xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the Hexagon target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonISelDAGToDAG.h"
14 #include "Hexagon.h"
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonTargetMachine.h"
18 #include "llvm/CodeGen/FunctionLoweringInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/IR/IntrinsicsHexagon.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "hexagon-isel"
28 #define PASS_NAME "Hexagon DAG->DAG Pattern Instruction Selection"
29 
30 static
31 cl::opt<bool>
32 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
33   cl::desc("Rebalance address calculation trees to improve "
34           "instruction selection"));
35 
36 // Rebalance only if this allows e.g. combining a GA with an offset or
37 // factoring out a shift.
38 static
39 cl::opt<bool>
40 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
41   cl::desc("Rebalance address tree only if this allows optimizations"));
42 
43 static
44 cl::opt<bool>
45 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
46   cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
47 
48 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
49   cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
50 
51 //===----------------------------------------------------------------------===//
52 // Instruction Selector Implementation
53 //===----------------------------------------------------------------------===//
54 
55 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
56 #include "HexagonGenDAGISel.inc"
57 
58 namespace llvm {
59 /// createHexagonISelDag - This pass converts a legalized DAG into a
60 /// Hexagon-specific DAG, ready for instruction scheduling.
61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
62                                    CodeGenOptLevel OptLevel) {
63   return new HexagonDAGToDAGISel(TM, OptLevel);
64 }
65 }
66 
67 char HexagonDAGToDAGISel::ID = 0;
68 
69 INITIALIZE_PASS(HexagonDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
70 
71 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
72   SDValue Chain = LD->getChain();
73   SDValue Base = LD->getBasePtr();
74   SDValue Offset = LD->getOffset();
75   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
76   EVT LoadedVT = LD->getMemoryVT();
77   unsigned Opcode = 0;
78 
79   // Check for zero extended loads. Treat any-extend loads as zero extended
80   // loads.
81   ISD::LoadExtType ExtType = LD->getExtensionType();
82   bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
83   bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
84 
85   assert(LoadedVT.isSimple());
86   switch (LoadedVT.getSimpleVT().SimpleTy) {
87   case MVT::i8:
88     if (IsZeroExt)
89       Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
90     else
91       Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
92     break;
93   case MVT::i16:
94     if (IsZeroExt)
95       Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
96     else
97       Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
98     break;
99   case MVT::i32:
100   case MVT::f32:
101   case MVT::v2i16:
102   case MVT::v4i8:
103     Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
104     break;
105   case MVT::i64:
106   case MVT::f64:
107   case MVT::v2i32:
108   case MVT::v4i16:
109   case MVT::v8i8:
110     Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
111     break;
112   case MVT::v64i8:
113   case MVT::v32i16:
114   case MVT::v16i32:
115   case MVT::v8i64:
116   case MVT::v128i8:
117   case MVT::v64i16:
118   case MVT::v32i32:
119   case MVT::v16i64:
120     if (isAlignedMemNode(LD)) {
121       if (LD->isNonTemporal())
122         Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
123       else
124         Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
125     } else {
126       Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
127     }
128     break;
129   default:
130     llvm_unreachable("Unexpected memory type in indexed load");
131   }
132 
133   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
134   MachineMemOperand *MemOp = LD->getMemOperand();
135 
136   auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
137         -> MachineSDNode* {
138     if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
139       SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
140       return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
141                                     Zero, SDValue(N, 0));
142     }
143     if (ExtType == ISD::SEXTLOAD)
144       return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
145                                     SDValue(N, 0));
146     return N;
147   };
148 
149   //                  Loaded value   Next address   Chain
150   SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
151   SDValue To[3];
152 
153   EVT ValueVT = LD->getValueType(0);
154   if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
155     // A load extending to i64 will actually produce i32, which will then
156     // need to be extended to i64.
157     assert(LoadedVT.getSizeInBits() <= 32);
158     ValueVT = MVT::i32;
159   }
160 
161   if (IsValidInc) {
162     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
163                                               MVT::i32, MVT::Other, Base,
164                                               IncV, Chain);
165     CurDAG->setNodeMemRefs(L, {MemOp});
166     To[1] = SDValue(L, 1); // Next address.
167     To[2] = SDValue(L, 2); // Chain.
168     // Handle special case for extension to i64.
169     if (LD->getValueType(0) == MVT::i64)
170       L = getExt64(L, dl);
171     To[0] = SDValue(L, 0); // Loaded (extended) value.
172   } else {
173     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
174     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
175                                               Base, Zero, Chain);
176     CurDAG->setNodeMemRefs(L, {MemOp});
177     To[2] = SDValue(L, 1); // Chain.
178     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
179                                               Base, IncV);
180     To[1] = SDValue(A, 0); // Next address.
181     // Handle special case for extension to i64.
182     if (LD->getValueType(0) == MVT::i64)
183       L = getExt64(L, dl);
184     To[0] = SDValue(L, 0); // Loaded (extended) value.
185   }
186   ReplaceUses(From, To, 3);
187   CurDAG->RemoveDeadNode(LD);
188 }
189 
190 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
191   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
192     return nullptr;
193 
194   SDLoc dl(IntN);
195   unsigned IntNo = IntN->getConstantOperandVal(1);
196 
197   static std::map<unsigned,unsigned> LoadPciMap = {
198     { Intrinsic::hexagon_circ_ldb,  Hexagon::L2_loadrb_pci  },
199     { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
200     { Intrinsic::hexagon_circ_ldh,  Hexagon::L2_loadrh_pci  },
201     { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
202     { Intrinsic::hexagon_circ_ldw,  Hexagon::L2_loadri_pci  },
203     { Intrinsic::hexagon_circ_ldd,  Hexagon::L2_loadrd_pci  },
204   };
205   auto FLC = LoadPciMap.find(IntNo);
206   if (FLC != LoadPciMap.end()) {
207     EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
208     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
209     // Operands: { Base, Increment, Modifier, Chain }
210     auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
211     SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
212     MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
213           { IntN->getOperand(2), I, IntN->getOperand(4),
214             IntN->getOperand(0) });
215     return Res;
216   }
217 
218   return nullptr;
219 }
220 
221 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
222       SDNode *IntN) {
223   // The "LoadN" is just a machine load instruction. The intrinsic also
224   // involves storing it. Generate an appropriate store to the location
225   // given in the intrinsic's operand(3).
226   uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
227   unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
228                       HexagonII::MemAccesSizeMask;
229   unsigned Size = 1U << (SizeBits-1);
230 
231   SDLoc dl(IntN);
232   MachinePointerInfo PI;
233   SDValue TS;
234   SDValue Loc = IntN->getOperand(3);
235 
236   if (Size >= 4)
237     TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
238                           Align(Size));
239   else
240     TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
241                                PI, MVT::getIntegerVT(Size * 8), Align(Size));
242 
243   SDNode *StoreN;
244   {
245     HandleSDNode Handle(TS);
246     SelectStore(TS.getNode());
247     StoreN = Handle.getValue().getNode();
248   }
249 
250   // Load's results are { Loaded value, Updated pointer, Chain }
251   ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
252   ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
253   return StoreN;
254 }
255 
256 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
257   // The intrinsics for load circ/brev perform two operations:
258   // 1. Load a value V from the specified location, using the addressing
259   //    mode corresponding to the intrinsic.
260   // 2. Store V into a specified location. This location is typically a
261   //    local, temporary object.
262   // In many cases, the program using these intrinsics will immediately
263   // load V again from the local object. In those cases, when certain
264   // conditions are met, the last load can be removed.
265   // This function identifies and optimizes this pattern. If the pattern
266   // cannot be optimized, it returns nullptr, which will cause the load
267   // to be selected separately from the intrinsic (which will be handled
268   // in SelectIntrinsicWChain).
269 
270   SDValue Ch = N->getOperand(0);
271   SDValue Loc = N->getOperand(1);
272 
273   // Assume that the load and the intrinsic are connected directly with a
274   // chain:
275   //   t1: i32,ch = int.load ..., ..., ..., Loc, ...    // <-- C
276   //   t2: i32,ch = load t1:1, Loc, ...
277   SDNode *C = Ch.getNode();
278 
279   if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
280     return false;
281 
282   // The second load can only be eliminated if its extension type matches
283   // that of the load instruction corresponding to the intrinsic. The user
284   // can provide an address of an unsigned variable to store the result of
285   // a sign-extending intrinsic into (or the other way around).
286   ISD::LoadExtType IntExt;
287   switch (C->getConstantOperandVal(1)) {
288   case Intrinsic::hexagon_circ_ldub:
289   case Intrinsic::hexagon_circ_lduh:
290     IntExt = ISD::ZEXTLOAD;
291     break;
292   case Intrinsic::hexagon_circ_ldw:
293   case Intrinsic::hexagon_circ_ldd:
294     IntExt = ISD::NON_EXTLOAD;
295     break;
296   default:
297     IntExt = ISD::SEXTLOAD;
298     break;
299   }
300   if (N->getExtensionType() != IntExt)
301     return false;
302 
303   // Make sure the target location for the loaded value in the load intrinsic
304   // is the location from which LD (or N) is loading.
305   if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
306     return false;
307 
308   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
309     SDNode *S = StoreInstrForLoadIntrinsic(L, C);
310     SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
311     SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
312     ReplaceUses(F, T, std::size(T));
313     // This transformation will leave the intrinsic dead. If it remains in
314     // the DAG, the selection code will see it again, but without the load,
315     // and it will generate a store that is normally required for it.
316     CurDAG->RemoveDeadNode(C);
317     return true;
318   }
319   return false;
320 }
321 
322 // Convert the bit-reverse load intrinsic to appropriate target instruction.
323 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
324   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
325     return false;
326 
327   const SDLoc &dl(IntN);
328   unsigned IntNo = IntN->getConstantOperandVal(1);
329 
330   static const std::map<unsigned, unsigned> LoadBrevMap = {
331     { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
332     { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
333     { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
334     { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
335     { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
336     { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
337   };
338   auto FLI = LoadBrevMap.find(IntNo);
339   if (FLI != LoadBrevMap.end()) {
340     EVT ValTy =
341         (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
342     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
343     // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
344     // modifier}.
345     // Operands of target instruction: { Base, Modifier, Chain }.
346     MachineSDNode *Res = CurDAG->getMachineNode(
347         FLI->second, dl, RTys,
348         {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
349 
350     MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
351     CurDAG->setNodeMemRefs(Res, {MemOp});
352 
353     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
354     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
355     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
356     CurDAG->RemoveDeadNode(IntN);
357     return true;
358   }
359   return false;
360 }
361 
362 /// Generate a machine instruction node for the new circular buffer intrinsics.
363 /// The new versions use a CSx register instead of the K field.
364 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
365   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
366     return false;
367 
368   SDLoc DL(IntN);
369   unsigned IntNo = IntN->getConstantOperandVal(1);
370   SmallVector<SDValue, 7> Ops;
371 
372   static std::map<unsigned,unsigned> LoadNPcMap = {
373     { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
374     { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
375     { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
376     { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
377     { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
378     { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
379     { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
380     { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
381     { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
382     { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
383     { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
384     { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
385   };
386   auto FLI = LoadNPcMap.find (IntNo);
387   if (FLI != LoadNPcMap.end()) {
388     EVT ValTy = MVT::i32;
389     if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
390         IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
391       ValTy = MVT::i64;
392     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
393     // Handle load.*_pci case which has 6 operands.
394     if (IntN->getNumOperands() == 6) {
395       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
396       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
397       // Operands: { Base, Increment, Modifier, Start, Chain }.
398       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
399               IntN->getOperand(0) };
400     } else
401       // Handle load.*_pcr case which has 5 operands.
402       // Operands: { Base, Modifier, Start, Chain }.
403       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
404               IntN->getOperand(0) };
405     MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
406     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
407     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
408     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
409     CurDAG->RemoveDeadNode(IntN);
410     return true;
411   }
412 
413   static std::map<unsigned,unsigned> StoreNPcMap = {
414     { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
415     { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
416     { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
417     { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
418     { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
419     { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
420     { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
421     { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
422     { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
423     { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
424   };
425   auto FSI = StoreNPcMap.find (IntNo);
426   if (FSI != StoreNPcMap.end()) {
427     EVT RTys[] = { MVT::i32, MVT::Other };
428     // Handle store.*_pci case which has 7 operands.
429     if (IntN->getNumOperands() == 7) {
430       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
431       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
432       // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
433       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
434               IntN->getOperand(6), IntN->getOperand(0) };
435     } else
436       // Handle store.*_pcr case which has 6 operands.
437       // Operands: { Base, Modifier, Value, Start, Chain }.
438       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
439               IntN->getOperand(5), IntN->getOperand(0) };
440     MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
441     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
442     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
443     CurDAG->RemoveDeadNode(IntN);
444     return true;
445   }
446 
447   return false;
448 }
449 
450 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
451   SDLoc dl(N);
452   LoadSDNode *LD = cast<LoadSDNode>(N);
453 
454   // Handle indexed loads.
455   ISD::MemIndexedMode AM = LD->getAddressingMode();
456   if (AM != ISD::UNINDEXED) {
457     SelectIndexedLoad(LD, dl);
458     return;
459   }
460 
461   // Handle patterns using circ/brev load intrinsics.
462   if (tryLoadOfLoadIntrinsic(LD))
463     return;
464 
465   SelectCode(LD);
466 }
467 
468 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
469   SDValue Chain = ST->getChain();
470   SDValue Base = ST->getBasePtr();
471   SDValue Offset = ST->getOffset();
472   SDValue Value = ST->getValue();
473   // Get the constant value.
474   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
475   EVT StoredVT = ST->getMemoryVT();
476   EVT ValueVT = Value.getValueType();
477 
478   bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
479   unsigned Opcode = 0;
480 
481   assert(StoredVT.isSimple());
482   switch (StoredVT.getSimpleVT().SimpleTy) {
483   case MVT::i8:
484     Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
485     break;
486   case MVT::i16:
487     Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
488     break;
489   case MVT::i32:
490   case MVT::f32:
491   case MVT::v2i16:
492   case MVT::v4i8:
493     Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
494     break;
495   case MVT::i64:
496   case MVT::f64:
497   case MVT::v2i32:
498   case MVT::v4i16:
499   case MVT::v8i8:
500     Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
501     break;
502   case MVT::v64i8:
503   case MVT::v32i16:
504   case MVT::v16i32:
505   case MVT::v8i64:
506   case MVT::v128i8:
507   case MVT::v64i16:
508   case MVT::v32i32:
509   case MVT::v16i64:
510     if (isAlignedMemNode(ST)) {
511       if (ST->isNonTemporal())
512         Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
513       else
514         Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
515     } else {
516       Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
517     }
518     break;
519   default:
520     llvm_unreachable("Unexpected memory type in indexed store");
521   }
522 
523   if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
524     assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
525     Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
526                                            dl, MVT::i32, Value);
527   }
528 
529   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
530   MachineMemOperand *MemOp = ST->getMemOperand();
531 
532   //                  Next address   Chain
533   SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
534   SDValue To[2];
535 
536   if (IsValidInc) {
537     // Build post increment store.
538     SDValue Ops[] = { Base, IncV, Value, Chain };
539     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
540                                               Ops);
541     CurDAG->setNodeMemRefs(S, {MemOp});
542     To[0] = SDValue(S, 0);
543     To[1] = SDValue(S, 1);
544   } else {
545     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
546     SDValue Ops[] = { Base, Zero, Value, Chain };
547     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
548     CurDAG->setNodeMemRefs(S, {MemOp});
549     To[1] = SDValue(S, 0);
550     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
551                                               Base, IncV);
552     To[0] = SDValue(A, 0);
553   }
554 
555   ReplaceUses(From, To, 2);
556   CurDAG->RemoveDeadNode(ST);
557 }
558 
559 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
560   SDLoc dl(N);
561   StoreSDNode *ST = cast<StoreSDNode>(N);
562 
563   // Handle indexed stores.
564   ISD::MemIndexedMode AM = ST->getAddressingMode();
565   if (AM != ISD::UNINDEXED) {
566     SelectIndexedStore(ST, dl);
567     return;
568   }
569 
570   SelectCode(ST);
571 }
572 
573 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
574   SDLoc dl(N);
575   SDValue Shl_0 = N->getOperand(0);
576   SDValue Shl_1 = N->getOperand(1);
577 
578   auto Default = [this,N] () -> void { SelectCode(N); };
579 
580   if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
581     return Default();
582 
583   // RHS is const.
584   int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
585 
586   if (Shl_0.getOpcode() == ISD::MUL) {
587     SDValue Mul_0 = Shl_0.getOperand(0); // Val
588     SDValue Mul_1 = Shl_0.getOperand(1); // Const
589     // RHS of mul is const.
590     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
591       int32_t ValConst = C->getSExtValue() << ShlConst;
592       if (isInt<9>(ValConst)) {
593         SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
594         SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
595                                                 MVT::i32, Mul_0, Val);
596         ReplaceNode(N, Result);
597         return;
598       }
599     }
600     return Default();
601   }
602 
603   if (Shl_0.getOpcode() == ISD::SUB) {
604     SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
605     SDValue Sub_1 = Shl_0.getOperand(1); // Val
606     if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
607       if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
608         return Default();
609       SDValue Shl2_0 = Sub_1.getOperand(0); // Val
610       SDValue Shl2_1 = Sub_1.getOperand(1); // Const
611       if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
612         int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
613         if (isInt<9>(-ValConst)) {
614           SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
615           SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
616                                                   MVT::i32, Shl2_0, Val);
617           ReplaceNode(N, Result);
618           return;
619         }
620       }
621     }
622   }
623 
624   return Default();
625 }
626 
627 //
628 // Handling intrinsics for circular load and bitreverse load.
629 //
630 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
631   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
632     StoreInstrForLoadIntrinsic(L, N);
633     CurDAG->RemoveDeadNode(N);
634     return;
635   }
636 
637   // Handle bit-reverse load intrinsics.
638   if (SelectBrevLdIntrinsic(N))
639     return;
640 
641   if (SelectNewCircIntrinsic(N))
642     return;
643 
644   unsigned IntNo = N->getConstantOperandVal(1);
645   if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
646       IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
647       IntNo == Intrinsic::hexagon_V6_vgathermh ||
648       IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
649       IntNo == Intrinsic::hexagon_V6_vgathermhw ||
650       IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
651     SelectV65Gather(N);
652     return;
653   }
654   if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
655       IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
656       IntNo == Intrinsic::hexagon_V6_vgathermhq ||
657       IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
658       IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
659       IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
660     SelectV65GatherPred(N);
661     return;
662   }
663 
664   SelectCode(N);
665 }
666 
667 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
668   unsigned IID = N->getConstantOperandVal(0);
669   unsigned Bits;
670   switch (IID) {
671   case Intrinsic::hexagon_S2_vsplatrb:
672     Bits = 8;
673     break;
674   case Intrinsic::hexagon_S2_vsplatrh:
675     Bits = 16;
676     break;
677   case Intrinsic::hexagon_V6_vaddcarry:
678   case Intrinsic::hexagon_V6_vaddcarry_128B:
679   case Intrinsic::hexagon_V6_vsubcarry:
680   case Intrinsic::hexagon_V6_vsubcarry_128B:
681     SelectHVXDualOutput(N);
682     return;
683   default:
684     SelectCode(N);
685     return;
686   }
687 
688   SDValue V = N->getOperand(1);
689   SDValue U;
690   // Splat intrinsics.
691   if (keepsLowBits(V, Bits, U)) {
692     SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
693                                 N->getOperand(0), U);
694     ReplaceNode(N, R.getNode());
695     SelectCode(R.getNode());
696     return;
697   }
698   SelectCode(N);
699 }
700 
701 void HexagonDAGToDAGISel::SelectExtractSubvector(SDNode *N) {
702   SDValue Inp = N->getOperand(0);
703   MVT ResTy = N->getValueType(0).getSimpleVT();
704   auto IdxN = cast<ConstantSDNode>(N->getOperand(1));
705   unsigned Idx = IdxN->getZExtValue();
706 
707   [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT();
708   [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements();
709   assert(InpTy.getVectorElementType() == ResTy.getVectorElementType());
710   assert(2 * ResLen == InpTy.getVectorNumElements());
711   assert(ResTy.getSizeInBits() == 32);
712   assert(Idx == 0 || Idx == ResLen);
713 
714   unsigned SubReg = Idx == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
715   SDValue Ext = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(N), ResTy, Inp);
716 
717   ReplaceNode(N, Ext.getNode());
718 }
719 
720 //
721 // Map floating point constant values.
722 //
723 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
724   SDLoc dl(N);
725   auto *CN = cast<ConstantFPSDNode>(N);
726   APInt A = CN->getValueAPF().bitcastToAPInt();
727   if (N->getValueType(0) == MVT::f32) {
728     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
729     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
730     return;
731   }
732   if (N->getValueType(0) == MVT::f64) {
733     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
734     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
735     return;
736   }
737 
738   SelectCode(N);
739 }
740 
741 //
742 // Map boolean values.
743 //
744 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
745   if (N->getValueType(0) == MVT::i1) {
746     assert(!(N->getAsZExtVal() >> 1));
747     unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
748                       ? Hexagon::PS_true
749                       : Hexagon::PS_false;
750     ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
751     return;
752   }
753 
754   SelectCode(N);
755 }
756 
757 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
758   MachineFrameInfo &MFI = MF->getFrameInfo();
759   const HexagonFrameLowering *HFI = HST->getFrameLowering();
760   int FX = cast<FrameIndexSDNode>(N)->getIndex();
761   Align StkA = HFI->getStackAlign();
762   Align MaxA = MFI.getMaxAlign();
763   SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
764   SDLoc DL(N);
765   SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
766   SDNode *R = nullptr;
767 
768   // Use PS_fi when:
769   // - the object is fixed, or
770   // - there are no objects with higher-than-default alignment, or
771   // - there are no dynamically allocated objects.
772   // Otherwise, use PS_fia.
773   if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
774     R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
775   } else {
776     auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
777     Register AR = HMFI.getStackAlignBaseReg();
778     SDValue CH = CurDAG->getEntryNode();
779     SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
780     R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
781   }
782 
783   ReplaceNode(N, R);
784 }
785 
786 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
787   unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
788                                                          : Hexagon::A4_subp_c;
789   SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
790                                      { N->getOperand(0), N->getOperand(1),
791                                        N->getOperand(2) });
792   ReplaceNode(N, C);
793 }
794 
795 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
796   MVT ResTy = N->getValueType(0).getSimpleVT();
797   if (HST->isHVXVectorType(ResTy, true))
798     return SelectHvxVAlign(N);
799 
800   const SDLoc &dl(N);
801   unsigned VecLen = ResTy.getSizeInBits();
802   if (VecLen == 32) {
803     SDValue Ops[] = {
804       CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
805       N->getOperand(0),
806       CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
807       N->getOperand(1),
808       CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
809     };
810     SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
811                                        MVT::i64, Ops);
812 
813     // Shift right by "(Addr & 0x3) * 8" bytes.
814     SDNode *C;
815     SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
816     SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
817     if (HST->useCompound()) {
818       C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
819                                  M0, N->getOperand(2), M1);
820     } else {
821       SDNode *T = CurDAG->getMachineNode(Hexagon::S2_asl_i_r, dl, MVT::i32,
822                                          N->getOperand(2), M1);
823       C = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
824                                  SDValue(T, 0), M0);
825     }
826     SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
827                                        SDValue(R, 0), SDValue(C, 0));
828     SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
829                                                SDValue(S, 0));
830     ReplaceNode(N, E.getNode());
831   } else {
832     assert(VecLen == 64);
833     SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
834                                         N->getOperand(2));
835     SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
836                                         N->getOperand(0), N->getOperand(1),
837                                         SDValue(Pu,0));
838     ReplaceNode(N, VA);
839   }
840 }
841 
842 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
843   const SDLoc &dl(N);
844   SDValue A = N->getOperand(1);
845   int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
846   assert(isPowerOf2_32(-Mask));
847 
848   SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
849   SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
850                                       N->getOperand(0), M);
851   ReplaceNode(N, AA);
852 }
853 
854 // Handle these nodes here to avoid having to write patterns for all
855 // combinations of input/output types. In all cases, the resulting
856 // instruction is the same.
857 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
858   SDValue Op = N->getOperand(0);
859   MVT OpTy = Op.getValueType().getSimpleVT();
860   SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
861                                   CurDAG->getVTList(OpTy), {Op});
862   ReplaceNode(T, Op.getNode());
863 }
864 
865 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
866   MVT ResTy = N->getValueType(0).getSimpleVT();
867   SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
868                                      N->getOperand(0));
869   ReplaceNode(N, T);
870 }
871 
872 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
873   const SDLoc &dl(N);
874   MVT ResTy = N->getValueType(0).getSimpleVT();
875   SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
876   SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
877                                      N->getOperand(0), Zero);
878   ReplaceNode(N, T);
879 }
880 
881 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
882   const SDLoc &dl(N);
883   MVT ResTy = N->getValueType(0).getSimpleVT();
884   // The argument to V2Q should be a single vector.
885   MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy;
886   assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits());
887 
888   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
889   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
890   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
891                                      N->getOperand(0), SDValue(R,0));
892   ReplaceNode(N, T);
893 }
894 
895 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
896   const SDLoc &dl(N);
897   MVT ResTy = N->getValueType(0).getSimpleVT();
898   // The result of V2Q should be a single vector.
899   assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits());
900 
901   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
902   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
903   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
904                                      N->getOperand(0), SDValue(R,0));
905   ReplaceNode(N, T);
906 }
907 
908 void HexagonDAGToDAGISel::Select(SDNode *N) {
909   if (N->isMachineOpcode())
910     return N->setNodeId(-1);  // Already selected.
911 
912   auto isHvxOp = [this](SDNode *N) {
913     for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
914       if (HST->isHVXVectorType(N->getValueType(i), true))
915         return true;
916     }
917     for (SDValue I : N->ops()) {
918       if (HST->isHVXVectorType(I.getValueType(), true))
919         return true;
920     }
921     return false;
922   };
923 
924   if (HST->useHVXOps() && isHvxOp(N)) {
925     switch (N->getOpcode()) {
926     case ISD::EXTRACT_SUBVECTOR:  return SelectHvxExtractSubvector(N);
927     case ISD::VECTOR_SHUFFLE:     return SelectHvxShuffle(N);
928 
929     case HexagonISD::VROR:        return SelectHvxRor(N);
930     }
931   }
932 
933   switch (N->getOpcode()) {
934   case ISD::Constant:             return SelectConstant(N);
935   case ISD::ConstantFP:           return SelectConstantFP(N);
936   case ISD::FrameIndex:           return SelectFrameIndex(N);
937   case ISD::SHL:                  return SelectSHL(N);
938   case ISD::LOAD:                 return SelectLoad(N);
939   case ISD::STORE:                return SelectStore(N);
940   case ISD::INTRINSIC_W_CHAIN:    return SelectIntrinsicWChain(N);
941   case ISD::INTRINSIC_WO_CHAIN:   return SelectIntrinsicWOChain(N);
942   case ISD::EXTRACT_SUBVECTOR:    return SelectExtractSubvector(N);
943 
944   case HexagonISD::ADDC:
945   case HexagonISD::SUBC:          return SelectAddSubCarry(N);
946   case HexagonISD::VALIGN:        return SelectVAlign(N);
947   case HexagonISD::VALIGNADDR:    return SelectVAlignAddr(N);
948   case HexagonISD::TYPECAST:      return SelectTypecast(N);
949   case HexagonISD::P2D:           return SelectP2D(N);
950   case HexagonISD::D2P:           return SelectD2P(N);
951   case HexagonISD::Q2V:           return SelectQ2V(N);
952   case HexagonISD::V2Q:           return SelectV2Q(N);
953   }
954 
955   SelectCode(N);
956 }
957 
958 bool HexagonDAGToDAGISel::SelectInlineAsmMemoryOperand(
959     const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
960     std::vector<SDValue> &OutOps) {
961   SDValue Inp = Op, Res;
962 
963   switch (ConstraintID) {
964   default:
965     return true;
966   case InlineAsm::ConstraintCode::o: // Offsetable.
967   case InlineAsm::ConstraintCode::v: // Not offsetable.
968   case InlineAsm::ConstraintCode::m: // Memory.
969     if (SelectAddrFI(Inp, Res))
970       OutOps.push_back(Res);
971     else
972       OutOps.push_back(Inp);
973     break;
974   }
975 
976   OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
977   return false;
978 }
979 
980 static bool isMemOPCandidate(SDNode *I, SDNode *U) {
981   // I is an operand of U. Check if U is an arithmetic (binary) operation
982   // usable in a memop, where the other operand is a loaded value, and the
983   // result of U is stored in the same location.
984 
985   if (!U->hasOneUse())
986     return false;
987   unsigned Opc = U->getOpcode();
988   switch (Opc) {
989     case ISD::ADD:
990     case ISD::SUB:
991     case ISD::AND:
992     case ISD::OR:
993       break;
994     default:
995       return false;
996   }
997 
998   SDValue S0 = U->getOperand(0);
999   SDValue S1 = U->getOperand(1);
1000   SDValue SY = (S0.getNode() == I) ? S1 : S0;
1001 
1002   SDNode *UUse = *U->use_begin();
1003   if (UUse->getNumValues() != 1)
1004     return false;
1005 
1006   // Check if one of the inputs to U is a load instruction and the output
1007   // is used by a store instruction. If so and they also have the same
1008   // base pointer, then don't preoprocess this node sequence as it
1009   // can be matched to a memop.
1010   SDNode *SYNode = SY.getNode();
1011   if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
1012     SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
1013     SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
1014     if (LDBasePtr == STBasePtr)
1015       return true;
1016   }
1017   return false;
1018 }
1019 
1020 
1021 // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
1022 //            (or (select c 0 y) z)  ->  (select c z (or y z))
1023 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
1024   SelectionDAG &DAG = *CurDAG;
1025 
1026   for (auto *I : Nodes) {
1027     if (I->getOpcode() != ISD::OR)
1028       continue;
1029 
1030     auto IsSelect0 = [](const SDValue &Op) -> bool {
1031       if (Op.getOpcode() != ISD::SELECT)
1032         return false;
1033       return isNullConstant(Op.getOperand(1)) ||
1034              isNullConstant(Op.getOperand(2));
1035     };
1036 
1037     SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
1038     EVT VT = I->getValueType(0);
1039     bool SelN0 = IsSelect0(N0);
1040     SDValue SOp = SelN0 ? N0 : N1;
1041     SDValue VOp = SelN0 ? N1 : N0;
1042 
1043     if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
1044       SDValue SC = SOp.getOperand(0);
1045       SDValue SX = SOp.getOperand(1);
1046       SDValue SY = SOp.getOperand(2);
1047       SDLoc DLS = SOp;
1048       if (isNullConstant(SY)) {
1049         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
1050         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
1051         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1052       } else if (isNullConstant(SX)) {
1053         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
1054         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
1055         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1056       }
1057     }
1058   }
1059 }
1060 
1061 // Transform: (store ch val (add x (add (shl y c) e)))
1062 //        to: (store ch val (add x (shl (add y d) c))),
1063 // where e = (shl d c) for some integer d.
1064 // The purpose of this is to enable generation of loads/stores with
1065 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1066 // value c must be 0, 1 or 2.
1067 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
1068   SelectionDAG &DAG = *CurDAG;
1069 
1070   for (auto *I : Nodes) {
1071     if (I->getOpcode() != ISD::STORE)
1072       continue;
1073 
1074     // I matched: (store ch val Off)
1075     SDValue Off = I->getOperand(2);
1076     // Off needs to match: (add x (add (shl y c) (shl d c))))
1077     if (Off.getOpcode() != ISD::ADD)
1078       continue;
1079     // Off matched: (add x T0)
1080     SDValue T0 = Off.getOperand(1);
1081     // T0 needs to match: (add T1 T2):
1082     if (T0.getOpcode() != ISD::ADD)
1083       continue;
1084     // T0 matched: (add T1 T2)
1085     SDValue T1 = T0.getOperand(0);
1086     SDValue T2 = T0.getOperand(1);
1087     // T1 needs to match: (shl y c)
1088     if (T1.getOpcode() != ISD::SHL)
1089       continue;
1090     SDValue C = T1.getOperand(1);
1091     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
1092     if (CN == nullptr)
1093       continue;
1094     unsigned CV = CN->getZExtValue();
1095     if (CV > 2)
1096       continue;
1097     // T2 needs to match e, where e = (shl d c) for some d.
1098     ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
1099     if (EN == nullptr)
1100       continue;
1101     unsigned EV = EN->getZExtValue();
1102     if (EV % (1 << CV) != 0)
1103       continue;
1104     unsigned DV = EV / (1 << CV);
1105 
1106     // Replace T0 with: (shl (add y d) c)
1107     SDLoc DL = SDLoc(I);
1108     EVT VT = T0.getValueType();
1109     SDValue D = DAG.getConstant(DV, DL, VT);
1110     // NewAdd = (add y d)
1111     SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
1112     // NewShl = (shl NewAdd c)
1113     SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
1114     ReplaceNode(T0.getNode(), NewShl.getNode());
1115   }
1116 }
1117 
1118 // Transform: (load ch (add x (and (srl y c) Mask)))
1119 //        to: (load ch (add x (shl (srl y d) d-c)))
1120 // where
1121 // Mask = 00..0 111..1 0.0
1122 //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
1123 //          |     +-------- 1s
1124 //          +-------------- at most c 0s
1125 // Motivating example:
1126 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1127 //                     to (add x (and (srl y 3) 1FFFFFFC))
1128 // which results in a constant-extended and(##...,lsr). This transformation
1129 // undoes this simplification for cases where the shl can be folded into
1130 // an addressing mode.
1131 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
1132   SelectionDAG &DAG = *CurDAG;
1133 
1134   for (SDNode *N : Nodes) {
1135     unsigned Opc = N->getOpcode();
1136     if (Opc != ISD::LOAD && Opc != ISD::STORE)
1137       continue;
1138     SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
1139     // Addr must match: (add x T0)
1140     if (Addr.getOpcode() != ISD::ADD)
1141       continue;
1142     SDValue T0 = Addr.getOperand(1);
1143     // T0 must match: (and T1 Mask)
1144     if (T0.getOpcode() != ISD::AND)
1145       continue;
1146 
1147     // We have an AND.
1148     //
1149     // Check the first operand. It must be: (srl y c).
1150     SDValue S = T0.getOperand(0);
1151     if (S.getOpcode() != ISD::SRL)
1152       continue;
1153     ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
1154     if (SN == nullptr)
1155       continue;
1156     if (SN->getAPIntValue().getBitWidth() != 32)
1157       continue;
1158     uint32_t CV = SN->getZExtValue();
1159 
1160     // Check the second operand: the supposed mask.
1161     ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
1162     if (MN == nullptr)
1163       continue;
1164     if (MN->getAPIntValue().getBitWidth() != 32)
1165       continue;
1166     uint32_t Mask = MN->getZExtValue();
1167     // Examine the mask.
1168     uint32_t TZ = llvm::countr_zero(Mask);
1169     uint32_t M1 = llvm::countr_one(Mask >> TZ);
1170     uint32_t LZ = llvm::countl_zero(Mask);
1171     // Trailing zeros + middle ones + leading zeros must equal the width.
1172     if (TZ + M1 + LZ != 32)
1173       continue;
1174     // The number of trailing zeros will be encoded in the addressing mode.
1175     if (TZ > 2)
1176       continue;
1177     // The number of leading zeros must be at most c.
1178     if (LZ > CV)
1179       continue;
1180 
1181     // All looks good.
1182     SDValue Y = S.getOperand(0);
1183     EVT VT = Addr.getValueType();
1184     SDLoc dl(S);
1185     // TZ = D-C, so D = TZ+C.
1186     SDValue D = DAG.getConstant(TZ+CV, dl, VT);
1187     SDValue DC = DAG.getConstant(TZ, dl, VT);
1188     SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
1189     SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
1190     ReplaceNode(T0.getNode(), NewShl.getNode());
1191   }
1192 }
1193 
1194 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1195 //                                                  (op ... 1 ...))
1196 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
1197   SelectionDAG &DAG = *CurDAG;
1198 
1199   for (SDNode *N : Nodes) {
1200     unsigned Opc = N->getOpcode();
1201     if (Opc != ISD::ZERO_EXTEND)
1202       continue;
1203     SDValue OpI1 = N->getOperand(0);
1204     EVT OpVT = OpI1.getValueType();
1205     if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
1206       continue;
1207     for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1208       SDNode *U = *I;
1209       if (U->getNumValues() != 1)
1210         continue;
1211       EVT UVT = U->getValueType(0);
1212       if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
1213         continue;
1214       // Do not generate select for all i1 vector type.
1215       if (UVT.isVector() && UVT.getVectorElementType() == MVT::i1)
1216         continue;
1217       if (isMemOPCandidate(N, U))
1218         continue;
1219 
1220       // Potentially simplifiable operation.
1221       unsigned I1N = I.getOperandNo();
1222       SmallVector<SDValue,2> Ops(U->getNumOperands());
1223       for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
1224         Ops[i] = U->getOperand(i);
1225       EVT BVT = Ops[I1N].getValueType();
1226 
1227       const SDLoc &dl(U);
1228       SDValue C0 = DAG.getConstant(0, dl, BVT);
1229       SDValue C1 = DAG.getConstant(1, dl, BVT);
1230       SDValue If0, If1;
1231 
1232       if (isa<MachineSDNode>(U)) {
1233         unsigned UseOpc = U->getMachineOpcode();
1234         Ops[I1N] = C0;
1235         If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1236         Ops[I1N] = C1;
1237         If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1238       } else {
1239         unsigned UseOpc = U->getOpcode();
1240         Ops[I1N] = C0;
1241         If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
1242         Ops[I1N] = C1;
1243         If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
1244       }
1245       // We're generating a SELECT way after legalization, so keep the types
1246       // simple.
1247       unsigned UW = UVT.getSizeInBits();
1248       EVT SVT = (UW == 32 || UW == 64) ? MVT::getIntegerVT(UW) : UVT;
1249       SDValue Sel = DAG.getNode(ISD::SELECT, dl, SVT, OpI1,
1250                                 DAG.getBitcast(SVT, If1),
1251                                 DAG.getBitcast(SVT, If0));
1252       SDValue Ret = DAG.getBitcast(UVT, Sel);
1253       DAG.ReplaceAllUsesWith(U, Ret.getNode());
1254     }
1255   }
1256 }
1257 
1258 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1259   // Repack all nodes before calling each preprocessing function,
1260   // because each of them can modify the set of nodes.
1261   auto getNodes = [this]() -> std::vector<SDNode *> {
1262     std::vector<SDNode *> T;
1263     T.reserve(CurDAG->allnodes_size());
1264     for (SDNode &N : CurDAG->allnodes())
1265       T.push_back(&N);
1266     return T;
1267   };
1268 
1269   if (HST->useHVXOps())
1270     PreprocessHvxISelDAG();
1271 
1272   // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
1273   //            (or (select c 0 y) z)  ->  (select c z (or y z))
1274   ppSimplifyOrSelect0(getNodes());
1275 
1276   // Transform: (store ch val (add x (add (shl y c) e)))
1277   //        to: (store ch val (add x (shl (add y d) c))),
1278   // where e = (shl d c) for some integer d.
1279   // The purpose of this is to enable generation of loads/stores with
1280   // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1281   // value c must be 0, 1 or 2.
1282   ppAddrReorderAddShl(getNodes());
1283 
1284   // Transform: (load ch (add x (and (srl y c) Mask)))
1285   //        to: (load ch (add x (shl (srl y d) d-c)))
1286   // where
1287   // Mask = 00..0 111..1 0.0
1288   //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
1289   //          |     +-------- 1s
1290   //          +-------------- at most c 0s
1291   // Motivating example:
1292   // DAG combiner optimizes (add x (shl (srl y 5) 2))
1293   //                     to (add x (and (srl y 3) 1FFFFFFC))
1294   // which results in a constant-extended and(##...,lsr). This transformation
1295   // undoes this simplification for cases where the shl can be folded into
1296   // an addressing mode.
1297   ppAddrRewriteAndSrl(getNodes());
1298 
1299   // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1300   //                                                  (op ... 1 ...))
1301   ppHoistZextI1(getNodes());
1302 
1303   DEBUG_WITH_TYPE("isel", {
1304     dbgs() << "Preprocessed (Hexagon) selection DAG:";
1305     CurDAG->dump();
1306   });
1307 
1308   if (EnableAddressRebalancing) {
1309     rebalanceAddressTrees();
1310 
1311     DEBUG_WITH_TYPE("isel", {
1312       dbgs() << "Address tree balanced selection DAG:";
1313       CurDAG->dump();
1314     });
1315   }
1316 }
1317 
1318 void HexagonDAGToDAGISel::emitFunctionEntryCode() {
1319   auto &HST = MF->getSubtarget<HexagonSubtarget>();
1320   auto &HFI = *HST.getFrameLowering();
1321   if (!HFI.needsAligna(*MF))
1322     return;
1323 
1324   MachineFrameInfo &MFI = MF->getFrameInfo();
1325   MachineBasicBlock *EntryBB = &MF->front();
1326   Align EntryMaxA = MFI.getMaxAlign();
1327 
1328   // Reserve the first non-volatile register.
1329   Register AP = 0;
1330   auto &HRI = *HST.getRegisterInfo();
1331   BitVector Reserved = HRI.getReservedRegs(*MF);
1332   for (const MCPhysReg *R = HRI.getCalleeSavedRegs(MF); *R; ++R) {
1333     if (Reserved[*R])
1334       continue;
1335     AP = *R;
1336     break;
1337   }
1338   assert(AP.isValid() && "Couldn't reserve stack align register");
1339   BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AP)
1340       .addImm(EntryMaxA.value());
1341   MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseReg(AP);
1342 }
1343 
1344 void HexagonDAGToDAGISel::updateAligna() {
1345   auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering();
1346   if (!HFI.needsAligna(*MF))
1347     return;
1348   auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(*MF));
1349   assert(AlignaI != nullptr);
1350   unsigned MaxA = MF->getFrameInfo().getMaxAlign().value();
1351   if (AlignaI->getOperand(1).getImm() < MaxA)
1352     AlignaI->getOperand(1).setImm(MaxA);
1353 }
1354 
1355 // Match a frame index that can be used in an addressing mode.
1356 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
1357   if (N.getOpcode() != ISD::FrameIndex)
1358     return false;
1359   auto &HFI = *HST->getFrameLowering();
1360   MachineFrameInfo &MFI = MF->getFrameInfo();
1361   int FX = cast<FrameIndexSDNode>(N)->getIndex();
1362   if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
1363     return false;
1364   R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1365   return true;
1366 }
1367 
1368 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
1369   return SelectGlobalAddress(N, R, false, Align(1));
1370 }
1371 
1372 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
1373   return SelectGlobalAddress(N, R, true, Align(1));
1374 }
1375 
1376 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
1377   return SelectAnyImmediate(N, R, Align(1));
1378 }
1379 
1380 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
1381   return SelectAnyImmediate(N, R, Align(1));
1382 }
1383 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
1384   return SelectAnyImmediate(N, R, Align(2));
1385 }
1386 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
1387   return SelectAnyImmediate(N, R, Align(4));
1388 }
1389 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
1390   return SelectAnyImmediate(N, R, Align(8));
1391 }
1392 
1393 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
1394   EVT T = N.getValueType();
1395   if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
1396     return false;
1397   int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1398   R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1399   return true;
1400 }
1401 
1402 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
1403                                              Align Alignment) {
1404   switch (N.getOpcode()) {
1405   case ISD::Constant: {
1406     if (N.getValueType() != MVT::i32)
1407       return false;
1408     int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1409     if (!isAligned(Alignment, V))
1410       return false;
1411     R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1412     return true;
1413   }
1414   case HexagonISD::JT:
1415   case HexagonISD::CP:
1416     // These are assumed to always be aligned at least 8-byte boundary.
1417     if (Alignment > Align(8))
1418       return false;
1419     R = N.getOperand(0);
1420     return true;
1421   case ISD::ExternalSymbol:
1422     // Symbols may be aligned at any boundary.
1423     if (Alignment > Align(1))
1424       return false;
1425     R = N;
1426     return true;
1427   case ISD::BlockAddress:
1428     // Block address is always aligned at least 4-byte boundary.
1429     if (Alignment > Align(4) ||
1430         !isAligned(Alignment, cast<BlockAddressSDNode>(N)->getOffset()))
1431       return false;
1432     R = N;
1433     return true;
1434   }
1435 
1436   if (SelectGlobalAddress(N, R, false, Alignment) ||
1437       SelectGlobalAddress(N, R, true, Alignment))
1438     return true;
1439 
1440   return false;
1441 }
1442 
1443 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
1444                                               bool UseGP, Align Alignment) {
1445   switch (N.getOpcode()) {
1446   case ISD::ADD: {
1447     SDValue N0 = N.getOperand(0);
1448     SDValue N1 = N.getOperand(1);
1449     unsigned GAOpc = N0.getOpcode();
1450     if (UseGP && GAOpc != HexagonISD::CONST32_GP)
1451       return false;
1452     if (!UseGP && GAOpc != HexagonISD::CONST32)
1453       return false;
1454     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
1455       if (!isAligned(Alignment, Const->getZExtValue()))
1456         return false;
1457       SDValue Addr = N0.getOperand(0);
1458       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
1459         if (GA->getOpcode() == ISD::TargetGlobalAddress) {
1460           uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
1461           R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
1462                                              N.getValueType(), NewOff);
1463           return true;
1464         }
1465       }
1466     }
1467     break;
1468   }
1469   case HexagonISD::CP:
1470   case HexagonISD::JT:
1471   case HexagonISD::CONST32:
1472     // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1473     // want in the instruction.
1474     if (!UseGP)
1475       R = N.getOperand(0);
1476     return !UseGP;
1477   case HexagonISD::CONST32_GP:
1478     if (UseGP)
1479       R = N.getOperand(0);
1480     return UseGP;
1481   default:
1482     return false;
1483   }
1484 
1485   return false;
1486 }
1487 
1488 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
1489   // This (complex pattern) function is meant to detect a sign-extension
1490   // i32->i64 on a per-operand basis. This would allow writing single
1491   // patterns that would cover a number of combinations of different ways
1492   // a sign-extensions could be written. For example:
1493   //   (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
1494   // could match either one of these:
1495   //   (mul (sext x) (sext_inreg y))
1496   //   (mul (sext-load *p) (sext_inreg y))
1497   //   (mul (sext_inreg x) (sext y))
1498   // etc.
1499   //
1500   // The returned value will have type i64 and its low word will
1501   // contain the value being extended. The high bits are not specified.
1502   // The returned type is i64 because the original type of N was i64,
1503   // but the users of this function should only use the low-word of the
1504   // result, e.g.
1505   //  (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
1506 
1507   if (N.getValueType() != MVT::i64)
1508     return false;
1509   unsigned Opc = N.getOpcode();
1510   switch (Opc) {
1511     case ISD::SIGN_EXTEND:
1512     case ISD::SIGN_EXTEND_INREG: {
1513       // sext_inreg has the source type as a separate operand.
1514       EVT T = Opc == ISD::SIGN_EXTEND
1515                 ? N.getOperand(0).getValueType()
1516                 : cast<VTSDNode>(N.getOperand(1))->getVT();
1517       unsigned SW = T.getSizeInBits();
1518       if (SW == 32)
1519         R = N.getOperand(0);
1520       else if (SW < 32)
1521         R = N;
1522       else
1523         return false;
1524       break;
1525     }
1526     case ISD::LOAD: {
1527       LoadSDNode *L = cast<LoadSDNode>(N);
1528       if (L->getExtensionType() != ISD::SEXTLOAD)
1529         return false;
1530       // All extending loads extend to i32, so even if the value in
1531       // memory is shorter than 32 bits, it will be i32 after the load.
1532       if (L->getMemoryVT().getSizeInBits() > 32)
1533         return false;
1534       R = N;
1535       break;
1536     }
1537     case ISD::SRA: {
1538       auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
1539       if (!S || S->getZExtValue() != 32)
1540         return false;
1541       R = N;
1542       break;
1543     }
1544     default:
1545       return false;
1546   }
1547   EVT RT = R.getValueType();
1548   if (RT == MVT::i64)
1549     return true;
1550   assert(RT == MVT::i32);
1551   // This is only to produce a value of type i64. Do not rely on the
1552   // high bits produced by this.
1553   const SDLoc &dl(N);
1554   SDValue Ops[] = {
1555     CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
1556     R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
1557     R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
1558   };
1559   SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
1560                                      MVT::i64, Ops);
1561   R = SDValue(T, 0);
1562   return true;
1563 }
1564 
1565 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
1566       SDValue &Src) {
1567   unsigned Opc = Val.getOpcode();
1568   switch (Opc) {
1569   case ISD::SIGN_EXTEND:
1570   case ISD::ZERO_EXTEND:
1571   case ISD::ANY_EXTEND: {
1572     const SDValue &Op0 = Val.getOperand(0);
1573     EVT T = Op0.getValueType();
1574     if (T.isInteger() && T.getSizeInBits() == NumBits) {
1575       Src = Op0;
1576       return true;
1577     }
1578     break;
1579   }
1580   case ISD::SIGN_EXTEND_INREG:
1581   case ISD::AssertSext:
1582   case ISD::AssertZext:
1583     if (Val.getOperand(0).getValueType().isInteger()) {
1584       VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
1585       if (T->getVT().getSizeInBits() == NumBits) {
1586         Src = Val.getOperand(0);
1587         return true;
1588       }
1589     }
1590     break;
1591   case ISD::AND: {
1592     // Check if this is an AND with NumBits of lower bits set to 1.
1593     uint64_t Mask = (1ULL << NumBits) - 1;
1594     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1595       if (C->getZExtValue() == Mask) {
1596         Src = Val.getOperand(1);
1597         return true;
1598       }
1599     }
1600     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1601       if (C->getZExtValue() == Mask) {
1602         Src = Val.getOperand(0);
1603         return true;
1604       }
1605     }
1606     break;
1607   }
1608   case ISD::OR:
1609   case ISD::XOR: {
1610     // OR/XOR with the lower NumBits bits set to 0.
1611     uint64_t Mask = (1ULL << NumBits) - 1;
1612     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1613       if ((C->getZExtValue() & Mask) == 0) {
1614         Src = Val.getOperand(1);
1615         return true;
1616       }
1617     }
1618     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1619       if ((C->getZExtValue() & Mask) == 0) {
1620         Src = Val.getOperand(0);
1621         return true;
1622       }
1623     }
1624     break;
1625   }
1626   default:
1627     break;
1628   }
1629   return false;
1630 }
1631 
1632 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
1633   return N->getAlign().value() >= N->getMemoryVT().getStoreSize();
1634 }
1635 
1636 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
1637   unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
1638   switch (N->getMemoryVT().getStoreSize()) {
1639     case 1:
1640       return StackSize <= 56;   // 1*2^6 - 8
1641     case 2:
1642       return StackSize <= 120;  // 2*2^6 - 8
1643     case 4:
1644       return StackSize <= 248;  // 4*2^6 - 8
1645     default:
1646       return false;
1647   }
1648 }
1649 
1650 // Return true when the given node fits in a positive half word.
1651 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
1652   if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
1653     int64_t V = CN->getSExtValue();
1654     return V > 0 && isInt<16>(V);
1655   }
1656   if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
1657     const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
1658     return VN->getVT().getSizeInBits() <= 16;
1659   }
1660   return false;
1661 }
1662 
1663 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
1664   return !CheckSingleUse || N->hasOneUse();
1665 }
1666 
1667 ////////////////////////////////////////////////////////////////////////////////
1668 // Rebalancing of address calculation trees
1669 
1670 static bool isOpcodeHandled(const SDNode *N) {
1671   switch (N->getOpcode()) {
1672     case ISD::ADD:
1673     case ISD::MUL:
1674       return true;
1675     case ISD::SHL:
1676       // We only handle constant shifts because these can be easily flattened
1677       // into multiplications by 2^Op1.
1678       return isa<ConstantSDNode>(N->getOperand(1).getNode());
1679     default:
1680       return false;
1681   }
1682 }
1683 
1684 /// Return the weight of an SDNode
1685 int HexagonDAGToDAGISel::getWeight(SDNode *N) {
1686   if (!isOpcodeHandled(N))
1687     return 1;
1688   assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
1689   assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
1690   assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
1691   return RootWeights[N];
1692 }
1693 
1694 int HexagonDAGToDAGISel::getHeight(SDNode *N) {
1695   if (!isOpcodeHandled(N))
1696     return 0;
1697   assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
1698       "Cannot query height of unvisited/RAUW'd node!");
1699   return RootHeights[N];
1700 }
1701 
1702 namespace {
1703 struct WeightedLeaf {
1704   SDValue Value;
1705   int Weight;
1706   int InsertionOrder;
1707 
1708   WeightedLeaf() {}
1709 
1710   WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
1711     Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
1712     assert(Weight >= 0 && "Weight must be >= 0");
1713   }
1714 
1715   static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
1716     assert(A.Value.getNode() && B.Value.getNode());
1717     return A.Weight == B.Weight ?
1718             (A.InsertionOrder > B.InsertionOrder) :
1719             (A.Weight > B.Weight);
1720   }
1721 };
1722 
1723 /// A specialized priority queue for WeigthedLeaves. It automatically folds
1724 /// constants and allows removal of non-top elements while maintaining the
1725 /// priority order.
1726 class LeafPrioQueue {
1727   SmallVector<WeightedLeaf, 8> Q;
1728   bool HaveConst;
1729   WeightedLeaf ConstElt;
1730   unsigned Opcode;
1731 
1732 public:
1733   bool empty() {
1734     return (!HaveConst && Q.empty());
1735   }
1736 
1737   size_t size() {
1738     return Q.size() + HaveConst;
1739   }
1740 
1741   bool hasConst() {
1742     return HaveConst;
1743   }
1744 
1745   const WeightedLeaf &top() {
1746     if (HaveConst)
1747       return ConstElt;
1748     return Q.front();
1749   }
1750 
1751   WeightedLeaf pop() {
1752     if (HaveConst) {
1753       HaveConst = false;
1754       return ConstElt;
1755     }
1756     std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1757     return Q.pop_back_val();
1758   }
1759 
1760   void push(WeightedLeaf L, bool SeparateConst=true) {
1761     if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
1762       if (Opcode == ISD::MUL &&
1763           cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
1764         return;
1765       if (Opcode == ISD::ADD &&
1766           cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
1767         return;
1768 
1769       HaveConst = true;
1770       ConstElt = L;
1771     } else {
1772       Q.push_back(L);
1773       std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1774     }
1775   }
1776 
1777   /// Push L to the bottom of the queue regardless of its weight. If L is
1778   /// constant, it will not be folded with other constants in the queue.
1779   void pushToBottom(WeightedLeaf L) {
1780     L.Weight = 1000;
1781     push(L, false);
1782   }
1783 
1784   /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
1785   /// lowest weight and remove it from the queue.
1786   WeightedLeaf findSHL(uint64_t MaxAmount);
1787 
1788   WeightedLeaf findMULbyConst();
1789 
1790   LeafPrioQueue(unsigned Opcode) :
1791     HaveConst(false), Opcode(Opcode) { }
1792 };
1793 } // end anonymous namespace
1794 
1795 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
1796   int ResultPos;
1797   WeightedLeaf Result;
1798 
1799   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1800     const WeightedLeaf &L = Q[Pos];
1801     const SDValue &Val = L.Value;
1802     if (Val.getOpcode() != ISD::SHL ||
1803         !isa<ConstantSDNode>(Val.getOperand(1)) ||
1804         Val.getConstantOperandVal(1) > MaxAmount)
1805       continue;
1806     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1807         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1808     {
1809       Result = L;
1810       ResultPos = Pos;
1811     }
1812   }
1813 
1814   if (Result.Value.getNode()) {
1815     Q.erase(&Q[ResultPos]);
1816     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1817   }
1818 
1819   return Result;
1820 }
1821 
1822 WeightedLeaf LeafPrioQueue::findMULbyConst() {
1823   int ResultPos;
1824   WeightedLeaf Result;
1825 
1826   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1827     const WeightedLeaf &L = Q[Pos];
1828     const SDValue &Val = L.Value;
1829     if (Val.getOpcode() != ISD::MUL ||
1830         !isa<ConstantSDNode>(Val.getOperand(1)) ||
1831         Val.getConstantOperandVal(1) > 127)
1832       continue;
1833     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1834         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1835     {
1836       Result = L;
1837       ResultPos = Pos;
1838     }
1839   }
1840 
1841   if (Result.Value.getNode()) {
1842     Q.erase(&Q[ResultPos]);
1843     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1844   }
1845 
1846   return Result;
1847 }
1848 
1849 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
1850   uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
1851   return CurDAG->getConstant(MulFactor, SDLoc(N),
1852                              N->getOperand(1).getValueType());
1853 }
1854 
1855 /// @returns the value x for which 2^x is a factor of Val
1856 static unsigned getPowerOf2Factor(SDValue Val) {
1857   if (Val.getOpcode() == ISD::MUL) {
1858     unsigned MaxFactor = 0;
1859     for (int i = 0; i < 2; ++i) {
1860       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
1861       if (!C)
1862         continue;
1863       const APInt &CInt = C->getAPIntValue();
1864       if (CInt.getBoolValue())
1865         MaxFactor = CInt.countr_zero();
1866     }
1867     return MaxFactor;
1868   }
1869   if (Val.getOpcode() == ISD::SHL) {
1870     if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
1871       return 0;
1872     return (unsigned) Val.getConstantOperandVal(1);
1873   }
1874 
1875   return 0;
1876 }
1877 
1878 /// @returns true if V>>Amount will eliminate V's operation on its child
1879 static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
1880   if (V.getOpcode() == ISD::MUL) {
1881     SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1882     for (int i = 0; i < 2; ++i)
1883       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1884           V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
1885         uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
1886         return (NewConst == 1);
1887       }
1888   } else if (V.getOpcode() == ISD::SHL) {
1889     return (Amount == V.getConstantOperandVal(1));
1890   }
1891 
1892   return false;
1893 }
1894 
1895 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
1896   SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1897   if (V.getOpcode() == ISD::MUL) {
1898     for (int i=0; i < 2; ++i) {
1899       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1900           V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
1901         uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
1902         if (NewConst == 1)
1903           return Ops[!i];
1904         Ops[i] = CurDAG->getConstant(NewConst,
1905                                      SDLoc(V), V.getValueType());
1906         break;
1907       }
1908     }
1909   } else if (V.getOpcode() == ISD::SHL) {
1910     uint64_t ShiftAmount = V.getConstantOperandVal(1);
1911     if (ShiftAmount == Power)
1912       return Ops[0];
1913     Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
1914                                  SDLoc(V), V.getValueType());
1915   }
1916 
1917   return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
1918 }
1919 
1920 static bool isTargetConstant(const SDValue &V) {
1921   return V.getOpcode() == HexagonISD::CONST32 ||
1922          V.getOpcode() == HexagonISD::CONST32_GP;
1923 }
1924 
1925 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
1926   if (GAUsesInFunction.count(V))
1927     return GAUsesInFunction[V];
1928 
1929   unsigned Result = 0;
1930   const Function &CurF = CurDAG->getMachineFunction().getFunction();
1931   for (const User *U : V->users()) {
1932     if (isa<Instruction>(U) &&
1933         cast<Instruction>(U)->getParent()->getParent() == &CurF)
1934       ++Result;
1935   }
1936 
1937   GAUsesInFunction[V] = Result;
1938 
1939   return Result;
1940 }
1941 
1942 /// Note - After calling this, N may be dead. It may have been replaced by a
1943 /// new node, so always use the returned value in place of N.
1944 ///
1945 /// @returns The SDValue taking the place of N (which could be N if it is
1946 /// unchanged)
1947 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
1948   assert(RootWeights.count(N) && "Cannot balance non-root node.");
1949   assert(RootWeights[N] != -2 && "This node was RAUW'd!");
1950   assert(!TopLevel || N->getOpcode() == ISD::ADD);
1951 
1952   // Return early if this node was already visited
1953   if (RootWeights[N] != -1)
1954     return SDValue(N, 0);
1955 
1956   assert(isOpcodeHandled(N));
1957 
1958   SDValue Op0 = N->getOperand(0);
1959   SDValue Op1 = N->getOperand(1);
1960 
1961   // Return early if the operands will remain unchanged or are all roots
1962   if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
1963       (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
1964     SDNode *Op0N = Op0.getNode();
1965     int Weight;
1966     if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
1967       Weight = getWeight(balanceSubTree(Op0N).getNode());
1968       // Weight = calculateWeight(Op0N);
1969     } else
1970       Weight = getWeight(Op0N);
1971 
1972     SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
1973     if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
1974       Weight += getWeight(balanceSubTree(Op1N).getNode());
1975       // Weight += calculateWeight(Op1N);
1976     } else
1977       Weight += getWeight(Op1N);
1978 
1979     RootWeights[N] = Weight;
1980     RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
1981                               getHeight(N->getOperand(1).getNode())) + 1;
1982 
1983     LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
1984                       << " Height=" << RootHeights[N] << "): ");
1985     LLVM_DEBUG(N->dump(CurDAG));
1986 
1987     return SDValue(N, 0);
1988   }
1989 
1990   LLVM_DEBUG(dbgs() << "** Balancing root node: ");
1991   LLVM_DEBUG(N->dump(CurDAG));
1992 
1993   unsigned NOpcode = N->getOpcode();
1994 
1995   LeafPrioQueue Leaves(NOpcode);
1996   SmallVector<SDValue, 4> Worklist;
1997   Worklist.push_back(SDValue(N, 0));
1998 
1999   // SHL nodes will be converted to MUL nodes
2000   if (NOpcode == ISD::SHL)
2001     NOpcode = ISD::MUL;
2002 
2003   bool CanFactorize = false;
2004   WeightedLeaf Mul1, Mul2;
2005   unsigned MaxPowerOf2 = 0;
2006   WeightedLeaf GA;
2007 
2008   // Do not try to factor out a shift if there is already a shift at the tip of
2009   // the tree.
2010   bool HaveTopLevelShift = false;
2011   if (TopLevel &&
2012       ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
2013                         Op0.getConstantOperandVal(1) < 4) ||
2014        (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
2015                         Op1.getConstantOperandVal(1) < 4)))
2016     HaveTopLevelShift = true;
2017 
2018   // Flatten the subtree into an ordered list of leaves; at the same time
2019   // determine whether the tree is already balanced.
2020   int InsertionOrder = 0;
2021   SmallDenseMap<SDValue, int> NodeHeights;
2022   bool Imbalanced = false;
2023   int CurrentWeight = 0;
2024   while (!Worklist.empty()) {
2025     SDValue Child = Worklist.pop_back_val();
2026 
2027     if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
2028       // CASE 1: Child is a root note
2029 
2030       int Weight = RootWeights[Child.getNode()];
2031       if (Weight == -1) {
2032         Child = balanceSubTree(Child.getNode());
2033         // calculateWeight(Child.getNode());
2034         Weight = getWeight(Child.getNode());
2035       } else if (Weight == -2) {
2036         // Whoops, this node was RAUWd by one of the balanceSubTree calls we
2037         // made. Our worklist isn't up to date anymore.
2038         // Restart the whole process.
2039         LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2040         return balanceSubTree(N, TopLevel);
2041       }
2042 
2043       NodeHeights[Child] = 1;
2044       CurrentWeight += Weight;
2045 
2046       unsigned PowerOf2;
2047       if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
2048           (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
2049           Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
2050         // Try to identify two factorizable MUL/SHL children greedily. Leave
2051         // them out of the priority queue for now so we can deal with them
2052         // after.
2053         if (!Mul1.Value.getNode()) {
2054           Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
2055           MaxPowerOf2 = PowerOf2;
2056         } else {
2057           Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
2058           MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
2059 
2060           // Our addressing modes can only shift by a maximum of 3
2061           if (MaxPowerOf2 > 3)
2062             MaxPowerOf2 = 3;
2063 
2064           CanFactorize = true;
2065         }
2066       } else
2067         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2068     } else if (!isOpcodeHandled(Child.getNode())) {
2069       // CASE 2: Child is an unhandled kind of node (e.g. constant)
2070       int Weight = getWeight(Child.getNode());
2071 
2072       NodeHeights[Child] = getHeight(Child.getNode());
2073       CurrentWeight += Weight;
2074 
2075       if (isTargetConstant(Child) && !GA.Value.getNode())
2076         GA = WeightedLeaf(Child, Weight, InsertionOrder++);
2077       else
2078         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2079     } else {
2080       // CASE 3: Child is a subtree of same opcode
2081       // Visit children first, then flatten.
2082       unsigned ChildOpcode = Child.getOpcode();
2083       assert(ChildOpcode == NOpcode ||
2084              (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
2085 
2086       // Convert SHL to MUL
2087       SDValue Op1;
2088       if (ChildOpcode == ISD::SHL)
2089         Op1 = getMultiplierForSHL(Child.getNode());
2090       else
2091         Op1 = Child->getOperand(1);
2092 
2093       if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
2094         assert(!NodeHeights.count(Child) && "Parent visited before children?");
2095         // Visit children first, then re-visit this node
2096         Worklist.push_back(Child);
2097         Worklist.push_back(Op1);
2098         Worklist.push_back(Child->getOperand(0));
2099       } else {
2100         // Back at this node after visiting the children
2101         if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
2102           Imbalanced = true;
2103 
2104         NodeHeights[Child] = std::max(NodeHeights[Op1],
2105                                       NodeHeights[Child->getOperand(0)]) + 1;
2106       }
2107     }
2108   }
2109 
2110   LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
2111                     << " weight=" << CurrentWeight
2112                     << " imbalanced=" << Imbalanced << "\n");
2113 
2114   // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
2115   //  This factors out a shift in order to match memw(a<<Y+b).
2116   if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
2117                        willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
2118     LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
2119     int Weight = Mul1.Weight + Mul2.Weight;
2120     int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
2121     SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
2122     SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
2123     SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
2124                                   Mul1Factored, Mul2Factored);
2125     SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
2126                                         Mul1.Value.getValueType());
2127     SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
2128                                   Sum, Const);
2129     NodeHeights[New] = Height;
2130     Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
2131   } else if (Mul1.Value.getNode()) {
2132     // We failed to factorize two MULs, so now the Muls are left outside the
2133     // queue... add them back.
2134     Leaves.push(Mul1);
2135     if (Mul2.Value.getNode())
2136       Leaves.push(Mul2);
2137     CanFactorize = false;
2138   }
2139 
2140   // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
2141   // and the root node itself is not used more than twice. This reduces the
2142   // amount of additional constant extenders introduced by this optimization.
2143   bool CombinedGA = false;
2144   if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
2145       GA.Value.hasOneUse() && N->use_size() < 3) {
2146     GlobalAddressSDNode *GANode =
2147       cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
2148     ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
2149 
2150     if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
2151         getTargetLowering()->isOffsetFoldingLegal(GANode)) {
2152       LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
2153                         << Offset->getSExtValue() << "): ");
2154       LLVM_DEBUG(GANode->dump(CurDAG));
2155 
2156       SDValue NewTGA =
2157         CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
2158             GANode->getValueType(0),
2159             GANode->getOffset() + (uint64_t)Offset->getSExtValue());
2160       GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
2161           GA.Value.getValueType(), NewTGA);
2162       GA.Weight += Leaves.top().Weight;
2163 
2164       NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
2165       CombinedGA = true;
2166 
2167       Leaves.pop(); // Remove the offset constant from the queue
2168     }
2169   }
2170 
2171   if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
2172       (RebalanceOnlyImbalancedTrees && !Imbalanced)) {
2173     RootWeights[N] = CurrentWeight;
2174     RootHeights[N] = NodeHeights[SDValue(N, 0)];
2175 
2176     return SDValue(N, 0);
2177   }
2178 
2179   // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
2180   if (NOpcode == ISD::ADD && GA.Value.getNode()) {
2181     WeightedLeaf SHL = Leaves.findSHL(31);
2182     if (SHL.Value.getNode()) {
2183       int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
2184       GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
2185                                  GA.Value.getValueType(),
2186                                  GA.Value, SHL.Value);
2187       GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
2188       NodeHeights[GA.Value] = Height;
2189     }
2190   }
2191 
2192   if (GA.Value.getNode())
2193     Leaves.push(GA);
2194 
2195   // If this is the top level and we haven't factored out a shift, we should try
2196   // to move a constant to the bottom to match addressing modes like memw(rX+C)
2197   if (TopLevel && !CanFactorize && Leaves.hasConst()) {
2198     LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
2199     Leaves.pushToBottom(Leaves.pop());
2200   }
2201 
2202   const DataLayout &DL = CurDAG->getDataLayout();
2203   const TargetLowering &TLI = *getTargetLowering();
2204 
2205   // Rebuild the tree using Huffman's algorithm
2206   while (Leaves.size() > 1) {
2207     WeightedLeaf L0 = Leaves.pop();
2208 
2209     // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
2210     // otherwise just get the next leaf
2211     WeightedLeaf L1 = Leaves.findMULbyConst();
2212     if (!L1.Value.getNode())
2213       L1 = Leaves.pop();
2214 
2215     assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
2216 
2217     SDValue V0 = L0.Value;
2218     int V0Weight = L0.Weight;
2219     SDValue V1 = L1.Value;
2220     int V1Weight = L1.Weight;
2221 
2222     // Make sure that none of these nodes have been RAUW'd
2223     if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
2224         (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
2225       LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2226       return balanceSubTree(N, TopLevel);
2227     }
2228 
2229     ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
2230     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
2231     EVT VT = N->getValueType(0);
2232     SDValue NewNode;
2233 
2234     if (V0C && !V1C) {
2235       std::swap(V0, V1);
2236       std::swap(V0C, V1C);
2237     }
2238 
2239     // Calculate height of this node
2240     assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
2241            "Children must have been visited before re-combining them!");
2242     int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
2243 
2244     // Rebuild this node (and restore SHL from MUL if needed)
2245     if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
2246       NewNode = CurDAG->getNode(
2247           ISD::SHL, SDLoc(V0), VT, V0,
2248           CurDAG->getConstant(
2249               V1C->getAPIntValue().logBase2(), SDLoc(N),
2250               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2251     else
2252       NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
2253 
2254     NodeHeights[NewNode] = Height;
2255 
2256     int Weight = V0Weight + V1Weight;
2257     Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
2258 
2259     LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
2260                       << ",Height=" << Height << "):\n");
2261     LLVM_DEBUG(NewNode.dump());
2262   }
2263 
2264   assert(Leaves.size() == 1);
2265   SDValue NewRoot = Leaves.top().Value;
2266 
2267   assert(NodeHeights.count(NewRoot));
2268   int Height = NodeHeights[NewRoot];
2269 
2270   // Restore SHL if we earlier converted it to a MUL
2271   if (NewRoot.getOpcode() == ISD::MUL) {
2272     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
2273     if (V1C && V1C->getAPIntValue().isPowerOf2()) {
2274       EVT VT = NewRoot.getValueType();
2275       SDValue V0 = NewRoot.getOperand(0);
2276       NewRoot = CurDAG->getNode(
2277           ISD::SHL, SDLoc(NewRoot), VT, V0,
2278           CurDAG->getConstant(
2279               V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
2280               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2281     }
2282   }
2283 
2284   if (N != NewRoot.getNode()) {
2285     LLVM_DEBUG(dbgs() << "--> Root is now: ");
2286     LLVM_DEBUG(NewRoot.dump());
2287 
2288     // Replace all uses of old root by new root
2289     CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
2290     // Mark that we have RAUW'd N
2291     RootWeights[N] = -2;
2292   } else {
2293     LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
2294   }
2295 
2296   RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
2297   RootHeights[NewRoot.getNode()] = Height;
2298 
2299   return NewRoot;
2300 }
2301 
2302 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2303   for (SDNode &Node : llvm::make_early_inc_range(CurDAG->allnodes())) {
2304     SDNode *N = &Node;
2305     if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
2306       continue;
2307 
2308     SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
2309     if (BasePtr.getOpcode() != ISD::ADD)
2310       continue;
2311 
2312     // We've already processed this node
2313     if (RootWeights.count(BasePtr.getNode()))
2314       continue;
2315 
2316     LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
2317     LLVM_DEBUG(N->dump(CurDAG));
2318 
2319     // FindRoots
2320     SmallVector<SDNode *, 4> Worklist;
2321 
2322     Worklist.push_back(BasePtr.getOperand(0).getNode());
2323     Worklist.push_back(BasePtr.getOperand(1).getNode());
2324 
2325     while (!Worklist.empty()) {
2326       SDNode *N = Worklist.pop_back_val();
2327       unsigned Opcode = N->getOpcode();
2328 
2329       if (!isOpcodeHandled(N))
2330         continue;
2331 
2332       Worklist.push_back(N->getOperand(0).getNode());
2333       Worklist.push_back(N->getOperand(1).getNode());
2334 
2335       // Not a root if it has only one use and same opcode as its parent
2336       if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
2337         continue;
2338 
2339       // This root node has already been processed
2340       if (RootWeights.count(N))
2341         continue;
2342 
2343       RootWeights[N] = -1;
2344     }
2345 
2346     // Balance node itself
2347     RootWeights[BasePtr.getNode()] = -1;
2348     SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
2349 
2350     if (N->getOpcode() == ISD::LOAD)
2351       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
2352             NewBasePtr, N->getOperand(2));
2353     else
2354       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
2355             NewBasePtr, N->getOperand(3));
2356 
2357     LLVM_DEBUG(dbgs() << "--> Final node: ");
2358     LLVM_DEBUG(N->dump(CurDAG));
2359   }
2360 
2361   CurDAG->RemoveDeadNodes();
2362   GAUsesInFunction.clear();
2363   RootHeights.clear();
2364   RootWeights.clear();
2365 }
2366