1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies loops where we can generate the Hexagon hardware 10 // loop instruction. The hardware loop can perform loop branches with a 11 // zero-cycle overhead. 12 // 13 // The pattern that defines the induction variable can changed depending on 14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 15 // normalizes induction variables, and the Loop Strength Reduction pass 16 // run by 'llc' may also make changes to the induction variable. 17 // The pattern detected by this phase is due to running Strength Reduction. 18 // 19 // Criteria for hardware loops: 20 // - Countable loops (w/ ind. var for a trip count) 21 // - Assumes loops are normalized by IndVarSimplify 22 // - Try inner-most loops first 23 // - No function calls in loops. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "HexagonInstrInfo.h" 28 #include "HexagonSubtarget.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineOperand.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <cassert> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <iterator> 58 #include <map> 59 #include <set> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "hwloops" 67 68 #ifndef NDEBUG 69 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 70 71 // Option to create preheader only for a specific function. 72 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 73 cl::init("")); 74 #endif 75 76 // Option to create a preheader if one doesn't exist. 77 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 78 cl::Hidden, cl::init(true), 79 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 80 81 // Turn it off by default. If a preheader block is not created here, the 82 // software pipeliner may be unable to find a block suitable to serve as 83 // a preheader. In that case SWP will not run. 84 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::Hidden, 85 cl::desc("Allow speculation of preheader " 86 "instructions")); 87 88 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 89 90 namespace llvm { 91 92 FunctionPass *createHexagonHardwareLoops(); 93 void initializeHexagonHardwareLoopsPass(PassRegistry&); 94 95 } // end namespace llvm 96 97 namespace { 98 99 class CountValue; 100 101 struct HexagonHardwareLoops : public MachineFunctionPass { 102 MachineLoopInfo *MLI; 103 MachineRegisterInfo *MRI; 104 MachineDominatorTree *MDT; 105 const HexagonInstrInfo *TII; 106 const HexagonRegisterInfo *TRI; 107 #ifndef NDEBUG 108 static int Counter; 109 #endif 110 111 public: 112 static char ID; 113 114 HexagonHardwareLoops() : MachineFunctionPass(ID) {} 115 116 bool runOnMachineFunction(MachineFunction &MF) override; 117 118 StringRef getPassName() const override { return "Hexagon Hardware Loops"; } 119 120 void getAnalysisUsage(AnalysisUsage &AU) const override { 121 AU.addRequired<MachineDominatorTreeWrapperPass>(); 122 AU.addRequired<MachineLoopInfoWrapperPass>(); 123 MachineFunctionPass::getAnalysisUsage(AU); 124 } 125 126 private: 127 using LoopFeederMap = std::map<Register, MachineInstr *>; 128 129 /// Kinds of comparisons in the compare instructions. 130 struct Comparison { 131 enum Kind { 132 EQ = 0x01, 133 NE = 0x02, 134 L = 0x04, 135 G = 0x08, 136 U = 0x40, 137 LTs = L, 138 LEs = L | EQ, 139 GTs = G, 140 GEs = G | EQ, 141 LTu = L | U, 142 LEu = L | EQ | U, 143 GTu = G | U, 144 GEu = G | EQ | U 145 }; 146 147 static Kind getSwappedComparison(Kind Cmp) { 148 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 149 if ((Cmp & L) || (Cmp & G)) 150 return (Kind)(Cmp ^ (L|G)); 151 return Cmp; 152 } 153 154 static Kind getNegatedComparison(Kind Cmp) { 155 if ((Cmp & L) || (Cmp & G)) 156 return (Kind)((Cmp ^ (L | G)) ^ EQ); 157 if ((Cmp & NE) || (Cmp & EQ)) 158 return (Kind)(Cmp ^ (EQ | NE)); 159 return (Kind)0; 160 } 161 162 static bool isSigned(Kind Cmp) { 163 return (Cmp & (L | G) && !(Cmp & U)); 164 } 165 166 static bool isUnsigned(Kind Cmp) { 167 return (Cmp & U); 168 } 169 }; 170 171 /// Find the register that contains the loop controlling 172 /// induction variable. 173 /// If successful, it will return true and set the \p Reg, \p IVBump 174 /// and \p IVOp arguments. Otherwise it will return false. 175 /// The returned induction register is the register R that follows the 176 /// following induction pattern: 177 /// loop: 178 /// R = phi ..., [ R.next, LatchBlock ] 179 /// R.next = R + #bump 180 /// if (R.next < #N) goto loop 181 /// IVBump is the immediate value added to R, and IVOp is the instruction 182 /// "R.next = R + #bump". 183 bool findInductionRegister(MachineLoop *L, Register &Reg, 184 int64_t &IVBump, MachineInstr *&IVOp) const; 185 186 /// Return the comparison kind for the specified opcode. 187 Comparison::Kind getComparisonKind(unsigned CondOpc, 188 MachineOperand *InitialValue, 189 const MachineOperand *Endvalue, 190 int64_t IVBump) const; 191 192 /// Analyze the statements in a loop to determine if the loop 193 /// has a computable trip count and, if so, return a value that represents 194 /// the trip count expression. 195 CountValue *getLoopTripCount(MachineLoop *L, 196 SmallVectorImpl<MachineInstr *> &OldInsts); 197 198 /// Return the expression that represents the number of times 199 /// a loop iterates. The function takes the operands that represent the 200 /// loop start value, loop end value, and induction value. Based upon 201 /// these operands, the function attempts to compute the trip count. 202 /// If the trip count is not directly available (as an immediate value, 203 /// or a register), the function will attempt to insert computation of it 204 /// to the loop's preheader. 205 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 206 const MachineOperand *End, Register IVReg, 207 int64_t IVBump, Comparison::Kind Cmp) const; 208 209 /// Return true if the instruction is not valid within a hardware 210 /// loop. 211 bool isInvalidLoopOperation(const MachineInstr *MI, 212 bool IsInnerHWLoop) const; 213 214 /// Return true if the loop contains an instruction that inhibits 215 /// using the hardware loop. 216 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 217 218 /// Given a loop, check if we can convert it to a hardware loop. 219 /// If so, then perform the conversion and return true. 220 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 221 222 /// Return true if the instruction is now dead. 223 bool isDead(const MachineInstr *MI, 224 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 225 226 /// Remove the instruction if it is now dead. 227 void removeIfDead(MachineInstr *MI); 228 229 /// Make sure that the "bump" instruction executes before the 230 /// compare. We need that for the IV fixup, so that the compare 231 /// instruction would not use a bumped value that has not yet been 232 /// defined. If the instructions are out of order, try to reorder them. 233 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 234 235 /// Return true if MO and MI pair is visited only once. If visited 236 /// more than once, this indicates there is recursion. In such a case, 237 /// return false. 238 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 239 const MachineOperand *MO, 240 LoopFeederMap &LoopFeederPhi) const; 241 242 /// Return true if the Phi may generate a value that may underflow, 243 /// or may wrap. 244 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 245 MachineBasicBlock *MBB, MachineLoop *L, 246 LoopFeederMap &LoopFeederPhi) const; 247 248 /// Return true if the induction variable may underflow an unsigned 249 /// value in the first iteration. 250 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 251 const MachineOperand *EndVal, 252 MachineBasicBlock *MBB, MachineLoop *L, 253 LoopFeederMap &LoopFeederPhi) const; 254 255 /// Check if the given operand has a compile-time known constant 256 /// value. Return true if yes, and false otherwise. When returning true, set 257 /// Val to the corresponding constant value. 258 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 259 260 /// Check if the operand has a compile-time known constant value. 261 bool isImmediate(const MachineOperand &MO) const { 262 int64_t V; 263 return checkForImmediate(MO, V); 264 } 265 266 /// Return the immediate for the specified operand. 267 int64_t getImmediate(const MachineOperand &MO) const { 268 int64_t V; 269 if (!checkForImmediate(MO, V)) 270 llvm_unreachable("Invalid operand"); 271 return V; 272 } 273 274 /// Reset the given machine operand to now refer to a new immediate 275 /// value. Assumes that the operand was already referencing an immediate 276 /// value, either directly, or via a register. 277 void setImmediate(MachineOperand &MO, int64_t Val); 278 279 /// Fix the data flow of the induction variable. 280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 281 /// | 282 /// +-> back to phi 283 /// where "bump" is the increment of the induction variable: 284 /// iv = iv + #const. 285 /// Due to some prior code transformations, the actual flow may look 286 /// like this: 287 /// phi -+-> bump ---> back to phi 288 /// | 289 /// +-> comparison-in-latch (against upper_bound-bump), 290 /// i.e. the comparison that controls the loop execution may be using 291 /// the value of the induction variable from before the increment. 292 /// 293 /// Return true if the loop's flow is the desired one (i.e. it's 294 /// either been fixed, or no fixing was necessary). 295 /// Otherwise, return false. This can happen if the induction variable 296 /// couldn't be identified, or if the value in the latch's comparison 297 /// cannot be adjusted to reflect the post-bump value. 298 bool fixupInductionVariable(MachineLoop *L); 299 300 /// Given a loop, if it does not have a preheader, create one. 301 /// Return the block that is the preheader. 302 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 303 }; 304 305 char HexagonHardwareLoops::ID = 0; 306 #ifndef NDEBUG 307 int HexagonHardwareLoops::Counter = 0; 308 #endif 309 310 /// Abstraction for a trip count of a loop. A smaller version 311 /// of the MachineOperand class without the concerns of changing the 312 /// operand representation. 313 class CountValue { 314 public: 315 enum CountValueType { 316 CV_Register, 317 CV_Immediate 318 }; 319 320 private: 321 CountValueType Kind; 322 union Values { 323 Values() : R{Register(), 0} {} 324 Values(const Values&) = default; 325 struct { 326 Register Reg; 327 unsigned Sub; 328 } R; 329 unsigned ImmVal; 330 } Contents; 331 332 public: 333 explicit CountValue(CountValueType t, Register v, unsigned u = 0) { 334 Kind = t; 335 if (Kind == CV_Register) { 336 Contents.R.Reg = v; 337 Contents.R.Sub = u; 338 } else { 339 Contents.ImmVal = v; 340 } 341 } 342 343 bool isReg() const { return Kind == CV_Register; } 344 bool isImm() const { return Kind == CV_Immediate; } 345 346 Register getReg() const { 347 assert(isReg() && "Wrong CountValue accessor"); 348 return Contents.R.Reg; 349 } 350 351 unsigned getSubReg() const { 352 assert(isReg() && "Wrong CountValue accessor"); 353 return Contents.R.Sub; 354 } 355 356 unsigned getImm() const { 357 assert(isImm() && "Wrong CountValue accessor"); 358 return Contents.ImmVal; 359 } 360 361 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 362 if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); } 363 if (isImm()) { OS << Contents.ImmVal; } 364 } 365 }; 366 367 } // end anonymous namespace 368 369 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 370 "Hexagon Hardware Loops", false, false) 371 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 372 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 373 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 374 "Hexagon Hardware Loops", false, false) 375 376 FunctionPass *llvm::createHexagonHardwareLoops() { 377 return new HexagonHardwareLoops(); 378 } 379 380 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 381 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 382 if (skipFunction(MF.getFunction())) 383 return false; 384 385 bool Changed = false; 386 387 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 388 MRI = &MF.getRegInfo(); 389 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 390 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); 391 TII = HST.getInstrInfo(); 392 TRI = HST.getRegisterInfo(); 393 394 for (auto &L : *MLI) 395 if (L->isOutermost()) { 396 bool L0Used = false; 397 bool L1Used = false; 398 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 399 } 400 401 return Changed; 402 } 403 404 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 405 Register &Reg, 406 int64_t &IVBump, 407 MachineInstr *&IVOp 408 ) const { 409 MachineBasicBlock *Header = L->getHeader(); 410 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 411 MachineBasicBlock *Latch = L->getLoopLatch(); 412 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 413 if (!Header || !Preheader || !Latch || !ExitingBlock) 414 return false; 415 416 // This pair represents an induction register together with an immediate 417 // value that will be added to it in each loop iteration. 418 using RegisterBump = std::pair<Register, int64_t>; 419 420 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 421 // from an induction operation 422 // R.next = R + bump 423 // where bump is an immediate value. 424 using InductionMap = std::map<Register, RegisterBump>; 425 426 InductionMap IndMap; 427 428 using instr_iterator = MachineBasicBlock::instr_iterator; 429 430 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 431 I != E && I->isPHI(); ++I) { 432 MachineInstr *Phi = &*I; 433 434 // Have a PHI instruction. Get the operand that corresponds to the 435 // latch block, and see if is a result of an addition of form "reg+imm", 436 // where the "reg" is defined by the PHI node we are looking at. 437 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 438 if (Phi->getOperand(i+1).getMBB() != Latch) 439 continue; 440 441 Register PhiOpReg = Phi->getOperand(i).getReg(); 442 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 443 444 if (DI->getDesc().isAdd()) { 445 // If the register operand to the add is the PHI we're looking at, this 446 // meets the induction pattern. 447 Register IndReg = DI->getOperand(1).getReg(); 448 MachineOperand &Opnd2 = DI->getOperand(2); 449 int64_t V; 450 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 451 Register UpdReg = DI->getOperand(0).getReg(); 452 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 453 } 454 } 455 } // for (i) 456 } // for (instr) 457 458 SmallVector<MachineOperand,2> Cond; 459 MachineBasicBlock *TB = nullptr, *FB = nullptr; 460 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 461 if (NotAnalyzed) 462 return false; 463 464 Register PredR; 465 unsigned PredPos, PredRegFlags; 466 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 467 return false; 468 469 MachineInstr *PredI = MRI->getVRegDef(PredR); 470 if (!PredI->isCompare()) 471 return false; 472 473 Register CmpReg1, CmpReg2; 474 int64_t CmpImm = 0, CmpMask = 0; 475 bool CmpAnalyzed = 476 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 477 // Fail if the compare was not analyzed, or it's not comparing a register 478 // with an immediate value. Not checking the mask here, since we handle 479 // the individual compare opcodes (including A4_cmpb*) later on. 480 if (!CmpAnalyzed) 481 return false; 482 483 // Exactly one of the input registers to the comparison should be among 484 // the induction registers. 485 InductionMap::iterator IndMapEnd = IndMap.end(); 486 InductionMap::iterator F = IndMapEnd; 487 if (CmpReg1 != 0) { 488 InductionMap::iterator F1 = IndMap.find(CmpReg1); 489 if (F1 != IndMapEnd) 490 F = F1; 491 } 492 if (CmpReg2 != 0) { 493 InductionMap::iterator F2 = IndMap.find(CmpReg2); 494 if (F2 != IndMapEnd) { 495 if (F != IndMapEnd) 496 return false; 497 F = F2; 498 } 499 } 500 if (F == IndMapEnd) 501 return false; 502 503 Reg = F->second.first; 504 IVBump = F->second.second; 505 IVOp = MRI->getVRegDef(F->first); 506 return true; 507 } 508 509 // Return the comparison kind for the specified opcode. 510 HexagonHardwareLoops::Comparison::Kind 511 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 512 MachineOperand *InitialValue, 513 const MachineOperand *EndValue, 514 int64_t IVBump) const { 515 Comparison::Kind Cmp = (Comparison::Kind)0; 516 switch (CondOpc) { 517 case Hexagon::C2_cmpeq: 518 case Hexagon::C2_cmpeqi: 519 case Hexagon::C2_cmpeqp: 520 Cmp = Comparison::EQ; 521 break; 522 case Hexagon::C4_cmpneq: 523 case Hexagon::C4_cmpneqi: 524 Cmp = Comparison::NE; 525 break; 526 case Hexagon::C2_cmplt: 527 Cmp = Comparison::LTs; 528 break; 529 case Hexagon::C2_cmpltu: 530 Cmp = Comparison::LTu; 531 break; 532 case Hexagon::C4_cmplte: 533 case Hexagon::C4_cmpltei: 534 Cmp = Comparison::LEs; 535 break; 536 case Hexagon::C4_cmplteu: 537 case Hexagon::C4_cmplteui: 538 Cmp = Comparison::LEu; 539 break; 540 case Hexagon::C2_cmpgt: 541 case Hexagon::C2_cmpgti: 542 case Hexagon::C2_cmpgtp: 543 Cmp = Comparison::GTs; 544 break; 545 case Hexagon::C2_cmpgtu: 546 case Hexagon::C2_cmpgtui: 547 case Hexagon::C2_cmpgtup: 548 Cmp = Comparison::GTu; 549 break; 550 case Hexagon::C2_cmpgei: 551 Cmp = Comparison::GEs; 552 break; 553 case Hexagon::C2_cmpgeui: 554 Cmp = Comparison::GEs; 555 break; 556 default: 557 return (Comparison::Kind)0; 558 } 559 return Cmp; 560 } 561 562 /// Analyze the statements in a loop to determine if the loop has 563 /// a computable trip count and, if so, return a value that represents 564 /// the trip count expression. 565 /// 566 /// This function iterates over the phi nodes in the loop to check for 567 /// induction variable patterns that are used in the calculation for 568 /// the number of time the loop is executed. 569 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 570 SmallVectorImpl<MachineInstr *> &OldInsts) { 571 MachineBasicBlock *TopMBB = L->getTopBlock(); 572 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 573 assert(PI != TopMBB->pred_end() && 574 "Loop must have more than one incoming edge!"); 575 MachineBasicBlock *Backedge = *PI++; 576 if (PI == TopMBB->pred_end()) // dead loop? 577 return nullptr; 578 MachineBasicBlock *Incoming = *PI++; 579 if (PI != TopMBB->pred_end()) // multiple backedges? 580 return nullptr; 581 582 // Make sure there is one incoming and one backedge and determine which 583 // is which. 584 if (L->contains(Incoming)) { 585 if (L->contains(Backedge)) 586 return nullptr; 587 std::swap(Incoming, Backedge); 588 } else if (!L->contains(Backedge)) 589 return nullptr; 590 591 // Look for the cmp instruction to determine if we can get a useful trip 592 // count. The trip count can be either a register or an immediate. The 593 // location of the value depends upon the type (reg or imm). 594 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 595 if (!ExitingBlock) 596 return nullptr; 597 598 Register IVReg = 0; 599 int64_t IVBump = 0; 600 MachineInstr *IVOp; 601 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 602 if (!FoundIV) 603 return nullptr; 604 605 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 606 607 MachineOperand *InitialValue = nullptr; 608 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 609 MachineBasicBlock *Latch = L->getLoopLatch(); 610 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 611 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 612 if (MBB == Preheader) 613 InitialValue = &IV_Phi->getOperand(i); 614 else if (MBB == Latch) 615 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 616 } 617 if (!InitialValue) 618 return nullptr; 619 620 SmallVector<MachineOperand,2> Cond; 621 MachineBasicBlock *TB = nullptr, *FB = nullptr; 622 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 623 if (NotAnalyzed) 624 return nullptr; 625 626 MachineBasicBlock *Header = L->getHeader(); 627 // TB must be non-null. If FB is also non-null, one of them must be 628 // the header. Otherwise, branch to TB could be exiting the loop, and 629 // the fall through can go to the header. 630 assert (TB && "Exit block without a branch?"); 631 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 632 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 633 SmallVector<MachineOperand,2> LCond; 634 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 635 if (NotAnalyzed) 636 return nullptr; 637 if (TB == Latch) 638 TB = (LTB == Header) ? LTB : LFB; 639 else 640 FB = (LTB == Header) ? LTB: LFB; 641 } 642 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 643 if (!TB || (FB && TB != Header && FB != Header)) 644 return nullptr; 645 646 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch 647 // to put imm(0), followed by P in the vector Cond. 648 // If TB is not the header, it means that the "not-taken" path must lead 649 // to the header. 650 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 651 Register PredReg; 652 unsigned PredPos, PredRegFlags; 653 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 654 return nullptr; 655 MachineInstr *CondI = MRI->getVRegDef(PredReg); 656 unsigned CondOpc = CondI->getOpcode(); 657 658 Register CmpReg1, CmpReg2; 659 int64_t Mask = 0, ImmValue = 0; 660 bool AnalyzedCmp = 661 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 662 if (!AnalyzedCmp) 663 return nullptr; 664 665 // The comparison operator type determines how we compute the loop 666 // trip count. 667 OldInsts.push_back(CondI); 668 OldInsts.push_back(IVOp); 669 670 // Sadly, the following code gets information based on the position 671 // of the operands in the compare instruction. This has to be done 672 // this way, because the comparisons check for a specific relationship 673 // between the operands (e.g. is-less-than), rather than to find out 674 // what relationship the operands are in (as on PPC). 675 Comparison::Kind Cmp; 676 bool isSwapped = false; 677 const MachineOperand &Op1 = CondI->getOperand(1); 678 const MachineOperand &Op2 = CondI->getOperand(2); 679 const MachineOperand *EndValue = nullptr; 680 681 if (Op1.isReg()) { 682 if (Op2.isImm() || Op1.getReg() == IVReg) 683 EndValue = &Op2; 684 else { 685 EndValue = &Op1; 686 isSwapped = true; 687 } 688 } 689 690 if (!EndValue) 691 return nullptr; 692 693 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 694 if (!Cmp) 695 return nullptr; 696 if (Negated) 697 Cmp = Comparison::getNegatedComparison(Cmp); 698 if (isSwapped) 699 Cmp = Comparison::getSwappedComparison(Cmp); 700 701 if (InitialValue->isReg()) { 702 Register R = InitialValue->getReg(); 703 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 704 if (!MDT->properlyDominates(DefBB, Header)) { 705 int64_t V; 706 if (!checkForImmediate(*InitialValue, V)) 707 return nullptr; 708 } 709 OldInsts.push_back(MRI->getVRegDef(R)); 710 } 711 if (EndValue->isReg()) { 712 Register R = EndValue->getReg(); 713 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 714 if (!MDT->properlyDominates(DefBB, Header)) { 715 int64_t V; 716 if (!checkForImmediate(*EndValue, V)) 717 return nullptr; 718 } 719 OldInsts.push_back(MRI->getVRegDef(R)); 720 } 721 722 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 723 } 724 725 /// Helper function that returns the expression that represents the 726 /// number of times a loop iterates. The function takes the operands that 727 /// represent the loop start value, loop end value, and induction value. 728 /// Based upon these operands, the function attempts to compute the trip count. 729 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 730 const MachineOperand *Start, 731 const MachineOperand *End, 732 Register IVReg, 733 int64_t IVBump, 734 Comparison::Kind Cmp) const { 735 // Cannot handle comparison EQ, i.e. while (A == B). 736 if (Cmp == Comparison::EQ) 737 return nullptr; 738 739 // Check if either the start or end values are an assignment of an immediate. 740 // If so, use the immediate value rather than the register. 741 if (Start->isReg()) { 742 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 743 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 744 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 745 Start = &StartValInstr->getOperand(1); 746 } 747 if (End->isReg()) { 748 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 749 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 750 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 751 End = &EndValInstr->getOperand(1); 752 } 753 754 if (!Start->isReg() && !Start->isImm()) 755 return nullptr; 756 if (!End->isReg() && !End->isImm()) 757 return nullptr; 758 759 bool CmpLess = Cmp & Comparison::L; 760 bool CmpGreater = Cmp & Comparison::G; 761 bool CmpHasEqual = Cmp & Comparison::EQ; 762 763 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 764 if (CmpLess && IVBump < 0) 765 // Loop going while iv is "less" with the iv value going down. Must wrap. 766 return nullptr; 767 768 if (CmpGreater && IVBump > 0) 769 // Loop going while iv is "greater" with the iv value going up. Must wrap. 770 return nullptr; 771 772 // Phis that may feed into the loop. 773 LoopFeederMap LoopFeederPhi; 774 775 // Check if the initial value may be zero and can be decremented in the first 776 // iteration. If the value is zero, the endloop instruction will not decrement 777 // the loop counter, so we shouldn't generate a hardware loop in this case. 778 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 779 LoopFeederPhi)) 780 return nullptr; 781 782 if (Start->isImm() && End->isImm()) { 783 // Both, start and end are immediates. 784 int64_t StartV = Start->getImm(); 785 int64_t EndV = End->getImm(); 786 int64_t Dist = EndV - StartV; 787 if (Dist == 0) 788 return nullptr; 789 790 bool Exact = (Dist % IVBump) == 0; 791 792 if (Cmp == Comparison::NE) { 793 if (!Exact) 794 return nullptr; 795 if ((Dist < 0) ^ (IVBump < 0)) 796 return nullptr; 797 } 798 799 // For comparisons that include the final value (i.e. include equality 800 // with the final value), we need to increase the distance by 1. 801 if (CmpHasEqual) 802 Dist = Dist > 0 ? Dist+1 : Dist-1; 803 804 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 805 // CmpGreater should imply Dist < 0. These conditions could actually 806 // fail, for example, in unreachable code (which may still appear to be 807 // reachable in the CFG). 808 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 809 return nullptr; 810 811 // "Normalized" distance, i.e. with the bump set to +-1. 812 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 813 : (-Dist + (-IVBump - 1)) / (-IVBump); 814 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 815 816 uint64_t Count = Dist1; 817 818 if (Count > 0xFFFFFFFFULL) 819 return nullptr; 820 821 return new CountValue(CountValue::CV_Immediate, Count); 822 } 823 824 // A general case: Start and End are some values, but the actual 825 // iteration count may not be available. If it is not, insert 826 // a computation of it into the preheader. 827 828 // If the induction variable bump is not a power of 2, quit. 829 // Othwerise we'd need a general integer division. 830 if (!isPowerOf2_64(std::abs(IVBump))) 831 return nullptr; 832 833 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); 834 assert (PH && "Should have a preheader by now"); 835 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 836 DebugLoc DL; 837 if (InsertPos != PH->end()) 838 DL = InsertPos->getDebugLoc(); 839 840 // If Start is an immediate and End is a register, the trip count 841 // will be "reg - imm". Hexagon's "subtract immediate" instruction 842 // is actually "reg + -imm". 843 844 // If the loop IV is going downwards, i.e. if the bump is negative, 845 // then the iteration count (computed as End-Start) will need to be 846 // negated. To avoid the negation, just swap Start and End. 847 if (IVBump < 0) { 848 std::swap(Start, End); 849 IVBump = -IVBump; 850 } 851 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 852 // Signedness, and "including equality" are preserved. 853 854 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 855 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 856 857 int64_t StartV = 0, EndV = 0; 858 if (Start->isImm()) 859 StartV = Start->getImm(); 860 if (End->isImm()) 861 EndV = End->getImm(); 862 863 int64_t AdjV = 0; 864 // To compute the iteration count, we would need this computation: 865 // Count = (End - Start + (IVBump-1)) / IVBump 866 // or, when CmpHasEqual: 867 // Count = (End - Start + (IVBump-1)+1) / IVBump 868 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 869 // generating an instruction specifically to add it if we can adjust 870 // the immediate values for Start or End. 871 872 if (CmpHasEqual) { 873 // Need to add 1 to the total iteration count. 874 if (Start->isImm()) 875 StartV--; 876 else if (End->isImm()) 877 EndV++; 878 else 879 AdjV += 1; 880 } 881 882 if (Cmp != Comparison::NE) { 883 if (Start->isImm()) 884 StartV -= (IVBump-1); 885 else if (End->isImm()) 886 EndV += (IVBump-1); 887 else 888 AdjV += (IVBump-1); 889 } 890 891 Register R = 0; 892 unsigned SR = 0; 893 if (Start->isReg()) { 894 R = Start->getReg(); 895 SR = Start->getSubReg(); 896 } else { 897 R = End->getReg(); 898 SR = End->getSubReg(); 899 } 900 const TargetRegisterClass *RC = MRI->getRegClass(R); 901 // Hardware loops cannot handle 64-bit registers. If it's a double 902 // register, it has to have a subregister. 903 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 904 return nullptr; 905 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 906 907 // Compute DistR (register with the distance between Start and End). 908 Register DistR; 909 unsigned DistSR; 910 911 // Avoid special case, where the start value is an imm(0). 912 if (Start->isImm() && StartV == 0) { 913 DistR = End->getReg(); 914 DistSR = End->getSubReg(); 915 } else { 916 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 917 (RegToImm ? TII->get(Hexagon::A2_subri) : 918 TII->get(Hexagon::A2_addi)); 919 if (RegToReg || RegToImm) { 920 Register SubR = MRI->createVirtualRegister(IntRC); 921 MachineInstrBuilder SubIB = 922 BuildMI(*PH, InsertPos, DL, SubD, SubR); 923 924 if (RegToReg) 925 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 926 .addReg(Start->getReg(), 0, Start->getSubReg()); 927 else 928 SubIB.addImm(EndV) 929 .addReg(Start->getReg(), 0, Start->getSubReg()); 930 DistR = SubR; 931 } else { 932 // If the loop has been unrolled, we should use the original loop count 933 // instead of recalculating the value. This will avoid additional 934 // 'Add' instruction. 935 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 936 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 937 EndValInstr->getOperand(1).getSubReg() == 0 && 938 EndValInstr->getOperand(2).getImm() == StartV) { 939 DistR = EndValInstr->getOperand(1).getReg(); 940 } else { 941 Register SubR = MRI->createVirtualRegister(IntRC); 942 MachineInstrBuilder SubIB = 943 BuildMI(*PH, InsertPos, DL, SubD, SubR); 944 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 945 .addImm(-StartV); 946 DistR = SubR; 947 } 948 } 949 DistSR = 0; 950 } 951 952 // From DistR, compute AdjR (register with the adjusted distance). 953 Register AdjR; 954 unsigned AdjSR; 955 956 if (AdjV == 0) { 957 AdjR = DistR; 958 AdjSR = DistSR; 959 } else { 960 // Generate CountR = ADD DistR, AdjVal 961 Register AddR = MRI->createVirtualRegister(IntRC); 962 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 963 BuildMI(*PH, InsertPos, DL, AddD, AddR) 964 .addReg(DistR, 0, DistSR) 965 .addImm(AdjV); 966 967 AdjR = AddR; 968 AdjSR = 0; 969 } 970 971 // From AdjR, compute CountR (register with the final count). 972 Register CountR; 973 unsigned CountSR; 974 975 if (IVBump == 1) { 976 CountR = AdjR; 977 CountSR = AdjSR; 978 } else { 979 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 980 unsigned Shift = Log2_32(IVBump); 981 982 // Generate NormR = LSR DistR, Shift. 983 Register LsrR = MRI->createVirtualRegister(IntRC); 984 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 985 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 986 .addReg(AdjR, 0, AdjSR) 987 .addImm(Shift); 988 989 CountR = LsrR; 990 CountSR = 0; 991 } 992 993 return new CountValue(CountValue::CV_Register, CountR, CountSR); 994 } 995 996 /// Return true if the operation is invalid within hardware loop. 997 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 998 bool IsInnerHWLoop) const { 999 // Call is not allowed because the callee may use a hardware loop except for 1000 // the case when the call never returns. 1001 if (MI->getDesc().isCall()) 1002 return !TII->doesNotReturn(*MI); 1003 1004 // Check if the instruction defines a hardware loop register. 1005 using namespace Hexagon; 1006 1007 static const Register Regs01[] = { LC0, SA0, LC1, SA1 }; 1008 static const Register Regs1[] = { LC1, SA1 }; 1009 auto CheckRegs = IsInnerHWLoop ? ArrayRef(Regs01) : ArrayRef(Regs1); 1010 for (Register R : CheckRegs) 1011 if (MI->modifiesRegister(R, TRI)) 1012 return true; 1013 1014 return false; 1015 } 1016 1017 /// Return true if the loop contains an instruction that inhibits 1018 /// the use of the hardware loop instruction. 1019 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 1020 bool IsInnerHWLoop) const { 1021 LLVM_DEBUG(dbgs() << "\nhw_loop head, " 1022 << printMBBReference(**L->block_begin())); 1023 for (MachineBasicBlock *MBB : L->getBlocks()) { 1024 for (const MachineInstr &MI : *MBB) { 1025 if (isInvalidLoopOperation(&MI, IsInnerHWLoop)) { 1026 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:"; 1027 MI.dump();); 1028 return true; 1029 } 1030 } 1031 } 1032 return false; 1033 } 1034 1035 /// Returns true if the instruction is dead. This was essentially 1036 /// copied from DeadMachineInstructionElim::isDead, but with special cases 1037 /// for inline asm, physical registers and instructions with side effects 1038 /// removed. 1039 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 1040 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 1041 // Examine each operand. 1042 for (const MachineOperand &MO : MI->operands()) { 1043 if (!MO.isReg() || !MO.isDef()) 1044 continue; 1045 1046 Register Reg = MO.getReg(); 1047 if (MRI->use_nodbg_empty(Reg)) 1048 continue; 1049 1050 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; 1051 1052 // This instruction has users, but if the only user is the phi node for the 1053 // parent block, and the only use of that phi node is this instruction, then 1054 // this instruction is dead: both it (and the phi node) can be removed. 1055 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1056 use_nodbg_iterator End = MRI->use_nodbg_end(); 1057 if (std::next(I) != End || !I->getParent()->isPHI()) 1058 return false; 1059 1060 MachineInstr *OnePhi = I->getParent(); 1061 for (const MachineOperand &OPO : OnePhi->operands()) { 1062 if (!OPO.isReg() || !OPO.isDef()) 1063 continue; 1064 1065 Register OPReg = OPO.getReg(); 1066 use_nodbg_iterator nextJ; 1067 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1068 J != End; J = nextJ) { 1069 nextJ = std::next(J); 1070 MachineOperand &Use = *J; 1071 MachineInstr *UseMI = Use.getParent(); 1072 1073 // If the phi node has a user that is not MI, bail. 1074 if (MI != UseMI) 1075 return false; 1076 } 1077 } 1078 DeadPhis.push_back(OnePhi); 1079 } 1080 1081 // If there are no defs with uses, the instruction is dead. 1082 return true; 1083 } 1084 1085 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1086 // This procedure was essentially copied from DeadMachineInstructionElim. 1087 1088 SmallVector<MachineInstr*, 1> DeadPhis; 1089 if (isDead(MI, DeadPhis)) { 1090 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI); 1091 1092 // It is possible that some DBG_VALUE instructions refer to this 1093 // instruction. Examine each def operand for such references; 1094 // if found, mark the DBG_VALUE as undef (but don't delete it). 1095 for (const MachineOperand &MO : MI->operands()) { 1096 if (!MO.isReg() || !MO.isDef()) 1097 continue; 1098 Register Reg = MO.getReg(); 1099 // We use make_early_inc_range here because setReg below invalidates the 1100 // iterator. 1101 for (MachineOperand &MO : 1102 llvm::make_early_inc_range(MRI->use_operands(Reg))) { 1103 MachineInstr *UseMI = MO.getParent(); 1104 if (UseMI == MI) 1105 continue; 1106 if (MO.isDebug()) 1107 MO.setReg(0U); 1108 } 1109 } 1110 1111 MI->eraseFromParent(); 1112 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1113 DeadPhis[i]->eraseFromParent(); 1114 } 1115 } 1116 1117 /// Check if the loop is a candidate for converting to a hardware 1118 /// loop. If so, then perform the transformation. 1119 /// 1120 /// This function works on innermost loops first. A loop can be converted 1121 /// if it is a counting loop; either a register value or an immediate. 1122 /// 1123 /// The code makes several assumptions about the representation of the loop 1124 /// in llvm. 1125 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1126 bool &RecL0used, 1127 bool &RecL1used) { 1128 // This is just to confirm basic correctness. 1129 assert(L->getHeader() && "Loop without a header?"); 1130 1131 bool Changed = false; 1132 bool L0Used = false; 1133 bool L1Used = false; 1134 1135 // Process nested loops first. 1136 for (MachineLoop *I : *L) { 1137 Changed |= convertToHardwareLoop(I, RecL0used, RecL1used); 1138 L0Used |= RecL0used; 1139 L1Used |= RecL1used; 1140 } 1141 1142 // If a nested loop has been converted, then we can't convert this loop. 1143 if (Changed && L0Used && L1Used) 1144 return Changed; 1145 1146 unsigned LOOP_i; 1147 unsigned LOOP_r; 1148 unsigned ENDLOOP; 1149 1150 // Flag used to track loopN instruction: 1151 // 1 - Hardware loop is being generated for the inner most loop. 1152 // 0 - Hardware loop is being generated for the outer loop. 1153 unsigned IsInnerHWLoop = 1; 1154 1155 if (L0Used) { 1156 LOOP_i = Hexagon::J2_loop1i; 1157 LOOP_r = Hexagon::J2_loop1r; 1158 ENDLOOP = Hexagon::ENDLOOP1; 1159 IsInnerHWLoop = 0; 1160 } else { 1161 LOOP_i = Hexagon::J2_loop0i; 1162 LOOP_r = Hexagon::J2_loop0r; 1163 ENDLOOP = Hexagon::ENDLOOP0; 1164 } 1165 1166 #ifndef NDEBUG 1167 // Stop trying after reaching the limit (if any). 1168 int Limit = HWLoopLimit; 1169 if (Limit >= 0) { 1170 if (Counter >= HWLoopLimit) 1171 return false; 1172 Counter++; 1173 } 1174 #endif 1175 1176 // Does the loop contain any invalid instructions? 1177 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1178 return false; 1179 1180 MachineBasicBlock *LastMBB = L->findLoopControlBlock(); 1181 // Don't generate hw loop if the loop has more than one exit. 1182 if (!LastMBB) 1183 return false; 1184 1185 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1186 if (LastI == LastMBB->end()) 1187 return false; 1188 1189 // Is the induction variable bump feeding the latch condition? 1190 if (!fixupInductionVariable(L)) 1191 return false; 1192 1193 // Ensure the loop has a preheader: the loop instruction will be 1194 // placed there. 1195 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 1196 if (!Preheader) { 1197 Preheader = createPreheaderForLoop(L); 1198 if (!Preheader) 1199 return false; 1200 } 1201 1202 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1203 1204 SmallVector<MachineInstr*, 2> OldInsts; 1205 // Are we able to determine the trip count for the loop? 1206 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1207 if (!TripCount) 1208 return false; 1209 1210 // Is the trip count available in the preheader? 1211 if (TripCount->isReg()) { 1212 // There will be a use of the register inserted into the preheader, 1213 // so make sure that the register is actually defined at that point. 1214 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1215 MachineBasicBlock *BBDef = TCDef->getParent(); 1216 if (!MDT->dominates(BBDef, Preheader)) 1217 return false; 1218 } 1219 1220 // Determine the loop start. 1221 MachineBasicBlock *TopBlock = L->getTopBlock(); 1222 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1223 MachineBasicBlock *LoopStart = nullptr; 1224 if (ExitingBlock != L->getLoopLatch()) { 1225 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1226 SmallVector<MachineOperand, 2> Cond; 1227 1228 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1229 return false; 1230 1231 if (L->contains(TB)) 1232 LoopStart = TB; 1233 else if (L->contains(FB)) 1234 LoopStart = FB; 1235 else 1236 return false; 1237 } 1238 else 1239 LoopStart = TopBlock; 1240 1241 // Convert the loop to a hardware loop. 1242 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1243 DebugLoc DL; 1244 if (InsertPos != Preheader->end()) 1245 DL = InsertPos->getDebugLoc(); 1246 1247 if (TripCount->isReg()) { 1248 // Create a copy of the loop count register. 1249 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1250 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1251 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1252 // Add the Loop instruction to the beginning of the loop. 1253 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1254 .addReg(CountReg); 1255 } else { 1256 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1257 // Add the Loop immediate instruction to the beginning of the loop, 1258 // if the immediate fits in the instructions. Otherwise, we need to 1259 // create a new virtual register. 1260 int64_t CountImm = TripCount->getImm(); 1261 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) { 1262 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1263 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1264 .addImm(CountImm); 1265 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1266 .addMBB(LoopStart).addReg(CountReg); 1267 } else 1268 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1269 .addMBB(LoopStart).addImm(CountImm); 1270 } 1271 1272 // Make sure the loop start always has a reference in the CFG. 1273 LoopStart->setMachineBlockAddressTaken(); 1274 1275 // Replace the loop branch with an endloop instruction. 1276 DebugLoc LastIDL = LastI->getDebugLoc(); 1277 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1278 1279 // The loop ends with either: 1280 // - a conditional branch followed by an unconditional branch, or 1281 // - a conditional branch to the loop start. 1282 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1283 LastI->getOpcode() == Hexagon::J2_jumpf) { 1284 // Delete one and change/add an uncond. branch to out of the loop. 1285 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1286 LastI = LastMBB->erase(LastI); 1287 if (!L->contains(BranchTarget)) { 1288 if (LastI != LastMBB->end()) 1289 LastI = LastMBB->erase(LastI); 1290 SmallVector<MachineOperand, 0> Cond; 1291 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1292 } 1293 } else { 1294 // Conditional branch to loop start; just delete it. 1295 LastMBB->erase(LastI); 1296 } 1297 delete TripCount; 1298 1299 // The induction operation and the comparison may now be 1300 // unneeded. If these are unneeded, then remove them. 1301 for (unsigned i = 0; i < OldInsts.size(); ++i) 1302 removeIfDead(OldInsts[i]); 1303 1304 ++NumHWLoops; 1305 1306 // Set RecL1used and RecL0used only after hardware loop has been 1307 // successfully generated. Doing it earlier can cause wrong loop instruction 1308 // to be used. 1309 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1310 RecL1used = true; 1311 else 1312 RecL0used = true; 1313 1314 return true; 1315 } 1316 1317 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1318 MachineInstr *CmpI) { 1319 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1320 1321 MachineBasicBlock *BB = BumpI->getParent(); 1322 if (CmpI->getParent() != BB) 1323 return false; 1324 1325 using instr_iterator = MachineBasicBlock::instr_iterator; 1326 1327 // Check if things are in order to begin with. 1328 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1329 if (&*I == CmpI) 1330 return true; 1331 1332 // Out of order. 1333 Register PredR = CmpI->getOperand(0).getReg(); 1334 bool FoundBump = false; 1335 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1336 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1337 MachineInstr *In = &*I; 1338 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1339 MachineOperand &MO = In->getOperand(i); 1340 if (MO.isReg() && MO.isUse()) { 1341 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1342 return false; 1343 } 1344 } 1345 1346 if (In == BumpI) { 1347 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1348 FoundBump = true; 1349 break; 1350 } 1351 } 1352 assert (FoundBump && "Cannot determine instruction order"); 1353 return FoundBump; 1354 } 1355 1356 /// This function is required to break recursion. Visiting phis in a loop may 1357 /// result in recursion during compilation. We break the recursion by making 1358 /// sure that we visit a MachineOperand and its definition in a 1359 /// MachineInstruction only once. If we attempt to visit more than once, then 1360 /// there is recursion, and will return false. 1361 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1362 MachineInstr *MI, 1363 const MachineOperand *MO, 1364 LoopFeederMap &LoopFeederPhi) const { 1365 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1366 LLVM_DEBUG(dbgs() << "\nhw_loop head, " 1367 << printMBBReference(**L->block_begin())); 1368 // Ignore all BBs that form Loop. 1369 if (llvm::is_contained(L->getBlocks(), A)) 1370 return false; 1371 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1372 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1373 return true; 1374 } else 1375 // Already visited node. 1376 return false; 1377 } 1378 1379 /// Return true if a Phi may generate a value that can underflow. 1380 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1381 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1382 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1383 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1384 assert(Phi->isPHI() && "Expecting a Phi."); 1385 // Walk through each Phi, and its used operands. Make sure that 1386 // if there is recursion in Phi, we won't generate hardware loops. 1387 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1388 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1389 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1390 Phi->getParent(), L, LoopFeederPhi)) 1391 return true; 1392 return false; 1393 } 1394 1395 /// Return true if the induction variable can underflow in the first iteration. 1396 /// An example, is an initial unsigned value that is 0 and is decrement in the 1397 /// first itertion of a do-while loop. In this case, we cannot generate a 1398 /// hardware loop because the endloop instruction does not decrement the loop 1399 /// counter if it is <= 1. We only need to perform this analysis if the 1400 /// initial value is a register. 1401 /// 1402 /// This function assumes the initial value may underfow unless proven 1403 /// otherwise. If the type is signed, then we don't care because signed 1404 /// underflow is undefined. We attempt to prove the initial value is not 1405 /// zero by perfoming a crude analysis of the loop counter. This function 1406 /// checks if the initial value is used in any comparison prior to the loop 1407 /// and, if so, assumes the comparison is a range check. This is inexact, 1408 /// but will catch the simple cases. 1409 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1410 const MachineOperand *InitVal, const MachineOperand *EndVal, 1411 MachineBasicBlock *MBB, MachineLoop *L, 1412 LoopFeederMap &LoopFeederPhi) const { 1413 // Only check register values since they are unknown. 1414 if (!InitVal->isReg()) 1415 return false; 1416 1417 if (!EndVal->isImm()) 1418 return false; 1419 1420 // A register value that is assigned an immediate is a known value, and it 1421 // won't underflow in the first iteration. 1422 int64_t Imm; 1423 if (checkForImmediate(*InitVal, Imm)) 1424 return (EndVal->getImm() == Imm); 1425 1426 Register Reg = InitVal->getReg(); 1427 1428 // We don't know the value of a physical register. 1429 if (!Reg.isVirtual()) 1430 return true; 1431 1432 MachineInstr *Def = MRI->getVRegDef(Reg); 1433 if (!Def) 1434 return true; 1435 1436 // If the initial value is a Phi or copy and the operands may not underflow, 1437 // then the definition cannot be underflow either. 1438 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1439 L, LoopFeederPhi)) 1440 return false; 1441 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1442 EndVal, Def->getParent(), 1443 L, LoopFeederPhi)) 1444 return false; 1445 1446 // Iterate over the uses of the initial value. If the initial value is used 1447 // in a compare, then we assume this is a range check that ensures the loop 1448 // doesn't underflow. This is not an exact test and should be improved. 1449 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1450 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1451 MachineInstr *MI = &*I; 1452 Register CmpReg1, CmpReg2; 1453 int64_t CmpMask = 0, CmpValue = 0; 1454 1455 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1456 continue; 1457 1458 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1459 SmallVector<MachineOperand, 2> Cond; 1460 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1461 continue; 1462 1463 Comparison::Kind Cmp = 1464 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); 1465 if (Cmp == 0) 1466 continue; 1467 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1468 Cmp = Comparison::getNegatedComparison(Cmp); 1469 if (CmpReg2 != 0 && CmpReg2 == Reg) 1470 Cmp = Comparison::getSwappedComparison(Cmp); 1471 1472 // Signed underflow is undefined. 1473 if (Comparison::isSigned(Cmp)) 1474 return false; 1475 1476 // Check if there is a comparison of the initial value. If the initial value 1477 // is greater than or not equal to another value, then assume this is a 1478 // range check. 1479 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1480 return false; 1481 } 1482 1483 // OK - this is a hack that needs to be improved. We really need to analyze 1484 // the instructions performed on the initial value. This works on the simplest 1485 // cases only. 1486 if (!Def->isCopy() && !Def->isPHI()) 1487 return false; 1488 1489 return true; 1490 } 1491 1492 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1493 int64_t &Val) const { 1494 if (MO.isImm()) { 1495 Val = MO.getImm(); 1496 return true; 1497 } 1498 if (!MO.isReg()) 1499 return false; 1500 1501 // MO is a register. Check whether it is defined as an immediate value, 1502 // and if so, get the value of it in TV. That value will then need to be 1503 // processed to handle potential subregisters in MO. 1504 int64_t TV; 1505 1506 Register R = MO.getReg(); 1507 if (!R.isVirtual()) 1508 return false; 1509 MachineInstr *DI = MRI->getVRegDef(R); 1510 unsigned DOpc = DI->getOpcode(); 1511 switch (DOpc) { 1512 case TargetOpcode::COPY: 1513 case Hexagon::A2_tfrsi: 1514 case Hexagon::A2_tfrpi: 1515 case Hexagon::CONST32: 1516 case Hexagon::CONST64: 1517 // Call recursively to avoid an extra check whether operand(1) is 1518 // indeed an immediate (it could be a global address, for example), 1519 // plus we can handle COPY at the same time. 1520 if (!checkForImmediate(DI->getOperand(1), TV)) 1521 return false; 1522 break; 1523 case Hexagon::A2_combineii: 1524 case Hexagon::A4_combineir: 1525 case Hexagon::A4_combineii: 1526 case Hexagon::A4_combineri: 1527 case Hexagon::A2_combinew: { 1528 const MachineOperand &S1 = DI->getOperand(1); 1529 const MachineOperand &S2 = DI->getOperand(2); 1530 int64_t V1, V2; 1531 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1532 return false; 1533 TV = V2 | (static_cast<uint64_t>(V1) << 32); 1534 break; 1535 } 1536 case TargetOpcode::REG_SEQUENCE: { 1537 const MachineOperand &S1 = DI->getOperand(1); 1538 const MachineOperand &S3 = DI->getOperand(3); 1539 int64_t V1, V3; 1540 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1541 return false; 1542 unsigned Sub2 = DI->getOperand(2).getImm(); 1543 unsigned Sub4 = DI->getOperand(4).getImm(); 1544 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) 1545 TV = V1 | (V3 << 32); 1546 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) 1547 TV = V3 | (V1 << 32); 1548 else 1549 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1550 break; 1551 } 1552 1553 default: 1554 return false; 1555 } 1556 1557 // By now, we should have successfully obtained the immediate value defining 1558 // the register referenced in MO. Handle a potential use of a subregister. 1559 switch (MO.getSubReg()) { 1560 case Hexagon::isub_lo: 1561 Val = TV & 0xFFFFFFFFULL; 1562 break; 1563 case Hexagon::isub_hi: 1564 Val = (TV >> 32) & 0xFFFFFFFFULL; 1565 break; 1566 default: 1567 Val = TV; 1568 break; 1569 } 1570 return true; 1571 } 1572 1573 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1574 if (MO.isImm()) { 1575 MO.setImm(Val); 1576 return; 1577 } 1578 1579 assert(MO.isReg()); 1580 Register R = MO.getReg(); 1581 MachineInstr *DI = MRI->getVRegDef(R); 1582 1583 const TargetRegisterClass *RC = MRI->getRegClass(R); 1584 Register NewR = MRI->createVirtualRegister(RC); 1585 MachineBasicBlock &B = *DI->getParent(); 1586 DebugLoc DL = DI->getDebugLoc(); 1587 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1588 MO.setReg(NewR); 1589 } 1590 1591 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1592 MachineBasicBlock *Header = L->getHeader(); 1593 MachineBasicBlock *Latch = L->getLoopLatch(); 1594 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1595 1596 if (!(Header && Latch && ExitingBlock)) 1597 return false; 1598 1599 // These data structures follow the same concept as the corresponding 1600 // ones in findInductionRegister (where some comments are). 1601 using RegisterBump = std::pair<Register, int64_t>; 1602 using RegisterInduction = std::pair<Register, RegisterBump>; 1603 using RegisterInductionSet = std::set<RegisterInduction>; 1604 1605 // Register candidates for induction variables, with their associated bumps. 1606 RegisterInductionSet IndRegs; 1607 1608 // Look for induction patterns: 1609 // %1 = PHI ..., [ latch, %2 ] 1610 // %2 = ADD %1, imm 1611 using instr_iterator = MachineBasicBlock::instr_iterator; 1612 1613 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1614 I != E && I->isPHI(); ++I) { 1615 MachineInstr *Phi = &*I; 1616 1617 // Have a PHI instruction. 1618 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1619 if (Phi->getOperand(i+1).getMBB() != Latch) 1620 continue; 1621 1622 Register PhiReg = Phi->getOperand(i).getReg(); 1623 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1624 1625 if (DI->getDesc().isAdd()) { 1626 // If the register operand to the add/sub is the PHI we are looking 1627 // at, this meets the induction pattern. 1628 Register IndReg = DI->getOperand(1).getReg(); 1629 MachineOperand &Opnd2 = DI->getOperand(2); 1630 int64_t V; 1631 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1632 Register UpdReg = DI->getOperand(0).getReg(); 1633 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1634 } 1635 } 1636 } // for (i) 1637 } // for (instr) 1638 1639 if (IndRegs.empty()) 1640 return false; 1641 1642 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1643 SmallVector<MachineOperand,2> Cond; 1644 // analyzeBranch returns true if it fails to analyze branch. 1645 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1646 if (NotAnalyzed || Cond.empty()) 1647 return false; 1648 1649 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1650 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 1651 SmallVector<MachineOperand,2> LCond; 1652 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1653 if (NotAnalyzed) 1654 return false; 1655 1656 // Since latch is not the exiting block, the latch branch should be an 1657 // unconditional branch to the loop header. 1658 if (TB == Latch) 1659 TB = (LTB == Header) ? LTB : LFB; 1660 else 1661 FB = (LTB == Header) ? LTB : LFB; 1662 } 1663 if (TB != Header) { 1664 if (FB != Header) { 1665 // The latch/exit block does not go back to the header. 1666 return false; 1667 } 1668 // FB is the header (i.e., uncond. jump to branch header) 1669 // In this case, the LoopBody -> TB should not be a back edge otherwise 1670 // it could result in an infinite loop after conversion to hw_loop. 1671 // This case can happen when the Latch has two jumps like this: 1672 // Jmp_c OuterLoopHeader <-- TB 1673 // Jmp InnerLoopHeader <-- FB 1674 if (MDT->dominates(TB, FB)) 1675 return false; 1676 } 1677 1678 // Expecting a predicate register as a condition. It won't be a hardware 1679 // predicate register at this point yet, just a vreg. 1680 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0) 1681 // into Cond, followed by the predicate register. For non-negated branches 1682 // it's just the register. 1683 unsigned CSz = Cond.size(); 1684 if (CSz != 1 && CSz != 2) 1685 return false; 1686 1687 if (!Cond[CSz-1].isReg()) 1688 return false; 1689 1690 Register P = Cond[CSz - 1].getReg(); 1691 MachineInstr *PredDef = MRI->getVRegDef(P); 1692 1693 if (!PredDef->isCompare()) 1694 return false; 1695 1696 SmallSet<Register,2> CmpRegs; 1697 MachineOperand *CmpImmOp = nullptr; 1698 1699 // Go over all operands to the compare and look for immediate and register 1700 // operands. Assume that if the compare has a single register use and a 1701 // single immediate operand, then the register is being compared with the 1702 // immediate value. 1703 for (MachineOperand &MO : PredDef->operands()) { 1704 if (MO.isReg()) { 1705 // Skip all implicit references. In one case there was: 1706 // %140 = FCMPUGT32_rr %138, %139, implicit %usr 1707 if (MO.isImplicit()) 1708 continue; 1709 if (MO.isUse()) { 1710 if (!isImmediate(MO)) { 1711 CmpRegs.insert(MO.getReg()); 1712 continue; 1713 } 1714 // Consider the register to be the "immediate" operand. 1715 if (CmpImmOp) 1716 return false; 1717 CmpImmOp = &MO; 1718 } 1719 } else if (MO.isImm()) { 1720 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1721 return false; 1722 CmpImmOp = &MO; 1723 } 1724 } 1725 1726 if (CmpRegs.empty()) 1727 return false; 1728 1729 // Check if the compared register follows the order we want. Fix if needed. 1730 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1731 I != E; ++I) { 1732 // This is a success. If the register used in the comparison is one that 1733 // we have identified as a bumped (updated) induction register, there is 1734 // nothing to do. 1735 if (CmpRegs.count(I->first)) 1736 return true; 1737 1738 // Otherwise, if the register being compared comes out of a PHI node, 1739 // and has been recognized as following the induction pattern, and is 1740 // compared against an immediate, we can fix it. 1741 const RegisterBump &RB = I->second; 1742 if (CmpRegs.count(RB.first)) { 1743 if (!CmpImmOp) { 1744 // If both operands to the compare instruction are registers, see if 1745 // it can be changed to use induction register as one of the operands. 1746 MachineInstr *IndI = nullptr; 1747 MachineInstr *nonIndI = nullptr; 1748 MachineOperand *IndMO = nullptr; 1749 MachineOperand *nonIndMO = nullptr; 1750 1751 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1752 MachineOperand &MO = PredDef->getOperand(i); 1753 if (MO.isReg() && MO.getReg() == RB.first) { 1754 LLVM_DEBUG(dbgs() << "\n DefMI(" << i 1755 << ") = " << *(MRI->getVRegDef(I->first))); 1756 if (IndI) 1757 return false; 1758 1759 IndI = MRI->getVRegDef(I->first); 1760 IndMO = &MO; 1761 } else if (MO.isReg()) { 1762 LLVM_DEBUG(dbgs() << "\n DefMI(" << i 1763 << ") = " << *(MRI->getVRegDef(MO.getReg()))); 1764 if (nonIndI) 1765 return false; 1766 1767 nonIndI = MRI->getVRegDef(MO.getReg()); 1768 nonIndMO = &MO; 1769 } 1770 } 1771 if (IndI && nonIndI && 1772 nonIndI->getOpcode() == Hexagon::A2_addi && 1773 nonIndI->getOperand(2).isImm() && 1774 nonIndI->getOperand(2).getImm() == - RB.second) { 1775 bool Order = orderBumpCompare(IndI, PredDef); 1776 if (Order) { 1777 IndMO->setReg(I->first); 1778 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1779 return true; 1780 } 1781 } 1782 return false; 1783 } 1784 1785 // It is not valid to do this transformation on an unsigned comparison 1786 // because it may underflow. 1787 Comparison::Kind Cmp = 1788 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); 1789 if (!Cmp || Comparison::isUnsigned(Cmp)) 1790 return false; 1791 1792 // If the register is being compared against an immediate, try changing 1793 // the compare instruction to use induction register and adjust the 1794 // immediate operand. 1795 int64_t CmpImm = getImmediate(*CmpImmOp); 1796 int64_t V = RB.second; 1797 // Handle Overflow (64-bit). 1798 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1799 ((V < 0) && (CmpImm < INT64_MIN - V))) 1800 return false; 1801 CmpImm += V; 1802 // Most comparisons of register against an immediate value allow 1803 // the immediate to be constant-extended. There are some exceptions 1804 // though. Make sure the new combination will work. 1805 if (CmpImmOp->isImm() && !TII->isExtendable(*PredDef) && 1806 !TII->isValidOffset(PredDef->getOpcode(), CmpImm, TRI, false)) 1807 return false; 1808 1809 // Make sure that the compare happens after the bump. Otherwise, 1810 // after the fixup, the compare would use a yet-undefined register. 1811 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1812 bool Order = orderBumpCompare(BumpI, PredDef); 1813 if (!Order) 1814 return false; 1815 1816 // Finally, fix the compare instruction. 1817 setImmediate(*CmpImmOp, CmpImm); 1818 for (MachineOperand &MO : PredDef->operands()) { 1819 if (MO.isReg() && MO.getReg() == RB.first) { 1820 MO.setReg(I->first); 1821 return true; 1822 } 1823 } 1824 } 1825 } 1826 1827 return false; 1828 } 1829 1830 /// createPreheaderForLoop - Create a preheader for a given loop. 1831 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1832 MachineLoop *L) { 1833 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) 1834 return TmpPH; 1835 if (!HWCreatePreheader) 1836 return nullptr; 1837 1838 MachineBasicBlock *Header = L->getHeader(); 1839 MachineBasicBlock *Latch = L->getLoopLatch(); 1840 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1841 MachineFunction *MF = Header->getParent(); 1842 DebugLoc DL; 1843 1844 #ifndef NDEBUG 1845 if ((!PHFn.empty()) && (PHFn != MF->getName())) 1846 return nullptr; 1847 #endif 1848 1849 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1850 return nullptr; 1851 1852 using instr_iterator = MachineBasicBlock::instr_iterator; 1853 1854 // Verify that all existing predecessors have analyzable branches 1855 // (or no branches at all). 1856 using MBBVector = std::vector<MachineBasicBlock *>; 1857 1858 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1859 SmallVector<MachineOperand,2> Tmp1; 1860 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1861 1862 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1863 return nullptr; 1864 1865 for (MachineBasicBlock *PB : Preds) { 1866 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1867 if (NotAnalyzed) 1868 return nullptr; 1869 } 1870 1871 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1872 MF->insert(Header->getIterator(), NewPH); 1873 1874 if (Header->pred_size() > 2) { 1875 // Ensure that the header has only two predecessors: the preheader and 1876 // the loop latch. Any additional predecessors of the header should 1877 // join at the newly created preheader. Inspect all PHI nodes from the 1878 // header and create appropriate corresponding PHI nodes in the preheader. 1879 1880 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1881 I != E && I->isPHI(); ++I) { 1882 MachineInstr *PN = &*I; 1883 1884 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1885 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1886 NewPH->insert(NewPH->end(), NewPN); 1887 1888 Register PR = PN->getOperand(0).getReg(); 1889 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1890 Register NewPR = MRI->createVirtualRegister(RC); 1891 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1892 1893 // Copy all non-latch operands of a header's PHI node to the newly 1894 // created PHI node in the preheader. 1895 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1896 Register PredR = PN->getOperand(i).getReg(); 1897 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1898 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1899 if (PredB == Latch) 1900 continue; 1901 1902 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1903 MO.setSubReg(PredRSub); 1904 NewPN->addOperand(MO); 1905 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1906 } 1907 1908 // Remove copied operands from the old PHI node and add the value 1909 // coming from the preheader's PHI. 1910 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1911 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1912 if (PredB != Latch) { 1913 PN->removeOperand(i+1); 1914 PN->removeOperand(i); 1915 } 1916 } 1917 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1918 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1919 } 1920 } else { 1921 assert(Header->pred_size() == 2); 1922 1923 // The header has only two predecessors, but the non-latch predecessor 1924 // is not a preheader (e.g. it has other successors, etc.) 1925 // In such a case we don't need any extra PHI nodes in the new preheader, 1926 // all we need is to adjust existing PHIs in the header to now refer to 1927 // the new preheader. 1928 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1929 I != E && I->isPHI(); ++I) { 1930 MachineInstr *PN = &*I; 1931 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1932 MachineOperand &MO = PN->getOperand(i+1); 1933 if (MO.getMBB() != Latch) 1934 MO.setMBB(NewPH); 1935 } 1936 } 1937 } 1938 1939 // "Reroute" the CFG edges to link in the new preheader. 1940 // If any of the predecessors falls through to the header, insert a branch 1941 // to the new preheader in that place. 1942 SmallVector<MachineOperand,1> Tmp2; 1943 SmallVector<MachineOperand,1> EmptyCond; 1944 1945 TB = FB = nullptr; 1946 1947 for (MachineBasicBlock *PB : Preds) { 1948 if (PB != Latch) { 1949 Tmp2.clear(); 1950 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1951 (void)NotAnalyzed; // suppress compiler warning 1952 assert (!NotAnalyzed && "Should be analyzable!"); 1953 if (TB != Header && (Tmp2.empty() || FB != Header)) 1954 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1955 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1956 } 1957 } 1958 1959 // It can happen that the latch block will fall through into the header. 1960 // Insert an unconditional branch to the header. 1961 TB = FB = nullptr; 1962 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1963 (void)LatchNotAnalyzed; // suppress compiler warning 1964 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1965 if (!TB && !FB) 1966 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1967 1968 // Finally, the branch from the preheader to the header. 1969 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1970 NewPH->addSuccessor(Header); 1971 1972 MachineLoop *ParentLoop = L->getParentLoop(); 1973 if (ParentLoop) 1974 ParentLoop->addBasicBlockToLoop(NewPH, *MLI); 1975 1976 // Update the dominator information with the new preheader. 1977 if (MDT) { 1978 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 1979 if (MachineDomTreeNode *DHN = HN->getIDom()) { 1980 MDT->addNewBlock(NewPH, DHN->getBlock()); 1981 MDT->changeImmediateDominator(Header, NewPH); 1982 } 1983 } 1984 } 1985 1986 return NewPH; 1987 } 1988