1 //===- HexagonGenInsert.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "BitTracker.h" 10 #include "HexagonBitTracker.h" 11 #include "HexagonInstrInfo.h" 12 #include "HexagonRegisterInfo.h" 13 #include "HexagonSubtarget.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/GraphTraits.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/Timer.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 #include <vector> 44 45 #define DEBUG_TYPE "hexinsert" 46 47 using namespace llvm; 48 49 static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U), 50 cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation.")); 51 // The distance cutoff is selected based on the precheckin-perf results: 52 // cutoffs 20, 25, 35, and 40 are worse than 30. 53 static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U), 54 cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert " 55 "generation.")); 56 57 // Limit the container sizes for extreme cases where we run out of memory. 58 static cl::opt<unsigned> MaxORLSize("insert-max-orl", cl::init(4096), 59 cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of OrderedRegisterList")); 60 static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024), 61 cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of IFMap")); 62 63 static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden, 64 cl::ZeroOrMore, cl::desc("Enable timing of insert generation")); 65 static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false), 66 cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert " 67 "generation")); 68 69 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden, 70 cl::ZeroOrMore); 71 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden, 72 cl::ZeroOrMore); 73 // Whether to construct constant values via "insert". Could eliminate constant 74 // extenders, but often not practical. 75 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden, 76 cl::ZeroOrMore); 77 78 // The preprocessor gets confused when the DEBUG macro is passed larger 79 // chunks of code. Use this function to detect debugging. 80 inline static bool isDebug() { 81 #ifndef NDEBUG 82 return DebugFlag && isCurrentDebugType(DEBUG_TYPE); 83 #else 84 return false; 85 #endif 86 } 87 88 namespace { 89 90 // Set of virtual registers, based on BitVector. 91 struct RegisterSet : private BitVector { 92 RegisterSet() = default; 93 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} 94 RegisterSet(const RegisterSet &RS) : BitVector(RS) {} 95 96 using BitVector::clear; 97 98 unsigned find_first() const { 99 int First = BitVector::find_first(); 100 if (First < 0) 101 return 0; 102 return x2v(First); 103 } 104 105 unsigned find_next(unsigned Prev) const { 106 int Next = BitVector::find_next(v2x(Prev)); 107 if (Next < 0) 108 return 0; 109 return x2v(Next); 110 } 111 112 RegisterSet &insert(unsigned R) { 113 unsigned Idx = v2x(R); 114 ensure(Idx); 115 return static_cast<RegisterSet&>(BitVector::set(Idx)); 116 } 117 RegisterSet &remove(unsigned R) { 118 unsigned Idx = v2x(R); 119 if (Idx >= size()) 120 return *this; 121 return static_cast<RegisterSet&>(BitVector::reset(Idx)); 122 } 123 124 RegisterSet &insert(const RegisterSet &Rs) { 125 return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); 126 } 127 RegisterSet &remove(const RegisterSet &Rs) { 128 return static_cast<RegisterSet&>(BitVector::reset(Rs)); 129 } 130 131 reference operator[](unsigned R) { 132 unsigned Idx = v2x(R); 133 ensure(Idx); 134 return BitVector::operator[](Idx); 135 } 136 bool operator[](unsigned R) const { 137 unsigned Idx = v2x(R); 138 assert(Idx < size()); 139 return BitVector::operator[](Idx); 140 } 141 bool has(unsigned R) const { 142 unsigned Idx = v2x(R); 143 if (Idx >= size()) 144 return false; 145 return BitVector::test(Idx); 146 } 147 148 bool empty() const { 149 return !BitVector::any(); 150 } 151 bool includes(const RegisterSet &Rs) const { 152 // A.BitVector::test(B) <=> A-B != {} 153 return !Rs.BitVector::test(*this); 154 } 155 bool intersects(const RegisterSet &Rs) const { 156 return BitVector::anyCommon(Rs); 157 } 158 159 private: 160 void ensure(unsigned Idx) { 161 if (size() <= Idx) 162 resize(std::max(Idx+1, 32U)); 163 } 164 165 static inline unsigned v2x(unsigned v) { 166 return Register::virtReg2Index(v); 167 } 168 169 static inline unsigned x2v(unsigned x) { 170 return Register::index2VirtReg(x); 171 } 172 }; 173 174 struct PrintRegSet { 175 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) 176 : RS(S), TRI(RI) {} 177 178 friend raw_ostream &operator<< (raw_ostream &OS, 179 const PrintRegSet &P); 180 181 private: 182 const RegisterSet &RS; 183 const TargetRegisterInfo *TRI; 184 }; 185 186 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { 187 OS << '{'; 188 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) 189 OS << ' ' << printReg(R, P.TRI); 190 OS << " }"; 191 return OS; 192 } 193 194 // A convenience class to associate unsigned numbers (such as virtual 195 // registers) with unsigned numbers. 196 struct UnsignedMap : public DenseMap<unsigned,unsigned> { 197 UnsignedMap() = default; 198 199 private: 200 using BaseType = DenseMap<unsigned, unsigned>; 201 }; 202 203 // A utility to establish an ordering between virtual registers: 204 // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB] 205 // This is meant as a cache for the ordering of virtual registers defined 206 // by a potentially expensive comparison function, or obtained by a proce- 207 // dure that should not be repeated each time two registers are compared. 208 struct RegisterOrdering : public UnsignedMap { 209 RegisterOrdering() = default; 210 211 unsigned operator[](unsigned VR) const { 212 const_iterator F = find(VR); 213 assert(F != end()); 214 return F->second; 215 } 216 217 // Add operator(), so that objects of this class can be used as 218 // comparators in std::sort et al. 219 bool operator() (unsigned VR1, unsigned VR2) const { 220 return operator[](VR1) < operator[](VR2); 221 } 222 }; 223 224 // Ordering of bit values. This class does not have operator[], but 225 // is supplies a comparison operator() for use in std:: algorithms. 226 // The order is as follows: 227 // - 0 < 1 < ref 228 // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg), 229 // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos. 230 struct BitValueOrdering { 231 BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {} 232 233 bool operator() (const BitTracker::BitValue &V1, 234 const BitTracker::BitValue &V2) const; 235 236 const RegisterOrdering &BaseOrd; 237 }; 238 239 } // end anonymous namespace 240 241 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1, 242 const BitTracker::BitValue &V2) const { 243 if (V1 == V2) 244 return false; 245 // V1==0 => true, V2==0 => false 246 if (V1.is(0) || V2.is(0)) 247 return V1.is(0); 248 // Neither of V1,V2 is 0, and V1!=V2. 249 // V2==1 => false, V1==1 => true 250 if (V2.is(1) || V1.is(1)) 251 return !V2.is(1); 252 // Both V1,V2 are refs. 253 unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg]; 254 if (Ind1 != Ind2) 255 return Ind1 < Ind2; 256 // If V1.Pos==V2.Pos 257 assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different"); 258 return V1.RefI.Pos < V2.RefI.Pos; 259 } 260 261 namespace { 262 263 // Cache for the BitTracker's cell map. Map lookup has a logarithmic 264 // complexity, this class will memoize the lookup results to reduce 265 // the access time for repeated lookups of the same cell. 266 struct CellMapShadow { 267 CellMapShadow(const BitTracker &T) : BT(T) {} 268 269 const BitTracker::RegisterCell &lookup(unsigned VR) { 270 unsigned RInd = Register::virtReg2Index(VR); 271 // Grow the vector to at least 32 elements. 272 if (RInd >= CVect.size()) 273 CVect.resize(std::max(RInd+16, 32U), nullptr); 274 const BitTracker::RegisterCell *CP = CVect[RInd]; 275 if (CP == nullptr) 276 CP = CVect[RInd] = &BT.lookup(VR); 277 return *CP; 278 } 279 280 const BitTracker &BT; 281 282 private: 283 using CellVectType = std::vector<const BitTracker::RegisterCell *>; 284 285 CellVectType CVect; 286 }; 287 288 // Comparator class for lexicographic ordering of virtual registers 289 // according to the corresponding BitTracker::RegisterCell objects. 290 struct RegisterCellLexCompare { 291 RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M) 292 : BitOrd(BO), CM(M) {} 293 294 bool operator() (unsigned VR1, unsigned VR2) const; 295 296 private: 297 const BitValueOrdering &BitOrd; 298 CellMapShadow &CM; 299 }; 300 301 // Comparator class for lexicographic ordering of virtual registers 302 // according to the specified bits of the corresponding BitTracker:: 303 // RegisterCell objects. 304 // Specifically, this class will be used to compare bit B of a register 305 // cell for a selected virtual register R with bit N of any register 306 // other than R. 307 struct RegisterCellBitCompareSel { 308 RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N, 309 const BitValueOrdering &BO, CellMapShadow &M) 310 : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {} 311 312 bool operator() (unsigned VR1, unsigned VR2) const; 313 314 private: 315 const unsigned SelR, SelB; 316 const unsigned BitN; 317 const BitValueOrdering &BitOrd; 318 CellMapShadow &CM; 319 }; 320 321 } // end anonymous namespace 322 323 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const { 324 // Ordering of registers, made up from two given orderings: 325 // - the ordering of the register numbers, and 326 // - the ordering of register cells. 327 // Def. R1 < R2 if: 328 // - cell(R1) < cell(R2), or 329 // - cell(R1) == cell(R2), and index(R1) < index(R2). 330 // 331 // For register cells, the ordering is lexicographic, with index 0 being 332 // the most significant. 333 if (VR1 == VR2) 334 return false; 335 336 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2); 337 uint16_t W1 = RC1.width(), W2 = RC2.width(); 338 for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) { 339 const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i]; 340 if (V1 != V2) 341 return BitOrd(V1, V2); 342 } 343 // Cells are equal up until the common length. 344 if (W1 != W2) 345 return W1 < W2; 346 347 return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2]; 348 } 349 350 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const { 351 if (VR1 == VR2) 352 return false; 353 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1); 354 const BitTracker::RegisterCell &RC2 = CM.lookup(VR2); 355 uint16_t W1 = RC1.width(), W2 = RC2.width(); 356 uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN; 357 uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN; 358 // If Bit1 exceeds the width of VR1, then: 359 // - return false, if at the same time Bit2 exceeds VR2, or 360 // - return true, otherwise. 361 // (I.e. "a bit value that does not exist is less than any bit value 362 // that does exist".) 363 if (W1 <= Bit1) 364 return Bit2 < W2; 365 // If Bit1 is within VR1, but Bit2 is not within VR2, return false. 366 if (W2 <= Bit2) 367 return false; 368 369 const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2]; 370 if (V1 != V2) 371 return BitOrd(V1, V2); 372 return false; 373 } 374 375 namespace { 376 377 class OrderedRegisterList { 378 using ListType = std::vector<unsigned>; 379 const unsigned MaxSize; 380 381 public: 382 OrderedRegisterList(const RegisterOrdering &RO) 383 : MaxSize(MaxORLSize), Ord(RO) {} 384 385 void insert(unsigned VR); 386 void remove(unsigned VR); 387 388 unsigned operator[](unsigned Idx) const { 389 assert(Idx < Seq.size()); 390 return Seq[Idx]; 391 } 392 393 unsigned size() const { 394 return Seq.size(); 395 } 396 397 using iterator = ListType::iterator; 398 using const_iterator = ListType::const_iterator; 399 400 iterator begin() { return Seq.begin(); } 401 iterator end() { return Seq.end(); } 402 const_iterator begin() const { return Seq.begin(); } 403 const_iterator end() const { return Seq.end(); } 404 405 // Convenience function to convert an iterator to the corresponding index. 406 unsigned idx(iterator It) const { return It-begin(); } 407 408 private: 409 ListType Seq; 410 const RegisterOrdering &Ord; 411 }; 412 413 struct PrintORL { 414 PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI) 415 : RL(L), TRI(RI) {} 416 417 friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P); 418 419 private: 420 const OrderedRegisterList &RL; 421 const TargetRegisterInfo *TRI; 422 }; 423 424 raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) { 425 OS << '('; 426 OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end(); 427 for (OrderedRegisterList::const_iterator I = B; I != E; ++I) { 428 if (I != B) 429 OS << ", "; 430 OS << printReg(*I, P.TRI); 431 } 432 OS << ')'; 433 return OS; 434 } 435 436 } // end anonymous namespace 437 438 void OrderedRegisterList::insert(unsigned VR) { 439 iterator L = llvm::lower_bound(Seq, VR, Ord); 440 if (L == Seq.end()) 441 Seq.push_back(VR); 442 else 443 Seq.insert(L, VR); 444 445 unsigned S = Seq.size(); 446 if (S > MaxSize) 447 Seq.resize(MaxSize); 448 assert(Seq.size() <= MaxSize); 449 } 450 451 void OrderedRegisterList::remove(unsigned VR) { 452 iterator L = llvm::lower_bound(Seq, VR, Ord); 453 if (L != Seq.end()) 454 Seq.erase(L); 455 } 456 457 namespace { 458 459 // A record of the insert form. The fields correspond to the operands 460 // of the "insert" instruction: 461 // ... = insert(SrcR, InsR, #Wdh, #Off) 462 struct IFRecord { 463 IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0) 464 : SrcR(SR), InsR(IR), Wdh(W), Off(O) {} 465 466 unsigned SrcR, InsR; 467 uint16_t Wdh, Off; 468 }; 469 470 struct PrintIFR { 471 PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI) 472 : IFR(R), TRI(RI) {} 473 474 private: 475 friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P); 476 477 const IFRecord &IFR; 478 const TargetRegisterInfo *TRI; 479 }; 480 481 raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) { 482 unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR; 483 OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI) 484 << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')'; 485 return OS; 486 } 487 488 using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>; 489 490 } // end anonymous namespace 491 492 namespace llvm { 493 494 void initializeHexagonGenInsertPass(PassRegistry&); 495 FunctionPass *createHexagonGenInsert(); 496 497 } // end namespace llvm 498 499 namespace { 500 501 class HexagonGenInsert : public MachineFunctionPass { 502 public: 503 static char ID; 504 505 HexagonGenInsert() : MachineFunctionPass(ID) { 506 initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry()); 507 } 508 509 StringRef getPassName() const override { 510 return "Hexagon generate \"insert\" instructions"; 511 } 512 513 void getAnalysisUsage(AnalysisUsage &AU) const override { 514 AU.addRequired<MachineDominatorTree>(); 515 AU.addPreserved<MachineDominatorTree>(); 516 MachineFunctionPass::getAnalysisUsage(AU); 517 } 518 519 bool runOnMachineFunction(MachineFunction &MF) override; 520 521 private: 522 using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>; 523 524 void buildOrderingMF(RegisterOrdering &RO) const; 525 void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const; 526 bool isIntClass(const TargetRegisterClass *RC) const; 527 bool isConstant(unsigned VR) const; 528 bool isSmallConstant(unsigned VR) const; 529 bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR, 530 uint16_t L, uint16_t S) const; 531 bool findSelfReference(unsigned VR) const; 532 bool findNonSelfReference(unsigned VR) const; 533 void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const; 534 void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const; 535 unsigned distance(const MachineBasicBlock *FromB, 536 const MachineBasicBlock *ToB, const UnsignedMap &RPO, 537 PairMapType &M) const; 538 unsigned distance(MachineBasicBlock::const_iterator FromI, 539 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, 540 PairMapType &M) const; 541 bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs); 542 void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs); 543 void findRemovableRegisters(unsigned VR, IFRecord IF, 544 RegisterSet &RMs) const; 545 void computeRemovableRegisters(); 546 547 void pruneEmptyLists(); 548 void pruneCoveredSets(unsigned VR); 549 void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M); 550 void pruneRegCopies(unsigned VR); 551 void pruneCandidates(); 552 void selectCandidates(); 553 bool generateInserts(); 554 555 bool removeDeadCode(MachineDomTreeNode *N); 556 557 // IFRecord coupled with a set of potentially removable registers: 558 using IFListType = std::vector<IFRecordWithRegSet>; 559 using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType 560 561 void dump_map() const; 562 563 const HexagonInstrInfo *HII = nullptr; 564 const HexagonRegisterInfo *HRI = nullptr; 565 566 MachineFunction *MFN; 567 MachineRegisterInfo *MRI; 568 MachineDominatorTree *MDT; 569 CellMapShadow *CMS; 570 571 RegisterOrdering BaseOrd; 572 RegisterOrdering CellOrd; 573 IFMapType IFMap; 574 }; 575 576 } // end anonymous namespace 577 578 char HexagonGenInsert::ID = 0; 579 580 void HexagonGenInsert::dump_map() const { 581 using iterator = IFMapType::const_iterator; 582 583 for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { 584 dbgs() << " " << printReg(I->first, HRI) << ":\n"; 585 const IFListType &LL = I->second; 586 for (unsigned i = 0, n = LL.size(); i < n; ++i) 587 dbgs() << " " << PrintIFR(LL[i].first, HRI) << ", " 588 << PrintRegSet(LL[i].second, HRI) << '\n'; 589 } 590 } 591 592 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const { 593 unsigned Index = 0; 594 595 using mf_iterator = MachineFunction::const_iterator; 596 597 for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) { 598 const MachineBasicBlock &B = *A; 599 if (!CMS->BT.reached(&B)) 600 continue; 601 602 using mb_iterator = MachineBasicBlock::const_iterator; 603 604 for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) { 605 const MachineInstr *MI = &*I; 606 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { 607 const MachineOperand &MO = MI->getOperand(i); 608 if (MO.isReg() && MO.isDef()) { 609 Register R = MO.getReg(); 610 assert(MO.getSubReg() == 0 && "Unexpected subregister in definition"); 611 if (Register::isVirtualRegister(R)) 612 RO.insert(std::make_pair(R, Index++)); 613 } 614 } 615 } 616 } 617 // Since some virtual registers may have had their def and uses eliminated, 618 // they are no longer referenced in the code, and so they will not appear 619 // in the map. 620 } 621 622 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB, 623 RegisterOrdering &RO) const { 624 // Create a vector of all virtual registers (collect them from the base 625 // ordering RB), and then sort it using the RegisterCell comparator. 626 BitValueOrdering BVO(RB); 627 RegisterCellLexCompare LexCmp(BVO, *CMS); 628 629 using SortableVectorType = std::vector<unsigned>; 630 631 SortableVectorType VRs; 632 for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I) 633 VRs.push_back(I->first); 634 llvm::sort(VRs, LexCmp); 635 // Transfer the results to the outgoing register ordering. 636 for (unsigned i = 0, n = VRs.size(); i < n; ++i) 637 RO.insert(std::make_pair(VRs[i], i)); 638 } 639 640 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const { 641 return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass; 642 } 643 644 bool HexagonGenInsert::isConstant(unsigned VR) const { 645 const BitTracker::RegisterCell &RC = CMS->lookup(VR); 646 uint16_t W = RC.width(); 647 for (uint16_t i = 0; i < W; ++i) { 648 const BitTracker::BitValue &BV = RC[i]; 649 if (BV.is(0) || BV.is(1)) 650 continue; 651 return false; 652 } 653 return true; 654 } 655 656 bool HexagonGenInsert::isSmallConstant(unsigned VR) const { 657 const BitTracker::RegisterCell &RC = CMS->lookup(VR); 658 uint16_t W = RC.width(); 659 if (W > 64) 660 return false; 661 uint64_t V = 0, B = 1; 662 for (uint16_t i = 0; i < W; ++i) { 663 const BitTracker::BitValue &BV = RC[i]; 664 if (BV.is(1)) 665 V |= B; 666 else if (!BV.is(0)) 667 return false; 668 B <<= 1; 669 } 670 671 // For 32-bit registers, consider: Rd = #s16. 672 if (W == 32) 673 return isInt<16>(V); 674 675 // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8) 676 return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V)); 677 } 678 679 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR, 680 unsigned InsR, uint16_t L, uint16_t S) const { 681 const TargetRegisterClass *DstRC = MRI->getRegClass(DstR); 682 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR); 683 const TargetRegisterClass *InsRC = MRI->getRegClass(InsR); 684 // Only integet (32-/64-bit) register classes. 685 if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC)) 686 return false; 687 // The "source" register must be of the same class as DstR. 688 if (DstRC != SrcRC) 689 return false; 690 if (DstRC == InsRC) 691 return true; 692 // A 64-bit register can only be generated from other 64-bit registers. 693 if (DstRC == &Hexagon::DoubleRegsRegClass) 694 return false; 695 // Otherwise, the L and S cannot span 32-bit word boundary. 696 if (S < 32 && S+L > 32) 697 return false; 698 return true; 699 } 700 701 bool HexagonGenInsert::findSelfReference(unsigned VR) const { 702 const BitTracker::RegisterCell &RC = CMS->lookup(VR); 703 for (uint16_t i = 0, w = RC.width(); i < w; ++i) { 704 const BitTracker::BitValue &V = RC[i]; 705 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR) 706 return true; 707 } 708 return false; 709 } 710 711 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const { 712 BitTracker::RegisterCell RC = CMS->lookup(VR); 713 for (uint16_t i = 0, w = RC.width(); i < w; ++i) { 714 const BitTracker::BitValue &V = RC[i]; 715 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR) 716 return true; 717 } 718 return false; 719 } 720 721 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI, 722 RegisterSet &Defs) const { 723 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { 724 const MachineOperand &MO = MI->getOperand(i); 725 if (!MO.isReg() || !MO.isDef()) 726 continue; 727 Register R = MO.getReg(); 728 if (!Register::isVirtualRegister(R)) 729 continue; 730 Defs.insert(R); 731 } 732 } 733 734 void HexagonGenInsert::getInstrUses(const MachineInstr *MI, 735 RegisterSet &Uses) const { 736 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { 737 const MachineOperand &MO = MI->getOperand(i); 738 if (!MO.isReg() || !MO.isUse()) 739 continue; 740 Register R = MO.getReg(); 741 if (!Register::isVirtualRegister(R)) 742 continue; 743 Uses.insert(R); 744 } 745 } 746 747 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB, 748 const MachineBasicBlock *ToB, const UnsignedMap &RPO, 749 PairMapType &M) const { 750 // Forward distance from the end of a block to the beginning of it does 751 // not make sense. This function should not be called with FromB == ToB. 752 assert(FromB != ToB); 753 754 unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber(); 755 // If we have already computed it, return the cached result. 756 PairMapType::iterator F = M.find(std::make_pair(FromN, ToN)); 757 if (F != M.end()) 758 return F->second; 759 unsigned ToRPO = RPO.lookup(ToN); 760 761 unsigned MaxD = 0; 762 763 using pred_iterator = MachineBasicBlock::const_pred_iterator; 764 765 for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) { 766 const MachineBasicBlock *PB = *I; 767 // Skip back edges. Also, if FromB is a predecessor of ToB, the distance 768 // along that path will be 0, and we don't need to do any calculations 769 // on it. 770 if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO) 771 continue; 772 unsigned D = PB->size() + distance(FromB, PB, RPO, M); 773 if (D > MaxD) 774 MaxD = D; 775 } 776 777 // Memoize the result for later lookup. 778 M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD)); 779 return MaxD; 780 } 781 782 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI, 783 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, 784 PairMapType &M) const { 785 const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent(); 786 if (FB == TB) 787 return std::distance(FromI, ToI); 788 unsigned D1 = std::distance(TB->begin(), ToI); 789 unsigned D2 = distance(FB, TB, RPO, M); 790 unsigned D3 = std::distance(FromI, FB->end()); 791 return D1+D2+D3; 792 } 793 794 bool HexagonGenInsert::findRecordInsertForms(unsigned VR, 795 OrderedRegisterList &AVs) { 796 if (isDebug()) { 797 dbgs() << __func__ << ": " << printReg(VR, HRI) 798 << " AVs: " << PrintORL(AVs, HRI) << "\n"; 799 } 800 if (AVs.size() == 0) 801 return false; 802 803 using iterator = OrderedRegisterList::iterator; 804 805 BitValueOrdering BVO(BaseOrd); 806 const BitTracker::RegisterCell &RC = CMS->lookup(VR); 807 uint16_t W = RC.width(); 808 809 using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift) 810 using RSListType = std::vector<RSRecord>; 811 // Have a map, with key being the matching prefix length, and the value 812 // being the list of pairs (R,S), where R's prefix matches VR at S. 813 // (DenseMap<uint16_t,RSListType> fails to instantiate.) 814 using LRSMapType = DenseMap<unsigned, RSListType>; 815 LRSMapType LM; 816 817 // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S, 818 // and find matching prefixes from AVs with the rotated RC. Such a prefix 819 // would match a string of bits (of length L) in RC starting at S. 820 for (uint16_t S = 0; S < W; ++S) { 821 iterator B = AVs.begin(), E = AVs.end(); 822 // The registers in AVs are ordered according to the lexical order of 823 // the corresponding register cells. This means that the range of regis- 824 // ters in AVs that match a prefix of length L+1 will be contained in 825 // the range that matches a prefix of length L. This means that we can 826 // keep narrowing the search space as the prefix length goes up. This 827 // helps reduce the overall complexity of the search. 828 uint16_t L; 829 for (L = 0; L < W-S; ++L) { 830 // Compare against VR's bits starting at S, which emulates rotation 831 // of VR by S. 832 RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS); 833 iterator NewB = std::lower_bound(B, E, VR, RCB); 834 iterator NewE = std::upper_bound(NewB, E, VR, RCB); 835 // For the registers that are eliminated from the next range, L is 836 // the longest prefix matching VR at position S (their prefixes 837 // differ from VR at S+L). If L>0, record this information for later 838 // use. 839 if (L > 0) { 840 for (iterator I = B; I != NewB; ++I) 841 LM[L].push_back(std::make_pair(*I, S)); 842 for (iterator I = NewE; I != E; ++I) 843 LM[L].push_back(std::make_pair(*I, S)); 844 } 845 B = NewB, E = NewE; 846 if (B == E) 847 break; 848 } 849 // Record the final register range. If this range is non-empty, then 850 // L=W-S. 851 assert(B == E || L == W-S); 852 if (B != E) { 853 for (iterator I = B; I != E; ++I) 854 LM[L].push_back(std::make_pair(*I, S)); 855 // If B!=E, then we found a range of registers whose prefixes cover the 856 // rest of VR from position S. There is no need to further advance S. 857 break; 858 } 859 } 860 861 if (isDebug()) { 862 dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n"; 863 for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) { 864 dbgs() << " L=" << I->first << ':'; 865 const RSListType &LL = I->second; 866 for (unsigned i = 0, n = LL.size(); i < n; ++i) 867 dbgs() << " (" << printReg(LL[i].first, HRI) << ",@" 868 << LL[i].second << ')'; 869 dbgs() << '\n'; 870 } 871 } 872 873 bool Recorded = false; 874 875 for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) { 876 unsigned SrcR = *I; 877 int FDi = -1, LDi = -1; // First/last different bit. 878 const BitTracker::RegisterCell &AC = CMS->lookup(SrcR); 879 uint16_t AW = AC.width(); 880 for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) { 881 if (RC[i] == AC[i]) 882 continue; 883 if (FDi == -1) 884 FDi = i; 885 LDi = i; 886 } 887 if (FDi == -1) 888 continue; // TODO (future): Record identical registers. 889 // Look for a register whose prefix could patch the range [FD..LD] 890 // where VR and SrcR differ. 891 uint16_t FD = FDi, LD = LDi; // Switch to unsigned type. 892 uint16_t MinL = LD-FD+1; 893 for (uint16_t L = MinL; L < W; ++L) { 894 LRSMapType::iterator F = LM.find(L); 895 if (F == LM.end()) 896 continue; 897 RSListType &LL = F->second; 898 for (unsigned i = 0, n = LL.size(); i < n; ++i) { 899 uint16_t S = LL[i].second; 900 // MinL is the minimum length of the prefix. Any length above MinL 901 // allows some flexibility as to where the prefix can start: 902 // given the extra length EL=L-MinL, the prefix must start between 903 // max(0,FD-EL) and FD. 904 if (S > FD) // Starts too late. 905 continue; 906 uint16_t EL = L-MinL; 907 uint16_t LowS = (EL < FD) ? FD-EL : 0; 908 if (S < LowS) // Starts too early. 909 continue; 910 unsigned InsR = LL[i].first; 911 if (!isValidInsertForm(VR, SrcR, InsR, L, S)) 912 continue; 913 if (isDebug()) { 914 dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI) 915 << ',' << printReg(InsR, HRI) << ",#" << L << ",#" 916 << S << ")\n"; 917 } 918 IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet()); 919 IFMap[VR].push_back(RR); 920 Recorded = true; 921 } 922 } 923 } 924 925 return Recorded; 926 } 927 928 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B, 929 OrderedRegisterList &AVs) { 930 if (isDebug()) 931 dbgs() << "visiting block " << printMBBReference(*B) << "\n"; 932 933 // First, check if this block is reachable at all. If not, the bit tracker 934 // will not have any information about registers in it. 935 if (!CMS->BT.reached(B)) 936 return; 937 938 bool DoConst = OptConst; 939 // Keep a separate set of registers defined in this block, so that we 940 // can remove them from the list of available registers once all DT 941 // successors have been processed. 942 RegisterSet BlockDefs, InsDefs; 943 for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) { 944 MachineInstr *MI = &*I; 945 InsDefs.clear(); 946 getInstrDefs(MI, InsDefs); 947 // Leave those alone. They are more transparent than "insert". 948 bool Skip = MI->isCopy() || MI->isRegSequence(); 949 950 if (!Skip) { 951 // Visit all defined registers, and attempt to find the corresponding 952 // "insert" representations. 953 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) { 954 // Do not collect registers that are known to be compile-time cons- 955 // tants, unless requested. 956 if (!DoConst && isConstant(VR)) 957 continue; 958 // If VR's cell contains a reference to VR, then VR cannot be defined 959 // via "insert". If VR is a constant that can be generated in a single 960 // instruction (without constant extenders), generating it via insert 961 // makes no sense. 962 if (findSelfReference(VR) || isSmallConstant(VR)) 963 continue; 964 965 findRecordInsertForms(VR, AVs); 966 // Stop if the map size is too large. 967 if (IFMap.size() > MaxIFMSize) 968 return; 969 } 970 } 971 972 // Insert the defined registers into the list of available registers 973 // after they have been processed. 974 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) 975 AVs.insert(VR); 976 BlockDefs.insert(InsDefs); 977 } 978 979 for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) { 980 MachineBasicBlock *SB = DTN->getBlock(); 981 collectInBlock(SB, AVs); 982 } 983 984 for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR)) 985 AVs.remove(VR); 986 } 987 988 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF, 989 RegisterSet &RMs) const { 990 // For a given register VR and a insert form, find the registers that are 991 // used by the current definition of VR, and which would no longer be 992 // needed for it after the definition of VR is replaced with the insert 993 // form. These are the registers that could potentially become dead. 994 RegisterSet Regs[2]; 995 996 unsigned S = 0; // Register set selector. 997 Regs[S].insert(VR); 998 999 while (!Regs[S].empty()) { 1000 // Breadth-first search. 1001 unsigned OtherS = 1-S; 1002 Regs[OtherS].clear(); 1003 for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) { 1004 Regs[S].remove(R); 1005 if (R == IF.SrcR || R == IF.InsR) 1006 continue; 1007 // Check if a given register has bits that are references to any other 1008 // registers. This is to detect situations where the instruction that 1009 // defines register R takes register Q as an operand, but R itself does 1010 // not contain any bits from Q. Loads are examples of how this could 1011 // happen: 1012 // R = load Q 1013 // In this case (assuming we do not have any knowledge about the loaded 1014 // value), we must not treat R as a "conveyance" of the bits from Q. 1015 // (The information in BT about R's bits would have them as constants, 1016 // in case of zero-extending loads, or refs to R.) 1017 if (!findNonSelfReference(R)) 1018 continue; 1019 RMs.insert(R); 1020 const MachineInstr *DefI = MRI->getVRegDef(R); 1021 assert(DefI); 1022 // Do not iterate past PHI nodes to avoid infinite loops. This can 1023 // make the final set a bit less accurate, but the removable register 1024 // sets are an approximation anyway. 1025 if (DefI->isPHI()) 1026 continue; 1027 getInstrUses(DefI, Regs[OtherS]); 1028 } 1029 S = OtherS; 1030 } 1031 // The register VR is added to the list as a side-effect of the algorithm, 1032 // but it is not "potentially removable". A potentially removable register 1033 // is one that may become unused (dead) after conversion to the insert form 1034 // IF, and obviously VR (or its replacement) will not become dead by apply- 1035 // ing IF. 1036 RMs.remove(VR); 1037 } 1038 1039 void HexagonGenInsert::computeRemovableRegisters() { 1040 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { 1041 IFListType &LL = I->second; 1042 for (unsigned i = 0, n = LL.size(); i < n; ++i) 1043 findRemovableRegisters(I->first, LL[i].first, LL[i].second); 1044 } 1045 } 1046 1047 void HexagonGenInsert::pruneEmptyLists() { 1048 // Remove all entries from the map, where the register has no insert forms 1049 // associated with it. 1050 using IterListType = SmallVector<IFMapType::iterator, 16>; 1051 IterListType Prune; 1052 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { 1053 if (I->second.empty()) 1054 Prune.push_back(I); 1055 } 1056 for (unsigned i = 0, n = Prune.size(); i < n; ++i) 1057 IFMap.erase(Prune[i]); 1058 } 1059 1060 void HexagonGenInsert::pruneCoveredSets(unsigned VR) { 1061 IFMapType::iterator F = IFMap.find(VR); 1062 assert(F != IFMap.end()); 1063 IFListType &LL = F->second; 1064 1065 // First, examine the IF candidates for register VR whose removable-regis- 1066 // ter sets are empty. This means that a given candidate will not help eli- 1067 // minate any registers, but since "insert" is not a constant-extendable 1068 // instruction, using such a candidate may reduce code size if the defini- 1069 // tion of VR is constant-extended. 1070 // If there exists a candidate with a non-empty set, the ones with empty 1071 // sets will not be used and can be removed. 1072 MachineInstr *DefVR = MRI->getVRegDef(VR); 1073 bool DefEx = HII->isConstExtended(*DefVR); 1074 bool HasNE = false; 1075 for (unsigned i = 0, n = LL.size(); i < n; ++i) { 1076 if (LL[i].second.empty()) 1077 continue; 1078 HasNE = true; 1079 break; 1080 } 1081 if (!DefEx || HasNE) { 1082 // The definition of VR is not constant-extended, or there is a candidate 1083 // with a non-empty set. Remove all candidates with empty sets. 1084 auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool { 1085 return IR.second.empty(); 1086 }; 1087 auto End = llvm::remove_if(LL, IsEmpty); 1088 if (End != LL.end()) 1089 LL.erase(End, LL.end()); 1090 } else { 1091 // The definition of VR is constant-extended, and all candidates have 1092 // empty removable-register sets. Pick the maximum candidate, and remove 1093 // all others. The "maximum" does not have any special meaning here, it 1094 // is only so that the candidate that will remain on the list is selec- 1095 // ted deterministically. 1096 IFRecord MaxIF = LL[0].first; 1097 for (unsigned i = 1, n = LL.size(); i < n; ++i) { 1098 // If LL[MaxI] < LL[i], then MaxI = i. 1099 const IFRecord &IF = LL[i].first; 1100 unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR]; 1101 unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR]; 1102 if (M0 > R0) 1103 continue; 1104 if (M0 == R0) { 1105 if (M1 > R1) 1106 continue; 1107 if (M1 == R1) { 1108 if (MaxIF.Wdh > IF.Wdh) 1109 continue; 1110 if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off) 1111 continue; 1112 } 1113 } 1114 // MaxIF < IF. 1115 MaxIF = IF; 1116 } 1117 // Remove everything except the maximum candidate. All register sets 1118 // are empty, so no need to preserve anything. 1119 LL.clear(); 1120 LL.push_back(std::make_pair(MaxIF, RegisterSet())); 1121 } 1122 1123 // Now, remove those whose sets of potentially removable registers are 1124 // contained in another IF candidate for VR. For example, given these 1125 // candidates for %45, 1126 // %45: 1127 // (%44,%41,#9,#8), { %42 } 1128 // (%43,%41,#9,#8), { %42 %44 } 1129 // remove the first one, since it is contained in the second one. 1130 for (unsigned i = 0, n = LL.size(); i < n; ) { 1131 const RegisterSet &RMi = LL[i].second; 1132 unsigned j = 0; 1133 while (j < n) { 1134 if (j != i && LL[j].second.includes(RMi)) 1135 break; 1136 j++; 1137 } 1138 if (j == n) { // RMi not contained in anything else. 1139 i++; 1140 continue; 1141 } 1142 LL.erase(LL.begin()+i); 1143 n = LL.size(); 1144 } 1145 } 1146 1147 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, 1148 PairMapType &M) { 1149 IFMapType::iterator F = IFMap.find(VR); 1150 assert(F != IFMap.end()); 1151 IFListType &LL = F->second; 1152 unsigned Cutoff = VRegDistCutoff; 1153 const MachineInstr *DefV = MRI->getVRegDef(VR); 1154 1155 for (unsigned i = LL.size(); i > 0; --i) { 1156 unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR; 1157 const MachineInstr *DefS = MRI->getVRegDef(SR); 1158 const MachineInstr *DefI = MRI->getVRegDef(IR); 1159 unsigned DSV = distance(DefS, DefV, RPO, M); 1160 if (DSV < Cutoff) { 1161 unsigned DIV = distance(DefI, DefV, RPO, M); 1162 if (DIV < Cutoff) 1163 continue; 1164 } 1165 LL.erase(LL.begin()+(i-1)); 1166 } 1167 } 1168 1169 void HexagonGenInsert::pruneRegCopies(unsigned VR) { 1170 IFMapType::iterator F = IFMap.find(VR); 1171 assert(F != IFMap.end()); 1172 IFListType &LL = F->second; 1173 1174 auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool { 1175 return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32); 1176 }; 1177 auto End = llvm::remove_if(LL, IsCopy); 1178 if (End != LL.end()) 1179 LL.erase(End, LL.end()); 1180 } 1181 1182 void HexagonGenInsert::pruneCandidates() { 1183 // Remove candidates that are not beneficial, regardless of the final 1184 // selection method. 1185 // First, remove candidates whose potentially removable set is a subset 1186 // of another candidate's set. 1187 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) 1188 pruneCoveredSets(I->first); 1189 1190 UnsignedMap RPO; 1191 1192 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; 1193 1194 RPOTType RPOT(MFN); 1195 unsigned RPON = 0; 1196 for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) 1197 RPO[(*I)->getNumber()] = RPON++; 1198 1199 PairMapType Memo; // Memoization map for distance calculation. 1200 // Remove candidates that would use registers defined too far away. 1201 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) 1202 pruneUsesTooFar(I->first, RPO, Memo); 1203 1204 pruneEmptyLists(); 1205 1206 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) 1207 pruneRegCopies(I->first); 1208 } 1209 1210 namespace { 1211 1212 // Class for comparing IF candidates for registers that have multiple of 1213 // them. The smaller the candidate, according to this ordering, the better. 1214 // First, compare the number of zeros in the associated potentially remova- 1215 // ble register sets. "Zero" indicates that the register is very likely to 1216 // become dead after this transformation. 1217 // Second, compare "averages", i.e. use-count per size. The lower wins. 1218 // After that, it does not really matter which one is smaller. Resolve 1219 // the tie in some deterministic way. 1220 struct IFOrdering { 1221 IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO) 1222 : UseC(UC), BaseOrd(BO) {} 1223 1224 bool operator() (const IFRecordWithRegSet &A, 1225 const IFRecordWithRegSet &B) const; 1226 1227 private: 1228 void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, 1229 unsigned &Sum) const; 1230 1231 const UnsignedMap &UseC; 1232 const RegisterOrdering &BaseOrd; 1233 }; 1234 1235 } // end anonymous namespace 1236 1237 bool IFOrdering::operator() (const IFRecordWithRegSet &A, 1238 const IFRecordWithRegSet &B) const { 1239 unsigned SizeA = 0, ZeroA = 0, SumA = 0; 1240 unsigned SizeB = 0, ZeroB = 0, SumB = 0; 1241 stats(A.second, SizeA, ZeroA, SumA); 1242 stats(B.second, SizeB, ZeroB, SumB); 1243 1244 // We will pick the minimum element. The more zeros, the better. 1245 if (ZeroA != ZeroB) 1246 return ZeroA > ZeroB; 1247 // Compare SumA/SizeA with SumB/SizeB, lower is better. 1248 uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA; 1249 if (AvgA != AvgB) 1250 return AvgA < AvgB; 1251 1252 // The sets compare identical so far. Resort to comparing the IF records. 1253 // The actual values don't matter, this is only for determinism. 1254 unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR]; 1255 if (OSA != OSB) 1256 return OSA < OSB; 1257 unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR]; 1258 if (OIA != OIB) 1259 return OIA < OIB; 1260 if (A.first.Wdh != B.first.Wdh) 1261 return A.first.Wdh < B.first.Wdh; 1262 return A.first.Off < B.first.Off; 1263 } 1264 1265 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, 1266 unsigned &Sum) const { 1267 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) { 1268 UnsignedMap::const_iterator F = UseC.find(R); 1269 assert(F != UseC.end()); 1270 unsigned UC = F->second; 1271 if (UC == 0) 1272 Zero++; 1273 Sum += UC; 1274 Size++; 1275 } 1276 } 1277 1278 void HexagonGenInsert::selectCandidates() { 1279 // Some registers may have multiple valid candidates. Pick the best one 1280 // (or decide not to use any). 1281 1282 // Compute the "removability" measure of R: 1283 // For each potentially removable register R, record the number of regis- 1284 // ters with IF candidates, where R appears in at least one set. 1285 RegisterSet AllRMs; 1286 UnsignedMap UseC, RemC; 1287 IFMapType::iterator End = IFMap.end(); 1288 1289 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { 1290 const IFListType &LL = I->second; 1291 RegisterSet TT; 1292 for (unsigned i = 0, n = LL.size(); i < n; ++i) 1293 TT.insert(LL[i].second); 1294 for (unsigned R = TT.find_first(); R; R = TT.find_next(R)) 1295 RemC[R]++; 1296 AllRMs.insert(TT); 1297 } 1298 1299 for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) { 1300 using use_iterator = MachineRegisterInfo::use_nodbg_iterator; 1301 using InstrSet = SmallSet<const MachineInstr *, 16>; 1302 1303 InstrSet UIs; 1304 // Count as the number of instructions in which R is used, not the 1305 // number of operands. 1306 use_iterator E = MRI->use_nodbg_end(); 1307 for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I) 1308 UIs.insert(I->getParent()); 1309 unsigned C = UIs.size(); 1310 // Calculate a measure, which is the number of instructions using R, 1311 // minus the "removability" count computed earlier. 1312 unsigned D = RemC[R]; 1313 UseC[R] = (C > D) ? C-D : 0; // doz 1314 } 1315 1316 bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0; 1317 if (!SelectAll0 && !SelectHas0) 1318 SelectAll0 = true; 1319 1320 // The smaller the number UseC for a given register R, the "less used" 1321 // R is aside from the opportunities for removal offered by generating 1322 // "insert" instructions. 1323 // Iterate over the IF map, and for those registers that have multiple 1324 // candidates, pick the minimum one according to IFOrdering. 1325 IFOrdering IFO(UseC, BaseOrd); 1326 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { 1327 IFListType &LL = I->second; 1328 if (LL.empty()) 1329 continue; 1330 // Get the minimum element, remember it and clear the list. If the 1331 // element found is adequate, we will put it back on the list, other- 1332 // wise the list will remain empty, and the entry for this register 1333 // will be removed (i.e. this register will not be replaced by insert). 1334 IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO); 1335 assert(MinI != LL.end()); 1336 IFRecordWithRegSet M = *MinI; 1337 LL.clear(); 1338 1339 // We want to make sure that this replacement will have a chance to be 1340 // beneficial, and that means that we want to have indication that some 1341 // register will be removed. The most likely registers to be eliminated 1342 // are the use operands in the definition of I->first. Accept/reject a 1343 // candidate based on how many of its uses it can potentially eliminate. 1344 1345 RegisterSet Us; 1346 const MachineInstr *DefI = MRI->getVRegDef(I->first); 1347 getInstrUses(DefI, Us); 1348 bool Accept = false; 1349 1350 if (SelectAll0) { 1351 bool All0 = true; 1352 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) { 1353 if (UseC[R] == 0) 1354 continue; 1355 All0 = false; 1356 break; 1357 } 1358 Accept = All0; 1359 } else if (SelectHas0) { 1360 bool Has0 = false; 1361 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) { 1362 if (UseC[R] != 0) 1363 continue; 1364 Has0 = true; 1365 break; 1366 } 1367 Accept = Has0; 1368 } 1369 if (Accept) 1370 LL.push_back(M); 1371 } 1372 1373 // Remove candidates that add uses of removable registers, unless the 1374 // removable registers are among replacement candidates. 1375 // Recompute the removable registers, since some candidates may have 1376 // been eliminated. 1377 AllRMs.clear(); 1378 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { 1379 const IFListType &LL = I->second; 1380 if (!LL.empty()) 1381 AllRMs.insert(LL[0].second); 1382 } 1383 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { 1384 IFListType &LL = I->second; 1385 if (LL.empty()) 1386 continue; 1387 unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR; 1388 if (AllRMs[SR] || AllRMs[IR]) 1389 LL.clear(); 1390 } 1391 1392 pruneEmptyLists(); 1393 } 1394 1395 bool HexagonGenInsert::generateInserts() { 1396 // Create a new register for each one from IFMap, and store them in the 1397 // map. 1398 UnsignedMap RegMap; 1399 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { 1400 unsigned VR = I->first; 1401 const TargetRegisterClass *RC = MRI->getRegClass(VR); 1402 Register NewVR = MRI->createVirtualRegister(RC); 1403 RegMap[VR] = NewVR; 1404 } 1405 1406 // We can generate the "insert" instructions using potentially stale re- 1407 // gisters: SrcR and InsR for a given VR may be among other registers that 1408 // are also replaced. This is fine, we will do the mass "rauw" a bit later. 1409 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { 1410 MachineInstr *MI = MRI->getVRegDef(I->first); 1411 MachineBasicBlock &B = *MI->getParent(); 1412 DebugLoc DL = MI->getDebugLoc(); 1413 unsigned NewR = RegMap[I->first]; 1414 bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass; 1415 const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert) 1416 : HII->get(Hexagon::S2_insertp); 1417 IFRecord IF = I->second[0].first; 1418 unsigned Wdh = IF.Wdh, Off = IF.Off; 1419 unsigned InsS = 0; 1420 if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) { 1421 InsS = Hexagon::isub_lo; 1422 if (Off >= 32) { 1423 InsS = Hexagon::isub_hi; 1424 Off -= 32; 1425 } 1426 } 1427 // Advance to the proper location for inserting instructions. This could 1428 // be B.end(). 1429 MachineBasicBlock::iterator At = MI; 1430 if (MI->isPHI()) 1431 At = B.getFirstNonPHI(); 1432 1433 BuildMI(B, At, DL, D, NewR) 1434 .addReg(IF.SrcR) 1435 .addReg(IF.InsR, 0, InsS) 1436 .addImm(Wdh) 1437 .addImm(Off); 1438 1439 MRI->clearKillFlags(IF.SrcR); 1440 MRI->clearKillFlags(IF.InsR); 1441 } 1442 1443 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { 1444 MachineInstr *DefI = MRI->getVRegDef(I->first); 1445 MRI->replaceRegWith(I->first, RegMap[I->first]); 1446 DefI->eraseFromParent(); 1447 } 1448 1449 return true; 1450 } 1451 1452 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) { 1453 bool Changed = false; 1454 1455 for (auto *DTN : children<MachineDomTreeNode*>(N)) 1456 Changed |= removeDeadCode(DTN); 1457 1458 MachineBasicBlock *B = N->getBlock(); 1459 std::vector<MachineInstr*> Instrs; 1460 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) 1461 Instrs.push_back(&*I); 1462 1463 for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) { 1464 MachineInstr *MI = *I; 1465 unsigned Opc = MI->getOpcode(); 1466 // Do not touch lifetime markers. This is why the target-independent DCE 1467 // cannot be used. 1468 if (Opc == TargetOpcode::LIFETIME_START || 1469 Opc == TargetOpcode::LIFETIME_END) 1470 continue; 1471 bool Store = false; 1472 if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store)) 1473 continue; 1474 1475 bool AllDead = true; 1476 SmallVector<unsigned,2> Regs; 1477 for (const MachineOperand &MO : MI->operands()) { 1478 if (!MO.isReg() || !MO.isDef()) 1479 continue; 1480 Register R = MO.getReg(); 1481 if (!Register::isVirtualRegister(R) || !MRI->use_nodbg_empty(R)) { 1482 AllDead = false; 1483 break; 1484 } 1485 Regs.push_back(R); 1486 } 1487 if (!AllDead) 1488 continue; 1489 1490 B->erase(MI); 1491 for (unsigned I = 0, N = Regs.size(); I != N; ++I) 1492 MRI->markUsesInDebugValueAsUndef(Regs[I]); 1493 Changed = true; 1494 } 1495 1496 return Changed; 1497 } 1498 1499 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) { 1500 if (skipFunction(MF.getFunction())) 1501 return false; 1502 1503 bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail; 1504 bool Changed = false; 1505 1506 // Sanity check: one, but not both. 1507 assert(!OptSelectAll0 || !OptSelectHas0); 1508 1509 IFMap.clear(); 1510 BaseOrd.clear(); 1511 CellOrd.clear(); 1512 1513 const auto &ST = MF.getSubtarget<HexagonSubtarget>(); 1514 HII = ST.getInstrInfo(); 1515 HRI = ST.getRegisterInfo(); 1516 MFN = &MF; 1517 MRI = &MF.getRegInfo(); 1518 MDT = &getAnalysis<MachineDominatorTree>(); 1519 1520 // Clean up before any further processing, so that dead code does not 1521 // get used in a newly generated "insert" instruction. Have a custom 1522 // version of DCE that preserves lifetime markers. Without it, merging 1523 // of stack objects can fail to recognize and merge disjoint objects 1524 // leading to unnecessary stack growth. 1525 Changed = removeDeadCode(MDT->getRootNode()); 1526 1527 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); 1528 BitTracker BTLoc(HE, MF); 1529 BTLoc.trace(isDebug()); 1530 BTLoc.run(); 1531 CellMapShadow MS(BTLoc); 1532 CMS = &MS; 1533 1534 buildOrderingMF(BaseOrd); 1535 buildOrderingBT(BaseOrd, CellOrd); 1536 1537 if (isDebug()) { 1538 dbgs() << "Cell ordering:\n"; 1539 for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end(); 1540 I != E; ++I) { 1541 unsigned VR = I->first, Pos = I->second; 1542 dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n"; 1543 } 1544 } 1545 1546 // Collect candidates for conversion into the insert forms. 1547 MachineBasicBlock *RootB = MDT->getRoot(); 1548 OrderedRegisterList AvailR(CellOrd); 1549 1550 const char *const TGName = "hexinsert"; 1551 const char *const TGDesc = "Generate Insert Instructions"; 1552 1553 { 1554 NamedRegionTimer _T("collection", "collection", TGName, TGDesc, 1555 TimingDetail); 1556 collectInBlock(RootB, AvailR); 1557 // Complete the information gathered in IFMap. 1558 computeRemovableRegisters(); 1559 } 1560 1561 if (isDebug()) { 1562 dbgs() << "Candidates after collection:\n"; 1563 dump_map(); 1564 } 1565 1566 if (IFMap.empty()) 1567 return Changed; 1568 1569 { 1570 NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail); 1571 pruneCandidates(); 1572 } 1573 1574 if (isDebug()) { 1575 dbgs() << "Candidates after pruning:\n"; 1576 dump_map(); 1577 } 1578 1579 if (IFMap.empty()) 1580 return Changed; 1581 1582 { 1583 NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail); 1584 selectCandidates(); 1585 } 1586 1587 if (isDebug()) { 1588 dbgs() << "Candidates after selection:\n"; 1589 dump_map(); 1590 } 1591 1592 // Filter out vregs beyond the cutoff. 1593 if (VRegIndexCutoff.getPosition()) { 1594 unsigned Cutoff = VRegIndexCutoff; 1595 1596 using IterListType = SmallVector<IFMapType::iterator, 16>; 1597 1598 IterListType Out; 1599 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { 1600 unsigned Idx = Register::virtReg2Index(I->first); 1601 if (Idx >= Cutoff) 1602 Out.push_back(I); 1603 } 1604 for (unsigned i = 0, n = Out.size(); i < n; ++i) 1605 IFMap.erase(Out[i]); 1606 } 1607 if (IFMap.empty()) 1608 return Changed; 1609 1610 { 1611 NamedRegionTimer _T("generation", "generation", TGName, TGDesc, 1612 TimingDetail); 1613 generateInserts(); 1614 } 1615 1616 return true; 1617 } 1618 1619 FunctionPass *llvm::createHexagonGenInsert() { 1620 return new HexagonGenInsert(); 1621 } 1622 1623 //===----------------------------------------------------------------------===// 1624 // Public Constructor Functions 1625 //===----------------------------------------------------------------------===// 1626 1627 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert", 1628 "Hexagon generate \"insert\" instructions", false, false) 1629 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 1630 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert", 1631 "Hexagon generate \"insert\" instructions", false, false) 1632