkQ[I]; 235 NodeSet &Ns = Edges[N]; 236 auto P = getUniqueColor(Ns); 237 if (P.first) { 238 Colors[N] = other(P.second); 239 continue; 240 } 241 242 // Coloring failed. Split this node. 243 Node C = conj(N); 244 ColorKind ColorN = other(ColorKind::None); 245 ColorKind ColorC = other(ColorN); 246 NodeSet &Cs = Edges[C]; 247 NodeSet CopyNs = Ns; 248 for (Node M : CopyNs) { 249 ColorKind ColorM = getColor(M); 250 if (ColorM == ColorC) { 251 // Connect M with C, disconnect M from N. 252 Cs.insert(M); 253 Edges[M].insert(C); 254 Ns.erase(M); 255 Edges[M].erase(N); 256 } 257 } 258 Colors[N] = ColorN; 259 Colors[C] = ColorC; 260 } 261 262 // Explicitly assign "None" to all uncolored nodes. 263 for (unsigned I = 0; I != Order.size(); ++I) 264 if (Colors.count(I) == 0) 265 Colors[I] = ColorKind::None; 266 267 return true; 268 } 269 270 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 271 void Coloring::dump() const { 272 dbgs() << "{ Order: {"; 273 for (unsigned I = 0; I != Order.size(); ++I) { 274 Node P = Order[I]; 275 if (P != Ignore) 276 dbgs() << ' ' << P; 277 else 278 dbgs() << " -"; 279 } 280 dbgs() << " }\n"; 281 dbgs() << " Needed: {"; 282 for (Node N : Needed) 283 dbgs() << ' ' << N; 284 dbgs() << " }\n"; 285 286 dbgs() << " Edges: {\n"; 287 for (auto E : Edges) { 288 dbgs() << " " << E.first << " -> {"; 289 for (auto N : E.second) 290 dbgs() << ' ' << N; 291 dbgs() << " }\n"; 292 } 293 dbgs() << " }\n"; 294 295 auto ColorKindToName = [](ColorKind C) { 296 switch (C) { 297 case ColorKind::None: 298 return "None"; 299 case ColorKind::Red: 300 return "Red"; 301 case ColorKind::Black: 302 return "Black"; 303 } 304 llvm_unreachable("all ColorKinds should be handled by the switch above"); 305 }; 306 307 dbgs() << " Colors: {\n"; 308 for (auto C : Colors) 309 dbgs() << " " << C.first << " -> " << ColorKindToName(C.second) << "\n"; 310 dbgs() << " }\n}\n"; 311 } 312 #endif 313 314 namespace { 315 // Base class of for reordering networks. They don't strictly need to be 316 // permutations, as outputs with repeated occurrences of an input element 317 // are allowed. 318 struct PermNetwork { 319 using Controls = std::vector<uint8_t>; 320 using ElemType = int; 321 static constexpr ElemType Ignore = ElemType(-1); 322 323 enum : uint8_t { 324 None, 325 Pass, 326 Switch 327 }; 328 enum : uint8_t { 329 Forward, 330 Reverse 331 }; 332 333 PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) { 334 Order.assign(Ord.data(), Ord.data()+Ord.size()); 335 Log = 0; 336 337 unsigned S = Order.size(); 338 while (S >>= 1) 339 ++Log; 340 341 Table.resize(Order.size()); 342 for (RowType &Row : Table) 343 Row.resize(Mult*Log, None); 344 } 345 346 void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const { 347 unsigned Size = Order.size(); 348 V.resize(Size); 349 for (unsigned I = 0; I != Size; ++I) { 350 unsigned W = 0; 351 for (unsigned L = 0; L != Log; ++L) { 352 unsigned C = ctl(I, StartAt+L) == Switch; 353 if (Dir == Forward) 354 W |= C << (Log-1-L); 355 else 356 W |= C << L; 357 } 358 assert(isUInt<8>(W)); 359 V[I] = uint8_t(W); 360 } 361 } 362 363 uint8_t ctl(ElemType Pos, unsigned Step) const { 364 return Table[Pos][Step]; 365 } 366 unsigned size() const { 367 return Order.size(); 368 } 369 unsigned steps() const { 370 return Log; 371 } 372 373 protected: 374 unsigned Log; 375 std::vector<ElemType> Order; 376 using RowType = std::vector<uint8_t>; 377 std::vector<RowType> Table; 378 }; 379 380 struct ForwardDeltaNetwork : public PermNetwork { 381 ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} 382 383 bool run(Controls &V) { 384 if (!route(Order.data(), Table.data(), size(), 0)) 385 return false; 386 getControls(V, 0, Forward); 387 return true; 388 } 389 390 private: 391 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 392 }; 393 394 struct ReverseDeltaNetwork : public PermNetwork { 395 ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} 396 397 bool run(Controls &V) { 398 if (!route(Order.data(), Table.data(), size(), 0)) 399 return false; 400 getControls(V, 0, Reverse); 401 return true; 402 } 403 404 private: 405 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 406 }; 407 408 struct BenesNetwork : public PermNetwork { 409 BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {} 410 411 bool run(Controls &F, Controls &R) { 412 if (!route(Order.data(), Table.data(), size(), 0)) 413 return false; 414 415 getControls(F, 0, Forward); 416 getControls(R, Log, Reverse); 417 return true; 418 } 419 420 private: 421 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 422 }; 423 } // namespace 424 425 bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, 426 unsigned Step) { 427 bool UseUp = false, UseDown = false; 428 ElemType Num = Size; 429 430 // Cannot use coloring here, because coloring is used to determine 431 // the "big" switch, i.e. the one that changes halves, and in a forward 432 // network, a color can be simultaneously routed to both halves in the 433 // step we're working on. 434 for (ElemType J = 0; J != Num; ++J) { 435 ElemType I = P[J]; 436 // I is the position in the input, 437 // J is the position in the output. 438 if (I == Ignore) 439 continue; 440 uint8_t S; 441 if (I < Num/2) 442 S = (J < Num/2) ? Pass : Switch; 443 else 444 S = (J < Num/2) ? Switch : Pass; 445 446 // U is the element in the table that needs to be updated. 447 ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2); 448 if (U < Num/2) 449 UseUp = true; 450 else 451 UseDown = true; 452 if (T[U][Step] != S && T[U][Step] != None) 453 return false; 454 T[U][Step] = S; 455 } 456 457 for (ElemType J = 0; J != Num; ++J) 458 if (P[J] != Ignore && P[J] >= Num/2) 459 P[J] -= Num/2; 460 461 if (Step+1 < Log) { 462 if (UseUp && !route(P, T, Size/2, Step+1)) 463 return false; 464 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 465 return false; 466 } 467 return true; 468 } 469 470 bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, 471 unsigned Step) { 472 unsigned Pets = Log-1 - Step; 473 bool UseUp = false, UseDown = false; 474 ElemType Num = Size; 475 476 // In this step half-switching occurs, so coloring can be used. 477 Coloring G({P,Size}); 478 const Coloring::MapType &M = G.colors(); 479 if (M.empty()) 480 return false; 481 482 ColorKind ColorUp = ColorKind::None; 483 for (ElemType J = 0; J != Num; ++J) { 484 ElemType I = P[J]; 485 // I is the position in the input, 486 // J is the position in the output. 487 if (I == Ignore) 488 continue; 489 ColorKind C = M.at(I); 490 if (C == ColorKind::None) 491 continue; 492 // During "Step", inputs cannot switch halves, so if the "up" color 493 // is still unknown, make sure that it is selected in such a way that 494 // "I" will stay in the same half. 495 bool InpUp = I < Num/2; 496 if (ColorUp == ColorKind::None) 497 ColorUp = InpUp ? C : G.other(C); 498 if ((C == ColorUp) != InpUp) { 499 // If I should go to a different half than where is it now, give up. 500 return false; 501 } 502 503 uint8_t S; 504 if (InpUp) { 505 S = (J < Num/2) ? Pass : Switch; 506 UseUp = true; 507 } else { 508 S = (J < Num/2) ? Switch : Pass; 509 UseDown = true; 510 } 511 T[J][Pets] = S; 512 } 513 514 // Reorder the working permutation according to the computed switch table 515 // for the last step (i.e. Pets). 516 for (ElemType J = 0, E = Size / 2; J != E; ++J) { 517 ElemType PJ = P[J]; // Current values of P[J] 518 ElemType PC = P[J+Size/2]; // and P[conj(J)] 519 ElemType QJ = PJ; // New values of P[J] 520 ElemType QC = PC; // and P[conj(J)] 521 if (T[J][Pets] == Switch) 522 QC = PJ; 523 if (T[J+Size/2][Pets] == Switch) 524 QJ = PC; 525 P[J] = QJ; 526 P[J+Size/2] = QC; 527 } 528 529 for (ElemType J = 0; J != Num; ++J) 530 if (P[J] != Ignore && P[J] >= Num/2) 531 P[J] -= Num/2; 532 533 if (Step+1 < Log) { 534 if (UseUp && !route(P, T, Size/2, Step+1)) 535 return false; 536 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 537 return false; 538 } 539 return true; 540 } 541 542 bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size, 543 unsigned Step) { 544 Coloring G({P,Size}); 545 const Coloring::MapType &M = G.colors(); 546 if (M.empty()) 547 return false; 548 ElemType Num = Size; 549 550 unsigned Pets = 2*Log-1 - Step; 551 bool UseUp = false, UseDown = false; 552 553 // Both assignments, i.e. Red->Up and Red->Down are valid, but they will 554 // result in different controls. Let's pick the one where the first 555 // control will be "Pass". 556 ColorKind ColorUp = ColorKind::None; 557 for (ElemType J = 0; J != Num; ++J) { 558 ElemType I = P[J]; 559 if (I == Ignore) 560 continue; 561 ColorKind C = M.at(I); 562 if (C == ColorKind::None) 563 continue; 564 if (ColorUp == ColorKind::None) { 565 ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black; 566 } 567 unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2; 568 if (C == ColorUp) { 569 if (I < Num/2) 570 T[I][Step] = Pass; 571 else 572 T[CI][Step] = Switch; 573 T[J][Pets] = (J < Num/2) ? Pass : Switch; 574 UseUp = true; 575 } else { // Down 576 if (I < Num/2) 577 T[CI][Step] = Switch; 578 else 579 T[I][Step] = Pass; 580 T[J][Pets] = (J < Num/2) ? Switch : Pass; 581 UseDown = true; 582 } 583 } 584 585 // Reorder the working permutation according to the computed switch table 586 // for the last step (i.e. Pets). 587 for (ElemType J = 0; J != Num/2; ++J) { 588 ElemType PJ = P[J]; // Current values of P[J] 589 ElemType PC = P[J+Num/2]; // and P[conj(J)] 590 ElemType QJ = PJ; // New values of P[J] 591 ElemType QC = PC; // and P[conj(J)] 592 if (T[J][Pets] == Switch) 593 QC = PJ; 594 if (T[J+Num/2][Pets] == Switch) 595 QJ = PC; 596 P[J] = QJ; 597 P[J+Num/2] = QC; 598 } 599 600 for (ElemType J = 0; J != Num; ++J) 601 if (P[J] != Ignore && P[J] >= Num/2) 602 P[J] -= Num/2; 603 604 if (Step+1 < Log) { 605 if (UseUp && !route(P, T, Size/2, Step+1)) 606 return false; 607 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 608 return false; 609 } 610 return true; 611 } 612 613 // -------------------------------------------------------------------- 614 // Support for building selection results (output instructions that are 615 // parts of the final selection). 616 617 namespace { 618 struct OpRef { 619 OpRef(SDValue V) : OpV(V) {} 620 bool isValue() const { return OpV.getNode() != nullptr; } 621 bool isValid() const { return isValue() || !(OpN & Invalid); } 622 static OpRef res(int N) { return OpRef(Whole | (N & Index)); } 623 static OpRef fail() { return OpRef(Invalid); } 624 625 static OpRef lo(const OpRef &R) { 626 assert(!R.isValue()); 627 return OpRef(R.OpN & (Undef | Index | LoHalf)); 628 } 629 static OpRef hi(const OpRef &R) { 630 assert(!R.isValue()); 631 return OpRef(R.OpN & (Undef | Index | HiHalf)); 632 } 633 static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); } 634 635 // Direct value. 636 SDValue OpV = SDValue(); 637 638 // Reference to the operand of the input node: 639 // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the 640 // operand index: 641 // If bit 30 is set, it's the high half of the operand. 642 // If bit 29 is set, it's the low half of the operand. 643 unsigned OpN = 0; 644 645 enum : unsigned { 646 Invalid = 0x10000000, 647 LoHalf = 0x20000000, 648 HiHalf = 0x40000000, 649 Whole = LoHalf | HiHalf, 650 Undef = 0x80000000, 651 Index = 0x0FFFFFFF, // Mask of the index value. 652 IndexBits = 28, 653 }; 654 655 LLVM_DUMP_METHOD 656 void print(raw_ostream &OS, const SelectionDAG &G) const; 657 658 private: 659 OpRef(unsigned N) : OpN(N) {} 660 }; 661 662 struct NodeTemplate { 663 NodeTemplate() = default; 664 unsigned Opc = 0; 665 MVT Ty = MVT::Other; 666 std::vector<OpRef> Ops; 667 668 LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const; 669 }; 670 671 struct ResultStack { 672 ResultStack(SDNode *Inp) 673 : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {} 674 SDNode *InpNode; 675 MVT InpTy; 676 unsigned push(const NodeTemplate &Res) { 677 List.push_back(Res); 678 return List.size()-1; 679 } 680 unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) { 681 NodeTemplate Res; 682 Res.Opc = Opc; 683 Res.Ty = Ty; 684 Res.Ops = Ops; 685 return push(Res); 686 } 687 bool empty() const { return List.empty(); } 688 unsigned size() const { return List.size(); } 689 unsigned top() const { return size()-1; } 690 const NodeTemplate &operator[](unsigned I) const { return List[I]; } 691 unsigned reset(unsigned NewTop) { 692 List.resize(NewTop+1); 693 return NewTop; 694 } 695 696 using BaseType = std::vector<NodeTemplate>; 697 BaseType::iterator begin() { return List.begin(); } 698 BaseType::iterator end() { return List.end(); } 699 BaseType::const_iterator begin() const { return List.begin(); } 700 BaseType::const_iterator end() const { return List.end(); } 701 702 BaseType List; 703 704 LLVM_DUMP_METHOD 705 void print(raw_ostream &OS, const SelectionDAG &G) const; 706 }; 707 } // namespace 708 709 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 710 void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const { 711 if (isValue()) { 712 OpV.getNode()->print(OS, &G); 713 return; 714 } 715 if (OpN & Invalid) { 716 OS << "invalid"; 717 return; 718 } 719 if (OpN & Undef) { 720 OS << "undef"; 721 return; 722 } 723 if ((OpN & Whole) != Whole) { 724 assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf); 725 if (OpN & LoHalf) 726 OS << "lo "; 727 else 728 OS << "hi "; 729 } 730 OS << '#' << SignExtend32(OpN & Index, IndexBits); 731 } 732 733 void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const { 734 const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo(); 735 OS << format("%8s", EVT(Ty).getEVTString().c_str()) << " " 736 << TII.getName(Opc); 737 bool Comma = false; 738 for (const auto &R : Ops) { 739 if (Comma) 740 OS << ','; 741 Comma = true; 742 OS << ' '; 743 R.print(OS, G); 744 } 745 } 746 747 void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const { 748 OS << "Input node:\n"; 749 #ifndef NDEBUG 750 InpNode->dumpr(&G); 751 #endif 752 OS << "Result templates:\n"; 753 for (unsigned I = 0, E = List.size(); I != E; ++I) { 754 OS << '[' << I << "] "; 755 List[I].print(OS, G); 756 OS << '\n'; 757 } 758 } 759 #endif 760 761 namespace { 762 struct ShuffleMask { 763 ShuffleMask(ArrayRef<int> M) : Mask(M) { 764 for (unsigned I = 0, E = Mask.size(); I != E; ++I) { 765 int M = Mask[I]; 766 if (M == -1) 767 continue; 768 MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M); 769 MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M); 770 } 771 } 772 773 ArrayRef<int> Mask; 774 int MinSrc = -1, MaxSrc = -1; 775 776 ShuffleMask lo() const { 777 size_t H = Mask.size()/2; 778 return ShuffleMask(Mask.take_front(H)); 779 } 780 ShuffleMask hi() const { 781 size_t H = Mask.size()/2; 782 return ShuffleMask(Mask.take_back(H)); 783 } 784 785 void print(raw_ostream &OS) const { 786 OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {"; 787 for (int M : Mask) 788 OS << ' ' << M; 789 OS << " }"; 790 } 791 }; 792 793 LLVM_ATTRIBUTE_UNUSED 794 raw_ostream &operator<<(raw_ostream &OS, const ShuffleMask &SM) { 795 SM.print(OS); 796 return OS; 797 } 798 } // namespace 799 800 // -------------------------------------------------------------------- 801 // The HvxSelector class. 802 803 static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) { 804 return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo()); 805 } 806 static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) { 807 return static_cast<const HexagonSubtarget&>(G.getSubtarget()); 808 } 809 810 namespace llvm { 811 struct HvxSelector { 812 const HexagonTargetLowering &Lower; 813 HexagonDAGToDAGISel &ISel; 814 SelectionDAG &DAG; 815 const HexagonSubtarget &HST; 816 const unsigned HwLen; 817 818 HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G) 819 : Lower(getHexagonLowering(G)), ISel(HS), DAG(G), 820 HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {} 821 822 MVT getSingleVT(MVT ElemTy) const { 823 assert(ElemTy != MVT::i1 && "Use getBoolVT for predicates"); 824 unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8); 825 return MVT::getVectorVT(ElemTy, NumElems); 826 } 827 828 MVT getPairVT(MVT ElemTy) const { 829 assert(ElemTy != MVT::i1); // Suspicious: there are no predicate pairs. 830 unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8); 831 return MVT::getVectorVT(ElemTy, NumElems); 832 } 833 834 MVT getBoolVT() const { 835 // Return HwLen x i1. 836 return MVT::getVectorVT(MVT::i1, HwLen); 837 } 838 839 void selectShuffle(SDNode *N); 840 void selectRor(SDNode *N); 841 void selectVAlign(SDNode *N); 842 843 private: 844 void select(SDNode *ISelN); 845 void materialize(const ResultStack &Results); 846 847 SDValue getConst32(int Val, const SDLoc &dl); 848 SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl); 849 850 enum : unsigned { 851 None, 852 PackMux, 853 }; 854 OpRef concats(OpRef Va, OpRef Vb, ResultStack &Results); 855 OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, 856 MutableArrayRef<int> NewMask, unsigned Options = None); 857 OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, 858 MutableArrayRef<int> NewMask); 859 OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 860 ResultStack &Results); 861 OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 862 ResultStack &Results); 863 864 OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results); 865 OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 866 OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results); 867 OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 868 869 OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results); 870 OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 871 OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results); 872 OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results); 873 874 bool selectVectorConstants(SDNode *N); 875 bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy, 876 SDValue Va, SDValue Vb, SDNode *N); 877 878 }; 879 } 880 881 static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL, 882 MutableArrayRef<int> MaskR) { 883 unsigned VecLen = Mask.size(); 884 assert(MaskL.size() == VecLen && MaskR.size() == VecLen); 885 for (unsigned I = 0; I != VecLen; ++I) { 886 int M = Mask[I]; 887 if (M < 0) { 888 MaskL[I] = MaskR[I] = -1; 889 } else if (unsigned(M) < VecLen) { 890 MaskL[I] = M; 891 MaskR[I] = -1; 892 } else { 893 MaskL[I] = -1; 894 MaskR[I] = M-VecLen; 895 } 896 } 897 } 898 899 static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc, 900 unsigned MaxLen) { 901 assert(A.size() > 0 && A.size() >= MaxLen); 902 int F = A[0]; 903 int E = F; 904 for (unsigned I = 1; I != MaxLen; ++I) { 905 if (A[I] - E != Inc) 906 return { F, I }; 907 E = A[I]; 908 } 909 return { F, MaxLen }; 910 } 911 912 static bool isUndef(ArrayRef<int> Mask) { 913 for (int Idx : Mask) 914 if (Idx != -1) 915 return false; 916 return true; 917 } 918 919 static bool isIdentity(ArrayRef<int> Mask) { 920 for (int I = 0, E = Mask.size(); I != E; ++I) { 921 int M = Mask[I]; 922 if (M >= 0 && M != I) 923 return false; 924 } 925 return true; 926 } 927 928 static SmallVector<unsigned, 4> getInputSegmentList(ShuffleMask SM, 929 unsigned SegLen) { 930 assert(isPowerOf2_32(SegLen)); 931 SmallVector<unsigned, 4> SegList; 932 if (SM.MaxSrc == -1) 933 return SegList; 934 935 unsigned Shift = Log2_32(SegLen); 936 BitVector Segs(alignTo(SM.MaxSrc + 1, SegLen) >> Shift); 937 938 for (int I = 0, E = SM.Mask.size(); I != E; ++I) { 939 int M = SM.Mask[I]; 940 if (M >= 0) 941 Segs.set(M >> Shift); 942 } 943 944 for (unsigned B : Segs.set_bits()) 945 SegList.push_back(B); 946 return SegList; 947 } 948 949 static SmallVector<unsigned, 4> getOutputSegmentMap(ShuffleMask SM, 950 unsigned SegLen) { 951 // Calculate the layout of the output segments in terms of the input 952 // segments. 953 // For example [1,3,1,0] means that the output consists of 4 output 954 // segments, where the first output segment has only elements of the 955 // input segment at index 1. The next output segment only has elements 956 // of the input segment 3, etc. 957 // If an output segment only has undef elements, the value will be ~0u. 958 // If an output segment has elements from more than one input segment, 959 // the corresponding value will be ~1u. 960 unsigned MaskLen = SM.Mask.size(); 961 assert(MaskLen % SegLen == 0); 962 SmallVector<unsigned, 4> Map(MaskLen / SegLen); 963 964 for (int S = 0, E = Map.size(); S != E; ++S) { 965 unsigned Idx = ~0u; 966 for (int I = 0; I != static_cast<int>(SegLen); ++I) { 967 int M = SM.Mask[S*SegLen + I]; 968 if (M < 0) 969 continue; 970 unsigned G = M / SegLen; // Input segment of this element. 971 if (Idx == ~0u) { 972 Idx = G; 973 } else if (Idx != G) { 974 Idx = ~1u; 975 break; 976 } 977 } 978 Map[S] = Idx; 979 } 980 981 return Map; 982 } 983 984 static void packSegmentMask(ArrayRef<int> Mask, ArrayRef<unsigned> OutSegMap, 985 unsigned SegLen, MutableArrayRef<int> PackedMask) { 986 SmallVector<unsigned, 4> InvMap; 987 for (int I = OutSegMap.size() - 1; I >= 0; --I) { 988 unsigned S = OutSegMap[I]; 989 assert(S != ~0u && "Unexpected undef"); 990 assert(S != ~1u && "Unexpected multi"); 991 if (InvMap.size() <= S) 992 InvMap.resize(S+1); 993 InvMap[S] = I; 994 } 995 996 unsigned Shift = Log2_32(SegLen); 997 for (int I = 0, E = Mask.size(); I != E; ++I) { 998 int M = Mask[I]; 999 if (M >= 0) { 1000 int OutIdx = InvMap[M >> Shift]; 1001 M = (M & (SegLen-1)) + SegLen*OutIdx; 1002 } 1003 PackedMask[I] = M; 1004 } 1005 } 1006 1007 static bool isPermutation(ArrayRef<int> Mask) { 1008 // Check by adding all numbers only works if there is no overflow. 1009 assert(Mask.size() < 0x00007FFF && "Sanity failure"); 1010 int Sum = 0; 1011 for (int Idx : Mask) { 1012 if (Idx == -1) 1013 return false; 1014 Sum += Idx; 1015 } 1016 int N = Mask.size(); 1017 return 2*Sum == N*(N-1); 1018 } 1019 1020 bool HvxSelector::selectVectorConstants(SDNode *N) { 1021 // Constant vectors are generated as loads from constant pools or as 1022 // splats of a constant value. Since they are generated during the 1023 // selection process, the main selection algorithm is not aware of them. 1024 // Select them directly here. 1025 SmallVector<SDNode*,4> Nodes; 1026 SetVector<SDNode*> WorkQ; 1027 1028 // The DAG can change (due to CSE) during selection, so cache all the 1029 // unselected nodes first to avoid traversing a mutating DAG. 1030 WorkQ.insert(N); 1031 for (unsigned i = 0; i != WorkQ.size(); ++i) { 1032 SDNode *W = WorkQ[i]; 1033 if (!W->isMachineOpcode() && W->getOpcode() == HexagonISD::ISEL) 1034 Nodes.push_back(W); 1035 for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j) 1036 WorkQ.insert(W->getOperand(j).getNode()); 1037 } 1038 1039 for (SDNode *L : Nodes) 1040 select(L); 1041 1042 return !Nodes.empty(); 1043 } 1044 1045 void HvxSelector::materialize(const ResultStack &Results) { 1046 DEBUG_WITH_TYPE("isel", { 1047 dbgs() << "Materializing\n"; 1048 Results.print(dbgs(), DAG); 1049 }); 1050 if (Results.empty()) 1051 return; 1052 const SDLoc &dl(Results.InpNode); 1053 std::vector<SDValue> Output; 1054 1055 for (unsigned I = 0, E = Results.size(); I != E; ++I) { 1056 const NodeTemplate &Node = Results[I]; 1057 std::vector<SDValue> Ops; 1058 for (const OpRef &R : Node.Ops) { 1059 assert(R.isValid()); 1060 if (R.isValue()) { 1061 Ops.push_back(R.OpV); 1062 continue; 1063 } 1064 if (R.OpN & OpRef::Undef) { 1065 MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index); 1066 Ops.push_back(ISel.selectUndef(dl, MVT(SVT))); 1067 continue; 1068 } 1069 // R is an index of a result. 1070 unsigned Part = R.OpN & OpRef::Whole; 1071 int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits); 1072 if (Idx < 0) 1073 Idx += I; 1074 assert(Idx >= 0 && unsigned(Idx) < Output.size()); 1075 SDValue Op = Output[Idx]; 1076 MVT OpTy = Op.getValueType().getSimpleVT(); 1077 if (Part != OpRef::Whole) { 1078 assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf); 1079 MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(), 1080 OpTy.getVectorNumElements()/2); 1081 unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo 1082 : Hexagon::vsub_hi; 1083 Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op); 1084 } 1085 Ops.push_back(Op); 1086 } // for (Node : Results) 1087 1088 assert(Node.Ty != MVT::Other); 1089 SDNode *ResN = (Node.Opc == TargetOpcode::COPY) 1090 ? Ops.front().getNode() 1091 : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops); 1092 Output.push_back(SDValue(ResN, 0)); 1093 } 1094 1095 SDNode *OutN = Output.back().getNode(); 1096 SDNode *InpN = Results.InpNode; 1097 DEBUG_WITH_TYPE("isel", { 1098 dbgs() << "Generated node:\n"; 1099 OutN->dumpr(&DAG); 1100 }); 1101 1102 ISel.ReplaceNode(InpN, OutN); 1103 selectVectorConstants(OutN); 1104 DAG.RemoveDeadNodes(); 1105 } 1106 1107 OpRef HvxSelector::concats(OpRef Lo, OpRef Hi, ResultStack &Results) { 1108 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1109 const SDLoc &dl(Results.InpNode); 1110 Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), { 1111 getConst32(Hexagon::HvxWRRegClassID, dl), 1112 Lo, getConst32(Hexagon::vsub_lo, dl), 1113 Hi, getConst32(Hexagon::vsub_hi, dl), 1114 }); 1115 return OpRef::res(Results.top()); 1116 } 1117 1118 // Va, Vb are single vectors. If SM only uses two vector halves from Va/Vb, 1119 // pack these halves into a single vector, and remap SM into NewMask to use 1120 // the new vector instead. 1121 OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb, 1122 ResultStack &Results, MutableArrayRef<int> NewMask, 1123 unsigned Options) { 1124 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1125 if (!Va.isValid() || !Vb.isValid()) 1126 return OpRef::fail(); 1127 1128 MVT Ty = getSingleVT(MVT::i8); 1129 MVT PairTy = getPairVT(MVT::i8); 1130 OpRef Inp[2] = {Va, Vb}; 1131 unsigned VecLen = SM.Mask.size(); 1132 1133 auto valign = [this](OpRef Lo, OpRef Hi, unsigned Amt, MVT Ty, 1134 ResultStack &Results) { 1135 if (Amt == 0) 1136 return Lo; 1137 const SDLoc &dl(Results.InpNode); 1138 if (isUInt<3>(Amt) || isUInt<3>(HwLen - Amt)) { 1139 bool IsRight = isUInt<3>(Amt); // Right align. 1140 SDValue S = getConst32(IsRight ? Amt : HwLen - Amt, dl); 1141 unsigned Opc = IsRight ? Hexagon::V6_valignbi : Hexagon::V6_vlalignbi; 1142 Results.push(Opc, Ty, {Hi, Lo, S}); 1143 return OpRef::res(Results.top()); 1144 } 1145 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(Amt, dl)}); 1146 OpRef A = OpRef::res(Results.top()); 1147 Results.push(Hexagon::V6_valignb, Ty, {Hi, Lo, A}); 1148 return OpRef::res(Results.top()); 1149 }; 1150 1151 // Segment is a vector half. 1152 unsigned SegLen = HwLen / 2; 1153 1154 // Check if we can shuffle vector halves around to get the used elements 1155 // into a single vector. 1156 SmallVector<int,128> MaskH(SM.Mask.begin(), SM.Mask.end()); 1157 SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, SegLen); 1158 unsigned SegCount = SegList.size(); 1159 SmallVector<unsigned, 4> SegMap = getOutputSegmentMap(SM.Mask, SegLen); 1160 1161 if (SegList.empty()) 1162 return OpRef::undef(Ty); 1163 1164 // NOTE: 1165 // In the following part of the function, where the segments are rearranged, 1166 // the shuffle mask SM can be of any length that is a multiple of a vector 1167 // (i.e. a multiple of 2*SegLen), and non-zero. 1168 // The output segment map is computed, and it may have any even number of 1169 // entries, but the rearrangement of input segments will be done based only 1170 // on the first two (non-undef) entries in the segment map. 1171 // For example, if the output map is 3, 1, 1, 3 (it can have at most two 1172 // distinct entries!), the segments 1 and 3 of Va/Vb will be packaged into 1173 // a single vector V = 3:1. The output mask will then be updated to use 1174 // seg(0,V), seg(1,V), seg(1,V), seg(0,V). 1175 // 1176 // Picking the segments based on the output map is an optimization. For 1177 // correctness it is only necessary that Seg0 and Seg1 are the two input 1178 // segments that are used in the output. 1179 1180 unsigned Seg0 = ~0u, Seg1 = ~0u; 1181 for (int I = 0, E = SegMap.size(); I != E; ++I) { 1182 unsigned X = SegMap[I]; 1183 if (X == ~0u) 1184 continue; 1185 if (Seg0 == ~0u) 1186 Seg0 = X; 1187 else if (Seg1 != ~0u) 1188 break; 1189 if (X == ~1u || X != Seg0) 1190 Seg1 = X; 1191 } 1192 1193 if (SegCount == 1) { 1194 unsigned SrcOp = SegList[0] / 2; 1195 for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1196 int M = SM.Mask[I]; 1197 if (M >= 0) { 1198 M -= SrcOp * HwLen; 1199 assert(M >= 0); 1200 } 1201 NewMask[I] = M; 1202 } 1203 return Inp[SrcOp]; 1204 } 1205 1206 if (SegCount == 2) { 1207 // Seg0 should not be undef here: this would imply a SegList 1208 // with <= 1 elements, which was checked earlier. 1209 assert(Seg0 != ~0u); 1210 1211 // If Seg0 or Seg1 are "multi-defined", pick them from the input 1212 // segment list instead. 1213 if (Seg0 == ~1u || Seg1 == ~1u) { 1214 if (Seg0 == Seg1) { 1215 Seg0 = SegList[0]; 1216 Seg1 = SegList[1]; 1217 } else if (Seg0 == ~1u) { 1218 Seg0 = SegList[0] != Seg1 ? SegList[0] : SegList[1]; 1219 } else { 1220 assert(Seg1 == ~1u); // Sanity 1221 Seg1 = SegList[0] != Seg0 ? SegList[0] : SegList[1]; 1222 } 1223 } 1224 assert(Seg0 != ~1u && Seg1 != ~1u); 1225 1226 assert(Seg0 != Seg1 && "Expecting different segments"); 1227 const SDLoc &dl(Results.InpNode); 1228 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(SegLen, dl)}); 1229 OpRef HL = OpRef::res(Results.top()); 1230 1231 // Va = AB, Vb = CD 1232 1233 if (Seg0 / 2 == Seg1 / 2) { 1234 // Same input vector. 1235 Va = Inp[Seg0 / 2]; 1236 if (Seg0 > Seg1) { 1237 // Swap halves. 1238 Results.push(Hexagon::V6_vror, Ty, {Inp[Seg0 / 2], HL}); 1239 Va = OpRef::res(Results.top()); 1240 } 1241 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1242 } else if (Seg0 % 2 == Seg1 % 2) { 1243 // Picking AC, BD, CA, or DB. 1244 // vshuff(CD,AB,HL) -> BD:AC 1245 // vshuff(AB,CD,HL) -> DB:CA 1246 auto Vs = (Seg0 == 0 || Seg0 == 1) ? std::make_pair(Vb, Va) // AC or BD 1247 : std::make_pair(Va, Vb); // CA or DB 1248 Results.push(Hexagon::V6_vshuffvdd, PairTy, {Vs.first, Vs.second, HL}); 1249 OpRef P = OpRef::res(Results.top()); 1250 Va = (Seg0 == 0 || Seg0 == 2) ? OpRef::lo(P) : OpRef::hi(P); 1251 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1252 } else { 1253 // Picking AD, BC, CB, or DA. 1254 if ((Seg0 == 0 && Seg1 == 3) || (Seg0 == 2 && Seg1 == 1)) { 1255 // AD or BC: this can be done using vmux. 1256 // Q = V6_pred_scalar2 SegLen 1257 // V = V6_vmux Q, (Va, Vb) or (Vb, Va) 1258 Results.push(Hexagon::V6_pred_scalar2, getBoolVT(), {HL}); 1259 OpRef Qt = OpRef::res(Results.top()); 1260 auto Vs = (Seg0 == 0) ? std::make_pair(Va, Vb) // AD 1261 : std::make_pair(Vb, Va); // CB 1262 Results.push(Hexagon::V6_vmux, Ty, {Qt, Vs.first, Vs.second}); 1263 Va = OpRef::res(Results.top()); 1264 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1265 } else { 1266 // BC or DA: this could be done via valign by SegLen. 1267 // Do nothing here, because valign (if possible) will be generated 1268 // later on (make sure the Seg0 values are as expected, for sanity). 1269 assert(Seg0 == 1 || Seg0 == 3); 1270 } 1271 } 1272 } 1273 1274 // Check if the arguments can be packed by valign(Va,Vb) or valign(Vb,Va). 1275 1276 ShuffleMask SMH(MaskH); 1277 assert(SMH.Mask.size() == VecLen); 1278 SmallVector<int,128> MaskA(SMH.Mask.begin(), SMH.Mask.end()); 1279 1280 if (SMH.MaxSrc - SMH.MinSrc >= static_cast<int>(HwLen)) { 1281 // valign(Lo=Va,Hi=Vb) won't work. Try swapping Va/Vb. 1282 SmallVector<int,128> Swapped(SMH.Mask.begin(), SMH.Mask.end()); 1283 ShuffleVectorSDNode::commuteMask(Swapped); 1284 ShuffleMask SW(Swapped); 1285 if (SW.MaxSrc - SW.MinSrc < static_cast<int>(HwLen)) { 1286 MaskA.assign(SW.Mask.begin(), SW.Mask.end()); 1287 std::swap(Va, Vb); 1288 } 1289 } 1290 ShuffleMask SMA(MaskA); 1291 assert(SMA.Mask.size() == VecLen); 1292 1293 if (SMA.MaxSrc - SMA.MinSrc < static_cast<int>(HwLen)) { 1294 int ShiftR = SMA.MinSrc; 1295 if (ShiftR >= static_cast<int>(HwLen)) { 1296 Va = Vb; 1297 Vb = OpRef::undef(Ty); 1298 ShiftR -= HwLen; 1299 } 1300 OpRef RetVal = valign(Va, Vb, ShiftR, Ty, Results); 1301 1302 for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1303 int M = SMA.Mask[I]; 1304 if (M != -1) 1305 M -= SMA.MinSrc; 1306 NewMask[I] = M; 1307 } 1308 return RetVal; 1309 } 1310 1311 // By here, packing by segment (half-vector) shuffling, and vector alignment 1312 // failed. Try vmux. 1313 // Note: since this is using the original mask, Va and Vb must not have been 1314 // modified. 1315 1316 if (Options & PackMux) { 1317 // If elements picked from Va and Vb have all different (source) indexes 1318 // (relative to the start of the argument), do a mux, and update the mask. 1319 BitVector Picked(HwLen); 1320 SmallVector<uint8_t,128> MuxBytes(HwLen); 1321 bool CanMux = true; 1322 for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1323 int M = SM.Mask[I]; 1324 if (M == -1) 1325 continue; 1326 if (M >= static_cast<int>(HwLen)) 1327 M -= HwLen; 1328 else 1329 MuxBytes[M] = 0xFF; 1330 if (Picked[M]) { 1331 CanMux = false; 1332 break; 1333 } 1334 NewMask[I] = M; 1335 } 1336 if (CanMux) 1337 return vmuxs(MuxBytes, Va, Vb, Results); 1338 } 1339 return OpRef::fail(); 1340 } 1341 1342 // Va, Vb are vector pairs. If SM only uses two single vectors from Va/Vb, 1343 // pack these vectors into a pair, and remap SM into NewMask to use the 1344 // new pair instead. 1345 OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb, 1346 ResultStack &Results, MutableArrayRef<int> NewMask) { 1347 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1348 SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, HwLen); 1349 if (SegList.empty()) 1350 return OpRef::undef(getPairVT(MVT::i8)); 1351 1352 // If more than two halves are used, bail. 1353 // TODO: be more aggressive here? 1354 unsigned SegCount = SegList.size(); 1355 if (SegCount > 2) 1356 return OpRef::fail(); 1357 1358 MVT HalfTy = getSingleVT(MVT::i8); 1359 1360 OpRef Inp[2] = { Va, Vb }; 1361 OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) }; 1362 1363 // Really make sure we have at most 2 vectors used in the mask. 1364 assert(SegCount <= 2); 1365 1366 for (int I = 0, E = SegList.size(); I != E; ++I) { 1367 unsigned S = SegList[I]; 1368 OpRef Op = Inp[S / 2]; 1369 Out[I] = (S & 1) ? OpRef::hi(Op) : OpRef::lo(Op); 1370 } 1371 1372 // NOTE: Using SegList as the packing map here (not SegMap). This works, 1373 // because we're not concerned here about the order of the segments (i.e. 1374 // single vectors) in the output pair. Changing the order of vectors is 1375 // free (as opposed to changing the order of vector halves as in packs), 1376 // and so there is no extra cost added in case the order needs to be 1377 // changed later. 1378 packSegmentMask(SM.Mask, SegList, HwLen, NewMask); 1379 return concats(Out[0], Out[1], Results); 1380 } 1381 1382 OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 1383 ResultStack &Results) { 1384 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1385 MVT ByteTy = getSingleVT(MVT::i8); 1386 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); 1387 const SDLoc &dl(Results.InpNode); 1388 SDValue B = getVectorConstant(Bytes, dl); 1389 Results.push(Hexagon::V6_vd0, ByteTy, {}); 1390 Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)}); 1391 Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va}); 1392 return OpRef::res(Results.top()); 1393 } 1394 1395 OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 1396 ResultStack &Results) { 1397 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1398 size_t S = Bytes.size() / 2; 1399 OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results); 1400 OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results); 1401 return concats(L, H, Results); 1402 } 1403 1404 OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1405 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1406 unsigned VecLen = SM.Mask.size(); 1407 assert(HwLen == VecLen); 1408 (void)VecLen; 1409 assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); })); 1410 1411 if (isIdentity(SM.Mask)) 1412 return Va; 1413 if (isUndef(SM.Mask)) 1414 return OpRef::undef(getSingleVT(MVT::i8)); 1415 1416 unsigned HalfLen = HwLen / 2; 1417 assert(isPowerOf2_32(HalfLen)); // Sanity. 1418 1419 // Handle special case where the output is the same half of the input 1420 // repeated twice, i.e. if Va = AB, then handle the output of AA or BB. 1421 std::pair<int, unsigned> Strip1 = findStrip(SM.Mask, 1, HalfLen); 1422 if ((Strip1.first & ~HalfLen) == 0 && Strip1.second == HalfLen) { 1423 std::pair<int, unsigned> Strip2 = 1424 findStrip(SM.Mask.drop_front(HalfLen), 1, HalfLen); 1425 if (Strip1 == Strip2) { 1426 const SDLoc &dl(Results.InpNode); 1427 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(HalfLen, dl)}); 1428 Results.push(Hexagon::V6_vshuffvdd, getPairVT(MVT::i8), 1429 {Va, Va, OpRef::res(Results.top())}); 1430 OpRef S = OpRef::res(Results.top()); 1431 return (Strip1.first == 0) ? OpRef::lo(S) : OpRef::hi(S); 1432 } 1433 } 1434 1435 OpRef P = perfect(SM, Va, Results); 1436 if (P.isValid()) 1437 return P; 1438 return butterfly(SM, Va, Results); 1439 } 1440 1441 OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, 1442 ResultStack &Results) { 1443 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1444 if (isUndef(SM.Mask)) 1445 return OpRef::undef(getSingleVT(MVT::i8)); 1446 1447 OpRef C = contracting(SM, Va, Vb, Results); 1448 if (C.isValid()) 1449 return C; 1450 1451 int VecLen = SM.Mask.size(); 1452 SmallVector<int,128> PackedMask(VecLen); 1453 OpRef P = packs(SM, Va, Vb, Results, PackedMask); 1454 if (P.isValid()) 1455 return shuffs1(ShuffleMask(PackedMask), P, Results); 1456 1457 // TODO: Before we split the mask, try perfect shuffle on concatenated 1458 // operands. This won't work now, because the perfect code does not 1459 // tolerate undefs in the mask. 1460 1461 SmallVector<int,128> MaskL(VecLen), MaskR(VecLen); 1462 splitMask(SM.Mask, MaskL, MaskR); 1463 1464 OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results); 1465 OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results); 1466 if (!L.isValid() || !R.isValid()) 1467 return OpRef::fail(); 1468 1469 SmallVector<uint8_t,128> Bytes(VecLen); 1470 for (int I = 0; I != VecLen; ++I) { 1471 if (MaskL[I] != -1) 1472 Bytes[I] = 0xFF; 1473 } 1474 return vmuxs(Bytes, L, R, Results); 1475 } 1476 1477 OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1478 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1479 int VecLen = SM.Mask.size(); 1480 1481 if (isIdentity(SM.Mask)) 1482 return Va; 1483 if (isUndef(SM.Mask)) 1484 return OpRef::undef(getPairVT(MVT::i8)); 1485 1486 SmallVector<int,128> PackedMask(VecLen); 1487 OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask); 1488 if (P.isValid()) { 1489 ShuffleMask PM(PackedMask); 1490 OpRef E = expanding(PM, P, Results); 1491 if (E.isValid()) 1492 return E; 1493 1494 OpRef L = shuffs1(PM.lo(), P, Results); 1495 OpRef H = shuffs1(PM.hi(), P, Results); 1496 if (L.isValid() && H.isValid()) 1497 return concats(L, H, Results); 1498 } 1499 1500 OpRef R = perfect(SM, Va, Results); 1501 if (R.isValid()) 1502 return R; 1503 // TODO commute the mask and try the opposite order of the halves. 1504 1505 OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results); 1506 OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results); 1507 if (L.isValid() && H.isValid()) 1508 return concats(L, H, Results); 1509 1510 return OpRef::fail(); 1511 } 1512 1513 OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, 1514 ResultStack &Results) { 1515 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1516 if (isUndef(SM.Mask)) 1517 return OpRef::undef(getPairVT(MVT::i8)); 1518 1519 int VecLen = SM.Mask.size(); 1520 SmallVector<int,256> PackedMask(VecLen); 1521 OpRef P = packp(SM, Va, Vb, Results, PackedMask); 1522 if (P.isValid()) 1523 return shuffp1(ShuffleMask(PackedMask), P, Results); 1524 1525 SmallVector<int,256> MaskL(VecLen), MaskR(VecLen); 1526 splitMask(SM.Mask, MaskL, MaskR); 1527 1528 OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results); 1529 OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results); 1530 if (!L.isValid() || !R.isValid()) 1531 return OpRef::fail(); 1532 1533 // Mux the results. 1534 SmallVector<uint8_t,256> Bytes(VecLen); 1535 for (int I = 0; I != VecLen; ++I) { 1536 if (MaskL[I] != -1) 1537 Bytes[I] = 0xFF; 1538 } 1539 return vmuxp(Bytes, L, R, Results); 1540 } 1541 1542 namespace { 1543 struct Deleter : public SelectionDAG::DAGNodeDeletedListener { 1544 template <typename T> 1545 Deleter(SelectionDAG &D, T &C) 1546 : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) { 1547 C.erase(N); 1548 }) {} 1549 }; 1550 1551 template <typename T> 1552 struct NullifyingVector : public T { 1553 DenseMap<SDNode*, SDNode**> Refs; 1554 NullifyingVector(T &&V) : T(V) { 1555 for (unsigned i = 0, e = T::size(); i != e; ++i) { 1556 SDNode *&N = T::operator[](i); 1557 Refs[N] = &N; 1558 } 1559 } 1560 void erase(SDNode *N) { 1561 auto F = Refs.find(N); 1562 if (F != Refs.end()) 1563 *F->second = nullptr; 1564 } 1565 }; 1566 } 1567 1568 void HvxSelector::select(SDNode *ISelN) { 1569 // What's important here is to select the right set of nodes. The main 1570 // selection algorithm loops over nodes in a topological order, i.e. users 1571 // are visited before their operands. 1572 // 1573 // It is an error to have an unselected node with a selected operand, and 1574 // there is an assertion in the main selector code to enforce that. 1575 // 1576 // Such a situation could occur if we selected a node, which is both a 1577 // subnode of ISelN, and a subnode of an unrelated (and yet unselected) 1578 // node in the DAG. 1579 assert(ISelN->getOpcode() == HexagonISD::ISEL); 1580 SDNode *N0 = ISelN->getOperand(0).getNode(); 1581 if (N0->isMachineOpcode()) { 1582 ISel.ReplaceNode(ISelN, N0); 1583 return; 1584 } 1585 1586 // There could have been nodes created (i.e. inserted into the DAG) 1587 // that are now dead. Remove them, in case they use any of the nodes 1588 // to select (and make them look shared). 1589 DAG.RemoveDeadNodes(); 1590 1591 SetVector<SDNode*> SubNodes, TmpQ; 1592 std::map<SDNode*,unsigned> NumOps; 1593 1594 // Don't want to select N0 if it's shared with another node, except if 1595 // it's shared with other ISELs. 1596 auto IsISelN = [](SDNode *T) { return T->getOpcode() == HexagonISD::ISEL; }; 1597 if (llvm::all_of(N0->uses(), IsISelN)) 1598 SubNodes.insert(N0); 1599 1600 auto InSubNodes = [&SubNodes](SDNode *T) { return SubNodes.count(T); }; 1601 for (unsigned I = 0; I != SubNodes.size(); ++I) { 1602 SDNode *S = SubNodes[I]; 1603 unsigned OpN = 0; 1604 // Only add subnodes that are only reachable from N0. 1605 for (SDValue Op : S->ops()) { 1606 SDNode *O = Op.getNode(); 1607 if (llvm::all_of(O->uses(), InSubNodes)) { 1608 SubNodes.insert(O); 1609 ++OpN; 1610 } 1611 } 1612 NumOps.insert({S, OpN}); 1613 if (OpN == 0) 1614 TmpQ.insert(S); 1615 } 1616 1617 for (unsigned I = 0; I != TmpQ.size(); ++I) { 1618 SDNode *S = TmpQ[I]; 1619 for (SDNode *U : S->uses()) { 1620 if (U == ISelN) 1621 continue; 1622 auto F = NumOps.find(U); 1623 assert(F != NumOps.end()); 1624 if (F->second > 0 && !--F->second) 1625 TmpQ.insert(F->first); 1626 } 1627 } 1628 1629 // Remove the marker. 1630 ISel.ReplaceNode(ISelN, N0); 1631 1632 assert(SubNodes.size() == TmpQ.size()); 1633 NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector()); 1634 1635 Deleter DUQ(DAG, Queue); 1636 for (SDNode *S : reverse(Queue)) { 1637 if (S == nullptr) 1638 continue; 1639 DEBUG_WITH_TYPE("isel", {dbgs() << "HVX selecting: "; S->dump(&DAG);}); 1640 ISel.Select(S); 1641 } 1642 } 1643 1644 bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, 1645 MVT ResTy, SDValue Va, SDValue Vb, 1646 SDNode *N) { 1647 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1648 MVT ElemTy = ResTy.getVectorElementType(); 1649 assert(ElemTy == MVT::i8); 1650 unsigned VecLen = Mask.size(); 1651 bool HavePairs = (2*HwLen == VecLen); 1652 MVT SingleTy = getSingleVT(MVT::i8); 1653 1654 // The prior attempts to handle this shuffle may have left a bunch of 1655 // dead nodes in the DAG (such as constants). These nodes will be added 1656 // at the end of DAG's node list, which at that point had already been 1657 // sorted topologically. In the main selection loop, the node list is 1658 // traversed backwards from the root node, which means that any new 1659 // nodes (from the end of the list) will not be visited. 1660 // Scalarization will replace the shuffle node with the scalarized 1661 // expression, and if that expression reused any if the leftoever (dead) 1662 // nodes, these nodes would not be selected (since the "local" selection 1663 // only visits nodes that are not in AllNodes). 1664 // To avoid this issue, remove all dead nodes from the DAG now. 1665 // DAG.RemoveDeadNodes(); 1666 1667 SmallVector<SDValue,128> Ops; 1668 LLVMContext &Ctx = *DAG.getContext(); 1669 MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT(); 1670 for (int I : Mask) { 1671 if (I < 0) { 1672 Ops.push_back(ISel.selectUndef(dl, LegalTy)); 1673 continue; 1674 } 1675 SDValue Vec; 1676 unsigned M = I; 1677 if (M < VecLen) { 1678 Vec = Va; 1679 } else { 1680 Vec = Vb; 1681 M -= VecLen; 1682 } 1683 if (HavePairs) { 1684 if (M < HwLen) { 1685 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec); 1686 } else { 1687 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec); 1688 M -= HwLen; 1689 } 1690 } 1691 SDValue Idx = DAG.getConstant(M, dl, MVT::i32); 1692 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx}); 1693 SDValue L = Lower.LowerOperation(Ex, DAG); 1694 assert(L.getNode()); 1695 Ops.push_back(L); 1696 } 1697 1698 SDValue LV; 1699 if (2*HwLen == VecLen) { 1700 SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen}); 1701 SDValue L0 = Lower.LowerOperation(B0, DAG); 1702 SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen}); 1703 SDValue L1 = Lower.LowerOperation(B1, DAG); 1704 // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering) 1705 // functions may expect to be called only for illegal operations, so 1706 // make sure that they are not called for legal ones. Develop a better 1707 // mechanism for dealing with this. 1708 LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1}); 1709 } else { 1710 SDValue BV = DAG.getBuildVector(ResTy, dl, Ops); 1711 LV = Lower.LowerOperation(BV, DAG); 1712 } 1713 1714 assert(!N->use_empty()); 1715 SDValue IS = DAG.getNode(HexagonISD::ISEL, dl, ResTy, LV); 1716 ISel.ReplaceNode(N, IS.getNode()); 1717 select(IS.getNode()); 1718 DAG.RemoveDeadNodes(); 1719 return true; 1720 } 1721 1722 OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb, 1723 ResultStack &Results) { 1724 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1725 if (!Va.isValid() || !Vb.isValid()) 1726 return OpRef::fail(); 1727 1728 // Contracting shuffles, i.e. instructions that always discard some bytes 1729 // from the operand vectors. 1730 // 1731 // V6_vshuff{e,o}b 1732 // V6_vdealb4w 1733 // V6_vpack{e,o}{b,h} 1734 1735 int VecLen = SM.Mask.size(); 1736 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); 1737 MVT ResTy = getSingleVT(MVT::i8); 1738 1739 // The following shuffles only work for bytes and halfwords. This requires 1740 // the strip length to be 1 or 2. 1741 if (Strip.second != 1 && Strip.second != 2) 1742 return OpRef::fail(); 1743 1744 // The patterns for the shuffles, in terms of the starting offsets of the 1745 // consecutive strips (L = length of the strip, N = VecLen): 1746 // 1747 // vpacke: 0, 2L, 4L ... N+0, N+2L, N+4L ... L = 1 or 2 1748 // vpacko: L, 3L, 5L ... N+L, N+3L, N+5L ... L = 1 or 2 1749 // 1750 // vshuffe: 0, N+0, 2L, N+2L, 4L ... L = 1 or 2 1751 // vshuffo: L, N+L, 3L, N+3L, 5L ... L = 1 or 2 1752 // 1753 // vdealb4w: 0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ... 1754 1755 // The value of the element in the mask following the strip will decide 1756 // what kind of a shuffle this can be. 1757 int NextInMask = SM.Mask[Strip.second]; 1758 1759 // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask 1760 // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would 1761 // satisfy this. 1762 if (NextInMask < VecLen) { 1763 // vpack{e,o} or vdealb4w 1764 if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) { 1765 int N = VecLen; 1766 // Check if this is vdealb4w (L=1). 1767 for (int I = 0; I != N/4; ++I) 1768 if (SM.Mask[I] != 4*I) 1769 return OpRef::fail(); 1770 for (int I = 0; I != N/4; ++I) 1771 if (SM.Mask[I+N/4] != 2 + 4*I) 1772 return OpRef::fail(); 1773 for (int I = 0; I != N/4; ++I) 1774 if (SM.Mask[I+N/2] != N + 4*I) 1775 return OpRef::fail(); 1776 for (int I = 0; I != N/4; ++I) 1777 if (SM.Mask[I+3*N/4] != N+2 + 4*I) 1778 return OpRef::fail(); 1779 // Matched mask for vdealb4w. 1780 Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va}); 1781 return OpRef::res(Results.top()); 1782 } 1783 1784 // Check if this is vpack{e,o}. 1785 int N = VecLen; 1786 int L = Strip.second; 1787 // Check if the first strip starts at 0 or at L. 1788 if (Strip.first != 0 && Strip.first != L) 1789 return OpRef::fail(); 1790 // Examine the rest of the mask. 1791 for (int I = L; I < N; I += L) { 1792 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 1793 // Check whether the mask element at the beginning of each strip 1794 // increases by 2L each time. 1795 if (S.first - Strip.first != 2*I) 1796 return OpRef::fail(); 1797 // Check whether each strip is of the same length. 1798 if (S.second != unsigned(L)) 1799 return OpRef::fail(); 1800 } 1801 1802 // Strip.first == 0 => vpacke 1803 // Strip.first == L => vpacko 1804 assert(Strip.first == 0 || Strip.first == L); 1805 using namespace Hexagon; 1806 NodeTemplate Res; 1807 Res.Opc = Strip.second == 1 // Number of bytes. 1808 ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob) 1809 : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh); 1810 Res.Ty = ResTy; 1811 Res.Ops = { Vb, Va }; 1812 Results.push(Res); 1813 return OpRef::res(Results.top()); 1814 } 1815 1816 // Check if this is vshuff{e,o}. 1817 int N = VecLen; 1818 int L = Strip.second; 1819 std::pair<int,unsigned> PrevS = Strip; 1820 bool Flip = false; 1821 for (int I = L; I < N; I += L) { 1822 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 1823 if (S.second != PrevS.second) 1824 return OpRef::fail(); 1825 int Diff = Flip ? PrevS.first - S.first + 2*L 1826 : S.first - PrevS.first; 1827 if (Diff != N) 1828 return OpRef::fail(); 1829 Flip ^= true; 1830 PrevS = S; 1831 } 1832 // Strip.first == 0 => vshuffe 1833 // Strip.first == L => vshuffo 1834 assert(Strip.first == 0 || Strip.first == L); 1835 using namespace Hexagon; 1836 NodeTemplate Res; 1837 Res.Opc = Strip.second == 1 // Number of bytes. 1838 ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob) 1839 : (Strip.first == 0 ? V6_vshufeh : V6_vshufoh); 1840 Res.Ty = ResTy; 1841 Res.Ops = { Vb, Va }; 1842 Results.push(Res); 1843 return OpRef::res(Results.top()); 1844 } 1845 1846 OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1847 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1848 // Expanding shuffles (using all elements and inserting into larger vector): 1849 // 1850 // V6_vunpacku{b,h} [*] 1851 // 1852 // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask. 1853 // 1854 // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so 1855 // they are not shuffles. 1856 // 1857 // The argument is a single vector. 1858 1859 int VecLen = SM.Mask.size(); 1860 assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type"); 1861 1862 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); 1863 1864 // The patterns for the unpacks, in terms of the starting offsets of the 1865 // consecutive strips (L = length of the strip, N = VecLen): 1866 // 1867 // vunpacku: 0, -1, L, -1, 2L, -1 ... 1868 1869 if (Strip.first != 0) 1870 return OpRef::fail(); 1871 1872 // The vunpackus only handle byte and half-word. 1873 if (Strip.second != 1 && Strip.second != 2) 1874 return OpRef::fail(); 1875 1876 int N = VecLen; 1877 int L = Strip.second; 1878 1879 // First, check the non-ignored strips. 1880 for (int I = 2*L; I < N; I += 2*L) { 1881 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 1882 if (S.second != unsigned(L)) 1883 return OpRef::fail(); 1884 if (2*S.first != I) 1885 return OpRef::fail(); 1886 } 1887 // Check the -1s. 1888 for (int I = L; I < N; I += 2*L) { 1889 auto S = findStrip(SM.Mask.drop_front(I), 0, N-I); 1890 if (S.first != -1 || S.second != unsigned(L)) 1891 return OpRef::fail(); 1892 } 1893 1894 unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub 1895 : Hexagon::V6_vunpackuh; 1896 Results.push(Opc, getPairVT(MVT::i8), {Va}); 1897 return OpRef::res(Results.top()); 1898 } 1899 1900 OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1901 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1902 // V6_vdeal{b,h} 1903 // V6_vshuff{b,h} 1904 1905 // V6_vshufoe{b,h} those are quivalent to vshuffvdd(..,{1,2}) 1906 // V6_vshuffvdd (V6_vshuff) 1907 // V6_dealvdd (V6_vdeal) 1908 1909 int VecLen = SM.Mask.size(); 1910 assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8); 1911 unsigned LogLen = Log2_32(VecLen); 1912 unsigned HwLog = Log2_32(HwLen); 1913 // The result length must be the same as the length of a single vector, 1914 // or a vector pair. 1915 assert(LogLen == HwLog || LogLen == HwLog+1); 1916 bool HavePairs = LogLen == HwLog+1; 1917 1918 if (!isPermutation(SM.Mask)) 1919 return OpRef::fail(); 1920 1921 SmallVector<unsigned,8> Perm(LogLen); 1922 1923 // Check if this could be a perfect shuffle, or a combination of perfect 1924 // shuffles. 1925 // 1926 // Consider this permutation (using hex digits to make the ASCII diagrams 1927 // easier to read): 1928 // { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }. 1929 // This is a "deal" operation: divide the input into two halves, and 1930 // create the output by picking elements by alternating between these two 1931 // halves: 1932 // 0 1 2 3 4 5 6 7 --> 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F [*] 1933 // 8 9 A B C D E F 1934 // 1935 // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides 1936 // a somwehat different mechanism that could be used to perform shuffle/ 1937 // deal operations: a 2x2 transpose. 1938 // Consider the halves of inputs again, they can be interpreted as a 2x8 1939 // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated 1940 // together. Now, when considering 2 elements at a time, it will be a 2x4 1941 // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices: 1942 // 01 23 45 67 1943 // 89 AB CD EF 1944 // With groups of 4, this will become a single 2x2 matrix, and so on. 1945 // 1946 // The 2x2 transpose instruction works by transposing each of the 2x2 1947 // matrices (or "sub-matrices"), given a specific group size. For example, 1948 // if the group size is 1 (i.e. each element is its own group), there 1949 // will be four transposes of the four 2x2 matrices that form the 2x8. 1950 // For example, with the inputs as above, the result will be: 1951 // 0 8 2 A 4 C 6 E 1952 // 1 9 3 B 5 D 7 F 1953 // Now, this result can be tranposed again, but with the group size of 2: 1954 // 08 19 4C 5D 1955 // 2A 3B 6E 7F 1956 // If we then transpose that result, but with the group size of 4, we get: 1957 // 0819 2A3B 1958 // 4C5D 6E7F 1959 // If we concatenate these two rows, it will be 1960 // 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F 1961 // which is the same as the "deal" [*] above. 1962 // 1963 // In general, a "deal" of individual elements is a series of 2x2 transposes, 1964 // with changing group size. HVX has two instructions: 1965 // Vdd = V6_vdealvdd Vu, Vv, Rt 1966 // Vdd = V6_shufvdd Vu, Vv, Rt 1967 // that perform exactly that. The register Rt controls which transposes are 1968 // going to happen: a bit at position n (counting from 0) indicates that a 1969 // transpose with a group size of 2^n will take place. If multiple bits are 1970 // set, multiple transposes will happen: vdealvdd will perform them starting 1971 // with the largest group size, vshuffvdd will do them in the reverse order. 1972 // 1973 // The main observation is that each 2x2 transpose corresponds to swapping 1974 // columns of bits in the binary representation of the values. 1975 // 1976 // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits 1977 // in a given column. The * denote the columns that will be swapped. 1978 // The transpose with the group size 2^n corresponds to swapping columns 1979 // 3 (the highest log) and log2(n): 1980 // 1981 // 3 2 1 0 0 2 1 3 0 2 3 1 1982 // * * * * * * 1983 // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1984 // 1 0 0 0 1 8 1 0 0 0 8 1 0 0 0 8 1 0 0 0 1985 // 2 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1986 // 3 0 0 1 1 A 1 0 1 0 9 1 0 0 1 9 1 0 0 1 1987 // 4 0 1 0 0 4 0 1 0 0 4 0 1 0 0 2 0 0 1 0 1988 // 5 0 1 0 1 C 1 1 0 0 C 1 1 0 0 A 1 0 1 0 1989 // 6 0 1 1 0 6 0 1 1 0 5 0 1 0 1 3 0 0 1 1 1990 // 7 0 1 1 1 E 1 1 1 0 D 1 1 0 1 B 1 0 1 1 1991 // 8 1 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 1 0 0 1992 // 9 1 0 0 1 9 1 0 0 1 A 1 0 1 0 C 1 1 0 0 1993 // A 1 0 1 0 3 0 0 1 1 3 0 0 1 1 5 0 1 0 1 1994 // B 1 0 1 1 B 1 0 1 1 B 1 0 1 1 D 1 1 0 1 1995 // C 1 1 0 0 5 0 1 0 1 6 0 1 1 0 6 0 1 1 0 1996 // D 1 1 0 1 D 1 1 0 1 E 1 1 1 0 E 1 1 1 0 1997 // E 1 1 1 0 7 0 1 1 1 7 0 1 1 1 7 0 1 1 1 1998 // F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 1999 2000 // There is one special case that is not a perfect shuffle, but 2001 // can be turned into one easily: when the shuffle operates on 2002 // a vector pair, but the two vectors in the pair are swapped. 2003 // The code below that identifies perfect shuffles will reject 2004 // it, unless the order is reversed. 2005 SmallVector<int,128> MaskStorage(SM.Mask.begin(), SM.Mask.end()); 2006 bool InvertedPair = false; 2007 if (HavePairs && SM.Mask[0] >= int(HwLen)) { 2008 for (int i = 0, e = SM.Mask.size(); i != e; ++i) { 2009 int M = SM.Mask[i]; 2010 MaskStorage[i] = M >= int(HwLen) ? M-HwLen : M+HwLen; 2011 } 2012 InvertedPair = true; 2013 } 2014 ArrayRef<int> LocalMask(MaskStorage); 2015 2016 auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) { 2017 unsigned X = Mask[0] ^ Mask[Num/2]; 2018 // Check that the first half has the X's bits clear. 2019 if ((Mask[0] & X) != 0) 2020 return 0u; 2021 for (unsigned I = 1; I != Num/2; ++I) { 2022 if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X) 2023 return 0u; 2024 if ((Mask[I] & X) != 0) 2025 return 0u; 2026 } 2027 return X; 2028 }; 2029 2030 // Create a vector of log2's for each column: Perm[i] corresponds to 2031 // the i-th bit (lsb is 0). 2032 assert(VecLen > 2); 2033 for (unsigned I = VecLen; I >= 2; I >>= 1) { 2034 // Examine the initial segment of Mask of size I. 2035 unsigned X = XorPow2(LocalMask, I); 2036 if (!isPowerOf2_32(X)) 2037 return OpRef::fail(); 2038 // Check the other segments of Mask. 2039 for (int J = I; J < VecLen; J += I) { 2040 if (XorPow2(LocalMask.slice(J, I), I) != X) 2041 return OpRef::fail(); 2042 } 2043 Perm[Log2_32(X)] = Log2_32(I)-1; 2044 } 2045 2046 // Once we have Perm, represent it as cycles. Denote the maximum log2 2047 // (equal to log2(VecLen)-1) as M. The cycle containing M can then be 2048 // written as (M a1 a2 a3 ... an). That cycle can be broken up into 2049 // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition 2050 // order being from left to right. Any (contiguous) segment where the 2051 // values ai, ai+1...aj are either all increasing or all decreasing, 2052 // can be implemented via a single vshuffvdd/vdealvdd respectively. 2053 // 2054 // If there is a cycle (a1 a2 ... an) that does not involve M, it can 2055 // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can 2056 // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure 2057 // can be used to generate a sequence of vshuffvdd/vdealvdd. 2058 // 2059 // Example: 2060 // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written 2061 // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply 2062 // (4 0 1)(4 0)(4 2 3)(4 2). 2063 // It can then be expanded into swaps as 2064 // (4 0)(4 1)(4 0)(4 2)(4 3)(4 2), 2065 // and broken up into "increasing" segments as 2066 // [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)]. 2067 // This is equivalent to 2068 // (4 0 1)(4 0 2 3)(4 2), 2069 // which can be implemented as 3 vshufvdd instructions. 2070 2071 using CycleType = SmallVector<unsigned,8>; 2072 std::set<CycleType> Cycles; 2073 std::set<unsigned> All; 2074 2075 for (unsigned I : Perm) 2076 All.insert(I); 2077 2078 // If the cycle contains LogLen-1, move it to the front of the cycle. 2079 // Otherwise, return the cycle unchanged. 2080 auto canonicalize = [LogLen](const CycleType &C) -> CycleType { 2081 unsigned LogPos, N = C.size(); 2082 for (LogPos = 0; LogPos != N; ++LogPos) 2083 if (C[LogPos] == LogLen-1) 2084 break; 2085 if (LogPos == N) 2086 return C; 2087 2088 CycleType NewC(C.begin()+LogPos, C.end()); 2089 NewC.append(C.begin(), C.begin()+LogPos); 2090 return NewC; 2091 }; 2092 2093 auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) { 2094 // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6), 2095 // for bytes zero is included, for halfwords is not. 2096 if (Cs.size() != 1) 2097 return 0u; 2098 const CycleType &C = *Cs.begin(); 2099 if (C[0] != Len-1) 2100 return 0u; 2101 int D = Len - C.size(); 2102 if (D != 0 && D != 1) 2103 return 0u; 2104 2105 bool IsDeal = true, IsShuff = true; 2106 for (unsigned I = 1; I != Len-D; ++I) { 2107 if (C[I] != Len-1-I) 2108 IsDeal = false; 2109 if (C[I] != I-(1-D)) // I-1, I 2110 IsShuff = false; 2111 } 2112 // At most one, IsDeal or IsShuff, can be non-zero. 2113 assert(!(IsDeal || IsShuff) || IsDeal != IsShuff); 2114 static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh }; 2115 static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh }; 2116 return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0); 2117 }; 2118 2119 while (!All.empty()) { 2120 unsigned A = *All.begin(); 2121 All.erase(A); 2122 CycleType C; 2123 C.push_back(A); 2124 for (unsigned B = Perm[A]; B != A; B = Perm[B]) { 2125 C.push_back(B); 2126 All.erase(B); 2127 } 2128 if (C.size() <= 1) 2129 continue; 2130 Cycles.insert(canonicalize(C)); 2131 } 2132 2133 MVT SingleTy = getSingleVT(MVT::i8); 2134 MVT PairTy = getPairVT(MVT::i8); 2135 2136 // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}. 2137 if (unsigned(VecLen) == HwLen) { 2138 if (unsigned SingleOpc = pfs(Cycles, LogLen)) { 2139 Results.push(SingleOpc, SingleTy, {Va}); 2140 return OpRef::res(Results.top()); 2141 } 2142 } 2143 2144 // From the cycles, construct the sequence of values that will 2145 // then form the control values for vdealvdd/vshuffvdd, i.e. 2146 // (M a1 a2)(M a3 a4 a5)... -> a1 a2 a3 a4 a5 2147 // This essentially strips the M value from the cycles where 2148 // it's present, and performs the insertion of M (then stripping) 2149 // for cycles without M (as described in an earlier comment). 2150 SmallVector<unsigned,8> SwapElems; 2151 // When the input is extended (i.e. single vector becomes a pair), 2152 // this is done by using an "undef" vector as the second input. 2153 // However, then we get 2154 // input 1: GOODBITS 2155 // input 2: ........ 2156 // but we need 2157 // input 1: ....BITS 2158 // input 2: ....GOOD 2159 // Then at the end, this needs to be undone. To accomplish this, 2160 // artificially add "LogLen-1" at both ends of the sequence. 2161 if (!HavePairs) 2162 SwapElems.push_back(LogLen-1); 2163 for (const CycleType &C : Cycles) { 2164 // Do the transformation: (a1..an) -> (M a1..an)(M a1). 2165 unsigned First = (C[0] == LogLen-1) ? 1 : 0; 2166 SwapElems.append(C.begin()+First, C.end()); 2167 if (First == 0) 2168 SwapElems.push_back(C[0]); 2169 } 2170 if (!HavePairs) 2171 SwapElems.push_back(LogLen-1); 2172 2173 const SDLoc &dl(Results.InpNode); 2174 OpRef Arg = HavePairs ? Va 2175 : concats(Va, OpRef::undef(SingleTy), Results); 2176 if (InvertedPair) 2177 Arg = concats(OpRef::hi(Arg), OpRef::lo(Arg), Results); 2178 2179 for (unsigned I = 0, E = SwapElems.size(); I != E; ) { 2180 bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1]; 2181 unsigned S = (1u << SwapElems[I]); 2182 if (I < E-1) { 2183 while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1])) 2184 S |= 1u << SwapElems[I]; 2185 // The above loop will not add a bit for the final SwapElems[I+1], 2186 // so add it here. 2187 S |= 1u << SwapElems[I]; 2188 } 2189 ++I; 2190 2191 NodeTemplate Res; 2192 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(S, dl)}); 2193 Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd; 2194 Res.Ty = PairTy; 2195 Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) }; 2196 Results.push(Res); 2197 Arg = OpRef::res(Results.top()); 2198 } 2199 2200 return HavePairs ? Arg : OpRef::lo(Arg); 2201 } 2202 2203 OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) { 2204 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 2205 // Butterfly shuffles. 2206 // 2207 // V6_vdelta 2208 // V6_vrdelta 2209 // V6_vror 2210 2211 // The assumption here is that all elements picked by Mask are in the 2212 // first operand to the vector_shuffle. This assumption is enforced 2213 // by the caller. 2214 2215 MVT ResTy = getSingleVT(MVT::i8); 2216 PermNetwork::Controls FC, RC; 2217 const SDLoc &dl(Results.InpNode); 2218 int VecLen = SM.Mask.size(); 2219 2220 for (int M : SM.Mask) { 2221 if (M != -1 && M >= VecLen) 2222 return OpRef::fail(); 2223 } 2224 2225 // Try the deltas/benes for both single vectors and vector pairs. 2226 ForwardDeltaNetwork FN(SM.Mask); 2227 if (FN.run(FC)) { 2228 SDValue Ctl = getVectorConstant(FC, dl); 2229 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)}); 2230 return OpRef::res(Results.top()); 2231 } 2232 2233 // Try reverse delta. 2234 ReverseDeltaNetwork RN(SM.Mask); 2235 if (RN.run(RC)) { 2236 SDValue Ctl = getVectorConstant(RC, dl); 2237 Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)}); 2238 return OpRef::res(Results.top()); 2239 } 2240 2241 // Do Benes. 2242 BenesNetwork BN(SM.Mask); 2243 if (BN.run(FC, RC)) { 2244 SDValue CtlF = getVectorConstant(FC, dl); 2245 SDValue CtlR = getVectorConstant(RC, dl); 2246 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)}); 2247 Results.push(Hexagon::V6_vrdelta, ResTy, 2248 {OpRef::res(-1), OpRef(CtlR)}); 2249 return OpRef::res(Results.top()); 2250 } 2251 2252 return OpRef::fail(); 2253 } 2254 2255 SDValue HvxSelector::getConst32(int Val, const SDLoc &dl) { 2256 return DAG.getTargetConstant(Val, dl, MVT::i32); 2257 } 2258 2259 SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data, 2260 const SDLoc &dl) { 2261 SmallVector<SDValue, 128> Elems; 2262 for (uint8_t C : Data) 2263 Elems.push_back(DAG.getConstant(C, dl, MVT::i8)); 2264 MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size()); 2265 SDValue BV = DAG.getBuildVector(VecTy, dl, Elems); 2266 SDValue LV = Lower.LowerOperation(BV, DAG); 2267 DAG.RemoveDeadNode(BV.getNode()); 2268 return DAG.getNode(HexagonISD::ISEL, dl, VecTy, LV); 2269 } 2270 2271 void HvxSelector::selectShuffle(SDNode *N) { 2272 DEBUG_WITH_TYPE("isel", { 2273 dbgs() << "Starting " << __func__ << " on node:\n"; 2274 N->dump(&DAG); 2275 }); 2276 MVT ResTy = N->getValueType(0).getSimpleVT(); 2277 // Assume that vector shuffles operate on vectors of bytes. 2278 assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8); 2279 2280 auto *SN = cast<ShuffleVectorSDNode>(N); 2281 std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end()); 2282 // This shouldn't really be necessary. Is it? 2283 for (int &Idx : Mask) 2284 if (Idx != -1 && Idx < 0) 2285 Idx = -1; 2286 2287 unsigned VecLen = Mask.size(); 2288 bool HavePairs = (2*HwLen == VecLen); 2289 assert(ResTy.getSizeInBits() / 8 == VecLen); 2290 2291 // Vd = vector_shuffle Va, Vb, Mask 2292 // 2293 2294 bool UseLeft = false, UseRight = false; 2295 for (unsigned I = 0; I != VecLen; ++I) { 2296 if (Mask[I] == -1) 2297 continue; 2298 unsigned Idx = Mask[I]; 2299 assert(Idx < 2*VecLen); 2300 if (Idx < VecLen) 2301 UseLeft = true; 2302 else 2303 UseRight = true; 2304 } 2305 2306 DEBUG_WITH_TYPE("isel", { 2307 dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft=" 2308 << UseLeft << " UseRight=" << UseRight << " HavePairs=" 2309 << HavePairs << '\n'; 2310 }); 2311 // If the mask is all -1's, generate "undef". 2312 if (!UseLeft && !UseRight) { 2313 ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode()); 2314 return; 2315 } 2316 2317 SDValue Vec0 = N->getOperand(0); 2318 SDValue Vec1 = N->getOperand(1); 2319 ResultStack Results(SN); 2320 Results.push(TargetOpcode::COPY, ResTy, {Vec0}); 2321 Results.push(TargetOpcode::COPY, ResTy, {Vec1}); 2322 OpRef Va = OpRef::res(Results.top()-1); 2323 OpRef Vb = OpRef::res(Results.top()); 2324 2325 OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results) 2326 : shuffp2(ShuffleMask(Mask), Va, Vb, Results); 2327 2328 bool Done = Res.isValid(); 2329 if (Done) { 2330 // Make sure that Res is on the stack before materializing. 2331 Results.push(TargetOpcode::COPY, ResTy, {Res}); 2332 materialize(Results); 2333 } else { 2334 Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N); 2335 } 2336 2337 if (!Done) { 2338 #ifndef NDEBUG 2339 dbgs() << "Unhandled shuffle:\n"; 2340 SN->dumpr(&DAG); 2341 #endif 2342 llvm_unreachable("Failed to select vector shuffle"); 2343 } 2344 } 2345 2346 void HvxSelector::selectRor(SDNode *N) { 2347 // If this is a rotation by less than 8, use V6_valignbi. 2348 MVT Ty = N->getValueType(0).getSimpleVT(); 2349 const SDLoc &dl(N); 2350 SDValue VecV = N->getOperand(0); 2351 SDValue RotV = N->getOperand(1); 2352 SDNode *NewN = nullptr; 2353 2354 if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) { 2355 unsigned S = CN->getZExtValue() % HST.getVectorLength(); 2356 if (S == 0) { 2357 NewN = VecV.getNode(); 2358 } else if (isUInt<3>(S)) { 2359 NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty, 2360 {VecV, VecV, getConst32(S, dl)}); 2361 } 2362 } 2363 2364 if (!NewN) 2365 NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV}); 2366 2367 ISel.ReplaceNode(N, NewN); 2368 } 2369 2370 void HvxSelector::selectVAlign(SDNode *N) { 2371 SDValue Vv = N->getOperand(0); 2372 SDValue Vu = N->getOperand(1); 2373 SDValue Rt = N->getOperand(2); 2374 SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N), 2375 N->getValueType(0), {Vv, Vu, Rt}); 2376 ISel.ReplaceNode(N, NewN); 2377 DAG.RemoveDeadNode(N); 2378 } 2379 2380 void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) { 2381 HvxSelector(*this, *CurDAG).selectShuffle(N); 2382 } 2383 2384 void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) { 2385 HvxSelector(*this, *CurDAG).selectRor(N); 2386 } 2387 2388 void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) { 2389 HvxSelector(*this, *CurDAG).selectVAlign(N); 2390 } 2391 2392 void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) { 2393 const SDLoc &dl(N); 2394 SDValue Chain = N->getOperand(0); 2395 SDValue Address = N->getOperand(2); 2396 SDValue Predicate = N->getOperand(3); 2397 SDValue Base = N->getOperand(4); 2398 SDValue Modifier = N->getOperand(5); 2399 SDValue Offset = N->getOperand(6); 2400 2401 unsigned Opcode; 2402 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2403 switch (IntNo) { 2404 default: 2405 llvm_unreachable("Unexpected HVX gather intrinsic."); 2406 case Intrinsic::hexagon_V6_vgathermhq: 2407 case Intrinsic::hexagon_V6_vgathermhq_128B: 2408 Opcode = Hexagon::V6_vgathermhq_pseudo; 2409 break; 2410 case Intrinsic::hexagon_V6_vgathermwq: 2411 case Intrinsic::hexagon_V6_vgathermwq_128B: 2412 Opcode = Hexagon::V6_vgathermwq_pseudo; 2413 break; 2414 case Intrinsic::hexagon_V6_vgathermhwq: 2415 case Intrinsic::hexagon_V6_vgathermhwq_128B: 2416 Opcode = Hexagon::V6_vgathermhwq_pseudo; 2417 break; 2418 } 2419 2420 SDVTList VTs = CurDAG->getVTList(MVT::Other); 2421 SDValue Ops[] = { Address, Predicate, Base, Modifier, Offset, Chain }; 2422 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 2423 2424 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2425 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 2426 2427 ReplaceNode(N, Result); 2428 } 2429 2430 void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) { 2431 const SDLoc &dl(N); 2432 SDValue Chain = N->getOperand(0); 2433 SDValue Address = N->getOperand(2); 2434 SDValue Base = N->getOperand(3); 2435 SDValue Modifier = N->getOperand(4); 2436 SDValue Offset = N->getOperand(5); 2437 2438 unsigned Opcode; 2439 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2440 switch (IntNo) { 2441 default: 2442 llvm_unreachable("Unexpected HVX gather intrinsic."); 2443 case Intrinsic::hexagon_V6_vgathermh: 2444 case Intrinsic::hexagon_V6_vgathermh_128B: 2445 Opcode = Hexagon::V6_vgathermh_pseudo; 2446 break; 2447 case Intrinsic::hexagon_V6_vgathermw: 2448 case Intrinsic::hexagon_V6_vgathermw_128B: 2449 Opcode = Hexagon::V6_vgathermw_pseudo; 2450 break; 2451 case Intrinsic::hexagon_V6_vgathermhw: 2452 case Intrinsic::hexagon_V6_vgathermhw_128B: 2453 Opcode = Hexagon::V6_vgathermhw_pseudo; 2454 break; 2455 } 2456 2457 SDVTList VTs = CurDAG->getVTList(MVT::Other); 2458 SDValue Ops[] = { Address, Base, Modifier, Offset, Chain }; 2459 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 2460 2461 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2462 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 2463 2464 ReplaceNode(N, Result); 2465 } 2466 2467 void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) { 2468 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2469 SDNode *Result; 2470 switch (IID) { 2471 case Intrinsic::hexagon_V6_vaddcarry: { 2472 std::array<SDValue, 3> Ops = { 2473 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2474 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1); 2475 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); 2476 break; 2477 } 2478 case Intrinsic::hexagon_V6_vaddcarry_128B: { 2479 std::array<SDValue, 3> Ops = { 2480 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2481 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1); 2482 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); 2483 break; 2484 } 2485 case Intrinsic::hexagon_V6_vsubcarry: { 2486 std::array<SDValue, 3> Ops = { 2487 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2488 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1); 2489 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); 2490 break; 2491 } 2492 case Intrinsic::hexagon_V6_vsubcarry_128B: { 2493 std::array<SDValue, 3> Ops = { 2494 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2495 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1); 2496 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); 2497 break; 2498 } 2499 default: 2500 llvm_unreachable("Unexpected HVX dual output intrinsic."); 2501 } 2502 ReplaceUses(N, Result); 2503 ReplaceUses(SDValue(N, 0), SDValue(Result, 0)); 2504 ReplaceUses(SDValue(N, 1), SDValue(Result, 1)); 2505 CurDAG->RemoveDeadNode(N); 2506 } 2507