xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelDAGToDAGHVX.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Hexagon.h"
10 #include "HexagonISelDAGToDAG.h"
11 #include "HexagonISelLowering.h"
12 #include "HexagonTargetMachine.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/CodeGen/MachineInstrBuilder.h"
15 #include "llvm/CodeGen/SelectionDAGISel.h"
16 #include "llvm/IR/Intrinsics.h"
17 #include "llvm/IR/IntrinsicsHexagon.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 
21 #include <deque>
22 #include <map>
23 #include <set>
24 #include <utility>
25 #include <vector>
26 
27 #define DEBUG_TYPE "hexagon-isel"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 // --------------------------------------------------------------------
34 // Implementation of permutation networks.
35 
36 // Implementation of the node routing through butterfly networks:
37 // - Forward delta.
38 // - Reverse delta.
39 // - Benes.
40 //
41 //
42 // Forward delta network consists of log(N) steps, where N is the number
43 // of inputs. In each step, an input can stay in place, or it can get
44 // routed to another position[1]. The step after that consists of two
45 // networks, each half in size in terms of the number of nodes. In those
46 // terms, in the given step, an input can go to either the upper or the
47 // lower network in the next step.
48 //
49 // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both
50 // positions as long as there is no conflict.
51 
52 // Here's a delta network for 8 inputs, only the switching routes are
53 // shown:
54 //
55 //         Steps:
56 //         |- 1 ---------------|- 2 -----|- 3 -|
57 //
58 // Inp[0] ***                 ***       ***   *** Out[0]
59 //           \               /   \     /   \ /
60 //            \             /     \   /     X
61 //             \           /       \ /     / \
62 // Inp[1] ***   \         /   ***   X   ***   *** Out[1]
63 //           \   \       /   /   \ / \ /
64 //            \   \     /   /     X   X
65 //             \   \   /   /     / \ / \
66 // Inp[2] ***   \   \ /   /   ***   X   ***   *** Out[2]
67 //           \   \   X   /   /     / \     \ /
68 //            \   \ / \ /   /     /   \     X
69 //             \   X   X   /     /     \   / \
70 // Inp[3] ***   \ / \ / \ /   ***       ***   *** Out[3]
71 //           \   X   X   X   /
72 //            \ / \ / \ / \ /
73 //             X   X   X   X
74 //            / \ / \ / \ / \
75 //           /   X   X   X   \
76 // Inp[4] ***   / \ / \ / \   ***       ***   *** Out[4]
77 //             /   X   X   \     \     /   \ /
78 //            /   / \ / \   \     \   /     X
79 //           /   /   X   \   \     \ /     / \
80 // Inp[5] ***   /   / \   \   ***   X   ***   *** Out[5]
81 //             /   /   \   \     \ / \ /
82 //            /   /     \   \     X   X
83 //           /   /       \   \   / \ / \
84 // Inp[6] ***   /         \   ***   X   ***   *** Out[6]
85 //             /           \       / \     \ /
86 //            /             \     /   \     X
87 //           /               \   /     \   / \
88 // Inp[7] ***                 ***       ***   *** Out[7]
89 //
90 //
91 // Reverse delta network is same as delta network, with the steps in
92 // the opposite order.
93 //
94 //
95 // Benes network is a forward delta network immediately followed by
96 // a reverse delta network.
97 
98 enum class ColorKind { None, Red, Black };
99 
100 // Graph coloring utility used to partition nodes into two groups:
101 // they will correspond to nodes routed to the upper and lower networks.
102 struct Coloring {
103   using Node = int;
104   using MapType = std::map<Node, ColorKind>;
105   static constexpr Node Ignore = Node(-1);
106 
107   Coloring(ArrayRef<Node> Ord) : Order(Ord) {
108     build();
109     if (!color())
110       Colors.clear();
111   }
112 
113   const MapType &colors() const {
114     return Colors;
115   }
116 
117   ColorKind other(ColorKind Color) {
118     if (Color == ColorKind::None)
119       return ColorKind::Red;
120     return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red;
121   }
122 
123   LLVM_DUMP_METHOD void dump() const;
124 
125 private:
126   ArrayRef<Node> Order;
127   MapType Colors;
128   std::set<Node> Needed;
129 
130   using NodeSet = std::set<Node>;
131   std::map<Node,NodeSet> Edges;
132 
133   Node conj(Node Pos) {
134     Node Num = Order.size();
135     return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2;
136   }
137 
138   ColorKind getColor(Node N) {
139     auto F = Colors.find(N);
140     return F != Colors.end() ? F->second : ColorKind::None;
141   }
142 
143   std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes);
144 
145   void build();
146   bool color();
147 };
148 } // namespace
149 
150 std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) {
151   auto Color = ColorKind::None;
152   for (Node N : Nodes) {
153     ColorKind ColorN = getColor(N);
154     if (ColorN == ColorKind::None)
155       continue;
156     if (Color == ColorKind::None)
157       Color = ColorN;
158     else if (Color != ColorKind::None && Color != ColorN)
159       return { false, ColorKind::None };
160   }
161   return { true, Color };
162 }
163 
164 void Coloring::build() {
165   // Add Order[P] and Order[conj(P)] to Edges.
166   for (unsigned P = 0; P != Order.size(); ++P) {
167     Node I = Order[P];
168     if (I != Ignore) {
169       Needed.insert(I);
170       Node PC = Order[conj(P)];
171       if (PC != Ignore && PC != I)
172         Edges[I].insert(PC);
173     }
174   }
175   // Add I and conj(I) to Edges.
176   for (unsigned I = 0; I != Order.size(); ++I) {
177     if (!Needed.count(I))
178       continue;
179     Node C = conj(I);
180     // This will create an entry in the edge table, even if I is not
181     // connected to any other node. This is necessary, because it still
182     // needs to be colored.
183     NodeSet &Is = Edges[I];
184     if (Needed.count(C))
185       Is.insert(C);
186   }
187 }
188 
189 bool Coloring::color() {
190   SetVector<Node> FirstQ;
191   auto Enqueue = [this,&FirstQ] (Node N) {
192     SetVector<Node> Q;
193     Q.insert(N);
194     for (unsigned I = 0; I != Q.size(); ++I) {
195       NodeSet &Ns = Edges[Q[I]];
196       Q.insert(Ns.begin(), Ns.end());
197     }
198     FirstQ.insert(Q.begin(), Q.end());
199   };
200   for (Node N : Needed)
201     Enqueue(N);
202 
203   for (Node N : FirstQ) {
204     if (Colors.count(N))
205       continue;
206     NodeSet &Ns = Edges[N];
207     auto P = getUniqueColor(Ns);
208     if (!P.first)
209       return false;
210     Colors[N] = other(P.second);
211   }
212 
213   // First, color nodes that don't have any dups.
214   for (auto E : Edges) {
215     Node N = E.first;
216     if (!Needed.count(conj(N)) || Colors.count(N))
217       continue;
218     auto P = getUniqueColor(E.second);
219     if (!P.first)
220       return false;
221     Colors[N] = other(P.second);
222   }
223 
224   // Now, nodes that are still uncolored. Since the graph can be modified
225   // in this step, create a work queue.
226   std::vector<Node> WorkQ;
227   for (auto E : Edges) {
228     Node N = E.first;
229     if (!Colors.count(N))
230       WorkQ.push_back(N);
231   }
232 
233   for (unsigned I = 0; I < WorkQ.size(); ++I) {
234     Node N = WorkQ[I];
235     NodeSet &Ns = Edges[N];
236     auto P = getUniqueColor(Ns);
237     if (P.first) {
238       Colors[N] = other(P.second);
239       continue;
240     }
241 
242     // Coloring failed. Split this node.
243     Node C = conj(N);
244     ColorKind ColorN = other(ColorKind::None);
245     ColorKind ColorC = other(ColorN);
246     NodeSet &Cs = Edges[C];
247     NodeSet CopyNs = Ns;
248     for (Node M : CopyNs) {
249       ColorKind ColorM = getColor(M);
250       if (ColorM == ColorC) {
251         // Connect M with C, disconnect M from N.
252         Cs.insert(M);
253         Edges[M].insert(C);
254         Ns.erase(M);
255         Edges[M].erase(N);
256       }
257     }
258     Colors[N] = ColorN;
259     Colors[C] = ColorC;
260   }
261 
262   // Explicitly assign "None" to all uncolored nodes.
263   for (unsigned I = 0; I != Order.size(); ++I)
264     if (Colors.count(I) == 0)
265       Colors[I] = ColorKind::None;
266 
267   return true;
268 }
269 
270 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
271 void Coloring::dump() const {
272   dbgs() << "{ Order:   {";
273   for (unsigned I = 0; I != Order.size(); ++I) {
274     Node P = Order[I];
275     if (P != Ignore)
276       dbgs() << ' ' << P;
277     else
278       dbgs() << " -";
279   }
280   dbgs() << " }\n";
281   dbgs() << "  Needed: {";
282   for (Node N : Needed)
283     dbgs() << ' ' << N;
284   dbgs() << " }\n";
285 
286   dbgs() << "  Edges: {\n";
287   for (auto E : Edges) {
288     dbgs() << "    " << E.first << " -> {";
289     for (auto N : E.second)
290       dbgs() << ' ' << N;
291     dbgs() << " }\n";
292   }
293   dbgs() << "  }\n";
294 
295   auto ColorKindToName = [](ColorKind C) {
296     switch (C) {
297     case ColorKind::None:
298       return "None";
299     case ColorKind::Red:
300       return "Red";
301     case ColorKind::Black:
302       return "Black";
303     }
304     llvm_unreachable("all ColorKinds should be handled by the switch above");
305   };
306 
307   dbgs() << "  Colors: {\n";
308   for (auto C : Colors)
309     dbgs() << "    " << C.first << " -> " << ColorKindToName(C.second) << "\n";
310   dbgs() << "  }\n}\n";
311 }
312 #endif
313 
314 namespace {
315 // Base class of for reordering networks. They don't strictly need to be
316 // permutations, as outputs with repeated occurrences of an input element
317 // are allowed.
318 struct PermNetwork {
319   using Controls = std::vector<uint8_t>;
320   using ElemType = int;
321   static constexpr ElemType Ignore = ElemType(-1);
322 
323   enum : uint8_t {
324     None,
325     Pass,
326     Switch
327   };
328   enum : uint8_t {
329     Forward,
330     Reverse
331   };
332 
333   PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) {
334     Order.assign(Ord.data(), Ord.data()+Ord.size());
335     Log = 0;
336 
337     unsigned S = Order.size();
338     while (S >>= 1)
339       ++Log;
340 
341     Table.resize(Order.size());
342     for (RowType &Row : Table)
343       Row.resize(Mult*Log, None);
344   }
345 
346   void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const {
347     unsigned Size = Order.size();
348     V.resize(Size);
349     for (unsigned I = 0; I != Size; ++I) {
350       unsigned W = 0;
351       for (unsigned L = 0; L != Log; ++L) {
352         unsigned C = ctl(I, StartAt+L) == Switch;
353         if (Dir == Forward)
354           W |= C << (Log-1-L);
355         else
356           W |= C << L;
357       }
358       assert(isUInt<8>(W));
359       V[I] = uint8_t(W);
360     }
361   }
362 
363   uint8_t ctl(ElemType Pos, unsigned Step) const {
364     return Table[Pos][Step];
365   }
366   unsigned size() const {
367     return Order.size();
368   }
369   unsigned steps() const {
370     return Log;
371   }
372 
373 protected:
374   unsigned Log;
375   std::vector<ElemType> Order;
376   using RowType = std::vector<uint8_t>;
377   std::vector<RowType> Table;
378 };
379 
380 struct ForwardDeltaNetwork : public PermNetwork {
381   ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
382 
383   bool run(Controls &V) {
384     if (!route(Order.data(), Table.data(), size(), 0))
385       return false;
386     getControls(V, 0, Forward);
387     return true;
388   }
389 
390 private:
391   bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
392 };
393 
394 struct ReverseDeltaNetwork : public PermNetwork {
395   ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
396 
397   bool run(Controls &V) {
398     if (!route(Order.data(), Table.data(), size(), 0))
399       return false;
400     getControls(V, 0, Reverse);
401     return true;
402   }
403 
404 private:
405   bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
406 };
407 
408 struct BenesNetwork : public PermNetwork {
409   BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {}
410 
411   bool run(Controls &F, Controls &R) {
412     if (!route(Order.data(), Table.data(), size(), 0))
413       return false;
414 
415     getControls(F, 0, Forward);
416     getControls(R, Log, Reverse);
417     return true;
418   }
419 
420 private:
421   bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
422 };
423 } // namespace
424 
425 bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
426                                 unsigned Step) {
427   bool UseUp = false, UseDown = false;
428   ElemType Num = Size;
429 
430   // Cannot use coloring here, because coloring is used to determine
431   // the "big" switch, i.e. the one that changes halves, and in a forward
432   // network, a color can be simultaneously routed to both halves in the
433   // step we're working on.
434   for (ElemType J = 0; J != Num; ++J) {
435     ElemType I = P[J];
436     // I is the position in the input,
437     // J is the position in the output.
438     if (I == Ignore)
439       continue;
440     uint8_t S;
441     if (I < Num/2)
442       S = (J < Num/2) ? Pass : Switch;
443     else
444       S = (J < Num/2) ? Switch : Pass;
445 
446     // U is the element in the table that needs to be updated.
447     ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2);
448     if (U < Num/2)
449       UseUp = true;
450     else
451       UseDown = true;
452     if (T[U][Step] != S && T[U][Step] != None)
453       return false;
454     T[U][Step] = S;
455   }
456 
457   for (ElemType J = 0; J != Num; ++J)
458     if (P[J] != Ignore && P[J] >= Num/2)
459       P[J] -= Num/2;
460 
461   if (Step+1 < Log) {
462     if (UseUp   && !route(P,        T,        Size/2, Step+1))
463       return false;
464     if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
465       return false;
466   }
467   return true;
468 }
469 
470 bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
471                                 unsigned Step) {
472   unsigned Pets = Log-1 - Step;
473   bool UseUp = false, UseDown = false;
474   ElemType Num = Size;
475 
476   // In this step half-switching occurs, so coloring can be used.
477   Coloring G({P,Size});
478   const Coloring::MapType &M = G.colors();
479   if (M.empty())
480     return false;
481 
482   ColorKind ColorUp = ColorKind::None;
483   for (ElemType J = 0; J != Num; ++J) {
484     ElemType I = P[J];
485     // I is the position in the input,
486     // J is the position in the output.
487     if (I == Ignore)
488       continue;
489     ColorKind C = M.at(I);
490     if (C == ColorKind::None)
491       continue;
492     // During "Step", inputs cannot switch halves, so if the "up" color
493     // is still unknown, make sure that it is selected in such a way that
494     // "I" will stay in the same half.
495     bool InpUp = I < Num/2;
496     if (ColorUp == ColorKind::None)
497       ColorUp = InpUp ? C : G.other(C);
498     if ((C == ColorUp) != InpUp) {
499       // If I should go to a different half than where is it now, give up.
500       return false;
501     }
502 
503     uint8_t S;
504     if (InpUp) {
505       S = (J < Num/2) ? Pass : Switch;
506       UseUp = true;
507     } else {
508       S = (J < Num/2) ? Switch : Pass;
509       UseDown = true;
510     }
511     T[J][Pets] = S;
512   }
513 
514   // Reorder the working permutation according to the computed switch table
515   // for the last step (i.e. Pets).
516   for (ElemType J = 0, E = Size / 2; J != E; ++J) {
517     ElemType PJ = P[J];         // Current values of P[J]
518     ElemType PC = P[J+Size/2];  // and P[conj(J)]
519     ElemType QJ = PJ;           // New values of P[J]
520     ElemType QC = PC;           // and P[conj(J)]
521     if (T[J][Pets] == Switch)
522       QC = PJ;
523     if (T[J+Size/2][Pets] == Switch)
524       QJ = PC;
525     P[J] = QJ;
526     P[J+Size/2] = QC;
527   }
528 
529   for (ElemType J = 0; J != Num; ++J)
530     if (P[J] != Ignore && P[J] >= Num/2)
531       P[J] -= Num/2;
532 
533   if (Step+1 < Log) {
534     if (UseUp && !route(P, T, Size/2, Step+1))
535       return false;
536     if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
537       return false;
538   }
539   return true;
540 }
541 
542 bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size,
543                          unsigned Step) {
544   Coloring G({P,Size});
545   const Coloring::MapType &M = G.colors();
546   if (M.empty())
547     return false;
548   ElemType Num = Size;
549 
550   unsigned Pets = 2*Log-1 - Step;
551   bool UseUp = false, UseDown = false;
552 
553   // Both assignments, i.e. Red->Up and Red->Down are valid, but they will
554   // result in different controls. Let's pick the one where the first
555   // control will be "Pass".
556   ColorKind ColorUp = ColorKind::None;
557   for (ElemType J = 0; J != Num; ++J) {
558     ElemType I = P[J];
559     if (I == Ignore)
560       continue;
561     ColorKind C = M.at(I);
562     if (C == ColorKind::None)
563       continue;
564     if (ColorUp == ColorKind::None) {
565       ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black;
566     }
567     unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2;
568     if (C == ColorUp) {
569       if (I < Num/2)
570         T[I][Step] = Pass;
571       else
572         T[CI][Step] = Switch;
573       T[J][Pets] = (J < Num/2) ? Pass : Switch;
574       UseUp = true;
575     } else { // Down
576       if (I < Num/2)
577         T[CI][Step] = Switch;
578       else
579         T[I][Step] = Pass;
580       T[J][Pets] = (J < Num/2) ? Switch : Pass;
581       UseDown = true;
582     }
583   }
584 
585   // Reorder the working permutation according to the computed switch table
586   // for the last step (i.e. Pets).
587   for (ElemType J = 0; J != Num/2; ++J) {
588     ElemType PJ = P[J];         // Current values of P[J]
589     ElemType PC = P[J+Num/2];   // and P[conj(J)]
590     ElemType QJ = PJ;           // New values of P[J]
591     ElemType QC = PC;           // and P[conj(J)]
592     if (T[J][Pets] == Switch)
593       QC = PJ;
594     if (T[J+Num/2][Pets] == Switch)
595       QJ = PC;
596     P[J] = QJ;
597     P[J+Num/2] = QC;
598   }
599 
600   for (ElemType J = 0; J != Num; ++J)
601     if (P[J] != Ignore && P[J] >= Num/2)
602       P[J] -= Num/2;
603 
604   if (Step+1 < Log) {
605     if (UseUp && !route(P, T, Size/2, Step+1))
606       return false;
607     if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
608       return false;
609   }
610   return true;
611 }
612 
613 // --------------------------------------------------------------------
614 // Support for building selection results (output instructions that are
615 // parts of the final selection).
616 
617 namespace {
618 struct OpRef {
619   OpRef(SDValue V) : OpV(V) {}
620   bool isValue() const { return OpV.getNode() != nullptr; }
621   bool isValid() const { return isValue() || !(OpN & Invalid); }
622   static OpRef res(int N) { return OpRef(Whole | (N & Index)); }
623   static OpRef fail() { return OpRef(Invalid); }
624 
625   static OpRef lo(const OpRef &R) {
626     assert(!R.isValue());
627     return OpRef(R.OpN & (Undef | Index | LoHalf));
628   }
629   static OpRef hi(const OpRef &R) {
630     assert(!R.isValue());
631     return OpRef(R.OpN & (Undef | Index | HiHalf));
632   }
633   static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); }
634 
635   // Direct value.
636   SDValue OpV = SDValue();
637 
638   // Reference to the operand of the input node:
639   // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the
640   // operand index:
641   // If bit 30 is set, it's the high half of the operand.
642   // If bit 29 is set, it's the low half of the operand.
643   unsigned OpN = 0;
644 
645   enum : unsigned {
646     Invalid = 0x10000000,
647     LoHalf  = 0x20000000,
648     HiHalf  = 0x40000000,
649     Whole   = LoHalf | HiHalf,
650     Undef   = 0x80000000,
651     Index   = 0x0FFFFFFF,  // Mask of the index value.
652     IndexBits = 28,
653   };
654 
655   LLVM_DUMP_METHOD
656   void print(raw_ostream &OS, const SelectionDAG &G) const;
657 
658 private:
659   OpRef(unsigned N) : OpN(N) {}
660 };
661 
662 struct NodeTemplate {
663   NodeTemplate() = default;
664   unsigned Opc = 0;
665   MVT Ty = MVT::Other;
666   std::vector<OpRef> Ops;
667 
668   LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const;
669 };
670 
671 struct ResultStack {
672   ResultStack(SDNode *Inp)
673     : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {}
674   SDNode *InpNode;
675   MVT InpTy;
676   unsigned push(const NodeTemplate &Res) {
677     List.push_back(Res);
678     return List.size()-1;
679   }
680   unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) {
681     NodeTemplate Res;
682     Res.Opc = Opc;
683     Res.Ty = Ty;
684     Res.Ops = Ops;
685     return push(Res);
686   }
687   bool empty() const { return List.empty(); }
688   unsigned size() const { return List.size(); }
689   unsigned top() const { return size()-1; }
690   const NodeTemplate &operator[](unsigned I) const { return List[I]; }
691   unsigned reset(unsigned NewTop) {
692     List.resize(NewTop+1);
693     return NewTop;
694   }
695 
696   using BaseType = std::vector<NodeTemplate>;
697   BaseType::iterator begin() { return List.begin(); }
698   BaseType::iterator end()   { return List.end(); }
699   BaseType::const_iterator begin() const { return List.begin(); }
700   BaseType::const_iterator end() const   { return List.end(); }
701 
702   BaseType List;
703 
704   LLVM_DUMP_METHOD
705   void print(raw_ostream &OS, const SelectionDAG &G) const;
706 };
707 } // namespace
708 
709 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
710 void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const {
711   if (isValue()) {
712     OpV.getNode()->print(OS, &G);
713     return;
714   }
715   if (OpN & Invalid) {
716     OS << "invalid";
717     return;
718   }
719   if (OpN & Undef) {
720     OS << "undef";
721     return;
722   }
723   if ((OpN & Whole) != Whole) {
724     assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf);
725     if (OpN & LoHalf)
726       OS << "lo ";
727     else
728       OS << "hi ";
729   }
730   OS << '#' << SignExtend32(OpN & Index, IndexBits);
731 }
732 
733 void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const {
734   const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo();
735   OS << format("%8s", EVT(Ty).getEVTString().c_str()) << "  "
736      << TII.getName(Opc);
737   bool Comma = false;
738   for (const auto &R : Ops) {
739     if (Comma)
740       OS << ',';
741     Comma = true;
742     OS << ' ';
743     R.print(OS, G);
744   }
745 }
746 
747 void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const {
748   OS << "Input node:\n";
749 #ifndef NDEBUG
750   InpNode->dumpr(&G);
751 #endif
752   OS << "Result templates:\n";
753   for (unsigned I = 0, E = List.size(); I != E; ++I) {
754     OS << '[' << I << "] ";
755     List[I].print(OS, G);
756     OS << '\n';
757   }
758 }
759 #endif
760 
761 namespace {
762 struct ShuffleMask {
763   ShuffleMask(ArrayRef<int> M) : Mask(M) {
764     for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
765       int M = Mask[I];
766       if (M == -1)
767         continue;
768       MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M);
769       MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M);
770     }
771   }
772 
773   ArrayRef<int> Mask;
774   int MinSrc = -1, MaxSrc = -1;
775 
776   ShuffleMask lo() const {
777     size_t H = Mask.size()/2;
778     return ShuffleMask(Mask.take_front(H));
779   }
780   ShuffleMask hi() const {
781     size_t H = Mask.size()/2;
782     return ShuffleMask(Mask.take_back(H));
783   }
784 
785   void print(raw_ostream &OS) const {
786     OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {";
787     for (int M : Mask)
788       OS << ' ' << M;
789     OS << " }";
790   }
791 };
792 
793 LLVM_ATTRIBUTE_UNUSED
794 raw_ostream &operator<<(raw_ostream &OS, const ShuffleMask &SM) {
795   SM.print(OS);
796   return OS;
797 }
798 } // namespace
799 
800 // --------------------------------------------------------------------
801 // The HvxSelector class.
802 
803 static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) {
804   return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo());
805 }
806 static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) {
807   return static_cast<const HexagonSubtarget&>(G.getSubtarget());
808 }
809 
810 namespace llvm {
811   struct HvxSelector {
812     const HexagonTargetLowering &Lower;
813     HexagonDAGToDAGISel &ISel;
814     SelectionDAG &DAG;
815     const HexagonSubtarget &HST;
816     const unsigned HwLen;
817 
818     HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G)
819       : Lower(getHexagonLowering(G)),  ISel(HS), DAG(G),
820         HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {}
821 
822     MVT getSingleVT(MVT ElemTy) const {
823       assert(ElemTy != MVT::i1 && "Use getBoolVT for predicates");
824       unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8);
825       return MVT::getVectorVT(ElemTy, NumElems);
826     }
827 
828     MVT getPairVT(MVT ElemTy) const {
829       assert(ElemTy != MVT::i1); // Suspicious: there are no predicate pairs.
830       unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8);
831       return MVT::getVectorVT(ElemTy, NumElems);
832     }
833 
834     MVT getBoolVT() const {
835       // Return HwLen x i1.
836       return MVT::getVectorVT(MVT::i1, HwLen);
837     }
838 
839     void selectShuffle(SDNode *N);
840     void selectRor(SDNode *N);
841     void selectVAlign(SDNode *N);
842 
843   private:
844     void select(SDNode *ISelN);
845     void materialize(const ResultStack &Results);
846 
847     SDValue getConst32(int Val, const SDLoc &dl);
848     SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl);
849 
850     enum : unsigned {
851       None,
852       PackMux,
853     };
854     OpRef concats(OpRef Va, OpRef Vb, ResultStack &Results);
855     OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
856                  MutableArrayRef<int> NewMask, unsigned Options = None);
857     OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
858                 MutableArrayRef<int> NewMask);
859     OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
860                 ResultStack &Results);
861     OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
862                 ResultStack &Results);
863 
864     OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results);
865     OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
866     OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results);
867     OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
868 
869     OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results);
870     OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
871     OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results);
872     OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results);
873 
874     bool selectVectorConstants(SDNode *N);
875     bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy,
876                           SDValue Va, SDValue Vb, SDNode *N);
877 
878   };
879 }
880 
881 static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL,
882                       MutableArrayRef<int> MaskR) {
883   unsigned VecLen = Mask.size();
884   assert(MaskL.size() == VecLen && MaskR.size() == VecLen);
885   for (unsigned I = 0; I != VecLen; ++I) {
886     int M = Mask[I];
887     if (M < 0) {
888       MaskL[I] = MaskR[I] = -1;
889     } else if (unsigned(M) < VecLen) {
890       MaskL[I] = M;
891       MaskR[I] = -1;
892     } else {
893       MaskL[I] = -1;
894       MaskR[I] = M-VecLen;
895     }
896   }
897 }
898 
899 static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc,
900                                          unsigned MaxLen) {
901   assert(A.size() > 0 && A.size() >= MaxLen);
902   int F = A[0];
903   int E = F;
904   for (unsigned I = 1; I != MaxLen; ++I) {
905     if (A[I] - E != Inc)
906       return { F, I };
907     E = A[I];
908   }
909   return { F, MaxLen };
910 }
911 
912 static bool isUndef(ArrayRef<int> Mask) {
913   for (int Idx : Mask)
914     if (Idx != -1)
915       return false;
916   return true;
917 }
918 
919 static bool isIdentity(ArrayRef<int> Mask) {
920   for (int I = 0, E = Mask.size(); I != E; ++I) {
921     int M = Mask[I];
922     if (M >= 0 && M != I)
923       return false;
924   }
925   return true;
926 }
927 
928 static SmallVector<unsigned, 4> getInputSegmentList(ShuffleMask SM,
929                                                     unsigned SegLen) {
930   assert(isPowerOf2_32(SegLen));
931   SmallVector<unsigned, 4> SegList;
932   if (SM.MaxSrc == -1)
933     return SegList;
934 
935   unsigned Shift = Log2_32(SegLen);
936   BitVector Segs(alignTo(SM.MaxSrc + 1, SegLen) >> Shift);
937 
938   for (int I = 0, E = SM.Mask.size(); I != E; ++I) {
939     int M = SM.Mask[I];
940     if (M >= 0)
941       Segs.set(M >> Shift);
942   }
943 
944   for (unsigned B : Segs.set_bits())
945     SegList.push_back(B);
946   return SegList;
947 }
948 
949 static SmallVector<unsigned, 4> getOutputSegmentMap(ShuffleMask SM,
950                                                     unsigned SegLen) {
951   // Calculate the layout of the output segments in terms of the input
952   // segments.
953   // For example [1,3,1,0] means that the output consists of 4 output
954   // segments, where the first output segment has only elements of the
955   // input segment at index 1. The next output segment only has elements
956   // of the input segment 3, etc.
957   // If an output segment only has undef elements, the value will be ~0u.
958   // If an output segment has elements from more than one input segment,
959   // the corresponding value will be ~1u.
960   unsigned MaskLen = SM.Mask.size();
961   assert(MaskLen % SegLen == 0);
962   SmallVector<unsigned, 4> Map(MaskLen / SegLen);
963 
964   for (int S = 0, E = Map.size(); S != E; ++S) {
965     unsigned Idx = ~0u;
966     for (int I = 0; I != static_cast<int>(SegLen); ++I) {
967       int M = SM.Mask[S*SegLen + I];
968       if (M < 0)
969         continue;
970       unsigned G = M / SegLen; // Input segment of this element.
971       if (Idx == ~0u) {
972         Idx = G;
973       } else if (Idx != G) {
974         Idx = ~1u;
975         break;
976       }
977     }
978     Map[S] = Idx;
979   }
980 
981   return Map;
982 }
983 
984 static void packSegmentMask(ArrayRef<int> Mask, ArrayRef<unsigned> OutSegMap,
985                             unsigned SegLen, MutableArrayRef<int> PackedMask) {
986   SmallVector<unsigned, 4> InvMap;
987   for (int I = OutSegMap.size() - 1; I >= 0; --I) {
988     unsigned S = OutSegMap[I];
989     assert(S != ~0u && "Unexpected undef");
990     assert(S != ~1u && "Unexpected multi");
991     if (InvMap.size() <= S)
992       InvMap.resize(S+1);
993     InvMap[S] = I;
994   }
995 
996   unsigned Shift = Log2_32(SegLen);
997   for (int I = 0, E = Mask.size(); I != E; ++I) {
998     int M = Mask[I];
999     if (M >= 0) {
1000       int OutIdx = InvMap[M >> Shift];
1001       M = (M & (SegLen-1)) + SegLen*OutIdx;
1002     }
1003     PackedMask[I] = M;
1004   }
1005 }
1006 
1007 static bool isPermutation(ArrayRef<int> Mask) {
1008   // Check by adding all numbers only works if there is no overflow.
1009   assert(Mask.size() < 0x00007FFF && "Sanity failure");
1010   int Sum = 0;
1011   for (int Idx : Mask) {
1012     if (Idx == -1)
1013       return false;
1014     Sum += Idx;
1015   }
1016   int N = Mask.size();
1017   return 2*Sum == N*(N-1);
1018 }
1019 
1020 bool HvxSelector::selectVectorConstants(SDNode *N) {
1021   // Constant vectors are generated as loads from constant pools or as
1022   // splats of a constant value. Since they are generated during the
1023   // selection process, the main selection algorithm is not aware of them.
1024   // Select them directly here.
1025   SmallVector<SDNode*,4> Nodes;
1026   SetVector<SDNode*> WorkQ;
1027 
1028   // The DAG can change (due to CSE) during selection, so cache all the
1029   // unselected nodes first to avoid traversing a mutating DAG.
1030   WorkQ.insert(N);
1031   for (unsigned i = 0; i != WorkQ.size(); ++i) {
1032     SDNode *W = WorkQ[i];
1033     if (!W->isMachineOpcode() && W->getOpcode() == HexagonISD::ISEL)
1034       Nodes.push_back(W);
1035     for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j)
1036       WorkQ.insert(W->getOperand(j).getNode());
1037   }
1038 
1039   for (SDNode *L : Nodes)
1040     select(L);
1041 
1042   return !Nodes.empty();
1043 }
1044 
1045 void HvxSelector::materialize(const ResultStack &Results) {
1046   DEBUG_WITH_TYPE("isel", {
1047     dbgs() << "Materializing\n";
1048     Results.print(dbgs(), DAG);
1049   });
1050   if (Results.empty())
1051     return;
1052   const SDLoc &dl(Results.InpNode);
1053   std::vector<SDValue> Output;
1054 
1055   for (unsigned I = 0, E = Results.size(); I != E; ++I) {
1056     const NodeTemplate &Node = Results[I];
1057     std::vector<SDValue> Ops;
1058     for (const OpRef &R : Node.Ops) {
1059       assert(R.isValid());
1060       if (R.isValue()) {
1061         Ops.push_back(R.OpV);
1062         continue;
1063       }
1064       if (R.OpN & OpRef::Undef) {
1065         MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index);
1066         Ops.push_back(ISel.selectUndef(dl, MVT(SVT)));
1067         continue;
1068       }
1069       // R is an index of a result.
1070       unsigned Part = R.OpN & OpRef::Whole;
1071       int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits);
1072       if (Idx < 0)
1073         Idx += I;
1074       assert(Idx >= 0 && unsigned(Idx) < Output.size());
1075       SDValue Op = Output[Idx];
1076       MVT OpTy = Op.getValueType().getSimpleVT();
1077       if (Part != OpRef::Whole) {
1078         assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf);
1079         MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(),
1080                                       OpTy.getVectorNumElements()/2);
1081         unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo
1082                                                : Hexagon::vsub_hi;
1083         Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op);
1084       }
1085       Ops.push_back(Op);
1086     } // for (Node : Results)
1087 
1088     assert(Node.Ty != MVT::Other);
1089     SDNode *ResN = (Node.Opc == TargetOpcode::COPY)
1090                       ? Ops.front().getNode()
1091                       : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops);
1092     Output.push_back(SDValue(ResN, 0));
1093   }
1094 
1095   SDNode *OutN = Output.back().getNode();
1096   SDNode *InpN = Results.InpNode;
1097   DEBUG_WITH_TYPE("isel", {
1098     dbgs() << "Generated node:\n";
1099     OutN->dumpr(&DAG);
1100   });
1101 
1102   ISel.ReplaceNode(InpN, OutN);
1103   selectVectorConstants(OutN);
1104   DAG.RemoveDeadNodes();
1105 }
1106 
1107 OpRef HvxSelector::concats(OpRef Lo, OpRef Hi, ResultStack &Results) {
1108   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1109   const SDLoc &dl(Results.InpNode);
1110   Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), {
1111     getConst32(Hexagon::HvxWRRegClassID, dl),
1112     Lo, getConst32(Hexagon::vsub_lo, dl),
1113     Hi, getConst32(Hexagon::vsub_hi, dl),
1114   });
1115   return OpRef::res(Results.top());
1116 }
1117 
1118 // Va, Vb are single vectors. If SM only uses two vector halves from Va/Vb,
1119 // pack these halves into a single vector, and remap SM into NewMask to use
1120 // the new vector instead.
1121 OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb,
1122                          ResultStack &Results, MutableArrayRef<int> NewMask,
1123                          unsigned Options) {
1124   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1125   if (!Va.isValid() || !Vb.isValid())
1126     return OpRef::fail();
1127 
1128   MVT Ty = getSingleVT(MVT::i8);
1129   MVT PairTy = getPairVT(MVT::i8);
1130   OpRef Inp[2] = {Va, Vb};
1131   unsigned VecLen = SM.Mask.size();
1132 
1133   auto valign = [this](OpRef Lo, OpRef Hi, unsigned Amt, MVT Ty,
1134                        ResultStack &Results) {
1135     if (Amt == 0)
1136       return Lo;
1137     const SDLoc &dl(Results.InpNode);
1138     if (isUInt<3>(Amt) || isUInt<3>(HwLen - Amt)) {
1139       bool IsRight = isUInt<3>(Amt); // Right align.
1140       SDValue S = getConst32(IsRight ? Amt : HwLen - Amt, dl);
1141       unsigned Opc = IsRight ? Hexagon::V6_valignbi : Hexagon::V6_vlalignbi;
1142       Results.push(Opc, Ty, {Hi, Lo, S});
1143       return OpRef::res(Results.top());
1144     }
1145     Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(Amt, dl)});
1146     OpRef A = OpRef::res(Results.top());
1147     Results.push(Hexagon::V6_valignb, Ty, {Hi, Lo, A});
1148     return OpRef::res(Results.top());
1149   };
1150 
1151   // Segment is a vector half.
1152   unsigned SegLen = HwLen / 2;
1153 
1154   // Check if we can shuffle vector halves around to get the used elements
1155   // into a single vector.
1156   SmallVector<int,128> MaskH(SM.Mask.begin(), SM.Mask.end());
1157   SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, SegLen);
1158   unsigned SegCount = SegList.size();
1159   SmallVector<unsigned, 4> SegMap = getOutputSegmentMap(SM.Mask, SegLen);
1160 
1161   if (SegList.empty())
1162     return OpRef::undef(Ty);
1163 
1164   // NOTE:
1165   // In the following part of the function, where the segments are rearranged,
1166   // the shuffle mask SM can be of any length that is a multiple of a vector
1167   // (i.e. a multiple of 2*SegLen), and non-zero.
1168   // The output segment map is computed, and it may have any even number of
1169   // entries, but the rearrangement of input segments will be done based only
1170   // on the first two (non-undef) entries in the segment map.
1171   // For example, if the output map is 3, 1, 1, 3 (it can have at most two
1172   // distinct entries!), the segments 1 and 3 of Va/Vb will be packaged into
1173   // a single vector V = 3:1. The output mask will then be updated to use
1174   // seg(0,V), seg(1,V), seg(1,V), seg(0,V).
1175   //
1176   // Picking the segments based on the output map is an optimization. For
1177   // correctness it is only necessary that Seg0 and Seg1 are the two input
1178   // segments that are used in the output.
1179 
1180   unsigned Seg0 = ~0u, Seg1 = ~0u;
1181   for (int I = 0, E = SegMap.size(); I != E; ++I) {
1182     unsigned X = SegMap[I];
1183     if (X == ~0u)
1184       continue;
1185     if (Seg0 == ~0u)
1186       Seg0 = X;
1187     else if (Seg1 != ~0u)
1188       break;
1189     if (X == ~1u || X != Seg0)
1190       Seg1 = X;
1191   }
1192 
1193   if (SegCount == 1) {
1194     unsigned SrcOp = SegList[0] / 2;
1195     for (int I = 0; I != static_cast<int>(VecLen); ++I) {
1196       int M = SM.Mask[I];
1197       if (M >= 0) {
1198         M -= SrcOp * HwLen;
1199         assert(M >= 0);
1200       }
1201       NewMask[I] = M;
1202     }
1203     return Inp[SrcOp];
1204   }
1205 
1206   if (SegCount == 2) {
1207     // Seg0 should not be undef here: this would imply a SegList
1208     // with <= 1 elements, which was checked earlier.
1209     assert(Seg0 != ~0u);
1210 
1211     // If Seg0 or Seg1 are "multi-defined", pick them from the input
1212     // segment list instead.
1213     if (Seg0 == ~1u || Seg1 == ~1u) {
1214       if (Seg0 == Seg1) {
1215         Seg0 = SegList[0];
1216         Seg1 = SegList[1];
1217       } else if (Seg0 == ~1u) {
1218         Seg0 = SegList[0] != Seg1 ? SegList[0] : SegList[1];
1219       } else {
1220         assert(Seg1 == ~1u); // Sanity
1221         Seg1 = SegList[0] != Seg0 ? SegList[0] : SegList[1];
1222       }
1223     }
1224     assert(Seg0 != ~1u && Seg1 != ~1u);
1225 
1226     assert(Seg0 != Seg1 && "Expecting different segments");
1227     const SDLoc &dl(Results.InpNode);
1228     Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(SegLen, dl)});
1229     OpRef HL = OpRef::res(Results.top());
1230 
1231     // Va = AB, Vb = CD
1232 
1233     if (Seg0 / 2 == Seg1 / 2) {
1234       // Same input vector.
1235       Va = Inp[Seg0 / 2];
1236       if (Seg0 > Seg1) {
1237         // Swap halves.
1238         Results.push(Hexagon::V6_vror, Ty, {Inp[Seg0 / 2], HL});
1239         Va = OpRef::res(Results.top());
1240       }
1241       packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
1242     } else if (Seg0 % 2 == Seg1 % 2) {
1243       // Picking AC, BD, CA, or DB.
1244       // vshuff(CD,AB,HL) -> BD:AC
1245       // vshuff(AB,CD,HL) -> DB:CA
1246       auto Vs = (Seg0 == 0 || Seg0 == 1) ? std::make_pair(Vb, Va)  // AC or BD
1247                                          : std::make_pair(Va, Vb); // CA or DB
1248       Results.push(Hexagon::V6_vshuffvdd, PairTy, {Vs.first, Vs.second, HL});
1249       OpRef P = OpRef::res(Results.top());
1250       Va = (Seg0 == 0 || Seg0 == 2) ? OpRef::lo(P) : OpRef::hi(P);
1251       packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
1252     } else {
1253       // Picking AD, BC, CB, or DA.
1254       if ((Seg0 == 0 && Seg1 == 3) || (Seg0 == 2 && Seg1 == 1)) {
1255         // AD or BC: this can be done using vmux.
1256         // Q = V6_pred_scalar2 SegLen
1257         // V = V6_vmux Q, (Va, Vb) or (Vb, Va)
1258         Results.push(Hexagon::V6_pred_scalar2, getBoolVT(), {HL});
1259         OpRef Qt = OpRef::res(Results.top());
1260         auto Vs = (Seg0 == 0) ? std::make_pair(Va, Vb)  // AD
1261                               : std::make_pair(Vb, Va); // CB
1262         Results.push(Hexagon::V6_vmux, Ty, {Qt, Vs.first, Vs.second});
1263         Va = OpRef::res(Results.top());
1264         packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
1265       } else {
1266         // BC or DA: this could be done via valign by SegLen.
1267         // Do nothing here, because valign (if possible) will be generated
1268         // later on (make sure the Seg0 values are as expected, for sanity).
1269         assert(Seg0 == 1 || Seg0 == 3);
1270       }
1271     }
1272   }
1273 
1274   // Check if the arguments can be packed by valign(Va,Vb) or valign(Vb,Va).
1275 
1276   ShuffleMask SMH(MaskH);
1277   assert(SMH.Mask.size() == VecLen);
1278   SmallVector<int,128> MaskA(SMH.Mask.begin(), SMH.Mask.end());
1279 
1280   if (SMH.MaxSrc - SMH.MinSrc >= static_cast<int>(HwLen)) {
1281     // valign(Lo=Va,Hi=Vb) won't work. Try swapping Va/Vb.
1282     SmallVector<int,128> Swapped(SMH.Mask.begin(), SMH.Mask.end());
1283     ShuffleVectorSDNode::commuteMask(Swapped);
1284     ShuffleMask SW(Swapped);
1285     if (SW.MaxSrc - SW.MinSrc < static_cast<int>(HwLen)) {
1286       MaskA.assign(SW.Mask.begin(), SW.Mask.end());
1287       std::swap(Va, Vb);
1288     }
1289   }
1290   ShuffleMask SMA(MaskA);
1291   assert(SMA.Mask.size() == VecLen);
1292 
1293   if (SMA.MaxSrc - SMA.MinSrc < static_cast<int>(HwLen)) {
1294     int ShiftR = SMA.MinSrc;
1295     if (ShiftR >= static_cast<int>(HwLen)) {
1296       Va = Vb;
1297       Vb = OpRef::undef(Ty);
1298       ShiftR -= HwLen;
1299     }
1300     OpRef RetVal = valign(Va, Vb, ShiftR, Ty, Results);
1301 
1302     for (int I = 0; I != static_cast<int>(VecLen); ++I) {
1303       int M = SMA.Mask[I];
1304       if (M != -1)
1305         M -= SMA.MinSrc;
1306       NewMask[I] = M;
1307     }
1308     return RetVal;
1309   }
1310 
1311   // By here, packing by segment (half-vector) shuffling, and vector alignment
1312   // failed. Try vmux.
1313   // Note: since this is using the original mask, Va and Vb must not have been
1314   // modified.
1315 
1316   if (Options & PackMux) {
1317     // If elements picked from Va and Vb have all different (source) indexes
1318     // (relative to the start of the argument), do a mux, and update the mask.
1319     BitVector Picked(HwLen);
1320     SmallVector<uint8_t,128> MuxBytes(HwLen);
1321     bool CanMux = true;
1322     for (int I = 0; I != static_cast<int>(VecLen); ++I) {
1323       int M = SM.Mask[I];
1324       if (M == -1)
1325         continue;
1326       if (M >= static_cast<int>(HwLen))
1327         M -= HwLen;
1328       else
1329         MuxBytes[M] = 0xFF;
1330       if (Picked[M]) {
1331         CanMux = false;
1332         break;
1333       }
1334       NewMask[I] = M;
1335     }
1336     if (CanMux)
1337       return vmuxs(MuxBytes, Va, Vb, Results);
1338   }
1339   return OpRef::fail();
1340 }
1341 
1342 // Va, Vb are vector pairs. If SM only uses two single vectors from Va/Vb,
1343 // pack these vectors into a pair, and remap SM into NewMask to use the
1344 // new pair instead.
1345 OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb,
1346                          ResultStack &Results, MutableArrayRef<int> NewMask) {
1347   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1348   SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, HwLen);
1349   if (SegList.empty())
1350     return OpRef::undef(getPairVT(MVT::i8));
1351 
1352   // If more than two halves are used, bail.
1353   // TODO: be more aggressive here?
1354   unsigned SegCount = SegList.size();
1355   if (SegCount > 2)
1356     return OpRef::fail();
1357 
1358   MVT HalfTy = getSingleVT(MVT::i8);
1359 
1360   OpRef Inp[2] = { Va, Vb };
1361   OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) };
1362 
1363   // Really make sure we have at most 2 vectors used in the mask.
1364   assert(SegCount <= 2);
1365 
1366   for (int I = 0, E = SegList.size(); I != E; ++I) {
1367     unsigned S = SegList[I];
1368     OpRef Op = Inp[S / 2];
1369     Out[I] = (S & 1) ? OpRef::hi(Op) : OpRef::lo(Op);
1370   }
1371 
1372   // NOTE: Using SegList as the packing map here (not SegMap). This works,
1373   // because we're not concerned here about the order of the segments (i.e.
1374   // single vectors) in the output pair. Changing the order of vectors is
1375   // free (as opposed to changing the order of vector halves as in packs),
1376   // and so there is no extra cost added in case the order needs to be
1377   // changed later.
1378   packSegmentMask(SM.Mask, SegList, HwLen, NewMask);
1379   return concats(Out[0], Out[1], Results);
1380 }
1381 
1382 OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1383                          ResultStack &Results) {
1384   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1385   MVT ByteTy = getSingleVT(MVT::i8);
1386   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1387   const SDLoc &dl(Results.InpNode);
1388   SDValue B = getVectorConstant(Bytes, dl);
1389   Results.push(Hexagon::V6_vd0, ByteTy, {});
1390   Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)});
1391   Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va});
1392   return OpRef::res(Results.top());
1393 }
1394 
1395 OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1396                          ResultStack &Results) {
1397   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1398   size_t S = Bytes.size() / 2;
1399   OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results);
1400   OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results);
1401   return concats(L, H, Results);
1402 }
1403 
1404 OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1405   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1406   unsigned VecLen = SM.Mask.size();
1407   assert(HwLen == VecLen);
1408   (void)VecLen;
1409   assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); }));
1410 
1411   if (isIdentity(SM.Mask))
1412     return Va;
1413   if (isUndef(SM.Mask))
1414     return OpRef::undef(getSingleVT(MVT::i8));
1415 
1416   unsigned HalfLen = HwLen / 2;
1417   assert(isPowerOf2_32(HalfLen)); // Sanity.
1418 
1419   // Handle special case where the output is the same half of the input
1420   // repeated twice, i.e. if Va = AB, then handle the output of AA or BB.
1421   std::pair<int, unsigned> Strip1 = findStrip(SM.Mask, 1, HalfLen);
1422   if ((Strip1.first & ~HalfLen) == 0 && Strip1.second == HalfLen) {
1423     std::pair<int, unsigned> Strip2 =
1424         findStrip(SM.Mask.drop_front(HalfLen), 1, HalfLen);
1425     if (Strip1 == Strip2) {
1426       const SDLoc &dl(Results.InpNode);
1427       Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(HalfLen, dl)});
1428       Results.push(Hexagon::V6_vshuffvdd, getPairVT(MVT::i8),
1429                    {Va, Va, OpRef::res(Results.top())});
1430       OpRef S = OpRef::res(Results.top());
1431       return (Strip1.first == 0) ? OpRef::lo(S) : OpRef::hi(S);
1432     }
1433   }
1434 
1435   OpRef P = perfect(SM, Va, Results);
1436   if (P.isValid())
1437     return P;
1438   return butterfly(SM, Va, Results);
1439 }
1440 
1441 OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb,
1442                            ResultStack &Results) {
1443   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1444   if (isUndef(SM.Mask))
1445     return OpRef::undef(getSingleVT(MVT::i8));
1446 
1447   OpRef C = contracting(SM, Va, Vb, Results);
1448   if (C.isValid())
1449     return C;
1450 
1451   int VecLen = SM.Mask.size();
1452   SmallVector<int,128> PackedMask(VecLen);
1453   OpRef P = packs(SM, Va, Vb, Results, PackedMask);
1454   if (P.isValid())
1455     return shuffs1(ShuffleMask(PackedMask), P, Results);
1456 
1457   // TODO: Before we split the mask, try perfect shuffle on concatenated
1458   // operands. This won't work now, because the perfect code does not
1459   // tolerate undefs in the mask.
1460 
1461   SmallVector<int,128> MaskL(VecLen), MaskR(VecLen);
1462   splitMask(SM.Mask, MaskL, MaskR);
1463 
1464   OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results);
1465   OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results);
1466   if (!L.isValid() || !R.isValid())
1467     return OpRef::fail();
1468 
1469   SmallVector<uint8_t,128> Bytes(VecLen);
1470   for (int I = 0; I != VecLen; ++I) {
1471     if (MaskL[I] != -1)
1472       Bytes[I] = 0xFF;
1473   }
1474   return vmuxs(Bytes, L, R, Results);
1475 }
1476 
1477 OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1478   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1479   int VecLen = SM.Mask.size();
1480 
1481   if (isIdentity(SM.Mask))
1482     return Va;
1483   if (isUndef(SM.Mask))
1484     return OpRef::undef(getPairVT(MVT::i8));
1485 
1486   SmallVector<int,128> PackedMask(VecLen);
1487   OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask);
1488   if (P.isValid()) {
1489     ShuffleMask PM(PackedMask);
1490     OpRef E = expanding(PM, P, Results);
1491     if (E.isValid())
1492       return E;
1493 
1494     OpRef L = shuffs1(PM.lo(), P, Results);
1495     OpRef H = shuffs1(PM.hi(), P, Results);
1496     if (L.isValid() && H.isValid())
1497       return concats(L, H, Results);
1498   }
1499 
1500   OpRef R = perfect(SM, Va, Results);
1501   if (R.isValid())
1502     return R;
1503   // TODO commute the mask and try the opposite order of the halves.
1504 
1505   OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results);
1506   OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results);
1507   if (L.isValid() && H.isValid())
1508     return concats(L, H, Results);
1509 
1510   return OpRef::fail();
1511 }
1512 
1513 OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb,
1514                            ResultStack &Results) {
1515   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1516   if (isUndef(SM.Mask))
1517     return OpRef::undef(getPairVT(MVT::i8));
1518 
1519   int VecLen = SM.Mask.size();
1520   SmallVector<int,256> PackedMask(VecLen);
1521   OpRef P = packp(SM, Va, Vb, Results, PackedMask);
1522   if (P.isValid())
1523     return shuffp1(ShuffleMask(PackedMask), P, Results);
1524 
1525   SmallVector<int,256> MaskL(VecLen), MaskR(VecLen);
1526   splitMask(SM.Mask, MaskL, MaskR);
1527 
1528   OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results);
1529   OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results);
1530   if (!L.isValid() || !R.isValid())
1531     return OpRef::fail();
1532 
1533   // Mux the results.
1534   SmallVector<uint8_t,256> Bytes(VecLen);
1535   for (int I = 0; I != VecLen; ++I) {
1536     if (MaskL[I] != -1)
1537       Bytes[I] = 0xFF;
1538   }
1539   return vmuxp(Bytes, L, R, Results);
1540 }
1541 
1542 namespace {
1543   struct Deleter : public SelectionDAG::DAGNodeDeletedListener {
1544     template <typename T>
1545     Deleter(SelectionDAG &D, T &C)
1546       : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) {
1547                                                   C.erase(N);
1548                                                 }) {}
1549   };
1550 
1551   template <typename T>
1552   struct NullifyingVector : public T {
1553     DenseMap<SDNode*, SDNode**> Refs;
1554     NullifyingVector(T &&V) : T(V) {
1555       for (unsigned i = 0, e = T::size(); i != e; ++i) {
1556         SDNode *&N = T::operator[](i);
1557         Refs[N] = &N;
1558       }
1559     }
1560     void erase(SDNode *N) {
1561       auto F = Refs.find(N);
1562       if (F != Refs.end())
1563         *F->second = nullptr;
1564     }
1565   };
1566 }
1567 
1568 void HvxSelector::select(SDNode *ISelN) {
1569   // What's important here is to select the right set of nodes. The main
1570   // selection algorithm loops over nodes in a topological order, i.e. users
1571   // are visited before their operands.
1572   //
1573   // It is an error to have an unselected node with a selected operand, and
1574   // there is an assertion in the main selector code to enforce that.
1575   //
1576   // Such a situation could occur if we selected a node, which is both a
1577   // subnode of ISelN, and a subnode of an unrelated (and yet unselected)
1578   // node in the DAG.
1579   assert(ISelN->getOpcode() == HexagonISD::ISEL);
1580   SDNode *N0 = ISelN->getOperand(0).getNode();
1581   if (N0->isMachineOpcode()) {
1582     ISel.ReplaceNode(ISelN, N0);
1583     return;
1584   }
1585 
1586   // There could have been nodes created (i.e. inserted into the DAG)
1587   // that are now dead. Remove them, in case they use any of the nodes
1588   // to select (and make them look shared).
1589   DAG.RemoveDeadNodes();
1590 
1591   SetVector<SDNode*> SubNodes, TmpQ;
1592   std::map<SDNode*,unsigned> NumOps;
1593 
1594   // Don't want to select N0 if it's shared with another node, except if
1595   // it's shared with other ISELs.
1596   auto IsISelN = [](SDNode *T) { return T->getOpcode() == HexagonISD::ISEL; };
1597   if (llvm::all_of(N0->uses(), IsISelN))
1598     SubNodes.insert(N0);
1599 
1600   auto InSubNodes = [&SubNodes](SDNode *T) { return SubNodes.count(T); };
1601   for (unsigned I = 0; I != SubNodes.size(); ++I) {
1602     SDNode *S = SubNodes[I];
1603     unsigned OpN = 0;
1604     // Only add subnodes that are only reachable from N0.
1605     for (SDValue Op : S->ops()) {
1606       SDNode *O = Op.getNode();
1607       if (llvm::all_of(O->uses(), InSubNodes)) {
1608         SubNodes.insert(O);
1609         ++OpN;
1610       }
1611     }
1612     NumOps.insert({S, OpN});
1613     if (OpN == 0)
1614       TmpQ.insert(S);
1615   }
1616 
1617   for (unsigned I = 0; I != TmpQ.size(); ++I) {
1618     SDNode *S = TmpQ[I];
1619     for (SDNode *U : S->uses()) {
1620       if (U == ISelN)
1621         continue;
1622       auto F = NumOps.find(U);
1623       assert(F != NumOps.end());
1624       if (F->second > 0 && !--F->second)
1625         TmpQ.insert(F->first);
1626     }
1627   }
1628 
1629   // Remove the marker.
1630   ISel.ReplaceNode(ISelN, N0);
1631 
1632   assert(SubNodes.size() == TmpQ.size());
1633   NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector());
1634 
1635   Deleter DUQ(DAG, Queue);
1636   for (SDNode *S : reverse(Queue)) {
1637     if (S == nullptr)
1638       continue;
1639     DEBUG_WITH_TYPE("isel", {dbgs() << "HVX selecting: "; S->dump(&DAG);});
1640     ISel.Select(S);
1641   }
1642 }
1643 
1644 bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl,
1645                                    MVT ResTy, SDValue Va, SDValue Vb,
1646                                    SDNode *N) {
1647   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1648   MVT ElemTy = ResTy.getVectorElementType();
1649   assert(ElemTy == MVT::i8);
1650   unsigned VecLen = Mask.size();
1651   bool HavePairs = (2*HwLen == VecLen);
1652   MVT SingleTy = getSingleVT(MVT::i8);
1653 
1654   // The prior attempts to handle this shuffle may have left a bunch of
1655   // dead nodes in the DAG (such as constants). These nodes will be added
1656   // at the end of DAG's node list, which at that point had already been
1657   // sorted topologically. In the main selection loop, the node list is
1658   // traversed backwards from the root node, which means that any new
1659   // nodes (from the end of the list) will not be visited.
1660   // Scalarization will replace the shuffle node with the scalarized
1661   // expression, and if that expression reused any if the leftoever (dead)
1662   // nodes, these nodes would not be selected (since the "local" selection
1663   // only visits nodes that are not in AllNodes).
1664   // To avoid this issue, remove all dead nodes from the DAG now.
1665 //  DAG.RemoveDeadNodes();
1666 
1667   SmallVector<SDValue,128> Ops;
1668   LLVMContext &Ctx = *DAG.getContext();
1669   MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT();
1670   for (int I : Mask) {
1671     if (I < 0) {
1672       Ops.push_back(ISel.selectUndef(dl, LegalTy));
1673       continue;
1674     }
1675     SDValue Vec;
1676     unsigned M = I;
1677     if (M < VecLen) {
1678       Vec = Va;
1679     } else {
1680       Vec = Vb;
1681       M -= VecLen;
1682     }
1683     if (HavePairs) {
1684       if (M < HwLen) {
1685         Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec);
1686       } else {
1687         Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec);
1688         M -= HwLen;
1689       }
1690     }
1691     SDValue Idx = DAG.getConstant(M, dl, MVT::i32);
1692     SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx});
1693     SDValue L = Lower.LowerOperation(Ex, DAG);
1694     assert(L.getNode());
1695     Ops.push_back(L);
1696   }
1697 
1698   SDValue LV;
1699   if (2*HwLen == VecLen) {
1700     SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen});
1701     SDValue L0 = Lower.LowerOperation(B0, DAG);
1702     SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen});
1703     SDValue L1 = Lower.LowerOperation(B1, DAG);
1704     // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering)
1705     // functions may expect to be called only for illegal operations, so
1706     // make sure that they are not called for legal ones. Develop a better
1707     // mechanism for dealing with this.
1708     LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1});
1709   } else {
1710     SDValue BV = DAG.getBuildVector(ResTy, dl, Ops);
1711     LV = Lower.LowerOperation(BV, DAG);
1712   }
1713 
1714   assert(!N->use_empty());
1715   SDValue IS = DAG.getNode(HexagonISD::ISEL, dl, ResTy, LV);
1716   ISel.ReplaceNode(N, IS.getNode());
1717   select(IS.getNode());
1718   DAG.RemoveDeadNodes();
1719   return true;
1720 }
1721 
1722 OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb,
1723                                ResultStack &Results) {
1724   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1725   if (!Va.isValid() || !Vb.isValid())
1726     return OpRef::fail();
1727 
1728   // Contracting shuffles, i.e. instructions that always discard some bytes
1729   // from the operand vectors.
1730   //
1731   // V6_vshuff{e,o}b
1732   // V6_vdealb4w
1733   // V6_vpack{e,o}{b,h}
1734 
1735   int VecLen = SM.Mask.size();
1736   std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1737   MVT ResTy = getSingleVT(MVT::i8);
1738 
1739   // The following shuffles only work for bytes and halfwords. This requires
1740   // the strip length to be 1 or 2.
1741   if (Strip.second != 1 && Strip.second != 2)
1742     return OpRef::fail();
1743 
1744   // The patterns for the shuffles, in terms of the starting offsets of the
1745   // consecutive strips (L = length of the strip, N = VecLen):
1746   //
1747   // vpacke:    0, 2L, 4L ... N+0, N+2L, N+4L ...      L = 1 or 2
1748   // vpacko:    L, 3L, 5L ... N+L, N+3L, N+5L ...      L = 1 or 2
1749   //
1750   // vshuffe:   0, N+0, 2L, N+2L, 4L ...               L = 1 or 2
1751   // vshuffo:   L, N+L, 3L, N+3L, 5L ...               L = 1 or 2
1752   //
1753   // vdealb4w:  0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ...
1754 
1755   // The value of the element in the mask following the strip will decide
1756   // what kind of a shuffle this can be.
1757   int NextInMask = SM.Mask[Strip.second];
1758 
1759   // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask
1760   // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would
1761   // satisfy this.
1762   if (NextInMask < VecLen) {
1763     // vpack{e,o} or vdealb4w
1764     if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) {
1765       int N = VecLen;
1766       // Check if this is vdealb4w (L=1).
1767       for (int I = 0; I != N/4; ++I)
1768         if (SM.Mask[I] != 4*I)
1769           return OpRef::fail();
1770       for (int I = 0; I != N/4; ++I)
1771         if (SM.Mask[I+N/4] != 2 + 4*I)
1772           return OpRef::fail();
1773       for (int I = 0; I != N/4; ++I)
1774         if (SM.Mask[I+N/2] != N + 4*I)
1775           return OpRef::fail();
1776       for (int I = 0; I != N/4; ++I)
1777         if (SM.Mask[I+3*N/4] != N+2 + 4*I)
1778           return OpRef::fail();
1779       // Matched mask for vdealb4w.
1780       Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va});
1781       return OpRef::res(Results.top());
1782     }
1783 
1784     // Check if this is vpack{e,o}.
1785     int N = VecLen;
1786     int L = Strip.second;
1787     // Check if the first strip starts at 0 or at L.
1788     if (Strip.first != 0 && Strip.first != L)
1789       return OpRef::fail();
1790     // Examine the rest of the mask.
1791     for (int I = L; I < N; I += L) {
1792       auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1793       // Check whether the mask element at the beginning of each strip
1794       // increases by 2L each time.
1795       if (S.first - Strip.first != 2*I)
1796         return OpRef::fail();
1797       // Check whether each strip is of the same length.
1798       if (S.second != unsigned(L))
1799         return OpRef::fail();
1800     }
1801 
1802     // Strip.first == 0  =>  vpacke
1803     // Strip.first == L  =>  vpacko
1804     assert(Strip.first == 0 || Strip.first == L);
1805     using namespace Hexagon;
1806     NodeTemplate Res;
1807     Res.Opc = Strip.second == 1 // Number of bytes.
1808                   ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob)
1809                   : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh);
1810     Res.Ty = ResTy;
1811     Res.Ops = { Vb, Va };
1812     Results.push(Res);
1813     return OpRef::res(Results.top());
1814   }
1815 
1816   // Check if this is vshuff{e,o}.
1817   int N = VecLen;
1818   int L = Strip.second;
1819   std::pair<int,unsigned> PrevS = Strip;
1820   bool Flip = false;
1821   for (int I = L; I < N; I += L) {
1822     auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1823     if (S.second != PrevS.second)
1824       return OpRef::fail();
1825     int Diff = Flip ? PrevS.first - S.first + 2*L
1826                     : S.first - PrevS.first;
1827     if (Diff != N)
1828       return OpRef::fail();
1829     Flip ^= true;
1830     PrevS = S;
1831   }
1832   // Strip.first == 0  =>  vshuffe
1833   // Strip.first == L  =>  vshuffo
1834   assert(Strip.first == 0 || Strip.first == L);
1835   using namespace Hexagon;
1836   NodeTemplate Res;
1837   Res.Opc = Strip.second == 1 // Number of bytes.
1838                 ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob)
1839                 : (Strip.first == 0 ?  V6_vshufeh :  V6_vshufoh);
1840   Res.Ty = ResTy;
1841   Res.Ops = { Vb, Va };
1842   Results.push(Res);
1843   return OpRef::res(Results.top());
1844 }
1845 
1846 OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1847   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1848   // Expanding shuffles (using all elements and inserting into larger vector):
1849   //
1850   // V6_vunpacku{b,h} [*]
1851   //
1852   // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask.
1853   //
1854   // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so
1855   // they are not shuffles.
1856   //
1857   // The argument is a single vector.
1858 
1859   int VecLen = SM.Mask.size();
1860   assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type");
1861 
1862   std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1863 
1864   // The patterns for the unpacks, in terms of the starting offsets of the
1865   // consecutive strips (L = length of the strip, N = VecLen):
1866   //
1867   // vunpacku:  0, -1, L, -1, 2L, -1 ...
1868 
1869   if (Strip.first != 0)
1870     return OpRef::fail();
1871 
1872   // The vunpackus only handle byte and half-word.
1873   if (Strip.second != 1 && Strip.second != 2)
1874     return OpRef::fail();
1875 
1876   int N = VecLen;
1877   int L = Strip.second;
1878 
1879   // First, check the non-ignored strips.
1880   for (int I = 2*L; I < N; I += 2*L) {
1881     auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1882     if (S.second != unsigned(L))
1883       return OpRef::fail();
1884     if (2*S.first != I)
1885       return OpRef::fail();
1886   }
1887   // Check the -1s.
1888   for (int I = L; I < N; I += 2*L) {
1889     auto S = findStrip(SM.Mask.drop_front(I), 0, N-I);
1890     if (S.first != -1 || S.second != unsigned(L))
1891       return OpRef::fail();
1892   }
1893 
1894   unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub
1895                                    : Hexagon::V6_vunpackuh;
1896   Results.push(Opc, getPairVT(MVT::i8), {Va});
1897   return OpRef::res(Results.top());
1898 }
1899 
1900 OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1901   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1902   // V6_vdeal{b,h}
1903   // V6_vshuff{b,h}
1904 
1905   // V6_vshufoe{b,h}  those are quivalent to vshuffvdd(..,{1,2})
1906   // V6_vshuffvdd (V6_vshuff)
1907   // V6_dealvdd (V6_vdeal)
1908 
1909   int VecLen = SM.Mask.size();
1910   assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8);
1911   unsigned LogLen = Log2_32(VecLen);
1912   unsigned HwLog = Log2_32(HwLen);
1913   // The result length must be the same as the length of a single vector,
1914   // or a vector pair.
1915   assert(LogLen == HwLog || LogLen == HwLog+1);
1916   bool HavePairs = LogLen == HwLog+1;
1917 
1918   if (!isPermutation(SM.Mask))
1919     return OpRef::fail();
1920 
1921   SmallVector<unsigned,8> Perm(LogLen);
1922 
1923   // Check if this could be a perfect shuffle, or a combination of perfect
1924   // shuffles.
1925   //
1926   // Consider this permutation (using hex digits to make the ASCII diagrams
1927   // easier to read):
1928   //   { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }.
1929   // This is a "deal" operation: divide the input into two halves, and
1930   // create the output by picking elements by alternating between these two
1931   // halves:
1932   //   0 1 2 3 4 5 6 7    -->    0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F  [*]
1933   //   8 9 A B C D E F
1934   //
1935   // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides
1936   // a somwehat different mechanism that could be used to perform shuffle/
1937   // deal operations: a 2x2 transpose.
1938   // Consider the halves of inputs again, they can be interpreted as a 2x8
1939   // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated
1940   // together. Now, when considering 2 elements at a time, it will be a 2x4
1941   // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices:
1942   //   01 23  45 67
1943   //   89 AB  CD EF
1944   // With groups of 4, this will become a single 2x2 matrix, and so on.
1945   //
1946   // The 2x2 transpose instruction works by transposing each of the 2x2
1947   // matrices (or "sub-matrices"), given a specific group size. For example,
1948   // if the group size is 1 (i.e. each element is its own group), there
1949   // will be four transposes of the four 2x2 matrices that form the 2x8.
1950   // For example, with the inputs as above, the result will be:
1951   //   0 8  2 A  4 C  6 E
1952   //   1 9  3 B  5 D  7 F
1953   // Now, this result can be tranposed again, but with the group size of 2:
1954   //   08 19  4C 5D
1955   //   2A 3B  6E 7F
1956   // If we then transpose that result, but with the group size of 4, we get:
1957   //   0819 2A3B
1958   //   4C5D 6E7F
1959   // If we concatenate these two rows, it will be
1960   //   0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F
1961   // which is the same as the "deal" [*] above.
1962   //
1963   // In general, a "deal" of individual elements is a series of 2x2 transposes,
1964   // with changing group size. HVX has two instructions:
1965   //   Vdd = V6_vdealvdd Vu, Vv, Rt
1966   //   Vdd = V6_shufvdd  Vu, Vv, Rt
1967   // that perform exactly that. The register Rt controls which transposes are
1968   // going to happen: a bit at position n (counting from 0) indicates that a
1969   // transpose with a group size of 2^n will take place. If multiple bits are
1970   // set, multiple transposes will happen: vdealvdd will perform them starting
1971   // with the largest group size, vshuffvdd will do them in the reverse order.
1972   //
1973   // The main observation is that each 2x2 transpose corresponds to swapping
1974   // columns of bits in the binary representation of the values.
1975   //
1976   // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits
1977   // in a given column. The * denote the columns that will be swapped.
1978   // The transpose with the group size 2^n corresponds to swapping columns
1979   // 3 (the highest log) and log2(n):
1980   //
1981   //     3 2 1 0         0 2 1 3         0 2 3 1
1982   //     *     *             * *           * *
1983   //  0  0 0 0 0      0  0 0 0 0      0  0 0 0 0      0  0 0 0 0
1984   //  1  0 0 0 1      8  1 0 0 0      8  1 0 0 0      8  1 0 0 0
1985   //  2  0 0 1 0      2  0 0 1 0      1  0 0 0 1      1  0 0 0 1
1986   //  3  0 0 1 1      A  1 0 1 0      9  1 0 0 1      9  1 0 0 1
1987   //  4  0 1 0 0      4  0 1 0 0      4  0 1 0 0      2  0 0 1 0
1988   //  5  0 1 0 1      C  1 1 0 0      C  1 1 0 0      A  1 0 1 0
1989   //  6  0 1 1 0      6  0 1 1 0      5  0 1 0 1      3  0 0 1 1
1990   //  7  0 1 1 1      E  1 1 1 0      D  1 1 0 1      B  1 0 1 1
1991   //  8  1 0 0 0      1  0 0 0 1      2  0 0 1 0      4  0 1 0 0
1992   //  9  1 0 0 1      9  1 0 0 1      A  1 0 1 0      C  1 1 0 0
1993   //  A  1 0 1 0      3  0 0 1 1      3  0 0 1 1      5  0 1 0 1
1994   //  B  1 0 1 1      B  1 0 1 1      B  1 0 1 1      D  1 1 0 1
1995   //  C  1 1 0 0      5  0 1 0 1      6  0 1 1 0      6  0 1 1 0
1996   //  D  1 1 0 1      D  1 1 0 1      E  1 1 1 0      E  1 1 1 0
1997   //  E  1 1 1 0      7  0 1 1 1      7  0 1 1 1      7  0 1 1 1
1998   //  F  1 1 1 1      F  1 1 1 1      F  1 1 1 1      F  1 1 1 1
1999 
2000   // There is one special case that is not a perfect shuffle, but
2001   // can be turned into one easily: when the shuffle operates on
2002   // a vector pair, but the two vectors in the pair are swapped.
2003   // The code below that identifies perfect shuffles will reject
2004   // it, unless the order is reversed.
2005   SmallVector<int,128> MaskStorage(SM.Mask.begin(), SM.Mask.end());
2006   bool InvertedPair = false;
2007   if (HavePairs && SM.Mask[0] >= int(HwLen)) {
2008     for (int i = 0, e = SM.Mask.size(); i != e; ++i) {
2009       int M = SM.Mask[i];
2010       MaskStorage[i] = M >= int(HwLen) ? M-HwLen : M+HwLen;
2011     }
2012     InvertedPair = true;
2013   }
2014   ArrayRef<int> LocalMask(MaskStorage);
2015 
2016   auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) {
2017     unsigned X = Mask[0] ^ Mask[Num/2];
2018     // Check that the first half has the X's bits clear.
2019     if ((Mask[0] & X) != 0)
2020       return 0u;
2021     for (unsigned I = 1; I != Num/2; ++I) {
2022       if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X)
2023         return 0u;
2024       if ((Mask[I] & X) != 0)
2025         return 0u;
2026     }
2027     return X;
2028   };
2029 
2030   // Create a vector of log2's for each column: Perm[i] corresponds to
2031   // the i-th bit (lsb is 0).
2032   assert(VecLen > 2);
2033   for (unsigned I = VecLen; I >= 2; I >>= 1) {
2034     // Examine the initial segment of Mask of size I.
2035     unsigned X = XorPow2(LocalMask, I);
2036     if (!isPowerOf2_32(X))
2037       return OpRef::fail();
2038     // Check the other segments of Mask.
2039     for (int J = I; J < VecLen; J += I) {
2040       if (XorPow2(LocalMask.slice(J, I), I) != X)
2041         return OpRef::fail();
2042     }
2043     Perm[Log2_32(X)] = Log2_32(I)-1;
2044   }
2045 
2046   // Once we have Perm, represent it as cycles. Denote the maximum log2
2047   // (equal to log2(VecLen)-1) as M. The cycle containing M can then be
2048   // written as (M a1 a2 a3 ... an). That cycle can be broken up into
2049   // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition
2050   // order being from left to right. Any (contiguous) segment where the
2051   // values ai, ai+1...aj are either all increasing or all decreasing,
2052   // can be implemented via a single vshuffvdd/vdealvdd respectively.
2053   //
2054   // If there is a cycle (a1 a2 ... an) that does not involve M, it can
2055   // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can
2056   // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure
2057   // can be used to generate a sequence of vshuffvdd/vdealvdd.
2058   //
2059   // Example:
2060   // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written
2061   // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply
2062   //   (4 0 1)(4 0)(4 2 3)(4 2).
2063   // It can then be expanded into swaps as
2064   //   (4 0)(4 1)(4 0)(4 2)(4 3)(4 2),
2065   // and broken up into "increasing" segments as
2066   //   [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)].
2067   // This is equivalent to
2068   //   (4 0 1)(4 0 2 3)(4 2),
2069   // which can be implemented as 3 vshufvdd instructions.
2070 
2071   using CycleType = SmallVector<unsigned,8>;
2072   std::set<CycleType> Cycles;
2073   std::set<unsigned> All;
2074 
2075   for (unsigned I : Perm)
2076     All.insert(I);
2077 
2078   // If the cycle contains LogLen-1, move it to the front of the cycle.
2079   // Otherwise, return the cycle unchanged.
2080   auto canonicalize = [LogLen](const CycleType &C) -> CycleType {
2081     unsigned LogPos, N = C.size();
2082     for (LogPos = 0; LogPos != N; ++LogPos)
2083       if (C[LogPos] == LogLen-1)
2084         break;
2085     if (LogPos == N)
2086       return C;
2087 
2088     CycleType NewC(C.begin()+LogPos, C.end());
2089     NewC.append(C.begin(), C.begin()+LogPos);
2090     return NewC;
2091   };
2092 
2093   auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) {
2094     // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6),
2095     // for bytes zero is included, for halfwords is not.
2096     if (Cs.size() != 1)
2097       return 0u;
2098     const CycleType &C = *Cs.begin();
2099     if (C[0] != Len-1)
2100       return 0u;
2101     int D = Len - C.size();
2102     if (D != 0 && D != 1)
2103       return 0u;
2104 
2105     bool IsDeal = true, IsShuff = true;
2106     for (unsigned I = 1; I != Len-D; ++I) {
2107       if (C[I] != Len-1-I)
2108         IsDeal = false;
2109       if (C[I] != I-(1-D))  // I-1, I
2110         IsShuff = false;
2111     }
2112     // At most one, IsDeal or IsShuff, can be non-zero.
2113     assert(!(IsDeal || IsShuff) || IsDeal != IsShuff);
2114     static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh };
2115     static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh };
2116     return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0);
2117   };
2118 
2119   while (!All.empty()) {
2120     unsigned A = *All.begin();
2121     All.erase(A);
2122     CycleType C;
2123     C.push_back(A);
2124     for (unsigned B = Perm[A]; B != A; B = Perm[B]) {
2125       C.push_back(B);
2126       All.erase(B);
2127     }
2128     if (C.size() <= 1)
2129       continue;
2130     Cycles.insert(canonicalize(C));
2131   }
2132 
2133   MVT SingleTy = getSingleVT(MVT::i8);
2134   MVT PairTy = getPairVT(MVT::i8);
2135 
2136   // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}.
2137   if (unsigned(VecLen) == HwLen) {
2138     if (unsigned SingleOpc = pfs(Cycles, LogLen)) {
2139       Results.push(SingleOpc, SingleTy, {Va});
2140       return OpRef::res(Results.top());
2141     }
2142   }
2143 
2144   // From the cycles, construct the sequence of values that will
2145   // then form the control values for vdealvdd/vshuffvdd, i.e.
2146   // (M a1 a2)(M a3 a4 a5)... -> a1 a2 a3 a4 a5
2147   // This essentially strips the M value from the cycles where
2148   // it's present, and performs the insertion of M (then stripping)
2149   // for cycles without M (as described in an earlier comment).
2150   SmallVector<unsigned,8> SwapElems;
2151   // When the input is extended (i.e. single vector becomes a pair),
2152   // this is done by using an "undef" vector as the second input.
2153   // However, then we get
2154   //   input 1: GOODBITS
2155   //   input 2: ........
2156   // but we need
2157   //   input 1: ....BITS
2158   //   input 2: ....GOOD
2159   // Then at the end, this needs to be undone. To accomplish this,
2160   // artificially add "LogLen-1" at both ends of the sequence.
2161   if (!HavePairs)
2162     SwapElems.push_back(LogLen-1);
2163   for (const CycleType &C : Cycles) {
2164     // Do the transformation: (a1..an) -> (M a1..an)(M a1).
2165     unsigned First = (C[0] == LogLen-1) ? 1 : 0;
2166     SwapElems.append(C.begin()+First, C.end());
2167     if (First == 0)
2168       SwapElems.push_back(C[0]);
2169   }
2170   if (!HavePairs)
2171     SwapElems.push_back(LogLen-1);
2172 
2173   const SDLoc &dl(Results.InpNode);
2174   OpRef Arg = HavePairs ? Va
2175                         : concats(Va, OpRef::undef(SingleTy), Results);
2176   if (InvertedPair)
2177     Arg = concats(OpRef::hi(Arg), OpRef::lo(Arg), Results);
2178 
2179   for (unsigned I = 0, E = SwapElems.size(); I != E; ) {
2180     bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1];
2181     unsigned S = (1u << SwapElems[I]);
2182     if (I < E-1) {
2183       while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1]))
2184         S |= 1u << SwapElems[I];
2185       // The above loop will not add a bit for the final SwapElems[I+1],
2186       // so add it here.
2187       S |= 1u << SwapElems[I];
2188     }
2189     ++I;
2190 
2191     NodeTemplate Res;
2192     Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(S, dl)});
2193     Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd;
2194     Res.Ty = PairTy;
2195     Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) };
2196     Results.push(Res);
2197     Arg = OpRef::res(Results.top());
2198   }
2199 
2200   return HavePairs ? Arg : OpRef::lo(Arg);
2201 }
2202 
2203 OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) {
2204   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
2205   // Butterfly shuffles.
2206   //
2207   // V6_vdelta
2208   // V6_vrdelta
2209   // V6_vror
2210 
2211   // The assumption here is that all elements picked by Mask are in the
2212   // first operand to the vector_shuffle. This assumption is enforced
2213   // by the caller.
2214 
2215   MVT ResTy = getSingleVT(MVT::i8);
2216   PermNetwork::Controls FC, RC;
2217   const SDLoc &dl(Results.InpNode);
2218   int VecLen = SM.Mask.size();
2219 
2220   for (int M : SM.Mask) {
2221     if (M != -1 && M >= VecLen)
2222       return OpRef::fail();
2223   }
2224 
2225   // Try the deltas/benes for both single vectors and vector pairs.
2226   ForwardDeltaNetwork FN(SM.Mask);
2227   if (FN.run(FC)) {
2228     SDValue Ctl = getVectorConstant(FC, dl);
2229     Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)});
2230     return OpRef::res(Results.top());
2231   }
2232 
2233   // Try reverse delta.
2234   ReverseDeltaNetwork RN(SM.Mask);
2235   if (RN.run(RC)) {
2236     SDValue Ctl = getVectorConstant(RC, dl);
2237     Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)});
2238     return OpRef::res(Results.top());
2239   }
2240 
2241   // Do Benes.
2242   BenesNetwork BN(SM.Mask);
2243   if (BN.run(FC, RC)) {
2244     SDValue CtlF = getVectorConstant(FC, dl);
2245     SDValue CtlR = getVectorConstant(RC, dl);
2246     Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)});
2247     Results.push(Hexagon::V6_vrdelta, ResTy,
2248                  {OpRef::res(-1), OpRef(CtlR)});
2249     return OpRef::res(Results.top());
2250   }
2251 
2252   return OpRef::fail();
2253 }
2254 
2255 SDValue HvxSelector::getConst32(int Val, const SDLoc &dl) {
2256   return DAG.getTargetConstant(Val, dl, MVT::i32);
2257 }
2258 
2259 SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data,
2260                                        const SDLoc &dl) {
2261   SmallVector<SDValue, 128> Elems;
2262   for (uint8_t C : Data)
2263     Elems.push_back(DAG.getConstant(C, dl, MVT::i8));
2264   MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size());
2265   SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
2266   SDValue LV = Lower.LowerOperation(BV, DAG);
2267   DAG.RemoveDeadNode(BV.getNode());
2268   return DAG.getNode(HexagonISD::ISEL, dl, VecTy, LV);
2269 }
2270 
2271 void HvxSelector::selectShuffle(SDNode *N) {
2272   DEBUG_WITH_TYPE("isel", {
2273     dbgs() << "Starting " << __func__ << " on node:\n";
2274     N->dump(&DAG);
2275   });
2276   MVT ResTy = N->getValueType(0).getSimpleVT();
2277   // Assume that vector shuffles operate on vectors of bytes.
2278   assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8);
2279 
2280   auto *SN = cast<ShuffleVectorSDNode>(N);
2281   std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end());
2282   // This shouldn't really be necessary. Is it?
2283   for (int &Idx : Mask)
2284     if (Idx != -1 && Idx < 0)
2285       Idx = -1;
2286 
2287   unsigned VecLen = Mask.size();
2288   bool HavePairs = (2*HwLen == VecLen);
2289   assert(ResTy.getSizeInBits() / 8 == VecLen);
2290 
2291   // Vd = vector_shuffle Va, Vb, Mask
2292   //
2293 
2294   bool UseLeft = false, UseRight = false;
2295   for (unsigned I = 0; I != VecLen; ++I) {
2296     if (Mask[I] == -1)
2297       continue;
2298     unsigned Idx = Mask[I];
2299     assert(Idx < 2*VecLen);
2300     if (Idx < VecLen)
2301       UseLeft = true;
2302     else
2303       UseRight = true;
2304   }
2305 
2306   DEBUG_WITH_TYPE("isel", {
2307     dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft="
2308            << UseLeft << " UseRight=" << UseRight << " HavePairs="
2309            << HavePairs << '\n';
2310   });
2311   // If the mask is all -1's, generate "undef".
2312   if (!UseLeft && !UseRight) {
2313     ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode());
2314     return;
2315   }
2316 
2317   SDValue Vec0 = N->getOperand(0);
2318   SDValue Vec1 = N->getOperand(1);
2319   ResultStack Results(SN);
2320   Results.push(TargetOpcode::COPY, ResTy, {Vec0});
2321   Results.push(TargetOpcode::COPY, ResTy, {Vec1});
2322   OpRef Va = OpRef::res(Results.top()-1);
2323   OpRef Vb = OpRef::res(Results.top());
2324 
2325   OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results)
2326                          : shuffp2(ShuffleMask(Mask), Va, Vb, Results);
2327 
2328   bool Done = Res.isValid();
2329   if (Done) {
2330     // Make sure that Res is on the stack before materializing.
2331     Results.push(TargetOpcode::COPY, ResTy, {Res});
2332     materialize(Results);
2333   } else {
2334     Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N);
2335   }
2336 
2337   if (!Done) {
2338 #ifndef NDEBUG
2339     dbgs() << "Unhandled shuffle:\n";
2340     SN->dumpr(&DAG);
2341 #endif
2342     llvm_unreachable("Failed to select vector shuffle");
2343   }
2344 }
2345 
2346 void HvxSelector::selectRor(SDNode *N) {
2347   // If this is a rotation by less than 8, use V6_valignbi.
2348   MVT Ty = N->getValueType(0).getSimpleVT();
2349   const SDLoc &dl(N);
2350   SDValue VecV = N->getOperand(0);
2351   SDValue RotV = N->getOperand(1);
2352   SDNode *NewN = nullptr;
2353 
2354   if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) {
2355     unsigned S = CN->getZExtValue() % HST.getVectorLength();
2356     if (S == 0) {
2357       NewN = VecV.getNode();
2358     } else if (isUInt<3>(S)) {
2359       NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty,
2360                                 {VecV, VecV, getConst32(S, dl)});
2361     }
2362   }
2363 
2364   if (!NewN)
2365     NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV});
2366 
2367   ISel.ReplaceNode(N, NewN);
2368 }
2369 
2370 void HvxSelector::selectVAlign(SDNode *N) {
2371   SDValue Vv = N->getOperand(0);
2372   SDValue Vu = N->getOperand(1);
2373   SDValue Rt = N->getOperand(2);
2374   SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N),
2375                                     N->getValueType(0), {Vv, Vu, Rt});
2376   ISel.ReplaceNode(N, NewN);
2377   DAG.RemoveDeadNode(N);
2378 }
2379 
2380 void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) {
2381   HvxSelector(*this, *CurDAG).selectShuffle(N);
2382 }
2383 
2384 void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) {
2385   HvxSelector(*this, *CurDAG).selectRor(N);
2386 }
2387 
2388 void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) {
2389   HvxSelector(*this, *CurDAG).selectVAlign(N);
2390 }
2391 
2392 void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) {
2393   const SDLoc &dl(N);
2394   SDValue Chain = N->getOperand(0);
2395   SDValue Address = N->getOperand(2);
2396   SDValue Predicate = N->getOperand(3);
2397   SDValue Base = N->getOperand(4);
2398   SDValue Modifier = N->getOperand(5);
2399   SDValue Offset = N->getOperand(6);
2400 
2401   unsigned Opcode;
2402   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2403   switch (IntNo) {
2404   default:
2405     llvm_unreachable("Unexpected HVX gather intrinsic.");
2406   case Intrinsic::hexagon_V6_vgathermhq:
2407   case Intrinsic::hexagon_V6_vgathermhq_128B:
2408     Opcode = Hexagon::V6_vgathermhq_pseudo;
2409     break;
2410   case Intrinsic::hexagon_V6_vgathermwq:
2411   case Intrinsic::hexagon_V6_vgathermwq_128B:
2412     Opcode = Hexagon::V6_vgathermwq_pseudo;
2413     break;
2414   case Intrinsic::hexagon_V6_vgathermhwq:
2415   case Intrinsic::hexagon_V6_vgathermhwq_128B:
2416     Opcode = Hexagon::V6_vgathermhwq_pseudo;
2417     break;
2418   }
2419 
2420   SDVTList VTs = CurDAG->getVTList(MVT::Other);
2421   SDValue Ops[] = { Address, Predicate, Base, Modifier, Offset, Chain };
2422   SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2423 
2424   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2425   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
2426 
2427   ReplaceNode(N, Result);
2428 }
2429 
2430 void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) {
2431   const SDLoc &dl(N);
2432   SDValue Chain = N->getOperand(0);
2433   SDValue Address = N->getOperand(2);
2434   SDValue Base = N->getOperand(3);
2435   SDValue Modifier = N->getOperand(4);
2436   SDValue Offset = N->getOperand(5);
2437 
2438   unsigned Opcode;
2439   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2440   switch (IntNo) {
2441   default:
2442     llvm_unreachable("Unexpected HVX gather intrinsic.");
2443   case Intrinsic::hexagon_V6_vgathermh:
2444   case Intrinsic::hexagon_V6_vgathermh_128B:
2445     Opcode = Hexagon::V6_vgathermh_pseudo;
2446     break;
2447   case Intrinsic::hexagon_V6_vgathermw:
2448   case Intrinsic::hexagon_V6_vgathermw_128B:
2449     Opcode = Hexagon::V6_vgathermw_pseudo;
2450     break;
2451   case Intrinsic::hexagon_V6_vgathermhw:
2452   case Intrinsic::hexagon_V6_vgathermhw_128B:
2453     Opcode = Hexagon::V6_vgathermhw_pseudo;
2454     break;
2455   }
2456 
2457   SDVTList VTs = CurDAG->getVTList(MVT::Other);
2458   SDValue Ops[] = { Address, Base, Modifier, Offset, Chain };
2459   SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2460 
2461   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2462   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
2463 
2464   ReplaceNode(N, Result);
2465 }
2466 
2467 void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) {
2468   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2469   SDNode *Result;
2470   switch (IID) {
2471   case Intrinsic::hexagon_V6_vaddcarry: {
2472     std::array<SDValue, 3> Ops = {
2473         {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2474     SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1);
2475     Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2476     break;
2477   }
2478   case Intrinsic::hexagon_V6_vaddcarry_128B: {
2479     std::array<SDValue, 3> Ops = {
2480         {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2481     SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1);
2482     Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2483     break;
2484   }
2485   case Intrinsic::hexagon_V6_vsubcarry: {
2486     std::array<SDValue, 3> Ops = {
2487         {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2488     SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1);
2489     Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2490     break;
2491   }
2492   case Intrinsic::hexagon_V6_vsubcarry_128B: {
2493     std::array<SDValue, 3> Ops = {
2494         {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
2495     SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1);
2496     Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2497     break;
2498   }
2499   default:
2500     llvm_unreachable("Unexpected HVX dual output intrinsic.");
2501   }
2502   ReplaceUses(N, Result);
2503   ReplaceUses(SDValue(N, 0), SDValue(Result, 0));
2504   ReplaceUses(SDValue(N, 1), SDValue(Result, 1));
2505   CurDAG->RemoveDeadNode(N);
2506 }
2507