1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies loops where we can generate the Hexagon hardware 10 // loop instruction. The hardware loop can perform loop branches with a 11 // zero-cycle overhead. 12 // 13 // The pattern that defines the induction variable can changed depending on 14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 15 // normalizes induction variables, and the Loop Strength Reduction pass 16 // run by 'llc' may also make changes to the induction variable. 17 // The pattern detected by this phase is due to running Strength Reduction. 18 // 19 // Criteria for hardware loops: 20 // - Countable loops (w/ ind. var for a trip count) 21 // - Assumes loops are normalized by IndVarSimplify 22 // - Try inner-most loops first 23 // - No function calls in loops. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "HexagonInstrInfo.h" 28 #include "HexagonSubtarget.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineOperand.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <cassert> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <iterator> 58 #include <map> 59 #include <set> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "hwloops" 67 68 #ifndef NDEBUG 69 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 70 71 // Option to create preheader only for a specific function. 72 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 73 cl::init("")); 74 #endif 75 76 // Option to create a preheader if one doesn't exist. 77 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 78 cl::Hidden, cl::init(true), 79 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 80 81 // Turn it off by default. If a preheader block is not created here, the 82 // software pipeliner may be unable to find a block suitable to serve as 83 // a preheader. In that case SWP will not run. 84 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false), 85 cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader " 86 "instructions")); 87 88 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 89 90 namespace llvm { 91 92 FunctionPass *createHexagonHardwareLoops(); 93 void initializeHexagonHardwareLoopsPass(PassRegistry&); 94 95 } // end namespace llvm 96 97 namespace { 98 99 class CountValue; 100 101 struct HexagonHardwareLoops : public MachineFunctionPass { 102 MachineLoopInfo *MLI; 103 MachineRegisterInfo *MRI; 104 MachineDominatorTree *MDT; 105 const HexagonInstrInfo *TII; 106 const HexagonRegisterInfo *TRI; 107 #ifndef NDEBUG 108 static int Counter; 109 #endif 110 111 public: 112 static char ID; 113 114 HexagonHardwareLoops() : MachineFunctionPass(ID) {} 115 116 bool runOnMachineFunction(MachineFunction &MF) override; 117 118 StringRef getPassName() const override { return "Hexagon Hardware Loops"; } 119 120 void getAnalysisUsage(AnalysisUsage &AU) const override { 121 AU.addRequired<MachineDominatorTree>(); 122 AU.addRequired<MachineLoopInfo>(); 123 MachineFunctionPass::getAnalysisUsage(AU); 124 } 125 126 private: 127 using LoopFeederMap = std::map<unsigned, MachineInstr *>; 128 129 /// Kinds of comparisons in the compare instructions. 130 struct Comparison { 131 enum Kind { 132 EQ = 0x01, 133 NE = 0x02, 134 L = 0x04, 135 G = 0x08, 136 U = 0x40, 137 LTs = L, 138 LEs = L | EQ, 139 GTs = G, 140 GEs = G | EQ, 141 LTu = L | U, 142 LEu = L | EQ | U, 143 GTu = G | U, 144 GEu = G | EQ | U 145 }; 146 147 static Kind getSwappedComparison(Kind Cmp) { 148 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 149 if ((Cmp & L) || (Cmp & G)) 150 return (Kind)(Cmp ^ (L|G)); 151 return Cmp; 152 } 153 154 static Kind getNegatedComparison(Kind Cmp) { 155 if ((Cmp & L) || (Cmp & G)) 156 return (Kind)((Cmp ^ (L | G)) ^ EQ); 157 if ((Cmp & NE) || (Cmp & EQ)) 158 return (Kind)(Cmp ^ (EQ | NE)); 159 return (Kind)0; 160 } 161 162 static bool isSigned(Kind Cmp) { 163 return (Cmp & (L | G) && !(Cmp & U)); 164 } 165 166 static bool isUnsigned(Kind Cmp) { 167 return (Cmp & U); 168 } 169 }; 170 171 /// Find the register that contains the loop controlling 172 /// induction variable. 173 /// If successful, it will return true and set the \p Reg, \p IVBump 174 /// and \p IVOp arguments. Otherwise it will return false. 175 /// The returned induction register is the register R that follows the 176 /// following induction pattern: 177 /// loop: 178 /// R = phi ..., [ R.next, LatchBlock ] 179 /// R.next = R + #bump 180 /// if (R.next < #N) goto loop 181 /// IVBump is the immediate value added to R, and IVOp is the instruction 182 /// "R.next = R + #bump". 183 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 184 int64_t &IVBump, MachineInstr *&IVOp) const; 185 186 /// Return the comparison kind for the specified opcode. 187 Comparison::Kind getComparisonKind(unsigned CondOpc, 188 MachineOperand *InitialValue, 189 const MachineOperand *Endvalue, 190 int64_t IVBump) const; 191 192 /// Analyze the statements in a loop to determine if the loop 193 /// has a computable trip count and, if so, return a value that represents 194 /// the trip count expression. 195 CountValue *getLoopTripCount(MachineLoop *L, 196 SmallVectorImpl<MachineInstr *> &OldInsts); 197 198 /// Return the expression that represents the number of times 199 /// a loop iterates. The function takes the operands that represent the 200 /// loop start value, loop end value, and induction value. Based upon 201 /// these operands, the function attempts to compute the trip count. 202 /// If the trip count is not directly available (as an immediate value, 203 /// or a register), the function will attempt to insert computation of it 204 /// to the loop's preheader. 205 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 206 const MachineOperand *End, unsigned IVReg, 207 int64_t IVBump, Comparison::Kind Cmp) const; 208 209 /// Return true if the instruction is not valid within a hardware 210 /// loop. 211 bool isInvalidLoopOperation(const MachineInstr *MI, 212 bool IsInnerHWLoop) const; 213 214 /// Return true if the loop contains an instruction that inhibits 215 /// using the hardware loop. 216 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 217 218 /// Given a loop, check if we can convert it to a hardware loop. 219 /// If so, then perform the conversion and return true. 220 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 221 222 /// Return true if the instruction is now dead. 223 bool isDead(const MachineInstr *MI, 224 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 225 226 /// Remove the instruction if it is now dead. 227 void removeIfDead(MachineInstr *MI); 228 229 /// Make sure that the "bump" instruction executes before the 230 /// compare. We need that for the IV fixup, so that the compare 231 /// instruction would not use a bumped value that has not yet been 232 /// defined. If the instructions are out of order, try to reorder them. 233 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 234 235 /// Return true if MO and MI pair is visited only once. If visited 236 /// more than once, this indicates there is recursion. In such a case, 237 /// return false. 238 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 239 const MachineOperand *MO, 240 LoopFeederMap &LoopFeederPhi) const; 241 242 /// Return true if the Phi may generate a value that may underflow, 243 /// or may wrap. 244 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 245 MachineBasicBlock *MBB, MachineLoop *L, 246 LoopFeederMap &LoopFeederPhi) const; 247 248 /// Return true if the induction variable may underflow an unsigned 249 /// value in the first iteration. 250 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 251 const MachineOperand *EndVal, 252 MachineBasicBlock *MBB, MachineLoop *L, 253 LoopFeederMap &LoopFeederPhi) const; 254 255 /// Check if the given operand has a compile-time known constant 256 /// value. Return true if yes, and false otherwise. When returning true, set 257 /// Val to the corresponding constant value. 258 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 259 260 /// Check if the operand has a compile-time known constant value. 261 bool isImmediate(const MachineOperand &MO) const { 262 int64_t V; 263 return checkForImmediate(MO, V); 264 } 265 266 /// Return the immediate for the specified operand. 267 int64_t getImmediate(const MachineOperand &MO) const { 268 int64_t V; 269 if (!checkForImmediate(MO, V)) 270 llvm_unreachable("Invalid operand"); 271 return V; 272 } 273 274 /// Reset the given machine operand to now refer to a new immediate 275 /// value. Assumes that the operand was already referencing an immediate 276 /// value, either directly, or via a register. 277 void setImmediate(MachineOperand &MO, int64_t Val); 278 279 /// Fix the data flow of the induction variable. 280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 281 /// | 282 /// +-> back to phi 283 /// where "bump" is the increment of the induction variable: 284 /// iv = iv + #const. 285 /// Due to some prior code transformations, the actual flow may look 286 /// like this: 287 /// phi -+-> bump ---> back to phi 288 /// | 289 /// +-> comparison-in-latch (against upper_bound-bump), 290 /// i.e. the comparison that controls the loop execution may be using 291 /// the value of the induction variable from before the increment. 292 /// 293 /// Return true if the loop's flow is the desired one (i.e. it's 294 /// either been fixed, or no fixing was necessary). 295 /// Otherwise, return false. This can happen if the induction variable 296 /// couldn't be identified, or if the value in the latch's comparison 297 /// cannot be adjusted to reflect the post-bump value. 298 bool fixupInductionVariable(MachineLoop *L); 299 300 /// Given a loop, if it does not have a preheader, create one. 301 /// Return the block that is the preheader. 302 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 303 }; 304 305 char HexagonHardwareLoops::ID = 0; 306 #ifndef NDEBUG 307 int HexagonHardwareLoops::Counter = 0; 308 #endif 309 310 /// Abstraction for a trip count of a loop. A smaller version 311 /// of the MachineOperand class without the concerns of changing the 312 /// operand representation. 313 class CountValue { 314 public: 315 enum CountValueType { 316 CV_Register, 317 CV_Immediate 318 }; 319 320 private: 321 CountValueType Kind; 322 union Values { 323 struct { 324 unsigned Reg; 325 unsigned Sub; 326 } R; 327 unsigned ImmVal; 328 } Contents; 329 330 public: 331 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 332 Kind = t; 333 if (Kind == CV_Register) { 334 Contents.R.Reg = v; 335 Contents.R.Sub = u; 336 } else { 337 Contents.ImmVal = v; 338 } 339 } 340 341 bool isReg() const { return Kind == CV_Register; } 342 bool isImm() const { return Kind == CV_Immediate; } 343 344 unsigned getReg() const { 345 assert(isReg() && "Wrong CountValue accessor"); 346 return Contents.R.Reg; 347 } 348 349 unsigned getSubReg() const { 350 assert(isReg() && "Wrong CountValue accessor"); 351 return Contents.R.Sub; 352 } 353 354 unsigned getImm() const { 355 assert(isImm() && "Wrong CountValue accessor"); 356 return Contents.ImmVal; 357 } 358 359 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 360 if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); } 361 if (isImm()) { OS << Contents.ImmVal; } 362 } 363 }; 364 365 } // end anonymous namespace 366 367 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 368 "Hexagon Hardware Loops", false, false) 369 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 370 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 371 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 372 "Hexagon Hardware Loops", false, false) 373 374 FunctionPass *llvm::createHexagonHardwareLoops() { 375 return new HexagonHardwareLoops(); 376 } 377 378 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 379 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 380 if (skipFunction(MF.getFunction())) 381 return false; 382 383 bool Changed = false; 384 385 MLI = &getAnalysis<MachineLoopInfo>(); 386 MRI = &MF.getRegInfo(); 387 MDT = &getAnalysis<MachineDominatorTree>(); 388 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); 389 TII = HST.getInstrInfo(); 390 TRI = HST.getRegisterInfo(); 391 392 for (auto &L : *MLI) 393 if (L->isOutermost()) { 394 bool L0Used = false; 395 bool L1Used = false; 396 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 397 } 398 399 return Changed; 400 } 401 402 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 403 unsigned &Reg, 404 int64_t &IVBump, 405 MachineInstr *&IVOp 406 ) const { 407 MachineBasicBlock *Header = L->getHeader(); 408 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 409 MachineBasicBlock *Latch = L->getLoopLatch(); 410 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 411 if (!Header || !Preheader || !Latch || !ExitingBlock) 412 return false; 413 414 // This pair represents an induction register together with an immediate 415 // value that will be added to it in each loop iteration. 416 using RegisterBump = std::pair<unsigned, int64_t>; 417 418 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 419 // from an induction operation 420 // R.next = R + bump 421 // where bump is an immediate value. 422 using InductionMap = std::map<unsigned, RegisterBump>; 423 424 InductionMap IndMap; 425 426 using instr_iterator = MachineBasicBlock::instr_iterator; 427 428 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 429 I != E && I->isPHI(); ++I) { 430 MachineInstr *Phi = &*I; 431 432 // Have a PHI instruction. Get the operand that corresponds to the 433 // latch block, and see if is a result of an addition of form "reg+imm", 434 // where the "reg" is defined by the PHI node we are looking at. 435 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 436 if (Phi->getOperand(i+1).getMBB() != Latch) 437 continue; 438 439 Register PhiOpReg = Phi->getOperand(i).getReg(); 440 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 441 442 if (DI->getDesc().isAdd()) { 443 // If the register operand to the add is the PHI we're looking at, this 444 // meets the induction pattern. 445 Register IndReg = DI->getOperand(1).getReg(); 446 MachineOperand &Opnd2 = DI->getOperand(2); 447 int64_t V; 448 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 449 Register UpdReg = DI->getOperand(0).getReg(); 450 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 451 } 452 } 453 } // for (i) 454 } // for (instr) 455 456 SmallVector<MachineOperand,2> Cond; 457 MachineBasicBlock *TB = nullptr, *FB = nullptr; 458 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 459 if (NotAnalyzed) 460 return false; 461 462 unsigned PredR, PredPos, PredRegFlags; 463 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 464 return false; 465 466 MachineInstr *PredI = MRI->getVRegDef(PredR); 467 if (!PredI->isCompare()) 468 return false; 469 470 Register CmpReg1, CmpReg2; 471 int CmpImm = 0, CmpMask = 0; 472 bool CmpAnalyzed = 473 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 474 // Fail if the compare was not analyzed, or it's not comparing a register 475 // with an immediate value. Not checking the mask here, since we handle 476 // the individual compare opcodes (including A4_cmpb*) later on. 477 if (!CmpAnalyzed) 478 return false; 479 480 // Exactly one of the input registers to the comparison should be among 481 // the induction registers. 482 InductionMap::iterator IndMapEnd = IndMap.end(); 483 InductionMap::iterator F = IndMapEnd; 484 if (CmpReg1 != 0) { 485 InductionMap::iterator F1 = IndMap.find(CmpReg1); 486 if (F1 != IndMapEnd) 487 F = F1; 488 } 489 if (CmpReg2 != 0) { 490 InductionMap::iterator F2 = IndMap.find(CmpReg2); 491 if (F2 != IndMapEnd) { 492 if (F != IndMapEnd) 493 return false; 494 F = F2; 495 } 496 } 497 if (F == IndMapEnd) 498 return false; 499 500 Reg = F->second.first; 501 IVBump = F->second.second; 502 IVOp = MRI->getVRegDef(F->first); 503 return true; 504 } 505 506 // Return the comparison kind for the specified opcode. 507 HexagonHardwareLoops::Comparison::Kind 508 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 509 MachineOperand *InitialValue, 510 const MachineOperand *EndValue, 511 int64_t IVBump) const { 512 Comparison::Kind Cmp = (Comparison::Kind)0; 513 switch (CondOpc) { 514 case Hexagon::C2_cmpeq: 515 case Hexagon::C2_cmpeqi: 516 case Hexagon::C2_cmpeqp: 517 Cmp = Comparison::EQ; 518 break; 519 case Hexagon::C4_cmpneq: 520 case Hexagon::C4_cmpneqi: 521 Cmp = Comparison::NE; 522 break; 523 case Hexagon::C2_cmplt: 524 Cmp = Comparison::LTs; 525 break; 526 case Hexagon::C2_cmpltu: 527 Cmp = Comparison::LTu; 528 break; 529 case Hexagon::C4_cmplte: 530 case Hexagon::C4_cmpltei: 531 Cmp = Comparison::LEs; 532 break; 533 case Hexagon::C4_cmplteu: 534 case Hexagon::C4_cmplteui: 535 Cmp = Comparison::LEu; 536 break; 537 case Hexagon::C2_cmpgt: 538 case Hexagon::C2_cmpgti: 539 case Hexagon::C2_cmpgtp: 540 Cmp = Comparison::GTs; 541 break; 542 case Hexagon::C2_cmpgtu: 543 case Hexagon::C2_cmpgtui: 544 case Hexagon::C2_cmpgtup: 545 Cmp = Comparison::GTu; 546 break; 547 case Hexagon::C2_cmpgei: 548 Cmp = Comparison::GEs; 549 break; 550 case Hexagon::C2_cmpgeui: 551 Cmp = Comparison::GEs; 552 break; 553 default: 554 return (Comparison::Kind)0; 555 } 556 return Cmp; 557 } 558 559 /// Analyze the statements in a loop to determine if the loop has 560 /// a computable trip count and, if so, return a value that represents 561 /// the trip count expression. 562 /// 563 /// This function iterates over the phi nodes in the loop to check for 564 /// induction variable patterns that are used in the calculation for 565 /// the number of time the loop is executed. 566 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 567 SmallVectorImpl<MachineInstr *> &OldInsts) { 568 MachineBasicBlock *TopMBB = L->getTopBlock(); 569 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 570 assert(PI != TopMBB->pred_end() && 571 "Loop must have more than one incoming edge!"); 572 MachineBasicBlock *Backedge = *PI++; 573 if (PI == TopMBB->pred_end()) // dead loop? 574 return nullptr; 575 MachineBasicBlock *Incoming = *PI++; 576 if (PI != TopMBB->pred_end()) // multiple backedges? 577 return nullptr; 578 579 // Make sure there is one incoming and one backedge and determine which 580 // is which. 581 if (L->contains(Incoming)) { 582 if (L->contains(Backedge)) 583 return nullptr; 584 std::swap(Incoming, Backedge); 585 } else if (!L->contains(Backedge)) 586 return nullptr; 587 588 // Look for the cmp instruction to determine if we can get a useful trip 589 // count. The trip count can be either a register or an immediate. The 590 // location of the value depends upon the type (reg or imm). 591 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 592 if (!ExitingBlock) 593 return nullptr; 594 595 unsigned IVReg = 0; 596 int64_t IVBump = 0; 597 MachineInstr *IVOp; 598 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 599 if (!FoundIV) 600 return nullptr; 601 602 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 603 604 MachineOperand *InitialValue = nullptr; 605 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 606 MachineBasicBlock *Latch = L->getLoopLatch(); 607 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 608 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 609 if (MBB == Preheader) 610 InitialValue = &IV_Phi->getOperand(i); 611 else if (MBB == Latch) 612 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 613 } 614 if (!InitialValue) 615 return nullptr; 616 617 SmallVector<MachineOperand,2> Cond; 618 MachineBasicBlock *TB = nullptr, *FB = nullptr; 619 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 620 if (NotAnalyzed) 621 return nullptr; 622 623 MachineBasicBlock *Header = L->getHeader(); 624 // TB must be non-null. If FB is also non-null, one of them must be 625 // the header. Otherwise, branch to TB could be exiting the loop, and 626 // the fall through can go to the header. 627 assert (TB && "Exit block without a branch?"); 628 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 629 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 630 SmallVector<MachineOperand,2> LCond; 631 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 632 if (NotAnalyzed) 633 return nullptr; 634 if (TB == Latch) 635 TB = (LTB == Header) ? LTB : LFB; 636 else 637 FB = (LTB == Header) ? LTB: LFB; 638 } 639 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 640 if (!TB || (FB && TB != Header && FB != Header)) 641 return nullptr; 642 643 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch 644 // to put imm(0), followed by P in the vector Cond. 645 // If TB is not the header, it means that the "not-taken" path must lead 646 // to the header. 647 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 648 unsigned PredReg, PredPos, PredRegFlags; 649 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 650 return nullptr; 651 MachineInstr *CondI = MRI->getVRegDef(PredReg); 652 unsigned CondOpc = CondI->getOpcode(); 653 654 Register CmpReg1, CmpReg2; 655 int Mask = 0, ImmValue = 0; 656 bool AnalyzedCmp = 657 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 658 if (!AnalyzedCmp) 659 return nullptr; 660 661 // The comparison operator type determines how we compute the loop 662 // trip count. 663 OldInsts.push_back(CondI); 664 OldInsts.push_back(IVOp); 665 666 // Sadly, the following code gets information based on the position 667 // of the operands in the compare instruction. This has to be done 668 // this way, because the comparisons check for a specific relationship 669 // between the operands (e.g. is-less-than), rather than to find out 670 // what relationship the operands are in (as on PPC). 671 Comparison::Kind Cmp; 672 bool isSwapped = false; 673 const MachineOperand &Op1 = CondI->getOperand(1); 674 const MachineOperand &Op2 = CondI->getOperand(2); 675 const MachineOperand *EndValue = nullptr; 676 677 if (Op1.isReg()) { 678 if (Op2.isImm() || Op1.getReg() == IVReg) 679 EndValue = &Op2; 680 else { 681 EndValue = &Op1; 682 isSwapped = true; 683 } 684 } 685 686 if (!EndValue) 687 return nullptr; 688 689 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 690 if (!Cmp) 691 return nullptr; 692 if (Negated) 693 Cmp = Comparison::getNegatedComparison(Cmp); 694 if (isSwapped) 695 Cmp = Comparison::getSwappedComparison(Cmp); 696 697 if (InitialValue->isReg()) { 698 Register R = InitialValue->getReg(); 699 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 700 if (!MDT->properlyDominates(DefBB, Header)) { 701 int64_t V; 702 if (!checkForImmediate(*InitialValue, V)) 703 return nullptr; 704 } 705 OldInsts.push_back(MRI->getVRegDef(R)); 706 } 707 if (EndValue->isReg()) { 708 Register R = EndValue->getReg(); 709 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 710 if (!MDT->properlyDominates(DefBB, Header)) { 711 int64_t V; 712 if (!checkForImmediate(*EndValue, V)) 713 return nullptr; 714 } 715 OldInsts.push_back(MRI->getVRegDef(R)); 716 } 717 718 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 719 } 720 721 /// Helper function that returns the expression that represents the 722 /// number of times a loop iterates. The function takes the operands that 723 /// represent the loop start value, loop end value, and induction value. 724 /// Based upon these operands, the function attempts to compute the trip count. 725 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 726 const MachineOperand *Start, 727 const MachineOperand *End, 728 unsigned IVReg, 729 int64_t IVBump, 730 Comparison::Kind Cmp) const { 731 // Cannot handle comparison EQ, i.e. while (A == B). 732 if (Cmp == Comparison::EQ) 733 return nullptr; 734 735 // Check if either the start or end values are an assignment of an immediate. 736 // If so, use the immediate value rather than the register. 737 if (Start->isReg()) { 738 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 739 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 740 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 741 Start = &StartValInstr->getOperand(1); 742 } 743 if (End->isReg()) { 744 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 745 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 746 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 747 End = &EndValInstr->getOperand(1); 748 } 749 750 if (!Start->isReg() && !Start->isImm()) 751 return nullptr; 752 if (!End->isReg() && !End->isImm()) 753 return nullptr; 754 755 bool CmpLess = Cmp & Comparison::L; 756 bool CmpGreater = Cmp & Comparison::G; 757 bool CmpHasEqual = Cmp & Comparison::EQ; 758 759 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 760 if (CmpLess && IVBump < 0) 761 // Loop going while iv is "less" with the iv value going down. Must wrap. 762 return nullptr; 763 764 if (CmpGreater && IVBump > 0) 765 // Loop going while iv is "greater" with the iv value going up. Must wrap. 766 return nullptr; 767 768 // Phis that may feed into the loop. 769 LoopFeederMap LoopFeederPhi; 770 771 // Check if the initial value may be zero and can be decremented in the first 772 // iteration. If the value is zero, the endloop instruction will not decrement 773 // the loop counter, so we shouldn't generate a hardware loop in this case. 774 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 775 LoopFeederPhi)) 776 return nullptr; 777 778 if (Start->isImm() && End->isImm()) { 779 // Both, start and end are immediates. 780 int64_t StartV = Start->getImm(); 781 int64_t EndV = End->getImm(); 782 int64_t Dist = EndV - StartV; 783 if (Dist == 0) 784 return nullptr; 785 786 bool Exact = (Dist % IVBump) == 0; 787 788 if (Cmp == Comparison::NE) { 789 if (!Exact) 790 return nullptr; 791 if ((Dist < 0) ^ (IVBump < 0)) 792 return nullptr; 793 } 794 795 // For comparisons that include the final value (i.e. include equality 796 // with the final value), we need to increase the distance by 1. 797 if (CmpHasEqual) 798 Dist = Dist > 0 ? Dist+1 : Dist-1; 799 800 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 801 // CmpGreater should imply Dist < 0. These conditions could actually 802 // fail, for example, in unreachable code (which may still appear to be 803 // reachable in the CFG). 804 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 805 return nullptr; 806 807 // "Normalized" distance, i.e. with the bump set to +-1. 808 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 809 : (-Dist + (-IVBump - 1)) / (-IVBump); 810 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 811 812 uint64_t Count = Dist1; 813 814 if (Count > 0xFFFFFFFFULL) 815 return nullptr; 816 817 return new CountValue(CountValue::CV_Immediate, Count); 818 } 819 820 // A general case: Start and End are some values, but the actual 821 // iteration count may not be available. If it is not, insert 822 // a computation of it into the preheader. 823 824 // If the induction variable bump is not a power of 2, quit. 825 // Othwerise we'd need a general integer division. 826 if (!isPowerOf2_64(std::abs(IVBump))) 827 return nullptr; 828 829 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); 830 assert (PH && "Should have a preheader by now"); 831 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 832 DebugLoc DL; 833 if (InsertPos != PH->end()) 834 DL = InsertPos->getDebugLoc(); 835 836 // If Start is an immediate and End is a register, the trip count 837 // will be "reg - imm". Hexagon's "subtract immediate" instruction 838 // is actually "reg + -imm". 839 840 // If the loop IV is going downwards, i.e. if the bump is negative, 841 // then the iteration count (computed as End-Start) will need to be 842 // negated. To avoid the negation, just swap Start and End. 843 if (IVBump < 0) { 844 std::swap(Start, End); 845 IVBump = -IVBump; 846 } 847 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 848 // Signedness, and "including equality" are preserved. 849 850 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 851 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 852 853 int64_t StartV = 0, EndV = 0; 854 if (Start->isImm()) 855 StartV = Start->getImm(); 856 if (End->isImm()) 857 EndV = End->getImm(); 858 859 int64_t AdjV = 0; 860 // To compute the iteration count, we would need this computation: 861 // Count = (End - Start + (IVBump-1)) / IVBump 862 // or, when CmpHasEqual: 863 // Count = (End - Start + (IVBump-1)+1) / IVBump 864 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 865 // generating an instruction specifically to add it if we can adjust 866 // the immediate values for Start or End. 867 868 if (CmpHasEqual) { 869 // Need to add 1 to the total iteration count. 870 if (Start->isImm()) 871 StartV--; 872 else if (End->isImm()) 873 EndV++; 874 else 875 AdjV += 1; 876 } 877 878 if (Cmp != Comparison::NE) { 879 if (Start->isImm()) 880 StartV -= (IVBump-1); 881 else if (End->isImm()) 882 EndV += (IVBump-1); 883 else 884 AdjV += (IVBump-1); 885 } 886 887 unsigned R = 0, SR = 0; 888 if (Start->isReg()) { 889 R = Start->getReg(); 890 SR = Start->getSubReg(); 891 } else { 892 R = End->getReg(); 893 SR = End->getSubReg(); 894 } 895 const TargetRegisterClass *RC = MRI->getRegClass(R); 896 // Hardware loops cannot handle 64-bit registers. If it's a double 897 // register, it has to have a subregister. 898 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 899 return nullptr; 900 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 901 902 // Compute DistR (register with the distance between Start and End). 903 unsigned DistR, DistSR; 904 905 // Avoid special case, where the start value is an imm(0). 906 if (Start->isImm() && StartV == 0) { 907 DistR = End->getReg(); 908 DistSR = End->getSubReg(); 909 } else { 910 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 911 (RegToImm ? TII->get(Hexagon::A2_subri) : 912 TII->get(Hexagon::A2_addi)); 913 if (RegToReg || RegToImm) { 914 Register SubR = MRI->createVirtualRegister(IntRC); 915 MachineInstrBuilder SubIB = 916 BuildMI(*PH, InsertPos, DL, SubD, SubR); 917 918 if (RegToReg) 919 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 920 .addReg(Start->getReg(), 0, Start->getSubReg()); 921 else 922 SubIB.addImm(EndV) 923 .addReg(Start->getReg(), 0, Start->getSubReg()); 924 DistR = SubR; 925 } else { 926 // If the loop has been unrolled, we should use the original loop count 927 // instead of recalculating the value. This will avoid additional 928 // 'Add' instruction. 929 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 930 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 931 EndValInstr->getOperand(1).getSubReg() == 0 && 932 EndValInstr->getOperand(2).getImm() == StartV) { 933 DistR = EndValInstr->getOperand(1).getReg(); 934 } else { 935 Register SubR = MRI->createVirtualRegister(IntRC); 936 MachineInstrBuilder SubIB = 937 BuildMI(*PH, InsertPos, DL, SubD, SubR); 938 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 939 .addImm(-StartV); 940 DistR = SubR; 941 } 942 } 943 DistSR = 0; 944 } 945 946 // From DistR, compute AdjR (register with the adjusted distance). 947 unsigned AdjR, AdjSR; 948 949 if (AdjV == 0) { 950 AdjR = DistR; 951 AdjSR = DistSR; 952 } else { 953 // Generate CountR = ADD DistR, AdjVal 954 Register AddR = MRI->createVirtualRegister(IntRC); 955 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 956 BuildMI(*PH, InsertPos, DL, AddD, AddR) 957 .addReg(DistR, 0, DistSR) 958 .addImm(AdjV); 959 960 AdjR = AddR; 961 AdjSR = 0; 962 } 963 964 // From AdjR, compute CountR (register with the final count). 965 unsigned CountR, CountSR; 966 967 if (IVBump == 1) { 968 CountR = AdjR; 969 CountSR = AdjSR; 970 } else { 971 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 972 unsigned Shift = Log2_32(IVBump); 973 974 // Generate NormR = LSR DistR, Shift. 975 Register LsrR = MRI->createVirtualRegister(IntRC); 976 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 977 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 978 .addReg(AdjR, 0, AdjSR) 979 .addImm(Shift); 980 981 CountR = LsrR; 982 CountSR = 0; 983 } 984 985 return new CountValue(CountValue::CV_Register, CountR, CountSR); 986 } 987 988 /// Return true if the operation is invalid within hardware loop. 989 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 990 bool IsInnerHWLoop) const { 991 // Call is not allowed because the callee may use a hardware loop except for 992 // the case when the call never returns. 993 if (MI->getDesc().isCall()) 994 return !TII->doesNotReturn(*MI); 995 996 // Check if the instruction defines a hardware loop register. 997 using namespace Hexagon; 998 999 static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 }; 1000 static const unsigned Regs1[] = { LC1, SA1 }; 1001 auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01)) 1002 : makeArrayRef(Regs1, array_lengthof(Regs1)); 1003 for (unsigned R : CheckRegs) 1004 if (MI->modifiesRegister(R, TRI)) 1005 return true; 1006 1007 return false; 1008 } 1009 1010 /// Return true if the loop contains an instruction that inhibits 1011 /// the use of the hardware loop instruction. 1012 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 1013 bool IsInnerHWLoop) const { 1014 LLVM_DEBUG(dbgs() << "\nhw_loop head, " 1015 << printMBBReference(**L->block_begin())); 1016 for (MachineBasicBlock *MBB : L->getBlocks()) { 1017 for (MachineBasicBlock::iterator 1018 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 1019 const MachineInstr *MI = &*MII; 1020 if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { 1021 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:"; 1022 MI->dump();); 1023 return true; 1024 } 1025 } 1026 } 1027 return false; 1028 } 1029 1030 /// Returns true if the instruction is dead. This was essentially 1031 /// copied from DeadMachineInstructionElim::isDead, but with special cases 1032 /// for inline asm, physical registers and instructions with side effects 1033 /// removed. 1034 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 1035 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 1036 // Examine each operand. 1037 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1038 const MachineOperand &MO = MI->getOperand(i); 1039 if (!MO.isReg() || !MO.isDef()) 1040 continue; 1041 1042 Register Reg = MO.getReg(); 1043 if (MRI->use_nodbg_empty(Reg)) 1044 continue; 1045 1046 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; 1047 1048 // This instruction has users, but if the only user is the phi node for the 1049 // parent block, and the only use of that phi node is this instruction, then 1050 // this instruction is dead: both it (and the phi node) can be removed. 1051 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1052 use_nodbg_iterator End = MRI->use_nodbg_end(); 1053 if (std::next(I) != End || !I->getParent()->isPHI()) 1054 return false; 1055 1056 MachineInstr *OnePhi = I->getParent(); 1057 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 1058 const MachineOperand &OPO = OnePhi->getOperand(j); 1059 if (!OPO.isReg() || !OPO.isDef()) 1060 continue; 1061 1062 Register OPReg = OPO.getReg(); 1063 use_nodbg_iterator nextJ; 1064 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1065 J != End; J = nextJ) { 1066 nextJ = std::next(J); 1067 MachineOperand &Use = *J; 1068 MachineInstr *UseMI = Use.getParent(); 1069 1070 // If the phi node has a user that is not MI, bail. 1071 if (MI != UseMI) 1072 return false; 1073 } 1074 } 1075 DeadPhis.push_back(OnePhi); 1076 } 1077 1078 // If there are no defs with uses, the instruction is dead. 1079 return true; 1080 } 1081 1082 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1083 // This procedure was essentially copied from DeadMachineInstructionElim. 1084 1085 SmallVector<MachineInstr*, 1> DeadPhis; 1086 if (isDead(MI, DeadPhis)) { 1087 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI); 1088 1089 // It is possible that some DBG_VALUE instructions refer to this 1090 // instruction. Examine each def operand for such references; 1091 // if found, mark the DBG_VALUE as undef (but don't delete it). 1092 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1093 const MachineOperand &MO = MI->getOperand(i); 1094 if (!MO.isReg() || !MO.isDef()) 1095 continue; 1096 Register Reg = MO.getReg(); 1097 MachineRegisterInfo::use_iterator nextI; 1098 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 1099 E = MRI->use_end(); I != E; I = nextI) { 1100 nextI = std::next(I); // I is invalidated by the setReg 1101 MachineOperand &Use = *I; 1102 MachineInstr *UseMI = I->getParent(); 1103 if (UseMI == MI) 1104 continue; 1105 if (Use.isDebug()) 1106 UseMI->getOperand(0).setReg(0U); 1107 } 1108 } 1109 1110 MI->eraseFromParent(); 1111 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1112 DeadPhis[i]->eraseFromParent(); 1113 } 1114 } 1115 1116 /// Check if the loop is a candidate for converting to a hardware 1117 /// loop. If so, then perform the transformation. 1118 /// 1119 /// This function works on innermost loops first. A loop can be converted 1120 /// if it is a counting loop; either a register value or an immediate. 1121 /// 1122 /// The code makes several assumptions about the representation of the loop 1123 /// in llvm. 1124 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1125 bool &RecL0used, 1126 bool &RecL1used) { 1127 // This is just for sanity. 1128 assert(L->getHeader() && "Loop without a header?"); 1129 1130 bool Changed = false; 1131 bool L0Used = false; 1132 bool L1Used = false; 1133 1134 // Process nested loops first. 1135 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 1136 Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); 1137 L0Used |= RecL0used; 1138 L1Used |= RecL1used; 1139 } 1140 1141 // If a nested loop has been converted, then we can't convert this loop. 1142 if (Changed && L0Used && L1Used) 1143 return Changed; 1144 1145 unsigned LOOP_i; 1146 unsigned LOOP_r; 1147 unsigned ENDLOOP; 1148 1149 // Flag used to track loopN instruction: 1150 // 1 - Hardware loop is being generated for the inner most loop. 1151 // 0 - Hardware loop is being generated for the outer loop. 1152 unsigned IsInnerHWLoop = 1; 1153 1154 if (L0Used) { 1155 LOOP_i = Hexagon::J2_loop1i; 1156 LOOP_r = Hexagon::J2_loop1r; 1157 ENDLOOP = Hexagon::ENDLOOP1; 1158 IsInnerHWLoop = 0; 1159 } else { 1160 LOOP_i = Hexagon::J2_loop0i; 1161 LOOP_r = Hexagon::J2_loop0r; 1162 ENDLOOP = Hexagon::ENDLOOP0; 1163 } 1164 1165 #ifndef NDEBUG 1166 // Stop trying after reaching the limit (if any). 1167 int Limit = HWLoopLimit; 1168 if (Limit >= 0) { 1169 if (Counter >= HWLoopLimit) 1170 return false; 1171 Counter++; 1172 } 1173 #endif 1174 1175 // Does the loop contain any invalid instructions? 1176 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1177 return false; 1178 1179 MachineBasicBlock *LastMBB = L->findLoopControlBlock(); 1180 // Don't generate hw loop if the loop has more than one exit. 1181 if (!LastMBB) 1182 return false; 1183 1184 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1185 if (LastI == LastMBB->end()) 1186 return false; 1187 1188 // Is the induction variable bump feeding the latch condition? 1189 if (!fixupInductionVariable(L)) 1190 return false; 1191 1192 // Ensure the loop has a preheader: the loop instruction will be 1193 // placed there. 1194 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 1195 if (!Preheader) { 1196 Preheader = createPreheaderForLoop(L); 1197 if (!Preheader) 1198 return false; 1199 } 1200 1201 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1202 1203 SmallVector<MachineInstr*, 2> OldInsts; 1204 // Are we able to determine the trip count for the loop? 1205 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1206 if (!TripCount) 1207 return false; 1208 1209 // Is the trip count available in the preheader? 1210 if (TripCount->isReg()) { 1211 // There will be a use of the register inserted into the preheader, 1212 // so make sure that the register is actually defined at that point. 1213 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1214 MachineBasicBlock *BBDef = TCDef->getParent(); 1215 if (!MDT->dominates(BBDef, Preheader)) 1216 return false; 1217 } 1218 1219 // Determine the loop start. 1220 MachineBasicBlock *TopBlock = L->getTopBlock(); 1221 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1222 MachineBasicBlock *LoopStart = nullptr; 1223 if (ExitingBlock != L->getLoopLatch()) { 1224 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1225 SmallVector<MachineOperand, 2> Cond; 1226 1227 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1228 return false; 1229 1230 if (L->contains(TB)) 1231 LoopStart = TB; 1232 else if (L->contains(FB)) 1233 LoopStart = FB; 1234 else 1235 return false; 1236 } 1237 else 1238 LoopStart = TopBlock; 1239 1240 // Convert the loop to a hardware loop. 1241 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1242 DebugLoc DL; 1243 if (InsertPos != Preheader->end()) 1244 DL = InsertPos->getDebugLoc(); 1245 1246 if (TripCount->isReg()) { 1247 // Create a copy of the loop count register. 1248 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1249 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1250 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1251 // Add the Loop instruction to the beginning of the loop. 1252 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1253 .addReg(CountReg); 1254 } else { 1255 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1256 // Add the Loop immediate instruction to the beginning of the loop, 1257 // if the immediate fits in the instructions. Otherwise, we need to 1258 // create a new virtual register. 1259 int64_t CountImm = TripCount->getImm(); 1260 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) { 1261 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1262 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1263 .addImm(CountImm); 1264 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1265 .addMBB(LoopStart).addReg(CountReg); 1266 } else 1267 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1268 .addMBB(LoopStart).addImm(CountImm); 1269 } 1270 1271 // Make sure the loop start always has a reference in the CFG. We need 1272 // to create a BlockAddress operand to get this mechanism to work both the 1273 // MachineBasicBlock and BasicBlock objects need the flag set. 1274 LoopStart->setHasAddressTaken(); 1275 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1276 // object. 1277 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1278 1279 // Replace the loop branch with an endloop instruction. 1280 DebugLoc LastIDL = LastI->getDebugLoc(); 1281 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1282 1283 // The loop ends with either: 1284 // - a conditional branch followed by an unconditional branch, or 1285 // - a conditional branch to the loop start. 1286 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1287 LastI->getOpcode() == Hexagon::J2_jumpf) { 1288 // Delete one and change/add an uncond. branch to out of the loop. 1289 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1290 LastI = LastMBB->erase(LastI); 1291 if (!L->contains(BranchTarget)) { 1292 if (LastI != LastMBB->end()) 1293 LastI = LastMBB->erase(LastI); 1294 SmallVector<MachineOperand, 0> Cond; 1295 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1296 } 1297 } else { 1298 // Conditional branch to loop start; just delete it. 1299 LastMBB->erase(LastI); 1300 } 1301 delete TripCount; 1302 1303 // The induction operation and the comparison may now be 1304 // unneeded. If these are unneeded, then remove them. 1305 for (unsigned i = 0; i < OldInsts.size(); ++i) 1306 removeIfDead(OldInsts[i]); 1307 1308 ++NumHWLoops; 1309 1310 // Set RecL1used and RecL0used only after hardware loop has been 1311 // successfully generated. Doing it earlier can cause wrong loop instruction 1312 // to be used. 1313 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1314 RecL1used = true; 1315 else 1316 RecL0used = true; 1317 1318 return true; 1319 } 1320 1321 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1322 MachineInstr *CmpI) { 1323 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1324 1325 MachineBasicBlock *BB = BumpI->getParent(); 1326 if (CmpI->getParent() != BB) 1327 return false; 1328 1329 using instr_iterator = MachineBasicBlock::instr_iterator; 1330 1331 // Check if things are in order to begin with. 1332 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1333 if (&*I == CmpI) 1334 return true; 1335 1336 // Out of order. 1337 Register PredR = CmpI->getOperand(0).getReg(); 1338 bool FoundBump = false; 1339 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1340 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1341 MachineInstr *In = &*I; 1342 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1343 MachineOperand &MO = In->getOperand(i); 1344 if (MO.isReg() && MO.isUse()) { 1345 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1346 return false; 1347 } 1348 } 1349 1350 if (In == BumpI) { 1351 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1352 FoundBump = true; 1353 break; 1354 } 1355 } 1356 assert (FoundBump && "Cannot determine instruction order"); 1357 return FoundBump; 1358 } 1359 1360 /// This function is required to break recursion. Visiting phis in a loop may 1361 /// result in recursion during compilation. We break the recursion by making 1362 /// sure that we visit a MachineOperand and its definition in a 1363 /// MachineInstruction only once. If we attempt to visit more than once, then 1364 /// there is recursion, and will return false. 1365 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1366 MachineInstr *MI, 1367 const MachineOperand *MO, 1368 LoopFeederMap &LoopFeederPhi) const { 1369 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1370 LLVM_DEBUG(dbgs() << "\nhw_loop head, " 1371 << printMBBReference(**L->block_begin())); 1372 // Ignore all BBs that form Loop. 1373 for (MachineBasicBlock *MBB : L->getBlocks()) { 1374 if (A == MBB) 1375 return false; 1376 } 1377 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1378 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1379 return true; 1380 } else 1381 // Already visited node. 1382 return false; 1383 } 1384 1385 /// Return true if a Phi may generate a value that can underflow. 1386 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1387 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1388 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1389 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1390 assert(Phi->isPHI() && "Expecting a Phi."); 1391 // Walk through each Phi, and its used operands. Make sure that 1392 // if there is recursion in Phi, we won't generate hardware loops. 1393 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1394 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1395 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1396 Phi->getParent(), L, LoopFeederPhi)) 1397 return true; 1398 return false; 1399 } 1400 1401 /// Return true if the induction variable can underflow in the first iteration. 1402 /// An example, is an initial unsigned value that is 0 and is decrement in the 1403 /// first itertion of a do-while loop. In this case, we cannot generate a 1404 /// hardware loop because the endloop instruction does not decrement the loop 1405 /// counter if it is <= 1. We only need to perform this analysis if the 1406 /// initial value is a register. 1407 /// 1408 /// This function assumes the initial value may underfow unless proven 1409 /// otherwise. If the type is signed, then we don't care because signed 1410 /// underflow is undefined. We attempt to prove the initial value is not 1411 /// zero by perfoming a crude analysis of the loop counter. This function 1412 /// checks if the initial value is used in any comparison prior to the loop 1413 /// and, if so, assumes the comparison is a range check. This is inexact, 1414 /// but will catch the simple cases. 1415 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1416 const MachineOperand *InitVal, const MachineOperand *EndVal, 1417 MachineBasicBlock *MBB, MachineLoop *L, 1418 LoopFeederMap &LoopFeederPhi) const { 1419 // Only check register values since they are unknown. 1420 if (!InitVal->isReg()) 1421 return false; 1422 1423 if (!EndVal->isImm()) 1424 return false; 1425 1426 // A register value that is assigned an immediate is a known value, and it 1427 // won't underflow in the first iteration. 1428 int64_t Imm; 1429 if (checkForImmediate(*InitVal, Imm)) 1430 return (EndVal->getImm() == Imm); 1431 1432 Register Reg = InitVal->getReg(); 1433 1434 // We don't know the value of a physical register. 1435 if (!Reg.isVirtual()) 1436 return true; 1437 1438 MachineInstr *Def = MRI->getVRegDef(Reg); 1439 if (!Def) 1440 return true; 1441 1442 // If the initial value is a Phi or copy and the operands may not underflow, 1443 // then the definition cannot be underflow either. 1444 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1445 L, LoopFeederPhi)) 1446 return false; 1447 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1448 EndVal, Def->getParent(), 1449 L, LoopFeederPhi)) 1450 return false; 1451 1452 // Iterate over the uses of the initial value. If the initial value is used 1453 // in a compare, then we assume this is a range check that ensures the loop 1454 // doesn't underflow. This is not an exact test and should be improved. 1455 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1456 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1457 MachineInstr *MI = &*I; 1458 Register CmpReg1, CmpReg2; 1459 int CmpMask = 0, CmpValue = 0; 1460 1461 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1462 continue; 1463 1464 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1465 SmallVector<MachineOperand, 2> Cond; 1466 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1467 continue; 1468 1469 Comparison::Kind Cmp = 1470 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); 1471 if (Cmp == 0) 1472 continue; 1473 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1474 Cmp = Comparison::getNegatedComparison(Cmp); 1475 if (CmpReg2 != 0 && CmpReg2 == Reg) 1476 Cmp = Comparison::getSwappedComparison(Cmp); 1477 1478 // Signed underflow is undefined. 1479 if (Comparison::isSigned(Cmp)) 1480 return false; 1481 1482 // Check if there is a comparison of the initial value. If the initial value 1483 // is greater than or not equal to another value, then assume this is a 1484 // range check. 1485 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1486 return false; 1487 } 1488 1489 // OK - this is a hack that needs to be improved. We really need to analyze 1490 // the instructions performed on the initial value. This works on the simplest 1491 // cases only. 1492 if (!Def->isCopy() && !Def->isPHI()) 1493 return false; 1494 1495 return true; 1496 } 1497 1498 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1499 int64_t &Val) const { 1500 if (MO.isImm()) { 1501 Val = MO.getImm(); 1502 return true; 1503 } 1504 if (!MO.isReg()) 1505 return false; 1506 1507 // MO is a register. Check whether it is defined as an immediate value, 1508 // and if so, get the value of it in TV. That value will then need to be 1509 // processed to handle potential subregisters in MO. 1510 int64_t TV; 1511 1512 Register R = MO.getReg(); 1513 if (!R.isVirtual()) 1514 return false; 1515 MachineInstr *DI = MRI->getVRegDef(R); 1516 unsigned DOpc = DI->getOpcode(); 1517 switch (DOpc) { 1518 case TargetOpcode::COPY: 1519 case Hexagon::A2_tfrsi: 1520 case Hexagon::A2_tfrpi: 1521 case Hexagon::CONST32: 1522 case Hexagon::CONST64: 1523 // Call recursively to avoid an extra check whether operand(1) is 1524 // indeed an immediate (it could be a global address, for example), 1525 // plus we can handle COPY at the same time. 1526 if (!checkForImmediate(DI->getOperand(1), TV)) 1527 return false; 1528 break; 1529 case Hexagon::A2_combineii: 1530 case Hexagon::A4_combineir: 1531 case Hexagon::A4_combineii: 1532 case Hexagon::A4_combineri: 1533 case Hexagon::A2_combinew: { 1534 const MachineOperand &S1 = DI->getOperand(1); 1535 const MachineOperand &S2 = DI->getOperand(2); 1536 int64_t V1, V2; 1537 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1538 return false; 1539 TV = V2 | (static_cast<uint64_t>(V1) << 32); 1540 break; 1541 } 1542 case TargetOpcode::REG_SEQUENCE: { 1543 const MachineOperand &S1 = DI->getOperand(1); 1544 const MachineOperand &S3 = DI->getOperand(3); 1545 int64_t V1, V3; 1546 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1547 return false; 1548 unsigned Sub2 = DI->getOperand(2).getImm(); 1549 unsigned Sub4 = DI->getOperand(4).getImm(); 1550 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) 1551 TV = V1 | (V3 << 32); 1552 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) 1553 TV = V3 | (V1 << 32); 1554 else 1555 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1556 break; 1557 } 1558 1559 default: 1560 return false; 1561 } 1562 1563 // By now, we should have successfully obtained the immediate value defining 1564 // the register referenced in MO. Handle a potential use of a subregister. 1565 switch (MO.getSubReg()) { 1566 case Hexagon::isub_lo: 1567 Val = TV & 0xFFFFFFFFULL; 1568 break; 1569 case Hexagon::isub_hi: 1570 Val = (TV >> 32) & 0xFFFFFFFFULL; 1571 break; 1572 default: 1573 Val = TV; 1574 break; 1575 } 1576 return true; 1577 } 1578 1579 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1580 if (MO.isImm()) { 1581 MO.setImm(Val); 1582 return; 1583 } 1584 1585 assert(MO.isReg()); 1586 Register R = MO.getReg(); 1587 MachineInstr *DI = MRI->getVRegDef(R); 1588 1589 const TargetRegisterClass *RC = MRI->getRegClass(R); 1590 Register NewR = MRI->createVirtualRegister(RC); 1591 MachineBasicBlock &B = *DI->getParent(); 1592 DebugLoc DL = DI->getDebugLoc(); 1593 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1594 MO.setReg(NewR); 1595 } 1596 1597 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { 1598 // These two instructions are not extendable. 1599 if (CmpOpc == Hexagon::A4_cmpbeqi) 1600 return isUInt<8>(Imm); 1601 if (CmpOpc == Hexagon::A4_cmpbgti) 1602 return isInt<8>(Imm); 1603 // The rest of the comparison-with-immediate instructions are extendable. 1604 return true; 1605 } 1606 1607 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1608 MachineBasicBlock *Header = L->getHeader(); 1609 MachineBasicBlock *Latch = L->getLoopLatch(); 1610 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1611 1612 if (!(Header && Latch && ExitingBlock)) 1613 return false; 1614 1615 // These data structures follow the same concept as the corresponding 1616 // ones in findInductionRegister (where some comments are). 1617 using RegisterBump = std::pair<unsigned, int64_t>; 1618 using RegisterInduction = std::pair<unsigned, RegisterBump>; 1619 using RegisterInductionSet = std::set<RegisterInduction>; 1620 1621 // Register candidates for induction variables, with their associated bumps. 1622 RegisterInductionSet IndRegs; 1623 1624 // Look for induction patterns: 1625 // %1 = PHI ..., [ latch, %2 ] 1626 // %2 = ADD %1, imm 1627 using instr_iterator = MachineBasicBlock::instr_iterator; 1628 1629 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1630 I != E && I->isPHI(); ++I) { 1631 MachineInstr *Phi = &*I; 1632 1633 // Have a PHI instruction. 1634 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1635 if (Phi->getOperand(i+1).getMBB() != Latch) 1636 continue; 1637 1638 Register PhiReg = Phi->getOperand(i).getReg(); 1639 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1640 1641 if (DI->getDesc().isAdd()) { 1642 // If the register operand to the add/sub is the PHI we are looking 1643 // at, this meets the induction pattern. 1644 Register IndReg = DI->getOperand(1).getReg(); 1645 MachineOperand &Opnd2 = DI->getOperand(2); 1646 int64_t V; 1647 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1648 Register UpdReg = DI->getOperand(0).getReg(); 1649 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1650 } 1651 } 1652 } // for (i) 1653 } // for (instr) 1654 1655 if (IndRegs.empty()) 1656 return false; 1657 1658 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1659 SmallVector<MachineOperand,2> Cond; 1660 // analyzeBranch returns true if it fails to analyze branch. 1661 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1662 if (NotAnalyzed || Cond.empty()) 1663 return false; 1664 1665 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1666 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 1667 SmallVector<MachineOperand,2> LCond; 1668 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1669 if (NotAnalyzed) 1670 return false; 1671 1672 // Since latch is not the exiting block, the latch branch should be an 1673 // unconditional branch to the loop header. 1674 if (TB == Latch) 1675 TB = (LTB == Header) ? LTB : LFB; 1676 else 1677 FB = (LTB == Header) ? LTB : LFB; 1678 } 1679 if (TB != Header) { 1680 if (FB != Header) { 1681 // The latch/exit block does not go back to the header. 1682 return false; 1683 } 1684 // FB is the header (i.e., uncond. jump to branch header) 1685 // In this case, the LoopBody -> TB should not be a back edge otherwise 1686 // it could result in an infinite loop after conversion to hw_loop. 1687 // This case can happen when the Latch has two jumps like this: 1688 // Jmp_c OuterLoopHeader <-- TB 1689 // Jmp InnerLoopHeader <-- FB 1690 if (MDT->dominates(TB, FB)) 1691 return false; 1692 } 1693 1694 // Expecting a predicate register as a condition. It won't be a hardware 1695 // predicate register at this point yet, just a vreg. 1696 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0) 1697 // into Cond, followed by the predicate register. For non-negated branches 1698 // it's just the register. 1699 unsigned CSz = Cond.size(); 1700 if (CSz != 1 && CSz != 2) 1701 return false; 1702 1703 if (!Cond[CSz-1].isReg()) 1704 return false; 1705 1706 Register P = Cond[CSz - 1].getReg(); 1707 MachineInstr *PredDef = MRI->getVRegDef(P); 1708 1709 if (!PredDef->isCompare()) 1710 return false; 1711 1712 SmallSet<unsigned,2> CmpRegs; 1713 MachineOperand *CmpImmOp = nullptr; 1714 1715 // Go over all operands to the compare and look for immediate and register 1716 // operands. Assume that if the compare has a single register use and a 1717 // single immediate operand, then the register is being compared with the 1718 // immediate value. 1719 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1720 MachineOperand &MO = PredDef->getOperand(i); 1721 if (MO.isReg()) { 1722 // Skip all implicit references. In one case there was: 1723 // %140 = FCMPUGT32_rr %138, %139, implicit %usr 1724 if (MO.isImplicit()) 1725 continue; 1726 if (MO.isUse()) { 1727 if (!isImmediate(MO)) { 1728 CmpRegs.insert(MO.getReg()); 1729 continue; 1730 } 1731 // Consider the register to be the "immediate" operand. 1732 if (CmpImmOp) 1733 return false; 1734 CmpImmOp = &MO; 1735 } 1736 } else if (MO.isImm()) { 1737 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1738 return false; 1739 CmpImmOp = &MO; 1740 } 1741 } 1742 1743 if (CmpRegs.empty()) 1744 return false; 1745 1746 // Check if the compared register follows the order we want. Fix if needed. 1747 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1748 I != E; ++I) { 1749 // This is a success. If the register used in the comparison is one that 1750 // we have identified as a bumped (updated) induction register, there is 1751 // nothing to do. 1752 if (CmpRegs.count(I->first)) 1753 return true; 1754 1755 // Otherwise, if the register being compared comes out of a PHI node, 1756 // and has been recognized as following the induction pattern, and is 1757 // compared against an immediate, we can fix it. 1758 const RegisterBump &RB = I->second; 1759 if (CmpRegs.count(RB.first)) { 1760 if (!CmpImmOp) { 1761 // If both operands to the compare instruction are registers, see if 1762 // it can be changed to use induction register as one of the operands. 1763 MachineInstr *IndI = nullptr; 1764 MachineInstr *nonIndI = nullptr; 1765 MachineOperand *IndMO = nullptr; 1766 MachineOperand *nonIndMO = nullptr; 1767 1768 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1769 MachineOperand &MO = PredDef->getOperand(i); 1770 if (MO.isReg() && MO.getReg() == RB.first) { 1771 LLVM_DEBUG(dbgs() << "\n DefMI(" << i 1772 << ") = " << *(MRI->getVRegDef(I->first))); 1773 if (IndI) 1774 return false; 1775 1776 IndI = MRI->getVRegDef(I->first); 1777 IndMO = &MO; 1778 } else if (MO.isReg()) { 1779 LLVM_DEBUG(dbgs() << "\n DefMI(" << i 1780 << ") = " << *(MRI->getVRegDef(MO.getReg()))); 1781 if (nonIndI) 1782 return false; 1783 1784 nonIndI = MRI->getVRegDef(MO.getReg()); 1785 nonIndMO = &MO; 1786 } 1787 } 1788 if (IndI && nonIndI && 1789 nonIndI->getOpcode() == Hexagon::A2_addi && 1790 nonIndI->getOperand(2).isImm() && 1791 nonIndI->getOperand(2).getImm() == - RB.second) { 1792 bool Order = orderBumpCompare(IndI, PredDef); 1793 if (Order) { 1794 IndMO->setReg(I->first); 1795 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1796 return true; 1797 } 1798 } 1799 return false; 1800 } 1801 1802 // It is not valid to do this transformation on an unsigned comparison 1803 // because it may underflow. 1804 Comparison::Kind Cmp = 1805 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); 1806 if (!Cmp || Comparison::isUnsigned(Cmp)) 1807 return false; 1808 1809 // If the register is being compared against an immediate, try changing 1810 // the compare instruction to use induction register and adjust the 1811 // immediate operand. 1812 int64_t CmpImm = getImmediate(*CmpImmOp); 1813 int64_t V = RB.second; 1814 // Handle Overflow (64-bit). 1815 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1816 ((V < 0) && (CmpImm < INT64_MIN - V))) 1817 return false; 1818 CmpImm += V; 1819 // Most comparisons of register against an immediate value allow 1820 // the immediate to be constant-extended. There are some exceptions 1821 // though. Make sure the new combination will work. 1822 if (CmpImmOp->isImm()) 1823 if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) 1824 return false; 1825 1826 // Make sure that the compare happens after the bump. Otherwise, 1827 // after the fixup, the compare would use a yet-undefined register. 1828 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1829 bool Order = orderBumpCompare(BumpI, PredDef); 1830 if (!Order) 1831 return false; 1832 1833 // Finally, fix the compare instruction. 1834 setImmediate(*CmpImmOp, CmpImm); 1835 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1836 MachineOperand &MO = PredDef->getOperand(i); 1837 if (MO.isReg() && MO.getReg() == RB.first) { 1838 MO.setReg(I->first); 1839 return true; 1840 } 1841 } 1842 } 1843 } 1844 1845 return false; 1846 } 1847 1848 /// createPreheaderForLoop - Create a preheader for a given loop. 1849 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1850 MachineLoop *L) { 1851 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) 1852 return TmpPH; 1853 if (!HWCreatePreheader) 1854 return nullptr; 1855 1856 MachineBasicBlock *Header = L->getHeader(); 1857 MachineBasicBlock *Latch = L->getLoopLatch(); 1858 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1859 MachineFunction *MF = Header->getParent(); 1860 DebugLoc DL; 1861 1862 #ifndef NDEBUG 1863 if ((!PHFn.empty()) && (PHFn != MF->getName())) 1864 return nullptr; 1865 #endif 1866 1867 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1868 return nullptr; 1869 1870 using instr_iterator = MachineBasicBlock::instr_iterator; 1871 1872 // Verify that all existing predecessors have analyzable branches 1873 // (or no branches at all). 1874 using MBBVector = std::vector<MachineBasicBlock *>; 1875 1876 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1877 SmallVector<MachineOperand,2> Tmp1; 1878 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1879 1880 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1881 return nullptr; 1882 1883 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1884 MachineBasicBlock *PB = *I; 1885 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1886 if (NotAnalyzed) 1887 return nullptr; 1888 } 1889 1890 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1891 MF->insert(Header->getIterator(), NewPH); 1892 1893 if (Header->pred_size() > 2) { 1894 // Ensure that the header has only two predecessors: the preheader and 1895 // the loop latch. Any additional predecessors of the header should 1896 // join at the newly created preheader. Inspect all PHI nodes from the 1897 // header and create appropriate corresponding PHI nodes in the preheader. 1898 1899 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1900 I != E && I->isPHI(); ++I) { 1901 MachineInstr *PN = &*I; 1902 1903 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1904 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1905 NewPH->insert(NewPH->end(), NewPN); 1906 1907 Register PR = PN->getOperand(0).getReg(); 1908 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1909 Register NewPR = MRI->createVirtualRegister(RC); 1910 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1911 1912 // Copy all non-latch operands of a header's PHI node to the newly 1913 // created PHI node in the preheader. 1914 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1915 Register PredR = PN->getOperand(i).getReg(); 1916 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1917 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1918 if (PredB == Latch) 1919 continue; 1920 1921 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1922 MO.setSubReg(PredRSub); 1923 NewPN->addOperand(MO); 1924 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1925 } 1926 1927 // Remove copied operands from the old PHI node and add the value 1928 // coming from the preheader's PHI. 1929 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1930 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1931 if (PredB != Latch) { 1932 PN->RemoveOperand(i+1); 1933 PN->RemoveOperand(i); 1934 } 1935 } 1936 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1937 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1938 } 1939 } else { 1940 assert(Header->pred_size() == 2); 1941 1942 // The header has only two predecessors, but the non-latch predecessor 1943 // is not a preheader (e.g. it has other successors, etc.) 1944 // In such a case we don't need any extra PHI nodes in the new preheader, 1945 // all we need is to adjust existing PHIs in the header to now refer to 1946 // the new preheader. 1947 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1948 I != E && I->isPHI(); ++I) { 1949 MachineInstr *PN = &*I; 1950 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1951 MachineOperand &MO = PN->getOperand(i+1); 1952 if (MO.getMBB() != Latch) 1953 MO.setMBB(NewPH); 1954 } 1955 } 1956 } 1957 1958 // "Reroute" the CFG edges to link in the new preheader. 1959 // If any of the predecessors falls through to the header, insert a branch 1960 // to the new preheader in that place. 1961 SmallVector<MachineOperand,1> Tmp2; 1962 SmallVector<MachineOperand,1> EmptyCond; 1963 1964 TB = FB = nullptr; 1965 1966 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1967 MachineBasicBlock *PB = *I; 1968 if (PB != Latch) { 1969 Tmp2.clear(); 1970 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1971 (void)NotAnalyzed; // suppress compiler warning 1972 assert (!NotAnalyzed && "Should be analyzable!"); 1973 if (TB != Header && (Tmp2.empty() || FB != Header)) 1974 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1975 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1976 } 1977 } 1978 1979 // It can happen that the latch block will fall through into the header. 1980 // Insert an unconditional branch to the header. 1981 TB = FB = nullptr; 1982 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1983 (void)LatchNotAnalyzed; // suppress compiler warning 1984 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1985 if (!TB && !FB) 1986 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1987 1988 // Finally, the branch from the preheader to the header. 1989 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1990 NewPH->addSuccessor(Header); 1991 1992 MachineLoop *ParentLoop = L->getParentLoop(); 1993 if (ParentLoop) 1994 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 1995 1996 // Update the dominator information with the new preheader. 1997 if (MDT) { 1998 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 1999 if (MachineDomTreeNode *DHN = HN->getIDom()) { 2000 MDT->addNewBlock(NewPH, DHN->getBlock()); 2001 MDT->changeImmediateDominator(Header, NewPH); 2002 } 2003 } 2004 } 2005 2006 return NewPH; 2007 } 2008