1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines an instruction selector for the Hexagon target. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "HexagonISelDAGToDAG.h" 14 #include "Hexagon.h" 15 #include "HexagonISelLowering.h" 16 #include "HexagonMachineFunctionInfo.h" 17 #include "HexagonTargetMachine.h" 18 #include "llvm/CodeGen/FunctionLoweringInfo.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/SelectionDAGISel.h" 21 #include "llvm/IR/Intrinsics.h" 22 #include "llvm/IR/IntrinsicsHexagon.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 using namespace llvm; 26 27 #define DEBUG_TYPE "hexagon-isel" 28 29 static 30 cl::opt<bool> 31 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true), 32 cl::desc("Rebalance address calculation trees to improve " 33 "instruction selection")); 34 35 // Rebalance only if this allows e.g. combining a GA with an offset or 36 // factoring out a shift. 37 static 38 cl::opt<bool> 39 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false), 40 cl::desc("Rebalance address tree only if this allows optimizations")); 41 42 static 43 cl::opt<bool> 44 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden, 45 cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced")); 46 47 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden, 48 cl::init(true), cl::desc("Enable checking of SDNode's single-use status")); 49 50 //===----------------------------------------------------------------------===// 51 // Instruction Selector Implementation 52 //===----------------------------------------------------------------------===// 53 54 #define GET_DAGISEL_BODY HexagonDAGToDAGISel 55 #include "HexagonGenDAGISel.inc" 56 57 /// createHexagonISelDag - This pass converts a legalized DAG into a 58 /// Hexagon-specific DAG, ready for instruction scheduling. 59 /// 60 namespace llvm { 61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM, 62 CodeGenOpt::Level OptLevel) { 63 return new HexagonDAGToDAGISel(TM, OptLevel); 64 } 65 } 66 67 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) { 68 SDValue Chain = LD->getChain(); 69 SDValue Base = LD->getBasePtr(); 70 SDValue Offset = LD->getOffset(); 71 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 72 EVT LoadedVT = LD->getMemoryVT(); 73 unsigned Opcode = 0; 74 75 // Check for zero extended loads. Treat any-extend loads as zero extended 76 // loads. 77 ISD::LoadExtType ExtType = LD->getExtensionType(); 78 bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD); 79 bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc); 80 81 assert(LoadedVT.isSimple()); 82 switch (LoadedVT.getSimpleVT().SimpleTy) { 83 case MVT::i8: 84 if (IsZeroExt) 85 Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io; 86 else 87 Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io; 88 break; 89 case MVT::i16: 90 if (IsZeroExt) 91 Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io; 92 else 93 Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io; 94 break; 95 case MVT::i32: 96 case MVT::f32: 97 case MVT::v2i16: 98 case MVT::v4i8: 99 Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io; 100 break; 101 case MVT::i64: 102 case MVT::f64: 103 case MVT::v2i32: 104 case MVT::v4i16: 105 case MVT::v8i8: 106 Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io; 107 break; 108 case MVT::v64i8: 109 case MVT::v32i16: 110 case MVT::v16i32: 111 case MVT::v8i64: 112 case MVT::v128i8: 113 case MVT::v64i16: 114 case MVT::v32i32: 115 case MVT::v16i64: 116 if (isAlignedMemNode(LD)) { 117 if (LD->isNonTemporal()) 118 Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai; 119 else 120 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai; 121 } else { 122 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai; 123 } 124 break; 125 default: 126 llvm_unreachable("Unexpected memory type in indexed load"); 127 } 128 129 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); 130 MachineMemOperand *MemOp = LD->getMemOperand(); 131 132 auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl) 133 -> MachineSDNode* { 134 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) { 135 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 136 return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64, 137 Zero, SDValue(N, 0)); 138 } 139 if (ExtType == ISD::SEXTLOAD) 140 return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64, 141 SDValue(N, 0)); 142 return N; 143 }; 144 145 // Loaded value Next address Chain 146 SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) }; 147 SDValue To[3]; 148 149 EVT ValueVT = LD->getValueType(0); 150 if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) { 151 // A load extending to i64 will actually produce i32, which will then 152 // need to be extended to i64. 153 assert(LoadedVT.getSizeInBits() <= 32); 154 ValueVT = MVT::i32; 155 } 156 157 if (IsValidInc) { 158 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, 159 MVT::i32, MVT::Other, Base, 160 IncV, Chain); 161 CurDAG->setNodeMemRefs(L, {MemOp}); 162 To[1] = SDValue(L, 1); // Next address. 163 To[2] = SDValue(L, 2); // Chain. 164 // Handle special case for extension to i64. 165 if (LD->getValueType(0) == MVT::i64) 166 L = getExt64(L, dl); 167 To[0] = SDValue(L, 0); // Loaded (extended) value. 168 } else { 169 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 170 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other, 171 Base, Zero, Chain); 172 CurDAG->setNodeMemRefs(L, {MemOp}); 173 To[2] = SDValue(L, 1); // Chain. 174 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, 175 Base, IncV); 176 To[1] = SDValue(A, 0); // Next address. 177 // Handle special case for extension to i64. 178 if (LD->getValueType(0) == MVT::i64) 179 L = getExt64(L, dl); 180 To[0] = SDValue(L, 0); // Loaded (extended) value. 181 } 182 ReplaceUses(From, To, 3); 183 CurDAG->RemoveDeadNode(LD); 184 } 185 186 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) { 187 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 188 return nullptr; 189 190 SDLoc dl(IntN); 191 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); 192 193 static std::map<unsigned,unsigned> LoadPciMap = { 194 { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci }, 195 { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci }, 196 { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci }, 197 { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci }, 198 { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci }, 199 { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci }, 200 }; 201 auto FLC = LoadPciMap.find(IntNo); 202 if (FLC != LoadPciMap.end()) { 203 EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32; 204 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 205 // Operands: { Base, Increment, Modifier, Chain } 206 auto Inc = cast<ConstantSDNode>(IntN->getOperand(5)); 207 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32); 208 MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys, 209 { IntN->getOperand(2), I, IntN->getOperand(4), 210 IntN->getOperand(0) }); 211 return Res; 212 } 213 214 return nullptr; 215 } 216 217 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, 218 SDNode *IntN) { 219 // The "LoadN" is just a machine load instruction. The intrinsic also 220 // involves storing it. Generate an appropriate store to the location 221 // given in the intrinsic's operand(3). 222 uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags; 223 unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) & 224 HexagonII::MemAccesSizeMask; 225 unsigned Size = 1U << (SizeBits-1); 226 227 SDLoc dl(IntN); 228 MachinePointerInfo PI; 229 SDValue TS; 230 SDValue Loc = IntN->getOperand(3); 231 232 if (Size >= 4) 233 TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI, 234 Size); 235 else 236 TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, 237 PI, MVT::getIntegerVT(Size * 8), Size); 238 239 SDNode *StoreN; 240 { 241 HandleSDNode Handle(TS); 242 SelectStore(TS.getNode()); 243 StoreN = Handle.getValue().getNode(); 244 } 245 246 // Load's results are { Loaded value, Updated pointer, Chain } 247 ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1)); 248 ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0)); 249 return StoreN; 250 } 251 252 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) { 253 // The intrinsics for load circ/brev perform two operations: 254 // 1. Load a value V from the specified location, using the addressing 255 // mode corresponding to the intrinsic. 256 // 2. Store V into a specified location. This location is typically a 257 // local, temporary object. 258 // In many cases, the program using these intrinsics will immediately 259 // load V again from the local object. In those cases, when certain 260 // conditions are met, the last load can be removed. 261 // This function identifies and optimizes this pattern. If the pattern 262 // cannot be optimized, it returns nullptr, which will cause the load 263 // to be selected separately from the intrinsic (which will be handled 264 // in SelectIntrinsicWChain). 265 266 SDValue Ch = N->getOperand(0); 267 SDValue Loc = N->getOperand(1); 268 269 // Assume that the load and the intrinsic are connected directly with a 270 // chain: 271 // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C 272 // t2: i32,ch = load t1:1, Loc, ... 273 SDNode *C = Ch.getNode(); 274 275 if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN) 276 return false; 277 278 // The second load can only be eliminated if its extension type matches 279 // that of the load instruction corresponding to the intrinsic. The user 280 // can provide an address of an unsigned variable to store the result of 281 // a sign-extending intrinsic into (or the other way around). 282 ISD::LoadExtType IntExt; 283 switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) { 284 case Intrinsic::hexagon_circ_ldub: 285 case Intrinsic::hexagon_circ_lduh: 286 IntExt = ISD::ZEXTLOAD; 287 break; 288 case Intrinsic::hexagon_circ_ldw: 289 case Intrinsic::hexagon_circ_ldd: 290 IntExt = ISD::NON_EXTLOAD; 291 break; 292 default: 293 IntExt = ISD::SEXTLOAD; 294 break; 295 } 296 if (N->getExtensionType() != IntExt) 297 return false; 298 299 // Make sure the target location for the loaded value in the load intrinsic 300 // is the location from which LD (or N) is loading. 301 if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode()) 302 return false; 303 304 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) { 305 SDNode *S = StoreInstrForLoadIntrinsic(L, C); 306 SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) }; 307 SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) }; 308 ReplaceUses(F, T, array_lengthof(T)); 309 // This transformation will leave the intrinsic dead. If it remains in 310 // the DAG, the selection code will see it again, but without the load, 311 // and it will generate a store that is normally required for it. 312 CurDAG->RemoveDeadNode(C); 313 return true; 314 } 315 return false; 316 } 317 318 // Convert the bit-reverse load intrinsic to appropriate target instruction. 319 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) { 320 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 321 return false; 322 323 const SDLoc &dl(IntN); 324 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); 325 326 static const std::map<unsigned, unsigned> LoadBrevMap = { 327 { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr }, 328 { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr }, 329 { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr }, 330 { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr }, 331 { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr }, 332 { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr } 333 }; 334 auto FLI = LoadBrevMap.find(IntNo); 335 if (FLI != LoadBrevMap.end()) { 336 EVT ValTy = 337 (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32; 338 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 339 // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr, 340 // modifier}. 341 // Operands of target instruction: { Base, Modifier, Chain }. 342 MachineSDNode *Res = CurDAG->getMachineNode( 343 FLI->second, dl, RTys, 344 {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)}); 345 346 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand(); 347 CurDAG->setNodeMemRefs(Res, {MemOp}); 348 349 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 350 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 351 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); 352 CurDAG->RemoveDeadNode(IntN); 353 return true; 354 } 355 return false; 356 } 357 358 /// Generate a machine instruction node for the new circlar buffer intrinsics. 359 /// The new versions use a CSx register instead of the K field. 360 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) { 361 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 362 return false; 363 364 SDLoc DL(IntN); 365 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); 366 SmallVector<SDValue, 7> Ops; 367 368 static std::map<unsigned,unsigned> LoadNPcMap = { 369 { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci }, 370 { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci }, 371 { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci }, 372 { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci }, 373 { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci }, 374 { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci }, 375 { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr }, 376 { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr }, 377 { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr }, 378 { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr }, 379 { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr }, 380 { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr } 381 }; 382 auto FLI = LoadNPcMap.find (IntNo); 383 if (FLI != LoadNPcMap.end()) { 384 EVT ValTy = MVT::i32; 385 if (IntNo == Intrinsic::hexagon_L2_loadrd_pci || 386 IntNo == Intrinsic::hexagon_L2_loadrd_pcr) 387 ValTy = MVT::i64; 388 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 389 // Handle load.*_pci case which has 6 operands. 390 if (IntN->getNumOperands() == 6) { 391 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); 392 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); 393 // Operands: { Base, Increment, Modifier, Start, Chain }. 394 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), 395 IntN->getOperand(0) }; 396 } else 397 // Handle load.*_pcr case which has 5 operands. 398 // Operands: { Base, Modifier, Start, Chain }. 399 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), 400 IntN->getOperand(0) }; 401 MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops); 402 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 403 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 404 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); 405 CurDAG->RemoveDeadNode(IntN); 406 return true; 407 } 408 409 static std::map<unsigned,unsigned> StoreNPcMap = { 410 { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci }, 411 { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci }, 412 { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci }, 413 { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci }, 414 { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci }, 415 { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr }, 416 { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr }, 417 { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr }, 418 { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr }, 419 { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr } 420 }; 421 auto FSI = StoreNPcMap.find (IntNo); 422 if (FSI != StoreNPcMap.end()) { 423 EVT RTys[] = { MVT::i32, MVT::Other }; 424 // Handle store.*_pci case which has 7 operands. 425 if (IntN->getNumOperands() == 7) { 426 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); 427 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); 428 // Operands: { Base, Increment, Modifier, Value, Start, Chain }. 429 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), 430 IntN->getOperand(6), IntN->getOperand(0) }; 431 } else 432 // Handle store.*_pcr case which has 6 operands. 433 // Operands: { Base, Modifier, Value, Start, Chain }. 434 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), 435 IntN->getOperand(5), IntN->getOperand(0) }; 436 MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops); 437 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 438 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 439 CurDAG->RemoveDeadNode(IntN); 440 return true; 441 } 442 443 return false; 444 } 445 446 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) { 447 SDLoc dl(N); 448 LoadSDNode *LD = cast<LoadSDNode>(N); 449 450 // Handle indexed loads. 451 ISD::MemIndexedMode AM = LD->getAddressingMode(); 452 if (AM != ISD::UNINDEXED) { 453 SelectIndexedLoad(LD, dl); 454 return; 455 } 456 457 // Handle patterns using circ/brev load intrinsics. 458 if (tryLoadOfLoadIntrinsic(LD)) 459 return; 460 461 SelectCode(LD); 462 } 463 464 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) { 465 SDValue Chain = ST->getChain(); 466 SDValue Base = ST->getBasePtr(); 467 SDValue Offset = ST->getOffset(); 468 SDValue Value = ST->getValue(); 469 // Get the constant value. 470 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 471 EVT StoredVT = ST->getMemoryVT(); 472 EVT ValueVT = Value.getValueType(); 473 474 bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc); 475 unsigned Opcode = 0; 476 477 assert(StoredVT.isSimple()); 478 switch (StoredVT.getSimpleVT().SimpleTy) { 479 case MVT::i8: 480 Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io; 481 break; 482 case MVT::i16: 483 Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io; 484 break; 485 case MVT::i32: 486 case MVT::f32: 487 case MVT::v2i16: 488 case MVT::v4i8: 489 Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io; 490 break; 491 case MVT::i64: 492 case MVT::f64: 493 case MVT::v2i32: 494 case MVT::v4i16: 495 case MVT::v8i8: 496 Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io; 497 break; 498 case MVT::v64i8: 499 case MVT::v32i16: 500 case MVT::v16i32: 501 case MVT::v8i64: 502 case MVT::v128i8: 503 case MVT::v64i16: 504 case MVT::v32i32: 505 case MVT::v16i64: 506 if (isAlignedMemNode(ST)) { 507 if (ST->isNonTemporal()) 508 Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai; 509 else 510 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai; 511 } else { 512 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai; 513 } 514 break; 515 default: 516 llvm_unreachable("Unexpected memory type in indexed store"); 517 } 518 519 if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) { 520 assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store"); 521 Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, 522 dl, MVT::i32, Value); 523 } 524 525 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); 526 MachineMemOperand *MemOp = ST->getMemOperand(); 527 528 // Next address Chain 529 SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) }; 530 SDValue To[2]; 531 532 if (IsValidInc) { 533 // Build post increment store. 534 SDValue Ops[] = { Base, IncV, Value, Chain }; 535 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other, 536 Ops); 537 CurDAG->setNodeMemRefs(S, {MemOp}); 538 To[0] = SDValue(S, 0); 539 To[1] = SDValue(S, 1); 540 } else { 541 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 542 SDValue Ops[] = { Base, Zero, Value, Chain }; 543 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); 544 CurDAG->setNodeMemRefs(S, {MemOp}); 545 To[1] = SDValue(S, 0); 546 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, 547 Base, IncV); 548 To[0] = SDValue(A, 0); 549 } 550 551 ReplaceUses(From, To, 2); 552 CurDAG->RemoveDeadNode(ST); 553 } 554 555 void HexagonDAGToDAGISel::SelectStore(SDNode *N) { 556 SDLoc dl(N); 557 StoreSDNode *ST = cast<StoreSDNode>(N); 558 559 // Handle indexed stores. 560 ISD::MemIndexedMode AM = ST->getAddressingMode(); 561 if (AM != ISD::UNINDEXED) { 562 SelectIndexedStore(ST, dl); 563 return; 564 } 565 566 SelectCode(ST); 567 } 568 569 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) { 570 SDLoc dl(N); 571 SDValue Shl_0 = N->getOperand(0); 572 SDValue Shl_1 = N->getOperand(1); 573 574 auto Default = [this,N] () -> void { SelectCode(N); }; 575 576 if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant) 577 return Default(); 578 579 // RHS is const. 580 int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue(); 581 582 if (Shl_0.getOpcode() == ISD::MUL) { 583 SDValue Mul_0 = Shl_0.getOperand(0); // Val 584 SDValue Mul_1 = Shl_0.getOperand(1); // Const 585 // RHS of mul is const. 586 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) { 587 int32_t ValConst = C->getSExtValue() << ShlConst; 588 if (isInt<9>(ValConst)) { 589 SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32); 590 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, 591 MVT::i32, Mul_0, Val); 592 ReplaceNode(N, Result); 593 return; 594 } 595 } 596 return Default(); 597 } 598 599 if (Shl_0.getOpcode() == ISD::SUB) { 600 SDValue Sub_0 = Shl_0.getOperand(0); // Const 0 601 SDValue Sub_1 = Shl_0.getOperand(1); // Val 602 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) { 603 if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL) 604 return Default(); 605 SDValue Shl2_0 = Sub_1.getOperand(0); // Val 606 SDValue Shl2_1 = Sub_1.getOperand(1); // Const 607 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) { 608 int32_t ValConst = 1 << (ShlConst + C2->getSExtValue()); 609 if (isInt<9>(-ValConst)) { 610 SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32); 611 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, 612 MVT::i32, Shl2_0, Val); 613 ReplaceNode(N, Result); 614 return; 615 } 616 } 617 } 618 } 619 620 return Default(); 621 } 622 623 // 624 // Handling intrinsics for circular load and bitreverse load. 625 // 626 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) { 627 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) { 628 StoreInstrForLoadIntrinsic(L, N); 629 CurDAG->RemoveDeadNode(N); 630 return; 631 } 632 633 // Handle bit-reverse load intrinsics. 634 if (SelectBrevLdIntrinsic(N)) 635 return; 636 637 if (SelectNewCircIntrinsic(N)) 638 return; 639 640 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 641 if (IntNo == Intrinsic::hexagon_V6_vgathermw || 642 IntNo == Intrinsic::hexagon_V6_vgathermw_128B || 643 IntNo == Intrinsic::hexagon_V6_vgathermh || 644 IntNo == Intrinsic::hexagon_V6_vgathermh_128B || 645 IntNo == Intrinsic::hexagon_V6_vgathermhw || 646 IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) { 647 SelectV65Gather(N); 648 return; 649 } 650 if (IntNo == Intrinsic::hexagon_V6_vgathermwq || 651 IntNo == Intrinsic::hexagon_V6_vgathermwq_128B || 652 IntNo == Intrinsic::hexagon_V6_vgathermhq || 653 IntNo == Intrinsic::hexagon_V6_vgathermhq_128B || 654 IntNo == Intrinsic::hexagon_V6_vgathermhwq || 655 IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) { 656 SelectV65GatherPred(N); 657 return; 658 } 659 660 SelectCode(N); 661 } 662 663 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) { 664 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 665 unsigned Bits; 666 switch (IID) { 667 case Intrinsic::hexagon_S2_vsplatrb: 668 Bits = 8; 669 break; 670 case Intrinsic::hexagon_S2_vsplatrh: 671 Bits = 16; 672 break; 673 case Intrinsic::hexagon_V6_vaddcarry: 674 case Intrinsic::hexagon_V6_vaddcarry_128B: 675 case Intrinsic::hexagon_V6_vsubcarry: 676 case Intrinsic::hexagon_V6_vsubcarry_128B: 677 SelectHVXDualOutput(N); 678 return; 679 default: 680 SelectCode(N); 681 return; 682 } 683 684 SDValue V = N->getOperand(1); 685 SDValue U; 686 if (keepsLowBits(V, Bits, U)) { 687 SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 688 N->getOperand(0), U); 689 ReplaceNode(N, R.getNode()); 690 SelectCode(R.getNode()); 691 return; 692 } 693 SelectCode(N); 694 } 695 696 // 697 // Map floating point constant values. 698 // 699 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) { 700 SDLoc dl(N); 701 auto *CN = cast<ConstantFPSDNode>(N); 702 APInt A = CN->getValueAPF().bitcastToAPInt(); 703 if (N->getValueType(0) == MVT::f32) { 704 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32); 705 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V)); 706 return; 707 } 708 if (N->getValueType(0) == MVT::f64) { 709 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64); 710 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V)); 711 return; 712 } 713 714 SelectCode(N); 715 } 716 717 // 718 // Map boolean values. 719 // 720 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) { 721 if (N->getValueType(0) == MVT::i1) { 722 assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1)); 723 unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0) 724 ? Hexagon::PS_true 725 : Hexagon::PS_false; 726 ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1)); 727 return; 728 } 729 730 SelectCode(N); 731 } 732 733 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) { 734 MachineFrameInfo &MFI = MF->getFrameInfo(); 735 const HexagonFrameLowering *HFI = HST->getFrameLowering(); 736 int FX = cast<FrameIndexSDNode>(N)->getIndex(); 737 unsigned StkA = HFI->getStackAlignment(); 738 unsigned MaxA = MFI.getMaxAlignment(); 739 SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32); 740 SDLoc DL(N); 741 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 742 SDNode *R = nullptr; 743 744 // Use PS_fi when: 745 // - the object is fixed, or 746 // - there are no objects with higher-than-default alignment, or 747 // - there are no dynamically allocated objects. 748 // Otherwise, use PS_fia. 749 if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) { 750 R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero); 751 } else { 752 auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>(); 753 unsigned AR = HMFI.getStackAlignBaseVReg(); 754 SDValue CH = CurDAG->getEntryNode(); 755 SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero }; 756 R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops); 757 } 758 759 ReplaceNode(N, R); 760 } 761 762 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) { 763 unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c 764 : Hexagon::A4_subp_c; 765 SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(), 766 { N->getOperand(0), N->getOperand(1), 767 N->getOperand(2) }); 768 ReplaceNode(N, C); 769 } 770 771 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) { 772 MVT ResTy = N->getValueType(0).getSimpleVT(); 773 if (HST->isHVXVectorType(ResTy, true)) 774 return SelectHvxVAlign(N); 775 776 const SDLoc &dl(N); 777 unsigned VecLen = ResTy.getSizeInBits(); 778 if (VecLen == 32) { 779 SDValue Ops[] = { 780 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), 781 N->getOperand(0), 782 CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), 783 N->getOperand(1), 784 CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) 785 }; 786 SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, 787 MVT::i64, Ops); 788 789 // Shift right by "(Addr & 0x3) * 8" bytes. 790 SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32); 791 SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32); 792 SDNode *C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32, 793 M0, N->getOperand(2), M1); 794 SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64, 795 SDValue(R, 0), SDValue(C, 0)); 796 SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy, 797 SDValue(S, 0)); 798 ReplaceNode(N, E.getNode()); 799 } else { 800 assert(VecLen == 64); 801 SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1, 802 N->getOperand(2)); 803 SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy, 804 N->getOperand(0), N->getOperand(1), 805 SDValue(Pu,0)); 806 ReplaceNode(N, VA); 807 } 808 } 809 810 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) { 811 const SDLoc &dl(N); 812 SDValue A = N->getOperand(1); 813 int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue(); 814 assert(isPowerOf2_32(-Mask)); 815 816 SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32); 817 SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32, 818 N->getOperand(0), M); 819 ReplaceNode(N, AA); 820 } 821 822 // Handle these nodes here to avoid having to write patterns for all 823 // combinations of input/output types. In all cases, the resulting 824 // instruction is the same. 825 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) { 826 SDValue Op = N->getOperand(0); 827 MVT OpTy = Op.getValueType().getSimpleVT(); 828 SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(), 829 CurDAG->getVTList(OpTy), {Op}); 830 ReplaceNode(T, Op.getNode()); 831 } 832 833 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) { 834 MVT ResTy = N->getValueType(0).getSimpleVT(); 835 SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy, 836 N->getOperand(0)); 837 ReplaceNode(N, T); 838 } 839 840 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) { 841 const SDLoc &dl(N); 842 MVT ResTy = N->getValueType(0).getSimpleVT(); 843 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 844 SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy, 845 N->getOperand(0), Zero); 846 ReplaceNode(N, T); 847 } 848 849 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) { 850 const SDLoc &dl(N); 851 MVT ResTy = N->getValueType(0).getSimpleVT(); 852 // The argument to V2Q should be a single vector. 853 MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy; 854 assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits()); 855 856 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); 857 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); 858 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy, 859 N->getOperand(0), SDValue(R,0)); 860 ReplaceNode(N, T); 861 } 862 863 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) { 864 const SDLoc &dl(N); 865 MVT ResTy = N->getValueType(0).getSimpleVT(); 866 // The result of V2Q should be a single vector. 867 assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits()); 868 869 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); 870 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); 871 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy, 872 N->getOperand(0), SDValue(R,0)); 873 ReplaceNode(N, T); 874 } 875 876 void HexagonDAGToDAGISel::Select(SDNode *N) { 877 if (N->isMachineOpcode()) 878 return N->setNodeId(-1); // Already selected. 879 880 switch (N->getOpcode()) { 881 case ISD::Constant: return SelectConstant(N); 882 case ISD::ConstantFP: return SelectConstantFP(N); 883 case ISD::FrameIndex: return SelectFrameIndex(N); 884 case ISD::SHL: return SelectSHL(N); 885 case ISD::LOAD: return SelectLoad(N); 886 case ISD::STORE: return SelectStore(N); 887 case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N); 888 case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N); 889 890 case HexagonISD::ADDC: 891 case HexagonISD::SUBC: return SelectAddSubCarry(N); 892 case HexagonISD::VALIGN: return SelectVAlign(N); 893 case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N); 894 case HexagonISD::TYPECAST: return SelectTypecast(N); 895 case HexagonISD::P2D: return SelectP2D(N); 896 case HexagonISD::D2P: return SelectD2P(N); 897 case HexagonISD::Q2V: return SelectQ2V(N); 898 case HexagonISD::V2Q: return SelectV2Q(N); 899 } 900 901 if (HST->useHVXOps()) { 902 switch (N->getOpcode()) { 903 case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N); 904 case HexagonISD::VROR: return SelectHvxRor(N); 905 } 906 } 907 908 SelectCode(N); 909 } 910 911 bool HexagonDAGToDAGISel:: 912 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, 913 std::vector<SDValue> &OutOps) { 914 SDValue Inp = Op, Res; 915 916 switch (ConstraintID) { 917 default: 918 return true; 919 case InlineAsm::Constraint_o: // Offsetable. 920 case InlineAsm::Constraint_v: // Not offsetable. 921 case InlineAsm::Constraint_m: // Memory. 922 if (SelectAddrFI(Inp, Res)) 923 OutOps.push_back(Res); 924 else 925 OutOps.push_back(Inp); 926 break; 927 } 928 929 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 930 return false; 931 } 932 933 934 static bool isMemOPCandidate(SDNode *I, SDNode *U) { 935 // I is an operand of U. Check if U is an arithmetic (binary) operation 936 // usable in a memop, where the other operand is a loaded value, and the 937 // result of U is stored in the same location. 938 939 if (!U->hasOneUse()) 940 return false; 941 unsigned Opc = U->getOpcode(); 942 switch (Opc) { 943 case ISD::ADD: 944 case ISD::SUB: 945 case ISD::AND: 946 case ISD::OR: 947 break; 948 default: 949 return false; 950 } 951 952 SDValue S0 = U->getOperand(0); 953 SDValue S1 = U->getOperand(1); 954 SDValue SY = (S0.getNode() == I) ? S1 : S0; 955 956 SDNode *UUse = *U->use_begin(); 957 if (UUse->getNumValues() != 1) 958 return false; 959 960 // Check if one of the inputs to U is a load instruction and the output 961 // is used by a store instruction. If so and they also have the same 962 // base pointer, then don't preoprocess this node sequence as it 963 // can be matched to a memop. 964 SDNode *SYNode = SY.getNode(); 965 if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) { 966 SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr(); 967 SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr(); 968 if (LDBasePtr == STBasePtr) 969 return true; 970 } 971 return false; 972 } 973 974 975 // Transform: (or (select c x 0) z) -> (select c (or x z) z) 976 // (or (select c 0 y) z) -> (select c z (or y z)) 977 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) { 978 SelectionDAG &DAG = *CurDAG; 979 980 for (auto I : Nodes) { 981 if (I->getOpcode() != ISD::OR) 982 continue; 983 984 auto IsZero = [] (const SDValue &V) -> bool { 985 if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode())) 986 return SC->isNullValue(); 987 return false; 988 }; 989 auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool { 990 if (Op.getOpcode() != ISD::SELECT) 991 return false; 992 return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2)); 993 }; 994 995 SDValue N0 = I->getOperand(0), N1 = I->getOperand(1); 996 EVT VT = I->getValueType(0); 997 bool SelN0 = IsSelect0(N0); 998 SDValue SOp = SelN0 ? N0 : N1; 999 SDValue VOp = SelN0 ? N1 : N0; 1000 1001 if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) { 1002 SDValue SC = SOp.getOperand(0); 1003 SDValue SX = SOp.getOperand(1); 1004 SDValue SY = SOp.getOperand(2); 1005 SDLoc DLS = SOp; 1006 if (IsZero(SY)) { 1007 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp); 1008 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp); 1009 DAG.ReplaceAllUsesWith(I, NewSel.getNode()); 1010 } else if (IsZero(SX)) { 1011 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp); 1012 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr); 1013 DAG.ReplaceAllUsesWith(I, NewSel.getNode()); 1014 } 1015 } 1016 } 1017 } 1018 1019 // Transform: (store ch val (add x (add (shl y c) e))) 1020 // to: (store ch val (add x (shl (add y d) c))), 1021 // where e = (shl d c) for some integer d. 1022 // The purpose of this is to enable generation of loads/stores with 1023 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift 1024 // value c must be 0, 1 or 2. 1025 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) { 1026 SelectionDAG &DAG = *CurDAG; 1027 1028 for (auto I : Nodes) { 1029 if (I->getOpcode() != ISD::STORE) 1030 continue; 1031 1032 // I matched: (store ch val Off) 1033 SDValue Off = I->getOperand(2); 1034 // Off needs to match: (add x (add (shl y c) (shl d c)))) 1035 if (Off.getOpcode() != ISD::ADD) 1036 continue; 1037 // Off matched: (add x T0) 1038 SDValue T0 = Off.getOperand(1); 1039 // T0 needs to match: (add T1 T2): 1040 if (T0.getOpcode() != ISD::ADD) 1041 continue; 1042 // T0 matched: (add T1 T2) 1043 SDValue T1 = T0.getOperand(0); 1044 SDValue T2 = T0.getOperand(1); 1045 // T1 needs to match: (shl y c) 1046 if (T1.getOpcode() != ISD::SHL) 1047 continue; 1048 SDValue C = T1.getOperand(1); 1049 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode()); 1050 if (CN == nullptr) 1051 continue; 1052 unsigned CV = CN->getZExtValue(); 1053 if (CV > 2) 1054 continue; 1055 // T2 needs to match e, where e = (shl d c) for some d. 1056 ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode()); 1057 if (EN == nullptr) 1058 continue; 1059 unsigned EV = EN->getZExtValue(); 1060 if (EV % (1 << CV) != 0) 1061 continue; 1062 unsigned DV = EV / (1 << CV); 1063 1064 // Replace T0 with: (shl (add y d) c) 1065 SDLoc DL = SDLoc(I); 1066 EVT VT = T0.getValueType(); 1067 SDValue D = DAG.getConstant(DV, DL, VT); 1068 // NewAdd = (add y d) 1069 SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D); 1070 // NewShl = (shl NewAdd c) 1071 SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C); 1072 ReplaceNode(T0.getNode(), NewShl.getNode()); 1073 } 1074 } 1075 1076 // Transform: (load ch (add x (and (srl y c) Mask))) 1077 // to: (load ch (add x (shl (srl y d) d-c))) 1078 // where 1079 // Mask = 00..0 111..1 0.0 1080 // | | +-- d-c 0s, and d-c is 0, 1 or 2. 1081 // | +-------- 1s 1082 // +-------------- at most c 0s 1083 // Motivating example: 1084 // DAG combiner optimizes (add x (shl (srl y 5) 2)) 1085 // to (add x (and (srl y 3) 1FFFFFFC)) 1086 // which results in a constant-extended and(##...,lsr). This transformation 1087 // undoes this simplification for cases where the shl can be folded into 1088 // an addressing mode. 1089 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) { 1090 SelectionDAG &DAG = *CurDAG; 1091 1092 for (SDNode *N : Nodes) { 1093 unsigned Opc = N->getOpcode(); 1094 if (Opc != ISD::LOAD && Opc != ISD::STORE) 1095 continue; 1096 SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2); 1097 // Addr must match: (add x T0) 1098 if (Addr.getOpcode() != ISD::ADD) 1099 continue; 1100 SDValue T0 = Addr.getOperand(1); 1101 // T0 must match: (and T1 Mask) 1102 if (T0.getOpcode() != ISD::AND) 1103 continue; 1104 1105 // We have an AND. 1106 // 1107 // Check the first operand. It must be: (srl y c). 1108 SDValue S = T0.getOperand(0); 1109 if (S.getOpcode() != ISD::SRL) 1110 continue; 1111 ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode()); 1112 if (SN == nullptr) 1113 continue; 1114 if (SN->getAPIntValue().getBitWidth() != 32) 1115 continue; 1116 uint32_t CV = SN->getZExtValue(); 1117 1118 // Check the second operand: the supposed mask. 1119 ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode()); 1120 if (MN == nullptr) 1121 continue; 1122 if (MN->getAPIntValue().getBitWidth() != 32) 1123 continue; 1124 uint32_t Mask = MN->getZExtValue(); 1125 // Examine the mask. 1126 uint32_t TZ = countTrailingZeros(Mask); 1127 uint32_t M1 = countTrailingOnes(Mask >> TZ); 1128 uint32_t LZ = countLeadingZeros(Mask); 1129 // Trailing zeros + middle ones + leading zeros must equal the width. 1130 if (TZ + M1 + LZ != 32) 1131 continue; 1132 // The number of trailing zeros will be encoded in the addressing mode. 1133 if (TZ > 2) 1134 continue; 1135 // The number of leading zeros must be at most c. 1136 if (LZ > CV) 1137 continue; 1138 1139 // All looks good. 1140 SDValue Y = S.getOperand(0); 1141 EVT VT = Addr.getValueType(); 1142 SDLoc dl(S); 1143 // TZ = D-C, so D = TZ+C. 1144 SDValue D = DAG.getConstant(TZ+CV, dl, VT); 1145 SDValue DC = DAG.getConstant(TZ, dl, VT); 1146 SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D); 1147 SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC); 1148 ReplaceNode(T0.getNode(), NewShl.getNode()); 1149 } 1150 } 1151 1152 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) 1153 // (op ... 1 ...)) 1154 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) { 1155 SelectionDAG &DAG = *CurDAG; 1156 1157 for (SDNode *N : Nodes) { 1158 unsigned Opc = N->getOpcode(); 1159 if (Opc != ISD::ZERO_EXTEND) 1160 continue; 1161 SDValue OpI1 = N->getOperand(0); 1162 EVT OpVT = OpI1.getValueType(); 1163 if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1) 1164 continue; 1165 for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1166 SDNode *U = *I; 1167 if (U->getNumValues() != 1) 1168 continue; 1169 EVT UVT = U->getValueType(0); 1170 if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1) 1171 continue; 1172 if (isMemOPCandidate(N, U)) 1173 continue; 1174 1175 // Potentially simplifiable operation. 1176 unsigned I1N = I.getOperandNo(); 1177 SmallVector<SDValue,2> Ops(U->getNumOperands()); 1178 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) 1179 Ops[i] = U->getOperand(i); 1180 EVT BVT = Ops[I1N].getValueType(); 1181 1182 SDLoc dl(U); 1183 SDValue C0 = DAG.getConstant(0, dl, BVT); 1184 SDValue C1 = DAG.getConstant(1, dl, BVT); 1185 SDValue If0, If1; 1186 1187 if (isa<MachineSDNode>(U)) { 1188 unsigned UseOpc = U->getMachineOpcode(); 1189 Ops[I1N] = C0; 1190 If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); 1191 Ops[I1N] = C1; 1192 If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); 1193 } else { 1194 unsigned UseOpc = U->getOpcode(); 1195 Ops[I1N] = C0; 1196 If0 = DAG.getNode(UseOpc, dl, UVT, Ops); 1197 Ops[I1N] = C1; 1198 If1 = DAG.getNode(UseOpc, dl, UVT, Ops); 1199 } 1200 SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0); 1201 DAG.ReplaceAllUsesWith(U, Sel.getNode()); 1202 } 1203 } 1204 } 1205 1206 void HexagonDAGToDAGISel::PreprocessISelDAG() { 1207 // Repack all nodes before calling each preprocessing function, 1208 // because each of them can modify the set of nodes. 1209 auto getNodes = [this] () -> std::vector<SDNode*> { 1210 std::vector<SDNode*> T; 1211 T.reserve(CurDAG->allnodes_size()); 1212 for (SDNode &N : CurDAG->allnodes()) 1213 T.push_back(&N); 1214 return T; 1215 }; 1216 1217 // Transform: (or (select c x 0) z) -> (select c (or x z) z) 1218 // (or (select c 0 y) z) -> (select c z (or y z)) 1219 ppSimplifyOrSelect0(getNodes()); 1220 1221 // Transform: (store ch val (add x (add (shl y c) e))) 1222 // to: (store ch val (add x (shl (add y d) c))), 1223 // where e = (shl d c) for some integer d. 1224 // The purpose of this is to enable generation of loads/stores with 1225 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift 1226 // value c must be 0, 1 or 2. 1227 ppAddrReorderAddShl(getNodes()); 1228 1229 // Transform: (load ch (add x (and (srl y c) Mask))) 1230 // to: (load ch (add x (shl (srl y d) d-c))) 1231 // where 1232 // Mask = 00..0 111..1 0.0 1233 // | | +-- d-c 0s, and d-c is 0, 1 or 2. 1234 // | +-------- 1s 1235 // +-------------- at most c 0s 1236 // Motivating example: 1237 // DAG combiner optimizes (add x (shl (srl y 5) 2)) 1238 // to (add x (and (srl y 3) 1FFFFFFC)) 1239 // which results in a constant-extended and(##...,lsr). This transformation 1240 // undoes this simplification for cases where the shl can be folded into 1241 // an addressing mode. 1242 ppAddrRewriteAndSrl(getNodes()); 1243 1244 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) 1245 // (op ... 1 ...)) 1246 ppHoistZextI1(getNodes()); 1247 1248 DEBUG_WITH_TYPE("isel", { 1249 dbgs() << "Preprocessed (Hexagon) selection DAG:"; 1250 CurDAG->dump(); 1251 }); 1252 1253 if (EnableAddressRebalancing) { 1254 rebalanceAddressTrees(); 1255 1256 DEBUG_WITH_TYPE("isel", { 1257 dbgs() << "Address tree balanced selection DAG:"; 1258 CurDAG->dump(); 1259 }); 1260 } 1261 } 1262 1263 void HexagonDAGToDAGISel::EmitFunctionEntryCode() { 1264 auto &HST = MF->getSubtarget<HexagonSubtarget>(); 1265 auto &HFI = *HST.getFrameLowering(); 1266 if (!HFI.needsAligna(*MF)) 1267 return; 1268 1269 MachineFrameInfo &MFI = MF->getFrameInfo(); 1270 MachineBasicBlock *EntryBB = &MF->front(); 1271 unsigned AR = FuncInfo->CreateReg(MVT::i32); 1272 unsigned EntryMaxA = MFI.getMaxAlignment(); 1273 BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR) 1274 .addImm(EntryMaxA); 1275 MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR); 1276 } 1277 1278 void HexagonDAGToDAGISel::updateAligna() { 1279 auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering(); 1280 if (!HFI.needsAligna(*MF)) 1281 return; 1282 auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(*MF)); 1283 assert(AlignaI != nullptr); 1284 unsigned MaxA = MF->getFrameInfo().getMaxAlignment(); 1285 if (AlignaI->getOperand(1).getImm() < MaxA) 1286 AlignaI->getOperand(1).setImm(MaxA); 1287 } 1288 1289 // Match a frame index that can be used in an addressing mode. 1290 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) { 1291 if (N.getOpcode() != ISD::FrameIndex) 1292 return false; 1293 auto &HFI = *HST->getFrameLowering(); 1294 MachineFrameInfo &MFI = MF->getFrameInfo(); 1295 int FX = cast<FrameIndexSDNode>(N)->getIndex(); 1296 if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF)) 1297 return false; 1298 R = CurDAG->getTargetFrameIndex(FX, MVT::i32); 1299 return true; 1300 } 1301 1302 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) { 1303 return SelectGlobalAddress(N, R, false, 0); 1304 } 1305 1306 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) { 1307 return SelectGlobalAddress(N, R, true, 0); 1308 } 1309 1310 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) { 1311 return SelectAnyImmediate(N, R, 0); 1312 } 1313 1314 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) { 1315 return SelectAnyImmediate(N, R, 0); 1316 } 1317 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) { 1318 return SelectAnyImmediate(N, R, 1); 1319 } 1320 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) { 1321 return SelectAnyImmediate(N, R, 2); 1322 } 1323 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) { 1324 return SelectAnyImmediate(N, R, 3); 1325 } 1326 1327 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) { 1328 EVT T = N.getValueType(); 1329 if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N)) 1330 return false; 1331 R = N; 1332 return true; 1333 } 1334 1335 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R, 1336 uint32_t LogAlign) { 1337 auto IsAligned = [LogAlign] (uint64_t V) -> bool { 1338 return alignTo(V, (uint64_t)1 << LogAlign) == V; 1339 }; 1340 1341 switch (N.getOpcode()) { 1342 case ISD::Constant: { 1343 if (N.getValueType() != MVT::i32) 1344 return false; 1345 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue(); 1346 if (!IsAligned(V)) 1347 return false; 1348 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType()); 1349 return true; 1350 } 1351 case HexagonISD::JT: 1352 case HexagonISD::CP: 1353 // These are assumed to always be aligned at least 8-byte boundary. 1354 if (LogAlign > 3) 1355 return false; 1356 R = N.getOperand(0); 1357 return true; 1358 case ISD::ExternalSymbol: 1359 // Symbols may be aligned at any boundary. 1360 if (LogAlign > 0) 1361 return false; 1362 R = N; 1363 return true; 1364 case ISD::BlockAddress: 1365 // Block address is always aligned at least 4-byte boundary. 1366 if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset())) 1367 return false; 1368 R = N; 1369 return true; 1370 } 1371 1372 if (SelectGlobalAddress(N, R, false, LogAlign) || 1373 SelectGlobalAddress(N, R, true, LogAlign)) 1374 return true; 1375 1376 return false; 1377 } 1378 1379 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R, 1380 bool UseGP, uint32_t LogAlign) { 1381 auto IsAligned = [LogAlign] (uint64_t V) -> bool { 1382 return alignTo(V, (uint64_t)1 << LogAlign) == V; 1383 }; 1384 1385 switch (N.getOpcode()) { 1386 case ISD::ADD: { 1387 SDValue N0 = N.getOperand(0); 1388 SDValue N1 = N.getOperand(1); 1389 unsigned GAOpc = N0.getOpcode(); 1390 if (UseGP && GAOpc != HexagonISD::CONST32_GP) 1391 return false; 1392 if (!UseGP && GAOpc != HexagonISD::CONST32) 1393 return false; 1394 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) { 1395 SDValue Addr = N0.getOperand(0); 1396 // For the purpose of alignment, sextvalue and zextvalue are the same. 1397 if (!IsAligned(Const->getZExtValue())) 1398 return false; 1399 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) { 1400 if (GA->getOpcode() == ISD::TargetGlobalAddress) { 1401 uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue(); 1402 R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const), 1403 N.getValueType(), NewOff); 1404 return true; 1405 } 1406 } 1407 } 1408 break; 1409 } 1410 case HexagonISD::CP: 1411 case HexagonISD::JT: 1412 case HexagonISD::CONST32: 1413 // The operand(0) of CONST32 is TargetGlobalAddress, which is what we 1414 // want in the instruction. 1415 if (!UseGP) 1416 R = N.getOperand(0); 1417 return !UseGP; 1418 case HexagonISD::CONST32_GP: 1419 if (UseGP) 1420 R = N.getOperand(0); 1421 return UseGP; 1422 default: 1423 return false; 1424 } 1425 1426 return false; 1427 } 1428 1429 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) { 1430 // This (complex pattern) function is meant to detect a sign-extension 1431 // i32->i64 on a per-operand basis. This would allow writing single 1432 // patterns that would cover a number of combinations of different ways 1433 // a sign-extensions could be written. For example: 1434 // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y) 1435 // could match either one of these: 1436 // (mul (sext x) (sext_inreg y)) 1437 // (mul (sext-load *p) (sext_inreg y)) 1438 // (mul (sext_inreg x) (sext y)) 1439 // etc. 1440 // 1441 // The returned value will have type i64 and its low word will 1442 // contain the value being extended. The high bits are not specified. 1443 // The returned type is i64 because the original type of N was i64, 1444 // but the users of this function should only use the low-word of the 1445 // result, e.g. 1446 // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y)) 1447 1448 if (N.getValueType() != MVT::i64) 1449 return false; 1450 unsigned Opc = N.getOpcode(); 1451 switch (Opc) { 1452 case ISD::SIGN_EXTEND: 1453 case ISD::SIGN_EXTEND_INREG: { 1454 // sext_inreg has the source type as a separate operand. 1455 EVT T = Opc == ISD::SIGN_EXTEND 1456 ? N.getOperand(0).getValueType() 1457 : cast<VTSDNode>(N.getOperand(1))->getVT(); 1458 unsigned SW = T.getSizeInBits(); 1459 if (SW == 32) 1460 R = N.getOperand(0); 1461 else if (SW < 32) 1462 R = N; 1463 else 1464 return false; 1465 break; 1466 } 1467 case ISD::LOAD: { 1468 LoadSDNode *L = cast<LoadSDNode>(N); 1469 if (L->getExtensionType() != ISD::SEXTLOAD) 1470 return false; 1471 // All extending loads extend to i32, so even if the value in 1472 // memory is shorter than 32 bits, it will be i32 after the load. 1473 if (L->getMemoryVT().getSizeInBits() > 32) 1474 return false; 1475 R = N; 1476 break; 1477 } 1478 case ISD::SRA: { 1479 auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1480 if (!S || S->getZExtValue() != 32) 1481 return false; 1482 R = N; 1483 break; 1484 } 1485 default: 1486 return false; 1487 } 1488 EVT RT = R.getValueType(); 1489 if (RT == MVT::i64) 1490 return true; 1491 assert(RT == MVT::i32); 1492 // This is only to produce a value of type i64. Do not rely on the 1493 // high bits produced by this. 1494 const SDLoc &dl(N); 1495 SDValue Ops[] = { 1496 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), 1497 R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), 1498 R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) 1499 }; 1500 SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, 1501 MVT::i64, Ops); 1502 R = SDValue(T, 0); 1503 return true; 1504 } 1505 1506 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits, 1507 SDValue &Src) { 1508 unsigned Opc = Val.getOpcode(); 1509 switch (Opc) { 1510 case ISD::SIGN_EXTEND: 1511 case ISD::ZERO_EXTEND: 1512 case ISD::ANY_EXTEND: { 1513 const SDValue &Op0 = Val.getOperand(0); 1514 EVT T = Op0.getValueType(); 1515 if (T.isInteger() && T.getSizeInBits() == NumBits) { 1516 Src = Op0; 1517 return true; 1518 } 1519 break; 1520 } 1521 case ISD::SIGN_EXTEND_INREG: 1522 case ISD::AssertSext: 1523 case ISD::AssertZext: 1524 if (Val.getOperand(0).getValueType().isInteger()) { 1525 VTSDNode *T = cast<VTSDNode>(Val.getOperand(1)); 1526 if (T->getVT().getSizeInBits() == NumBits) { 1527 Src = Val.getOperand(0); 1528 return true; 1529 } 1530 } 1531 break; 1532 case ISD::AND: { 1533 // Check if this is an AND with NumBits of lower bits set to 1. 1534 uint64_t Mask = (1 << NumBits) - 1; 1535 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { 1536 if (C->getZExtValue() == Mask) { 1537 Src = Val.getOperand(1); 1538 return true; 1539 } 1540 } 1541 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { 1542 if (C->getZExtValue() == Mask) { 1543 Src = Val.getOperand(0); 1544 return true; 1545 } 1546 } 1547 break; 1548 } 1549 case ISD::OR: 1550 case ISD::XOR: { 1551 // OR/XOR with the lower NumBits bits set to 0. 1552 uint64_t Mask = (1 << NumBits) - 1; 1553 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { 1554 if ((C->getZExtValue() & Mask) == 0) { 1555 Src = Val.getOperand(1); 1556 return true; 1557 } 1558 } 1559 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { 1560 if ((C->getZExtValue() & Mask) == 0) { 1561 Src = Val.getOperand(0); 1562 return true; 1563 } 1564 } 1565 break; 1566 } 1567 default: 1568 break; 1569 } 1570 return false; 1571 } 1572 1573 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const { 1574 return N->getAlignment() >= N->getMemoryVT().getStoreSize(); 1575 } 1576 1577 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const { 1578 unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF); 1579 switch (N->getMemoryVT().getStoreSize()) { 1580 case 1: 1581 return StackSize <= 56; // 1*2^6 - 8 1582 case 2: 1583 return StackSize <= 120; // 2*2^6 - 8 1584 case 4: 1585 return StackSize <= 248; // 4*2^6 - 8 1586 default: 1587 return false; 1588 } 1589 } 1590 1591 // Return true when the given node fits in a positive half word. 1592 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const { 1593 if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) { 1594 int64_t V = CN->getSExtValue(); 1595 return V > 0 && isInt<16>(V); 1596 } 1597 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) { 1598 const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1)); 1599 return VN->getVT().getSizeInBits() <= 16; 1600 } 1601 return false; 1602 } 1603 1604 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const { 1605 return !CheckSingleUse || N->hasOneUse(); 1606 } 1607 1608 //////////////////////////////////////////////////////////////////////////////// 1609 // Rebalancing of address calculation trees 1610 1611 static bool isOpcodeHandled(const SDNode *N) { 1612 switch (N->getOpcode()) { 1613 case ISD::ADD: 1614 case ISD::MUL: 1615 return true; 1616 case ISD::SHL: 1617 // We only handle constant shifts because these can be easily flattened 1618 // into multiplications by 2^Op1. 1619 return isa<ConstantSDNode>(N->getOperand(1).getNode()); 1620 default: 1621 return false; 1622 } 1623 } 1624 1625 /// Return the weight of an SDNode 1626 int HexagonDAGToDAGISel::getWeight(SDNode *N) { 1627 if (!isOpcodeHandled(N)) 1628 return 1; 1629 assert(RootWeights.count(N) && "Cannot get weight of unseen root!"); 1630 assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!"); 1631 assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!"); 1632 return RootWeights[N]; 1633 } 1634 1635 int HexagonDAGToDAGISel::getHeight(SDNode *N) { 1636 if (!isOpcodeHandled(N)) 1637 return 0; 1638 assert(RootWeights.count(N) && RootWeights[N] >= 0 && 1639 "Cannot query height of unvisited/RAUW'd node!"); 1640 return RootHeights[N]; 1641 } 1642 1643 namespace { 1644 struct WeightedLeaf { 1645 SDValue Value; 1646 int Weight; 1647 int InsertionOrder; 1648 1649 WeightedLeaf() : Value(SDValue()) { } 1650 1651 WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) : 1652 Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) { 1653 assert(Weight >= 0 && "Weight must be >= 0"); 1654 } 1655 1656 static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) { 1657 assert(A.Value.getNode() && B.Value.getNode()); 1658 return A.Weight == B.Weight ? 1659 (A.InsertionOrder > B.InsertionOrder) : 1660 (A.Weight > B.Weight); 1661 } 1662 }; 1663 1664 /// A specialized priority queue for WeigthedLeaves. It automatically folds 1665 /// constants and allows removal of non-top elements while maintaining the 1666 /// priority order. 1667 class LeafPrioQueue { 1668 SmallVector<WeightedLeaf, 8> Q; 1669 bool HaveConst; 1670 WeightedLeaf ConstElt; 1671 unsigned Opcode; 1672 1673 public: 1674 bool empty() { 1675 return (!HaveConst && Q.empty()); 1676 } 1677 1678 size_t size() { 1679 return Q.size() + HaveConst; 1680 } 1681 1682 bool hasConst() { 1683 return HaveConst; 1684 } 1685 1686 const WeightedLeaf &top() { 1687 if (HaveConst) 1688 return ConstElt; 1689 return Q.front(); 1690 } 1691 1692 WeightedLeaf pop() { 1693 if (HaveConst) { 1694 HaveConst = false; 1695 return ConstElt; 1696 } 1697 std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1698 return Q.pop_back_val(); 1699 } 1700 1701 void push(WeightedLeaf L, bool SeparateConst=true) { 1702 if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) { 1703 if (Opcode == ISD::MUL && 1704 cast<ConstantSDNode>(L.Value)->getSExtValue() == 1) 1705 return; 1706 if (Opcode == ISD::ADD && 1707 cast<ConstantSDNode>(L.Value)->getSExtValue() == 0) 1708 return; 1709 1710 HaveConst = true; 1711 ConstElt = L; 1712 } else { 1713 Q.push_back(L); 1714 std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1715 } 1716 } 1717 1718 /// Push L to the bottom of the queue regardless of its weight. If L is 1719 /// constant, it will not be folded with other constants in the queue. 1720 void pushToBottom(WeightedLeaf L) { 1721 L.Weight = 1000; 1722 push(L, false); 1723 } 1724 1725 /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of 1726 /// lowest weight and remove it from the queue. 1727 WeightedLeaf findSHL(uint64_t MaxAmount); 1728 1729 WeightedLeaf findMULbyConst(); 1730 1731 LeafPrioQueue(unsigned Opcode) : 1732 HaveConst(false), Opcode(Opcode) { } 1733 }; 1734 } // end anonymous namespace 1735 1736 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) { 1737 int ResultPos; 1738 WeightedLeaf Result; 1739 1740 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { 1741 const WeightedLeaf &L = Q[Pos]; 1742 const SDValue &Val = L.Value; 1743 if (Val.getOpcode() != ISD::SHL || 1744 !isa<ConstantSDNode>(Val.getOperand(1)) || 1745 Val.getConstantOperandVal(1) > MaxAmount) 1746 continue; 1747 if (!Result.Value.getNode() || Result.Weight > L.Weight || 1748 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) 1749 { 1750 Result = L; 1751 ResultPos = Pos; 1752 } 1753 } 1754 1755 if (Result.Value.getNode()) { 1756 Q.erase(&Q[ResultPos]); 1757 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1758 } 1759 1760 return Result; 1761 } 1762 1763 WeightedLeaf LeafPrioQueue::findMULbyConst() { 1764 int ResultPos; 1765 WeightedLeaf Result; 1766 1767 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { 1768 const WeightedLeaf &L = Q[Pos]; 1769 const SDValue &Val = L.Value; 1770 if (Val.getOpcode() != ISD::MUL || 1771 !isa<ConstantSDNode>(Val.getOperand(1)) || 1772 Val.getConstantOperandVal(1) > 127) 1773 continue; 1774 if (!Result.Value.getNode() || Result.Weight > L.Weight || 1775 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) 1776 { 1777 Result = L; 1778 ResultPos = Pos; 1779 } 1780 } 1781 1782 if (Result.Value.getNode()) { 1783 Q.erase(&Q[ResultPos]); 1784 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1785 } 1786 1787 return Result; 1788 } 1789 1790 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) { 1791 uint64_t MulFactor = 1ull << N->getConstantOperandVal(1); 1792 return CurDAG->getConstant(MulFactor, SDLoc(N), 1793 N->getOperand(1).getValueType()); 1794 } 1795 1796 /// @returns the value x for which 2^x is a factor of Val 1797 static unsigned getPowerOf2Factor(SDValue Val) { 1798 if (Val.getOpcode() == ISD::MUL) { 1799 unsigned MaxFactor = 0; 1800 for (int i = 0; i < 2; ++i) { 1801 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i)); 1802 if (!C) 1803 continue; 1804 const APInt &CInt = C->getAPIntValue(); 1805 if (CInt.getBoolValue()) 1806 MaxFactor = CInt.countTrailingZeros(); 1807 } 1808 return MaxFactor; 1809 } 1810 if (Val.getOpcode() == ISD::SHL) { 1811 if (!isa<ConstantSDNode>(Val.getOperand(1).getNode())) 1812 return 0; 1813 return (unsigned) Val.getConstantOperandVal(1); 1814 } 1815 1816 return 0; 1817 } 1818 1819 /// @returns true if V>>Amount will eliminate V's operation on its child 1820 static bool willShiftRightEliminate(SDValue V, unsigned Amount) { 1821 if (V.getOpcode() == ISD::MUL) { 1822 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; 1823 for (int i = 0; i < 2; ++i) 1824 if (isa<ConstantSDNode>(Ops[i].getNode()) && 1825 V.getConstantOperandVal(i) % (1ULL << Amount) == 0) { 1826 uint64_t NewConst = V.getConstantOperandVal(i) >> Amount; 1827 return (NewConst == 1); 1828 } 1829 } else if (V.getOpcode() == ISD::SHL) { 1830 return (Amount == V.getConstantOperandVal(1)); 1831 } 1832 1833 return false; 1834 } 1835 1836 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) { 1837 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; 1838 if (V.getOpcode() == ISD::MUL) { 1839 for (int i=0; i < 2; ++i) { 1840 if (isa<ConstantSDNode>(Ops[i].getNode()) && 1841 V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) { 1842 uint64_t NewConst = V.getConstantOperandVal(i) >> Power; 1843 if (NewConst == 1) 1844 return Ops[!i]; 1845 Ops[i] = CurDAG->getConstant(NewConst, 1846 SDLoc(V), V.getValueType()); 1847 break; 1848 } 1849 } 1850 } else if (V.getOpcode() == ISD::SHL) { 1851 uint64_t ShiftAmount = V.getConstantOperandVal(1); 1852 if (ShiftAmount == Power) 1853 return Ops[0]; 1854 Ops[1] = CurDAG->getConstant(ShiftAmount - Power, 1855 SDLoc(V), V.getValueType()); 1856 } 1857 1858 return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops); 1859 } 1860 1861 static bool isTargetConstant(const SDValue &V) { 1862 return V.getOpcode() == HexagonISD::CONST32 || 1863 V.getOpcode() == HexagonISD::CONST32_GP; 1864 } 1865 1866 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) { 1867 if (GAUsesInFunction.count(V)) 1868 return GAUsesInFunction[V]; 1869 1870 unsigned Result = 0; 1871 const Function &CurF = CurDAG->getMachineFunction().getFunction(); 1872 for (const User *U : V->users()) { 1873 if (isa<Instruction>(U) && 1874 cast<Instruction>(U)->getParent()->getParent() == &CurF) 1875 ++Result; 1876 } 1877 1878 GAUsesInFunction[V] = Result; 1879 1880 return Result; 1881 } 1882 1883 /// Note - After calling this, N may be dead. It may have been replaced by a 1884 /// new node, so always use the returned value in place of N. 1885 /// 1886 /// @returns The SDValue taking the place of N (which could be N if it is 1887 /// unchanged) 1888 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) { 1889 assert(RootWeights.count(N) && "Cannot balance non-root node."); 1890 assert(RootWeights[N] != -2 && "This node was RAUW'd!"); 1891 assert(!TopLevel || N->getOpcode() == ISD::ADD); 1892 1893 // Return early if this node was already visited 1894 if (RootWeights[N] != -1) 1895 return SDValue(N, 0); 1896 1897 assert(isOpcodeHandled(N)); 1898 1899 SDValue Op0 = N->getOperand(0); 1900 SDValue Op1 = N->getOperand(1); 1901 1902 // Return early if the operands will remain unchanged or are all roots 1903 if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) && 1904 (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) { 1905 SDNode *Op0N = Op0.getNode(); 1906 int Weight; 1907 if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) { 1908 Weight = getWeight(balanceSubTree(Op0N).getNode()); 1909 // Weight = calculateWeight(Op0N); 1910 } else 1911 Weight = getWeight(Op0N); 1912 1913 SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd 1914 if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) { 1915 Weight += getWeight(balanceSubTree(Op1N).getNode()); 1916 // Weight += calculateWeight(Op1N); 1917 } else 1918 Weight += getWeight(Op1N); 1919 1920 RootWeights[N] = Weight; 1921 RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()), 1922 getHeight(N->getOperand(1).getNode())) + 1; 1923 1924 LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight 1925 << " Height=" << RootHeights[N] << "): "); 1926 LLVM_DEBUG(N->dump(CurDAG)); 1927 1928 return SDValue(N, 0); 1929 } 1930 1931 LLVM_DEBUG(dbgs() << "** Balancing root node: "); 1932 LLVM_DEBUG(N->dump(CurDAG)); 1933 1934 unsigned NOpcode = N->getOpcode(); 1935 1936 LeafPrioQueue Leaves(NOpcode); 1937 SmallVector<SDValue, 4> Worklist; 1938 Worklist.push_back(SDValue(N, 0)); 1939 1940 // SHL nodes will be converted to MUL nodes 1941 if (NOpcode == ISD::SHL) 1942 NOpcode = ISD::MUL; 1943 1944 bool CanFactorize = false; 1945 WeightedLeaf Mul1, Mul2; 1946 unsigned MaxPowerOf2 = 0; 1947 WeightedLeaf GA; 1948 1949 // Do not try to factor out a shift if there is already a shift at the tip of 1950 // the tree. 1951 bool HaveTopLevelShift = false; 1952 if (TopLevel && 1953 ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL && 1954 Op0.getConstantOperandVal(1) < 4) || 1955 (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL && 1956 Op1.getConstantOperandVal(1) < 4))) 1957 HaveTopLevelShift = true; 1958 1959 // Flatten the subtree into an ordered list of leaves; at the same time 1960 // determine whether the tree is already balanced. 1961 int InsertionOrder = 0; 1962 SmallDenseMap<SDValue, int> NodeHeights; 1963 bool Imbalanced = false; 1964 int CurrentWeight = 0; 1965 while (!Worklist.empty()) { 1966 SDValue Child = Worklist.pop_back_val(); 1967 1968 if (Child.getNode() != N && RootWeights.count(Child.getNode())) { 1969 // CASE 1: Child is a root note 1970 1971 int Weight = RootWeights[Child.getNode()]; 1972 if (Weight == -1) { 1973 Child = balanceSubTree(Child.getNode()); 1974 // calculateWeight(Child.getNode()); 1975 Weight = getWeight(Child.getNode()); 1976 } else if (Weight == -2) { 1977 // Whoops, this node was RAUWd by one of the balanceSubTree calls we 1978 // made. Our worklist isn't up to date anymore. 1979 // Restart the whole process. 1980 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); 1981 return balanceSubTree(N, TopLevel); 1982 } 1983 1984 NodeHeights[Child] = 1; 1985 CurrentWeight += Weight; 1986 1987 unsigned PowerOf2; 1988 if (TopLevel && !CanFactorize && !HaveTopLevelShift && 1989 (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) && 1990 Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) { 1991 // Try to identify two factorizable MUL/SHL children greedily. Leave 1992 // them out of the priority queue for now so we can deal with them 1993 // after. 1994 if (!Mul1.Value.getNode()) { 1995 Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++); 1996 MaxPowerOf2 = PowerOf2; 1997 } else { 1998 Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++); 1999 MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2); 2000 2001 // Our addressing modes can only shift by a maximum of 3 2002 if (MaxPowerOf2 > 3) 2003 MaxPowerOf2 = 3; 2004 2005 CanFactorize = true; 2006 } 2007 } else 2008 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); 2009 } else if (!isOpcodeHandled(Child.getNode())) { 2010 // CASE 2: Child is an unhandled kind of node (e.g. constant) 2011 int Weight = getWeight(Child.getNode()); 2012 2013 NodeHeights[Child] = getHeight(Child.getNode()); 2014 CurrentWeight += Weight; 2015 2016 if (isTargetConstant(Child) && !GA.Value.getNode()) 2017 GA = WeightedLeaf(Child, Weight, InsertionOrder++); 2018 else 2019 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); 2020 } else { 2021 // CASE 3: Child is a subtree of same opcode 2022 // Visit children first, then flatten. 2023 unsigned ChildOpcode = Child.getOpcode(); 2024 assert(ChildOpcode == NOpcode || 2025 (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL)); 2026 2027 // Convert SHL to MUL 2028 SDValue Op1; 2029 if (ChildOpcode == ISD::SHL) 2030 Op1 = getMultiplierForSHL(Child.getNode()); 2031 else 2032 Op1 = Child->getOperand(1); 2033 2034 if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) { 2035 assert(!NodeHeights.count(Child) && "Parent visited before children?"); 2036 // Visit children first, then re-visit this node 2037 Worklist.push_back(Child); 2038 Worklist.push_back(Op1); 2039 Worklist.push_back(Child->getOperand(0)); 2040 } else { 2041 // Back at this node after visiting the children 2042 if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1) 2043 Imbalanced = true; 2044 2045 NodeHeights[Child] = std::max(NodeHeights[Op1], 2046 NodeHeights[Child->getOperand(0)]) + 1; 2047 } 2048 } 2049 } 2050 2051 LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)] 2052 << " weight=" << CurrentWeight 2053 << " imbalanced=" << Imbalanced << "\n"); 2054 2055 // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y) 2056 // This factors out a shift in order to match memw(a<<Y+b). 2057 if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) || 2058 willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) { 2059 LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n"); 2060 int Weight = Mul1.Weight + Mul2.Weight; 2061 int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1; 2062 SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2); 2063 SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2); 2064 SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(), 2065 Mul1Factored, Mul2Factored); 2066 SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N), 2067 Mul1.Value.getValueType()); 2068 SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(), 2069 Sum, Const); 2070 NodeHeights[New] = Height; 2071 Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder)); 2072 } else if (Mul1.Value.getNode()) { 2073 // We failed to factorize two MULs, so now the Muls are left outside the 2074 // queue... add them back. 2075 Leaves.push(Mul1); 2076 if (Mul2.Value.getNode()) 2077 Leaves.push(Mul2); 2078 CanFactorize = false; 2079 } 2080 2081 // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere 2082 // and the root node itself is not used more than twice. This reduces the 2083 // amount of additional constant extenders introduced by this optimization. 2084 bool CombinedGA = false; 2085 if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() && 2086 GA.Value.hasOneUse() && N->use_size() < 3) { 2087 GlobalAddressSDNode *GANode = 2088 cast<GlobalAddressSDNode>(GA.Value.getOperand(0)); 2089 ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value); 2090 2091 if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() && 2092 getTargetLowering()->isOffsetFoldingLegal(GANode)) { 2093 LLVM_DEBUG(dbgs() << "--> Combining GA and offset (" 2094 << Offset->getSExtValue() << "): "); 2095 LLVM_DEBUG(GANode->dump(CurDAG)); 2096 2097 SDValue NewTGA = 2098 CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value), 2099 GANode->getValueType(0), 2100 GANode->getOffset() + (uint64_t)Offset->getSExtValue()); 2101 GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value), 2102 GA.Value.getValueType(), NewTGA); 2103 GA.Weight += Leaves.top().Weight; 2104 2105 NodeHeights[GA.Value] = getHeight(GA.Value.getNode()); 2106 CombinedGA = true; 2107 2108 Leaves.pop(); // Remove the offset constant from the queue 2109 } 2110 } 2111 2112 if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) || 2113 (RebalanceOnlyImbalancedTrees && !Imbalanced)) { 2114 RootWeights[N] = CurrentWeight; 2115 RootHeights[N] = NodeHeights[SDValue(N, 0)]; 2116 2117 return SDValue(N, 0); 2118 } 2119 2120 // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5)) 2121 if (NOpcode == ISD::ADD && GA.Value.getNode()) { 2122 WeightedLeaf SHL = Leaves.findSHL(31); 2123 if (SHL.Value.getNode()) { 2124 int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1; 2125 GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value), 2126 GA.Value.getValueType(), 2127 GA.Value, SHL.Value); 2128 GA.Weight = SHL.Weight; // Specifically ignore the GA weight here 2129 NodeHeights[GA.Value] = Height; 2130 } 2131 } 2132 2133 if (GA.Value.getNode()) 2134 Leaves.push(GA); 2135 2136 // If this is the top level and we haven't factored out a shift, we should try 2137 // to move a constant to the bottom to match addressing modes like memw(rX+C) 2138 if (TopLevel && !CanFactorize && Leaves.hasConst()) { 2139 LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree."); 2140 Leaves.pushToBottom(Leaves.pop()); 2141 } 2142 2143 const DataLayout &DL = CurDAG->getDataLayout(); 2144 const TargetLowering &TLI = *getTargetLowering(); 2145 2146 // Rebuild the tree using Huffman's algorithm 2147 while (Leaves.size() > 1) { 2148 WeightedLeaf L0 = Leaves.pop(); 2149 2150 // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)), 2151 // otherwise just get the next leaf 2152 WeightedLeaf L1 = Leaves.findMULbyConst(); 2153 if (!L1.Value.getNode()) 2154 L1 = Leaves.pop(); 2155 2156 assert(L0.Weight <= L1.Weight && "Priority queue is broken!"); 2157 2158 SDValue V0 = L0.Value; 2159 int V0Weight = L0.Weight; 2160 SDValue V1 = L1.Value; 2161 int V1Weight = L1.Weight; 2162 2163 // Make sure that none of these nodes have been RAUW'd 2164 if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) || 2165 (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) { 2166 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); 2167 return balanceSubTree(N, TopLevel); 2168 } 2169 2170 ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0); 2171 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1); 2172 EVT VT = N->getValueType(0); 2173 SDValue NewNode; 2174 2175 if (V0C && !V1C) { 2176 std::swap(V0, V1); 2177 std::swap(V0C, V1C); 2178 } 2179 2180 // Calculate height of this node 2181 assert(NodeHeights.count(V0) && NodeHeights.count(V1) && 2182 "Children must have been visited before re-combining them!"); 2183 int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1; 2184 2185 // Rebuild this node (and restore SHL from MUL if needed) 2186 if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2()) 2187 NewNode = CurDAG->getNode( 2188 ISD::SHL, SDLoc(V0), VT, V0, 2189 CurDAG->getConstant( 2190 V1C->getAPIntValue().logBase2(), SDLoc(N), 2191 TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); 2192 else 2193 NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1); 2194 2195 NodeHeights[NewNode] = Height; 2196 2197 int Weight = V0Weight + V1Weight; 2198 Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder)); 2199 2200 LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight 2201 << ",Height=" << Height << "):\n"); 2202 LLVM_DEBUG(NewNode.dump()); 2203 } 2204 2205 assert(Leaves.size() == 1); 2206 SDValue NewRoot = Leaves.top().Value; 2207 2208 assert(NodeHeights.count(NewRoot)); 2209 int Height = NodeHeights[NewRoot]; 2210 2211 // Restore SHL if we earlier converted it to a MUL 2212 if (NewRoot.getOpcode() == ISD::MUL) { 2213 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1)); 2214 if (V1C && V1C->getAPIntValue().isPowerOf2()) { 2215 EVT VT = NewRoot.getValueType(); 2216 SDValue V0 = NewRoot.getOperand(0); 2217 NewRoot = CurDAG->getNode( 2218 ISD::SHL, SDLoc(NewRoot), VT, V0, 2219 CurDAG->getConstant( 2220 V1C->getAPIntValue().logBase2(), SDLoc(NewRoot), 2221 TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); 2222 } 2223 } 2224 2225 if (N != NewRoot.getNode()) { 2226 LLVM_DEBUG(dbgs() << "--> Root is now: "); 2227 LLVM_DEBUG(NewRoot.dump()); 2228 2229 // Replace all uses of old root by new root 2230 CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode()); 2231 // Mark that we have RAUW'd N 2232 RootWeights[N] = -2; 2233 } else { 2234 LLVM_DEBUG(dbgs() << "--> Root unchanged.\n"); 2235 } 2236 2237 RootWeights[NewRoot.getNode()] = Leaves.top().Weight; 2238 RootHeights[NewRoot.getNode()] = Height; 2239 2240 return NewRoot; 2241 } 2242 2243 void HexagonDAGToDAGISel::rebalanceAddressTrees() { 2244 for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) { 2245 SDNode *N = &*I++; 2246 if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE) 2247 continue; 2248 2249 SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr(); 2250 if (BasePtr.getOpcode() != ISD::ADD) 2251 continue; 2252 2253 // We've already processed this node 2254 if (RootWeights.count(BasePtr.getNode())) 2255 continue; 2256 2257 LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: "); 2258 LLVM_DEBUG(N->dump(CurDAG)); 2259 2260 // FindRoots 2261 SmallVector<SDNode *, 4> Worklist; 2262 2263 Worklist.push_back(BasePtr.getOperand(0).getNode()); 2264 Worklist.push_back(BasePtr.getOperand(1).getNode()); 2265 2266 while (!Worklist.empty()) { 2267 SDNode *N = Worklist.pop_back_val(); 2268 unsigned Opcode = N->getOpcode(); 2269 2270 if (!isOpcodeHandled(N)) 2271 continue; 2272 2273 Worklist.push_back(N->getOperand(0).getNode()); 2274 Worklist.push_back(N->getOperand(1).getNode()); 2275 2276 // Not a root if it has only one use and same opcode as its parent 2277 if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode()) 2278 continue; 2279 2280 // This root node has already been processed 2281 if (RootWeights.count(N)) 2282 continue; 2283 2284 RootWeights[N] = -1; 2285 } 2286 2287 // Balance node itself 2288 RootWeights[BasePtr.getNode()] = -1; 2289 SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true); 2290 2291 if (N->getOpcode() == ISD::LOAD) 2292 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), 2293 NewBasePtr, N->getOperand(2)); 2294 else 2295 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), 2296 NewBasePtr, N->getOperand(3)); 2297 2298 LLVM_DEBUG(dbgs() << "--> Final node: "); 2299 LLVM_DEBUG(N->dump(CurDAG)); 2300 } 2301 2302 CurDAG->RemoveDeadNodes(); 2303 GAUsesInFunction.clear(); 2304 RootHeights.clear(); 2305 RootWeights.clear(); 2306 } 2307