xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp (revision b23dbabb7f3edb3f323a64f03e37be2c9a8b2a45)
1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the Hexagon target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonISelDAGToDAG.h"
14 #include "Hexagon.h"
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonTargetMachine.h"
18 #include "llvm/CodeGen/FunctionLoweringInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/IR/IntrinsicsHexagon.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "hexagon-isel"
28 #define PASS_NAME "Hexagon DAG->DAG Pattern Instruction Selection"
29 
30 static
31 cl::opt<bool>
32 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
33   cl::desc("Rebalance address calculation trees to improve "
34           "instruction selection"));
35 
36 // Rebalance only if this allows e.g. combining a GA with an offset or
37 // factoring out a shift.
38 static
39 cl::opt<bool>
40 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
41   cl::desc("Rebalance address tree only if this allows optimizations"));
42 
43 static
44 cl::opt<bool>
45 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
46   cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
47 
48 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
49   cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
50 
51 //===----------------------------------------------------------------------===//
52 // Instruction Selector Implementation
53 //===----------------------------------------------------------------------===//
54 
55 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
56 #include "HexagonGenDAGISel.inc"
57 
58 namespace llvm {
59 /// createHexagonISelDag - This pass converts a legalized DAG into a
60 /// Hexagon-specific DAG, ready for instruction scheduling.
61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
62                                    CodeGenOpt::Level OptLevel) {
63   return new HexagonDAGToDAGISel(TM, OptLevel);
64 }
65 }
66 
67 char HexagonDAGToDAGISel::ID = 0;
68 
69 INITIALIZE_PASS(HexagonDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
70 
71 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
72   SDValue Chain = LD->getChain();
73   SDValue Base = LD->getBasePtr();
74   SDValue Offset = LD->getOffset();
75   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
76   EVT LoadedVT = LD->getMemoryVT();
77   unsigned Opcode = 0;
78 
79   // Check for zero extended loads. Treat any-extend loads as zero extended
80   // loads.
81   ISD::LoadExtType ExtType = LD->getExtensionType();
82   bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
83   bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
84 
85   assert(LoadedVT.isSimple());
86   switch (LoadedVT.getSimpleVT().SimpleTy) {
87   case MVT::i8:
88     if (IsZeroExt)
89       Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
90     else
91       Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
92     break;
93   case MVT::i16:
94     if (IsZeroExt)
95       Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
96     else
97       Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
98     break;
99   case MVT::i32:
100   case MVT::f32:
101   case MVT::v2i16:
102   case MVT::v4i8:
103     Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
104     break;
105   case MVT::i64:
106   case MVT::f64:
107   case MVT::v2i32:
108   case MVT::v4i16:
109   case MVT::v8i8:
110     Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
111     break;
112   case MVT::v64i8:
113   case MVT::v32i16:
114   case MVT::v16i32:
115   case MVT::v8i64:
116   case MVT::v128i8:
117   case MVT::v64i16:
118   case MVT::v32i32:
119   case MVT::v16i64:
120     if (isAlignedMemNode(LD)) {
121       if (LD->isNonTemporal())
122         Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
123       else
124         Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
125     } else {
126       Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
127     }
128     break;
129   default:
130     llvm_unreachable("Unexpected memory type in indexed load");
131   }
132 
133   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
134   MachineMemOperand *MemOp = LD->getMemOperand();
135 
136   auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
137         -> MachineSDNode* {
138     if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
139       SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
140       return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
141                                     Zero, SDValue(N, 0));
142     }
143     if (ExtType == ISD::SEXTLOAD)
144       return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
145                                     SDValue(N, 0));
146     return N;
147   };
148 
149   //                  Loaded value   Next address   Chain
150   SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
151   SDValue To[3];
152 
153   EVT ValueVT = LD->getValueType(0);
154   if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
155     // A load extending to i64 will actually produce i32, which will then
156     // need to be extended to i64.
157     assert(LoadedVT.getSizeInBits() <= 32);
158     ValueVT = MVT::i32;
159   }
160 
161   if (IsValidInc) {
162     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
163                                               MVT::i32, MVT::Other, Base,
164                                               IncV, Chain);
165     CurDAG->setNodeMemRefs(L, {MemOp});
166     To[1] = SDValue(L, 1); // Next address.
167     To[2] = SDValue(L, 2); // Chain.
168     // Handle special case for extension to i64.
169     if (LD->getValueType(0) == MVT::i64)
170       L = getExt64(L, dl);
171     To[0] = SDValue(L, 0); // Loaded (extended) value.
172   } else {
173     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
174     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
175                                               Base, Zero, Chain);
176     CurDAG->setNodeMemRefs(L, {MemOp});
177     To[2] = SDValue(L, 1); // Chain.
178     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
179                                               Base, IncV);
180     To[1] = SDValue(A, 0); // Next address.
181     // Handle special case for extension to i64.
182     if (LD->getValueType(0) == MVT::i64)
183       L = getExt64(L, dl);
184     To[0] = SDValue(L, 0); // Loaded (extended) value.
185   }
186   ReplaceUses(From, To, 3);
187   CurDAG->RemoveDeadNode(LD);
188 }
189 
190 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
191   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
192     return nullptr;
193 
194   SDLoc dl(IntN);
195   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
196 
197   static std::map<unsigned,unsigned> LoadPciMap = {
198     { Intrinsic::hexagon_circ_ldb,  Hexagon::L2_loadrb_pci  },
199     { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
200     { Intrinsic::hexagon_circ_ldh,  Hexagon::L2_loadrh_pci  },
201     { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
202     { Intrinsic::hexagon_circ_ldw,  Hexagon::L2_loadri_pci  },
203     { Intrinsic::hexagon_circ_ldd,  Hexagon::L2_loadrd_pci  },
204   };
205   auto FLC = LoadPciMap.find(IntNo);
206   if (FLC != LoadPciMap.end()) {
207     EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
208     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
209     // Operands: { Base, Increment, Modifier, Chain }
210     auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
211     SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
212     MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
213           { IntN->getOperand(2), I, IntN->getOperand(4),
214             IntN->getOperand(0) });
215     return Res;
216   }
217 
218   return nullptr;
219 }
220 
221 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
222       SDNode *IntN) {
223   // The "LoadN" is just a machine load instruction. The intrinsic also
224   // involves storing it. Generate an appropriate store to the location
225   // given in the intrinsic's operand(3).
226   uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
227   unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
228                       HexagonII::MemAccesSizeMask;
229   unsigned Size = 1U << (SizeBits-1);
230 
231   SDLoc dl(IntN);
232   MachinePointerInfo PI;
233   SDValue TS;
234   SDValue Loc = IntN->getOperand(3);
235 
236   if (Size >= 4)
237     TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
238                           Align(Size));
239   else
240     TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
241                                PI, MVT::getIntegerVT(Size * 8), Align(Size));
242 
243   SDNode *StoreN;
244   {
245     HandleSDNode Handle(TS);
246     SelectStore(TS.getNode());
247     StoreN = Handle.getValue().getNode();
248   }
249 
250   // Load's results are { Loaded value, Updated pointer, Chain }
251   ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
252   ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
253   return StoreN;
254 }
255 
256 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
257   // The intrinsics for load circ/brev perform two operations:
258   // 1. Load a value V from the specified location, using the addressing
259   //    mode corresponding to the intrinsic.
260   // 2. Store V into a specified location. This location is typically a
261   //    local, temporary object.
262   // In many cases, the program using these intrinsics will immediately
263   // load V again from the local object. In those cases, when certain
264   // conditions are met, the last load can be removed.
265   // This function identifies and optimizes this pattern. If the pattern
266   // cannot be optimized, it returns nullptr, which will cause the load
267   // to be selected separately from the intrinsic (which will be handled
268   // in SelectIntrinsicWChain).
269 
270   SDValue Ch = N->getOperand(0);
271   SDValue Loc = N->getOperand(1);
272 
273   // Assume that the load and the intrinsic are connected directly with a
274   // chain:
275   //   t1: i32,ch = int.load ..., ..., ..., Loc, ...    // <-- C
276   //   t2: i32,ch = load t1:1, Loc, ...
277   SDNode *C = Ch.getNode();
278 
279   if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
280     return false;
281 
282   // The second load can only be eliminated if its extension type matches
283   // that of the load instruction corresponding to the intrinsic. The user
284   // can provide an address of an unsigned variable to store the result of
285   // a sign-extending intrinsic into (or the other way around).
286   ISD::LoadExtType IntExt;
287   switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
288     case Intrinsic::hexagon_circ_ldub:
289     case Intrinsic::hexagon_circ_lduh:
290       IntExt = ISD::ZEXTLOAD;
291       break;
292     case Intrinsic::hexagon_circ_ldw:
293     case Intrinsic::hexagon_circ_ldd:
294       IntExt = ISD::NON_EXTLOAD;
295       break;
296     default:
297       IntExt = ISD::SEXTLOAD;
298       break;
299   }
300   if (N->getExtensionType() != IntExt)
301     return false;
302 
303   // Make sure the target location for the loaded value in the load intrinsic
304   // is the location from which LD (or N) is loading.
305   if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
306     return false;
307 
308   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
309     SDNode *S = StoreInstrForLoadIntrinsic(L, C);
310     SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
311     SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
312     ReplaceUses(F, T, std::size(T));
313     // This transformation will leave the intrinsic dead. If it remains in
314     // the DAG, the selection code will see it again, but without the load,
315     // and it will generate a store that is normally required for it.
316     CurDAG->RemoveDeadNode(C);
317     return true;
318   }
319   return false;
320 }
321 
322 // Convert the bit-reverse load intrinsic to appropriate target instruction.
323 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
324   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
325     return false;
326 
327   const SDLoc &dl(IntN);
328   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
329 
330   static const std::map<unsigned, unsigned> LoadBrevMap = {
331     { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
332     { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
333     { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
334     { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
335     { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
336     { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
337   };
338   auto FLI = LoadBrevMap.find(IntNo);
339   if (FLI != LoadBrevMap.end()) {
340     EVT ValTy =
341         (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
342     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
343     // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
344     // modifier}.
345     // Operands of target instruction: { Base, Modifier, Chain }.
346     MachineSDNode *Res = CurDAG->getMachineNode(
347         FLI->second, dl, RTys,
348         {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
349 
350     MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
351     CurDAG->setNodeMemRefs(Res, {MemOp});
352 
353     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
354     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
355     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
356     CurDAG->RemoveDeadNode(IntN);
357     return true;
358   }
359   return false;
360 }
361 
362 /// Generate a machine instruction node for the new circular buffer intrinsics.
363 /// The new versions use a CSx register instead of the K field.
364 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
365   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
366     return false;
367 
368   SDLoc DL(IntN);
369   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
370   SmallVector<SDValue, 7> Ops;
371 
372   static std::map<unsigned,unsigned> LoadNPcMap = {
373     { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
374     { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
375     { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
376     { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
377     { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
378     { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
379     { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
380     { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
381     { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
382     { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
383     { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
384     { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
385   };
386   auto FLI = LoadNPcMap.find (IntNo);
387   if (FLI != LoadNPcMap.end()) {
388     EVT ValTy = MVT::i32;
389     if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
390         IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
391       ValTy = MVT::i64;
392     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
393     // Handle load.*_pci case which has 6 operands.
394     if (IntN->getNumOperands() == 6) {
395       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
396       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
397       // Operands: { Base, Increment, Modifier, Start, Chain }.
398       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
399               IntN->getOperand(0) };
400     } else
401       // Handle load.*_pcr case which has 5 operands.
402       // Operands: { Base, Modifier, Start, Chain }.
403       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
404               IntN->getOperand(0) };
405     MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
406     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
407     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
408     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
409     CurDAG->RemoveDeadNode(IntN);
410     return true;
411   }
412 
413   static std::map<unsigned,unsigned> StoreNPcMap = {
414     { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
415     { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
416     { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
417     { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
418     { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
419     { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
420     { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
421     { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
422     { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
423     { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
424   };
425   auto FSI = StoreNPcMap.find (IntNo);
426   if (FSI != StoreNPcMap.end()) {
427     EVT RTys[] = { MVT::i32, MVT::Other };
428     // Handle store.*_pci case which has 7 operands.
429     if (IntN->getNumOperands() == 7) {
430       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
431       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
432       // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
433       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
434               IntN->getOperand(6), IntN->getOperand(0) };
435     } else
436       // Handle store.*_pcr case which has 6 operands.
437       // Operands: { Base, Modifier, Value, Start, Chain }.
438       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
439               IntN->getOperand(5), IntN->getOperand(0) };
440     MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
441     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
442     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
443     CurDAG->RemoveDeadNode(IntN);
444     return true;
445   }
446 
447   return false;
448 }
449 
450 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
451   SDLoc dl(N);
452   LoadSDNode *LD = cast<LoadSDNode>(N);
453 
454   // Handle indexed loads.
455   ISD::MemIndexedMode AM = LD->getAddressingMode();
456   if (AM != ISD::UNINDEXED) {
457     SelectIndexedLoad(LD, dl);
458     return;
459   }
460 
461   // Handle patterns using circ/brev load intrinsics.
462   if (tryLoadOfLoadIntrinsic(LD))
463     return;
464 
465   SelectCode(LD);
466 }
467 
468 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
469   SDValue Chain = ST->getChain();
470   SDValue Base = ST->getBasePtr();
471   SDValue Offset = ST->getOffset();
472   SDValue Value = ST->getValue();
473   // Get the constant value.
474   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
475   EVT StoredVT = ST->getMemoryVT();
476   EVT ValueVT = Value.getValueType();
477 
478   bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
479   unsigned Opcode = 0;
480 
481   assert(StoredVT.isSimple());
482   switch (StoredVT.getSimpleVT().SimpleTy) {
483   case MVT::i8:
484     Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
485     break;
486   case MVT::i16:
487     Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
488     break;
489   case MVT::i32:
490   case MVT::f32:
491   case MVT::v2i16:
492   case MVT::v4i8:
493     Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
494     break;
495   case MVT::i64:
496   case MVT::f64:
497   case MVT::v2i32:
498   case MVT::v4i16:
499   case MVT::v8i8:
500     Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
501     break;
502   case MVT::v64i8:
503   case MVT::v32i16:
504   case MVT::v16i32:
505   case MVT::v8i64:
506   case MVT::v128i8:
507   case MVT::v64i16:
508   case MVT::v32i32:
509   case MVT::v16i64:
510     if (isAlignedMemNode(ST)) {
511       if (ST->isNonTemporal())
512         Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
513       else
514         Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
515     } else {
516       Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
517     }
518     break;
519   default:
520     llvm_unreachable("Unexpected memory type in indexed store");
521   }
522 
523   if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
524     assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
525     Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
526                                            dl, MVT::i32, Value);
527   }
528 
529   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
530   MachineMemOperand *MemOp = ST->getMemOperand();
531 
532   //                  Next address   Chain
533   SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
534   SDValue To[2];
535 
536   if (IsValidInc) {
537     // Build post increment store.
538     SDValue Ops[] = { Base, IncV, Value, Chain };
539     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
540                                               Ops);
541     CurDAG->setNodeMemRefs(S, {MemOp});
542     To[0] = SDValue(S, 0);
543     To[1] = SDValue(S, 1);
544   } else {
545     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
546     SDValue Ops[] = { Base, Zero, Value, Chain };
547     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
548     CurDAG->setNodeMemRefs(S, {MemOp});
549     To[1] = SDValue(S, 0);
550     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
551                                               Base, IncV);
552     To[0] = SDValue(A, 0);
553   }
554 
555   ReplaceUses(From, To, 2);
556   CurDAG->RemoveDeadNode(ST);
557 }
558 
559 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
560   SDLoc dl(N);
561   StoreSDNode *ST = cast<StoreSDNode>(N);
562 
563   // Handle indexed stores.
564   ISD::MemIndexedMode AM = ST->getAddressingMode();
565   if (AM != ISD::UNINDEXED) {
566     SelectIndexedStore(ST, dl);
567     return;
568   }
569 
570   SelectCode(ST);
571 }
572 
573 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
574   SDLoc dl(N);
575   SDValue Shl_0 = N->getOperand(0);
576   SDValue Shl_1 = N->getOperand(1);
577 
578   auto Default = [this,N] () -> void { SelectCode(N); };
579 
580   if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
581     return Default();
582 
583   // RHS is const.
584   int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
585 
586   if (Shl_0.getOpcode() == ISD::MUL) {
587     SDValue Mul_0 = Shl_0.getOperand(0); // Val
588     SDValue Mul_1 = Shl_0.getOperand(1); // Const
589     // RHS of mul is const.
590     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
591       int32_t ValConst = C->getSExtValue() << ShlConst;
592       if (isInt<9>(ValConst)) {
593         SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
594         SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
595                                                 MVT::i32, Mul_0, Val);
596         ReplaceNode(N, Result);
597         return;
598       }
599     }
600     return Default();
601   }
602 
603   if (Shl_0.getOpcode() == ISD::SUB) {
604     SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
605     SDValue Sub_1 = Shl_0.getOperand(1); // Val
606     if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
607       if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
608         return Default();
609       SDValue Shl2_0 = Sub_1.getOperand(0); // Val
610       SDValue Shl2_1 = Sub_1.getOperand(1); // Const
611       if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
612         int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
613         if (isInt<9>(-ValConst)) {
614           SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
615           SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
616                                                   MVT::i32, Shl2_0, Val);
617           ReplaceNode(N, Result);
618           return;
619         }
620       }
621     }
622   }
623 
624   return Default();
625 }
626 
627 //
628 // Handling intrinsics for circular load and bitreverse load.
629 //
630 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
631   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
632     StoreInstrForLoadIntrinsic(L, N);
633     CurDAG->RemoveDeadNode(N);
634     return;
635   }
636 
637   // Handle bit-reverse load intrinsics.
638   if (SelectBrevLdIntrinsic(N))
639     return;
640 
641   if (SelectNewCircIntrinsic(N))
642     return;
643 
644   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
645   if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
646       IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
647       IntNo == Intrinsic::hexagon_V6_vgathermh ||
648       IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
649       IntNo == Intrinsic::hexagon_V6_vgathermhw ||
650       IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
651     SelectV65Gather(N);
652     return;
653   }
654   if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
655       IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
656       IntNo == Intrinsic::hexagon_V6_vgathermhq ||
657       IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
658       IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
659       IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
660     SelectV65GatherPred(N);
661     return;
662   }
663 
664   SelectCode(N);
665 }
666 
667 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
668   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
669   unsigned Bits;
670   switch (IID) {
671   case Intrinsic::hexagon_S2_vsplatrb:
672     Bits = 8;
673     break;
674   case Intrinsic::hexagon_S2_vsplatrh:
675     Bits = 16;
676     break;
677   case Intrinsic::hexagon_V6_vaddcarry:
678   case Intrinsic::hexagon_V6_vaddcarry_128B:
679   case Intrinsic::hexagon_V6_vsubcarry:
680   case Intrinsic::hexagon_V6_vsubcarry_128B:
681     SelectHVXDualOutput(N);
682     return;
683   default:
684     SelectCode(N);
685     return;
686   }
687 
688   SDValue V = N->getOperand(1);
689   SDValue U;
690   // Splat intrinsics.
691   if (keepsLowBits(V, Bits, U)) {
692     SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
693                                 N->getOperand(0), U);
694     ReplaceNode(N, R.getNode());
695     SelectCode(R.getNode());
696     return;
697   }
698   SelectCode(N);
699 }
700 
701 void HexagonDAGToDAGISel::SelectExtractSubvector(SDNode *N) {
702   SDValue Inp = N->getOperand(0);
703   MVT ResTy = N->getValueType(0).getSimpleVT();
704   auto IdxN = cast<ConstantSDNode>(N->getOperand(1));
705   unsigned Idx = IdxN->getZExtValue();
706 
707   [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT();
708   [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements();
709   assert(InpTy.getVectorElementType() == ResTy.getVectorElementType());
710   assert(2 * ResLen == InpTy.getVectorNumElements());
711   assert(ResTy.getSizeInBits() == 32);
712   assert(Idx == 0 || Idx == ResLen);
713 
714   unsigned SubReg = Idx == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
715   SDValue Ext = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(N), ResTy, Inp);
716 
717   ReplaceNode(N, Ext.getNode());
718 }
719 
720 //
721 // Map floating point constant values.
722 //
723 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
724   SDLoc dl(N);
725   auto *CN = cast<ConstantFPSDNode>(N);
726   APInt A = CN->getValueAPF().bitcastToAPInt();
727   if (N->getValueType(0) == MVT::f32) {
728     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
729     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
730     return;
731   }
732   if (N->getValueType(0) == MVT::f64) {
733     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
734     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
735     return;
736   }
737 
738   SelectCode(N);
739 }
740 
741 //
742 // Map boolean values.
743 //
744 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
745   if (N->getValueType(0) == MVT::i1) {
746     assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1));
747     unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
748                       ? Hexagon::PS_true
749                       : Hexagon::PS_false;
750     ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
751     return;
752   }
753 
754   SelectCode(N);
755 }
756 
757 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
758   MachineFrameInfo &MFI = MF->getFrameInfo();
759   const HexagonFrameLowering *HFI = HST->getFrameLowering();
760   int FX = cast<FrameIndexSDNode>(N)->getIndex();
761   Align StkA = HFI->getStackAlign();
762   Align MaxA = MFI.getMaxAlign();
763   SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
764   SDLoc DL(N);
765   SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
766   SDNode *R = nullptr;
767 
768   // Use PS_fi when:
769   // - the object is fixed, or
770   // - there are no objects with higher-than-default alignment, or
771   // - there are no dynamically allocated objects.
772   // Otherwise, use PS_fia.
773   if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
774     R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
775   } else {
776     auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
777     Register AR = HMFI.getStackAlignBaseReg();
778     SDValue CH = CurDAG->getEntryNode();
779     SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
780     R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
781   }
782 
783   ReplaceNode(N, R);
784 }
785 
786 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
787   unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
788                                                          : Hexagon::A4_subp_c;
789   SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
790                                      { N->getOperand(0), N->getOperand(1),
791                                        N->getOperand(2) });
792   ReplaceNode(N, C);
793 }
794 
795 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
796   MVT ResTy = N->getValueType(0).getSimpleVT();
797   if (HST->isHVXVectorType(ResTy, true))
798     return SelectHvxVAlign(N);
799 
800   const SDLoc &dl(N);
801   unsigned VecLen = ResTy.getSizeInBits();
802   if (VecLen == 32) {
803     SDValue Ops[] = {
804       CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
805       N->getOperand(0),
806       CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
807       N->getOperand(1),
808       CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
809     };
810     SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
811                                        MVT::i64, Ops);
812 
813     // Shift right by "(Addr & 0x3) * 8" bytes.
814     SDNode *C;
815     SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
816     SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
817     if (HST->useCompound()) {
818       C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
819                                  M0, N->getOperand(2), M1);
820     } else {
821       SDNode *T = CurDAG->getMachineNode(Hexagon::S2_asl_i_r, dl, MVT::i32,
822                                          N->getOperand(2), M1);
823       C = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
824                                  SDValue(T, 0), M0);
825     }
826     SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
827                                        SDValue(R, 0), SDValue(C, 0));
828     SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
829                                                SDValue(S, 0));
830     ReplaceNode(N, E.getNode());
831   } else {
832     assert(VecLen == 64);
833     SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
834                                         N->getOperand(2));
835     SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
836                                         N->getOperand(0), N->getOperand(1),
837                                         SDValue(Pu,0));
838     ReplaceNode(N, VA);
839   }
840 }
841 
842 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
843   const SDLoc &dl(N);
844   SDValue A = N->getOperand(1);
845   int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
846   assert(isPowerOf2_32(-Mask));
847 
848   SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
849   SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
850                                       N->getOperand(0), M);
851   ReplaceNode(N, AA);
852 }
853 
854 // Handle these nodes here to avoid having to write patterns for all
855 // combinations of input/output types. In all cases, the resulting
856 // instruction is the same.
857 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
858   SDValue Op = N->getOperand(0);
859   MVT OpTy = Op.getValueType().getSimpleVT();
860   SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
861                                   CurDAG->getVTList(OpTy), {Op});
862   ReplaceNode(T, Op.getNode());
863 }
864 
865 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
866   MVT ResTy = N->getValueType(0).getSimpleVT();
867   SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
868                                      N->getOperand(0));
869   ReplaceNode(N, T);
870 }
871 
872 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
873   const SDLoc &dl(N);
874   MVT ResTy = N->getValueType(0).getSimpleVT();
875   SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
876   SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
877                                      N->getOperand(0), Zero);
878   ReplaceNode(N, T);
879 }
880 
881 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
882   const SDLoc &dl(N);
883   MVT ResTy = N->getValueType(0).getSimpleVT();
884   // The argument to V2Q should be a single vector.
885   MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy;
886   assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits());
887 
888   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
889   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
890   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
891                                      N->getOperand(0), SDValue(R,0));
892   ReplaceNode(N, T);
893 }
894 
895 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
896   const SDLoc &dl(N);
897   MVT ResTy = N->getValueType(0).getSimpleVT();
898   // The result of V2Q should be a single vector.
899   assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits());
900 
901   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
902   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
903   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
904                                      N->getOperand(0), SDValue(R,0));
905   ReplaceNode(N, T);
906 }
907 
908 void HexagonDAGToDAGISel::Select(SDNode *N) {
909   if (N->isMachineOpcode())
910     return N->setNodeId(-1);  // Already selected.
911 
912   auto isHvxOp = [this](SDNode *N) {
913     for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
914       if (HST->isHVXVectorType(N->getValueType(i), true))
915         return true;
916     }
917     for (SDValue I : N->ops()) {
918       if (HST->isHVXVectorType(I.getValueType(), true))
919         return true;
920     }
921     return false;
922   };
923 
924   if (HST->useHVXOps() && isHvxOp(N)) {
925     switch (N->getOpcode()) {
926     case ISD::EXTRACT_SUBVECTOR:  return SelectHvxExtractSubvector(N);
927     case ISD::VECTOR_SHUFFLE:     return SelectHvxShuffle(N);
928 
929     case HexagonISD::VROR:        return SelectHvxRor(N);
930     }
931   }
932 
933   switch (N->getOpcode()) {
934   case ISD::Constant:             return SelectConstant(N);
935   case ISD::ConstantFP:           return SelectConstantFP(N);
936   case ISD::FrameIndex:           return SelectFrameIndex(N);
937   case ISD::SHL:                  return SelectSHL(N);
938   case ISD::LOAD:                 return SelectLoad(N);
939   case ISD::STORE:                return SelectStore(N);
940   case ISD::INTRINSIC_W_CHAIN:    return SelectIntrinsicWChain(N);
941   case ISD::INTRINSIC_WO_CHAIN:   return SelectIntrinsicWOChain(N);
942   case ISD::EXTRACT_SUBVECTOR:    return SelectExtractSubvector(N);
943 
944   case HexagonISD::ADDC:
945   case HexagonISD::SUBC:          return SelectAddSubCarry(N);
946   case HexagonISD::VALIGN:        return SelectVAlign(N);
947   case HexagonISD::VALIGNADDR:    return SelectVAlignAddr(N);
948   case HexagonISD::TYPECAST:      return SelectTypecast(N);
949   case HexagonISD::P2D:           return SelectP2D(N);
950   case HexagonISD::D2P:           return SelectD2P(N);
951   case HexagonISD::Q2V:           return SelectQ2V(N);
952   case HexagonISD::V2Q:           return SelectV2Q(N);
953   }
954 
955   SelectCode(N);
956 }
957 
958 bool HexagonDAGToDAGISel::
959 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
960                              std::vector<SDValue> &OutOps) {
961   SDValue Inp = Op, Res;
962 
963   switch (ConstraintID) {
964   default:
965     return true;
966   case InlineAsm::Constraint_o: // Offsetable.
967   case InlineAsm::Constraint_v: // Not offsetable.
968   case InlineAsm::Constraint_m: // Memory.
969     if (SelectAddrFI(Inp, Res))
970       OutOps.push_back(Res);
971     else
972       OutOps.push_back(Inp);
973     break;
974   }
975 
976   OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
977   return false;
978 }
979 
980 
981 static bool isMemOPCandidate(SDNode *I, SDNode *U) {
982   // I is an operand of U. Check if U is an arithmetic (binary) operation
983   // usable in a memop, where the other operand is a loaded value, and the
984   // result of U is stored in the same location.
985 
986   if (!U->hasOneUse())
987     return false;
988   unsigned Opc = U->getOpcode();
989   switch (Opc) {
990     case ISD::ADD:
991     case ISD::SUB:
992     case ISD::AND:
993     case ISD::OR:
994       break;
995     default:
996       return false;
997   }
998 
999   SDValue S0 = U->getOperand(0);
1000   SDValue S1 = U->getOperand(1);
1001   SDValue SY = (S0.getNode() == I) ? S1 : S0;
1002 
1003   SDNode *UUse = *U->use_begin();
1004   if (UUse->getNumValues() != 1)
1005     return false;
1006 
1007   // Check if one of the inputs to U is a load instruction and the output
1008   // is used by a store instruction. If so and they also have the same
1009   // base pointer, then don't preoprocess this node sequence as it
1010   // can be matched to a memop.
1011   SDNode *SYNode = SY.getNode();
1012   if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
1013     SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
1014     SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
1015     if (LDBasePtr == STBasePtr)
1016       return true;
1017   }
1018   return false;
1019 }
1020 
1021 
1022 // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
1023 //            (or (select c 0 y) z)  ->  (select c z (or y z))
1024 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
1025   SelectionDAG &DAG = *CurDAG;
1026 
1027   for (auto *I : Nodes) {
1028     if (I->getOpcode() != ISD::OR)
1029       continue;
1030 
1031     auto IsZero = [] (const SDValue &V) -> bool {
1032       if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
1033         return SC->isZero();
1034       return false;
1035     };
1036     auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
1037       if (Op.getOpcode() != ISD::SELECT)
1038         return false;
1039       return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
1040     };
1041 
1042     SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
1043     EVT VT = I->getValueType(0);
1044     bool SelN0 = IsSelect0(N0);
1045     SDValue SOp = SelN0 ? N0 : N1;
1046     SDValue VOp = SelN0 ? N1 : N0;
1047 
1048     if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
1049       SDValue SC = SOp.getOperand(0);
1050       SDValue SX = SOp.getOperand(1);
1051       SDValue SY = SOp.getOperand(2);
1052       SDLoc DLS = SOp;
1053       if (IsZero(SY)) {
1054         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
1055         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
1056         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1057       } else if (IsZero(SX)) {
1058         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
1059         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
1060         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1061       }
1062     }
1063   }
1064 }
1065 
1066 // Transform: (store ch val (add x (add (shl y c) e)))
1067 //        to: (store ch val (add x (shl (add y d) c))),
1068 // where e = (shl d c) for some integer d.
1069 // The purpose of this is to enable generation of loads/stores with
1070 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1071 // value c must be 0, 1 or 2.
1072 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
1073   SelectionDAG &DAG = *CurDAG;
1074 
1075   for (auto *I : Nodes) {
1076     if (I->getOpcode() != ISD::STORE)
1077       continue;
1078 
1079     // I matched: (store ch val Off)
1080     SDValue Off = I->getOperand(2);
1081     // Off needs to match: (add x (add (shl y c) (shl d c))))
1082     if (Off.getOpcode() != ISD::ADD)
1083       continue;
1084     // Off matched: (add x T0)
1085     SDValue T0 = Off.getOperand(1);
1086     // T0 needs to match: (add T1 T2):
1087     if (T0.getOpcode() != ISD::ADD)
1088       continue;
1089     // T0 matched: (add T1 T2)
1090     SDValue T1 = T0.getOperand(0);
1091     SDValue T2 = T0.getOperand(1);
1092     // T1 needs to match: (shl y c)
1093     if (T1.getOpcode() != ISD::SHL)
1094       continue;
1095     SDValue C = T1.getOperand(1);
1096     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
1097     if (CN == nullptr)
1098       continue;
1099     unsigned CV = CN->getZExtValue();
1100     if (CV > 2)
1101       continue;
1102     // T2 needs to match e, where e = (shl d c) for some d.
1103     ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
1104     if (EN == nullptr)
1105       continue;
1106     unsigned EV = EN->getZExtValue();
1107     if (EV % (1 << CV) != 0)
1108       continue;
1109     unsigned DV = EV / (1 << CV);
1110 
1111     // Replace T0 with: (shl (add y d) c)
1112     SDLoc DL = SDLoc(I);
1113     EVT VT = T0.getValueType();
1114     SDValue D = DAG.getConstant(DV, DL, VT);
1115     // NewAdd = (add y d)
1116     SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
1117     // NewShl = (shl NewAdd c)
1118     SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
1119     ReplaceNode(T0.getNode(), NewShl.getNode());
1120   }
1121 }
1122 
1123 // Transform: (load ch (add x (and (srl y c) Mask)))
1124 //        to: (load ch (add x (shl (srl y d) d-c)))
1125 // where
1126 // Mask = 00..0 111..1 0.0
1127 //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
1128 //          |     +-------- 1s
1129 //          +-------------- at most c 0s
1130 // Motivating example:
1131 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1132 //                     to (add x (and (srl y 3) 1FFFFFFC))
1133 // which results in a constant-extended and(##...,lsr). This transformation
1134 // undoes this simplification for cases where the shl can be folded into
1135 // an addressing mode.
1136 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
1137   SelectionDAG &DAG = *CurDAG;
1138 
1139   for (SDNode *N : Nodes) {
1140     unsigned Opc = N->getOpcode();
1141     if (Opc != ISD::LOAD && Opc != ISD::STORE)
1142       continue;
1143     SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
1144     // Addr must match: (add x T0)
1145     if (Addr.getOpcode() != ISD::ADD)
1146       continue;
1147     SDValue T0 = Addr.getOperand(1);
1148     // T0 must match: (and T1 Mask)
1149     if (T0.getOpcode() != ISD::AND)
1150       continue;
1151 
1152     // We have an AND.
1153     //
1154     // Check the first operand. It must be: (srl y c).
1155     SDValue S = T0.getOperand(0);
1156     if (S.getOpcode() != ISD::SRL)
1157       continue;
1158     ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
1159     if (SN == nullptr)
1160       continue;
1161     if (SN->getAPIntValue().getBitWidth() != 32)
1162       continue;
1163     uint32_t CV = SN->getZExtValue();
1164 
1165     // Check the second operand: the supposed mask.
1166     ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
1167     if (MN == nullptr)
1168       continue;
1169     if (MN->getAPIntValue().getBitWidth() != 32)
1170       continue;
1171     uint32_t Mask = MN->getZExtValue();
1172     // Examine the mask.
1173     uint32_t TZ = countTrailingZeros(Mask);
1174     uint32_t M1 = countTrailingOnes(Mask >> TZ);
1175     uint32_t LZ = countLeadingZeros(Mask);
1176     // Trailing zeros + middle ones + leading zeros must equal the width.
1177     if (TZ + M1 + LZ != 32)
1178       continue;
1179     // The number of trailing zeros will be encoded in the addressing mode.
1180     if (TZ > 2)
1181       continue;
1182     // The number of leading zeros must be at most c.
1183     if (LZ > CV)
1184       continue;
1185 
1186     // All looks good.
1187     SDValue Y = S.getOperand(0);
1188     EVT VT = Addr.getValueType();
1189     SDLoc dl(S);
1190     // TZ = D-C, so D = TZ+C.
1191     SDValue D = DAG.getConstant(TZ+CV, dl, VT);
1192     SDValue DC = DAG.getConstant(TZ, dl, VT);
1193     SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
1194     SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
1195     ReplaceNode(T0.getNode(), NewShl.getNode());
1196   }
1197 }
1198 
1199 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1200 //                                                  (op ... 1 ...))
1201 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
1202   SelectionDAG &DAG = *CurDAG;
1203 
1204   for (SDNode *N : Nodes) {
1205     unsigned Opc = N->getOpcode();
1206     if (Opc != ISD::ZERO_EXTEND)
1207       continue;
1208     SDValue OpI1 = N->getOperand(0);
1209     EVT OpVT = OpI1.getValueType();
1210     if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
1211       continue;
1212     for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1213       SDNode *U = *I;
1214       if (U->getNumValues() != 1)
1215         continue;
1216       EVT UVT = U->getValueType(0);
1217       if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
1218         continue;
1219       // Do not generate select for all i1 vector type.
1220       if (UVT.isVector() && UVT.getVectorElementType() == MVT::i1)
1221         continue;
1222       if (isMemOPCandidate(N, U))
1223         continue;
1224 
1225       // Potentially simplifiable operation.
1226       unsigned I1N = I.getOperandNo();
1227       SmallVector<SDValue,2> Ops(U->getNumOperands());
1228       for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
1229         Ops[i] = U->getOperand(i);
1230       EVT BVT = Ops[I1N].getValueType();
1231 
1232       const SDLoc &dl(U);
1233       SDValue C0 = DAG.getConstant(0, dl, BVT);
1234       SDValue C1 = DAG.getConstant(1, dl, BVT);
1235       SDValue If0, If1;
1236 
1237       if (isa<MachineSDNode>(U)) {
1238         unsigned UseOpc = U->getMachineOpcode();
1239         Ops[I1N] = C0;
1240         If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1241         Ops[I1N] = C1;
1242         If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1243       } else {
1244         unsigned UseOpc = U->getOpcode();
1245         Ops[I1N] = C0;
1246         If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
1247         Ops[I1N] = C1;
1248         If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
1249       }
1250       // We're generating a SELECT way after legalization, so keep the types
1251       // simple.
1252       unsigned UW = UVT.getSizeInBits();
1253       EVT SVT = (UW == 32 || UW == 64) ? MVT::getIntegerVT(UW) : UVT;
1254       SDValue Sel = DAG.getNode(ISD::SELECT, dl, SVT, OpI1,
1255                                 DAG.getBitcast(SVT, If1),
1256                                 DAG.getBitcast(SVT, If0));
1257       SDValue Ret = DAG.getBitcast(UVT, Sel);
1258       DAG.ReplaceAllUsesWith(U, Ret.getNode());
1259     }
1260   }
1261 }
1262 
1263 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1264   // Repack all nodes before calling each preprocessing function,
1265   // because each of them can modify the set of nodes.
1266   auto getNodes = [this]() -> std::vector<SDNode *> {
1267     std::vector<SDNode *> T;
1268     T.reserve(CurDAG->allnodes_size());
1269     for (SDNode &N : CurDAG->allnodes())
1270       T.push_back(&N);
1271     return T;
1272   };
1273 
1274   if (HST->useHVXOps())
1275     PreprocessHvxISelDAG();
1276 
1277   // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
1278   //            (or (select c 0 y) z)  ->  (select c z (or y z))
1279   ppSimplifyOrSelect0(getNodes());
1280 
1281   // Transform: (store ch val (add x (add (shl y c) e)))
1282   //        to: (store ch val (add x (shl (add y d) c))),
1283   // where e = (shl d c) for some integer d.
1284   // The purpose of this is to enable generation of loads/stores with
1285   // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1286   // value c must be 0, 1 or 2.
1287   ppAddrReorderAddShl(getNodes());
1288 
1289   // Transform: (load ch (add x (and (srl y c) Mask)))
1290   //        to: (load ch (add x (shl (srl y d) d-c)))
1291   // where
1292   // Mask = 00..0 111..1 0.0
1293   //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
1294   //          |     +-------- 1s
1295   //          +-------------- at most c 0s
1296   // Motivating example:
1297   // DAG combiner optimizes (add x (shl (srl y 5) 2))
1298   //                     to (add x (and (srl y 3) 1FFFFFFC))
1299   // which results in a constant-extended and(##...,lsr). This transformation
1300   // undoes this simplification for cases where the shl can be folded into
1301   // an addressing mode.
1302   ppAddrRewriteAndSrl(getNodes());
1303 
1304   // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1305   //                                                  (op ... 1 ...))
1306   ppHoistZextI1(getNodes());
1307 
1308   DEBUG_WITH_TYPE("isel", {
1309     dbgs() << "Preprocessed (Hexagon) selection DAG:";
1310     CurDAG->dump();
1311   });
1312 
1313   if (EnableAddressRebalancing) {
1314     rebalanceAddressTrees();
1315 
1316     DEBUG_WITH_TYPE("isel", {
1317       dbgs() << "Address tree balanced selection DAG:";
1318       CurDAG->dump();
1319     });
1320   }
1321 }
1322 
1323 void HexagonDAGToDAGISel::emitFunctionEntryCode() {
1324   auto &HST = MF->getSubtarget<HexagonSubtarget>();
1325   auto &HFI = *HST.getFrameLowering();
1326   if (!HFI.needsAligna(*MF))
1327     return;
1328 
1329   MachineFrameInfo &MFI = MF->getFrameInfo();
1330   MachineBasicBlock *EntryBB = &MF->front();
1331   Align EntryMaxA = MFI.getMaxAlign();
1332 
1333   // Reserve the first non-volatile register.
1334   Register AP = 0;
1335   auto &HRI = *HST.getRegisterInfo();
1336   BitVector Reserved = HRI.getReservedRegs(*MF);
1337   for (const MCPhysReg *R = HRI.getCalleeSavedRegs(MF); *R; ++R) {
1338     if (Reserved[*R])
1339       continue;
1340     AP = *R;
1341     break;
1342   }
1343   assert(AP.isValid() && "Couldn't reserve stack align register");
1344   BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AP)
1345       .addImm(EntryMaxA.value());
1346   MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseReg(AP);
1347 }
1348 
1349 void HexagonDAGToDAGISel::updateAligna() {
1350   auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering();
1351   if (!HFI.needsAligna(*MF))
1352     return;
1353   auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(*MF));
1354   assert(AlignaI != nullptr);
1355   unsigned MaxA = MF->getFrameInfo().getMaxAlign().value();
1356   if (AlignaI->getOperand(1).getImm() < MaxA)
1357     AlignaI->getOperand(1).setImm(MaxA);
1358 }
1359 
1360 // Match a frame index that can be used in an addressing mode.
1361 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
1362   if (N.getOpcode() != ISD::FrameIndex)
1363     return false;
1364   auto &HFI = *HST->getFrameLowering();
1365   MachineFrameInfo &MFI = MF->getFrameInfo();
1366   int FX = cast<FrameIndexSDNode>(N)->getIndex();
1367   if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
1368     return false;
1369   R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1370   return true;
1371 }
1372 
1373 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
1374   return SelectGlobalAddress(N, R, false, Align(1));
1375 }
1376 
1377 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
1378   return SelectGlobalAddress(N, R, true, Align(1));
1379 }
1380 
1381 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
1382   return SelectAnyImmediate(N, R, Align(1));
1383 }
1384 
1385 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
1386   return SelectAnyImmediate(N, R, Align(1));
1387 }
1388 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
1389   return SelectAnyImmediate(N, R, Align(2));
1390 }
1391 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
1392   return SelectAnyImmediate(N, R, Align(4));
1393 }
1394 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
1395   return SelectAnyImmediate(N, R, Align(8));
1396 }
1397 
1398 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
1399   EVT T = N.getValueType();
1400   if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
1401     return false;
1402   int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1403   R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1404   return true;
1405 }
1406 
1407 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
1408                                              Align Alignment) {
1409   switch (N.getOpcode()) {
1410   case ISD::Constant: {
1411     if (N.getValueType() != MVT::i32)
1412       return false;
1413     int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1414     if (!isAligned(Alignment, V))
1415       return false;
1416     R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1417     return true;
1418   }
1419   case HexagonISD::JT:
1420   case HexagonISD::CP:
1421     // These are assumed to always be aligned at least 8-byte boundary.
1422     if (Alignment > Align(8))
1423       return false;
1424     R = N.getOperand(0);
1425     return true;
1426   case ISD::ExternalSymbol:
1427     // Symbols may be aligned at any boundary.
1428     if (Alignment > Align(1))
1429       return false;
1430     R = N;
1431     return true;
1432   case ISD::BlockAddress:
1433     // Block address is always aligned at least 4-byte boundary.
1434     if (Alignment > Align(4) ||
1435         !isAligned(Alignment, cast<BlockAddressSDNode>(N)->getOffset()))
1436       return false;
1437     R = N;
1438     return true;
1439   }
1440 
1441   if (SelectGlobalAddress(N, R, false, Alignment) ||
1442       SelectGlobalAddress(N, R, true, Alignment))
1443     return true;
1444 
1445   return false;
1446 }
1447 
1448 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
1449                                               bool UseGP, Align Alignment) {
1450   switch (N.getOpcode()) {
1451   case ISD::ADD: {
1452     SDValue N0 = N.getOperand(0);
1453     SDValue N1 = N.getOperand(1);
1454     unsigned GAOpc = N0.getOpcode();
1455     if (UseGP && GAOpc != HexagonISD::CONST32_GP)
1456       return false;
1457     if (!UseGP && GAOpc != HexagonISD::CONST32)
1458       return false;
1459     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
1460       if (!isAligned(Alignment, Const->getZExtValue()))
1461         return false;
1462       SDValue Addr = N0.getOperand(0);
1463       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
1464         if (GA->getOpcode() == ISD::TargetGlobalAddress) {
1465           uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
1466           R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
1467                                              N.getValueType(), NewOff);
1468           return true;
1469         }
1470       }
1471     }
1472     break;
1473   }
1474   case HexagonISD::CP:
1475   case HexagonISD::JT:
1476   case HexagonISD::CONST32:
1477     // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1478     // want in the instruction.
1479     if (!UseGP)
1480       R = N.getOperand(0);
1481     return !UseGP;
1482   case HexagonISD::CONST32_GP:
1483     if (UseGP)
1484       R = N.getOperand(0);
1485     return UseGP;
1486   default:
1487     return false;
1488   }
1489 
1490   return false;
1491 }
1492 
1493 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
1494   // This (complex pattern) function is meant to detect a sign-extension
1495   // i32->i64 on a per-operand basis. This would allow writing single
1496   // patterns that would cover a number of combinations of different ways
1497   // a sign-extensions could be written. For example:
1498   //   (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
1499   // could match either one of these:
1500   //   (mul (sext x) (sext_inreg y))
1501   //   (mul (sext-load *p) (sext_inreg y))
1502   //   (mul (sext_inreg x) (sext y))
1503   // etc.
1504   //
1505   // The returned value will have type i64 and its low word will
1506   // contain the value being extended. The high bits are not specified.
1507   // The returned type is i64 because the original type of N was i64,
1508   // but the users of this function should only use the low-word of the
1509   // result, e.g.
1510   //  (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
1511 
1512   if (N.getValueType() != MVT::i64)
1513     return false;
1514   unsigned Opc = N.getOpcode();
1515   switch (Opc) {
1516     case ISD::SIGN_EXTEND:
1517     case ISD::SIGN_EXTEND_INREG: {
1518       // sext_inreg has the source type as a separate operand.
1519       EVT T = Opc == ISD::SIGN_EXTEND
1520                 ? N.getOperand(0).getValueType()
1521                 : cast<VTSDNode>(N.getOperand(1))->getVT();
1522       unsigned SW = T.getSizeInBits();
1523       if (SW == 32)
1524         R = N.getOperand(0);
1525       else if (SW < 32)
1526         R = N;
1527       else
1528         return false;
1529       break;
1530     }
1531     case ISD::LOAD: {
1532       LoadSDNode *L = cast<LoadSDNode>(N);
1533       if (L->getExtensionType() != ISD::SEXTLOAD)
1534         return false;
1535       // All extending loads extend to i32, so even if the value in
1536       // memory is shorter than 32 bits, it will be i32 after the load.
1537       if (L->getMemoryVT().getSizeInBits() > 32)
1538         return false;
1539       R = N;
1540       break;
1541     }
1542     case ISD::SRA: {
1543       auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
1544       if (!S || S->getZExtValue() != 32)
1545         return false;
1546       R = N;
1547       break;
1548     }
1549     default:
1550       return false;
1551   }
1552   EVT RT = R.getValueType();
1553   if (RT == MVT::i64)
1554     return true;
1555   assert(RT == MVT::i32);
1556   // This is only to produce a value of type i64. Do not rely on the
1557   // high bits produced by this.
1558   const SDLoc &dl(N);
1559   SDValue Ops[] = {
1560     CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
1561     R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
1562     R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
1563   };
1564   SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
1565                                      MVT::i64, Ops);
1566   R = SDValue(T, 0);
1567   return true;
1568 }
1569 
1570 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
1571       SDValue &Src) {
1572   unsigned Opc = Val.getOpcode();
1573   switch (Opc) {
1574   case ISD::SIGN_EXTEND:
1575   case ISD::ZERO_EXTEND:
1576   case ISD::ANY_EXTEND: {
1577     const SDValue &Op0 = Val.getOperand(0);
1578     EVT T = Op0.getValueType();
1579     if (T.isInteger() && T.getSizeInBits() == NumBits) {
1580       Src = Op0;
1581       return true;
1582     }
1583     break;
1584   }
1585   case ISD::SIGN_EXTEND_INREG:
1586   case ISD::AssertSext:
1587   case ISD::AssertZext:
1588     if (Val.getOperand(0).getValueType().isInteger()) {
1589       VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
1590       if (T->getVT().getSizeInBits() == NumBits) {
1591         Src = Val.getOperand(0);
1592         return true;
1593       }
1594     }
1595     break;
1596   case ISD::AND: {
1597     // Check if this is an AND with NumBits of lower bits set to 1.
1598     uint64_t Mask = (1ULL << NumBits) - 1;
1599     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1600       if (C->getZExtValue() == Mask) {
1601         Src = Val.getOperand(1);
1602         return true;
1603       }
1604     }
1605     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1606       if (C->getZExtValue() == Mask) {
1607         Src = Val.getOperand(0);
1608         return true;
1609       }
1610     }
1611     break;
1612   }
1613   case ISD::OR:
1614   case ISD::XOR: {
1615     // OR/XOR with the lower NumBits bits set to 0.
1616     uint64_t Mask = (1ULL << NumBits) - 1;
1617     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1618       if ((C->getZExtValue() & Mask) == 0) {
1619         Src = Val.getOperand(1);
1620         return true;
1621       }
1622     }
1623     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1624       if ((C->getZExtValue() & Mask) == 0) {
1625         Src = Val.getOperand(0);
1626         return true;
1627       }
1628     }
1629     break;
1630   }
1631   default:
1632     break;
1633   }
1634   return false;
1635 }
1636 
1637 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
1638   return N->getAlign().value() >= N->getMemoryVT().getStoreSize();
1639 }
1640 
1641 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
1642   unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
1643   switch (N->getMemoryVT().getStoreSize()) {
1644     case 1:
1645       return StackSize <= 56;   // 1*2^6 - 8
1646     case 2:
1647       return StackSize <= 120;  // 2*2^6 - 8
1648     case 4:
1649       return StackSize <= 248;  // 4*2^6 - 8
1650     default:
1651       return false;
1652   }
1653 }
1654 
1655 // Return true when the given node fits in a positive half word.
1656 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
1657   if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
1658     int64_t V = CN->getSExtValue();
1659     return V > 0 && isInt<16>(V);
1660   }
1661   if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
1662     const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
1663     return VN->getVT().getSizeInBits() <= 16;
1664   }
1665   return false;
1666 }
1667 
1668 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
1669   return !CheckSingleUse || N->hasOneUse();
1670 }
1671 
1672 ////////////////////////////////////////////////////////////////////////////////
1673 // Rebalancing of address calculation trees
1674 
1675 static bool isOpcodeHandled(const SDNode *N) {
1676   switch (N->getOpcode()) {
1677     case ISD::ADD:
1678     case ISD::MUL:
1679       return true;
1680     case ISD::SHL:
1681       // We only handle constant shifts because these can be easily flattened
1682       // into multiplications by 2^Op1.
1683       return isa<ConstantSDNode>(N->getOperand(1).getNode());
1684     default:
1685       return false;
1686   }
1687 }
1688 
1689 /// Return the weight of an SDNode
1690 int HexagonDAGToDAGISel::getWeight(SDNode *N) {
1691   if (!isOpcodeHandled(N))
1692     return 1;
1693   assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
1694   assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
1695   assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
1696   return RootWeights[N];
1697 }
1698 
1699 int HexagonDAGToDAGISel::getHeight(SDNode *N) {
1700   if (!isOpcodeHandled(N))
1701     return 0;
1702   assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
1703       "Cannot query height of unvisited/RAUW'd node!");
1704   return RootHeights[N];
1705 }
1706 
1707 namespace {
1708 struct WeightedLeaf {
1709   SDValue Value;
1710   int Weight;
1711   int InsertionOrder;
1712 
1713   WeightedLeaf() {}
1714 
1715   WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
1716     Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
1717     assert(Weight >= 0 && "Weight must be >= 0");
1718   }
1719 
1720   static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
1721     assert(A.Value.getNode() && B.Value.getNode());
1722     return A.Weight == B.Weight ?
1723             (A.InsertionOrder > B.InsertionOrder) :
1724             (A.Weight > B.Weight);
1725   }
1726 };
1727 
1728 /// A specialized priority queue for WeigthedLeaves. It automatically folds
1729 /// constants and allows removal of non-top elements while maintaining the
1730 /// priority order.
1731 class LeafPrioQueue {
1732   SmallVector<WeightedLeaf, 8> Q;
1733   bool HaveConst;
1734   WeightedLeaf ConstElt;
1735   unsigned Opcode;
1736 
1737 public:
1738   bool empty() {
1739     return (!HaveConst && Q.empty());
1740   }
1741 
1742   size_t size() {
1743     return Q.size() + HaveConst;
1744   }
1745 
1746   bool hasConst() {
1747     return HaveConst;
1748   }
1749 
1750   const WeightedLeaf &top() {
1751     if (HaveConst)
1752       return ConstElt;
1753     return Q.front();
1754   }
1755 
1756   WeightedLeaf pop() {
1757     if (HaveConst) {
1758       HaveConst = false;
1759       return ConstElt;
1760     }
1761     std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1762     return Q.pop_back_val();
1763   }
1764 
1765   void push(WeightedLeaf L, bool SeparateConst=true) {
1766     if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
1767       if (Opcode == ISD::MUL &&
1768           cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
1769         return;
1770       if (Opcode == ISD::ADD &&
1771           cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
1772         return;
1773 
1774       HaveConst = true;
1775       ConstElt = L;
1776     } else {
1777       Q.push_back(L);
1778       std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1779     }
1780   }
1781 
1782   /// Push L to the bottom of the queue regardless of its weight. If L is
1783   /// constant, it will not be folded with other constants in the queue.
1784   void pushToBottom(WeightedLeaf L) {
1785     L.Weight = 1000;
1786     push(L, false);
1787   }
1788 
1789   /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
1790   /// lowest weight and remove it from the queue.
1791   WeightedLeaf findSHL(uint64_t MaxAmount);
1792 
1793   WeightedLeaf findMULbyConst();
1794 
1795   LeafPrioQueue(unsigned Opcode) :
1796     HaveConst(false), Opcode(Opcode) { }
1797 };
1798 } // end anonymous namespace
1799 
1800 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
1801   int ResultPos;
1802   WeightedLeaf Result;
1803 
1804   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1805     const WeightedLeaf &L = Q[Pos];
1806     const SDValue &Val = L.Value;
1807     if (Val.getOpcode() != ISD::SHL ||
1808         !isa<ConstantSDNode>(Val.getOperand(1)) ||
1809         Val.getConstantOperandVal(1) > MaxAmount)
1810       continue;
1811     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1812         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1813     {
1814       Result = L;
1815       ResultPos = Pos;
1816     }
1817   }
1818 
1819   if (Result.Value.getNode()) {
1820     Q.erase(&Q[ResultPos]);
1821     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1822   }
1823 
1824   return Result;
1825 }
1826 
1827 WeightedLeaf LeafPrioQueue::findMULbyConst() {
1828   int ResultPos;
1829   WeightedLeaf Result;
1830 
1831   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1832     const WeightedLeaf &L = Q[Pos];
1833     const SDValue &Val = L.Value;
1834     if (Val.getOpcode() != ISD::MUL ||
1835         !isa<ConstantSDNode>(Val.getOperand(1)) ||
1836         Val.getConstantOperandVal(1) > 127)
1837       continue;
1838     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1839         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1840     {
1841       Result = L;
1842       ResultPos = Pos;
1843     }
1844   }
1845 
1846   if (Result.Value.getNode()) {
1847     Q.erase(&Q[ResultPos]);
1848     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1849   }
1850 
1851   return Result;
1852 }
1853 
1854 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
1855   uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
1856   return CurDAG->getConstant(MulFactor, SDLoc(N),
1857                              N->getOperand(1).getValueType());
1858 }
1859 
1860 /// @returns the value x for which 2^x is a factor of Val
1861 static unsigned getPowerOf2Factor(SDValue Val) {
1862   if (Val.getOpcode() == ISD::MUL) {
1863     unsigned MaxFactor = 0;
1864     for (int i = 0; i < 2; ++i) {
1865       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
1866       if (!C)
1867         continue;
1868       const APInt &CInt = C->getAPIntValue();
1869       if (CInt.getBoolValue())
1870         MaxFactor = CInt.countTrailingZeros();
1871     }
1872     return MaxFactor;
1873   }
1874   if (Val.getOpcode() == ISD::SHL) {
1875     if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
1876       return 0;
1877     return (unsigned) Val.getConstantOperandVal(1);
1878   }
1879 
1880   return 0;
1881 }
1882 
1883 /// @returns true if V>>Amount will eliminate V's operation on its child
1884 static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
1885   if (V.getOpcode() == ISD::MUL) {
1886     SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1887     for (int i = 0; i < 2; ++i)
1888       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1889           V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
1890         uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
1891         return (NewConst == 1);
1892       }
1893   } else if (V.getOpcode() == ISD::SHL) {
1894     return (Amount == V.getConstantOperandVal(1));
1895   }
1896 
1897   return false;
1898 }
1899 
1900 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
1901   SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1902   if (V.getOpcode() == ISD::MUL) {
1903     for (int i=0; i < 2; ++i) {
1904       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1905           V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
1906         uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
1907         if (NewConst == 1)
1908           return Ops[!i];
1909         Ops[i] = CurDAG->getConstant(NewConst,
1910                                      SDLoc(V), V.getValueType());
1911         break;
1912       }
1913     }
1914   } else if (V.getOpcode() == ISD::SHL) {
1915     uint64_t ShiftAmount = V.getConstantOperandVal(1);
1916     if (ShiftAmount == Power)
1917       return Ops[0];
1918     Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
1919                                  SDLoc(V), V.getValueType());
1920   }
1921 
1922   return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
1923 }
1924 
1925 static bool isTargetConstant(const SDValue &V) {
1926   return V.getOpcode() == HexagonISD::CONST32 ||
1927          V.getOpcode() == HexagonISD::CONST32_GP;
1928 }
1929 
1930 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
1931   if (GAUsesInFunction.count(V))
1932     return GAUsesInFunction[V];
1933 
1934   unsigned Result = 0;
1935   const Function &CurF = CurDAG->getMachineFunction().getFunction();
1936   for (const User *U : V->users()) {
1937     if (isa<Instruction>(U) &&
1938         cast<Instruction>(U)->getParent()->getParent() == &CurF)
1939       ++Result;
1940   }
1941 
1942   GAUsesInFunction[V] = Result;
1943 
1944   return Result;
1945 }
1946 
1947 /// Note - After calling this, N may be dead. It may have been replaced by a
1948 /// new node, so always use the returned value in place of N.
1949 ///
1950 /// @returns The SDValue taking the place of N (which could be N if it is
1951 /// unchanged)
1952 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
1953   assert(RootWeights.count(N) && "Cannot balance non-root node.");
1954   assert(RootWeights[N] != -2 && "This node was RAUW'd!");
1955   assert(!TopLevel || N->getOpcode() == ISD::ADD);
1956 
1957   // Return early if this node was already visited
1958   if (RootWeights[N] != -1)
1959     return SDValue(N, 0);
1960 
1961   assert(isOpcodeHandled(N));
1962 
1963   SDValue Op0 = N->getOperand(0);
1964   SDValue Op1 = N->getOperand(1);
1965 
1966   // Return early if the operands will remain unchanged or are all roots
1967   if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
1968       (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
1969     SDNode *Op0N = Op0.getNode();
1970     int Weight;
1971     if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
1972       Weight = getWeight(balanceSubTree(Op0N).getNode());
1973       // Weight = calculateWeight(Op0N);
1974     } else
1975       Weight = getWeight(Op0N);
1976 
1977     SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
1978     if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
1979       Weight += getWeight(balanceSubTree(Op1N).getNode());
1980       // Weight += calculateWeight(Op1N);
1981     } else
1982       Weight += getWeight(Op1N);
1983 
1984     RootWeights[N] = Weight;
1985     RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
1986                               getHeight(N->getOperand(1).getNode())) + 1;
1987 
1988     LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
1989                       << " Height=" << RootHeights[N] << "): ");
1990     LLVM_DEBUG(N->dump(CurDAG));
1991 
1992     return SDValue(N, 0);
1993   }
1994 
1995   LLVM_DEBUG(dbgs() << "** Balancing root node: ");
1996   LLVM_DEBUG(N->dump(CurDAG));
1997 
1998   unsigned NOpcode = N->getOpcode();
1999 
2000   LeafPrioQueue Leaves(NOpcode);
2001   SmallVector<SDValue, 4> Worklist;
2002   Worklist.push_back(SDValue(N, 0));
2003 
2004   // SHL nodes will be converted to MUL nodes
2005   if (NOpcode == ISD::SHL)
2006     NOpcode = ISD::MUL;
2007 
2008   bool CanFactorize = false;
2009   WeightedLeaf Mul1, Mul2;
2010   unsigned MaxPowerOf2 = 0;
2011   WeightedLeaf GA;
2012 
2013   // Do not try to factor out a shift if there is already a shift at the tip of
2014   // the tree.
2015   bool HaveTopLevelShift = false;
2016   if (TopLevel &&
2017       ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
2018                         Op0.getConstantOperandVal(1) < 4) ||
2019        (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
2020                         Op1.getConstantOperandVal(1) < 4)))
2021     HaveTopLevelShift = true;
2022 
2023   // Flatten the subtree into an ordered list of leaves; at the same time
2024   // determine whether the tree is already balanced.
2025   int InsertionOrder = 0;
2026   SmallDenseMap<SDValue, int> NodeHeights;
2027   bool Imbalanced = false;
2028   int CurrentWeight = 0;
2029   while (!Worklist.empty()) {
2030     SDValue Child = Worklist.pop_back_val();
2031 
2032     if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
2033       // CASE 1: Child is a root note
2034 
2035       int Weight = RootWeights[Child.getNode()];
2036       if (Weight == -1) {
2037         Child = balanceSubTree(Child.getNode());
2038         // calculateWeight(Child.getNode());
2039         Weight = getWeight(Child.getNode());
2040       } else if (Weight == -2) {
2041         // Whoops, this node was RAUWd by one of the balanceSubTree calls we
2042         // made. Our worklist isn't up to date anymore.
2043         // Restart the whole process.
2044         LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2045         return balanceSubTree(N, TopLevel);
2046       }
2047 
2048       NodeHeights[Child] = 1;
2049       CurrentWeight += Weight;
2050 
2051       unsigned PowerOf2;
2052       if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
2053           (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
2054           Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
2055         // Try to identify two factorizable MUL/SHL children greedily. Leave
2056         // them out of the priority queue for now so we can deal with them
2057         // after.
2058         if (!Mul1.Value.getNode()) {
2059           Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
2060           MaxPowerOf2 = PowerOf2;
2061         } else {
2062           Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
2063           MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
2064 
2065           // Our addressing modes can only shift by a maximum of 3
2066           if (MaxPowerOf2 > 3)
2067             MaxPowerOf2 = 3;
2068 
2069           CanFactorize = true;
2070         }
2071       } else
2072         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2073     } else if (!isOpcodeHandled(Child.getNode())) {
2074       // CASE 2: Child is an unhandled kind of node (e.g. constant)
2075       int Weight = getWeight(Child.getNode());
2076 
2077       NodeHeights[Child] = getHeight(Child.getNode());
2078       CurrentWeight += Weight;
2079 
2080       if (isTargetConstant(Child) && !GA.Value.getNode())
2081         GA = WeightedLeaf(Child, Weight, InsertionOrder++);
2082       else
2083         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2084     } else {
2085       // CASE 3: Child is a subtree of same opcode
2086       // Visit children first, then flatten.
2087       unsigned ChildOpcode = Child.getOpcode();
2088       assert(ChildOpcode == NOpcode ||
2089              (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
2090 
2091       // Convert SHL to MUL
2092       SDValue Op1;
2093       if (ChildOpcode == ISD::SHL)
2094         Op1 = getMultiplierForSHL(Child.getNode());
2095       else
2096         Op1 = Child->getOperand(1);
2097 
2098       if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
2099         assert(!NodeHeights.count(Child) && "Parent visited before children?");
2100         // Visit children first, then re-visit this node
2101         Worklist.push_back(Child);
2102         Worklist.push_back(Op1);
2103         Worklist.push_back(Child->getOperand(0));
2104       } else {
2105         // Back at this node after visiting the children
2106         if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
2107           Imbalanced = true;
2108 
2109         NodeHeights[Child] = std::max(NodeHeights[Op1],
2110                                       NodeHeights[Child->getOperand(0)]) + 1;
2111       }
2112     }
2113   }
2114 
2115   LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
2116                     << " weight=" << CurrentWeight
2117                     << " imbalanced=" << Imbalanced << "\n");
2118 
2119   // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
2120   //  This factors out a shift in order to match memw(a<<Y+b).
2121   if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
2122                        willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
2123     LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
2124     int Weight = Mul1.Weight + Mul2.Weight;
2125     int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
2126     SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
2127     SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
2128     SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
2129                                   Mul1Factored, Mul2Factored);
2130     SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
2131                                         Mul1.Value.getValueType());
2132     SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
2133                                   Sum, Const);
2134     NodeHeights[New] = Height;
2135     Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
2136   } else if (Mul1.Value.getNode()) {
2137     // We failed to factorize two MULs, so now the Muls are left outside the
2138     // queue... add them back.
2139     Leaves.push(Mul1);
2140     if (Mul2.Value.getNode())
2141       Leaves.push(Mul2);
2142     CanFactorize = false;
2143   }
2144 
2145   // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
2146   // and the root node itself is not used more than twice. This reduces the
2147   // amount of additional constant extenders introduced by this optimization.
2148   bool CombinedGA = false;
2149   if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
2150       GA.Value.hasOneUse() && N->use_size() < 3) {
2151     GlobalAddressSDNode *GANode =
2152       cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
2153     ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
2154 
2155     if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
2156         getTargetLowering()->isOffsetFoldingLegal(GANode)) {
2157       LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
2158                         << Offset->getSExtValue() << "): ");
2159       LLVM_DEBUG(GANode->dump(CurDAG));
2160 
2161       SDValue NewTGA =
2162         CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
2163             GANode->getValueType(0),
2164             GANode->getOffset() + (uint64_t)Offset->getSExtValue());
2165       GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
2166           GA.Value.getValueType(), NewTGA);
2167       GA.Weight += Leaves.top().Weight;
2168 
2169       NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
2170       CombinedGA = true;
2171 
2172       Leaves.pop(); // Remove the offset constant from the queue
2173     }
2174   }
2175 
2176   if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
2177       (RebalanceOnlyImbalancedTrees && !Imbalanced)) {
2178     RootWeights[N] = CurrentWeight;
2179     RootHeights[N] = NodeHeights[SDValue(N, 0)];
2180 
2181     return SDValue(N, 0);
2182   }
2183 
2184   // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
2185   if (NOpcode == ISD::ADD && GA.Value.getNode()) {
2186     WeightedLeaf SHL = Leaves.findSHL(31);
2187     if (SHL.Value.getNode()) {
2188       int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
2189       GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
2190                                  GA.Value.getValueType(),
2191                                  GA.Value, SHL.Value);
2192       GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
2193       NodeHeights[GA.Value] = Height;
2194     }
2195   }
2196 
2197   if (GA.Value.getNode())
2198     Leaves.push(GA);
2199 
2200   // If this is the top level and we haven't factored out a shift, we should try
2201   // to move a constant to the bottom to match addressing modes like memw(rX+C)
2202   if (TopLevel && !CanFactorize && Leaves.hasConst()) {
2203     LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
2204     Leaves.pushToBottom(Leaves.pop());
2205   }
2206 
2207   const DataLayout &DL = CurDAG->getDataLayout();
2208   const TargetLowering &TLI = *getTargetLowering();
2209 
2210   // Rebuild the tree using Huffman's algorithm
2211   while (Leaves.size() > 1) {
2212     WeightedLeaf L0 = Leaves.pop();
2213 
2214     // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
2215     // otherwise just get the next leaf
2216     WeightedLeaf L1 = Leaves.findMULbyConst();
2217     if (!L1.Value.getNode())
2218       L1 = Leaves.pop();
2219 
2220     assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
2221 
2222     SDValue V0 = L0.Value;
2223     int V0Weight = L0.Weight;
2224     SDValue V1 = L1.Value;
2225     int V1Weight = L1.Weight;
2226 
2227     // Make sure that none of these nodes have been RAUW'd
2228     if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
2229         (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
2230       LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2231       return balanceSubTree(N, TopLevel);
2232     }
2233 
2234     ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
2235     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
2236     EVT VT = N->getValueType(0);
2237     SDValue NewNode;
2238 
2239     if (V0C && !V1C) {
2240       std::swap(V0, V1);
2241       std::swap(V0C, V1C);
2242     }
2243 
2244     // Calculate height of this node
2245     assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
2246            "Children must have been visited before re-combining them!");
2247     int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
2248 
2249     // Rebuild this node (and restore SHL from MUL if needed)
2250     if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
2251       NewNode = CurDAG->getNode(
2252           ISD::SHL, SDLoc(V0), VT, V0,
2253           CurDAG->getConstant(
2254               V1C->getAPIntValue().logBase2(), SDLoc(N),
2255               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2256     else
2257       NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
2258 
2259     NodeHeights[NewNode] = Height;
2260 
2261     int Weight = V0Weight + V1Weight;
2262     Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
2263 
2264     LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
2265                       << ",Height=" << Height << "):\n");
2266     LLVM_DEBUG(NewNode.dump());
2267   }
2268 
2269   assert(Leaves.size() == 1);
2270   SDValue NewRoot = Leaves.top().Value;
2271 
2272   assert(NodeHeights.count(NewRoot));
2273   int Height = NodeHeights[NewRoot];
2274 
2275   // Restore SHL if we earlier converted it to a MUL
2276   if (NewRoot.getOpcode() == ISD::MUL) {
2277     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
2278     if (V1C && V1C->getAPIntValue().isPowerOf2()) {
2279       EVT VT = NewRoot.getValueType();
2280       SDValue V0 = NewRoot.getOperand(0);
2281       NewRoot = CurDAG->getNode(
2282           ISD::SHL, SDLoc(NewRoot), VT, V0,
2283           CurDAG->getConstant(
2284               V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
2285               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2286     }
2287   }
2288 
2289   if (N != NewRoot.getNode()) {
2290     LLVM_DEBUG(dbgs() << "--> Root is now: ");
2291     LLVM_DEBUG(NewRoot.dump());
2292 
2293     // Replace all uses of old root by new root
2294     CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
2295     // Mark that we have RAUW'd N
2296     RootWeights[N] = -2;
2297   } else {
2298     LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
2299   }
2300 
2301   RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
2302   RootHeights[NewRoot.getNode()] = Height;
2303 
2304   return NewRoot;
2305 }
2306 
2307 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2308   for (SDNode &Node : llvm::make_early_inc_range(CurDAG->allnodes())) {
2309     SDNode *N = &Node;
2310     if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
2311       continue;
2312 
2313     SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
2314     if (BasePtr.getOpcode() != ISD::ADD)
2315       continue;
2316 
2317     // We've already processed this node
2318     if (RootWeights.count(BasePtr.getNode()))
2319       continue;
2320 
2321     LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
2322     LLVM_DEBUG(N->dump(CurDAG));
2323 
2324     // FindRoots
2325     SmallVector<SDNode *, 4> Worklist;
2326 
2327     Worklist.push_back(BasePtr.getOperand(0).getNode());
2328     Worklist.push_back(BasePtr.getOperand(1).getNode());
2329 
2330     while (!Worklist.empty()) {
2331       SDNode *N = Worklist.pop_back_val();
2332       unsigned Opcode = N->getOpcode();
2333 
2334       if (!isOpcodeHandled(N))
2335         continue;
2336 
2337       Worklist.push_back(N->getOperand(0).getNode());
2338       Worklist.push_back(N->getOperand(1).getNode());
2339 
2340       // Not a root if it has only one use and same opcode as its parent
2341       if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
2342         continue;
2343 
2344       // This root node has already been processed
2345       if (RootWeights.count(N))
2346         continue;
2347 
2348       RootWeights[N] = -1;
2349     }
2350 
2351     // Balance node itself
2352     RootWeights[BasePtr.getNode()] = -1;
2353     SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
2354 
2355     if (N->getOpcode() == ISD::LOAD)
2356       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
2357             NewBasePtr, N->getOperand(2));
2358     else
2359       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
2360             NewBasePtr, N->getOperand(3));
2361 
2362     LLVM_DEBUG(dbgs() << "--> Final node: ");
2363     LLVM_DEBUG(N->dump(CurDAG));
2364   }
2365 
2366   CurDAG->RemoveDeadNodes();
2367   GAUsesInFunction.clear();
2368   RootHeights.clear();
2369   RootWeights.clear();
2370 }
2371