1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies loops where we can generate the Hexagon hardware 10 // loop instruction. The hardware loop can perform loop branches with a 11 // zero-cycle overhead. 12 // 13 // The pattern that defines the induction variable can changed depending on 14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 15 // normalizes induction variables, and the Loop Strength Reduction pass 16 // run by 'llc' may also make changes to the induction variable. 17 // The pattern detected by this phase is due to running Strength Reduction. 18 // 19 // Criteria for hardware loops: 20 // - Countable loops (w/ ind. var for a trip count) 21 // - Assumes loops are normalized by IndVarSimplify 22 // - Try inner-most loops first 23 // - No function calls in loops. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "HexagonInstrInfo.h" 28 #include "HexagonSubtarget.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineOperand.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <cassert> 54 #include <cstdint> 55 #include <cstdlib> 56 #include <iterator> 57 #include <map> 58 #include <set> 59 #include <string> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "hwloops" 66 67 #ifndef NDEBUG 68 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 69 70 // Option to create preheader only for a specific function. 71 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 72 cl::init("")); 73 #endif 74 75 // Option to create a preheader if one doesn't exist. 76 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 77 cl::Hidden, cl::init(true), 78 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 79 80 // Turn it off by default. If a preheader block is not created here, the 81 // software pipeliner may be unable to find a block suitable to serve as 82 // a preheader. In that case SWP will not run. 83 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false), 84 cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader " 85 "instructions")); 86 87 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 88 89 namespace llvm { 90 91 FunctionPass *createHexagonHardwareLoops(); 92 void initializeHexagonHardwareLoopsPass(PassRegistry&); 93 94 } // end namespace llvm 95 96 namespace { 97 98 class CountValue; 99 100 struct HexagonHardwareLoops : public MachineFunctionPass { 101 MachineLoopInfo *MLI; 102 MachineRegisterInfo *MRI; 103 MachineDominatorTree *MDT; 104 const HexagonInstrInfo *TII; 105 const HexagonRegisterInfo *TRI; 106 #ifndef NDEBUG 107 static int Counter; 108 #endif 109 110 public: 111 static char ID; 112 113 HexagonHardwareLoops() : MachineFunctionPass(ID) {} 114 115 bool runOnMachineFunction(MachineFunction &MF) override; 116 117 StringRef getPassName() const override { return "Hexagon Hardware Loops"; } 118 119 void getAnalysisUsage(AnalysisUsage &AU) const override { 120 AU.addRequired<MachineDominatorTree>(); 121 AU.addRequired<MachineLoopInfo>(); 122 MachineFunctionPass::getAnalysisUsage(AU); 123 } 124 125 private: 126 using LoopFeederMap = std::map<unsigned, MachineInstr *>; 127 128 /// Kinds of comparisons in the compare instructions. 129 struct Comparison { 130 enum Kind { 131 EQ = 0x01, 132 NE = 0x02, 133 L = 0x04, 134 G = 0x08, 135 U = 0x40, 136 LTs = L, 137 LEs = L | EQ, 138 GTs = G, 139 GEs = G | EQ, 140 LTu = L | U, 141 LEu = L | EQ | U, 142 GTu = G | U, 143 GEu = G | EQ | U 144 }; 145 146 static Kind getSwappedComparison(Kind Cmp) { 147 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 148 if ((Cmp & L) || (Cmp & G)) 149 return (Kind)(Cmp ^ (L|G)); 150 return Cmp; 151 } 152 153 static Kind getNegatedComparison(Kind Cmp) { 154 if ((Cmp & L) || (Cmp & G)) 155 return (Kind)((Cmp ^ (L | G)) ^ EQ); 156 if ((Cmp & NE) || (Cmp & EQ)) 157 return (Kind)(Cmp ^ (EQ | NE)); 158 return (Kind)0; 159 } 160 161 static bool isSigned(Kind Cmp) { 162 return (Cmp & (L | G) && !(Cmp & U)); 163 } 164 165 static bool isUnsigned(Kind Cmp) { 166 return (Cmp & U); 167 } 168 }; 169 170 /// Find the register that contains the loop controlling 171 /// induction variable. 172 /// If successful, it will return true and set the \p Reg, \p IVBump 173 /// and \p IVOp arguments. Otherwise it will return false. 174 /// The returned induction register is the register R that follows the 175 /// following induction pattern: 176 /// loop: 177 /// R = phi ..., [ R.next, LatchBlock ] 178 /// R.next = R + #bump 179 /// if (R.next < #N) goto loop 180 /// IVBump is the immediate value added to R, and IVOp is the instruction 181 /// "R.next = R + #bump". 182 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 183 int64_t &IVBump, MachineInstr *&IVOp) const; 184 185 /// Return the comparison kind for the specified opcode. 186 Comparison::Kind getComparisonKind(unsigned CondOpc, 187 MachineOperand *InitialValue, 188 const MachineOperand *Endvalue, 189 int64_t IVBump) const; 190 191 /// Analyze the statements in a loop to determine if the loop 192 /// has a computable trip count and, if so, return a value that represents 193 /// the trip count expression. 194 CountValue *getLoopTripCount(MachineLoop *L, 195 SmallVectorImpl<MachineInstr *> &OldInsts); 196 197 /// Return the expression that represents the number of times 198 /// a loop iterates. The function takes the operands that represent the 199 /// loop start value, loop end value, and induction value. Based upon 200 /// these operands, the function attempts to compute the trip count. 201 /// If the trip count is not directly available (as an immediate value, 202 /// or a register), the function will attempt to insert computation of it 203 /// to the loop's preheader. 204 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 205 const MachineOperand *End, unsigned IVReg, 206 int64_t IVBump, Comparison::Kind Cmp) const; 207 208 /// Return true if the instruction is not valid within a hardware 209 /// loop. 210 bool isInvalidLoopOperation(const MachineInstr *MI, 211 bool IsInnerHWLoop) const; 212 213 /// Return true if the loop contains an instruction that inhibits 214 /// using the hardware loop. 215 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 216 217 /// Given a loop, check if we can convert it to a hardware loop. 218 /// If so, then perform the conversion and return true. 219 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 220 221 /// Return true if the instruction is now dead. 222 bool isDead(const MachineInstr *MI, 223 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 224 225 /// Remove the instruction if it is now dead. 226 void removeIfDead(MachineInstr *MI); 227 228 /// Make sure that the "bump" instruction executes before the 229 /// compare. We need that for the IV fixup, so that the compare 230 /// instruction would not use a bumped value that has not yet been 231 /// defined. If the instructions are out of order, try to reorder them. 232 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 233 234 /// Return true if MO and MI pair is visited only once. If visited 235 /// more than once, this indicates there is recursion. In such a case, 236 /// return false. 237 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 238 const MachineOperand *MO, 239 LoopFeederMap &LoopFeederPhi) const; 240 241 /// Return true if the Phi may generate a value that may underflow, 242 /// or may wrap. 243 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 244 MachineBasicBlock *MBB, MachineLoop *L, 245 LoopFeederMap &LoopFeederPhi) const; 246 247 /// Return true if the induction variable may underflow an unsigned 248 /// value in the first iteration. 249 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 250 const MachineOperand *EndVal, 251 MachineBasicBlock *MBB, MachineLoop *L, 252 LoopFeederMap &LoopFeederPhi) const; 253 254 /// Check if the given operand has a compile-time known constant 255 /// value. Return true if yes, and false otherwise. When returning true, set 256 /// Val to the corresponding constant value. 257 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 258 259 /// Check if the operand has a compile-time known constant value. 260 bool isImmediate(const MachineOperand &MO) const { 261 int64_t V; 262 return checkForImmediate(MO, V); 263 } 264 265 /// Return the immediate for the specified operand. 266 int64_t getImmediate(const MachineOperand &MO) const { 267 int64_t V; 268 if (!checkForImmediate(MO, V)) 269 llvm_unreachable("Invalid operand"); 270 return V; 271 } 272 273 /// Reset the given machine operand to now refer to a new immediate 274 /// value. Assumes that the operand was already referencing an immediate 275 /// value, either directly, or via a register. 276 void setImmediate(MachineOperand &MO, int64_t Val); 277 278 /// Fix the data flow of the induction variable. 279 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 280 /// | 281 /// +-> back to phi 282 /// where "bump" is the increment of the induction variable: 283 /// iv = iv + #const. 284 /// Due to some prior code transformations, the actual flow may look 285 /// like this: 286 /// phi -+-> bump ---> back to phi 287 /// | 288 /// +-> comparison-in-latch (against upper_bound-bump), 289 /// i.e. the comparison that controls the loop execution may be using 290 /// the value of the induction variable from before the increment. 291 /// 292 /// Return true if the loop's flow is the desired one (i.e. it's 293 /// either been fixed, or no fixing was necessary). 294 /// Otherwise, return false. This can happen if the induction variable 295 /// couldn't be identified, or if the value in the latch's comparison 296 /// cannot be adjusted to reflect the post-bump value. 297 bool fixupInductionVariable(MachineLoop *L); 298 299 /// Given a loop, if it does not have a preheader, create one. 300 /// Return the block that is the preheader. 301 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 302 }; 303 304 char HexagonHardwareLoops::ID = 0; 305 #ifndef NDEBUG 306 int HexagonHardwareLoops::Counter = 0; 307 #endif 308 309 /// Abstraction for a trip count of a loop. A smaller version 310 /// of the MachineOperand class without the concerns of changing the 311 /// operand representation. 312 class CountValue { 313 public: 314 enum CountValueType { 315 CV_Register, 316 CV_Immediate 317 }; 318 319 private: 320 CountValueType Kind; 321 union Values { 322 struct { 323 unsigned Reg; 324 unsigned Sub; 325 } R; 326 unsigned ImmVal; 327 } Contents; 328 329 public: 330 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 331 Kind = t; 332 if (Kind == CV_Register) { 333 Contents.R.Reg = v; 334 Contents.R.Sub = u; 335 } else { 336 Contents.ImmVal = v; 337 } 338 } 339 340 bool isReg() const { return Kind == CV_Register; } 341 bool isImm() const { return Kind == CV_Immediate; } 342 343 unsigned getReg() const { 344 assert(isReg() && "Wrong CountValue accessor"); 345 return Contents.R.Reg; 346 } 347 348 unsigned getSubReg() const { 349 assert(isReg() && "Wrong CountValue accessor"); 350 return Contents.R.Sub; 351 } 352 353 unsigned getImm() const { 354 assert(isImm() && "Wrong CountValue accessor"); 355 return Contents.ImmVal; 356 } 357 358 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 359 if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); } 360 if (isImm()) { OS << Contents.ImmVal; } 361 } 362 }; 363 364 } // end anonymous namespace 365 366 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 367 "Hexagon Hardware Loops", false, false) 368 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 369 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 370 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 371 "Hexagon Hardware Loops", false, false) 372 373 FunctionPass *llvm::createHexagonHardwareLoops() { 374 return new HexagonHardwareLoops(); 375 } 376 377 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 378 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 379 if (skipFunction(MF.getFunction())) 380 return false; 381 382 bool Changed = false; 383 384 MLI = &getAnalysis<MachineLoopInfo>(); 385 MRI = &MF.getRegInfo(); 386 MDT = &getAnalysis<MachineDominatorTree>(); 387 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); 388 TII = HST.getInstrInfo(); 389 TRI = HST.getRegisterInfo(); 390 391 for (auto &L : *MLI) 392 if (!L->getParentLoop()) { 393 bool L0Used = false; 394 bool L1Used = false; 395 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 396 } 397 398 return Changed; 399 } 400 401 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 402 unsigned &Reg, 403 int64_t &IVBump, 404 MachineInstr *&IVOp 405 ) const { 406 MachineBasicBlock *Header = L->getHeader(); 407 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 408 MachineBasicBlock *Latch = L->getLoopLatch(); 409 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 410 if (!Header || !Preheader || !Latch || !ExitingBlock) 411 return false; 412 413 // This pair represents an induction register together with an immediate 414 // value that will be added to it in each loop iteration. 415 using RegisterBump = std::pair<unsigned, int64_t>; 416 417 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 418 // from an induction operation 419 // R.next = R + bump 420 // where bump is an immediate value. 421 using InductionMap = std::map<unsigned, RegisterBump>; 422 423 InductionMap IndMap; 424 425 using instr_iterator = MachineBasicBlock::instr_iterator; 426 427 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 428 I != E && I->isPHI(); ++I) { 429 MachineInstr *Phi = &*I; 430 431 // Have a PHI instruction. Get the operand that corresponds to the 432 // latch block, and see if is a result of an addition of form "reg+imm", 433 // where the "reg" is defined by the PHI node we are looking at. 434 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 435 if (Phi->getOperand(i+1).getMBB() != Latch) 436 continue; 437 438 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 439 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 440 441 if (DI->getDesc().isAdd()) { 442 // If the register operand to the add is the PHI we're looking at, this 443 // meets the induction pattern. 444 unsigned IndReg = DI->getOperand(1).getReg(); 445 MachineOperand &Opnd2 = DI->getOperand(2); 446 int64_t V; 447 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 448 unsigned UpdReg = DI->getOperand(0).getReg(); 449 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 450 } 451 } 452 } // for (i) 453 } // for (instr) 454 455 SmallVector<MachineOperand,2> Cond; 456 MachineBasicBlock *TB = nullptr, *FB = nullptr; 457 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 458 if (NotAnalyzed) 459 return false; 460 461 unsigned PredR, PredPos, PredRegFlags; 462 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 463 return false; 464 465 MachineInstr *PredI = MRI->getVRegDef(PredR); 466 if (!PredI->isCompare()) 467 return false; 468 469 unsigned CmpReg1 = 0, CmpReg2 = 0; 470 int CmpImm = 0, CmpMask = 0; 471 bool CmpAnalyzed = 472 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 473 // Fail if the compare was not analyzed, or it's not comparing a register 474 // with an immediate value. Not checking the mask here, since we handle 475 // the individual compare opcodes (including A4_cmpb*) later on. 476 if (!CmpAnalyzed) 477 return false; 478 479 // Exactly one of the input registers to the comparison should be among 480 // the induction registers. 481 InductionMap::iterator IndMapEnd = IndMap.end(); 482 InductionMap::iterator F = IndMapEnd; 483 if (CmpReg1 != 0) { 484 InductionMap::iterator F1 = IndMap.find(CmpReg1); 485 if (F1 != IndMapEnd) 486 F = F1; 487 } 488 if (CmpReg2 != 0) { 489 InductionMap::iterator F2 = IndMap.find(CmpReg2); 490 if (F2 != IndMapEnd) { 491 if (F != IndMapEnd) 492 return false; 493 F = F2; 494 } 495 } 496 if (F == IndMapEnd) 497 return false; 498 499 Reg = F->second.first; 500 IVBump = F->second.second; 501 IVOp = MRI->getVRegDef(F->first); 502 return true; 503 } 504 505 // Return the comparison kind for the specified opcode. 506 HexagonHardwareLoops::Comparison::Kind 507 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 508 MachineOperand *InitialValue, 509 const MachineOperand *EndValue, 510 int64_t IVBump) const { 511 Comparison::Kind Cmp = (Comparison::Kind)0; 512 switch (CondOpc) { 513 case Hexagon::C2_cmpeq: 514 case Hexagon::C2_cmpeqi: 515 case Hexagon::C2_cmpeqp: 516 Cmp = Comparison::EQ; 517 break; 518 case Hexagon::C4_cmpneq: 519 case Hexagon::C4_cmpneqi: 520 Cmp = Comparison::NE; 521 break; 522 case Hexagon::C2_cmplt: 523 Cmp = Comparison::LTs; 524 break; 525 case Hexagon::C2_cmpltu: 526 Cmp = Comparison::LTu; 527 break; 528 case Hexagon::C4_cmplte: 529 case Hexagon::C4_cmpltei: 530 Cmp = Comparison::LEs; 531 break; 532 case Hexagon::C4_cmplteu: 533 case Hexagon::C4_cmplteui: 534 Cmp = Comparison::LEu; 535 break; 536 case Hexagon::C2_cmpgt: 537 case Hexagon::C2_cmpgti: 538 case Hexagon::C2_cmpgtp: 539 Cmp = Comparison::GTs; 540 break; 541 case Hexagon::C2_cmpgtu: 542 case Hexagon::C2_cmpgtui: 543 case Hexagon::C2_cmpgtup: 544 Cmp = Comparison::GTu; 545 break; 546 case Hexagon::C2_cmpgei: 547 Cmp = Comparison::GEs; 548 break; 549 case Hexagon::C2_cmpgeui: 550 Cmp = Comparison::GEs; 551 break; 552 default: 553 return (Comparison::Kind)0; 554 } 555 return Cmp; 556 } 557 558 /// Analyze the statements in a loop to determine if the loop has 559 /// a computable trip count and, if so, return a value that represents 560 /// the trip count expression. 561 /// 562 /// This function iterates over the phi nodes in the loop to check for 563 /// induction variable patterns that are used in the calculation for 564 /// the number of time the loop is executed. 565 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 566 SmallVectorImpl<MachineInstr *> &OldInsts) { 567 MachineBasicBlock *TopMBB = L->getTopBlock(); 568 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 569 assert(PI != TopMBB->pred_end() && 570 "Loop must have more than one incoming edge!"); 571 MachineBasicBlock *Backedge = *PI++; 572 if (PI == TopMBB->pred_end()) // dead loop? 573 return nullptr; 574 MachineBasicBlock *Incoming = *PI++; 575 if (PI != TopMBB->pred_end()) // multiple backedges? 576 return nullptr; 577 578 // Make sure there is one incoming and one backedge and determine which 579 // is which. 580 if (L->contains(Incoming)) { 581 if (L->contains(Backedge)) 582 return nullptr; 583 std::swap(Incoming, Backedge); 584 } else if (!L->contains(Backedge)) 585 return nullptr; 586 587 // Look for the cmp instruction to determine if we can get a useful trip 588 // count. The trip count can be either a register or an immediate. The 589 // location of the value depends upon the type (reg or imm). 590 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 591 if (!ExitingBlock) 592 return nullptr; 593 594 unsigned IVReg = 0; 595 int64_t IVBump = 0; 596 MachineInstr *IVOp; 597 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 598 if (!FoundIV) 599 return nullptr; 600 601 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 602 603 MachineOperand *InitialValue = nullptr; 604 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 605 MachineBasicBlock *Latch = L->getLoopLatch(); 606 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 607 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 608 if (MBB == Preheader) 609 InitialValue = &IV_Phi->getOperand(i); 610 else if (MBB == Latch) 611 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 612 } 613 if (!InitialValue) 614 return nullptr; 615 616 SmallVector<MachineOperand,2> Cond; 617 MachineBasicBlock *TB = nullptr, *FB = nullptr; 618 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 619 if (NotAnalyzed) 620 return nullptr; 621 622 MachineBasicBlock *Header = L->getHeader(); 623 // TB must be non-null. If FB is also non-null, one of them must be 624 // the header. Otherwise, branch to TB could be exiting the loop, and 625 // the fall through can go to the header. 626 assert (TB && "Exit block without a branch?"); 627 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 628 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 629 SmallVector<MachineOperand,2> LCond; 630 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 631 if (NotAnalyzed) 632 return nullptr; 633 if (TB == Latch) 634 TB = (LTB == Header) ? LTB : LFB; 635 else 636 FB = (LTB == Header) ? LTB: LFB; 637 } 638 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 639 if (!TB || (FB && TB != Header && FB != Header)) 640 return nullptr; 641 642 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 643 // to put imm(0), followed by P in the vector Cond. 644 // If TB is not the header, it means that the "not-taken" path must lead 645 // to the header. 646 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 647 unsigned PredReg, PredPos, PredRegFlags; 648 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 649 return nullptr; 650 MachineInstr *CondI = MRI->getVRegDef(PredReg); 651 unsigned CondOpc = CondI->getOpcode(); 652 653 unsigned CmpReg1 = 0, CmpReg2 = 0; 654 int Mask = 0, ImmValue = 0; 655 bool AnalyzedCmp = 656 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 657 if (!AnalyzedCmp) 658 return nullptr; 659 660 // The comparison operator type determines how we compute the loop 661 // trip count. 662 OldInsts.push_back(CondI); 663 OldInsts.push_back(IVOp); 664 665 // Sadly, the following code gets information based on the position 666 // of the operands in the compare instruction. This has to be done 667 // this way, because the comparisons check for a specific relationship 668 // between the operands (e.g. is-less-than), rather than to find out 669 // what relationship the operands are in (as on PPC). 670 Comparison::Kind Cmp; 671 bool isSwapped = false; 672 const MachineOperand &Op1 = CondI->getOperand(1); 673 const MachineOperand &Op2 = CondI->getOperand(2); 674 const MachineOperand *EndValue = nullptr; 675 676 if (Op1.isReg()) { 677 if (Op2.isImm() || Op1.getReg() == IVReg) 678 EndValue = &Op2; 679 else { 680 EndValue = &Op1; 681 isSwapped = true; 682 } 683 } 684 685 if (!EndValue) 686 return nullptr; 687 688 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 689 if (!Cmp) 690 return nullptr; 691 if (Negated) 692 Cmp = Comparison::getNegatedComparison(Cmp); 693 if (isSwapped) 694 Cmp = Comparison::getSwappedComparison(Cmp); 695 696 if (InitialValue->isReg()) { 697 unsigned R = InitialValue->getReg(); 698 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 699 if (!MDT->properlyDominates(DefBB, Header)) { 700 int64_t V; 701 if (!checkForImmediate(*InitialValue, V)) 702 return nullptr; 703 } 704 OldInsts.push_back(MRI->getVRegDef(R)); 705 } 706 if (EndValue->isReg()) { 707 unsigned R = EndValue->getReg(); 708 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 709 if (!MDT->properlyDominates(DefBB, Header)) { 710 int64_t V; 711 if (!checkForImmediate(*EndValue, V)) 712 return nullptr; 713 } 714 OldInsts.push_back(MRI->getVRegDef(R)); 715 } 716 717 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 718 } 719 720 /// Helper function that returns the expression that represents the 721 /// number of times a loop iterates. The function takes the operands that 722 /// represent the loop start value, loop end value, and induction value. 723 /// Based upon these operands, the function attempts to compute the trip count. 724 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 725 const MachineOperand *Start, 726 const MachineOperand *End, 727 unsigned IVReg, 728 int64_t IVBump, 729 Comparison::Kind Cmp) const { 730 // Cannot handle comparison EQ, i.e. while (A == B). 731 if (Cmp == Comparison::EQ) 732 return nullptr; 733 734 // Check if either the start or end values are an assignment of an immediate. 735 // If so, use the immediate value rather than the register. 736 if (Start->isReg()) { 737 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 738 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 739 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 740 Start = &StartValInstr->getOperand(1); 741 } 742 if (End->isReg()) { 743 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 744 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 745 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 746 End = &EndValInstr->getOperand(1); 747 } 748 749 if (!Start->isReg() && !Start->isImm()) 750 return nullptr; 751 if (!End->isReg() && !End->isImm()) 752 return nullptr; 753 754 bool CmpLess = Cmp & Comparison::L; 755 bool CmpGreater = Cmp & Comparison::G; 756 bool CmpHasEqual = Cmp & Comparison::EQ; 757 758 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 759 if (CmpLess && IVBump < 0) 760 // Loop going while iv is "less" with the iv value going down. Must wrap. 761 return nullptr; 762 763 if (CmpGreater && IVBump > 0) 764 // Loop going while iv is "greater" with the iv value going up. Must wrap. 765 return nullptr; 766 767 // Phis that may feed into the loop. 768 LoopFeederMap LoopFeederPhi; 769 770 // Check if the initial value may be zero and can be decremented in the first 771 // iteration. If the value is zero, the endloop instruction will not decrement 772 // the loop counter, so we shouldn't generate a hardware loop in this case. 773 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 774 LoopFeederPhi)) 775 return nullptr; 776 777 if (Start->isImm() && End->isImm()) { 778 // Both, start and end are immediates. 779 int64_t StartV = Start->getImm(); 780 int64_t EndV = End->getImm(); 781 int64_t Dist = EndV - StartV; 782 if (Dist == 0) 783 return nullptr; 784 785 bool Exact = (Dist % IVBump) == 0; 786 787 if (Cmp == Comparison::NE) { 788 if (!Exact) 789 return nullptr; 790 if ((Dist < 0) ^ (IVBump < 0)) 791 return nullptr; 792 } 793 794 // For comparisons that include the final value (i.e. include equality 795 // with the final value), we need to increase the distance by 1. 796 if (CmpHasEqual) 797 Dist = Dist > 0 ? Dist+1 : Dist-1; 798 799 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 800 // CmpGreater should imply Dist < 0. These conditions could actually 801 // fail, for example, in unreachable code (which may still appear to be 802 // reachable in the CFG). 803 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 804 return nullptr; 805 806 // "Normalized" distance, i.e. with the bump set to +-1. 807 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 808 : (-Dist + (-IVBump - 1)) / (-IVBump); 809 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 810 811 uint64_t Count = Dist1; 812 813 if (Count > 0xFFFFFFFFULL) 814 return nullptr; 815 816 return new CountValue(CountValue::CV_Immediate, Count); 817 } 818 819 // A general case: Start and End are some values, but the actual 820 // iteration count may not be available. If it is not, insert 821 // a computation of it into the preheader. 822 823 // If the induction variable bump is not a power of 2, quit. 824 // Othwerise we'd need a general integer division. 825 if (!isPowerOf2_64(std::abs(IVBump))) 826 return nullptr; 827 828 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); 829 assert (PH && "Should have a preheader by now"); 830 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 831 DebugLoc DL; 832 if (InsertPos != PH->end()) 833 DL = InsertPos->getDebugLoc(); 834 835 // If Start is an immediate and End is a register, the trip count 836 // will be "reg - imm". Hexagon's "subtract immediate" instruction 837 // is actually "reg + -imm". 838 839 // If the loop IV is going downwards, i.e. if the bump is negative, 840 // then the iteration count (computed as End-Start) will need to be 841 // negated. To avoid the negation, just swap Start and End. 842 if (IVBump < 0) { 843 std::swap(Start, End); 844 IVBump = -IVBump; 845 } 846 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 847 // Signedness, and "including equality" are preserved. 848 849 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 850 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 851 852 int64_t StartV = 0, EndV = 0; 853 if (Start->isImm()) 854 StartV = Start->getImm(); 855 if (End->isImm()) 856 EndV = End->getImm(); 857 858 int64_t AdjV = 0; 859 // To compute the iteration count, we would need this computation: 860 // Count = (End - Start + (IVBump-1)) / IVBump 861 // or, when CmpHasEqual: 862 // Count = (End - Start + (IVBump-1)+1) / IVBump 863 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 864 // generating an instruction specifically to add it if we can adjust 865 // the immediate values for Start or End. 866 867 if (CmpHasEqual) { 868 // Need to add 1 to the total iteration count. 869 if (Start->isImm()) 870 StartV--; 871 else if (End->isImm()) 872 EndV++; 873 else 874 AdjV += 1; 875 } 876 877 if (Cmp != Comparison::NE) { 878 if (Start->isImm()) 879 StartV -= (IVBump-1); 880 else if (End->isImm()) 881 EndV += (IVBump-1); 882 else 883 AdjV += (IVBump-1); 884 } 885 886 unsigned R = 0, SR = 0; 887 if (Start->isReg()) { 888 R = Start->getReg(); 889 SR = Start->getSubReg(); 890 } else { 891 R = End->getReg(); 892 SR = End->getSubReg(); 893 } 894 const TargetRegisterClass *RC = MRI->getRegClass(R); 895 // Hardware loops cannot handle 64-bit registers. If it's a double 896 // register, it has to have a subregister. 897 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 898 return nullptr; 899 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 900 901 // Compute DistR (register with the distance between Start and End). 902 unsigned DistR, DistSR; 903 904 // Avoid special case, where the start value is an imm(0). 905 if (Start->isImm() && StartV == 0) { 906 DistR = End->getReg(); 907 DistSR = End->getSubReg(); 908 } else { 909 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 910 (RegToImm ? TII->get(Hexagon::A2_subri) : 911 TII->get(Hexagon::A2_addi)); 912 if (RegToReg || RegToImm) { 913 unsigned SubR = MRI->createVirtualRegister(IntRC); 914 MachineInstrBuilder SubIB = 915 BuildMI(*PH, InsertPos, DL, SubD, SubR); 916 917 if (RegToReg) 918 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 919 .addReg(Start->getReg(), 0, Start->getSubReg()); 920 else 921 SubIB.addImm(EndV) 922 .addReg(Start->getReg(), 0, Start->getSubReg()); 923 DistR = SubR; 924 } else { 925 // If the loop has been unrolled, we should use the original loop count 926 // instead of recalculating the value. This will avoid additional 927 // 'Add' instruction. 928 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 929 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 930 EndValInstr->getOperand(1).getSubReg() == 0 && 931 EndValInstr->getOperand(2).getImm() == StartV) { 932 DistR = EndValInstr->getOperand(1).getReg(); 933 } else { 934 unsigned SubR = MRI->createVirtualRegister(IntRC); 935 MachineInstrBuilder SubIB = 936 BuildMI(*PH, InsertPos, DL, SubD, SubR); 937 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 938 .addImm(-StartV); 939 DistR = SubR; 940 } 941 } 942 DistSR = 0; 943 } 944 945 // From DistR, compute AdjR (register with the adjusted distance). 946 unsigned AdjR, AdjSR; 947 948 if (AdjV == 0) { 949 AdjR = DistR; 950 AdjSR = DistSR; 951 } else { 952 // Generate CountR = ADD DistR, AdjVal 953 unsigned AddR = MRI->createVirtualRegister(IntRC); 954 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 955 BuildMI(*PH, InsertPos, DL, AddD, AddR) 956 .addReg(DistR, 0, DistSR) 957 .addImm(AdjV); 958 959 AdjR = AddR; 960 AdjSR = 0; 961 } 962 963 // From AdjR, compute CountR (register with the final count). 964 unsigned CountR, CountSR; 965 966 if (IVBump == 1) { 967 CountR = AdjR; 968 CountSR = AdjSR; 969 } else { 970 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 971 unsigned Shift = Log2_32(IVBump); 972 973 // Generate NormR = LSR DistR, Shift. 974 unsigned LsrR = MRI->createVirtualRegister(IntRC); 975 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 976 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 977 .addReg(AdjR, 0, AdjSR) 978 .addImm(Shift); 979 980 CountR = LsrR; 981 CountSR = 0; 982 } 983 984 return new CountValue(CountValue::CV_Register, CountR, CountSR); 985 } 986 987 /// Return true if the operation is invalid within hardware loop. 988 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 989 bool IsInnerHWLoop) const { 990 // Call is not allowed because the callee may use a hardware loop except for 991 // the case when the call never returns. 992 if (MI->getDesc().isCall()) 993 return !TII->doesNotReturn(*MI); 994 995 // Check if the instruction defines a hardware loop register. 996 using namespace Hexagon; 997 998 static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 }; 999 static const unsigned Regs1[] = { LC1, SA1 }; 1000 auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01)) 1001 : makeArrayRef(Regs1, array_lengthof(Regs1)); 1002 for (unsigned R : CheckRegs) 1003 if (MI->modifiesRegister(R, TRI)) 1004 return true; 1005 1006 return false; 1007 } 1008 1009 /// Return true if the loop contains an instruction that inhibits 1010 /// the use of the hardware loop instruction. 1011 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 1012 bool IsInnerHWLoop) const { 1013 LLVM_DEBUG(dbgs() << "\nhw_loop head, " 1014 << printMBBReference(**L->block_begin())); 1015 for (MachineBasicBlock *MBB : L->getBlocks()) { 1016 for (MachineBasicBlock::iterator 1017 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 1018 const MachineInstr *MI = &*MII; 1019 if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { 1020 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:"; 1021 MI->dump();); 1022 return true; 1023 } 1024 } 1025 } 1026 return false; 1027 } 1028 1029 /// Returns true if the instruction is dead. This was essentially 1030 /// copied from DeadMachineInstructionElim::isDead, but with special cases 1031 /// for inline asm, physical registers and instructions with side effects 1032 /// removed. 1033 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 1034 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 1035 // Examine each operand. 1036 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1037 const MachineOperand &MO = MI->getOperand(i); 1038 if (!MO.isReg() || !MO.isDef()) 1039 continue; 1040 1041 unsigned Reg = MO.getReg(); 1042 if (MRI->use_nodbg_empty(Reg)) 1043 continue; 1044 1045 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; 1046 1047 // This instruction has users, but if the only user is the phi node for the 1048 // parent block, and the only use of that phi node is this instruction, then 1049 // this instruction is dead: both it (and the phi node) can be removed. 1050 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1051 use_nodbg_iterator End = MRI->use_nodbg_end(); 1052 if (std::next(I) != End || !I->getParent()->isPHI()) 1053 return false; 1054 1055 MachineInstr *OnePhi = I->getParent(); 1056 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 1057 const MachineOperand &OPO = OnePhi->getOperand(j); 1058 if (!OPO.isReg() || !OPO.isDef()) 1059 continue; 1060 1061 unsigned OPReg = OPO.getReg(); 1062 use_nodbg_iterator nextJ; 1063 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1064 J != End; J = nextJ) { 1065 nextJ = std::next(J); 1066 MachineOperand &Use = *J; 1067 MachineInstr *UseMI = Use.getParent(); 1068 1069 // If the phi node has a user that is not MI, bail. 1070 if (MI != UseMI) 1071 return false; 1072 } 1073 } 1074 DeadPhis.push_back(OnePhi); 1075 } 1076 1077 // If there are no defs with uses, the instruction is dead. 1078 return true; 1079 } 1080 1081 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1082 // This procedure was essentially copied from DeadMachineInstructionElim. 1083 1084 SmallVector<MachineInstr*, 1> DeadPhis; 1085 if (isDead(MI, DeadPhis)) { 1086 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI); 1087 1088 // It is possible that some DBG_VALUE instructions refer to this 1089 // instruction. Examine each def operand for such references; 1090 // if found, mark the DBG_VALUE as undef (but don't delete it). 1091 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1092 const MachineOperand &MO = MI->getOperand(i); 1093 if (!MO.isReg() || !MO.isDef()) 1094 continue; 1095 unsigned Reg = MO.getReg(); 1096 MachineRegisterInfo::use_iterator nextI; 1097 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 1098 E = MRI->use_end(); I != E; I = nextI) { 1099 nextI = std::next(I); // I is invalidated by the setReg 1100 MachineOperand &Use = *I; 1101 MachineInstr *UseMI = I->getParent(); 1102 if (UseMI == MI) 1103 continue; 1104 if (Use.isDebug()) 1105 UseMI->getOperand(0).setReg(0U); 1106 } 1107 } 1108 1109 MI->eraseFromParent(); 1110 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1111 DeadPhis[i]->eraseFromParent(); 1112 } 1113 } 1114 1115 /// Check if the loop is a candidate for converting to a hardware 1116 /// loop. If so, then perform the transformation. 1117 /// 1118 /// This function works on innermost loops first. A loop can be converted 1119 /// if it is a counting loop; either a register value or an immediate. 1120 /// 1121 /// The code makes several assumptions about the representation of the loop 1122 /// in llvm. 1123 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1124 bool &RecL0used, 1125 bool &RecL1used) { 1126 // This is just for sanity. 1127 assert(L->getHeader() && "Loop without a header?"); 1128 1129 bool Changed = false; 1130 bool L0Used = false; 1131 bool L1Used = false; 1132 1133 // Process nested loops first. 1134 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 1135 Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); 1136 L0Used |= RecL0used; 1137 L1Used |= RecL1used; 1138 } 1139 1140 // If a nested loop has been converted, then we can't convert this loop. 1141 if (Changed && L0Used && L1Used) 1142 return Changed; 1143 1144 unsigned LOOP_i; 1145 unsigned LOOP_r; 1146 unsigned ENDLOOP; 1147 1148 // Flag used to track loopN instruction: 1149 // 1 - Hardware loop is being generated for the inner most loop. 1150 // 0 - Hardware loop is being generated for the outer loop. 1151 unsigned IsInnerHWLoop = 1; 1152 1153 if (L0Used) { 1154 LOOP_i = Hexagon::J2_loop1i; 1155 LOOP_r = Hexagon::J2_loop1r; 1156 ENDLOOP = Hexagon::ENDLOOP1; 1157 IsInnerHWLoop = 0; 1158 } else { 1159 LOOP_i = Hexagon::J2_loop0i; 1160 LOOP_r = Hexagon::J2_loop0r; 1161 ENDLOOP = Hexagon::ENDLOOP0; 1162 } 1163 1164 #ifndef NDEBUG 1165 // Stop trying after reaching the limit (if any). 1166 int Limit = HWLoopLimit; 1167 if (Limit >= 0) { 1168 if (Counter >= HWLoopLimit) 1169 return false; 1170 Counter++; 1171 } 1172 #endif 1173 1174 // Does the loop contain any invalid instructions? 1175 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1176 return false; 1177 1178 MachineBasicBlock *LastMBB = L->findLoopControlBlock(); 1179 // Don't generate hw loop if the loop has more than one exit. 1180 if (!LastMBB) 1181 return false; 1182 1183 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1184 if (LastI == LastMBB->end()) 1185 return false; 1186 1187 // Is the induction variable bump feeding the latch condition? 1188 if (!fixupInductionVariable(L)) 1189 return false; 1190 1191 // Ensure the loop has a preheader: the loop instruction will be 1192 // placed there. 1193 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 1194 if (!Preheader) { 1195 Preheader = createPreheaderForLoop(L); 1196 if (!Preheader) 1197 return false; 1198 } 1199 1200 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1201 1202 SmallVector<MachineInstr*, 2> OldInsts; 1203 // Are we able to determine the trip count for the loop? 1204 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1205 if (!TripCount) 1206 return false; 1207 1208 // Is the trip count available in the preheader? 1209 if (TripCount->isReg()) { 1210 // There will be a use of the register inserted into the preheader, 1211 // so make sure that the register is actually defined at that point. 1212 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1213 MachineBasicBlock *BBDef = TCDef->getParent(); 1214 if (!MDT->dominates(BBDef, Preheader)) 1215 return false; 1216 } 1217 1218 // Determine the loop start. 1219 MachineBasicBlock *TopBlock = L->getTopBlock(); 1220 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1221 MachineBasicBlock *LoopStart = nullptr; 1222 if (ExitingBlock != L->getLoopLatch()) { 1223 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1224 SmallVector<MachineOperand, 2> Cond; 1225 1226 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1227 return false; 1228 1229 if (L->contains(TB)) 1230 LoopStart = TB; 1231 else if (L->contains(FB)) 1232 LoopStart = FB; 1233 else 1234 return false; 1235 } 1236 else 1237 LoopStart = TopBlock; 1238 1239 // Convert the loop to a hardware loop. 1240 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1241 DebugLoc DL; 1242 if (InsertPos != Preheader->end()) 1243 DL = InsertPos->getDebugLoc(); 1244 1245 if (TripCount->isReg()) { 1246 // Create a copy of the loop count register. 1247 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1248 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1249 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1250 // Add the Loop instruction to the beginning of the loop. 1251 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1252 .addReg(CountReg); 1253 } else { 1254 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1255 // Add the Loop immediate instruction to the beginning of the loop, 1256 // if the immediate fits in the instructions. Otherwise, we need to 1257 // create a new virtual register. 1258 int64_t CountImm = TripCount->getImm(); 1259 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) { 1260 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1261 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1262 .addImm(CountImm); 1263 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1264 .addMBB(LoopStart).addReg(CountReg); 1265 } else 1266 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1267 .addMBB(LoopStart).addImm(CountImm); 1268 } 1269 1270 // Make sure the loop start always has a reference in the CFG. We need 1271 // to create a BlockAddress operand to get this mechanism to work both the 1272 // MachineBasicBlock and BasicBlock objects need the flag set. 1273 LoopStart->setHasAddressTaken(); 1274 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1275 // object. 1276 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1277 1278 // Replace the loop branch with an endloop instruction. 1279 DebugLoc LastIDL = LastI->getDebugLoc(); 1280 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1281 1282 // The loop ends with either: 1283 // - a conditional branch followed by an unconditional branch, or 1284 // - a conditional branch to the loop start. 1285 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1286 LastI->getOpcode() == Hexagon::J2_jumpf) { 1287 // Delete one and change/add an uncond. branch to out of the loop. 1288 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1289 LastI = LastMBB->erase(LastI); 1290 if (!L->contains(BranchTarget)) { 1291 if (LastI != LastMBB->end()) 1292 LastI = LastMBB->erase(LastI); 1293 SmallVector<MachineOperand, 0> Cond; 1294 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1295 } 1296 } else { 1297 // Conditional branch to loop start; just delete it. 1298 LastMBB->erase(LastI); 1299 } 1300 delete TripCount; 1301 1302 // The induction operation and the comparison may now be 1303 // unneeded. If these are unneeded, then remove them. 1304 for (unsigned i = 0; i < OldInsts.size(); ++i) 1305 removeIfDead(OldInsts[i]); 1306 1307 ++NumHWLoops; 1308 1309 // Set RecL1used and RecL0used only after hardware loop has been 1310 // successfully generated. Doing it earlier can cause wrong loop instruction 1311 // to be used. 1312 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1313 RecL1used = true; 1314 else 1315 RecL0used = true; 1316 1317 return true; 1318 } 1319 1320 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1321 MachineInstr *CmpI) { 1322 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1323 1324 MachineBasicBlock *BB = BumpI->getParent(); 1325 if (CmpI->getParent() != BB) 1326 return false; 1327 1328 using instr_iterator = MachineBasicBlock::instr_iterator; 1329 1330 // Check if things are in order to begin with. 1331 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1332 if (&*I == CmpI) 1333 return true; 1334 1335 // Out of order. 1336 unsigned PredR = CmpI->getOperand(0).getReg(); 1337 bool FoundBump = false; 1338 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1339 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1340 MachineInstr *In = &*I; 1341 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1342 MachineOperand &MO = In->getOperand(i); 1343 if (MO.isReg() && MO.isUse()) { 1344 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1345 return false; 1346 } 1347 } 1348 1349 if (In == BumpI) { 1350 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1351 FoundBump = true; 1352 break; 1353 } 1354 } 1355 assert (FoundBump && "Cannot determine instruction order"); 1356 return FoundBump; 1357 } 1358 1359 /// This function is required to break recursion. Visiting phis in a loop may 1360 /// result in recursion during compilation. We break the recursion by making 1361 /// sure that we visit a MachineOperand and its definition in a 1362 /// MachineInstruction only once. If we attempt to visit more than once, then 1363 /// there is recursion, and will return false. 1364 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1365 MachineInstr *MI, 1366 const MachineOperand *MO, 1367 LoopFeederMap &LoopFeederPhi) const { 1368 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1369 LLVM_DEBUG(dbgs() << "\nhw_loop head, " 1370 << printMBBReference(**L->block_begin())); 1371 // Ignore all BBs that form Loop. 1372 for (MachineBasicBlock *MBB : L->getBlocks()) { 1373 if (A == MBB) 1374 return false; 1375 } 1376 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1377 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1378 return true; 1379 } else 1380 // Already visited node. 1381 return false; 1382 } 1383 1384 /// Return true if a Phi may generate a value that can underflow. 1385 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1386 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1387 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1388 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1389 assert(Phi->isPHI() && "Expecting a Phi."); 1390 // Walk through each Phi, and its used operands. Make sure that 1391 // if there is recursion in Phi, we won't generate hardware loops. 1392 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1393 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1394 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1395 Phi->getParent(), L, LoopFeederPhi)) 1396 return true; 1397 return false; 1398 } 1399 1400 /// Return true if the induction variable can underflow in the first iteration. 1401 /// An example, is an initial unsigned value that is 0 and is decrement in the 1402 /// first itertion of a do-while loop. In this case, we cannot generate a 1403 /// hardware loop because the endloop instruction does not decrement the loop 1404 /// counter if it is <= 1. We only need to perform this analysis if the 1405 /// initial value is a register. 1406 /// 1407 /// This function assumes the initial value may underfow unless proven 1408 /// otherwise. If the type is signed, then we don't care because signed 1409 /// underflow is undefined. We attempt to prove the initial value is not 1410 /// zero by perfoming a crude analysis of the loop counter. This function 1411 /// checks if the initial value is used in any comparison prior to the loop 1412 /// and, if so, assumes the comparison is a range check. This is inexact, 1413 /// but will catch the simple cases. 1414 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1415 const MachineOperand *InitVal, const MachineOperand *EndVal, 1416 MachineBasicBlock *MBB, MachineLoop *L, 1417 LoopFeederMap &LoopFeederPhi) const { 1418 // Only check register values since they are unknown. 1419 if (!InitVal->isReg()) 1420 return false; 1421 1422 if (!EndVal->isImm()) 1423 return false; 1424 1425 // A register value that is assigned an immediate is a known value, and it 1426 // won't underflow in the first iteration. 1427 int64_t Imm; 1428 if (checkForImmediate(*InitVal, Imm)) 1429 return (EndVal->getImm() == Imm); 1430 1431 unsigned Reg = InitVal->getReg(); 1432 1433 // We don't know the value of a physical register. 1434 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1435 return true; 1436 1437 MachineInstr *Def = MRI->getVRegDef(Reg); 1438 if (!Def) 1439 return true; 1440 1441 // If the initial value is a Phi or copy and the operands may not underflow, 1442 // then the definition cannot be underflow either. 1443 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1444 L, LoopFeederPhi)) 1445 return false; 1446 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1447 EndVal, Def->getParent(), 1448 L, LoopFeederPhi)) 1449 return false; 1450 1451 // Iterate over the uses of the initial value. If the initial value is used 1452 // in a compare, then we assume this is a range check that ensures the loop 1453 // doesn't underflow. This is not an exact test and should be improved. 1454 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1455 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1456 MachineInstr *MI = &*I; 1457 unsigned CmpReg1 = 0, CmpReg2 = 0; 1458 int CmpMask = 0, CmpValue = 0; 1459 1460 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1461 continue; 1462 1463 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1464 SmallVector<MachineOperand, 2> Cond; 1465 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1466 continue; 1467 1468 Comparison::Kind Cmp = 1469 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); 1470 if (Cmp == 0) 1471 continue; 1472 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1473 Cmp = Comparison::getNegatedComparison(Cmp); 1474 if (CmpReg2 != 0 && CmpReg2 == Reg) 1475 Cmp = Comparison::getSwappedComparison(Cmp); 1476 1477 // Signed underflow is undefined. 1478 if (Comparison::isSigned(Cmp)) 1479 return false; 1480 1481 // Check if there is a comparison of the initial value. If the initial value 1482 // is greater than or not equal to another value, then assume this is a 1483 // range check. 1484 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1485 return false; 1486 } 1487 1488 // OK - this is a hack that needs to be improved. We really need to analyze 1489 // the instructions performed on the initial value. This works on the simplest 1490 // cases only. 1491 if (!Def->isCopy() && !Def->isPHI()) 1492 return false; 1493 1494 return true; 1495 } 1496 1497 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1498 int64_t &Val) const { 1499 if (MO.isImm()) { 1500 Val = MO.getImm(); 1501 return true; 1502 } 1503 if (!MO.isReg()) 1504 return false; 1505 1506 // MO is a register. Check whether it is defined as an immediate value, 1507 // and if so, get the value of it in TV. That value will then need to be 1508 // processed to handle potential subregisters in MO. 1509 int64_t TV; 1510 1511 unsigned R = MO.getReg(); 1512 if (!TargetRegisterInfo::isVirtualRegister(R)) 1513 return false; 1514 MachineInstr *DI = MRI->getVRegDef(R); 1515 unsigned DOpc = DI->getOpcode(); 1516 switch (DOpc) { 1517 case TargetOpcode::COPY: 1518 case Hexagon::A2_tfrsi: 1519 case Hexagon::A2_tfrpi: 1520 case Hexagon::CONST32: 1521 case Hexagon::CONST64: 1522 // Call recursively to avoid an extra check whether operand(1) is 1523 // indeed an immediate (it could be a global address, for example), 1524 // plus we can handle COPY at the same time. 1525 if (!checkForImmediate(DI->getOperand(1), TV)) 1526 return false; 1527 break; 1528 case Hexagon::A2_combineii: 1529 case Hexagon::A4_combineir: 1530 case Hexagon::A4_combineii: 1531 case Hexagon::A4_combineri: 1532 case Hexagon::A2_combinew: { 1533 const MachineOperand &S1 = DI->getOperand(1); 1534 const MachineOperand &S2 = DI->getOperand(2); 1535 int64_t V1, V2; 1536 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1537 return false; 1538 TV = V2 | (static_cast<uint64_t>(V1) << 32); 1539 break; 1540 } 1541 case TargetOpcode::REG_SEQUENCE: { 1542 const MachineOperand &S1 = DI->getOperand(1); 1543 const MachineOperand &S3 = DI->getOperand(3); 1544 int64_t V1, V3; 1545 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1546 return false; 1547 unsigned Sub2 = DI->getOperand(2).getImm(); 1548 unsigned Sub4 = DI->getOperand(4).getImm(); 1549 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) 1550 TV = V1 | (V3 << 32); 1551 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) 1552 TV = V3 | (V1 << 32); 1553 else 1554 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1555 break; 1556 } 1557 1558 default: 1559 return false; 1560 } 1561 1562 // By now, we should have successfully obtained the immediate value defining 1563 // the register referenced in MO. Handle a potential use of a subregister. 1564 switch (MO.getSubReg()) { 1565 case Hexagon::isub_lo: 1566 Val = TV & 0xFFFFFFFFULL; 1567 break; 1568 case Hexagon::isub_hi: 1569 Val = (TV >> 32) & 0xFFFFFFFFULL; 1570 break; 1571 default: 1572 Val = TV; 1573 break; 1574 } 1575 return true; 1576 } 1577 1578 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1579 if (MO.isImm()) { 1580 MO.setImm(Val); 1581 return; 1582 } 1583 1584 assert(MO.isReg()); 1585 unsigned R = MO.getReg(); 1586 MachineInstr *DI = MRI->getVRegDef(R); 1587 1588 const TargetRegisterClass *RC = MRI->getRegClass(R); 1589 unsigned NewR = MRI->createVirtualRegister(RC); 1590 MachineBasicBlock &B = *DI->getParent(); 1591 DebugLoc DL = DI->getDebugLoc(); 1592 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1593 MO.setReg(NewR); 1594 } 1595 1596 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { 1597 // These two instructions are not extendable. 1598 if (CmpOpc == Hexagon::A4_cmpbeqi) 1599 return isUInt<8>(Imm); 1600 if (CmpOpc == Hexagon::A4_cmpbgti) 1601 return isInt<8>(Imm); 1602 // The rest of the comparison-with-immediate instructions are extendable. 1603 return true; 1604 } 1605 1606 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1607 MachineBasicBlock *Header = L->getHeader(); 1608 MachineBasicBlock *Latch = L->getLoopLatch(); 1609 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1610 1611 if (!(Header && Latch && ExitingBlock)) 1612 return false; 1613 1614 // These data structures follow the same concept as the corresponding 1615 // ones in findInductionRegister (where some comments are). 1616 using RegisterBump = std::pair<unsigned, int64_t>; 1617 using RegisterInduction = std::pair<unsigned, RegisterBump>; 1618 using RegisterInductionSet = std::set<RegisterInduction>; 1619 1620 // Register candidates for induction variables, with their associated bumps. 1621 RegisterInductionSet IndRegs; 1622 1623 // Look for induction patterns: 1624 // %1 = PHI ..., [ latch, %2 ] 1625 // %2 = ADD %1, imm 1626 using instr_iterator = MachineBasicBlock::instr_iterator; 1627 1628 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1629 I != E && I->isPHI(); ++I) { 1630 MachineInstr *Phi = &*I; 1631 1632 // Have a PHI instruction. 1633 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1634 if (Phi->getOperand(i+1).getMBB() != Latch) 1635 continue; 1636 1637 unsigned PhiReg = Phi->getOperand(i).getReg(); 1638 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1639 1640 if (DI->getDesc().isAdd()) { 1641 // If the register operand to the add/sub is the PHI we are looking 1642 // at, this meets the induction pattern. 1643 unsigned IndReg = DI->getOperand(1).getReg(); 1644 MachineOperand &Opnd2 = DI->getOperand(2); 1645 int64_t V; 1646 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1647 unsigned UpdReg = DI->getOperand(0).getReg(); 1648 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1649 } 1650 } 1651 } // for (i) 1652 } // for (instr) 1653 1654 if (IndRegs.empty()) 1655 return false; 1656 1657 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1658 SmallVector<MachineOperand,2> Cond; 1659 // AnalyzeBranch returns true if it fails to analyze branch. 1660 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1661 if (NotAnalyzed || Cond.empty()) 1662 return false; 1663 1664 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1665 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 1666 SmallVector<MachineOperand,2> LCond; 1667 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1668 if (NotAnalyzed) 1669 return false; 1670 1671 // Since latch is not the exiting block, the latch branch should be an 1672 // unconditional branch to the loop header. 1673 if (TB == Latch) 1674 TB = (LTB == Header) ? LTB : LFB; 1675 else 1676 FB = (LTB == Header) ? LTB : LFB; 1677 } 1678 if (TB != Header) { 1679 if (FB != Header) { 1680 // The latch/exit block does not go back to the header. 1681 return false; 1682 } 1683 // FB is the header (i.e., uncond. jump to branch header) 1684 // In this case, the LoopBody -> TB should not be a back edge otherwise 1685 // it could result in an infinite loop after conversion to hw_loop. 1686 // This case can happen when the Latch has two jumps like this: 1687 // Jmp_c OuterLoopHeader <-- TB 1688 // Jmp InnerLoopHeader <-- FB 1689 if (MDT->dominates(TB, FB)) 1690 return false; 1691 } 1692 1693 // Expecting a predicate register as a condition. It won't be a hardware 1694 // predicate register at this point yet, just a vreg. 1695 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1696 // into Cond, followed by the predicate register. For non-negated branches 1697 // it's just the register. 1698 unsigned CSz = Cond.size(); 1699 if (CSz != 1 && CSz != 2) 1700 return false; 1701 1702 if (!Cond[CSz-1].isReg()) 1703 return false; 1704 1705 unsigned P = Cond[CSz-1].getReg(); 1706 MachineInstr *PredDef = MRI->getVRegDef(P); 1707 1708 if (!PredDef->isCompare()) 1709 return false; 1710 1711 SmallSet<unsigned,2> CmpRegs; 1712 MachineOperand *CmpImmOp = nullptr; 1713 1714 // Go over all operands to the compare and look for immediate and register 1715 // operands. Assume that if the compare has a single register use and a 1716 // single immediate operand, then the register is being compared with the 1717 // immediate value. 1718 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1719 MachineOperand &MO = PredDef->getOperand(i); 1720 if (MO.isReg()) { 1721 // Skip all implicit references. In one case there was: 1722 // %140 = FCMPUGT32_rr %138, %139, implicit %usr 1723 if (MO.isImplicit()) 1724 continue; 1725 if (MO.isUse()) { 1726 if (!isImmediate(MO)) { 1727 CmpRegs.insert(MO.getReg()); 1728 continue; 1729 } 1730 // Consider the register to be the "immediate" operand. 1731 if (CmpImmOp) 1732 return false; 1733 CmpImmOp = &MO; 1734 } 1735 } else if (MO.isImm()) { 1736 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1737 return false; 1738 CmpImmOp = &MO; 1739 } 1740 } 1741 1742 if (CmpRegs.empty()) 1743 return false; 1744 1745 // Check if the compared register follows the order we want. Fix if needed. 1746 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1747 I != E; ++I) { 1748 // This is a success. If the register used in the comparison is one that 1749 // we have identified as a bumped (updated) induction register, there is 1750 // nothing to do. 1751 if (CmpRegs.count(I->first)) 1752 return true; 1753 1754 // Otherwise, if the register being compared comes out of a PHI node, 1755 // and has been recognized as following the induction pattern, and is 1756 // compared against an immediate, we can fix it. 1757 const RegisterBump &RB = I->second; 1758 if (CmpRegs.count(RB.first)) { 1759 if (!CmpImmOp) { 1760 // If both operands to the compare instruction are registers, see if 1761 // it can be changed to use induction register as one of the operands. 1762 MachineInstr *IndI = nullptr; 1763 MachineInstr *nonIndI = nullptr; 1764 MachineOperand *IndMO = nullptr; 1765 MachineOperand *nonIndMO = nullptr; 1766 1767 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1768 MachineOperand &MO = PredDef->getOperand(i); 1769 if (MO.isReg() && MO.getReg() == RB.first) { 1770 LLVM_DEBUG(dbgs() << "\n DefMI(" << i 1771 << ") = " << *(MRI->getVRegDef(I->first))); 1772 if (IndI) 1773 return false; 1774 1775 IndI = MRI->getVRegDef(I->first); 1776 IndMO = &MO; 1777 } else if (MO.isReg()) { 1778 LLVM_DEBUG(dbgs() << "\n DefMI(" << i 1779 << ") = " << *(MRI->getVRegDef(MO.getReg()))); 1780 if (nonIndI) 1781 return false; 1782 1783 nonIndI = MRI->getVRegDef(MO.getReg()); 1784 nonIndMO = &MO; 1785 } 1786 } 1787 if (IndI && nonIndI && 1788 nonIndI->getOpcode() == Hexagon::A2_addi && 1789 nonIndI->getOperand(2).isImm() && 1790 nonIndI->getOperand(2).getImm() == - RB.second) { 1791 bool Order = orderBumpCompare(IndI, PredDef); 1792 if (Order) { 1793 IndMO->setReg(I->first); 1794 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1795 return true; 1796 } 1797 } 1798 return false; 1799 } 1800 1801 // It is not valid to do this transformation on an unsigned comparison 1802 // because it may underflow. 1803 Comparison::Kind Cmp = 1804 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); 1805 if (!Cmp || Comparison::isUnsigned(Cmp)) 1806 return false; 1807 1808 // If the register is being compared against an immediate, try changing 1809 // the compare instruction to use induction register and adjust the 1810 // immediate operand. 1811 int64_t CmpImm = getImmediate(*CmpImmOp); 1812 int64_t V = RB.second; 1813 // Handle Overflow (64-bit). 1814 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1815 ((V < 0) && (CmpImm < INT64_MIN - V))) 1816 return false; 1817 CmpImm += V; 1818 // Most comparisons of register against an immediate value allow 1819 // the immediate to be constant-extended. There are some exceptions 1820 // though. Make sure the new combination will work. 1821 if (CmpImmOp->isImm()) 1822 if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) 1823 return false; 1824 1825 // Make sure that the compare happens after the bump. Otherwise, 1826 // after the fixup, the compare would use a yet-undefined register. 1827 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1828 bool Order = orderBumpCompare(BumpI, PredDef); 1829 if (!Order) 1830 return false; 1831 1832 // Finally, fix the compare instruction. 1833 setImmediate(*CmpImmOp, CmpImm); 1834 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1835 MachineOperand &MO = PredDef->getOperand(i); 1836 if (MO.isReg() && MO.getReg() == RB.first) { 1837 MO.setReg(I->first); 1838 return true; 1839 } 1840 } 1841 } 1842 } 1843 1844 return false; 1845 } 1846 1847 /// createPreheaderForLoop - Create a preheader for a given loop. 1848 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1849 MachineLoop *L) { 1850 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) 1851 return TmpPH; 1852 if (!HWCreatePreheader) 1853 return nullptr; 1854 1855 MachineBasicBlock *Header = L->getHeader(); 1856 MachineBasicBlock *Latch = L->getLoopLatch(); 1857 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1858 MachineFunction *MF = Header->getParent(); 1859 DebugLoc DL; 1860 1861 #ifndef NDEBUG 1862 if ((!PHFn.empty()) && (PHFn != MF->getName())) 1863 return nullptr; 1864 #endif 1865 1866 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1867 return nullptr; 1868 1869 using instr_iterator = MachineBasicBlock::instr_iterator; 1870 1871 // Verify that all existing predecessors have analyzable branches 1872 // (or no branches at all). 1873 using MBBVector = std::vector<MachineBasicBlock *>; 1874 1875 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1876 SmallVector<MachineOperand,2> Tmp1; 1877 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1878 1879 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1880 return nullptr; 1881 1882 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1883 MachineBasicBlock *PB = *I; 1884 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1885 if (NotAnalyzed) 1886 return nullptr; 1887 } 1888 1889 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1890 MF->insert(Header->getIterator(), NewPH); 1891 1892 if (Header->pred_size() > 2) { 1893 // Ensure that the header has only two predecessors: the preheader and 1894 // the loop latch. Any additional predecessors of the header should 1895 // join at the newly created preheader. Inspect all PHI nodes from the 1896 // header and create appropriate corresponding PHI nodes in the preheader. 1897 1898 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1899 I != E && I->isPHI(); ++I) { 1900 MachineInstr *PN = &*I; 1901 1902 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1903 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1904 NewPH->insert(NewPH->end(), NewPN); 1905 1906 unsigned PR = PN->getOperand(0).getReg(); 1907 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1908 unsigned NewPR = MRI->createVirtualRegister(RC); 1909 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1910 1911 // Copy all non-latch operands of a header's PHI node to the newly 1912 // created PHI node in the preheader. 1913 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1914 unsigned PredR = PN->getOperand(i).getReg(); 1915 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1916 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1917 if (PredB == Latch) 1918 continue; 1919 1920 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1921 MO.setSubReg(PredRSub); 1922 NewPN->addOperand(MO); 1923 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1924 } 1925 1926 // Remove copied operands from the old PHI node and add the value 1927 // coming from the preheader's PHI. 1928 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1929 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1930 if (PredB != Latch) { 1931 PN->RemoveOperand(i+1); 1932 PN->RemoveOperand(i); 1933 } 1934 } 1935 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1936 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1937 } 1938 } else { 1939 assert(Header->pred_size() == 2); 1940 1941 // The header has only two predecessors, but the non-latch predecessor 1942 // is not a preheader (e.g. it has other successors, etc.) 1943 // In such a case we don't need any extra PHI nodes in the new preheader, 1944 // all we need is to adjust existing PHIs in the header to now refer to 1945 // the new preheader. 1946 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1947 I != E && I->isPHI(); ++I) { 1948 MachineInstr *PN = &*I; 1949 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1950 MachineOperand &MO = PN->getOperand(i+1); 1951 if (MO.getMBB() != Latch) 1952 MO.setMBB(NewPH); 1953 } 1954 } 1955 } 1956 1957 // "Reroute" the CFG edges to link in the new preheader. 1958 // If any of the predecessors falls through to the header, insert a branch 1959 // to the new preheader in that place. 1960 SmallVector<MachineOperand,1> Tmp2; 1961 SmallVector<MachineOperand,1> EmptyCond; 1962 1963 TB = FB = nullptr; 1964 1965 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1966 MachineBasicBlock *PB = *I; 1967 if (PB != Latch) { 1968 Tmp2.clear(); 1969 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1970 (void)NotAnalyzed; // suppress compiler warning 1971 assert (!NotAnalyzed && "Should be analyzable!"); 1972 if (TB != Header && (Tmp2.empty() || FB != Header)) 1973 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1974 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1975 } 1976 } 1977 1978 // It can happen that the latch block will fall through into the header. 1979 // Insert an unconditional branch to the header. 1980 TB = FB = nullptr; 1981 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1982 (void)LatchNotAnalyzed; // suppress compiler warning 1983 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1984 if (!TB && !FB) 1985 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1986 1987 // Finally, the branch from the preheader to the header. 1988 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1989 NewPH->addSuccessor(Header); 1990 1991 MachineLoop *ParentLoop = L->getParentLoop(); 1992 if (ParentLoop) 1993 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 1994 1995 // Update the dominator information with the new preheader. 1996 if (MDT) { 1997 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 1998 if (MachineDomTreeNode *DHN = HN->getIDom()) { 1999 MDT->addNewBlock(NewPH, DHN->getBlock()); 2000 MDT->changeImmediateDominator(Header, NewPH); 2001 } 2002 } 2003 } 2004 2005 return NewPH; 2006 } 2007