1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies loops where we can generate the Hexagon hardware 10 // loop instruction. The hardware loop can perform loop branches with a 11 // zero-cycle overhead. 12 // 13 // The pattern that defines the induction variable can changed depending on 14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 15 // normalizes induction variables, and the Loop Strength Reduction pass 16 // run by 'llc' may also make changes to the induction variable. 17 // The pattern detected by this phase is due to running Strength Reduction. 18 // 19 // Criteria for hardware loops: 20 // - Countable loops (w/ ind. var for a trip count) 21 // - Assumes loops are normalized by IndVarSimplify 22 // - Try inner-most loops first 23 // - No function calls in loops. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "HexagonInstrInfo.h" 28 #include "HexagonSubtarget.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineOperand.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <cassert> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <iterator> 58 #include <map> 59 #include <set> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "hwloops" 67 68 #ifndef NDEBUG 69 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 70 71 // Option to create preheader only for a specific function. 72 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 73 cl::init("")); 74 #endif 75 76 // Option to create a preheader if one doesn't exist. 77 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 78 cl::Hidden, cl::init(true), 79 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 80 81 // Turn it off by default. If a preheader block is not created here, the 82 // software pipeliner may be unable to find a block suitable to serve as 83 // a preheader. In that case SWP will not run. 84 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::Hidden, 85 cl::desc("Allow speculation of preheader " 86 "instructions")); 87 88 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 89 90 namespace llvm { 91 92 FunctionPass *createHexagonHardwareLoops(); 93 void initializeHexagonHardwareLoopsPass(PassRegistry&); 94 95 } // end namespace llvm 96 97 namespace { 98 99 class CountValue; 100 101 struct HexagonHardwareLoops : public MachineFunctionPass { 102 MachineLoopInfo *MLI; 103 MachineRegisterInfo *MRI; 104 MachineDominatorTree *MDT; 105 const HexagonInstrInfo *TII; 106 const HexagonRegisterInfo *TRI; 107 #ifndef NDEBUG 108 static int Counter; 109 #endif 110 111 public: 112 static char ID; 113 114 HexagonHardwareLoops() : MachineFunctionPass(ID) {} 115 116 bool runOnMachineFunction(MachineFunction &MF) override; 117 118 StringRef getPassName() const override { return "Hexagon Hardware Loops"; } 119 120 void getAnalysisUsage(AnalysisUsage &AU) const override { 121 AU.addRequired<MachineDominatorTree>(); 122 AU.addRequired<MachineLoopInfo>(); 123 MachineFunctionPass::getAnalysisUsage(AU); 124 } 125 126 private: 127 using LoopFeederMap = std::map<unsigned, MachineInstr *>; 128 129 /// Kinds of comparisons in the compare instructions. 130 struct Comparison { 131 enum Kind { 132 EQ = 0x01, 133 NE = 0x02, 134 L = 0x04, 135 G = 0x08, 136 U = 0x40, 137 LTs = L, 138 LEs = L | EQ, 139 GTs = G, 140 GEs = G | EQ, 141 LTu = L | U, 142 LEu = L | EQ | U, 143 GTu = G | U, 144 GEu = G | EQ | U 145 }; 146 147 static Kind getSwappedComparison(Kind Cmp) { 148 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 149 if ((Cmp & L) || (Cmp & G)) 150 return (Kind)(Cmp ^ (L|G)); 151 return Cmp; 152 } 153 154 static Kind getNegatedComparison(Kind Cmp) { 155 if ((Cmp & L) || (Cmp & G)) 156 return (Kind)((Cmp ^ (L | G)) ^ EQ); 157 if ((Cmp & NE) || (Cmp & EQ)) 158 return (Kind)(Cmp ^ (EQ | NE)); 159 return (Kind)0; 160 } 161 162 static bool isSigned(Kind Cmp) { 163 return (Cmp & (L | G) && !(Cmp & U)); 164 } 165 166 static bool isUnsigned(Kind Cmp) { 167 return (Cmp & U); 168 } 169 }; 170 171 /// Find the register that contains the loop controlling 172 /// induction variable. 173 /// If successful, it will return true and set the \p Reg, \p IVBump 174 /// and \p IVOp arguments. Otherwise it will return false. 175 /// The returned induction register is the register R that follows the 176 /// following induction pattern: 177 /// loop: 178 /// R = phi ..., [ R.next, LatchBlock ] 179 /// R.next = R + #bump 180 /// if (R.next < #N) goto loop 181 /// IVBump is the immediate value added to R, and IVOp is the instruction 182 /// "R.next = R + #bump". 183 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 184 int64_t &IVBump, MachineInstr *&IVOp) const; 185 186 /// Return the comparison kind for the specified opcode. 187 Comparison::Kind getComparisonKind(unsigned CondOpc, 188 MachineOperand *InitialValue, 189 const MachineOperand *Endvalue, 190 int64_t IVBump) const; 191 192 /// Analyze the statements in a loop to determine if the loop 193 /// has a computable trip count and, if so, return a value that represents 194 /// the trip count expression. 195 CountValue *getLoopTripCount(MachineLoop *L, 196 SmallVectorImpl<MachineInstr *> &OldInsts); 197 198 /// Return the expression that represents the number of times 199 /// a loop iterates. The function takes the operands that represent the 200 /// loop start value, loop end value, and induction value. Based upon 201 /// these operands, the function attempts to compute the trip count. 202 /// If the trip count is not directly available (as an immediate value, 203 /// or a register), the function will attempt to insert computation of it 204 /// to the loop's preheader. 205 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 206 const MachineOperand *End, unsigned IVReg, 207 int64_t IVBump, Comparison::Kind Cmp) const; 208 209 /// Return true if the instruction is not valid within a hardware 210 /// loop. 211 bool isInvalidLoopOperation(const MachineInstr *MI, 212 bool IsInnerHWLoop) const; 213 214 /// Return true if the loop contains an instruction that inhibits 215 /// using the hardware loop. 216 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 217 218 /// Given a loop, check if we can convert it to a hardware loop. 219 /// If so, then perform the conversion and return true. 220 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 221 222 /// Return true if the instruction is now dead. 223 bool isDead(const MachineInstr *MI, 224 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 225 226 /// Remove the instruction if it is now dead. 227 void removeIfDead(MachineInstr *MI); 228 229 /// Make sure that the "bump" instruction executes before the 230 /// compare. We need that for the IV fixup, so that the compare 231 /// instruction would not use a bumped value that has not yet been 232 /// defined. If the instructions are out of order, try to reorder them. 233 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 234 235 /// Return true if MO and MI pair is visited only once. If visited 236 /// more than once, this indicates there is recursion. In such a case, 237 /// return false. 238 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 239 const MachineOperand *MO, 240 LoopFeederMap &LoopFeederPhi) const; 241 242 /// Return true if the Phi may generate a value that may underflow, 243 /// or may wrap. 244 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 245 MachineBasicBlock *MBB, MachineLoop *L, 246 LoopFeederMap &LoopFeederPhi) const; 247 248 /// Return true if the induction variable may underflow an unsigned 249 /// value in the first iteration. 250 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 251 const MachineOperand *EndVal, 252 MachineBasicBlock *MBB, MachineLoop *L, 253 LoopFeederMap &LoopFeederPhi) const; 254 255 /// Check if the given operand has a compile-time known constant 256 /// value. Return true if yes, and false otherwise. When returning true, set 257 /// Val to the corresponding constant value. 258 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 259 260 /// Check if the operand has a compile-time known constant value. 261 bool isImmediate(const MachineOperand &MO) const { 262 int64_t V; 263 return checkForImmediate(MO, V); 264 } 265 266 /// Return the immediate for the specified operand. 267 int64_t getImmediate(const MachineOperand &MO) const { 268 int64_t V; 269 if (!checkForImmediate(MO, V)) 270 llvm_unreachable("Invalid operand"); 271 return V; 272 } 273 274 /// Reset the given machine operand to now refer to a new immediate 275 /// value. Assumes that the operand was already referencing an immediate 276 /// value, either directly, or via a register. 277 void setImmediate(MachineOperand &MO, int64_t Val); 278 279 /// Fix the data flow of the induction variable. 280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 281 /// | 282 /// +-> back to phi 283 /// where "bump" is the increment of the induction variable: 284 /// iv = iv + #const. 285 /// Due to some prior code transformations, the actual flow may look 286 /// like this: 287 /// phi -+-> bump ---> back to phi 288 /// | 289 /// +-> comparison-in-latch (against upper_bound-bump), 290 /// i.e. the comparison that controls the loop execution may be using 291 /// the value of the induction variable from before the increment. 292 /// 293 /// Return true if the loop's flow is the desired one (i.e. it's 294 /// either been fixed, or no fixing was necessary). 295 /// Otherwise, return false. This can happen if the induction variable 296 /// couldn't be identified, or if the value in the latch's comparison 297 /// cannot be adjusted to reflect the post-bump value. 298 bool fixupInductionVariable(MachineLoop *L); 299 300 /// Given a loop, if it does not have a preheader, create one. 301 /// Return the block that is the preheader. 302 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 303 }; 304 305 char HexagonHardwareLoops::ID = 0; 306 #ifndef NDEBUG 307 int HexagonHardwareLoops::Counter = 0; 308 #endif 309 310 /// Abstraction for a trip count of a loop. A smaller version 311 /// of the MachineOperand class without the concerns of changing the 312 /// operand representation. 313 class CountValue { 314 public: 315 enum CountValueType { 316 CV_Register, 317 CV_Immediate 318 }; 319 320 private: 321 CountValueType Kind; 322 union Values { 323 struct { 324 unsigned Reg; 325 unsigned Sub; 326 } R; 327 unsigned ImmVal; 328 } Contents; 329 330 public: 331 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 332 Kind = t; 333 if (Kind == CV_Register) { 334 Contents.R.Reg = v; 335 Contents.R.Sub = u; 336 } else { 337 Contents.ImmVal = v; 338 } 339 } 340 341 bool isReg() const { return Kind == CV_Register; } 342 bool isImm() const { return Kind == CV_Immediate; } 343 344 unsigned getReg() const { 345 assert(isReg() && "Wrong CountValue accessor"); 346 return Contents.R.Reg; 347 } 348 349 unsigned getSubReg() const { 350 assert(isReg() && "Wrong CountValue accessor"); 351 return Contents.R.Sub; 352 } 353 354 unsigned getImm() const { 355 assert(isImm() && "Wrong CountValue accessor"); 356 return Contents.ImmVal; 357 } 358 359 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 360 if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); } 361 if (isImm()) { OS << Contents.ImmVal; } 362 } 363 }; 364 365 } // end anonymous namespace 366 367 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 368 "Hexagon Hardware Loops", false, false) 369 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 370 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 371 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 372 "Hexagon Hardware Loops", false, false) 373 374 FunctionPass *llvm::createHexagonHardwareLoops() { 375 return new HexagonHardwareLoops(); 376 } 377 378 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 379 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 380 if (skipFunction(MF.getFunction())) 381 return false; 382 383 bool Changed = false; 384 385 MLI = &getAnalysis<MachineLoopInfo>(); 386 MRI = &MF.getRegInfo(); 387 MDT = &getAnalysis<MachineDominatorTree>(); 388 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); 389 TII = HST.getInstrInfo(); 390 TRI = HST.getRegisterInfo(); 391 392 for (auto &L : *MLI) 393 if (L->isOutermost()) { 394 bool L0Used = false; 395 bool L1Used = false; 396 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 397 } 398 399 return Changed; 400 } 401 402 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 403 unsigned &Reg, 404 int64_t &IVBump, 405 MachineInstr *&IVOp 406 ) const { 407 MachineBasicBlock *Header = L->getHeader(); 408 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 409 MachineBasicBlock *Latch = L->getLoopLatch(); 410 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 411 if (!Header || !Preheader || !Latch || !ExitingBlock) 412 return false; 413 414 // This pair represents an induction register together with an immediate 415 // value that will be added to it in each loop iteration. 416 using RegisterBump = std::pair<unsigned, int64_t>; 417 418 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 419 // from an induction operation 420 // R.next = R + bump 421 // where bump is an immediate value. 422 using InductionMap = std::map<unsigned, RegisterBump>; 423 424 InductionMap IndMap; 425 426 using instr_iterator = MachineBasicBlock::instr_iterator; 427 428 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 429 I != E && I->isPHI(); ++I) { 430 MachineInstr *Phi = &*I; 431 432 // Have a PHI instruction. Get the operand that corresponds to the 433 // latch block, and see if is a result of an addition of form "reg+imm", 434 // where the "reg" is defined by the PHI node we are looking at. 435 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 436 if (Phi->getOperand(i+1).getMBB() != Latch) 437 continue; 438 439 Register PhiOpReg = Phi->getOperand(i).getReg(); 440 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 441 442 if (DI->getDesc().isAdd()) { 443 // If the register operand to the add is the PHI we're looking at, this 444 // meets the induction pattern. 445 Register IndReg = DI->getOperand(1).getReg(); 446 MachineOperand &Opnd2 = DI->getOperand(2); 447 int64_t V; 448 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 449 Register UpdReg = DI->getOperand(0).getReg(); 450 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 451 } 452 } 453 } // for (i) 454 } // for (instr) 455 456 SmallVector<MachineOperand,2> Cond; 457 MachineBasicBlock *TB = nullptr, *FB = nullptr; 458 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 459 if (NotAnalyzed) 460 return false; 461 462 unsigned PredR, PredPos, PredRegFlags; 463 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 464 return false; 465 466 MachineInstr *PredI = MRI->getVRegDef(PredR); 467 if (!PredI->isCompare()) 468 return false; 469 470 Register CmpReg1, CmpReg2; 471 int64_t CmpImm = 0, CmpMask = 0; 472 bool CmpAnalyzed = 473 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 474 // Fail if the compare was not analyzed, or it's not comparing a register 475 // with an immediate value. Not checking the mask here, since we handle 476 // the individual compare opcodes (including A4_cmpb*) later on. 477 if (!CmpAnalyzed) 478 return false; 479 480 // Exactly one of the input registers to the comparison should be among 481 // the induction registers. 482 InductionMap::iterator IndMapEnd = IndMap.end(); 483 InductionMap::iterator F = IndMapEnd; 484 if (CmpReg1 != 0) { 485 InductionMap::iterator F1 = IndMap.find(CmpReg1); 486 if (F1 != IndMapEnd) 487 F = F1; 488 } 489 if (CmpReg2 != 0) { 490 InductionMap::iterator F2 = IndMap.find(CmpReg2); 491 if (F2 != IndMapEnd) { 492 if (F != IndMapEnd) 493 return false; 494 F = F2; 495 } 496 } 497 if (F == IndMapEnd) 498 return false; 499 500 Reg = F->second.first; 501 IVBump = F->second.second; 502 IVOp = MRI->getVRegDef(F->first); 503 return true; 504 } 505 506 // Return the comparison kind for the specified opcode. 507 HexagonHardwareLoops::Comparison::Kind 508 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 509 MachineOperand *InitialValue, 510 const MachineOperand *EndValue, 511 int64_t IVBump) const { 512 Comparison::Kind Cmp = (Comparison::Kind)0; 513 switch (CondOpc) { 514 case Hexagon::C2_cmpeq: 515 case Hexagon::C2_cmpeqi: 516 case Hexagon::C2_cmpeqp: 517 Cmp = Comparison::EQ; 518 break; 519 case Hexagon::C4_cmpneq: 520 case Hexagon::C4_cmpneqi: 521 Cmp = Comparison::NE; 522 break; 523 case Hexagon::C2_cmplt: 524 Cmp = Comparison::LTs; 525 break; 526 case Hexagon::C2_cmpltu: 527 Cmp = Comparison::LTu; 528 break; 529 case Hexagon::C4_cmplte: 530 case Hexagon::C4_cmpltei: 531 Cmp = Comparison::LEs; 532 break; 533 case Hexagon::C4_cmplteu: 534 case Hexagon::C4_cmplteui: 535 Cmp = Comparison::LEu; 536 break; 537 case Hexagon::C2_cmpgt: 538 case Hexagon::C2_cmpgti: 539 case Hexagon::C2_cmpgtp: 540 Cmp = Comparison::GTs; 541 break; 542 case Hexagon::C2_cmpgtu: 543 case Hexagon::C2_cmpgtui: 544 case Hexagon::C2_cmpgtup: 545 Cmp = Comparison::GTu; 546 break; 547 case Hexagon::C2_cmpgei: 548 Cmp = Comparison::GEs; 549 break; 550 case Hexagon::C2_cmpgeui: 551 Cmp = Comparison::GEs; 552 break; 553 default: 554 return (Comparison::Kind)0; 555 } 556 return Cmp; 557 } 558 559 /// Analyze the statements in a loop to determine if the loop has 560 /// a computable trip count and, if so, return a value that represents 561 /// the trip count expression. 562 /// 563 /// This function iterates over the phi nodes in the loop to check for 564 /// induction variable patterns that are used in the calculation for 565 /// the number of time the loop is executed. 566 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 567 SmallVectorImpl<MachineInstr *> &OldInsts) { 568 MachineBasicBlock *TopMBB = L->getTopBlock(); 569 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 570 assert(PI != TopMBB->pred_end() && 571 "Loop must have more than one incoming edge!"); 572 MachineBasicBlock *Backedge = *PI++; 573 if (PI == TopMBB->pred_end()) // dead loop? 574 return nullptr; 575 MachineBasicBlock *Incoming = *PI++; 576 if (PI != TopMBB->pred_end()) // multiple backedges? 577 return nullptr; 578 579 // Make sure there is one incoming and one backedge and determine which 580 // is which. 581 if (L->contains(Incoming)) { 582 if (L->contains(Backedge)) 583 return nullptr; 584 std::swap(Incoming, Backedge); 585 } else if (!L->contains(Backedge)) 586 return nullptr; 587 588 // Look for the cmp instruction to determine if we can get a useful trip 589 // count. The trip count can be either a register or an immediate. The 590 // location of the value depends upon the type (reg or imm). 591 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 592 if (!ExitingBlock) 593 return nullptr; 594 595 unsigned IVReg = 0; 596 int64_t IVBump = 0; 597 MachineInstr *IVOp; 598 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 599 if (!FoundIV) 600 return nullptr; 601 602 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 603 604 MachineOperand *InitialValue = nullptr; 605 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 606 MachineBasicBlock *Latch = L->getLoopLatch(); 607 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 608 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 609 if (MBB == Preheader) 610 InitialValue = &IV_Phi->getOperand(i); 611 else if (MBB == Latch) 612 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 613 } 614 if (!InitialValue) 615 return nullptr; 616 617 SmallVector<MachineOperand,2> Cond; 618 MachineBasicBlock *TB = nullptr, *FB = nullptr; 619 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 620 if (NotAnalyzed) 621 return nullptr; 622 623 MachineBasicBlock *Header = L->getHeader(); 624 // TB must be non-null. If FB is also non-null, one of them must be 625 // the header. Otherwise, branch to TB could be exiting the loop, and 626 // the fall through can go to the header. 627 assert (TB && "Exit block without a branch?"); 628 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 629 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 630 SmallVector<MachineOperand,2> LCond; 631 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 632 if (NotAnalyzed) 633 return nullptr; 634 if (TB == Latch) 635 TB = (LTB == Header) ? LTB : LFB; 636 else 637 FB = (LTB == Header) ? LTB: LFB; 638 } 639 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 640 if (!TB || (FB && TB != Header && FB != Header)) 641 return nullptr; 642 643 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch 644 // to put imm(0), followed by P in the vector Cond. 645 // If TB is not the header, it means that the "not-taken" path must lead 646 // to the header. 647 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 648 unsigned PredReg, PredPos, PredRegFlags; 649 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 650 return nullptr; 651 MachineInstr *CondI = MRI->getVRegDef(PredReg); 652 unsigned CondOpc = CondI->getOpcode(); 653 654 Register CmpReg1, CmpReg2; 655 int64_t Mask = 0, ImmValue = 0; 656 bool AnalyzedCmp = 657 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 658 if (!AnalyzedCmp) 659 return nullptr; 660 661 // The comparison operator type determines how we compute the loop 662 // trip count. 663 OldInsts.push_back(CondI); 664 OldInsts.push_back(IVOp); 665 666 // Sadly, the following code gets information based on the position 667 // of the operands in the compare instruction. This has to be done 668 // this way, because the comparisons check for a specific relationship 669 // between the operands (e.g. is-less-than), rather than to find out 670 // what relationship the operands are in (as on PPC). 671 Comparison::Kind Cmp; 672 bool isSwapped = false; 673 const MachineOperand &Op1 = CondI->getOperand(1); 674 const MachineOperand &Op2 = CondI->getOperand(2); 675 const MachineOperand *EndValue = nullptr; 676 677 if (Op1.isReg()) { 678 if (Op2.isImm() || Op1.getReg() == IVReg) 679 EndValue = &Op2; 680 else { 681 EndValue = &Op1; 682 isSwapped = true; 683 } 684 } 685 686 if (!EndValue) 687 return nullptr; 688 689 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 690 if (!Cmp) 691 return nullptr; 692 if (Negated) 693 Cmp = Comparison::getNegatedComparison(Cmp); 694 if (isSwapped) 695 Cmp = Comparison::getSwappedComparison(Cmp); 696 697 if (InitialValue->isReg()) { 698 Register R = InitialValue->getReg(); 699 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 700 if (!MDT->properlyDominates(DefBB, Header)) { 701 int64_t V; 702 if (!checkForImmediate(*InitialValue, V)) 703 return nullptr; 704 } 705 OldInsts.push_back(MRI->getVRegDef(R)); 706 } 707 if (EndValue->isReg()) { 708 Register R = EndValue->getReg(); 709 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 710 if (!MDT->properlyDominates(DefBB, Header)) { 711 int64_t V; 712 if (!checkForImmediate(*EndValue, V)) 713 return nullptr; 714 } 715 OldInsts.push_back(MRI->getVRegDef(R)); 716 } 717 718 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 719 } 720 721 /// Helper function that returns the expression that represents the 722 /// number of times a loop iterates. The function takes the operands that 723 /// represent the loop start value, loop end value, and induction value. 724 /// Based upon these operands, the function attempts to compute the trip count. 725 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 726 const MachineOperand *Start, 727 const MachineOperand *End, 728 unsigned IVReg, 729 int64_t IVBump, 730 Comparison::Kind Cmp) const { 731 // Cannot handle comparison EQ, i.e. while (A == B). 732 if (Cmp == Comparison::EQ) 733 return nullptr; 734 735 // Check if either the start or end values are an assignment of an immediate. 736 // If so, use the immediate value rather than the register. 737 if (Start->isReg()) { 738 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 739 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 740 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 741 Start = &StartValInstr->getOperand(1); 742 } 743 if (End->isReg()) { 744 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 745 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 746 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 747 End = &EndValInstr->getOperand(1); 748 } 749 750 if (!Start->isReg() && !Start->isImm()) 751 return nullptr; 752 if (!End->isReg() && !End->isImm()) 753 return nullptr; 754 755 bool CmpLess = Cmp & Comparison::L; 756 bool CmpGreater = Cmp & Comparison::G; 757 bool CmpHasEqual = Cmp & Comparison::EQ; 758 759 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 760 if (CmpLess && IVBump < 0) 761 // Loop going while iv is "less" with the iv value going down. Must wrap. 762 return nullptr; 763 764 if (CmpGreater && IVBump > 0) 765 // Loop going while iv is "greater" with the iv value going up. Must wrap. 766 return nullptr; 767 768 // Phis that may feed into the loop. 769 LoopFeederMap LoopFeederPhi; 770 771 // Check if the initial value may be zero and can be decremented in the first 772 // iteration. If the value is zero, the endloop instruction will not decrement 773 // the loop counter, so we shouldn't generate a hardware loop in this case. 774 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 775 LoopFeederPhi)) 776 return nullptr; 777 778 if (Start->isImm() && End->isImm()) { 779 // Both, start and end are immediates. 780 int64_t StartV = Start->getImm(); 781 int64_t EndV = End->getImm(); 782 int64_t Dist = EndV - StartV; 783 if (Dist == 0) 784 return nullptr; 785 786 bool Exact = (Dist % IVBump) == 0; 787 788 if (Cmp == Comparison::NE) { 789 if (!Exact) 790 return nullptr; 791 if ((Dist < 0) ^ (IVBump < 0)) 792 return nullptr; 793 } 794 795 // For comparisons that include the final value (i.e. include equality 796 // with the final value), we need to increase the distance by 1. 797 if (CmpHasEqual) 798 Dist = Dist > 0 ? Dist+1 : Dist-1; 799 800 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 801 // CmpGreater should imply Dist < 0. These conditions could actually 802 // fail, for example, in unreachable code (which may still appear to be 803 // reachable in the CFG). 804 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 805 return nullptr; 806 807 // "Normalized" distance, i.e. with the bump set to +-1. 808 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 809 : (-Dist + (-IVBump - 1)) / (-IVBump); 810 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 811 812 uint64_t Count = Dist1; 813 814 if (Count > 0xFFFFFFFFULL) 815 return nullptr; 816 817 return new CountValue(CountValue::CV_Immediate, Count); 818 } 819 820 // A general case: Start and End are some values, but the actual 821 // iteration count may not be available. If it is not, insert 822 // a computation of it into the preheader. 823 824 // If the induction variable bump is not a power of 2, quit. 825 // Othwerise we'd need a general integer division. 826 if (!isPowerOf2_64(std::abs(IVBump))) 827 return nullptr; 828 829 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); 830 assert (PH && "Should have a preheader by now"); 831 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 832 DebugLoc DL; 833 if (InsertPos != PH->end()) 834 DL = InsertPos->getDebugLoc(); 835 836 // If Start is an immediate and End is a register, the trip count 837 // will be "reg - imm". Hexagon's "subtract immediate" instruction 838 // is actually "reg + -imm". 839 840 // If the loop IV is going downwards, i.e. if the bump is negative, 841 // then the iteration count (computed as End-Start) will need to be 842 // negated. To avoid the negation, just swap Start and End. 843 if (IVBump < 0) { 844 std::swap(Start, End); 845 IVBump = -IVBump; 846 } 847 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 848 // Signedness, and "including equality" are preserved. 849 850 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 851 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 852 853 int64_t StartV = 0, EndV = 0; 854 if (Start->isImm()) 855 StartV = Start->getImm(); 856 if (End->isImm()) 857 EndV = End->getImm(); 858 859 int64_t AdjV = 0; 860 // To compute the iteration count, we would need this computation: 861 // Count = (End - Start + (IVBump-1)) / IVBump 862 // or, when CmpHasEqual: 863 // Count = (End - Start + (IVBump-1)+1) / IVBump 864 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 865 // generating an instruction specifically to add it if we can adjust 866 // the immediate values for Start or End. 867 868 if (CmpHasEqual) { 869 // Need to add 1 to the total iteration count. 870 if (Start->isImm()) 871 StartV--; 872 else if (End->isImm()) 873 EndV++; 874 else 875 AdjV += 1; 876 } 877 878 if (Cmp != Comparison::NE) { 879 if (Start->isImm()) 880 StartV -= (IVBump-1); 881 else if (End->isImm()) 882 EndV += (IVBump-1); 883 else 884 AdjV += (IVBump-1); 885 } 886 887 unsigned R = 0, SR = 0; 888 if (Start->isReg()) { 889 R = Start->getReg(); 890 SR = Start->getSubReg(); 891 } else { 892 R = End->getReg(); 893 SR = End->getSubReg(); 894 } 895 const TargetRegisterClass *RC = MRI->getRegClass(R); 896 // Hardware loops cannot handle 64-bit registers. If it's a double 897 // register, it has to have a subregister. 898 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 899 return nullptr; 900 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 901 902 // Compute DistR (register with the distance between Start and End). 903 unsigned DistR, DistSR; 904 905 // Avoid special case, where the start value is an imm(0). 906 if (Start->isImm() && StartV == 0) { 907 DistR = End->getReg(); 908 DistSR = End->getSubReg(); 909 } else { 910 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 911 (RegToImm ? TII->get(Hexagon::A2_subri) : 912 TII->get(Hexagon::A2_addi)); 913 if (RegToReg || RegToImm) { 914 Register SubR = MRI->createVirtualRegister(IntRC); 915 MachineInstrBuilder SubIB = 916 BuildMI(*PH, InsertPos, DL, SubD, SubR); 917 918 if (RegToReg) 919 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 920 .addReg(Start->getReg(), 0, Start->getSubReg()); 921 else 922 SubIB.addImm(EndV) 923 .addReg(Start->getReg(), 0, Start->getSubReg()); 924 DistR = SubR; 925 } else { 926 // If the loop has been unrolled, we should use the original loop count 927 // instead of recalculating the value. This will avoid additional 928 // 'Add' instruction. 929 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 930 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 931 EndValInstr->getOperand(1).getSubReg() == 0 && 932 EndValInstr->getOperand(2).getImm() == StartV) { 933 DistR = EndValInstr->getOperand(1).getReg(); 934 } else { 935 Register SubR = MRI->createVirtualRegister(IntRC); 936 MachineInstrBuilder SubIB = 937 BuildMI(*PH, InsertPos, DL, SubD, SubR); 938 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 939 .addImm(-StartV); 940 DistR = SubR; 941 } 942 } 943 DistSR = 0; 944 } 945 946 // From DistR, compute AdjR (register with the adjusted distance). 947 unsigned AdjR, AdjSR; 948 949 if (AdjV == 0) { 950 AdjR = DistR; 951 AdjSR = DistSR; 952 } else { 953 // Generate CountR = ADD DistR, AdjVal 954 Register AddR = MRI->createVirtualRegister(IntRC); 955 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 956 BuildMI(*PH, InsertPos, DL, AddD, AddR) 957 .addReg(DistR, 0, DistSR) 958 .addImm(AdjV); 959 960 AdjR = AddR; 961 AdjSR = 0; 962 } 963 964 // From AdjR, compute CountR (register with the final count). 965 unsigned CountR, CountSR; 966 967 if (IVBump == 1) { 968 CountR = AdjR; 969 CountSR = AdjSR; 970 } else { 971 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 972 unsigned Shift = Log2_32(IVBump); 973 974 // Generate NormR = LSR DistR, Shift. 975 Register LsrR = MRI->createVirtualRegister(IntRC); 976 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 977 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 978 .addReg(AdjR, 0, AdjSR) 979 .addImm(Shift); 980 981 CountR = LsrR; 982 CountSR = 0; 983 } 984 985 return new CountValue(CountValue::CV_Register, CountR, CountSR); 986 } 987 988 /// Return true if the operation is invalid within hardware loop. 989 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 990 bool IsInnerHWLoop) const { 991 // Call is not allowed because the callee may use a hardware loop except for 992 // the case when the call never returns. 993 if (MI->getDesc().isCall()) 994 return !TII->doesNotReturn(*MI); 995 996 // Check if the instruction defines a hardware loop register. 997 using namespace Hexagon; 998 999 static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 }; 1000 static const unsigned Regs1[] = { LC1, SA1 }; 1001 auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01)) 1002 : makeArrayRef(Regs1, array_lengthof(Regs1)); 1003 for (unsigned R : CheckRegs) 1004 if (MI->modifiesRegister(R, TRI)) 1005 return true; 1006 1007 return false; 1008 } 1009 1010 /// Return true if the loop contains an instruction that inhibits 1011 /// the use of the hardware loop instruction. 1012 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 1013 bool IsInnerHWLoop) const { 1014 LLVM_DEBUG(dbgs() << "\nhw_loop head, " 1015 << printMBBReference(**L->block_begin())); 1016 for (MachineBasicBlock *MBB : L->getBlocks()) { 1017 for (const MachineInstr &MI : *MBB) { 1018 if (isInvalidLoopOperation(&MI, IsInnerHWLoop)) { 1019 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:"; 1020 MI.dump();); 1021 return true; 1022 } 1023 } 1024 } 1025 return false; 1026 } 1027 1028 /// Returns true if the instruction is dead. This was essentially 1029 /// copied from DeadMachineInstructionElim::isDead, but with special cases 1030 /// for inline asm, physical registers and instructions with side effects 1031 /// removed. 1032 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 1033 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 1034 // Examine each operand. 1035 for (const MachineOperand &MO : MI->operands()) { 1036 if (!MO.isReg() || !MO.isDef()) 1037 continue; 1038 1039 Register Reg = MO.getReg(); 1040 if (MRI->use_nodbg_empty(Reg)) 1041 continue; 1042 1043 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; 1044 1045 // This instruction has users, but if the only user is the phi node for the 1046 // parent block, and the only use of that phi node is this instruction, then 1047 // this instruction is dead: both it (and the phi node) can be removed. 1048 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1049 use_nodbg_iterator End = MRI->use_nodbg_end(); 1050 if (std::next(I) != End || !I->getParent()->isPHI()) 1051 return false; 1052 1053 MachineInstr *OnePhi = I->getParent(); 1054 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 1055 const MachineOperand &OPO = OnePhi->getOperand(j); 1056 if (!OPO.isReg() || !OPO.isDef()) 1057 continue; 1058 1059 Register OPReg = OPO.getReg(); 1060 use_nodbg_iterator nextJ; 1061 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1062 J != End; J = nextJ) { 1063 nextJ = std::next(J); 1064 MachineOperand &Use = *J; 1065 MachineInstr *UseMI = Use.getParent(); 1066 1067 // If the phi node has a user that is not MI, bail. 1068 if (MI != UseMI) 1069 return false; 1070 } 1071 } 1072 DeadPhis.push_back(OnePhi); 1073 } 1074 1075 // If there are no defs with uses, the instruction is dead. 1076 return true; 1077 } 1078 1079 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1080 // This procedure was essentially copied from DeadMachineInstructionElim. 1081 1082 SmallVector<MachineInstr*, 1> DeadPhis; 1083 if (isDead(MI, DeadPhis)) { 1084 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI); 1085 1086 // It is possible that some DBG_VALUE instructions refer to this 1087 // instruction. Examine each def operand for such references; 1088 // if found, mark the DBG_VALUE as undef (but don't delete it). 1089 for (const MachineOperand &MO : MI->operands()) { 1090 if (!MO.isReg() || !MO.isDef()) 1091 continue; 1092 Register Reg = MO.getReg(); 1093 // We use make_early_inc_range here because setReg below invalidates the 1094 // iterator. 1095 for (MachineOperand &MO : 1096 llvm::make_early_inc_range(MRI->use_operands(Reg))) { 1097 MachineInstr *UseMI = MO.getParent(); 1098 if (UseMI == MI) 1099 continue; 1100 if (MO.isDebug()) 1101 MO.setReg(0U); 1102 } 1103 } 1104 1105 MI->eraseFromParent(); 1106 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1107 DeadPhis[i]->eraseFromParent(); 1108 } 1109 } 1110 1111 /// Check if the loop is a candidate for converting to a hardware 1112 /// loop. If so, then perform the transformation. 1113 /// 1114 /// This function works on innermost loops first. A loop can be converted 1115 /// if it is a counting loop; either a register value or an immediate. 1116 /// 1117 /// The code makes several assumptions about the representation of the loop 1118 /// in llvm. 1119 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1120 bool &RecL0used, 1121 bool &RecL1used) { 1122 // This is just to confirm basic correctness. 1123 assert(L->getHeader() && "Loop without a header?"); 1124 1125 bool Changed = false; 1126 bool L0Used = false; 1127 bool L1Used = false; 1128 1129 // Process nested loops first. 1130 for (MachineLoop *I : *L) { 1131 Changed |= convertToHardwareLoop(I, RecL0used, RecL1used); 1132 L0Used |= RecL0used; 1133 L1Used |= RecL1used; 1134 } 1135 1136 // If a nested loop has been converted, then we can't convert this loop. 1137 if (Changed && L0Used && L1Used) 1138 return Changed; 1139 1140 unsigned LOOP_i; 1141 unsigned LOOP_r; 1142 unsigned ENDLOOP; 1143 1144 // Flag used to track loopN instruction: 1145 // 1 - Hardware loop is being generated for the inner most loop. 1146 // 0 - Hardware loop is being generated for the outer loop. 1147 unsigned IsInnerHWLoop = 1; 1148 1149 if (L0Used) { 1150 LOOP_i = Hexagon::J2_loop1i; 1151 LOOP_r = Hexagon::J2_loop1r; 1152 ENDLOOP = Hexagon::ENDLOOP1; 1153 IsInnerHWLoop = 0; 1154 } else { 1155 LOOP_i = Hexagon::J2_loop0i; 1156 LOOP_r = Hexagon::J2_loop0r; 1157 ENDLOOP = Hexagon::ENDLOOP0; 1158 } 1159 1160 #ifndef NDEBUG 1161 // Stop trying after reaching the limit (if any). 1162 int Limit = HWLoopLimit; 1163 if (Limit >= 0) { 1164 if (Counter >= HWLoopLimit) 1165 return false; 1166 Counter++; 1167 } 1168 #endif 1169 1170 // Does the loop contain any invalid instructions? 1171 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1172 return false; 1173 1174 MachineBasicBlock *LastMBB = L->findLoopControlBlock(); 1175 // Don't generate hw loop if the loop has more than one exit. 1176 if (!LastMBB) 1177 return false; 1178 1179 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1180 if (LastI == LastMBB->end()) 1181 return false; 1182 1183 // Is the induction variable bump feeding the latch condition? 1184 if (!fixupInductionVariable(L)) 1185 return false; 1186 1187 // Ensure the loop has a preheader: the loop instruction will be 1188 // placed there. 1189 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 1190 if (!Preheader) { 1191 Preheader = createPreheaderForLoop(L); 1192 if (!Preheader) 1193 return false; 1194 } 1195 1196 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1197 1198 SmallVector<MachineInstr*, 2> OldInsts; 1199 // Are we able to determine the trip count for the loop? 1200 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1201 if (!TripCount) 1202 return false; 1203 1204 // Is the trip count available in the preheader? 1205 if (TripCount->isReg()) { 1206 // There will be a use of the register inserted into the preheader, 1207 // so make sure that the register is actually defined at that point. 1208 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1209 MachineBasicBlock *BBDef = TCDef->getParent(); 1210 if (!MDT->dominates(BBDef, Preheader)) 1211 return false; 1212 } 1213 1214 // Determine the loop start. 1215 MachineBasicBlock *TopBlock = L->getTopBlock(); 1216 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1217 MachineBasicBlock *LoopStart = nullptr; 1218 if (ExitingBlock != L->getLoopLatch()) { 1219 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1220 SmallVector<MachineOperand, 2> Cond; 1221 1222 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1223 return false; 1224 1225 if (L->contains(TB)) 1226 LoopStart = TB; 1227 else if (L->contains(FB)) 1228 LoopStart = FB; 1229 else 1230 return false; 1231 } 1232 else 1233 LoopStart = TopBlock; 1234 1235 // Convert the loop to a hardware loop. 1236 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1237 DebugLoc DL; 1238 if (InsertPos != Preheader->end()) 1239 DL = InsertPos->getDebugLoc(); 1240 1241 if (TripCount->isReg()) { 1242 // Create a copy of the loop count register. 1243 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1244 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1245 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1246 // Add the Loop instruction to the beginning of the loop. 1247 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1248 .addReg(CountReg); 1249 } else { 1250 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1251 // Add the Loop immediate instruction to the beginning of the loop, 1252 // if the immediate fits in the instructions. Otherwise, we need to 1253 // create a new virtual register. 1254 int64_t CountImm = TripCount->getImm(); 1255 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) { 1256 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1257 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1258 .addImm(CountImm); 1259 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1260 .addMBB(LoopStart).addReg(CountReg); 1261 } else 1262 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1263 .addMBB(LoopStart).addImm(CountImm); 1264 } 1265 1266 // Make sure the loop start always has a reference in the CFG. We need 1267 // to create a BlockAddress operand to get this mechanism to work both the 1268 // MachineBasicBlock and BasicBlock objects need the flag set. 1269 LoopStart->setHasAddressTaken(); 1270 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1271 // object. 1272 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1273 1274 // Replace the loop branch with an endloop instruction. 1275 DebugLoc LastIDL = LastI->getDebugLoc(); 1276 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1277 1278 // The loop ends with either: 1279 // - a conditional branch followed by an unconditional branch, or 1280 // - a conditional branch to the loop start. 1281 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1282 LastI->getOpcode() == Hexagon::J2_jumpf) { 1283 // Delete one and change/add an uncond. branch to out of the loop. 1284 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1285 LastI = LastMBB->erase(LastI); 1286 if (!L->contains(BranchTarget)) { 1287 if (LastI != LastMBB->end()) 1288 LastI = LastMBB->erase(LastI); 1289 SmallVector<MachineOperand, 0> Cond; 1290 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1291 } 1292 } else { 1293 // Conditional branch to loop start; just delete it. 1294 LastMBB->erase(LastI); 1295 } 1296 delete TripCount; 1297 1298 // The induction operation and the comparison may now be 1299 // unneeded. If these are unneeded, then remove them. 1300 for (unsigned i = 0; i < OldInsts.size(); ++i) 1301 removeIfDead(OldInsts[i]); 1302 1303 ++NumHWLoops; 1304 1305 // Set RecL1used and RecL0used only after hardware loop has been 1306 // successfully generated. Doing it earlier can cause wrong loop instruction 1307 // to be used. 1308 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1309 RecL1used = true; 1310 else 1311 RecL0used = true; 1312 1313 return true; 1314 } 1315 1316 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1317 MachineInstr *CmpI) { 1318 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1319 1320 MachineBasicBlock *BB = BumpI->getParent(); 1321 if (CmpI->getParent() != BB) 1322 return false; 1323 1324 using instr_iterator = MachineBasicBlock::instr_iterator; 1325 1326 // Check if things are in order to begin with. 1327 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1328 if (&*I == CmpI) 1329 return true; 1330 1331 // Out of order. 1332 Register PredR = CmpI->getOperand(0).getReg(); 1333 bool FoundBump = false; 1334 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1335 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1336 MachineInstr *In = &*I; 1337 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1338 MachineOperand &MO = In->getOperand(i); 1339 if (MO.isReg() && MO.isUse()) { 1340 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1341 return false; 1342 } 1343 } 1344 1345 if (In == BumpI) { 1346 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1347 FoundBump = true; 1348 break; 1349 } 1350 } 1351 assert (FoundBump && "Cannot determine instruction order"); 1352 return FoundBump; 1353 } 1354 1355 /// This function is required to break recursion. Visiting phis in a loop may 1356 /// result in recursion during compilation. We break the recursion by making 1357 /// sure that we visit a MachineOperand and its definition in a 1358 /// MachineInstruction only once. If we attempt to visit more than once, then 1359 /// there is recursion, and will return false. 1360 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1361 MachineInstr *MI, 1362 const MachineOperand *MO, 1363 LoopFeederMap &LoopFeederPhi) const { 1364 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1365 LLVM_DEBUG(dbgs() << "\nhw_loop head, " 1366 << printMBBReference(**L->block_begin())); 1367 // Ignore all BBs that form Loop. 1368 if (llvm::is_contained(L->getBlocks(), A)) 1369 return false; 1370 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1371 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1372 return true; 1373 } else 1374 // Already visited node. 1375 return false; 1376 } 1377 1378 /// Return true if a Phi may generate a value that can underflow. 1379 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1380 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1381 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1382 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1383 assert(Phi->isPHI() && "Expecting a Phi."); 1384 // Walk through each Phi, and its used operands. Make sure that 1385 // if there is recursion in Phi, we won't generate hardware loops. 1386 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1387 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1388 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1389 Phi->getParent(), L, LoopFeederPhi)) 1390 return true; 1391 return false; 1392 } 1393 1394 /// Return true if the induction variable can underflow in the first iteration. 1395 /// An example, is an initial unsigned value that is 0 and is decrement in the 1396 /// first itertion of a do-while loop. In this case, we cannot generate a 1397 /// hardware loop because the endloop instruction does not decrement the loop 1398 /// counter if it is <= 1. We only need to perform this analysis if the 1399 /// initial value is a register. 1400 /// 1401 /// This function assumes the initial value may underfow unless proven 1402 /// otherwise. If the type is signed, then we don't care because signed 1403 /// underflow is undefined. We attempt to prove the initial value is not 1404 /// zero by perfoming a crude analysis of the loop counter. This function 1405 /// checks if the initial value is used in any comparison prior to the loop 1406 /// and, if so, assumes the comparison is a range check. This is inexact, 1407 /// but will catch the simple cases. 1408 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1409 const MachineOperand *InitVal, const MachineOperand *EndVal, 1410 MachineBasicBlock *MBB, MachineLoop *L, 1411 LoopFeederMap &LoopFeederPhi) const { 1412 // Only check register values since they are unknown. 1413 if (!InitVal->isReg()) 1414 return false; 1415 1416 if (!EndVal->isImm()) 1417 return false; 1418 1419 // A register value that is assigned an immediate is a known value, and it 1420 // won't underflow in the first iteration. 1421 int64_t Imm; 1422 if (checkForImmediate(*InitVal, Imm)) 1423 return (EndVal->getImm() == Imm); 1424 1425 Register Reg = InitVal->getReg(); 1426 1427 // We don't know the value of a physical register. 1428 if (!Reg.isVirtual()) 1429 return true; 1430 1431 MachineInstr *Def = MRI->getVRegDef(Reg); 1432 if (!Def) 1433 return true; 1434 1435 // If the initial value is a Phi or copy and the operands may not underflow, 1436 // then the definition cannot be underflow either. 1437 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1438 L, LoopFeederPhi)) 1439 return false; 1440 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1441 EndVal, Def->getParent(), 1442 L, LoopFeederPhi)) 1443 return false; 1444 1445 // Iterate over the uses of the initial value. If the initial value is used 1446 // in a compare, then we assume this is a range check that ensures the loop 1447 // doesn't underflow. This is not an exact test and should be improved. 1448 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1449 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1450 MachineInstr *MI = &*I; 1451 Register CmpReg1, CmpReg2; 1452 int64_t CmpMask = 0, CmpValue = 0; 1453 1454 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1455 continue; 1456 1457 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1458 SmallVector<MachineOperand, 2> Cond; 1459 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1460 continue; 1461 1462 Comparison::Kind Cmp = 1463 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); 1464 if (Cmp == 0) 1465 continue; 1466 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1467 Cmp = Comparison::getNegatedComparison(Cmp); 1468 if (CmpReg2 != 0 && CmpReg2 == Reg) 1469 Cmp = Comparison::getSwappedComparison(Cmp); 1470 1471 // Signed underflow is undefined. 1472 if (Comparison::isSigned(Cmp)) 1473 return false; 1474 1475 // Check if there is a comparison of the initial value. If the initial value 1476 // is greater than or not equal to another value, then assume this is a 1477 // range check. 1478 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1479 return false; 1480 } 1481 1482 // OK - this is a hack that needs to be improved. We really need to analyze 1483 // the instructions performed on the initial value. This works on the simplest 1484 // cases only. 1485 if (!Def->isCopy() && !Def->isPHI()) 1486 return false; 1487 1488 return true; 1489 } 1490 1491 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1492 int64_t &Val) const { 1493 if (MO.isImm()) { 1494 Val = MO.getImm(); 1495 return true; 1496 } 1497 if (!MO.isReg()) 1498 return false; 1499 1500 // MO is a register. Check whether it is defined as an immediate value, 1501 // and if so, get the value of it in TV. That value will then need to be 1502 // processed to handle potential subregisters in MO. 1503 int64_t TV; 1504 1505 Register R = MO.getReg(); 1506 if (!R.isVirtual()) 1507 return false; 1508 MachineInstr *DI = MRI->getVRegDef(R); 1509 unsigned DOpc = DI->getOpcode(); 1510 switch (DOpc) { 1511 case TargetOpcode::COPY: 1512 case Hexagon::A2_tfrsi: 1513 case Hexagon::A2_tfrpi: 1514 case Hexagon::CONST32: 1515 case Hexagon::CONST64: 1516 // Call recursively to avoid an extra check whether operand(1) is 1517 // indeed an immediate (it could be a global address, for example), 1518 // plus we can handle COPY at the same time. 1519 if (!checkForImmediate(DI->getOperand(1), TV)) 1520 return false; 1521 break; 1522 case Hexagon::A2_combineii: 1523 case Hexagon::A4_combineir: 1524 case Hexagon::A4_combineii: 1525 case Hexagon::A4_combineri: 1526 case Hexagon::A2_combinew: { 1527 const MachineOperand &S1 = DI->getOperand(1); 1528 const MachineOperand &S2 = DI->getOperand(2); 1529 int64_t V1, V2; 1530 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1531 return false; 1532 TV = V2 | (static_cast<uint64_t>(V1) << 32); 1533 break; 1534 } 1535 case TargetOpcode::REG_SEQUENCE: { 1536 const MachineOperand &S1 = DI->getOperand(1); 1537 const MachineOperand &S3 = DI->getOperand(3); 1538 int64_t V1, V3; 1539 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1540 return false; 1541 unsigned Sub2 = DI->getOperand(2).getImm(); 1542 unsigned Sub4 = DI->getOperand(4).getImm(); 1543 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) 1544 TV = V1 | (V3 << 32); 1545 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) 1546 TV = V3 | (V1 << 32); 1547 else 1548 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1549 break; 1550 } 1551 1552 default: 1553 return false; 1554 } 1555 1556 // By now, we should have successfully obtained the immediate value defining 1557 // the register referenced in MO. Handle a potential use of a subregister. 1558 switch (MO.getSubReg()) { 1559 case Hexagon::isub_lo: 1560 Val = TV & 0xFFFFFFFFULL; 1561 break; 1562 case Hexagon::isub_hi: 1563 Val = (TV >> 32) & 0xFFFFFFFFULL; 1564 break; 1565 default: 1566 Val = TV; 1567 break; 1568 } 1569 return true; 1570 } 1571 1572 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1573 if (MO.isImm()) { 1574 MO.setImm(Val); 1575 return; 1576 } 1577 1578 assert(MO.isReg()); 1579 Register R = MO.getReg(); 1580 MachineInstr *DI = MRI->getVRegDef(R); 1581 1582 const TargetRegisterClass *RC = MRI->getRegClass(R); 1583 Register NewR = MRI->createVirtualRegister(RC); 1584 MachineBasicBlock &B = *DI->getParent(); 1585 DebugLoc DL = DI->getDebugLoc(); 1586 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1587 MO.setReg(NewR); 1588 } 1589 1590 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1591 MachineBasicBlock *Header = L->getHeader(); 1592 MachineBasicBlock *Latch = L->getLoopLatch(); 1593 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1594 1595 if (!(Header && Latch && ExitingBlock)) 1596 return false; 1597 1598 // These data structures follow the same concept as the corresponding 1599 // ones in findInductionRegister (where some comments are). 1600 using RegisterBump = std::pair<unsigned, int64_t>; 1601 using RegisterInduction = std::pair<unsigned, RegisterBump>; 1602 using RegisterInductionSet = std::set<RegisterInduction>; 1603 1604 // Register candidates for induction variables, with their associated bumps. 1605 RegisterInductionSet IndRegs; 1606 1607 // Look for induction patterns: 1608 // %1 = PHI ..., [ latch, %2 ] 1609 // %2 = ADD %1, imm 1610 using instr_iterator = MachineBasicBlock::instr_iterator; 1611 1612 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1613 I != E && I->isPHI(); ++I) { 1614 MachineInstr *Phi = &*I; 1615 1616 // Have a PHI instruction. 1617 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1618 if (Phi->getOperand(i+1).getMBB() != Latch) 1619 continue; 1620 1621 Register PhiReg = Phi->getOperand(i).getReg(); 1622 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1623 1624 if (DI->getDesc().isAdd()) { 1625 // If the register operand to the add/sub is the PHI we are looking 1626 // at, this meets the induction pattern. 1627 Register IndReg = DI->getOperand(1).getReg(); 1628 MachineOperand &Opnd2 = DI->getOperand(2); 1629 int64_t V; 1630 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1631 Register UpdReg = DI->getOperand(0).getReg(); 1632 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1633 } 1634 } 1635 } // for (i) 1636 } // for (instr) 1637 1638 if (IndRegs.empty()) 1639 return false; 1640 1641 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1642 SmallVector<MachineOperand,2> Cond; 1643 // analyzeBranch returns true if it fails to analyze branch. 1644 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1645 if (NotAnalyzed || Cond.empty()) 1646 return false; 1647 1648 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1649 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 1650 SmallVector<MachineOperand,2> LCond; 1651 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1652 if (NotAnalyzed) 1653 return false; 1654 1655 // Since latch is not the exiting block, the latch branch should be an 1656 // unconditional branch to the loop header. 1657 if (TB == Latch) 1658 TB = (LTB == Header) ? LTB : LFB; 1659 else 1660 FB = (LTB == Header) ? LTB : LFB; 1661 } 1662 if (TB != Header) { 1663 if (FB != Header) { 1664 // The latch/exit block does not go back to the header. 1665 return false; 1666 } 1667 // FB is the header (i.e., uncond. jump to branch header) 1668 // In this case, the LoopBody -> TB should not be a back edge otherwise 1669 // it could result in an infinite loop after conversion to hw_loop. 1670 // This case can happen when the Latch has two jumps like this: 1671 // Jmp_c OuterLoopHeader <-- TB 1672 // Jmp InnerLoopHeader <-- FB 1673 if (MDT->dominates(TB, FB)) 1674 return false; 1675 } 1676 1677 // Expecting a predicate register as a condition. It won't be a hardware 1678 // predicate register at this point yet, just a vreg. 1679 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0) 1680 // into Cond, followed by the predicate register. For non-negated branches 1681 // it's just the register. 1682 unsigned CSz = Cond.size(); 1683 if (CSz != 1 && CSz != 2) 1684 return false; 1685 1686 if (!Cond[CSz-1].isReg()) 1687 return false; 1688 1689 Register P = Cond[CSz - 1].getReg(); 1690 MachineInstr *PredDef = MRI->getVRegDef(P); 1691 1692 if (!PredDef->isCompare()) 1693 return false; 1694 1695 SmallSet<unsigned,2> CmpRegs; 1696 MachineOperand *CmpImmOp = nullptr; 1697 1698 // Go over all operands to the compare and look for immediate and register 1699 // operands. Assume that if the compare has a single register use and a 1700 // single immediate operand, then the register is being compared with the 1701 // immediate value. 1702 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1703 MachineOperand &MO = PredDef->getOperand(i); 1704 if (MO.isReg()) { 1705 // Skip all implicit references. In one case there was: 1706 // %140 = FCMPUGT32_rr %138, %139, implicit %usr 1707 if (MO.isImplicit()) 1708 continue; 1709 if (MO.isUse()) { 1710 if (!isImmediate(MO)) { 1711 CmpRegs.insert(MO.getReg()); 1712 continue; 1713 } 1714 // Consider the register to be the "immediate" operand. 1715 if (CmpImmOp) 1716 return false; 1717 CmpImmOp = &MO; 1718 } 1719 } else if (MO.isImm()) { 1720 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1721 return false; 1722 CmpImmOp = &MO; 1723 } 1724 } 1725 1726 if (CmpRegs.empty()) 1727 return false; 1728 1729 // Check if the compared register follows the order we want. Fix if needed. 1730 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1731 I != E; ++I) { 1732 // This is a success. If the register used in the comparison is one that 1733 // we have identified as a bumped (updated) induction register, there is 1734 // nothing to do. 1735 if (CmpRegs.count(I->first)) 1736 return true; 1737 1738 // Otherwise, if the register being compared comes out of a PHI node, 1739 // and has been recognized as following the induction pattern, and is 1740 // compared against an immediate, we can fix it. 1741 const RegisterBump &RB = I->second; 1742 if (CmpRegs.count(RB.first)) { 1743 if (!CmpImmOp) { 1744 // If both operands to the compare instruction are registers, see if 1745 // it can be changed to use induction register as one of the operands. 1746 MachineInstr *IndI = nullptr; 1747 MachineInstr *nonIndI = nullptr; 1748 MachineOperand *IndMO = nullptr; 1749 MachineOperand *nonIndMO = nullptr; 1750 1751 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1752 MachineOperand &MO = PredDef->getOperand(i); 1753 if (MO.isReg() && MO.getReg() == RB.first) { 1754 LLVM_DEBUG(dbgs() << "\n DefMI(" << i 1755 << ") = " << *(MRI->getVRegDef(I->first))); 1756 if (IndI) 1757 return false; 1758 1759 IndI = MRI->getVRegDef(I->first); 1760 IndMO = &MO; 1761 } else if (MO.isReg()) { 1762 LLVM_DEBUG(dbgs() << "\n DefMI(" << i 1763 << ") = " << *(MRI->getVRegDef(MO.getReg()))); 1764 if (nonIndI) 1765 return false; 1766 1767 nonIndI = MRI->getVRegDef(MO.getReg()); 1768 nonIndMO = &MO; 1769 } 1770 } 1771 if (IndI && nonIndI && 1772 nonIndI->getOpcode() == Hexagon::A2_addi && 1773 nonIndI->getOperand(2).isImm() && 1774 nonIndI->getOperand(2).getImm() == - RB.second) { 1775 bool Order = orderBumpCompare(IndI, PredDef); 1776 if (Order) { 1777 IndMO->setReg(I->first); 1778 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1779 return true; 1780 } 1781 } 1782 return false; 1783 } 1784 1785 // It is not valid to do this transformation on an unsigned comparison 1786 // because it may underflow. 1787 Comparison::Kind Cmp = 1788 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); 1789 if (!Cmp || Comparison::isUnsigned(Cmp)) 1790 return false; 1791 1792 // If the register is being compared against an immediate, try changing 1793 // the compare instruction to use induction register and adjust the 1794 // immediate operand. 1795 int64_t CmpImm = getImmediate(*CmpImmOp); 1796 int64_t V = RB.second; 1797 // Handle Overflow (64-bit). 1798 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1799 ((V < 0) && (CmpImm < INT64_MIN - V))) 1800 return false; 1801 CmpImm += V; 1802 // Most comparisons of register against an immediate value allow 1803 // the immediate to be constant-extended. There are some exceptions 1804 // though. Make sure the new combination will work. 1805 if (CmpImmOp->isImm() && !TII->isExtendable(*PredDef) && 1806 !TII->isValidOffset(PredDef->getOpcode(), CmpImm, TRI, false)) 1807 return false; 1808 1809 // Make sure that the compare happens after the bump. Otherwise, 1810 // after the fixup, the compare would use a yet-undefined register. 1811 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1812 bool Order = orderBumpCompare(BumpI, PredDef); 1813 if (!Order) 1814 return false; 1815 1816 // Finally, fix the compare instruction. 1817 setImmediate(*CmpImmOp, CmpImm); 1818 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1819 MachineOperand &MO = PredDef->getOperand(i); 1820 if (MO.isReg() && MO.getReg() == RB.first) { 1821 MO.setReg(I->first); 1822 return true; 1823 } 1824 } 1825 } 1826 } 1827 1828 return false; 1829 } 1830 1831 /// createPreheaderForLoop - Create a preheader for a given loop. 1832 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1833 MachineLoop *L) { 1834 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) 1835 return TmpPH; 1836 if (!HWCreatePreheader) 1837 return nullptr; 1838 1839 MachineBasicBlock *Header = L->getHeader(); 1840 MachineBasicBlock *Latch = L->getLoopLatch(); 1841 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1842 MachineFunction *MF = Header->getParent(); 1843 DebugLoc DL; 1844 1845 #ifndef NDEBUG 1846 if ((!PHFn.empty()) && (PHFn != MF->getName())) 1847 return nullptr; 1848 #endif 1849 1850 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1851 return nullptr; 1852 1853 using instr_iterator = MachineBasicBlock::instr_iterator; 1854 1855 // Verify that all existing predecessors have analyzable branches 1856 // (or no branches at all). 1857 using MBBVector = std::vector<MachineBasicBlock *>; 1858 1859 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1860 SmallVector<MachineOperand,2> Tmp1; 1861 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1862 1863 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1864 return nullptr; 1865 1866 for (MachineBasicBlock *PB : Preds) { 1867 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1868 if (NotAnalyzed) 1869 return nullptr; 1870 } 1871 1872 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1873 MF->insert(Header->getIterator(), NewPH); 1874 1875 if (Header->pred_size() > 2) { 1876 // Ensure that the header has only two predecessors: the preheader and 1877 // the loop latch. Any additional predecessors of the header should 1878 // join at the newly created preheader. Inspect all PHI nodes from the 1879 // header and create appropriate corresponding PHI nodes in the preheader. 1880 1881 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1882 I != E && I->isPHI(); ++I) { 1883 MachineInstr *PN = &*I; 1884 1885 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1886 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1887 NewPH->insert(NewPH->end(), NewPN); 1888 1889 Register PR = PN->getOperand(0).getReg(); 1890 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1891 Register NewPR = MRI->createVirtualRegister(RC); 1892 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1893 1894 // Copy all non-latch operands of a header's PHI node to the newly 1895 // created PHI node in the preheader. 1896 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1897 Register PredR = PN->getOperand(i).getReg(); 1898 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1899 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1900 if (PredB == Latch) 1901 continue; 1902 1903 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1904 MO.setSubReg(PredRSub); 1905 NewPN->addOperand(MO); 1906 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1907 } 1908 1909 // Remove copied operands from the old PHI node and add the value 1910 // coming from the preheader's PHI. 1911 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1912 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1913 if (PredB != Latch) { 1914 PN->removeOperand(i+1); 1915 PN->removeOperand(i); 1916 } 1917 } 1918 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1919 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1920 } 1921 } else { 1922 assert(Header->pred_size() == 2); 1923 1924 // The header has only two predecessors, but the non-latch predecessor 1925 // is not a preheader (e.g. it has other successors, etc.) 1926 // In such a case we don't need any extra PHI nodes in the new preheader, 1927 // all we need is to adjust existing PHIs in the header to now refer to 1928 // the new preheader. 1929 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1930 I != E && I->isPHI(); ++I) { 1931 MachineInstr *PN = &*I; 1932 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1933 MachineOperand &MO = PN->getOperand(i+1); 1934 if (MO.getMBB() != Latch) 1935 MO.setMBB(NewPH); 1936 } 1937 } 1938 } 1939 1940 // "Reroute" the CFG edges to link in the new preheader. 1941 // If any of the predecessors falls through to the header, insert a branch 1942 // to the new preheader in that place. 1943 SmallVector<MachineOperand,1> Tmp2; 1944 SmallVector<MachineOperand,1> EmptyCond; 1945 1946 TB = FB = nullptr; 1947 1948 for (MachineBasicBlock *PB : Preds) { 1949 if (PB != Latch) { 1950 Tmp2.clear(); 1951 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1952 (void)NotAnalyzed; // suppress compiler warning 1953 assert (!NotAnalyzed && "Should be analyzable!"); 1954 if (TB != Header && (Tmp2.empty() || FB != Header)) 1955 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1956 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1957 } 1958 } 1959 1960 // It can happen that the latch block will fall through into the header. 1961 // Insert an unconditional branch to the header. 1962 TB = FB = nullptr; 1963 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1964 (void)LatchNotAnalyzed; // suppress compiler warning 1965 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1966 if (!TB && !FB) 1967 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1968 1969 // Finally, the branch from the preheader to the header. 1970 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1971 NewPH->addSuccessor(Header); 1972 1973 MachineLoop *ParentLoop = L->getParentLoop(); 1974 if (ParentLoop) 1975 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 1976 1977 // Update the dominator information with the new preheader. 1978 if (MDT) { 1979 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 1980 if (MachineDomTreeNode *DHN = HN->getIDom()) { 1981 MDT->addNewBlock(NewPH, DHN->getBlock()); 1982 MDT->changeImmediateDominator(Header, NewPH); 1983 } 1984 } 1985 } 1986 1987 return NewPH; 1988 } 1989