1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines an instruction selector for the Hexagon target. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "HexagonISelDAGToDAG.h" 14 #include "Hexagon.h" 15 #include "HexagonISelLowering.h" 16 #include "HexagonMachineFunctionInfo.h" 17 #include "HexagonTargetMachine.h" 18 #include "llvm/CodeGen/FunctionLoweringInfo.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/SelectionDAGISel.h" 21 #include "llvm/IR/Intrinsics.h" 22 #include "llvm/IR/IntrinsicsHexagon.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 using namespace llvm; 26 27 #define DEBUG_TYPE "hexagon-isel" 28 #define PASS_NAME "Hexagon DAG->DAG Pattern Instruction Selection" 29 30 static 31 cl::opt<bool> 32 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true), 33 cl::desc("Rebalance address calculation trees to improve " 34 "instruction selection")); 35 36 // Rebalance only if this allows e.g. combining a GA with an offset or 37 // factoring out a shift. 38 static 39 cl::opt<bool> 40 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false), 41 cl::desc("Rebalance address tree only if this allows optimizations")); 42 43 static 44 cl::opt<bool> 45 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden, 46 cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced")); 47 48 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden, 49 cl::init(true), cl::desc("Enable checking of SDNode's single-use status")); 50 51 //===----------------------------------------------------------------------===// 52 // Instruction Selector Implementation 53 //===----------------------------------------------------------------------===// 54 55 #define GET_DAGISEL_BODY HexagonDAGToDAGISel 56 #include "HexagonGenDAGISel.inc" 57 58 namespace llvm { 59 /// createHexagonISelDag - This pass converts a legalized DAG into a 60 /// Hexagon-specific DAG, ready for instruction scheduling. 61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM, 62 CodeGenOptLevel OptLevel) { 63 return new HexagonDAGToDAGISelLegacy(TM, OptLevel); 64 } 65 } 66 67 HexagonDAGToDAGISelLegacy::HexagonDAGToDAGISelLegacy(HexagonTargetMachine &tm, 68 CodeGenOptLevel OptLevel) 69 : SelectionDAGISelLegacy( 70 ID, std::make_unique<HexagonDAGToDAGISel>(tm, OptLevel)) {} 71 72 char HexagonDAGToDAGISelLegacy::ID = 0; 73 74 INITIALIZE_PASS(HexagonDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) 75 76 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) { 77 SDValue Chain = LD->getChain(); 78 SDValue Base = LD->getBasePtr(); 79 SDValue Offset = LD->getOffset(); 80 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 81 EVT LoadedVT = LD->getMemoryVT(); 82 unsigned Opcode = 0; 83 84 // Check for zero extended loads. Treat any-extend loads as zero extended 85 // loads. 86 ISD::LoadExtType ExtType = LD->getExtensionType(); 87 bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD); 88 bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc); 89 90 assert(LoadedVT.isSimple()); 91 switch (LoadedVT.getSimpleVT().SimpleTy) { 92 case MVT::i8: 93 if (IsZeroExt) 94 Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io; 95 else 96 Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io; 97 break; 98 case MVT::i16: 99 if (IsZeroExt) 100 Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io; 101 else 102 Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io; 103 break; 104 case MVT::i32: 105 case MVT::f32: 106 case MVT::v2i16: 107 case MVT::v4i8: 108 Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io; 109 break; 110 case MVT::i64: 111 case MVT::f64: 112 case MVT::v2i32: 113 case MVT::v4i16: 114 case MVT::v8i8: 115 Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io; 116 break; 117 case MVT::v64i8: 118 case MVT::v32i16: 119 case MVT::v16i32: 120 case MVT::v8i64: 121 case MVT::v128i8: 122 case MVT::v64i16: 123 case MVT::v32i32: 124 case MVT::v16i64: 125 if (isAlignedMemNode(LD)) { 126 if (LD->isNonTemporal()) 127 Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai; 128 else 129 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai; 130 } else { 131 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai; 132 } 133 break; 134 default: 135 llvm_unreachable("Unexpected memory type in indexed load"); 136 } 137 138 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); 139 MachineMemOperand *MemOp = LD->getMemOperand(); 140 141 auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl) 142 -> MachineSDNode* { 143 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) { 144 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 145 return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64, 146 Zero, SDValue(N, 0)); 147 } 148 if (ExtType == ISD::SEXTLOAD) 149 return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64, 150 SDValue(N, 0)); 151 return N; 152 }; 153 154 // Loaded value Next address Chain 155 SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) }; 156 SDValue To[3]; 157 158 EVT ValueVT = LD->getValueType(0); 159 if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) { 160 // A load extending to i64 will actually produce i32, which will then 161 // need to be extended to i64. 162 assert(LoadedVT.getSizeInBits() <= 32); 163 ValueVT = MVT::i32; 164 } 165 166 if (IsValidInc) { 167 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, 168 MVT::i32, MVT::Other, Base, 169 IncV, Chain); 170 CurDAG->setNodeMemRefs(L, {MemOp}); 171 To[1] = SDValue(L, 1); // Next address. 172 To[2] = SDValue(L, 2); // Chain. 173 // Handle special case for extension to i64. 174 if (LD->getValueType(0) == MVT::i64) 175 L = getExt64(L, dl); 176 To[0] = SDValue(L, 0); // Loaded (extended) value. 177 } else { 178 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 179 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other, 180 Base, Zero, Chain); 181 CurDAG->setNodeMemRefs(L, {MemOp}); 182 To[2] = SDValue(L, 1); // Chain. 183 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, 184 Base, IncV); 185 To[1] = SDValue(A, 0); // Next address. 186 // Handle special case for extension to i64. 187 if (LD->getValueType(0) == MVT::i64) 188 L = getExt64(L, dl); 189 To[0] = SDValue(L, 0); // Loaded (extended) value. 190 } 191 ReplaceUses(From, To, 3); 192 CurDAG->RemoveDeadNode(LD); 193 } 194 195 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) { 196 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 197 return nullptr; 198 199 SDLoc dl(IntN); 200 unsigned IntNo = IntN->getConstantOperandVal(1); 201 202 static std::map<unsigned,unsigned> LoadPciMap = { 203 { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci }, 204 { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci }, 205 { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci }, 206 { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci }, 207 { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci }, 208 { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci }, 209 }; 210 auto FLC = LoadPciMap.find(IntNo); 211 if (FLC != LoadPciMap.end()) { 212 EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32; 213 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 214 // Operands: { Base, Increment, Modifier, Chain } 215 auto Inc = cast<ConstantSDNode>(IntN->getOperand(5)); 216 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32); 217 MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys, 218 { IntN->getOperand(2), I, IntN->getOperand(4), 219 IntN->getOperand(0) }); 220 return Res; 221 } 222 223 return nullptr; 224 } 225 226 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, 227 SDNode *IntN) { 228 // The "LoadN" is just a machine load instruction. The intrinsic also 229 // involves storing it. Generate an appropriate store to the location 230 // given in the intrinsic's operand(3). 231 uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags; 232 unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) & 233 HexagonII::MemAccesSizeMask; 234 unsigned Size = 1U << (SizeBits-1); 235 236 SDLoc dl(IntN); 237 MachinePointerInfo PI; 238 SDValue TS; 239 SDValue Loc = IntN->getOperand(3); 240 241 if (Size >= 4) 242 TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI, 243 Align(Size)); 244 else 245 TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, 246 PI, MVT::getIntegerVT(Size * 8), Align(Size)); 247 248 SDNode *StoreN; 249 { 250 HandleSDNode Handle(TS); 251 SelectStore(TS.getNode()); 252 StoreN = Handle.getValue().getNode(); 253 } 254 255 // Load's results are { Loaded value, Updated pointer, Chain } 256 ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1)); 257 ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0)); 258 return StoreN; 259 } 260 261 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) { 262 // The intrinsics for load circ/brev perform two operations: 263 // 1. Load a value V from the specified location, using the addressing 264 // mode corresponding to the intrinsic. 265 // 2. Store V into a specified location. This location is typically a 266 // local, temporary object. 267 // In many cases, the program using these intrinsics will immediately 268 // load V again from the local object. In those cases, when certain 269 // conditions are met, the last load can be removed. 270 // This function identifies and optimizes this pattern. If the pattern 271 // cannot be optimized, it returns nullptr, which will cause the load 272 // to be selected separately from the intrinsic (which will be handled 273 // in SelectIntrinsicWChain). 274 275 SDValue Ch = N->getOperand(0); 276 SDValue Loc = N->getOperand(1); 277 278 // Assume that the load and the intrinsic are connected directly with a 279 // chain: 280 // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C 281 // t2: i32,ch = load t1:1, Loc, ... 282 SDNode *C = Ch.getNode(); 283 284 if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN) 285 return false; 286 287 // The second load can only be eliminated if its extension type matches 288 // that of the load instruction corresponding to the intrinsic. The user 289 // can provide an address of an unsigned variable to store the result of 290 // a sign-extending intrinsic into (or the other way around). 291 ISD::LoadExtType IntExt; 292 switch (C->getConstantOperandVal(1)) { 293 case Intrinsic::hexagon_circ_ldub: 294 case Intrinsic::hexagon_circ_lduh: 295 IntExt = ISD::ZEXTLOAD; 296 break; 297 case Intrinsic::hexagon_circ_ldw: 298 case Intrinsic::hexagon_circ_ldd: 299 IntExt = ISD::NON_EXTLOAD; 300 break; 301 default: 302 IntExt = ISD::SEXTLOAD; 303 break; 304 } 305 if (N->getExtensionType() != IntExt) 306 return false; 307 308 // Make sure the target location for the loaded value in the load intrinsic 309 // is the location from which LD (or N) is loading. 310 if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode()) 311 return false; 312 313 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) { 314 SDNode *S = StoreInstrForLoadIntrinsic(L, C); 315 SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) }; 316 SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) }; 317 ReplaceUses(F, T, std::size(T)); 318 // This transformation will leave the intrinsic dead. If it remains in 319 // the DAG, the selection code will see it again, but without the load, 320 // and it will generate a store that is normally required for it. 321 CurDAG->RemoveDeadNode(C); 322 return true; 323 } 324 return false; 325 } 326 327 // Convert the bit-reverse load intrinsic to appropriate target instruction. 328 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) { 329 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 330 return false; 331 332 const SDLoc &dl(IntN); 333 unsigned IntNo = IntN->getConstantOperandVal(1); 334 335 static const std::map<unsigned, unsigned> LoadBrevMap = { 336 { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr }, 337 { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr }, 338 { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr }, 339 { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr }, 340 { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr }, 341 { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr } 342 }; 343 auto FLI = LoadBrevMap.find(IntNo); 344 if (FLI != LoadBrevMap.end()) { 345 EVT ValTy = 346 (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32; 347 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 348 // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr, 349 // modifier}. 350 // Operands of target instruction: { Base, Modifier, Chain }. 351 MachineSDNode *Res = CurDAG->getMachineNode( 352 FLI->second, dl, RTys, 353 {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)}); 354 355 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand(); 356 CurDAG->setNodeMemRefs(Res, {MemOp}); 357 358 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 359 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 360 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); 361 CurDAG->RemoveDeadNode(IntN); 362 return true; 363 } 364 return false; 365 } 366 367 /// Generate a machine instruction node for the new circular buffer intrinsics. 368 /// The new versions use a CSx register instead of the K field. 369 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) { 370 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 371 return false; 372 373 SDLoc DL(IntN); 374 unsigned IntNo = IntN->getConstantOperandVal(1); 375 SmallVector<SDValue, 7> Ops; 376 377 static std::map<unsigned,unsigned> LoadNPcMap = { 378 { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci }, 379 { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci }, 380 { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci }, 381 { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci }, 382 { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci }, 383 { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci }, 384 { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr }, 385 { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr }, 386 { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr }, 387 { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr }, 388 { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr }, 389 { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr } 390 }; 391 auto FLI = LoadNPcMap.find (IntNo); 392 if (FLI != LoadNPcMap.end()) { 393 EVT ValTy = MVT::i32; 394 if (IntNo == Intrinsic::hexagon_L2_loadrd_pci || 395 IntNo == Intrinsic::hexagon_L2_loadrd_pcr) 396 ValTy = MVT::i64; 397 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 398 // Handle load.*_pci case which has 6 operands. 399 if (IntN->getNumOperands() == 6) { 400 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); 401 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); 402 // Operands: { Base, Increment, Modifier, Start, Chain }. 403 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), 404 IntN->getOperand(0) }; 405 } else 406 // Handle load.*_pcr case which has 5 operands. 407 // Operands: { Base, Modifier, Start, Chain }. 408 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), 409 IntN->getOperand(0) }; 410 MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops); 411 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 412 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 413 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); 414 CurDAG->RemoveDeadNode(IntN); 415 return true; 416 } 417 418 static std::map<unsigned,unsigned> StoreNPcMap = { 419 { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci }, 420 { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci }, 421 { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci }, 422 { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci }, 423 { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci }, 424 { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr }, 425 { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr }, 426 { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr }, 427 { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr }, 428 { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr } 429 }; 430 auto FSI = StoreNPcMap.find (IntNo); 431 if (FSI != StoreNPcMap.end()) { 432 EVT RTys[] = { MVT::i32, MVT::Other }; 433 // Handle store.*_pci case which has 7 operands. 434 if (IntN->getNumOperands() == 7) { 435 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); 436 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); 437 // Operands: { Base, Increment, Modifier, Value, Start, Chain }. 438 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), 439 IntN->getOperand(6), IntN->getOperand(0) }; 440 } else 441 // Handle store.*_pcr case which has 6 operands. 442 // Operands: { Base, Modifier, Value, Start, Chain }. 443 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), 444 IntN->getOperand(5), IntN->getOperand(0) }; 445 MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops); 446 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 447 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 448 CurDAG->RemoveDeadNode(IntN); 449 return true; 450 } 451 452 return false; 453 } 454 455 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) { 456 SDLoc dl(N); 457 LoadSDNode *LD = cast<LoadSDNode>(N); 458 459 // Handle indexed loads. 460 ISD::MemIndexedMode AM = LD->getAddressingMode(); 461 if (AM != ISD::UNINDEXED) { 462 SelectIndexedLoad(LD, dl); 463 return; 464 } 465 466 // Handle patterns using circ/brev load intrinsics. 467 if (tryLoadOfLoadIntrinsic(LD)) 468 return; 469 470 SelectCode(LD); 471 } 472 473 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) { 474 SDValue Chain = ST->getChain(); 475 SDValue Base = ST->getBasePtr(); 476 SDValue Offset = ST->getOffset(); 477 SDValue Value = ST->getValue(); 478 // Get the constant value. 479 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 480 EVT StoredVT = ST->getMemoryVT(); 481 EVT ValueVT = Value.getValueType(); 482 483 bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc); 484 unsigned Opcode = 0; 485 486 assert(StoredVT.isSimple()); 487 switch (StoredVT.getSimpleVT().SimpleTy) { 488 case MVT::i8: 489 Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io; 490 break; 491 case MVT::i16: 492 Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io; 493 break; 494 case MVT::i32: 495 case MVT::f32: 496 case MVT::v2i16: 497 case MVT::v4i8: 498 Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io; 499 break; 500 case MVT::i64: 501 case MVT::f64: 502 case MVT::v2i32: 503 case MVT::v4i16: 504 case MVT::v8i8: 505 Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io; 506 break; 507 case MVT::v64i8: 508 case MVT::v32i16: 509 case MVT::v16i32: 510 case MVT::v8i64: 511 case MVT::v128i8: 512 case MVT::v64i16: 513 case MVT::v32i32: 514 case MVT::v16i64: 515 if (isAlignedMemNode(ST)) { 516 if (ST->isNonTemporal()) 517 Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai; 518 else 519 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai; 520 } else { 521 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai; 522 } 523 break; 524 default: 525 llvm_unreachable("Unexpected memory type in indexed store"); 526 } 527 528 if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) { 529 assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store"); 530 Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, 531 dl, MVT::i32, Value); 532 } 533 534 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); 535 MachineMemOperand *MemOp = ST->getMemOperand(); 536 537 // Next address Chain 538 SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) }; 539 SDValue To[2]; 540 541 if (IsValidInc) { 542 // Build post increment store. 543 SDValue Ops[] = { Base, IncV, Value, Chain }; 544 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other, 545 Ops); 546 CurDAG->setNodeMemRefs(S, {MemOp}); 547 To[0] = SDValue(S, 0); 548 To[1] = SDValue(S, 1); 549 } else { 550 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 551 SDValue Ops[] = { Base, Zero, Value, Chain }; 552 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); 553 CurDAG->setNodeMemRefs(S, {MemOp}); 554 To[1] = SDValue(S, 0); 555 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, 556 Base, IncV); 557 To[0] = SDValue(A, 0); 558 } 559 560 ReplaceUses(From, To, 2); 561 CurDAG->RemoveDeadNode(ST); 562 } 563 564 void HexagonDAGToDAGISel::SelectStore(SDNode *N) { 565 SDLoc dl(N); 566 StoreSDNode *ST = cast<StoreSDNode>(N); 567 568 // Handle indexed stores. 569 ISD::MemIndexedMode AM = ST->getAddressingMode(); 570 if (AM != ISD::UNINDEXED) { 571 SelectIndexedStore(ST, dl); 572 return; 573 } 574 575 SelectCode(ST); 576 } 577 578 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) { 579 SDLoc dl(N); 580 SDValue Shl_0 = N->getOperand(0); 581 SDValue Shl_1 = N->getOperand(1); 582 583 auto Default = [this,N] () -> void { SelectCode(N); }; 584 585 if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant) 586 return Default(); 587 588 // RHS is const. 589 int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue(); 590 591 if (Shl_0.getOpcode() == ISD::MUL) { 592 SDValue Mul_0 = Shl_0.getOperand(0); // Val 593 SDValue Mul_1 = Shl_0.getOperand(1); // Const 594 // RHS of mul is const. 595 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) { 596 int32_t ValConst = C->getSExtValue() << ShlConst; 597 if (isInt<9>(ValConst)) { 598 SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32); 599 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, 600 MVT::i32, Mul_0, Val); 601 ReplaceNode(N, Result); 602 return; 603 } 604 } 605 return Default(); 606 } 607 608 if (Shl_0.getOpcode() == ISD::SUB) { 609 SDValue Sub_0 = Shl_0.getOperand(0); // Const 0 610 SDValue Sub_1 = Shl_0.getOperand(1); // Val 611 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) { 612 if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL) 613 return Default(); 614 SDValue Shl2_0 = Sub_1.getOperand(0); // Val 615 SDValue Shl2_1 = Sub_1.getOperand(1); // Const 616 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) { 617 int32_t ValConst = 1 << (ShlConst + C2->getSExtValue()); 618 if (isInt<9>(-ValConst)) { 619 SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32); 620 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, 621 MVT::i32, Shl2_0, Val); 622 ReplaceNode(N, Result); 623 return; 624 } 625 } 626 } 627 } 628 629 return Default(); 630 } 631 632 // 633 // Handling intrinsics for circular load and bitreverse load. 634 // 635 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) { 636 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) { 637 StoreInstrForLoadIntrinsic(L, N); 638 CurDAG->RemoveDeadNode(N); 639 return; 640 } 641 642 // Handle bit-reverse load intrinsics. 643 if (SelectBrevLdIntrinsic(N)) 644 return; 645 646 if (SelectNewCircIntrinsic(N)) 647 return; 648 649 unsigned IntNo = N->getConstantOperandVal(1); 650 if (IntNo == Intrinsic::hexagon_V6_vgathermw || 651 IntNo == Intrinsic::hexagon_V6_vgathermw_128B || 652 IntNo == Intrinsic::hexagon_V6_vgathermh || 653 IntNo == Intrinsic::hexagon_V6_vgathermh_128B || 654 IntNo == Intrinsic::hexagon_V6_vgathermhw || 655 IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) { 656 SelectV65Gather(N); 657 return; 658 } 659 if (IntNo == Intrinsic::hexagon_V6_vgathermwq || 660 IntNo == Intrinsic::hexagon_V6_vgathermwq_128B || 661 IntNo == Intrinsic::hexagon_V6_vgathermhq || 662 IntNo == Intrinsic::hexagon_V6_vgathermhq_128B || 663 IntNo == Intrinsic::hexagon_V6_vgathermhwq || 664 IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) { 665 SelectV65GatherPred(N); 666 return; 667 } 668 669 SelectCode(N); 670 } 671 672 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) { 673 unsigned IID = N->getConstantOperandVal(0); 674 unsigned Bits; 675 switch (IID) { 676 case Intrinsic::hexagon_S2_vsplatrb: 677 Bits = 8; 678 break; 679 case Intrinsic::hexagon_S2_vsplatrh: 680 Bits = 16; 681 break; 682 case Intrinsic::hexagon_V6_vaddcarry: 683 case Intrinsic::hexagon_V6_vaddcarry_128B: 684 case Intrinsic::hexagon_V6_vsubcarry: 685 case Intrinsic::hexagon_V6_vsubcarry_128B: 686 SelectHVXDualOutput(N); 687 return; 688 default: 689 SelectCode(N); 690 return; 691 } 692 693 SDValue V = N->getOperand(1); 694 SDValue U; 695 // Splat intrinsics. 696 if (keepsLowBits(V, Bits, U)) { 697 SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 698 N->getOperand(0), U); 699 ReplaceNode(N, R.getNode()); 700 SelectCode(R.getNode()); 701 return; 702 } 703 SelectCode(N); 704 } 705 706 void HexagonDAGToDAGISel::SelectExtractSubvector(SDNode *N) { 707 SDValue Inp = N->getOperand(0); 708 MVT ResTy = N->getValueType(0).getSimpleVT(); 709 unsigned Idx = N->getConstantOperandVal(1); 710 711 [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT(); 712 [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements(); 713 assert(InpTy.getVectorElementType() == ResTy.getVectorElementType()); 714 assert(2 * ResLen == InpTy.getVectorNumElements()); 715 assert(ResTy.getSizeInBits() == 32); 716 assert(Idx == 0 || Idx == ResLen); 717 718 unsigned SubReg = Idx == 0 ? Hexagon::isub_lo : Hexagon::isub_hi; 719 SDValue Ext = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(N), ResTy, Inp); 720 721 ReplaceNode(N, Ext.getNode()); 722 } 723 724 // 725 // Map floating point constant values. 726 // 727 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) { 728 SDLoc dl(N); 729 auto *CN = cast<ConstantFPSDNode>(N); 730 APInt A = CN->getValueAPF().bitcastToAPInt(); 731 if (N->getValueType(0) == MVT::f32) { 732 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32); 733 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V)); 734 return; 735 } 736 if (N->getValueType(0) == MVT::f64) { 737 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64); 738 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V)); 739 return; 740 } 741 742 SelectCode(N); 743 } 744 745 // 746 // Map boolean values. 747 // 748 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) { 749 if (N->getValueType(0) == MVT::i1) { 750 assert(!(N->getAsZExtVal() >> 1)); 751 unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0) 752 ? Hexagon::PS_true 753 : Hexagon::PS_false; 754 ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1)); 755 return; 756 } 757 758 SelectCode(N); 759 } 760 761 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) { 762 MachineFrameInfo &MFI = MF->getFrameInfo(); 763 const HexagonFrameLowering *HFI = HST->getFrameLowering(); 764 int FX = cast<FrameIndexSDNode>(N)->getIndex(); 765 Align StkA = HFI->getStackAlign(); 766 Align MaxA = MFI.getMaxAlign(); 767 SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32); 768 SDLoc DL(N); 769 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 770 SDNode *R = nullptr; 771 772 // Use PS_fi when: 773 // - the object is fixed, or 774 // - there are no objects with higher-than-default alignment, or 775 // - there are no dynamically allocated objects. 776 // Otherwise, use PS_fia. 777 if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) { 778 R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero); 779 } else { 780 auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>(); 781 Register AR = HMFI.getStackAlignBaseReg(); 782 SDValue CH = CurDAG->getEntryNode(); 783 SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero }; 784 R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops); 785 } 786 787 ReplaceNode(N, R); 788 } 789 790 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) { 791 unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c 792 : Hexagon::A4_subp_c; 793 SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(), 794 { N->getOperand(0), N->getOperand(1), 795 N->getOperand(2) }); 796 ReplaceNode(N, C); 797 } 798 799 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) { 800 MVT ResTy = N->getValueType(0).getSimpleVT(); 801 if (HST->isHVXVectorType(ResTy, true)) 802 return SelectHvxVAlign(N); 803 804 const SDLoc &dl(N); 805 unsigned VecLen = ResTy.getSizeInBits(); 806 if (VecLen == 32) { 807 SDValue Ops[] = { 808 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), 809 N->getOperand(0), 810 CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), 811 N->getOperand(1), 812 CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) 813 }; 814 SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, 815 MVT::i64, Ops); 816 817 // Shift right by "(Addr & 0x3) * 8" bytes. 818 SDNode *C; 819 SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32); 820 SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32); 821 if (HST->useCompound()) { 822 C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32, 823 M0, N->getOperand(2), M1); 824 } else { 825 SDNode *T = CurDAG->getMachineNode(Hexagon::S2_asl_i_r, dl, MVT::i32, 826 N->getOperand(2), M1); 827 C = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32, 828 SDValue(T, 0), M0); 829 } 830 SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64, 831 SDValue(R, 0), SDValue(C, 0)); 832 SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy, 833 SDValue(S, 0)); 834 ReplaceNode(N, E.getNode()); 835 } else { 836 assert(VecLen == 64); 837 SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1, 838 N->getOperand(2)); 839 SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy, 840 N->getOperand(0), N->getOperand(1), 841 SDValue(Pu,0)); 842 ReplaceNode(N, VA); 843 } 844 } 845 846 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) { 847 const SDLoc &dl(N); 848 SDValue A = N->getOperand(1); 849 int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue(); 850 assert(isPowerOf2_32(-Mask)); 851 852 SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32); 853 SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32, 854 N->getOperand(0), M); 855 ReplaceNode(N, AA); 856 } 857 858 // Handle these nodes here to avoid having to write patterns for all 859 // combinations of input/output types. In all cases, the resulting 860 // instruction is the same. 861 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) { 862 SDValue Op = N->getOperand(0); 863 MVT OpTy = Op.getValueType().getSimpleVT(); 864 SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(), 865 CurDAG->getVTList(OpTy), {Op}); 866 ReplaceNode(T, Op.getNode()); 867 } 868 869 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) { 870 MVT ResTy = N->getValueType(0).getSimpleVT(); 871 SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy, 872 N->getOperand(0)); 873 ReplaceNode(N, T); 874 } 875 876 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) { 877 const SDLoc &dl(N); 878 MVT ResTy = N->getValueType(0).getSimpleVT(); 879 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 880 SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy, 881 N->getOperand(0), Zero); 882 ReplaceNode(N, T); 883 } 884 885 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) { 886 const SDLoc &dl(N); 887 MVT ResTy = N->getValueType(0).getSimpleVT(); 888 // The argument to V2Q should be a single vector. 889 MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy; 890 assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits()); 891 892 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); 893 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); 894 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy, 895 N->getOperand(0), SDValue(R,0)); 896 ReplaceNode(N, T); 897 } 898 899 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) { 900 const SDLoc &dl(N); 901 MVT ResTy = N->getValueType(0).getSimpleVT(); 902 // The result of V2Q should be a single vector. 903 assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits()); 904 905 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); 906 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); 907 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy, 908 N->getOperand(0), SDValue(R,0)); 909 ReplaceNode(N, T); 910 } 911 912 void HexagonDAGToDAGISel::FDiv(SDNode *N) { 913 const SDLoc &dl(N); 914 ArrayRef<EVT> ResultType(N->value_begin(), N->value_end()); 915 SmallVector<SDValue, 2> Ops; 916 Ops = {N->getOperand(0), N->getOperand(1)}; 917 SDVTList VTs; 918 VTs = CurDAG->getVTList(MVT::f32, MVT::f32); 919 SDNode *ResScale = CurDAG->getMachineNode(Hexagon::F2_sfrecipa, dl, VTs, Ops); 920 SDNode *D = CurDAG->getMachineNode(Hexagon::F2_sffixupd, dl, MVT::f32, Ops); 921 922 SDValue C = CurDAG->getTargetConstant(0x3f800000, dl, MVT::i32); 923 SDNode *constNode = 924 CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, C); 925 926 SDNode *n = CurDAG->getMachineNode(Hexagon::F2_sffixupn, dl, MVT::f32, Ops); 927 SDNode *Err = CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32, 928 SDValue(constNode, 0), SDValue(D, 0), 929 SDValue(ResScale, 0)); 930 SDNode *NewRec = CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32, 931 SDValue(ResScale, 0), SDValue(Err, 0), 932 SDValue(ResScale, 0)); 933 SDNode *newErr = CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32, 934 SDValue(constNode, 0), SDValue(D, 0), 935 SDValue(NewRec, 0)); 936 SDNode *q = CurDAG->getMachineNode( 937 Hexagon::A2_andir, dl, MVT::f32, SDValue(n, 0), 938 CurDAG->getTargetConstant(0x80000000, dl, MVT::i32)); 939 SDNode *NewQ = 940 CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32, SDValue(q, 0), 941 SDValue(n, 0), SDValue(NewRec, 0)); 942 SDNode *NNewRec = CurDAG->getMachineNode( 943 Hexagon::F2_sffma_lib, dl, MVT::f32, SDValue(NewRec, 0), 944 SDValue(newErr, 0), SDValue(NewRec, 0)); 945 SDNode *qErr = 946 CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32, SDValue(n, 0), 947 SDValue(D, 0), SDValue(NewQ, 0)); 948 SDNode *NNewQ = CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32, 949 SDValue(NewQ, 0), SDValue(qErr, 0), 950 SDValue(NNewRec, 0)); 951 952 SDNode *NqErr = 953 CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32, SDValue(n, 0), 954 SDValue(NNewQ, 0), SDValue(D, 0)); 955 std::array<SDValue, 4> temp1 = {SDValue(NNewQ, 0), SDValue(NqErr, 0), 956 SDValue(NNewRec, 0), SDValue(ResScale, 1)}; 957 ArrayRef<SDValue> OpValue1(temp1); 958 SDNode *FinalNewQ = 959 CurDAG->getMachineNode(Hexagon::F2_sffma_sc, dl, MVT::f32, OpValue1); 960 ReplaceNode(N, FinalNewQ); 961 } 962 963 void HexagonDAGToDAGISel::FastFDiv(SDNode *N) { 964 const SDLoc &dl(N); 965 ArrayRef<EVT> ResultType(N->value_begin(), N->value_end()); 966 SmallVector<SDValue, 2> Ops; 967 Ops = {N->getOperand(0), N->getOperand(1)}; 968 SDVTList VTs; 969 VTs = CurDAG->getVTList(MVT::f32, MVT::f32); 970 SDNode *ResScale = CurDAG->getMachineNode(Hexagon::F2_sfrecipa, dl, VTs, Ops); 971 SDNode *D = CurDAG->getMachineNode(Hexagon::F2_sffixupd, dl, MVT::f32, Ops); 972 973 SDValue C = CurDAG->getTargetConstant(0x3f800000, dl, MVT::i32); 974 SDNode *constNode = 975 CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, C); 976 977 SDNode *n = CurDAG->getMachineNode(Hexagon::F2_sffixupn, dl, MVT::f32, Ops); 978 SDNode *Err = CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32, 979 SDValue(constNode, 0), SDValue(D, 0), 980 SDValue(ResScale, 0)); 981 SDNode *NewRec = CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32, 982 SDValue(ResScale, 0), SDValue(Err, 0), 983 SDValue(ResScale, 0)); 984 SDNode *newErr = CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32, 985 SDValue(constNode, 0), SDValue(D, 0), 986 SDValue(NewRec, 0)); 987 988 SDNode *NNewRec = CurDAG->getMachineNode( 989 Hexagon::F2_sffma_lib, dl, MVT::f32, SDValue(NewRec, 0), 990 SDValue(newErr, 0), SDValue(NewRec, 0)); 991 SDNode *FinalNewQ = CurDAG->getMachineNode( 992 Hexagon::F2_sfmpy, dl, MVT::f32, SDValue(NNewRec, 0), SDValue(n, 0)); 993 ReplaceNode(N, FinalNewQ); 994 } 995 996 void HexagonDAGToDAGISel::SelectFDiv(SDNode *N) { 997 if (N->getFlags().hasAllowReassociation()) 998 FastFDiv(N); 999 else 1000 FDiv(N); 1001 return; 1002 } 1003 1004 void HexagonDAGToDAGISel::Select(SDNode *N) { 1005 if (N->isMachineOpcode()) 1006 return N->setNodeId(-1); // Already selected. 1007 1008 auto isHvxOp = [this](SDNode *N) { 1009 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 1010 if (HST->isHVXVectorType(N->getValueType(i), true)) 1011 return true; 1012 } 1013 for (SDValue I : N->ops()) { 1014 if (HST->isHVXVectorType(I.getValueType(), true)) 1015 return true; 1016 } 1017 return false; 1018 }; 1019 1020 if (HST->useHVXOps() && isHvxOp(N)) { 1021 switch (N->getOpcode()) { 1022 case ISD::EXTRACT_SUBVECTOR: return SelectHvxExtractSubvector(N); 1023 case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N); 1024 1025 case HexagonISD::VROR: return SelectHvxRor(N); 1026 } 1027 } 1028 1029 switch (N->getOpcode()) { 1030 case ISD::Constant: return SelectConstant(N); 1031 case ISD::ConstantFP: return SelectConstantFP(N); 1032 case ISD::FrameIndex: return SelectFrameIndex(N); 1033 case ISD::SHL: return SelectSHL(N); 1034 case ISD::LOAD: return SelectLoad(N); 1035 case ISD::STORE: return SelectStore(N); 1036 case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N); 1037 case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N); 1038 case ISD::EXTRACT_SUBVECTOR: return SelectExtractSubvector(N); 1039 1040 case HexagonISD::ADDC: 1041 case HexagonISD::SUBC: return SelectAddSubCarry(N); 1042 case HexagonISD::VALIGN: return SelectVAlign(N); 1043 case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N); 1044 case HexagonISD::TYPECAST: return SelectTypecast(N); 1045 case HexagonISD::P2D: return SelectP2D(N); 1046 case HexagonISD::D2P: return SelectD2P(N); 1047 case HexagonISD::Q2V: return SelectQ2V(N); 1048 case HexagonISD::V2Q: return SelectV2Q(N); 1049 case ISD::FDIV: 1050 return SelectFDiv(N); 1051 } 1052 1053 SelectCode(N); 1054 } 1055 1056 bool HexagonDAGToDAGISel::SelectInlineAsmMemoryOperand( 1057 const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, 1058 std::vector<SDValue> &OutOps) { 1059 SDValue Inp = Op, Res; 1060 1061 switch (ConstraintID) { 1062 default: 1063 return true; 1064 case InlineAsm::ConstraintCode::o: // Offsetable. 1065 case InlineAsm::ConstraintCode::v: // Not offsetable. 1066 case InlineAsm::ConstraintCode::m: // Memory. 1067 if (SelectAddrFI(Inp, Res)) 1068 OutOps.push_back(Res); 1069 else 1070 OutOps.push_back(Inp); 1071 break; 1072 } 1073 1074 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1075 return false; 1076 } 1077 1078 static bool isMemOPCandidate(SDNode *I, SDNode *U) { 1079 // I is an operand of U. Check if U is an arithmetic (binary) operation 1080 // usable in a memop, where the other operand is a loaded value, and the 1081 // result of U is stored in the same location. 1082 1083 if (!U->hasOneUse()) 1084 return false; 1085 unsigned Opc = U->getOpcode(); 1086 switch (Opc) { 1087 case ISD::ADD: 1088 case ISD::SUB: 1089 case ISD::AND: 1090 case ISD::OR: 1091 break; 1092 default: 1093 return false; 1094 } 1095 1096 SDValue S0 = U->getOperand(0); 1097 SDValue S1 = U->getOperand(1); 1098 SDValue SY = (S0.getNode() == I) ? S1 : S0; 1099 1100 SDNode *UUse = *U->use_begin(); 1101 if (UUse->getNumValues() != 1) 1102 return false; 1103 1104 // Check if one of the inputs to U is a load instruction and the output 1105 // is used by a store instruction. If so and they also have the same 1106 // base pointer, then don't preoprocess this node sequence as it 1107 // can be matched to a memop. 1108 SDNode *SYNode = SY.getNode(); 1109 if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) { 1110 SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr(); 1111 SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr(); 1112 if (LDBasePtr == STBasePtr) 1113 return true; 1114 } 1115 return false; 1116 } 1117 1118 1119 // Transform: (or (select c x 0) z) -> (select c (or x z) z) 1120 // (or (select c 0 y) z) -> (select c z (or y z)) 1121 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) { 1122 SelectionDAG &DAG = *CurDAG; 1123 1124 for (auto *I : Nodes) { 1125 if (I->getOpcode() != ISD::OR) 1126 continue; 1127 1128 auto IsSelect0 = [](const SDValue &Op) -> bool { 1129 if (Op.getOpcode() != ISD::SELECT) 1130 return false; 1131 return isNullConstant(Op.getOperand(1)) || 1132 isNullConstant(Op.getOperand(2)); 1133 }; 1134 1135 SDValue N0 = I->getOperand(0), N1 = I->getOperand(1); 1136 EVT VT = I->getValueType(0); 1137 bool SelN0 = IsSelect0(N0); 1138 SDValue SOp = SelN0 ? N0 : N1; 1139 SDValue VOp = SelN0 ? N1 : N0; 1140 1141 if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) { 1142 SDValue SC = SOp.getOperand(0); 1143 SDValue SX = SOp.getOperand(1); 1144 SDValue SY = SOp.getOperand(2); 1145 SDLoc DLS = SOp; 1146 if (isNullConstant(SY)) { 1147 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp); 1148 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp); 1149 DAG.ReplaceAllUsesWith(I, NewSel.getNode()); 1150 } else if (isNullConstant(SX)) { 1151 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp); 1152 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr); 1153 DAG.ReplaceAllUsesWith(I, NewSel.getNode()); 1154 } 1155 } 1156 } 1157 } 1158 1159 // Transform: (store ch val (add x (add (shl y c) e))) 1160 // to: (store ch val (add x (shl (add y d) c))), 1161 // where e = (shl d c) for some integer d. 1162 // The purpose of this is to enable generation of loads/stores with 1163 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift 1164 // value c must be 0, 1 or 2. 1165 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) { 1166 SelectionDAG &DAG = *CurDAG; 1167 1168 for (auto *I : Nodes) { 1169 if (I->getOpcode() != ISD::STORE) 1170 continue; 1171 1172 // I matched: (store ch val Off) 1173 SDValue Off = I->getOperand(2); 1174 // Off needs to match: (add x (add (shl y c) (shl d c)))) 1175 if (Off.getOpcode() != ISD::ADD) 1176 continue; 1177 // Off matched: (add x T0) 1178 SDValue T0 = Off.getOperand(1); 1179 // T0 needs to match: (add T1 T2): 1180 if (T0.getOpcode() != ISD::ADD) 1181 continue; 1182 // T0 matched: (add T1 T2) 1183 SDValue T1 = T0.getOperand(0); 1184 SDValue T2 = T0.getOperand(1); 1185 // T1 needs to match: (shl y c) 1186 if (T1.getOpcode() != ISD::SHL) 1187 continue; 1188 SDValue C = T1.getOperand(1); 1189 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode()); 1190 if (CN == nullptr) 1191 continue; 1192 unsigned CV = CN->getZExtValue(); 1193 if (CV > 2) 1194 continue; 1195 // T2 needs to match e, where e = (shl d c) for some d. 1196 ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode()); 1197 if (EN == nullptr) 1198 continue; 1199 unsigned EV = EN->getZExtValue(); 1200 if (EV % (1 << CV) != 0) 1201 continue; 1202 unsigned DV = EV / (1 << CV); 1203 1204 // Replace T0 with: (shl (add y d) c) 1205 SDLoc DL = SDLoc(I); 1206 EVT VT = T0.getValueType(); 1207 SDValue D = DAG.getConstant(DV, DL, VT); 1208 // NewAdd = (add y d) 1209 SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D); 1210 // NewShl = (shl NewAdd c) 1211 SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C); 1212 ReplaceNode(T0.getNode(), NewShl.getNode()); 1213 } 1214 } 1215 1216 // Transform: (load ch (add x (and (srl y c) Mask))) 1217 // to: (load ch (add x (shl (srl y d) d-c))) 1218 // where 1219 // Mask = 00..0 111..1 0.0 1220 // | | +-- d-c 0s, and d-c is 0, 1 or 2. 1221 // | +-------- 1s 1222 // +-------------- at most c 0s 1223 // Motivating example: 1224 // DAG combiner optimizes (add x (shl (srl y 5) 2)) 1225 // to (add x (and (srl y 3) 1FFFFFFC)) 1226 // which results in a constant-extended and(##...,lsr). This transformation 1227 // undoes this simplification for cases where the shl can be folded into 1228 // an addressing mode. 1229 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) { 1230 SelectionDAG &DAG = *CurDAG; 1231 1232 for (SDNode *N : Nodes) { 1233 unsigned Opc = N->getOpcode(); 1234 if (Opc != ISD::LOAD && Opc != ISD::STORE) 1235 continue; 1236 SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2); 1237 // Addr must match: (add x T0) 1238 if (Addr.getOpcode() != ISD::ADD) 1239 continue; 1240 SDValue T0 = Addr.getOperand(1); 1241 // T0 must match: (and T1 Mask) 1242 if (T0.getOpcode() != ISD::AND) 1243 continue; 1244 1245 // We have an AND. 1246 // 1247 // Check the first operand. It must be: (srl y c). 1248 SDValue S = T0.getOperand(0); 1249 if (S.getOpcode() != ISD::SRL) 1250 continue; 1251 ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode()); 1252 if (SN == nullptr) 1253 continue; 1254 if (SN->getAPIntValue().getBitWidth() != 32) 1255 continue; 1256 uint32_t CV = SN->getZExtValue(); 1257 1258 // Check the second operand: the supposed mask. 1259 ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode()); 1260 if (MN == nullptr) 1261 continue; 1262 if (MN->getAPIntValue().getBitWidth() != 32) 1263 continue; 1264 uint32_t Mask = MN->getZExtValue(); 1265 // Examine the mask. 1266 uint32_t TZ = llvm::countr_zero(Mask); 1267 uint32_t M1 = llvm::countr_one(Mask >> TZ); 1268 uint32_t LZ = llvm::countl_zero(Mask); 1269 // Trailing zeros + middle ones + leading zeros must equal the width. 1270 if (TZ + M1 + LZ != 32) 1271 continue; 1272 // The number of trailing zeros will be encoded in the addressing mode. 1273 if (TZ > 2) 1274 continue; 1275 // The number of leading zeros must be at most c. 1276 if (LZ > CV) 1277 continue; 1278 1279 // All looks good. 1280 SDValue Y = S.getOperand(0); 1281 EVT VT = Addr.getValueType(); 1282 SDLoc dl(S); 1283 // TZ = D-C, so D = TZ+C. 1284 SDValue D = DAG.getConstant(TZ+CV, dl, VT); 1285 SDValue DC = DAG.getConstant(TZ, dl, VT); 1286 SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D); 1287 SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC); 1288 ReplaceNode(T0.getNode(), NewShl.getNode()); 1289 } 1290 } 1291 1292 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) 1293 // (op ... 1 ...)) 1294 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) { 1295 SelectionDAG &DAG = *CurDAG; 1296 1297 for (SDNode *N : Nodes) { 1298 unsigned Opc = N->getOpcode(); 1299 if (Opc != ISD::ZERO_EXTEND) 1300 continue; 1301 SDValue OpI1 = N->getOperand(0); 1302 EVT OpVT = OpI1.getValueType(); 1303 if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1) 1304 continue; 1305 for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1306 SDNode *U = *I; 1307 if (U->getNumValues() != 1) 1308 continue; 1309 EVT UVT = U->getValueType(0); 1310 if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1) 1311 continue; 1312 // Do not generate select for all i1 vector type. 1313 if (UVT.isVector() && UVT.getVectorElementType() == MVT::i1) 1314 continue; 1315 if (isMemOPCandidate(N, U)) 1316 continue; 1317 1318 // Potentially simplifiable operation. 1319 unsigned I1N = I.getOperandNo(); 1320 SmallVector<SDValue,2> Ops(U->getNumOperands()); 1321 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) 1322 Ops[i] = U->getOperand(i); 1323 EVT BVT = Ops[I1N].getValueType(); 1324 1325 const SDLoc &dl(U); 1326 SDValue C0 = DAG.getConstant(0, dl, BVT); 1327 SDValue C1 = DAG.getConstant(1, dl, BVT); 1328 SDValue If0, If1; 1329 1330 if (isa<MachineSDNode>(U)) { 1331 unsigned UseOpc = U->getMachineOpcode(); 1332 Ops[I1N] = C0; 1333 If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); 1334 Ops[I1N] = C1; 1335 If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); 1336 } else { 1337 unsigned UseOpc = U->getOpcode(); 1338 Ops[I1N] = C0; 1339 If0 = DAG.getNode(UseOpc, dl, UVT, Ops); 1340 Ops[I1N] = C1; 1341 If1 = DAG.getNode(UseOpc, dl, UVT, Ops); 1342 } 1343 // We're generating a SELECT way after legalization, so keep the types 1344 // simple. 1345 unsigned UW = UVT.getSizeInBits(); 1346 EVT SVT = (UW == 32 || UW == 64) ? MVT::getIntegerVT(UW) : UVT; 1347 SDValue Sel = DAG.getNode(ISD::SELECT, dl, SVT, OpI1, 1348 DAG.getBitcast(SVT, If1), 1349 DAG.getBitcast(SVT, If0)); 1350 SDValue Ret = DAG.getBitcast(UVT, Sel); 1351 DAG.ReplaceAllUsesWith(U, Ret.getNode()); 1352 } 1353 } 1354 } 1355 1356 void HexagonDAGToDAGISel::PreprocessISelDAG() { 1357 // Repack all nodes before calling each preprocessing function, 1358 // because each of them can modify the set of nodes. 1359 auto getNodes = [this]() -> std::vector<SDNode *> { 1360 std::vector<SDNode *> T; 1361 T.reserve(CurDAG->allnodes_size()); 1362 for (SDNode &N : CurDAG->allnodes()) 1363 T.push_back(&N); 1364 return T; 1365 }; 1366 1367 if (HST->useHVXOps()) 1368 PreprocessHvxISelDAG(); 1369 1370 // Transform: (or (select c x 0) z) -> (select c (or x z) z) 1371 // (or (select c 0 y) z) -> (select c z (or y z)) 1372 ppSimplifyOrSelect0(getNodes()); 1373 1374 // Transform: (store ch val (add x (add (shl y c) e))) 1375 // to: (store ch val (add x (shl (add y d) c))), 1376 // where e = (shl d c) for some integer d. 1377 // The purpose of this is to enable generation of loads/stores with 1378 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift 1379 // value c must be 0, 1 or 2. 1380 ppAddrReorderAddShl(getNodes()); 1381 1382 // Transform: (load ch (add x (and (srl y c) Mask))) 1383 // to: (load ch (add x (shl (srl y d) d-c))) 1384 // where 1385 // Mask = 00..0 111..1 0.0 1386 // | | +-- d-c 0s, and d-c is 0, 1 or 2. 1387 // | +-------- 1s 1388 // +-------------- at most c 0s 1389 // Motivating example: 1390 // DAG combiner optimizes (add x (shl (srl y 5) 2)) 1391 // to (add x (and (srl y 3) 1FFFFFFC)) 1392 // which results in a constant-extended and(##...,lsr). This transformation 1393 // undoes this simplification for cases where the shl can be folded into 1394 // an addressing mode. 1395 ppAddrRewriteAndSrl(getNodes()); 1396 1397 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) 1398 // (op ... 1 ...)) 1399 ppHoistZextI1(getNodes()); 1400 1401 DEBUG_WITH_TYPE("isel", { 1402 dbgs() << "Preprocessed (Hexagon) selection DAG:"; 1403 CurDAG->dump(); 1404 }); 1405 1406 if (EnableAddressRebalancing) { 1407 rebalanceAddressTrees(); 1408 1409 DEBUG_WITH_TYPE("isel", { 1410 dbgs() << "Address tree balanced selection DAG:"; 1411 CurDAG->dump(); 1412 }); 1413 } 1414 } 1415 1416 void HexagonDAGToDAGISel::emitFunctionEntryCode() { 1417 auto &HST = MF->getSubtarget<HexagonSubtarget>(); 1418 auto &HFI = *HST.getFrameLowering(); 1419 if (!HFI.needsAligna(*MF)) 1420 return; 1421 1422 MachineFrameInfo &MFI = MF->getFrameInfo(); 1423 MachineBasicBlock *EntryBB = &MF->front(); 1424 Align EntryMaxA = MFI.getMaxAlign(); 1425 1426 // Reserve the first non-volatile register. 1427 Register AP = 0; 1428 auto &HRI = *HST.getRegisterInfo(); 1429 BitVector Reserved = HRI.getReservedRegs(*MF); 1430 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(MF); *R; ++R) { 1431 if (Reserved[*R]) 1432 continue; 1433 AP = *R; 1434 break; 1435 } 1436 assert(AP.isValid() && "Couldn't reserve stack align register"); 1437 BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AP) 1438 .addImm(EntryMaxA.value()); 1439 MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseReg(AP); 1440 } 1441 1442 void HexagonDAGToDAGISel::updateAligna() { 1443 auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering(); 1444 if (!HFI.needsAligna(*MF)) 1445 return; 1446 auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(*MF)); 1447 assert(AlignaI != nullptr); 1448 unsigned MaxA = MF->getFrameInfo().getMaxAlign().value(); 1449 if (AlignaI->getOperand(1).getImm() < MaxA) 1450 AlignaI->getOperand(1).setImm(MaxA); 1451 } 1452 1453 // Match a frame index that can be used in an addressing mode. 1454 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) { 1455 if (N.getOpcode() != ISD::FrameIndex) 1456 return false; 1457 auto &HFI = *HST->getFrameLowering(); 1458 MachineFrameInfo &MFI = MF->getFrameInfo(); 1459 int FX = cast<FrameIndexSDNode>(N)->getIndex(); 1460 if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF)) 1461 return false; 1462 R = CurDAG->getTargetFrameIndex(FX, MVT::i32); 1463 return true; 1464 } 1465 1466 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) { 1467 return SelectGlobalAddress(N, R, false, Align(1)); 1468 } 1469 1470 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) { 1471 return SelectGlobalAddress(N, R, true, Align(1)); 1472 } 1473 1474 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) { 1475 return SelectAnyImmediate(N, R, Align(1)); 1476 } 1477 1478 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) { 1479 return SelectAnyImmediate(N, R, Align(1)); 1480 } 1481 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) { 1482 return SelectAnyImmediate(N, R, Align(2)); 1483 } 1484 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) { 1485 return SelectAnyImmediate(N, R, Align(4)); 1486 } 1487 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) { 1488 return SelectAnyImmediate(N, R, Align(8)); 1489 } 1490 1491 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) { 1492 EVT T = N.getValueType(); 1493 if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N)) 1494 return false; 1495 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue(); 1496 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType()); 1497 return true; 1498 } 1499 1500 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R, 1501 Align Alignment) { 1502 switch (N.getOpcode()) { 1503 case ISD::Constant: { 1504 if (N.getValueType() != MVT::i32) 1505 return false; 1506 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue(); 1507 if (!isAligned(Alignment, V)) 1508 return false; 1509 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType()); 1510 return true; 1511 } 1512 case HexagonISD::JT: 1513 case HexagonISD::CP: 1514 // These are assumed to always be aligned at least 8-byte boundary. 1515 if (Alignment > Align(8)) 1516 return false; 1517 R = N.getOperand(0); 1518 return true; 1519 case ISD::ExternalSymbol: 1520 // Symbols may be aligned at any boundary. 1521 if (Alignment > Align(1)) 1522 return false; 1523 R = N; 1524 return true; 1525 case ISD::BlockAddress: 1526 // Block address is always aligned at least 4-byte boundary. 1527 if (Alignment > Align(4) || 1528 !isAligned(Alignment, cast<BlockAddressSDNode>(N)->getOffset())) 1529 return false; 1530 R = N; 1531 return true; 1532 } 1533 1534 if (SelectGlobalAddress(N, R, false, Alignment) || 1535 SelectGlobalAddress(N, R, true, Alignment)) 1536 return true; 1537 1538 return false; 1539 } 1540 1541 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R, 1542 bool UseGP, Align Alignment) { 1543 switch (N.getOpcode()) { 1544 case ISD::ADD: { 1545 SDValue N0 = N.getOperand(0); 1546 SDValue N1 = N.getOperand(1); 1547 unsigned GAOpc = N0.getOpcode(); 1548 if (UseGP && GAOpc != HexagonISD::CONST32_GP) 1549 return false; 1550 if (!UseGP && GAOpc != HexagonISD::CONST32) 1551 return false; 1552 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) { 1553 if (!isAligned(Alignment, Const->getZExtValue())) 1554 return false; 1555 SDValue Addr = N0.getOperand(0); 1556 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) { 1557 if (GA->getOpcode() == ISD::TargetGlobalAddress) { 1558 uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue(); 1559 R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const), 1560 N.getValueType(), NewOff); 1561 return true; 1562 } 1563 } 1564 } 1565 break; 1566 } 1567 case HexagonISD::CP: 1568 case HexagonISD::JT: 1569 case HexagonISD::CONST32: 1570 // The operand(0) of CONST32 is TargetGlobalAddress, which is what we 1571 // want in the instruction. 1572 if (!UseGP) 1573 R = N.getOperand(0); 1574 return !UseGP; 1575 case HexagonISD::CONST32_GP: 1576 if (UseGP) 1577 R = N.getOperand(0); 1578 return UseGP; 1579 default: 1580 return false; 1581 } 1582 1583 return false; 1584 } 1585 1586 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) { 1587 // This (complex pattern) function is meant to detect a sign-extension 1588 // i32->i64 on a per-operand basis. This would allow writing single 1589 // patterns that would cover a number of combinations of different ways 1590 // a sign-extensions could be written. For example: 1591 // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y) 1592 // could match either one of these: 1593 // (mul (sext x) (sext_inreg y)) 1594 // (mul (sext-load *p) (sext_inreg y)) 1595 // (mul (sext_inreg x) (sext y)) 1596 // etc. 1597 // 1598 // The returned value will have type i64 and its low word will 1599 // contain the value being extended. The high bits are not specified. 1600 // The returned type is i64 because the original type of N was i64, 1601 // but the users of this function should only use the low-word of the 1602 // result, e.g. 1603 // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y)) 1604 1605 if (N.getValueType() != MVT::i64) 1606 return false; 1607 unsigned Opc = N.getOpcode(); 1608 switch (Opc) { 1609 case ISD::SIGN_EXTEND: 1610 case ISD::SIGN_EXTEND_INREG: { 1611 // sext_inreg has the source type as a separate operand. 1612 EVT T = Opc == ISD::SIGN_EXTEND 1613 ? N.getOperand(0).getValueType() 1614 : cast<VTSDNode>(N.getOperand(1))->getVT(); 1615 unsigned SW = T.getSizeInBits(); 1616 if (SW == 32) 1617 R = N.getOperand(0); 1618 else if (SW < 32) 1619 R = N; 1620 else 1621 return false; 1622 break; 1623 } 1624 case ISD::LOAD: { 1625 LoadSDNode *L = cast<LoadSDNode>(N); 1626 if (L->getExtensionType() != ISD::SEXTLOAD) 1627 return false; 1628 // All extending loads extend to i32, so even if the value in 1629 // memory is shorter than 32 bits, it will be i32 after the load. 1630 if (L->getMemoryVT().getSizeInBits() > 32) 1631 return false; 1632 R = N; 1633 break; 1634 } 1635 case ISD::SRA: { 1636 auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1637 if (!S || S->getZExtValue() != 32) 1638 return false; 1639 R = N; 1640 break; 1641 } 1642 default: 1643 return false; 1644 } 1645 EVT RT = R.getValueType(); 1646 if (RT == MVT::i64) 1647 return true; 1648 assert(RT == MVT::i32); 1649 // This is only to produce a value of type i64. Do not rely on the 1650 // high bits produced by this. 1651 const SDLoc &dl(N); 1652 SDValue Ops[] = { 1653 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), 1654 R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), 1655 R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) 1656 }; 1657 SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, 1658 MVT::i64, Ops); 1659 R = SDValue(T, 0); 1660 return true; 1661 } 1662 1663 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits, 1664 SDValue &Src) { 1665 unsigned Opc = Val.getOpcode(); 1666 switch (Opc) { 1667 case ISD::SIGN_EXTEND: 1668 case ISD::ZERO_EXTEND: 1669 case ISD::ANY_EXTEND: { 1670 const SDValue &Op0 = Val.getOperand(0); 1671 EVT T = Op0.getValueType(); 1672 if (T.isInteger() && T.getSizeInBits() == NumBits) { 1673 Src = Op0; 1674 return true; 1675 } 1676 break; 1677 } 1678 case ISD::SIGN_EXTEND_INREG: 1679 case ISD::AssertSext: 1680 case ISD::AssertZext: 1681 if (Val.getOperand(0).getValueType().isInteger()) { 1682 VTSDNode *T = cast<VTSDNode>(Val.getOperand(1)); 1683 if (T->getVT().getSizeInBits() == NumBits) { 1684 Src = Val.getOperand(0); 1685 return true; 1686 } 1687 } 1688 break; 1689 case ISD::AND: { 1690 // Check if this is an AND with NumBits of lower bits set to 1. 1691 uint64_t Mask = (1ULL << NumBits) - 1; 1692 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { 1693 if (C->getZExtValue() == Mask) { 1694 Src = Val.getOperand(1); 1695 return true; 1696 } 1697 } 1698 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { 1699 if (C->getZExtValue() == Mask) { 1700 Src = Val.getOperand(0); 1701 return true; 1702 } 1703 } 1704 break; 1705 } 1706 case ISD::OR: 1707 case ISD::XOR: { 1708 // OR/XOR with the lower NumBits bits set to 0. 1709 uint64_t Mask = (1ULL << NumBits) - 1; 1710 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { 1711 if ((C->getZExtValue() & Mask) == 0) { 1712 Src = Val.getOperand(1); 1713 return true; 1714 } 1715 } 1716 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { 1717 if ((C->getZExtValue() & Mask) == 0) { 1718 Src = Val.getOperand(0); 1719 return true; 1720 } 1721 } 1722 break; 1723 } 1724 default: 1725 break; 1726 } 1727 return false; 1728 } 1729 1730 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const { 1731 return N->getAlign().value() >= N->getMemoryVT().getStoreSize(); 1732 } 1733 1734 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const { 1735 unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF); 1736 switch (N->getMemoryVT().getStoreSize()) { 1737 case 1: 1738 return StackSize <= 56; // 1*2^6 - 8 1739 case 2: 1740 return StackSize <= 120; // 2*2^6 - 8 1741 case 4: 1742 return StackSize <= 248; // 4*2^6 - 8 1743 default: 1744 return false; 1745 } 1746 } 1747 1748 // Return true when the given node fits in a positive half word. 1749 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const { 1750 if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) { 1751 int64_t V = CN->getSExtValue(); 1752 return V > 0 && isInt<16>(V); 1753 } 1754 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) { 1755 const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1)); 1756 return VN->getVT().getSizeInBits() <= 16; 1757 } 1758 return false; 1759 } 1760 1761 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const { 1762 return !CheckSingleUse || N->hasOneUse(); 1763 } 1764 1765 //////////////////////////////////////////////////////////////////////////////// 1766 // Rebalancing of address calculation trees 1767 1768 static bool isOpcodeHandled(const SDNode *N) { 1769 switch (N->getOpcode()) { 1770 case ISD::ADD: 1771 case ISD::MUL: 1772 return true; 1773 case ISD::SHL: 1774 // We only handle constant shifts because these can be easily flattened 1775 // into multiplications by 2^Op1. 1776 return isa<ConstantSDNode>(N->getOperand(1).getNode()); 1777 default: 1778 return false; 1779 } 1780 } 1781 1782 /// Return the weight of an SDNode 1783 int HexagonDAGToDAGISel::getWeight(SDNode *N) { 1784 if (!isOpcodeHandled(N)) 1785 return 1; 1786 assert(RootWeights.count(N) && "Cannot get weight of unseen root!"); 1787 assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!"); 1788 assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!"); 1789 return RootWeights[N]; 1790 } 1791 1792 int HexagonDAGToDAGISel::getHeight(SDNode *N) { 1793 if (!isOpcodeHandled(N)) 1794 return 0; 1795 assert(RootWeights.count(N) && RootWeights[N] >= 0 && 1796 "Cannot query height of unvisited/RAUW'd node!"); 1797 return RootHeights[N]; 1798 } 1799 1800 namespace { 1801 struct WeightedLeaf { 1802 SDValue Value; 1803 int Weight; 1804 int InsertionOrder; 1805 1806 WeightedLeaf() {} 1807 1808 WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) : 1809 Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) { 1810 assert(Weight >= 0 && "Weight must be >= 0"); 1811 } 1812 1813 static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) { 1814 assert(A.Value.getNode() && B.Value.getNode()); 1815 return A.Weight == B.Weight ? 1816 (A.InsertionOrder > B.InsertionOrder) : 1817 (A.Weight > B.Weight); 1818 } 1819 }; 1820 1821 /// A specialized priority queue for WeigthedLeaves. It automatically folds 1822 /// constants and allows removal of non-top elements while maintaining the 1823 /// priority order. 1824 class LeafPrioQueue { 1825 SmallVector<WeightedLeaf, 8> Q; 1826 bool HaveConst; 1827 WeightedLeaf ConstElt; 1828 unsigned Opcode; 1829 1830 public: 1831 bool empty() { 1832 return (!HaveConst && Q.empty()); 1833 } 1834 1835 size_t size() { 1836 return Q.size() + HaveConst; 1837 } 1838 1839 bool hasConst() { 1840 return HaveConst; 1841 } 1842 1843 const WeightedLeaf &top() { 1844 if (HaveConst) 1845 return ConstElt; 1846 return Q.front(); 1847 } 1848 1849 WeightedLeaf pop() { 1850 if (HaveConst) { 1851 HaveConst = false; 1852 return ConstElt; 1853 } 1854 std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1855 return Q.pop_back_val(); 1856 } 1857 1858 void push(WeightedLeaf L, bool SeparateConst=true) { 1859 if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) { 1860 if (Opcode == ISD::MUL && 1861 cast<ConstantSDNode>(L.Value)->getSExtValue() == 1) 1862 return; 1863 if (Opcode == ISD::ADD && 1864 cast<ConstantSDNode>(L.Value)->getSExtValue() == 0) 1865 return; 1866 1867 HaveConst = true; 1868 ConstElt = L; 1869 } else { 1870 Q.push_back(L); 1871 std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1872 } 1873 } 1874 1875 /// Push L to the bottom of the queue regardless of its weight. If L is 1876 /// constant, it will not be folded with other constants in the queue. 1877 void pushToBottom(WeightedLeaf L) { 1878 L.Weight = 1000; 1879 push(L, false); 1880 } 1881 1882 /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of 1883 /// lowest weight and remove it from the queue. 1884 WeightedLeaf findSHL(uint64_t MaxAmount); 1885 1886 WeightedLeaf findMULbyConst(); 1887 1888 LeafPrioQueue(unsigned Opcode) : 1889 HaveConst(false), Opcode(Opcode) { } 1890 }; 1891 } // end anonymous namespace 1892 1893 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) { 1894 int ResultPos; 1895 WeightedLeaf Result; 1896 1897 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { 1898 const WeightedLeaf &L = Q[Pos]; 1899 const SDValue &Val = L.Value; 1900 if (Val.getOpcode() != ISD::SHL || 1901 !isa<ConstantSDNode>(Val.getOperand(1)) || 1902 Val.getConstantOperandVal(1) > MaxAmount) 1903 continue; 1904 if (!Result.Value.getNode() || Result.Weight > L.Weight || 1905 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) 1906 { 1907 Result = L; 1908 ResultPos = Pos; 1909 } 1910 } 1911 1912 if (Result.Value.getNode()) { 1913 Q.erase(&Q[ResultPos]); 1914 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1915 } 1916 1917 return Result; 1918 } 1919 1920 WeightedLeaf LeafPrioQueue::findMULbyConst() { 1921 int ResultPos; 1922 WeightedLeaf Result; 1923 1924 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { 1925 const WeightedLeaf &L = Q[Pos]; 1926 const SDValue &Val = L.Value; 1927 if (Val.getOpcode() != ISD::MUL || 1928 !isa<ConstantSDNode>(Val.getOperand(1)) || 1929 Val.getConstantOperandVal(1) > 127) 1930 continue; 1931 if (!Result.Value.getNode() || Result.Weight > L.Weight || 1932 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) 1933 { 1934 Result = L; 1935 ResultPos = Pos; 1936 } 1937 } 1938 1939 if (Result.Value.getNode()) { 1940 Q.erase(&Q[ResultPos]); 1941 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1942 } 1943 1944 return Result; 1945 } 1946 1947 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) { 1948 uint64_t MulFactor = 1ull << N->getConstantOperandVal(1); 1949 return CurDAG->getConstant(MulFactor, SDLoc(N), 1950 N->getOperand(1).getValueType()); 1951 } 1952 1953 /// @returns the value x for which 2^x is a factor of Val 1954 static unsigned getPowerOf2Factor(SDValue Val) { 1955 if (Val.getOpcode() == ISD::MUL) { 1956 unsigned MaxFactor = 0; 1957 for (int i = 0; i < 2; ++i) { 1958 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i)); 1959 if (!C) 1960 continue; 1961 const APInt &CInt = C->getAPIntValue(); 1962 if (CInt.getBoolValue()) 1963 MaxFactor = CInt.countr_zero(); 1964 } 1965 return MaxFactor; 1966 } 1967 if (Val.getOpcode() == ISD::SHL) { 1968 if (!isa<ConstantSDNode>(Val.getOperand(1).getNode())) 1969 return 0; 1970 return (unsigned) Val.getConstantOperandVal(1); 1971 } 1972 1973 return 0; 1974 } 1975 1976 /// @returns true if V>>Amount will eliminate V's operation on its child 1977 static bool willShiftRightEliminate(SDValue V, unsigned Amount) { 1978 if (V.getOpcode() == ISD::MUL) { 1979 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; 1980 for (int i = 0; i < 2; ++i) 1981 if (isa<ConstantSDNode>(Ops[i].getNode()) && 1982 V.getConstantOperandVal(i) % (1ULL << Amount) == 0) { 1983 uint64_t NewConst = V.getConstantOperandVal(i) >> Amount; 1984 return (NewConst == 1); 1985 } 1986 } else if (V.getOpcode() == ISD::SHL) { 1987 return (Amount == V.getConstantOperandVal(1)); 1988 } 1989 1990 return false; 1991 } 1992 1993 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) { 1994 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; 1995 if (V.getOpcode() == ISD::MUL) { 1996 for (int i=0; i < 2; ++i) { 1997 if (isa<ConstantSDNode>(Ops[i].getNode()) && 1998 V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) { 1999 uint64_t NewConst = V.getConstantOperandVal(i) >> Power; 2000 if (NewConst == 1) 2001 return Ops[!i]; 2002 Ops[i] = CurDAG->getConstant(NewConst, 2003 SDLoc(V), V.getValueType()); 2004 break; 2005 } 2006 } 2007 } else if (V.getOpcode() == ISD::SHL) { 2008 uint64_t ShiftAmount = V.getConstantOperandVal(1); 2009 if (ShiftAmount == Power) 2010 return Ops[0]; 2011 Ops[1] = CurDAG->getConstant(ShiftAmount - Power, 2012 SDLoc(V), V.getValueType()); 2013 } 2014 2015 return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops); 2016 } 2017 2018 static bool isTargetConstant(const SDValue &V) { 2019 return V.getOpcode() == HexagonISD::CONST32 || 2020 V.getOpcode() == HexagonISD::CONST32_GP; 2021 } 2022 2023 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) { 2024 if (GAUsesInFunction.count(V)) 2025 return GAUsesInFunction[V]; 2026 2027 unsigned Result = 0; 2028 const Function &CurF = CurDAG->getMachineFunction().getFunction(); 2029 for (const User *U : V->users()) { 2030 if (isa<Instruction>(U) && 2031 cast<Instruction>(U)->getParent()->getParent() == &CurF) 2032 ++Result; 2033 } 2034 2035 GAUsesInFunction[V] = Result; 2036 2037 return Result; 2038 } 2039 2040 /// Note - After calling this, N may be dead. It may have been replaced by a 2041 /// new node, so always use the returned value in place of N. 2042 /// 2043 /// @returns The SDValue taking the place of N (which could be N if it is 2044 /// unchanged) 2045 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) { 2046 assert(RootWeights.count(N) && "Cannot balance non-root node."); 2047 assert(RootWeights[N] != -2 && "This node was RAUW'd!"); 2048 assert(!TopLevel || N->getOpcode() == ISD::ADD); 2049 2050 // Return early if this node was already visited 2051 if (RootWeights[N] != -1) 2052 return SDValue(N, 0); 2053 2054 assert(isOpcodeHandled(N)); 2055 2056 SDValue Op0 = N->getOperand(0); 2057 SDValue Op1 = N->getOperand(1); 2058 2059 // Return early if the operands will remain unchanged or are all roots 2060 if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) && 2061 (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) { 2062 SDNode *Op0N = Op0.getNode(); 2063 int Weight; 2064 if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) { 2065 Weight = getWeight(balanceSubTree(Op0N).getNode()); 2066 // Weight = calculateWeight(Op0N); 2067 } else 2068 Weight = getWeight(Op0N); 2069 2070 SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd 2071 if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) { 2072 Weight += getWeight(balanceSubTree(Op1N).getNode()); 2073 // Weight += calculateWeight(Op1N); 2074 } else 2075 Weight += getWeight(Op1N); 2076 2077 RootWeights[N] = Weight; 2078 RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()), 2079 getHeight(N->getOperand(1).getNode())) + 1; 2080 2081 LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight 2082 << " Height=" << RootHeights[N] << "): "); 2083 LLVM_DEBUG(N->dump(CurDAG)); 2084 2085 return SDValue(N, 0); 2086 } 2087 2088 LLVM_DEBUG(dbgs() << "** Balancing root node: "); 2089 LLVM_DEBUG(N->dump(CurDAG)); 2090 2091 unsigned NOpcode = N->getOpcode(); 2092 2093 LeafPrioQueue Leaves(NOpcode); 2094 SmallVector<SDValue, 4> Worklist; 2095 Worklist.push_back(SDValue(N, 0)); 2096 2097 // SHL nodes will be converted to MUL nodes 2098 if (NOpcode == ISD::SHL) 2099 NOpcode = ISD::MUL; 2100 2101 bool CanFactorize = false; 2102 WeightedLeaf Mul1, Mul2; 2103 unsigned MaxPowerOf2 = 0; 2104 WeightedLeaf GA; 2105 2106 // Do not try to factor out a shift if there is already a shift at the tip of 2107 // the tree. 2108 bool HaveTopLevelShift = false; 2109 if (TopLevel && 2110 ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL && 2111 Op0.getConstantOperandVal(1) < 4) || 2112 (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL && 2113 Op1.getConstantOperandVal(1) < 4))) 2114 HaveTopLevelShift = true; 2115 2116 // Flatten the subtree into an ordered list of leaves; at the same time 2117 // determine whether the tree is already balanced. 2118 int InsertionOrder = 0; 2119 SmallDenseMap<SDValue, int> NodeHeights; 2120 bool Imbalanced = false; 2121 int CurrentWeight = 0; 2122 while (!Worklist.empty()) { 2123 SDValue Child = Worklist.pop_back_val(); 2124 2125 if (Child.getNode() != N && RootWeights.count(Child.getNode())) { 2126 // CASE 1: Child is a root note 2127 2128 int Weight = RootWeights[Child.getNode()]; 2129 if (Weight == -1) { 2130 Child = balanceSubTree(Child.getNode()); 2131 // calculateWeight(Child.getNode()); 2132 Weight = getWeight(Child.getNode()); 2133 } else if (Weight == -2) { 2134 // Whoops, this node was RAUWd by one of the balanceSubTree calls we 2135 // made. Our worklist isn't up to date anymore. 2136 // Restart the whole process. 2137 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); 2138 return balanceSubTree(N, TopLevel); 2139 } 2140 2141 NodeHeights[Child] = 1; 2142 CurrentWeight += Weight; 2143 2144 unsigned PowerOf2; 2145 if (TopLevel && !CanFactorize && !HaveTopLevelShift && 2146 (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) && 2147 Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) { 2148 // Try to identify two factorizable MUL/SHL children greedily. Leave 2149 // them out of the priority queue for now so we can deal with them 2150 // after. 2151 if (!Mul1.Value.getNode()) { 2152 Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++); 2153 MaxPowerOf2 = PowerOf2; 2154 } else { 2155 Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++); 2156 MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2); 2157 2158 // Our addressing modes can only shift by a maximum of 3 2159 if (MaxPowerOf2 > 3) 2160 MaxPowerOf2 = 3; 2161 2162 CanFactorize = true; 2163 } 2164 } else 2165 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); 2166 } else if (!isOpcodeHandled(Child.getNode())) { 2167 // CASE 2: Child is an unhandled kind of node (e.g. constant) 2168 int Weight = getWeight(Child.getNode()); 2169 2170 NodeHeights[Child] = getHeight(Child.getNode()); 2171 CurrentWeight += Weight; 2172 2173 if (isTargetConstant(Child) && !GA.Value.getNode()) 2174 GA = WeightedLeaf(Child, Weight, InsertionOrder++); 2175 else 2176 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); 2177 } else { 2178 // CASE 3: Child is a subtree of same opcode 2179 // Visit children first, then flatten. 2180 unsigned ChildOpcode = Child.getOpcode(); 2181 assert(ChildOpcode == NOpcode || 2182 (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL)); 2183 2184 // Convert SHL to MUL 2185 SDValue Op1; 2186 if (ChildOpcode == ISD::SHL) 2187 Op1 = getMultiplierForSHL(Child.getNode()); 2188 else 2189 Op1 = Child->getOperand(1); 2190 2191 if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) { 2192 assert(!NodeHeights.count(Child) && "Parent visited before children?"); 2193 // Visit children first, then re-visit this node 2194 Worklist.push_back(Child); 2195 Worklist.push_back(Op1); 2196 Worklist.push_back(Child->getOperand(0)); 2197 } else { 2198 // Back at this node after visiting the children 2199 if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1) 2200 Imbalanced = true; 2201 2202 NodeHeights[Child] = std::max(NodeHeights[Op1], 2203 NodeHeights[Child->getOperand(0)]) + 1; 2204 } 2205 } 2206 } 2207 2208 LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)] 2209 << " weight=" << CurrentWeight 2210 << " imbalanced=" << Imbalanced << "\n"); 2211 2212 // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y) 2213 // This factors out a shift in order to match memw(a<<Y+b). 2214 if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) || 2215 willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) { 2216 LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n"); 2217 int Weight = Mul1.Weight + Mul2.Weight; 2218 int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1; 2219 SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2); 2220 SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2); 2221 SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(), 2222 Mul1Factored, Mul2Factored); 2223 SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N), 2224 Mul1.Value.getValueType()); 2225 SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(), 2226 Sum, Const); 2227 NodeHeights[New] = Height; 2228 Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder)); 2229 } else if (Mul1.Value.getNode()) { 2230 // We failed to factorize two MULs, so now the Muls are left outside the 2231 // queue... add them back. 2232 Leaves.push(Mul1); 2233 if (Mul2.Value.getNode()) 2234 Leaves.push(Mul2); 2235 CanFactorize = false; 2236 } 2237 2238 // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere 2239 // and the root node itself is not used more than twice. This reduces the 2240 // amount of additional constant extenders introduced by this optimization. 2241 bool CombinedGA = false; 2242 if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() && 2243 GA.Value.hasOneUse() && N->use_size() < 3) { 2244 GlobalAddressSDNode *GANode = 2245 cast<GlobalAddressSDNode>(GA.Value.getOperand(0)); 2246 ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value); 2247 2248 if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() && 2249 getTargetLowering()->isOffsetFoldingLegal(GANode)) { 2250 LLVM_DEBUG(dbgs() << "--> Combining GA and offset (" 2251 << Offset->getSExtValue() << "): "); 2252 LLVM_DEBUG(GANode->dump(CurDAG)); 2253 2254 SDValue NewTGA = 2255 CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value), 2256 GANode->getValueType(0), 2257 GANode->getOffset() + (uint64_t)Offset->getSExtValue()); 2258 GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value), 2259 GA.Value.getValueType(), NewTGA); 2260 GA.Weight += Leaves.top().Weight; 2261 2262 NodeHeights[GA.Value] = getHeight(GA.Value.getNode()); 2263 CombinedGA = true; 2264 2265 Leaves.pop(); // Remove the offset constant from the queue 2266 } 2267 } 2268 2269 if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) || 2270 (RebalanceOnlyImbalancedTrees && !Imbalanced)) { 2271 RootWeights[N] = CurrentWeight; 2272 RootHeights[N] = NodeHeights[SDValue(N, 0)]; 2273 2274 return SDValue(N, 0); 2275 } 2276 2277 // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5)) 2278 if (NOpcode == ISD::ADD && GA.Value.getNode()) { 2279 WeightedLeaf SHL = Leaves.findSHL(31); 2280 if (SHL.Value.getNode()) { 2281 int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1; 2282 GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value), 2283 GA.Value.getValueType(), 2284 GA.Value, SHL.Value); 2285 GA.Weight = SHL.Weight; // Specifically ignore the GA weight here 2286 NodeHeights[GA.Value] = Height; 2287 } 2288 } 2289 2290 if (GA.Value.getNode()) 2291 Leaves.push(GA); 2292 2293 // If this is the top level and we haven't factored out a shift, we should try 2294 // to move a constant to the bottom to match addressing modes like memw(rX+C) 2295 if (TopLevel && !CanFactorize && Leaves.hasConst()) { 2296 LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree."); 2297 Leaves.pushToBottom(Leaves.pop()); 2298 } 2299 2300 const DataLayout &DL = CurDAG->getDataLayout(); 2301 const TargetLowering &TLI = *getTargetLowering(); 2302 2303 // Rebuild the tree using Huffman's algorithm 2304 while (Leaves.size() > 1) { 2305 WeightedLeaf L0 = Leaves.pop(); 2306 2307 // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)), 2308 // otherwise just get the next leaf 2309 WeightedLeaf L1 = Leaves.findMULbyConst(); 2310 if (!L1.Value.getNode()) 2311 L1 = Leaves.pop(); 2312 2313 assert(L0.Weight <= L1.Weight && "Priority queue is broken!"); 2314 2315 SDValue V0 = L0.Value; 2316 int V0Weight = L0.Weight; 2317 SDValue V1 = L1.Value; 2318 int V1Weight = L1.Weight; 2319 2320 // Make sure that none of these nodes have been RAUW'd 2321 if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) || 2322 (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) { 2323 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); 2324 return balanceSubTree(N, TopLevel); 2325 } 2326 2327 ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0); 2328 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1); 2329 EVT VT = N->getValueType(0); 2330 SDValue NewNode; 2331 2332 if (V0C && !V1C) { 2333 std::swap(V0, V1); 2334 std::swap(V0C, V1C); 2335 } 2336 2337 // Calculate height of this node 2338 assert(NodeHeights.count(V0) && NodeHeights.count(V1) && 2339 "Children must have been visited before re-combining them!"); 2340 int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1; 2341 2342 // Rebuild this node (and restore SHL from MUL if needed) 2343 if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2()) 2344 NewNode = CurDAG->getNode( 2345 ISD::SHL, SDLoc(V0), VT, V0, 2346 CurDAG->getConstant( 2347 V1C->getAPIntValue().logBase2(), SDLoc(N), 2348 TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); 2349 else 2350 NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1); 2351 2352 NodeHeights[NewNode] = Height; 2353 2354 int Weight = V0Weight + V1Weight; 2355 Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder)); 2356 2357 LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight 2358 << ",Height=" << Height << "):\n"); 2359 LLVM_DEBUG(NewNode.dump()); 2360 } 2361 2362 assert(Leaves.size() == 1); 2363 SDValue NewRoot = Leaves.top().Value; 2364 2365 assert(NodeHeights.count(NewRoot)); 2366 int Height = NodeHeights[NewRoot]; 2367 2368 // Restore SHL if we earlier converted it to a MUL 2369 if (NewRoot.getOpcode() == ISD::MUL) { 2370 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1)); 2371 if (V1C && V1C->getAPIntValue().isPowerOf2()) { 2372 EVT VT = NewRoot.getValueType(); 2373 SDValue V0 = NewRoot.getOperand(0); 2374 NewRoot = CurDAG->getNode( 2375 ISD::SHL, SDLoc(NewRoot), VT, V0, 2376 CurDAG->getConstant( 2377 V1C->getAPIntValue().logBase2(), SDLoc(NewRoot), 2378 TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); 2379 } 2380 } 2381 2382 if (N != NewRoot.getNode()) { 2383 LLVM_DEBUG(dbgs() << "--> Root is now: "); 2384 LLVM_DEBUG(NewRoot.dump()); 2385 2386 // Replace all uses of old root by new root 2387 CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode()); 2388 // Mark that we have RAUW'd N 2389 RootWeights[N] = -2; 2390 } else { 2391 LLVM_DEBUG(dbgs() << "--> Root unchanged.\n"); 2392 } 2393 2394 RootWeights[NewRoot.getNode()] = Leaves.top().Weight; 2395 RootHeights[NewRoot.getNode()] = Height; 2396 2397 return NewRoot; 2398 } 2399 2400 void HexagonDAGToDAGISel::rebalanceAddressTrees() { 2401 for (SDNode &Node : llvm::make_early_inc_range(CurDAG->allnodes())) { 2402 SDNode *N = &Node; 2403 if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE) 2404 continue; 2405 2406 SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr(); 2407 if (BasePtr.getOpcode() != ISD::ADD) 2408 continue; 2409 2410 // We've already processed this node 2411 if (RootWeights.count(BasePtr.getNode())) 2412 continue; 2413 2414 LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: "); 2415 LLVM_DEBUG(N->dump(CurDAG)); 2416 2417 // FindRoots 2418 SmallVector<SDNode *, 4> Worklist; 2419 2420 Worklist.push_back(BasePtr.getOperand(0).getNode()); 2421 Worklist.push_back(BasePtr.getOperand(1).getNode()); 2422 2423 while (!Worklist.empty()) { 2424 SDNode *N = Worklist.pop_back_val(); 2425 unsigned Opcode = N->getOpcode(); 2426 2427 if (!isOpcodeHandled(N)) 2428 continue; 2429 2430 Worklist.push_back(N->getOperand(0).getNode()); 2431 Worklist.push_back(N->getOperand(1).getNode()); 2432 2433 // Not a root if it has only one use and same opcode as its parent 2434 if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode()) 2435 continue; 2436 2437 // This root node has already been processed 2438 if (RootWeights.count(N)) 2439 continue; 2440 2441 RootWeights[N] = -1; 2442 } 2443 2444 // Balance node itself 2445 RootWeights[BasePtr.getNode()] = -1; 2446 SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true); 2447 2448 if (N->getOpcode() == ISD::LOAD) 2449 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), 2450 NewBasePtr, N->getOperand(2)); 2451 else 2452 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), 2453 NewBasePtr, N->getOperand(3)); 2454 2455 LLVM_DEBUG(dbgs() << "--> Final node: "); 2456 LLVM_DEBUG(N->dump(CurDAG)); 2457 } 2458 2459 CurDAG->RemoveDeadNodes(); 2460 GAUsesInFunction.clear(); 2461 RootHeights.clear(); 2462 RootWeights.clear(); 2463 } 2464