1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines an instruction selector for the Hexagon target. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "HexagonISelDAGToDAG.h" 14 #include "Hexagon.h" 15 #include "HexagonISelLowering.h" 16 #include "HexagonMachineFunctionInfo.h" 17 #include "HexagonTargetMachine.h" 18 #include "llvm/CodeGen/FunctionLoweringInfo.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/SelectionDAGISel.h" 21 #include "llvm/IR/Intrinsics.h" 22 #include "llvm/IR/IntrinsicsHexagon.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 using namespace llvm; 26 27 #define DEBUG_TYPE "hexagon-isel" 28 #define PASS_NAME "Hexagon DAG->DAG Pattern Instruction Selection" 29 30 static 31 cl::opt<bool> 32 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true), 33 cl::desc("Rebalance address calculation trees to improve " 34 "instruction selection")); 35 36 // Rebalance only if this allows e.g. combining a GA with an offset or 37 // factoring out a shift. 38 static 39 cl::opt<bool> 40 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false), 41 cl::desc("Rebalance address tree only if this allows optimizations")); 42 43 static 44 cl::opt<bool> 45 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden, 46 cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced")); 47 48 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden, 49 cl::init(true), cl::desc("Enable checking of SDNode's single-use status")); 50 51 //===----------------------------------------------------------------------===// 52 // Instruction Selector Implementation 53 //===----------------------------------------------------------------------===// 54 55 #define GET_DAGISEL_BODY HexagonDAGToDAGISel 56 #include "HexagonGenDAGISel.inc" 57 58 namespace llvm { 59 /// createHexagonISelDag - This pass converts a legalized DAG into a 60 /// Hexagon-specific DAG, ready for instruction scheduling. 61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM, 62 CodeGenOptLevel OptLevel) { 63 return new HexagonDAGToDAGISel(TM, OptLevel); 64 } 65 } 66 67 char HexagonDAGToDAGISel::ID = 0; 68 69 INITIALIZE_PASS(HexagonDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false) 70 71 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) { 72 SDValue Chain = LD->getChain(); 73 SDValue Base = LD->getBasePtr(); 74 SDValue Offset = LD->getOffset(); 75 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 76 EVT LoadedVT = LD->getMemoryVT(); 77 unsigned Opcode = 0; 78 79 // Check for zero extended loads. Treat any-extend loads as zero extended 80 // loads. 81 ISD::LoadExtType ExtType = LD->getExtensionType(); 82 bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD); 83 bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc); 84 85 assert(LoadedVT.isSimple()); 86 switch (LoadedVT.getSimpleVT().SimpleTy) { 87 case MVT::i8: 88 if (IsZeroExt) 89 Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io; 90 else 91 Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io; 92 break; 93 case MVT::i16: 94 if (IsZeroExt) 95 Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io; 96 else 97 Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io; 98 break; 99 case MVT::i32: 100 case MVT::f32: 101 case MVT::v2i16: 102 case MVT::v4i8: 103 Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io; 104 break; 105 case MVT::i64: 106 case MVT::f64: 107 case MVT::v2i32: 108 case MVT::v4i16: 109 case MVT::v8i8: 110 Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io; 111 break; 112 case MVT::v64i8: 113 case MVT::v32i16: 114 case MVT::v16i32: 115 case MVT::v8i64: 116 case MVT::v128i8: 117 case MVT::v64i16: 118 case MVT::v32i32: 119 case MVT::v16i64: 120 if (isAlignedMemNode(LD)) { 121 if (LD->isNonTemporal()) 122 Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai; 123 else 124 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai; 125 } else { 126 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai; 127 } 128 break; 129 default: 130 llvm_unreachable("Unexpected memory type in indexed load"); 131 } 132 133 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); 134 MachineMemOperand *MemOp = LD->getMemOperand(); 135 136 auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl) 137 -> MachineSDNode* { 138 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) { 139 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 140 return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64, 141 Zero, SDValue(N, 0)); 142 } 143 if (ExtType == ISD::SEXTLOAD) 144 return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64, 145 SDValue(N, 0)); 146 return N; 147 }; 148 149 // Loaded value Next address Chain 150 SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) }; 151 SDValue To[3]; 152 153 EVT ValueVT = LD->getValueType(0); 154 if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) { 155 // A load extending to i64 will actually produce i32, which will then 156 // need to be extended to i64. 157 assert(LoadedVT.getSizeInBits() <= 32); 158 ValueVT = MVT::i32; 159 } 160 161 if (IsValidInc) { 162 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, 163 MVT::i32, MVT::Other, Base, 164 IncV, Chain); 165 CurDAG->setNodeMemRefs(L, {MemOp}); 166 To[1] = SDValue(L, 1); // Next address. 167 To[2] = SDValue(L, 2); // Chain. 168 // Handle special case for extension to i64. 169 if (LD->getValueType(0) == MVT::i64) 170 L = getExt64(L, dl); 171 To[0] = SDValue(L, 0); // Loaded (extended) value. 172 } else { 173 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 174 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other, 175 Base, Zero, Chain); 176 CurDAG->setNodeMemRefs(L, {MemOp}); 177 To[2] = SDValue(L, 1); // Chain. 178 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, 179 Base, IncV); 180 To[1] = SDValue(A, 0); // Next address. 181 // Handle special case for extension to i64. 182 if (LD->getValueType(0) == MVT::i64) 183 L = getExt64(L, dl); 184 To[0] = SDValue(L, 0); // Loaded (extended) value. 185 } 186 ReplaceUses(From, To, 3); 187 CurDAG->RemoveDeadNode(LD); 188 } 189 190 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) { 191 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 192 return nullptr; 193 194 SDLoc dl(IntN); 195 unsigned IntNo = IntN->getConstantOperandVal(1); 196 197 static std::map<unsigned,unsigned> LoadPciMap = { 198 { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci }, 199 { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci }, 200 { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci }, 201 { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci }, 202 { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci }, 203 { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci }, 204 }; 205 auto FLC = LoadPciMap.find(IntNo); 206 if (FLC != LoadPciMap.end()) { 207 EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32; 208 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 209 // Operands: { Base, Increment, Modifier, Chain } 210 auto Inc = cast<ConstantSDNode>(IntN->getOperand(5)); 211 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32); 212 MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys, 213 { IntN->getOperand(2), I, IntN->getOperand(4), 214 IntN->getOperand(0) }); 215 return Res; 216 } 217 218 return nullptr; 219 } 220 221 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, 222 SDNode *IntN) { 223 // The "LoadN" is just a machine load instruction. The intrinsic also 224 // involves storing it. Generate an appropriate store to the location 225 // given in the intrinsic's operand(3). 226 uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags; 227 unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) & 228 HexagonII::MemAccesSizeMask; 229 unsigned Size = 1U << (SizeBits-1); 230 231 SDLoc dl(IntN); 232 MachinePointerInfo PI; 233 SDValue TS; 234 SDValue Loc = IntN->getOperand(3); 235 236 if (Size >= 4) 237 TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI, 238 Align(Size)); 239 else 240 TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, 241 PI, MVT::getIntegerVT(Size * 8), Align(Size)); 242 243 SDNode *StoreN; 244 { 245 HandleSDNode Handle(TS); 246 SelectStore(TS.getNode()); 247 StoreN = Handle.getValue().getNode(); 248 } 249 250 // Load's results are { Loaded value, Updated pointer, Chain } 251 ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1)); 252 ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0)); 253 return StoreN; 254 } 255 256 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) { 257 // The intrinsics for load circ/brev perform two operations: 258 // 1. Load a value V from the specified location, using the addressing 259 // mode corresponding to the intrinsic. 260 // 2. Store V into a specified location. This location is typically a 261 // local, temporary object. 262 // In many cases, the program using these intrinsics will immediately 263 // load V again from the local object. In those cases, when certain 264 // conditions are met, the last load can be removed. 265 // This function identifies and optimizes this pattern. If the pattern 266 // cannot be optimized, it returns nullptr, which will cause the load 267 // to be selected separately from the intrinsic (which will be handled 268 // in SelectIntrinsicWChain). 269 270 SDValue Ch = N->getOperand(0); 271 SDValue Loc = N->getOperand(1); 272 273 // Assume that the load and the intrinsic are connected directly with a 274 // chain: 275 // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C 276 // t2: i32,ch = load t1:1, Loc, ... 277 SDNode *C = Ch.getNode(); 278 279 if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN) 280 return false; 281 282 // The second load can only be eliminated if its extension type matches 283 // that of the load instruction corresponding to the intrinsic. The user 284 // can provide an address of an unsigned variable to store the result of 285 // a sign-extending intrinsic into (or the other way around). 286 ISD::LoadExtType IntExt; 287 switch (C->getConstantOperandVal(1)) { 288 case Intrinsic::hexagon_circ_ldub: 289 case Intrinsic::hexagon_circ_lduh: 290 IntExt = ISD::ZEXTLOAD; 291 break; 292 case Intrinsic::hexagon_circ_ldw: 293 case Intrinsic::hexagon_circ_ldd: 294 IntExt = ISD::NON_EXTLOAD; 295 break; 296 default: 297 IntExt = ISD::SEXTLOAD; 298 break; 299 } 300 if (N->getExtensionType() != IntExt) 301 return false; 302 303 // Make sure the target location for the loaded value in the load intrinsic 304 // is the location from which LD (or N) is loading. 305 if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode()) 306 return false; 307 308 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) { 309 SDNode *S = StoreInstrForLoadIntrinsic(L, C); 310 SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) }; 311 SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) }; 312 ReplaceUses(F, T, std::size(T)); 313 // This transformation will leave the intrinsic dead. If it remains in 314 // the DAG, the selection code will see it again, but without the load, 315 // and it will generate a store that is normally required for it. 316 CurDAG->RemoveDeadNode(C); 317 return true; 318 } 319 return false; 320 } 321 322 // Convert the bit-reverse load intrinsic to appropriate target instruction. 323 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) { 324 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 325 return false; 326 327 const SDLoc &dl(IntN); 328 unsigned IntNo = IntN->getConstantOperandVal(1); 329 330 static const std::map<unsigned, unsigned> LoadBrevMap = { 331 { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr }, 332 { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr }, 333 { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr }, 334 { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr }, 335 { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr }, 336 { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr } 337 }; 338 auto FLI = LoadBrevMap.find(IntNo); 339 if (FLI != LoadBrevMap.end()) { 340 EVT ValTy = 341 (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32; 342 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 343 // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr, 344 // modifier}. 345 // Operands of target instruction: { Base, Modifier, Chain }. 346 MachineSDNode *Res = CurDAG->getMachineNode( 347 FLI->second, dl, RTys, 348 {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)}); 349 350 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand(); 351 CurDAG->setNodeMemRefs(Res, {MemOp}); 352 353 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 354 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 355 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); 356 CurDAG->RemoveDeadNode(IntN); 357 return true; 358 } 359 return false; 360 } 361 362 /// Generate a machine instruction node for the new circular buffer intrinsics. 363 /// The new versions use a CSx register instead of the K field. 364 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) { 365 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 366 return false; 367 368 SDLoc DL(IntN); 369 unsigned IntNo = IntN->getConstantOperandVal(1); 370 SmallVector<SDValue, 7> Ops; 371 372 static std::map<unsigned,unsigned> LoadNPcMap = { 373 { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci }, 374 { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci }, 375 { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci }, 376 { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci }, 377 { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci }, 378 { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci }, 379 { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr }, 380 { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr }, 381 { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr }, 382 { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr }, 383 { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr }, 384 { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr } 385 }; 386 auto FLI = LoadNPcMap.find (IntNo); 387 if (FLI != LoadNPcMap.end()) { 388 EVT ValTy = MVT::i32; 389 if (IntNo == Intrinsic::hexagon_L2_loadrd_pci || 390 IntNo == Intrinsic::hexagon_L2_loadrd_pcr) 391 ValTy = MVT::i64; 392 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 393 // Handle load.*_pci case which has 6 operands. 394 if (IntN->getNumOperands() == 6) { 395 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); 396 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); 397 // Operands: { Base, Increment, Modifier, Start, Chain }. 398 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), 399 IntN->getOperand(0) }; 400 } else 401 // Handle load.*_pcr case which has 5 operands. 402 // Operands: { Base, Modifier, Start, Chain }. 403 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), 404 IntN->getOperand(0) }; 405 MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops); 406 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 407 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 408 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); 409 CurDAG->RemoveDeadNode(IntN); 410 return true; 411 } 412 413 static std::map<unsigned,unsigned> StoreNPcMap = { 414 { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci }, 415 { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci }, 416 { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci }, 417 { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci }, 418 { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci }, 419 { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr }, 420 { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr }, 421 { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr }, 422 { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr }, 423 { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr } 424 }; 425 auto FSI = StoreNPcMap.find (IntNo); 426 if (FSI != StoreNPcMap.end()) { 427 EVT RTys[] = { MVT::i32, MVT::Other }; 428 // Handle store.*_pci case which has 7 operands. 429 if (IntN->getNumOperands() == 7) { 430 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); 431 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); 432 // Operands: { Base, Increment, Modifier, Value, Start, Chain }. 433 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), 434 IntN->getOperand(6), IntN->getOperand(0) }; 435 } else 436 // Handle store.*_pcr case which has 6 operands. 437 // Operands: { Base, Modifier, Value, Start, Chain }. 438 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), 439 IntN->getOperand(5), IntN->getOperand(0) }; 440 MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops); 441 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 442 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 443 CurDAG->RemoveDeadNode(IntN); 444 return true; 445 } 446 447 return false; 448 } 449 450 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) { 451 SDLoc dl(N); 452 LoadSDNode *LD = cast<LoadSDNode>(N); 453 454 // Handle indexed loads. 455 ISD::MemIndexedMode AM = LD->getAddressingMode(); 456 if (AM != ISD::UNINDEXED) { 457 SelectIndexedLoad(LD, dl); 458 return; 459 } 460 461 // Handle patterns using circ/brev load intrinsics. 462 if (tryLoadOfLoadIntrinsic(LD)) 463 return; 464 465 SelectCode(LD); 466 } 467 468 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) { 469 SDValue Chain = ST->getChain(); 470 SDValue Base = ST->getBasePtr(); 471 SDValue Offset = ST->getOffset(); 472 SDValue Value = ST->getValue(); 473 // Get the constant value. 474 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 475 EVT StoredVT = ST->getMemoryVT(); 476 EVT ValueVT = Value.getValueType(); 477 478 bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc); 479 unsigned Opcode = 0; 480 481 assert(StoredVT.isSimple()); 482 switch (StoredVT.getSimpleVT().SimpleTy) { 483 case MVT::i8: 484 Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io; 485 break; 486 case MVT::i16: 487 Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io; 488 break; 489 case MVT::i32: 490 case MVT::f32: 491 case MVT::v2i16: 492 case MVT::v4i8: 493 Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io; 494 break; 495 case MVT::i64: 496 case MVT::f64: 497 case MVT::v2i32: 498 case MVT::v4i16: 499 case MVT::v8i8: 500 Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io; 501 break; 502 case MVT::v64i8: 503 case MVT::v32i16: 504 case MVT::v16i32: 505 case MVT::v8i64: 506 case MVT::v128i8: 507 case MVT::v64i16: 508 case MVT::v32i32: 509 case MVT::v16i64: 510 if (isAlignedMemNode(ST)) { 511 if (ST->isNonTemporal()) 512 Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai; 513 else 514 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai; 515 } else { 516 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai; 517 } 518 break; 519 default: 520 llvm_unreachable("Unexpected memory type in indexed store"); 521 } 522 523 if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) { 524 assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store"); 525 Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, 526 dl, MVT::i32, Value); 527 } 528 529 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); 530 MachineMemOperand *MemOp = ST->getMemOperand(); 531 532 // Next address Chain 533 SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) }; 534 SDValue To[2]; 535 536 if (IsValidInc) { 537 // Build post increment store. 538 SDValue Ops[] = { Base, IncV, Value, Chain }; 539 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other, 540 Ops); 541 CurDAG->setNodeMemRefs(S, {MemOp}); 542 To[0] = SDValue(S, 0); 543 To[1] = SDValue(S, 1); 544 } else { 545 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 546 SDValue Ops[] = { Base, Zero, Value, Chain }; 547 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); 548 CurDAG->setNodeMemRefs(S, {MemOp}); 549 To[1] = SDValue(S, 0); 550 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, 551 Base, IncV); 552 To[0] = SDValue(A, 0); 553 } 554 555 ReplaceUses(From, To, 2); 556 CurDAG->RemoveDeadNode(ST); 557 } 558 559 void HexagonDAGToDAGISel::SelectStore(SDNode *N) { 560 SDLoc dl(N); 561 StoreSDNode *ST = cast<StoreSDNode>(N); 562 563 // Handle indexed stores. 564 ISD::MemIndexedMode AM = ST->getAddressingMode(); 565 if (AM != ISD::UNINDEXED) { 566 SelectIndexedStore(ST, dl); 567 return; 568 } 569 570 SelectCode(ST); 571 } 572 573 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) { 574 SDLoc dl(N); 575 SDValue Shl_0 = N->getOperand(0); 576 SDValue Shl_1 = N->getOperand(1); 577 578 auto Default = [this,N] () -> void { SelectCode(N); }; 579 580 if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant) 581 return Default(); 582 583 // RHS is const. 584 int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue(); 585 586 if (Shl_0.getOpcode() == ISD::MUL) { 587 SDValue Mul_0 = Shl_0.getOperand(0); // Val 588 SDValue Mul_1 = Shl_0.getOperand(1); // Const 589 // RHS of mul is const. 590 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) { 591 int32_t ValConst = C->getSExtValue() << ShlConst; 592 if (isInt<9>(ValConst)) { 593 SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32); 594 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, 595 MVT::i32, Mul_0, Val); 596 ReplaceNode(N, Result); 597 return; 598 } 599 } 600 return Default(); 601 } 602 603 if (Shl_0.getOpcode() == ISD::SUB) { 604 SDValue Sub_0 = Shl_0.getOperand(0); // Const 0 605 SDValue Sub_1 = Shl_0.getOperand(1); // Val 606 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) { 607 if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL) 608 return Default(); 609 SDValue Shl2_0 = Sub_1.getOperand(0); // Val 610 SDValue Shl2_1 = Sub_1.getOperand(1); // Const 611 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) { 612 int32_t ValConst = 1 << (ShlConst + C2->getSExtValue()); 613 if (isInt<9>(-ValConst)) { 614 SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32); 615 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, 616 MVT::i32, Shl2_0, Val); 617 ReplaceNode(N, Result); 618 return; 619 } 620 } 621 } 622 } 623 624 return Default(); 625 } 626 627 // 628 // Handling intrinsics for circular load and bitreverse load. 629 // 630 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) { 631 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) { 632 StoreInstrForLoadIntrinsic(L, N); 633 CurDAG->RemoveDeadNode(N); 634 return; 635 } 636 637 // Handle bit-reverse load intrinsics. 638 if (SelectBrevLdIntrinsic(N)) 639 return; 640 641 if (SelectNewCircIntrinsic(N)) 642 return; 643 644 unsigned IntNo = N->getConstantOperandVal(1); 645 if (IntNo == Intrinsic::hexagon_V6_vgathermw || 646 IntNo == Intrinsic::hexagon_V6_vgathermw_128B || 647 IntNo == Intrinsic::hexagon_V6_vgathermh || 648 IntNo == Intrinsic::hexagon_V6_vgathermh_128B || 649 IntNo == Intrinsic::hexagon_V6_vgathermhw || 650 IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) { 651 SelectV65Gather(N); 652 return; 653 } 654 if (IntNo == Intrinsic::hexagon_V6_vgathermwq || 655 IntNo == Intrinsic::hexagon_V6_vgathermwq_128B || 656 IntNo == Intrinsic::hexagon_V6_vgathermhq || 657 IntNo == Intrinsic::hexagon_V6_vgathermhq_128B || 658 IntNo == Intrinsic::hexagon_V6_vgathermhwq || 659 IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) { 660 SelectV65GatherPred(N); 661 return; 662 } 663 664 SelectCode(N); 665 } 666 667 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) { 668 unsigned IID = N->getConstantOperandVal(0); 669 unsigned Bits; 670 switch (IID) { 671 case Intrinsic::hexagon_S2_vsplatrb: 672 Bits = 8; 673 break; 674 case Intrinsic::hexagon_S2_vsplatrh: 675 Bits = 16; 676 break; 677 case Intrinsic::hexagon_V6_vaddcarry: 678 case Intrinsic::hexagon_V6_vaddcarry_128B: 679 case Intrinsic::hexagon_V6_vsubcarry: 680 case Intrinsic::hexagon_V6_vsubcarry_128B: 681 SelectHVXDualOutput(N); 682 return; 683 default: 684 SelectCode(N); 685 return; 686 } 687 688 SDValue V = N->getOperand(1); 689 SDValue U; 690 // Splat intrinsics. 691 if (keepsLowBits(V, Bits, U)) { 692 SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 693 N->getOperand(0), U); 694 ReplaceNode(N, R.getNode()); 695 SelectCode(R.getNode()); 696 return; 697 } 698 SelectCode(N); 699 } 700 701 void HexagonDAGToDAGISel::SelectExtractSubvector(SDNode *N) { 702 SDValue Inp = N->getOperand(0); 703 MVT ResTy = N->getValueType(0).getSimpleVT(); 704 auto IdxN = cast<ConstantSDNode>(N->getOperand(1)); 705 unsigned Idx = IdxN->getZExtValue(); 706 707 [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT(); 708 [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements(); 709 assert(InpTy.getVectorElementType() == ResTy.getVectorElementType()); 710 assert(2 * ResLen == InpTy.getVectorNumElements()); 711 assert(ResTy.getSizeInBits() == 32); 712 assert(Idx == 0 || Idx == ResLen); 713 714 unsigned SubReg = Idx == 0 ? Hexagon::isub_lo : Hexagon::isub_hi; 715 SDValue Ext = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(N), ResTy, Inp); 716 717 ReplaceNode(N, Ext.getNode()); 718 } 719 720 // 721 // Map floating point constant values. 722 // 723 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) { 724 SDLoc dl(N); 725 auto *CN = cast<ConstantFPSDNode>(N); 726 APInt A = CN->getValueAPF().bitcastToAPInt(); 727 if (N->getValueType(0) == MVT::f32) { 728 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32); 729 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V)); 730 return; 731 } 732 if (N->getValueType(0) == MVT::f64) { 733 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64); 734 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V)); 735 return; 736 } 737 738 SelectCode(N); 739 } 740 741 // 742 // Map boolean values. 743 // 744 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) { 745 if (N->getValueType(0) == MVT::i1) { 746 assert(!(N->getAsZExtVal() >> 1)); 747 unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0) 748 ? Hexagon::PS_true 749 : Hexagon::PS_false; 750 ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1)); 751 return; 752 } 753 754 SelectCode(N); 755 } 756 757 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) { 758 MachineFrameInfo &MFI = MF->getFrameInfo(); 759 const HexagonFrameLowering *HFI = HST->getFrameLowering(); 760 int FX = cast<FrameIndexSDNode>(N)->getIndex(); 761 Align StkA = HFI->getStackAlign(); 762 Align MaxA = MFI.getMaxAlign(); 763 SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32); 764 SDLoc DL(N); 765 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 766 SDNode *R = nullptr; 767 768 // Use PS_fi when: 769 // - the object is fixed, or 770 // - there are no objects with higher-than-default alignment, or 771 // - there are no dynamically allocated objects. 772 // Otherwise, use PS_fia. 773 if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) { 774 R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero); 775 } else { 776 auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>(); 777 Register AR = HMFI.getStackAlignBaseReg(); 778 SDValue CH = CurDAG->getEntryNode(); 779 SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero }; 780 R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops); 781 } 782 783 ReplaceNode(N, R); 784 } 785 786 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) { 787 unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c 788 : Hexagon::A4_subp_c; 789 SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(), 790 { N->getOperand(0), N->getOperand(1), 791 N->getOperand(2) }); 792 ReplaceNode(N, C); 793 } 794 795 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) { 796 MVT ResTy = N->getValueType(0).getSimpleVT(); 797 if (HST->isHVXVectorType(ResTy, true)) 798 return SelectHvxVAlign(N); 799 800 const SDLoc &dl(N); 801 unsigned VecLen = ResTy.getSizeInBits(); 802 if (VecLen == 32) { 803 SDValue Ops[] = { 804 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), 805 N->getOperand(0), 806 CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), 807 N->getOperand(1), 808 CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) 809 }; 810 SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, 811 MVT::i64, Ops); 812 813 // Shift right by "(Addr & 0x3) * 8" bytes. 814 SDNode *C; 815 SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32); 816 SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32); 817 if (HST->useCompound()) { 818 C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32, 819 M0, N->getOperand(2), M1); 820 } else { 821 SDNode *T = CurDAG->getMachineNode(Hexagon::S2_asl_i_r, dl, MVT::i32, 822 N->getOperand(2), M1); 823 C = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32, 824 SDValue(T, 0), M0); 825 } 826 SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64, 827 SDValue(R, 0), SDValue(C, 0)); 828 SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy, 829 SDValue(S, 0)); 830 ReplaceNode(N, E.getNode()); 831 } else { 832 assert(VecLen == 64); 833 SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1, 834 N->getOperand(2)); 835 SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy, 836 N->getOperand(0), N->getOperand(1), 837 SDValue(Pu,0)); 838 ReplaceNode(N, VA); 839 } 840 } 841 842 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) { 843 const SDLoc &dl(N); 844 SDValue A = N->getOperand(1); 845 int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue(); 846 assert(isPowerOf2_32(-Mask)); 847 848 SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32); 849 SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32, 850 N->getOperand(0), M); 851 ReplaceNode(N, AA); 852 } 853 854 // Handle these nodes here to avoid having to write patterns for all 855 // combinations of input/output types. In all cases, the resulting 856 // instruction is the same. 857 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) { 858 SDValue Op = N->getOperand(0); 859 MVT OpTy = Op.getValueType().getSimpleVT(); 860 SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(), 861 CurDAG->getVTList(OpTy), {Op}); 862 ReplaceNode(T, Op.getNode()); 863 } 864 865 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) { 866 MVT ResTy = N->getValueType(0).getSimpleVT(); 867 SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy, 868 N->getOperand(0)); 869 ReplaceNode(N, T); 870 } 871 872 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) { 873 const SDLoc &dl(N); 874 MVT ResTy = N->getValueType(0).getSimpleVT(); 875 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 876 SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy, 877 N->getOperand(0), Zero); 878 ReplaceNode(N, T); 879 } 880 881 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) { 882 const SDLoc &dl(N); 883 MVT ResTy = N->getValueType(0).getSimpleVT(); 884 // The argument to V2Q should be a single vector. 885 MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy; 886 assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits()); 887 888 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); 889 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); 890 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy, 891 N->getOperand(0), SDValue(R,0)); 892 ReplaceNode(N, T); 893 } 894 895 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) { 896 const SDLoc &dl(N); 897 MVT ResTy = N->getValueType(0).getSimpleVT(); 898 // The result of V2Q should be a single vector. 899 assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits()); 900 901 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); 902 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); 903 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy, 904 N->getOperand(0), SDValue(R,0)); 905 ReplaceNode(N, T); 906 } 907 908 void HexagonDAGToDAGISel::Select(SDNode *N) { 909 if (N->isMachineOpcode()) 910 return N->setNodeId(-1); // Already selected. 911 912 auto isHvxOp = [this](SDNode *N) { 913 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 914 if (HST->isHVXVectorType(N->getValueType(i), true)) 915 return true; 916 } 917 for (SDValue I : N->ops()) { 918 if (HST->isHVXVectorType(I.getValueType(), true)) 919 return true; 920 } 921 return false; 922 }; 923 924 if (HST->useHVXOps() && isHvxOp(N)) { 925 switch (N->getOpcode()) { 926 case ISD::EXTRACT_SUBVECTOR: return SelectHvxExtractSubvector(N); 927 case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N); 928 929 case HexagonISD::VROR: return SelectHvxRor(N); 930 } 931 } 932 933 switch (N->getOpcode()) { 934 case ISD::Constant: return SelectConstant(N); 935 case ISD::ConstantFP: return SelectConstantFP(N); 936 case ISD::FrameIndex: return SelectFrameIndex(N); 937 case ISD::SHL: return SelectSHL(N); 938 case ISD::LOAD: return SelectLoad(N); 939 case ISD::STORE: return SelectStore(N); 940 case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N); 941 case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N); 942 case ISD::EXTRACT_SUBVECTOR: return SelectExtractSubvector(N); 943 944 case HexagonISD::ADDC: 945 case HexagonISD::SUBC: return SelectAddSubCarry(N); 946 case HexagonISD::VALIGN: return SelectVAlign(N); 947 case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N); 948 case HexagonISD::TYPECAST: return SelectTypecast(N); 949 case HexagonISD::P2D: return SelectP2D(N); 950 case HexagonISD::D2P: return SelectD2P(N); 951 case HexagonISD::Q2V: return SelectQ2V(N); 952 case HexagonISD::V2Q: return SelectV2Q(N); 953 } 954 955 SelectCode(N); 956 } 957 958 bool HexagonDAGToDAGISel::SelectInlineAsmMemoryOperand( 959 const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, 960 std::vector<SDValue> &OutOps) { 961 SDValue Inp = Op, Res; 962 963 switch (ConstraintID) { 964 default: 965 return true; 966 case InlineAsm::ConstraintCode::o: // Offsetable. 967 case InlineAsm::ConstraintCode::v: // Not offsetable. 968 case InlineAsm::ConstraintCode::m: // Memory. 969 if (SelectAddrFI(Inp, Res)) 970 OutOps.push_back(Res); 971 else 972 OutOps.push_back(Inp); 973 break; 974 } 975 976 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 977 return false; 978 } 979 980 static bool isMemOPCandidate(SDNode *I, SDNode *U) { 981 // I is an operand of U. Check if U is an arithmetic (binary) operation 982 // usable in a memop, where the other operand is a loaded value, and the 983 // result of U is stored in the same location. 984 985 if (!U->hasOneUse()) 986 return false; 987 unsigned Opc = U->getOpcode(); 988 switch (Opc) { 989 case ISD::ADD: 990 case ISD::SUB: 991 case ISD::AND: 992 case ISD::OR: 993 break; 994 default: 995 return false; 996 } 997 998 SDValue S0 = U->getOperand(0); 999 SDValue S1 = U->getOperand(1); 1000 SDValue SY = (S0.getNode() == I) ? S1 : S0; 1001 1002 SDNode *UUse = *U->use_begin(); 1003 if (UUse->getNumValues() != 1) 1004 return false; 1005 1006 // Check if one of the inputs to U is a load instruction and the output 1007 // is used by a store instruction. If so and they also have the same 1008 // base pointer, then don't preoprocess this node sequence as it 1009 // can be matched to a memop. 1010 SDNode *SYNode = SY.getNode(); 1011 if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) { 1012 SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr(); 1013 SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr(); 1014 if (LDBasePtr == STBasePtr) 1015 return true; 1016 } 1017 return false; 1018 } 1019 1020 1021 // Transform: (or (select c x 0) z) -> (select c (or x z) z) 1022 // (or (select c 0 y) z) -> (select c z (or y z)) 1023 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) { 1024 SelectionDAG &DAG = *CurDAG; 1025 1026 for (auto *I : Nodes) { 1027 if (I->getOpcode() != ISD::OR) 1028 continue; 1029 1030 auto IsSelect0 = [](const SDValue &Op) -> bool { 1031 if (Op.getOpcode() != ISD::SELECT) 1032 return false; 1033 return isNullConstant(Op.getOperand(1)) || 1034 isNullConstant(Op.getOperand(2)); 1035 }; 1036 1037 SDValue N0 = I->getOperand(0), N1 = I->getOperand(1); 1038 EVT VT = I->getValueType(0); 1039 bool SelN0 = IsSelect0(N0); 1040 SDValue SOp = SelN0 ? N0 : N1; 1041 SDValue VOp = SelN0 ? N1 : N0; 1042 1043 if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) { 1044 SDValue SC = SOp.getOperand(0); 1045 SDValue SX = SOp.getOperand(1); 1046 SDValue SY = SOp.getOperand(2); 1047 SDLoc DLS = SOp; 1048 if (isNullConstant(SY)) { 1049 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp); 1050 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp); 1051 DAG.ReplaceAllUsesWith(I, NewSel.getNode()); 1052 } else if (isNullConstant(SX)) { 1053 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp); 1054 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr); 1055 DAG.ReplaceAllUsesWith(I, NewSel.getNode()); 1056 } 1057 } 1058 } 1059 } 1060 1061 // Transform: (store ch val (add x (add (shl y c) e))) 1062 // to: (store ch val (add x (shl (add y d) c))), 1063 // where e = (shl d c) for some integer d. 1064 // The purpose of this is to enable generation of loads/stores with 1065 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift 1066 // value c must be 0, 1 or 2. 1067 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) { 1068 SelectionDAG &DAG = *CurDAG; 1069 1070 for (auto *I : Nodes) { 1071 if (I->getOpcode() != ISD::STORE) 1072 continue; 1073 1074 // I matched: (store ch val Off) 1075 SDValue Off = I->getOperand(2); 1076 // Off needs to match: (add x (add (shl y c) (shl d c)))) 1077 if (Off.getOpcode() != ISD::ADD) 1078 continue; 1079 // Off matched: (add x T0) 1080 SDValue T0 = Off.getOperand(1); 1081 // T0 needs to match: (add T1 T2): 1082 if (T0.getOpcode() != ISD::ADD) 1083 continue; 1084 // T0 matched: (add T1 T2) 1085 SDValue T1 = T0.getOperand(0); 1086 SDValue T2 = T0.getOperand(1); 1087 // T1 needs to match: (shl y c) 1088 if (T1.getOpcode() != ISD::SHL) 1089 continue; 1090 SDValue C = T1.getOperand(1); 1091 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode()); 1092 if (CN == nullptr) 1093 continue; 1094 unsigned CV = CN->getZExtValue(); 1095 if (CV > 2) 1096 continue; 1097 // T2 needs to match e, where e = (shl d c) for some d. 1098 ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode()); 1099 if (EN == nullptr) 1100 continue; 1101 unsigned EV = EN->getZExtValue(); 1102 if (EV % (1 << CV) != 0) 1103 continue; 1104 unsigned DV = EV / (1 << CV); 1105 1106 // Replace T0 with: (shl (add y d) c) 1107 SDLoc DL = SDLoc(I); 1108 EVT VT = T0.getValueType(); 1109 SDValue D = DAG.getConstant(DV, DL, VT); 1110 // NewAdd = (add y d) 1111 SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D); 1112 // NewShl = (shl NewAdd c) 1113 SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C); 1114 ReplaceNode(T0.getNode(), NewShl.getNode()); 1115 } 1116 } 1117 1118 // Transform: (load ch (add x (and (srl y c) Mask))) 1119 // to: (load ch (add x (shl (srl y d) d-c))) 1120 // where 1121 // Mask = 00..0 111..1 0.0 1122 // | | +-- d-c 0s, and d-c is 0, 1 or 2. 1123 // | +-------- 1s 1124 // +-------------- at most c 0s 1125 // Motivating example: 1126 // DAG combiner optimizes (add x (shl (srl y 5) 2)) 1127 // to (add x (and (srl y 3) 1FFFFFFC)) 1128 // which results in a constant-extended and(##...,lsr). This transformation 1129 // undoes this simplification for cases where the shl can be folded into 1130 // an addressing mode. 1131 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) { 1132 SelectionDAG &DAG = *CurDAG; 1133 1134 for (SDNode *N : Nodes) { 1135 unsigned Opc = N->getOpcode(); 1136 if (Opc != ISD::LOAD && Opc != ISD::STORE) 1137 continue; 1138 SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2); 1139 // Addr must match: (add x T0) 1140 if (Addr.getOpcode() != ISD::ADD) 1141 continue; 1142 SDValue T0 = Addr.getOperand(1); 1143 // T0 must match: (and T1 Mask) 1144 if (T0.getOpcode() != ISD::AND) 1145 continue; 1146 1147 // We have an AND. 1148 // 1149 // Check the first operand. It must be: (srl y c). 1150 SDValue S = T0.getOperand(0); 1151 if (S.getOpcode() != ISD::SRL) 1152 continue; 1153 ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode()); 1154 if (SN == nullptr) 1155 continue; 1156 if (SN->getAPIntValue().getBitWidth() != 32) 1157 continue; 1158 uint32_t CV = SN->getZExtValue(); 1159 1160 // Check the second operand: the supposed mask. 1161 ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode()); 1162 if (MN == nullptr) 1163 continue; 1164 if (MN->getAPIntValue().getBitWidth() != 32) 1165 continue; 1166 uint32_t Mask = MN->getZExtValue(); 1167 // Examine the mask. 1168 uint32_t TZ = llvm::countr_zero(Mask); 1169 uint32_t M1 = llvm::countr_one(Mask >> TZ); 1170 uint32_t LZ = llvm::countl_zero(Mask); 1171 // Trailing zeros + middle ones + leading zeros must equal the width. 1172 if (TZ + M1 + LZ != 32) 1173 continue; 1174 // The number of trailing zeros will be encoded in the addressing mode. 1175 if (TZ > 2) 1176 continue; 1177 // The number of leading zeros must be at most c. 1178 if (LZ > CV) 1179 continue; 1180 1181 // All looks good. 1182 SDValue Y = S.getOperand(0); 1183 EVT VT = Addr.getValueType(); 1184 SDLoc dl(S); 1185 // TZ = D-C, so D = TZ+C. 1186 SDValue D = DAG.getConstant(TZ+CV, dl, VT); 1187 SDValue DC = DAG.getConstant(TZ, dl, VT); 1188 SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D); 1189 SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC); 1190 ReplaceNode(T0.getNode(), NewShl.getNode()); 1191 } 1192 } 1193 1194 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) 1195 // (op ... 1 ...)) 1196 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) { 1197 SelectionDAG &DAG = *CurDAG; 1198 1199 for (SDNode *N : Nodes) { 1200 unsigned Opc = N->getOpcode(); 1201 if (Opc != ISD::ZERO_EXTEND) 1202 continue; 1203 SDValue OpI1 = N->getOperand(0); 1204 EVT OpVT = OpI1.getValueType(); 1205 if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1) 1206 continue; 1207 for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1208 SDNode *U = *I; 1209 if (U->getNumValues() != 1) 1210 continue; 1211 EVT UVT = U->getValueType(0); 1212 if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1) 1213 continue; 1214 // Do not generate select for all i1 vector type. 1215 if (UVT.isVector() && UVT.getVectorElementType() == MVT::i1) 1216 continue; 1217 if (isMemOPCandidate(N, U)) 1218 continue; 1219 1220 // Potentially simplifiable operation. 1221 unsigned I1N = I.getOperandNo(); 1222 SmallVector<SDValue,2> Ops(U->getNumOperands()); 1223 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) 1224 Ops[i] = U->getOperand(i); 1225 EVT BVT = Ops[I1N].getValueType(); 1226 1227 const SDLoc &dl(U); 1228 SDValue C0 = DAG.getConstant(0, dl, BVT); 1229 SDValue C1 = DAG.getConstant(1, dl, BVT); 1230 SDValue If0, If1; 1231 1232 if (isa<MachineSDNode>(U)) { 1233 unsigned UseOpc = U->getMachineOpcode(); 1234 Ops[I1N] = C0; 1235 If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); 1236 Ops[I1N] = C1; 1237 If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); 1238 } else { 1239 unsigned UseOpc = U->getOpcode(); 1240 Ops[I1N] = C0; 1241 If0 = DAG.getNode(UseOpc, dl, UVT, Ops); 1242 Ops[I1N] = C1; 1243 If1 = DAG.getNode(UseOpc, dl, UVT, Ops); 1244 } 1245 // We're generating a SELECT way after legalization, so keep the types 1246 // simple. 1247 unsigned UW = UVT.getSizeInBits(); 1248 EVT SVT = (UW == 32 || UW == 64) ? MVT::getIntegerVT(UW) : UVT; 1249 SDValue Sel = DAG.getNode(ISD::SELECT, dl, SVT, OpI1, 1250 DAG.getBitcast(SVT, If1), 1251 DAG.getBitcast(SVT, If0)); 1252 SDValue Ret = DAG.getBitcast(UVT, Sel); 1253 DAG.ReplaceAllUsesWith(U, Ret.getNode()); 1254 } 1255 } 1256 } 1257 1258 void HexagonDAGToDAGISel::PreprocessISelDAG() { 1259 // Repack all nodes before calling each preprocessing function, 1260 // because each of them can modify the set of nodes. 1261 auto getNodes = [this]() -> std::vector<SDNode *> { 1262 std::vector<SDNode *> T; 1263 T.reserve(CurDAG->allnodes_size()); 1264 for (SDNode &N : CurDAG->allnodes()) 1265 T.push_back(&N); 1266 return T; 1267 }; 1268 1269 if (HST->useHVXOps()) 1270 PreprocessHvxISelDAG(); 1271 1272 // Transform: (or (select c x 0) z) -> (select c (or x z) z) 1273 // (or (select c 0 y) z) -> (select c z (or y z)) 1274 ppSimplifyOrSelect0(getNodes()); 1275 1276 // Transform: (store ch val (add x (add (shl y c) e))) 1277 // to: (store ch val (add x (shl (add y d) c))), 1278 // where e = (shl d c) for some integer d. 1279 // The purpose of this is to enable generation of loads/stores with 1280 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift 1281 // value c must be 0, 1 or 2. 1282 ppAddrReorderAddShl(getNodes()); 1283 1284 // Transform: (load ch (add x (and (srl y c) Mask))) 1285 // to: (load ch (add x (shl (srl y d) d-c))) 1286 // where 1287 // Mask = 00..0 111..1 0.0 1288 // | | +-- d-c 0s, and d-c is 0, 1 or 2. 1289 // | +-------- 1s 1290 // +-------------- at most c 0s 1291 // Motivating example: 1292 // DAG combiner optimizes (add x (shl (srl y 5) 2)) 1293 // to (add x (and (srl y 3) 1FFFFFFC)) 1294 // which results in a constant-extended and(##...,lsr). This transformation 1295 // undoes this simplification for cases where the shl can be folded into 1296 // an addressing mode. 1297 ppAddrRewriteAndSrl(getNodes()); 1298 1299 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) 1300 // (op ... 1 ...)) 1301 ppHoistZextI1(getNodes()); 1302 1303 DEBUG_WITH_TYPE("isel", { 1304 dbgs() << "Preprocessed (Hexagon) selection DAG:"; 1305 CurDAG->dump(); 1306 }); 1307 1308 if (EnableAddressRebalancing) { 1309 rebalanceAddressTrees(); 1310 1311 DEBUG_WITH_TYPE("isel", { 1312 dbgs() << "Address tree balanced selection DAG:"; 1313 CurDAG->dump(); 1314 }); 1315 } 1316 } 1317 1318 void HexagonDAGToDAGISel::emitFunctionEntryCode() { 1319 auto &HST = MF->getSubtarget<HexagonSubtarget>(); 1320 auto &HFI = *HST.getFrameLowering(); 1321 if (!HFI.needsAligna(*MF)) 1322 return; 1323 1324 MachineFrameInfo &MFI = MF->getFrameInfo(); 1325 MachineBasicBlock *EntryBB = &MF->front(); 1326 Align EntryMaxA = MFI.getMaxAlign(); 1327 1328 // Reserve the first non-volatile register. 1329 Register AP = 0; 1330 auto &HRI = *HST.getRegisterInfo(); 1331 BitVector Reserved = HRI.getReservedRegs(*MF); 1332 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(MF); *R; ++R) { 1333 if (Reserved[*R]) 1334 continue; 1335 AP = *R; 1336 break; 1337 } 1338 assert(AP.isValid() && "Couldn't reserve stack align register"); 1339 BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AP) 1340 .addImm(EntryMaxA.value()); 1341 MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseReg(AP); 1342 } 1343 1344 void HexagonDAGToDAGISel::updateAligna() { 1345 auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering(); 1346 if (!HFI.needsAligna(*MF)) 1347 return; 1348 auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(*MF)); 1349 assert(AlignaI != nullptr); 1350 unsigned MaxA = MF->getFrameInfo().getMaxAlign().value(); 1351 if (AlignaI->getOperand(1).getImm() < MaxA) 1352 AlignaI->getOperand(1).setImm(MaxA); 1353 } 1354 1355 // Match a frame index that can be used in an addressing mode. 1356 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) { 1357 if (N.getOpcode() != ISD::FrameIndex) 1358 return false; 1359 auto &HFI = *HST->getFrameLowering(); 1360 MachineFrameInfo &MFI = MF->getFrameInfo(); 1361 int FX = cast<FrameIndexSDNode>(N)->getIndex(); 1362 if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF)) 1363 return false; 1364 R = CurDAG->getTargetFrameIndex(FX, MVT::i32); 1365 return true; 1366 } 1367 1368 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) { 1369 return SelectGlobalAddress(N, R, false, Align(1)); 1370 } 1371 1372 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) { 1373 return SelectGlobalAddress(N, R, true, Align(1)); 1374 } 1375 1376 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) { 1377 return SelectAnyImmediate(N, R, Align(1)); 1378 } 1379 1380 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) { 1381 return SelectAnyImmediate(N, R, Align(1)); 1382 } 1383 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) { 1384 return SelectAnyImmediate(N, R, Align(2)); 1385 } 1386 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) { 1387 return SelectAnyImmediate(N, R, Align(4)); 1388 } 1389 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) { 1390 return SelectAnyImmediate(N, R, Align(8)); 1391 } 1392 1393 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) { 1394 EVT T = N.getValueType(); 1395 if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N)) 1396 return false; 1397 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue(); 1398 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType()); 1399 return true; 1400 } 1401 1402 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R, 1403 Align Alignment) { 1404 switch (N.getOpcode()) { 1405 case ISD::Constant: { 1406 if (N.getValueType() != MVT::i32) 1407 return false; 1408 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue(); 1409 if (!isAligned(Alignment, V)) 1410 return false; 1411 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType()); 1412 return true; 1413 } 1414 case HexagonISD::JT: 1415 case HexagonISD::CP: 1416 // These are assumed to always be aligned at least 8-byte boundary. 1417 if (Alignment > Align(8)) 1418 return false; 1419 R = N.getOperand(0); 1420 return true; 1421 case ISD::ExternalSymbol: 1422 // Symbols may be aligned at any boundary. 1423 if (Alignment > Align(1)) 1424 return false; 1425 R = N; 1426 return true; 1427 case ISD::BlockAddress: 1428 // Block address is always aligned at least 4-byte boundary. 1429 if (Alignment > Align(4) || 1430 !isAligned(Alignment, cast<BlockAddressSDNode>(N)->getOffset())) 1431 return false; 1432 R = N; 1433 return true; 1434 } 1435 1436 if (SelectGlobalAddress(N, R, false, Alignment) || 1437 SelectGlobalAddress(N, R, true, Alignment)) 1438 return true; 1439 1440 return false; 1441 } 1442 1443 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R, 1444 bool UseGP, Align Alignment) { 1445 switch (N.getOpcode()) { 1446 case ISD::ADD: { 1447 SDValue N0 = N.getOperand(0); 1448 SDValue N1 = N.getOperand(1); 1449 unsigned GAOpc = N0.getOpcode(); 1450 if (UseGP && GAOpc != HexagonISD::CONST32_GP) 1451 return false; 1452 if (!UseGP && GAOpc != HexagonISD::CONST32) 1453 return false; 1454 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) { 1455 if (!isAligned(Alignment, Const->getZExtValue())) 1456 return false; 1457 SDValue Addr = N0.getOperand(0); 1458 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) { 1459 if (GA->getOpcode() == ISD::TargetGlobalAddress) { 1460 uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue(); 1461 R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const), 1462 N.getValueType(), NewOff); 1463 return true; 1464 } 1465 } 1466 } 1467 break; 1468 } 1469 case HexagonISD::CP: 1470 case HexagonISD::JT: 1471 case HexagonISD::CONST32: 1472 // The operand(0) of CONST32 is TargetGlobalAddress, which is what we 1473 // want in the instruction. 1474 if (!UseGP) 1475 R = N.getOperand(0); 1476 return !UseGP; 1477 case HexagonISD::CONST32_GP: 1478 if (UseGP) 1479 R = N.getOperand(0); 1480 return UseGP; 1481 default: 1482 return false; 1483 } 1484 1485 return false; 1486 } 1487 1488 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) { 1489 // This (complex pattern) function is meant to detect a sign-extension 1490 // i32->i64 on a per-operand basis. This would allow writing single 1491 // patterns that would cover a number of combinations of different ways 1492 // a sign-extensions could be written. For example: 1493 // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y) 1494 // could match either one of these: 1495 // (mul (sext x) (sext_inreg y)) 1496 // (mul (sext-load *p) (sext_inreg y)) 1497 // (mul (sext_inreg x) (sext y)) 1498 // etc. 1499 // 1500 // The returned value will have type i64 and its low word will 1501 // contain the value being extended. The high bits are not specified. 1502 // The returned type is i64 because the original type of N was i64, 1503 // but the users of this function should only use the low-word of the 1504 // result, e.g. 1505 // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y)) 1506 1507 if (N.getValueType() != MVT::i64) 1508 return false; 1509 unsigned Opc = N.getOpcode(); 1510 switch (Opc) { 1511 case ISD::SIGN_EXTEND: 1512 case ISD::SIGN_EXTEND_INREG: { 1513 // sext_inreg has the source type as a separate operand. 1514 EVT T = Opc == ISD::SIGN_EXTEND 1515 ? N.getOperand(0).getValueType() 1516 : cast<VTSDNode>(N.getOperand(1))->getVT(); 1517 unsigned SW = T.getSizeInBits(); 1518 if (SW == 32) 1519 R = N.getOperand(0); 1520 else if (SW < 32) 1521 R = N; 1522 else 1523 return false; 1524 break; 1525 } 1526 case ISD::LOAD: { 1527 LoadSDNode *L = cast<LoadSDNode>(N); 1528 if (L->getExtensionType() != ISD::SEXTLOAD) 1529 return false; 1530 // All extending loads extend to i32, so even if the value in 1531 // memory is shorter than 32 bits, it will be i32 after the load. 1532 if (L->getMemoryVT().getSizeInBits() > 32) 1533 return false; 1534 R = N; 1535 break; 1536 } 1537 case ISD::SRA: { 1538 auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1539 if (!S || S->getZExtValue() != 32) 1540 return false; 1541 R = N; 1542 break; 1543 } 1544 default: 1545 return false; 1546 } 1547 EVT RT = R.getValueType(); 1548 if (RT == MVT::i64) 1549 return true; 1550 assert(RT == MVT::i32); 1551 // This is only to produce a value of type i64. Do not rely on the 1552 // high bits produced by this. 1553 const SDLoc &dl(N); 1554 SDValue Ops[] = { 1555 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), 1556 R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), 1557 R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) 1558 }; 1559 SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, 1560 MVT::i64, Ops); 1561 R = SDValue(T, 0); 1562 return true; 1563 } 1564 1565 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits, 1566 SDValue &Src) { 1567 unsigned Opc = Val.getOpcode(); 1568 switch (Opc) { 1569 case ISD::SIGN_EXTEND: 1570 case ISD::ZERO_EXTEND: 1571 case ISD::ANY_EXTEND: { 1572 const SDValue &Op0 = Val.getOperand(0); 1573 EVT T = Op0.getValueType(); 1574 if (T.isInteger() && T.getSizeInBits() == NumBits) { 1575 Src = Op0; 1576 return true; 1577 } 1578 break; 1579 } 1580 case ISD::SIGN_EXTEND_INREG: 1581 case ISD::AssertSext: 1582 case ISD::AssertZext: 1583 if (Val.getOperand(0).getValueType().isInteger()) { 1584 VTSDNode *T = cast<VTSDNode>(Val.getOperand(1)); 1585 if (T->getVT().getSizeInBits() == NumBits) { 1586 Src = Val.getOperand(0); 1587 return true; 1588 } 1589 } 1590 break; 1591 case ISD::AND: { 1592 // Check if this is an AND with NumBits of lower bits set to 1. 1593 uint64_t Mask = (1ULL << NumBits) - 1; 1594 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { 1595 if (C->getZExtValue() == Mask) { 1596 Src = Val.getOperand(1); 1597 return true; 1598 } 1599 } 1600 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { 1601 if (C->getZExtValue() == Mask) { 1602 Src = Val.getOperand(0); 1603 return true; 1604 } 1605 } 1606 break; 1607 } 1608 case ISD::OR: 1609 case ISD::XOR: { 1610 // OR/XOR with the lower NumBits bits set to 0. 1611 uint64_t Mask = (1ULL << NumBits) - 1; 1612 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { 1613 if ((C->getZExtValue() & Mask) == 0) { 1614 Src = Val.getOperand(1); 1615 return true; 1616 } 1617 } 1618 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { 1619 if ((C->getZExtValue() & Mask) == 0) { 1620 Src = Val.getOperand(0); 1621 return true; 1622 } 1623 } 1624 break; 1625 } 1626 default: 1627 break; 1628 } 1629 return false; 1630 } 1631 1632 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const { 1633 return N->getAlign().value() >= N->getMemoryVT().getStoreSize(); 1634 } 1635 1636 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const { 1637 unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF); 1638 switch (N->getMemoryVT().getStoreSize()) { 1639 case 1: 1640 return StackSize <= 56; // 1*2^6 - 8 1641 case 2: 1642 return StackSize <= 120; // 2*2^6 - 8 1643 case 4: 1644 return StackSize <= 248; // 4*2^6 - 8 1645 default: 1646 return false; 1647 } 1648 } 1649 1650 // Return true when the given node fits in a positive half word. 1651 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const { 1652 if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) { 1653 int64_t V = CN->getSExtValue(); 1654 return V > 0 && isInt<16>(V); 1655 } 1656 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) { 1657 const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1)); 1658 return VN->getVT().getSizeInBits() <= 16; 1659 } 1660 return false; 1661 } 1662 1663 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const { 1664 return !CheckSingleUse || N->hasOneUse(); 1665 } 1666 1667 //////////////////////////////////////////////////////////////////////////////// 1668 // Rebalancing of address calculation trees 1669 1670 static bool isOpcodeHandled(const SDNode *N) { 1671 switch (N->getOpcode()) { 1672 case ISD::ADD: 1673 case ISD::MUL: 1674 return true; 1675 case ISD::SHL: 1676 // We only handle constant shifts because these can be easily flattened 1677 // into multiplications by 2^Op1. 1678 return isa<ConstantSDNode>(N->getOperand(1).getNode()); 1679 default: 1680 return false; 1681 } 1682 } 1683 1684 /// Return the weight of an SDNode 1685 int HexagonDAGToDAGISel::getWeight(SDNode *N) { 1686 if (!isOpcodeHandled(N)) 1687 return 1; 1688 assert(RootWeights.count(N) && "Cannot get weight of unseen root!"); 1689 assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!"); 1690 assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!"); 1691 return RootWeights[N]; 1692 } 1693 1694 int HexagonDAGToDAGISel::getHeight(SDNode *N) { 1695 if (!isOpcodeHandled(N)) 1696 return 0; 1697 assert(RootWeights.count(N) && RootWeights[N] >= 0 && 1698 "Cannot query height of unvisited/RAUW'd node!"); 1699 return RootHeights[N]; 1700 } 1701 1702 namespace { 1703 struct WeightedLeaf { 1704 SDValue Value; 1705 int Weight; 1706 int InsertionOrder; 1707 1708 WeightedLeaf() {} 1709 1710 WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) : 1711 Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) { 1712 assert(Weight >= 0 && "Weight must be >= 0"); 1713 } 1714 1715 static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) { 1716 assert(A.Value.getNode() && B.Value.getNode()); 1717 return A.Weight == B.Weight ? 1718 (A.InsertionOrder > B.InsertionOrder) : 1719 (A.Weight > B.Weight); 1720 } 1721 }; 1722 1723 /// A specialized priority queue for WeigthedLeaves. It automatically folds 1724 /// constants and allows removal of non-top elements while maintaining the 1725 /// priority order. 1726 class LeafPrioQueue { 1727 SmallVector<WeightedLeaf, 8> Q; 1728 bool HaveConst; 1729 WeightedLeaf ConstElt; 1730 unsigned Opcode; 1731 1732 public: 1733 bool empty() { 1734 return (!HaveConst && Q.empty()); 1735 } 1736 1737 size_t size() { 1738 return Q.size() + HaveConst; 1739 } 1740 1741 bool hasConst() { 1742 return HaveConst; 1743 } 1744 1745 const WeightedLeaf &top() { 1746 if (HaveConst) 1747 return ConstElt; 1748 return Q.front(); 1749 } 1750 1751 WeightedLeaf pop() { 1752 if (HaveConst) { 1753 HaveConst = false; 1754 return ConstElt; 1755 } 1756 std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1757 return Q.pop_back_val(); 1758 } 1759 1760 void push(WeightedLeaf L, bool SeparateConst=true) { 1761 if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) { 1762 if (Opcode == ISD::MUL && 1763 cast<ConstantSDNode>(L.Value)->getSExtValue() == 1) 1764 return; 1765 if (Opcode == ISD::ADD && 1766 cast<ConstantSDNode>(L.Value)->getSExtValue() == 0) 1767 return; 1768 1769 HaveConst = true; 1770 ConstElt = L; 1771 } else { 1772 Q.push_back(L); 1773 std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1774 } 1775 } 1776 1777 /// Push L to the bottom of the queue regardless of its weight. If L is 1778 /// constant, it will not be folded with other constants in the queue. 1779 void pushToBottom(WeightedLeaf L) { 1780 L.Weight = 1000; 1781 push(L, false); 1782 } 1783 1784 /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of 1785 /// lowest weight and remove it from the queue. 1786 WeightedLeaf findSHL(uint64_t MaxAmount); 1787 1788 WeightedLeaf findMULbyConst(); 1789 1790 LeafPrioQueue(unsigned Opcode) : 1791 HaveConst(false), Opcode(Opcode) { } 1792 }; 1793 } // end anonymous namespace 1794 1795 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) { 1796 int ResultPos; 1797 WeightedLeaf Result; 1798 1799 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { 1800 const WeightedLeaf &L = Q[Pos]; 1801 const SDValue &Val = L.Value; 1802 if (Val.getOpcode() != ISD::SHL || 1803 !isa<ConstantSDNode>(Val.getOperand(1)) || 1804 Val.getConstantOperandVal(1) > MaxAmount) 1805 continue; 1806 if (!Result.Value.getNode() || Result.Weight > L.Weight || 1807 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) 1808 { 1809 Result = L; 1810 ResultPos = Pos; 1811 } 1812 } 1813 1814 if (Result.Value.getNode()) { 1815 Q.erase(&Q[ResultPos]); 1816 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1817 } 1818 1819 return Result; 1820 } 1821 1822 WeightedLeaf LeafPrioQueue::findMULbyConst() { 1823 int ResultPos; 1824 WeightedLeaf Result; 1825 1826 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { 1827 const WeightedLeaf &L = Q[Pos]; 1828 const SDValue &Val = L.Value; 1829 if (Val.getOpcode() != ISD::MUL || 1830 !isa<ConstantSDNode>(Val.getOperand(1)) || 1831 Val.getConstantOperandVal(1) > 127) 1832 continue; 1833 if (!Result.Value.getNode() || Result.Weight > L.Weight || 1834 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) 1835 { 1836 Result = L; 1837 ResultPos = Pos; 1838 } 1839 } 1840 1841 if (Result.Value.getNode()) { 1842 Q.erase(&Q[ResultPos]); 1843 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1844 } 1845 1846 return Result; 1847 } 1848 1849 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) { 1850 uint64_t MulFactor = 1ull << N->getConstantOperandVal(1); 1851 return CurDAG->getConstant(MulFactor, SDLoc(N), 1852 N->getOperand(1).getValueType()); 1853 } 1854 1855 /// @returns the value x for which 2^x is a factor of Val 1856 static unsigned getPowerOf2Factor(SDValue Val) { 1857 if (Val.getOpcode() == ISD::MUL) { 1858 unsigned MaxFactor = 0; 1859 for (int i = 0; i < 2; ++i) { 1860 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i)); 1861 if (!C) 1862 continue; 1863 const APInt &CInt = C->getAPIntValue(); 1864 if (CInt.getBoolValue()) 1865 MaxFactor = CInt.countr_zero(); 1866 } 1867 return MaxFactor; 1868 } 1869 if (Val.getOpcode() == ISD::SHL) { 1870 if (!isa<ConstantSDNode>(Val.getOperand(1).getNode())) 1871 return 0; 1872 return (unsigned) Val.getConstantOperandVal(1); 1873 } 1874 1875 return 0; 1876 } 1877 1878 /// @returns true if V>>Amount will eliminate V's operation on its child 1879 static bool willShiftRightEliminate(SDValue V, unsigned Amount) { 1880 if (V.getOpcode() == ISD::MUL) { 1881 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; 1882 for (int i = 0; i < 2; ++i) 1883 if (isa<ConstantSDNode>(Ops[i].getNode()) && 1884 V.getConstantOperandVal(i) % (1ULL << Amount) == 0) { 1885 uint64_t NewConst = V.getConstantOperandVal(i) >> Amount; 1886 return (NewConst == 1); 1887 } 1888 } else if (V.getOpcode() == ISD::SHL) { 1889 return (Amount == V.getConstantOperandVal(1)); 1890 } 1891 1892 return false; 1893 } 1894 1895 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) { 1896 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; 1897 if (V.getOpcode() == ISD::MUL) { 1898 for (int i=0; i < 2; ++i) { 1899 if (isa<ConstantSDNode>(Ops[i].getNode()) && 1900 V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) { 1901 uint64_t NewConst = V.getConstantOperandVal(i) >> Power; 1902 if (NewConst == 1) 1903 return Ops[!i]; 1904 Ops[i] = CurDAG->getConstant(NewConst, 1905 SDLoc(V), V.getValueType()); 1906 break; 1907 } 1908 } 1909 } else if (V.getOpcode() == ISD::SHL) { 1910 uint64_t ShiftAmount = V.getConstantOperandVal(1); 1911 if (ShiftAmount == Power) 1912 return Ops[0]; 1913 Ops[1] = CurDAG->getConstant(ShiftAmount - Power, 1914 SDLoc(V), V.getValueType()); 1915 } 1916 1917 return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops); 1918 } 1919 1920 static bool isTargetConstant(const SDValue &V) { 1921 return V.getOpcode() == HexagonISD::CONST32 || 1922 V.getOpcode() == HexagonISD::CONST32_GP; 1923 } 1924 1925 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) { 1926 if (GAUsesInFunction.count(V)) 1927 return GAUsesInFunction[V]; 1928 1929 unsigned Result = 0; 1930 const Function &CurF = CurDAG->getMachineFunction().getFunction(); 1931 for (const User *U : V->users()) { 1932 if (isa<Instruction>(U) && 1933 cast<Instruction>(U)->getParent()->getParent() == &CurF) 1934 ++Result; 1935 } 1936 1937 GAUsesInFunction[V] = Result; 1938 1939 return Result; 1940 } 1941 1942 /// Note - After calling this, N may be dead. It may have been replaced by a 1943 /// new node, so always use the returned value in place of N. 1944 /// 1945 /// @returns The SDValue taking the place of N (which could be N if it is 1946 /// unchanged) 1947 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) { 1948 assert(RootWeights.count(N) && "Cannot balance non-root node."); 1949 assert(RootWeights[N] != -2 && "This node was RAUW'd!"); 1950 assert(!TopLevel || N->getOpcode() == ISD::ADD); 1951 1952 // Return early if this node was already visited 1953 if (RootWeights[N] != -1) 1954 return SDValue(N, 0); 1955 1956 assert(isOpcodeHandled(N)); 1957 1958 SDValue Op0 = N->getOperand(0); 1959 SDValue Op1 = N->getOperand(1); 1960 1961 // Return early if the operands will remain unchanged or are all roots 1962 if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) && 1963 (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) { 1964 SDNode *Op0N = Op0.getNode(); 1965 int Weight; 1966 if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) { 1967 Weight = getWeight(balanceSubTree(Op0N).getNode()); 1968 // Weight = calculateWeight(Op0N); 1969 } else 1970 Weight = getWeight(Op0N); 1971 1972 SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd 1973 if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) { 1974 Weight += getWeight(balanceSubTree(Op1N).getNode()); 1975 // Weight += calculateWeight(Op1N); 1976 } else 1977 Weight += getWeight(Op1N); 1978 1979 RootWeights[N] = Weight; 1980 RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()), 1981 getHeight(N->getOperand(1).getNode())) + 1; 1982 1983 LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight 1984 << " Height=" << RootHeights[N] << "): "); 1985 LLVM_DEBUG(N->dump(CurDAG)); 1986 1987 return SDValue(N, 0); 1988 } 1989 1990 LLVM_DEBUG(dbgs() << "** Balancing root node: "); 1991 LLVM_DEBUG(N->dump(CurDAG)); 1992 1993 unsigned NOpcode = N->getOpcode(); 1994 1995 LeafPrioQueue Leaves(NOpcode); 1996 SmallVector<SDValue, 4> Worklist; 1997 Worklist.push_back(SDValue(N, 0)); 1998 1999 // SHL nodes will be converted to MUL nodes 2000 if (NOpcode == ISD::SHL) 2001 NOpcode = ISD::MUL; 2002 2003 bool CanFactorize = false; 2004 WeightedLeaf Mul1, Mul2; 2005 unsigned MaxPowerOf2 = 0; 2006 WeightedLeaf GA; 2007 2008 // Do not try to factor out a shift if there is already a shift at the tip of 2009 // the tree. 2010 bool HaveTopLevelShift = false; 2011 if (TopLevel && 2012 ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL && 2013 Op0.getConstantOperandVal(1) < 4) || 2014 (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL && 2015 Op1.getConstantOperandVal(1) < 4))) 2016 HaveTopLevelShift = true; 2017 2018 // Flatten the subtree into an ordered list of leaves; at the same time 2019 // determine whether the tree is already balanced. 2020 int InsertionOrder = 0; 2021 SmallDenseMap<SDValue, int> NodeHeights; 2022 bool Imbalanced = false; 2023 int CurrentWeight = 0; 2024 while (!Worklist.empty()) { 2025 SDValue Child = Worklist.pop_back_val(); 2026 2027 if (Child.getNode() != N && RootWeights.count(Child.getNode())) { 2028 // CASE 1: Child is a root note 2029 2030 int Weight = RootWeights[Child.getNode()]; 2031 if (Weight == -1) { 2032 Child = balanceSubTree(Child.getNode()); 2033 // calculateWeight(Child.getNode()); 2034 Weight = getWeight(Child.getNode()); 2035 } else if (Weight == -2) { 2036 // Whoops, this node was RAUWd by one of the balanceSubTree calls we 2037 // made. Our worklist isn't up to date anymore. 2038 // Restart the whole process. 2039 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); 2040 return balanceSubTree(N, TopLevel); 2041 } 2042 2043 NodeHeights[Child] = 1; 2044 CurrentWeight += Weight; 2045 2046 unsigned PowerOf2; 2047 if (TopLevel && !CanFactorize && !HaveTopLevelShift && 2048 (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) && 2049 Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) { 2050 // Try to identify two factorizable MUL/SHL children greedily. Leave 2051 // them out of the priority queue for now so we can deal with them 2052 // after. 2053 if (!Mul1.Value.getNode()) { 2054 Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++); 2055 MaxPowerOf2 = PowerOf2; 2056 } else { 2057 Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++); 2058 MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2); 2059 2060 // Our addressing modes can only shift by a maximum of 3 2061 if (MaxPowerOf2 > 3) 2062 MaxPowerOf2 = 3; 2063 2064 CanFactorize = true; 2065 } 2066 } else 2067 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); 2068 } else if (!isOpcodeHandled(Child.getNode())) { 2069 // CASE 2: Child is an unhandled kind of node (e.g. constant) 2070 int Weight = getWeight(Child.getNode()); 2071 2072 NodeHeights[Child] = getHeight(Child.getNode()); 2073 CurrentWeight += Weight; 2074 2075 if (isTargetConstant(Child) && !GA.Value.getNode()) 2076 GA = WeightedLeaf(Child, Weight, InsertionOrder++); 2077 else 2078 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); 2079 } else { 2080 // CASE 3: Child is a subtree of same opcode 2081 // Visit children first, then flatten. 2082 unsigned ChildOpcode = Child.getOpcode(); 2083 assert(ChildOpcode == NOpcode || 2084 (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL)); 2085 2086 // Convert SHL to MUL 2087 SDValue Op1; 2088 if (ChildOpcode == ISD::SHL) 2089 Op1 = getMultiplierForSHL(Child.getNode()); 2090 else 2091 Op1 = Child->getOperand(1); 2092 2093 if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) { 2094 assert(!NodeHeights.count(Child) && "Parent visited before children?"); 2095 // Visit children first, then re-visit this node 2096 Worklist.push_back(Child); 2097 Worklist.push_back(Op1); 2098 Worklist.push_back(Child->getOperand(0)); 2099 } else { 2100 // Back at this node after visiting the children 2101 if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1) 2102 Imbalanced = true; 2103 2104 NodeHeights[Child] = std::max(NodeHeights[Op1], 2105 NodeHeights[Child->getOperand(0)]) + 1; 2106 } 2107 } 2108 } 2109 2110 LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)] 2111 << " weight=" << CurrentWeight 2112 << " imbalanced=" << Imbalanced << "\n"); 2113 2114 // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y) 2115 // This factors out a shift in order to match memw(a<<Y+b). 2116 if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) || 2117 willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) { 2118 LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n"); 2119 int Weight = Mul1.Weight + Mul2.Weight; 2120 int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1; 2121 SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2); 2122 SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2); 2123 SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(), 2124 Mul1Factored, Mul2Factored); 2125 SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N), 2126 Mul1.Value.getValueType()); 2127 SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(), 2128 Sum, Const); 2129 NodeHeights[New] = Height; 2130 Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder)); 2131 } else if (Mul1.Value.getNode()) { 2132 // We failed to factorize two MULs, so now the Muls are left outside the 2133 // queue... add them back. 2134 Leaves.push(Mul1); 2135 if (Mul2.Value.getNode()) 2136 Leaves.push(Mul2); 2137 CanFactorize = false; 2138 } 2139 2140 // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere 2141 // and the root node itself is not used more than twice. This reduces the 2142 // amount of additional constant extenders introduced by this optimization. 2143 bool CombinedGA = false; 2144 if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() && 2145 GA.Value.hasOneUse() && N->use_size() < 3) { 2146 GlobalAddressSDNode *GANode = 2147 cast<GlobalAddressSDNode>(GA.Value.getOperand(0)); 2148 ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value); 2149 2150 if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() && 2151 getTargetLowering()->isOffsetFoldingLegal(GANode)) { 2152 LLVM_DEBUG(dbgs() << "--> Combining GA and offset (" 2153 << Offset->getSExtValue() << "): "); 2154 LLVM_DEBUG(GANode->dump(CurDAG)); 2155 2156 SDValue NewTGA = 2157 CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value), 2158 GANode->getValueType(0), 2159 GANode->getOffset() + (uint64_t)Offset->getSExtValue()); 2160 GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value), 2161 GA.Value.getValueType(), NewTGA); 2162 GA.Weight += Leaves.top().Weight; 2163 2164 NodeHeights[GA.Value] = getHeight(GA.Value.getNode()); 2165 CombinedGA = true; 2166 2167 Leaves.pop(); // Remove the offset constant from the queue 2168 } 2169 } 2170 2171 if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) || 2172 (RebalanceOnlyImbalancedTrees && !Imbalanced)) { 2173 RootWeights[N] = CurrentWeight; 2174 RootHeights[N] = NodeHeights[SDValue(N, 0)]; 2175 2176 return SDValue(N, 0); 2177 } 2178 2179 // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5)) 2180 if (NOpcode == ISD::ADD && GA.Value.getNode()) { 2181 WeightedLeaf SHL = Leaves.findSHL(31); 2182 if (SHL.Value.getNode()) { 2183 int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1; 2184 GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value), 2185 GA.Value.getValueType(), 2186 GA.Value, SHL.Value); 2187 GA.Weight = SHL.Weight; // Specifically ignore the GA weight here 2188 NodeHeights[GA.Value] = Height; 2189 } 2190 } 2191 2192 if (GA.Value.getNode()) 2193 Leaves.push(GA); 2194 2195 // If this is the top level and we haven't factored out a shift, we should try 2196 // to move a constant to the bottom to match addressing modes like memw(rX+C) 2197 if (TopLevel && !CanFactorize && Leaves.hasConst()) { 2198 LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree."); 2199 Leaves.pushToBottom(Leaves.pop()); 2200 } 2201 2202 const DataLayout &DL = CurDAG->getDataLayout(); 2203 const TargetLowering &TLI = *getTargetLowering(); 2204 2205 // Rebuild the tree using Huffman's algorithm 2206 while (Leaves.size() > 1) { 2207 WeightedLeaf L0 = Leaves.pop(); 2208 2209 // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)), 2210 // otherwise just get the next leaf 2211 WeightedLeaf L1 = Leaves.findMULbyConst(); 2212 if (!L1.Value.getNode()) 2213 L1 = Leaves.pop(); 2214 2215 assert(L0.Weight <= L1.Weight && "Priority queue is broken!"); 2216 2217 SDValue V0 = L0.Value; 2218 int V0Weight = L0.Weight; 2219 SDValue V1 = L1.Value; 2220 int V1Weight = L1.Weight; 2221 2222 // Make sure that none of these nodes have been RAUW'd 2223 if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) || 2224 (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) { 2225 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); 2226 return balanceSubTree(N, TopLevel); 2227 } 2228 2229 ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0); 2230 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1); 2231 EVT VT = N->getValueType(0); 2232 SDValue NewNode; 2233 2234 if (V0C && !V1C) { 2235 std::swap(V0, V1); 2236 std::swap(V0C, V1C); 2237 } 2238 2239 // Calculate height of this node 2240 assert(NodeHeights.count(V0) && NodeHeights.count(V1) && 2241 "Children must have been visited before re-combining them!"); 2242 int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1; 2243 2244 // Rebuild this node (and restore SHL from MUL if needed) 2245 if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2()) 2246 NewNode = CurDAG->getNode( 2247 ISD::SHL, SDLoc(V0), VT, V0, 2248 CurDAG->getConstant( 2249 V1C->getAPIntValue().logBase2(), SDLoc(N), 2250 TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); 2251 else 2252 NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1); 2253 2254 NodeHeights[NewNode] = Height; 2255 2256 int Weight = V0Weight + V1Weight; 2257 Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder)); 2258 2259 LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight 2260 << ",Height=" << Height << "):\n"); 2261 LLVM_DEBUG(NewNode.dump()); 2262 } 2263 2264 assert(Leaves.size() == 1); 2265 SDValue NewRoot = Leaves.top().Value; 2266 2267 assert(NodeHeights.count(NewRoot)); 2268 int Height = NodeHeights[NewRoot]; 2269 2270 // Restore SHL if we earlier converted it to a MUL 2271 if (NewRoot.getOpcode() == ISD::MUL) { 2272 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1)); 2273 if (V1C && V1C->getAPIntValue().isPowerOf2()) { 2274 EVT VT = NewRoot.getValueType(); 2275 SDValue V0 = NewRoot.getOperand(0); 2276 NewRoot = CurDAG->getNode( 2277 ISD::SHL, SDLoc(NewRoot), VT, V0, 2278 CurDAG->getConstant( 2279 V1C->getAPIntValue().logBase2(), SDLoc(NewRoot), 2280 TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); 2281 } 2282 } 2283 2284 if (N != NewRoot.getNode()) { 2285 LLVM_DEBUG(dbgs() << "--> Root is now: "); 2286 LLVM_DEBUG(NewRoot.dump()); 2287 2288 // Replace all uses of old root by new root 2289 CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode()); 2290 // Mark that we have RAUW'd N 2291 RootWeights[N] = -2; 2292 } else { 2293 LLVM_DEBUG(dbgs() << "--> Root unchanged.\n"); 2294 } 2295 2296 RootWeights[NewRoot.getNode()] = Leaves.top().Weight; 2297 RootHeights[NewRoot.getNode()] = Height; 2298 2299 return NewRoot; 2300 } 2301 2302 void HexagonDAGToDAGISel::rebalanceAddressTrees() { 2303 for (SDNode &Node : llvm::make_early_inc_range(CurDAG->allnodes())) { 2304 SDNode *N = &Node; 2305 if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE) 2306 continue; 2307 2308 SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr(); 2309 if (BasePtr.getOpcode() != ISD::ADD) 2310 continue; 2311 2312 // We've already processed this node 2313 if (RootWeights.count(BasePtr.getNode())) 2314 continue; 2315 2316 LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: "); 2317 LLVM_DEBUG(N->dump(CurDAG)); 2318 2319 // FindRoots 2320 SmallVector<SDNode *, 4> Worklist; 2321 2322 Worklist.push_back(BasePtr.getOperand(0).getNode()); 2323 Worklist.push_back(BasePtr.getOperand(1).getNode()); 2324 2325 while (!Worklist.empty()) { 2326 SDNode *N = Worklist.pop_back_val(); 2327 unsigned Opcode = N->getOpcode(); 2328 2329 if (!isOpcodeHandled(N)) 2330 continue; 2331 2332 Worklist.push_back(N->getOperand(0).getNode()); 2333 Worklist.push_back(N->getOperand(1).getNode()); 2334 2335 // Not a root if it has only one use and same opcode as its parent 2336 if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode()) 2337 continue; 2338 2339 // This root node has already been processed 2340 if (RootWeights.count(N)) 2341 continue; 2342 2343 RootWeights[N] = -1; 2344 } 2345 2346 // Balance node itself 2347 RootWeights[BasePtr.getNode()] = -1; 2348 SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true); 2349 2350 if (N->getOpcode() == ISD::LOAD) 2351 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), 2352 NewBasePtr, N->getOperand(2)); 2353 else 2354 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), 2355 NewBasePtr, N->getOperand(3)); 2356 2357 LLVM_DEBUG(dbgs() << "--> Final node: "); 2358 LLVM_DEBUG(N->dump(CurDAG)); 2359 } 2360 2361 CurDAG->RemoveDeadNodes(); 2362 GAUsesInFunction.clear(); 2363 RootHeights.clear(); 2364 RootWeights.clear(); 2365 } 2366