xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonGenInsert.cpp (revision d8096b2df282d7a50e56eddba523bcdda1676106)
1 //===- HexagonGenInsert.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "BitTracker.h"
10 #include "HexagonBitTracker.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Timer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <utility>
44 #include <vector>
45 
46 #define DEBUG_TYPE "hexinsert"
47 
48 using namespace llvm;
49 
50 static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
51   cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
52 // The distance cutoff is selected based on the precheckin-perf results:
53 // cutoffs 20, 25, 35, and 40 are worse than 30.
54 static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
55   cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
56   "generation."));
57 
58 // Limit the container sizes for extreme cases where we run out of memory.
59 static cl::opt<unsigned> MaxORLSize("insert-max-orl", cl::init(4096),
60   cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of OrderedRegisterList"));
61 static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
62   cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of IFMap"));
63 
64 static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
65   cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
66 static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
67   cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
68   "generation"));
69 
70 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
71   cl::ZeroOrMore);
72 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
73   cl::ZeroOrMore);
74 // Whether to construct constant values via "insert". Could eliminate constant
75 // extenders, but often not practical.
76 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
77   cl::ZeroOrMore);
78 
79 // The preprocessor gets confused when the DEBUG macro is passed larger
80 // chunks of code. Use this function to detect debugging.
81 inline static bool isDebug() {
82 #ifndef NDEBUG
83   return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
84 #else
85   return false;
86 #endif
87 }
88 
89 namespace {
90 
91   // Set of virtual registers, based on BitVector.
92   struct RegisterSet : private BitVector {
93     RegisterSet() = default;
94     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
95     RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
96     RegisterSet &operator=(const RegisterSet &RS) {
97       BitVector::operator=(RS);
98       return *this;
99     }
100 
101     using BitVector::clear;
102 
103     unsigned find_first() const {
104       int First = BitVector::find_first();
105       if (First < 0)
106         return 0;
107       return x2v(First);
108     }
109 
110     unsigned find_next(unsigned Prev) const {
111       int Next = BitVector::find_next(v2x(Prev));
112       if (Next < 0)
113         return 0;
114       return x2v(Next);
115     }
116 
117     RegisterSet &insert(unsigned R) {
118       unsigned Idx = v2x(R);
119       ensure(Idx);
120       return static_cast<RegisterSet&>(BitVector::set(Idx));
121     }
122     RegisterSet &remove(unsigned R) {
123       unsigned Idx = v2x(R);
124       if (Idx >= size())
125         return *this;
126       return static_cast<RegisterSet&>(BitVector::reset(Idx));
127     }
128 
129     RegisterSet &insert(const RegisterSet &Rs) {
130       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
131     }
132     RegisterSet &remove(const RegisterSet &Rs) {
133       return static_cast<RegisterSet&>(BitVector::reset(Rs));
134     }
135 
136     reference operator[](unsigned R) {
137       unsigned Idx = v2x(R);
138       ensure(Idx);
139       return BitVector::operator[](Idx);
140     }
141     bool operator[](unsigned R) const {
142       unsigned Idx = v2x(R);
143       assert(Idx < size());
144       return BitVector::operator[](Idx);
145     }
146     bool has(unsigned R) const {
147       unsigned Idx = v2x(R);
148       if (Idx >= size())
149         return false;
150       return BitVector::test(Idx);
151     }
152 
153     bool empty() const {
154       return !BitVector::any();
155     }
156     bool includes(const RegisterSet &Rs) const {
157       // A.BitVector::test(B)  <=>  A-B != {}
158       return !Rs.BitVector::test(*this);
159     }
160     bool intersects(const RegisterSet &Rs) const {
161       return BitVector::anyCommon(Rs);
162     }
163 
164   private:
165     void ensure(unsigned Idx) {
166       if (size() <= Idx)
167         resize(std::max(Idx+1, 32U));
168     }
169 
170     static inline unsigned v2x(unsigned v) {
171       return Register::virtReg2Index(v);
172     }
173 
174     static inline unsigned x2v(unsigned x) {
175       return Register::index2VirtReg(x);
176     }
177   };
178 
179   struct PrintRegSet {
180     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
181       : RS(S), TRI(RI) {}
182 
183     friend raw_ostream &operator<< (raw_ostream &OS,
184           const PrintRegSet &P);
185 
186   private:
187     const RegisterSet &RS;
188     const TargetRegisterInfo *TRI;
189   };
190 
191   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
192     OS << '{';
193     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
194       OS << ' ' << printReg(R, P.TRI);
195     OS << " }";
196     return OS;
197   }
198 
199   // A convenience class to associate unsigned numbers (such as virtual
200   // registers) with unsigned numbers.
201   struct UnsignedMap : public DenseMap<unsigned,unsigned> {
202     UnsignedMap() = default;
203 
204   private:
205     using BaseType = DenseMap<unsigned, unsigned>;
206   };
207 
208   // A utility to establish an ordering between virtual registers:
209   // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
210   // This is meant as a cache for the ordering of virtual registers defined
211   // by a potentially expensive comparison function, or obtained by a proce-
212   // dure that should not be repeated each time two registers are compared.
213   struct RegisterOrdering : public UnsignedMap {
214     RegisterOrdering() = default;
215 
216     unsigned operator[](unsigned VR) const {
217       const_iterator F = find(VR);
218       assert(F != end());
219       return F->second;
220     }
221 
222     // Add operator(), so that objects of this class can be used as
223     // comparators in std::sort et al.
224     bool operator() (unsigned VR1, unsigned VR2) const {
225       return operator[](VR1) < operator[](VR2);
226     }
227   };
228 
229   // Ordering of bit values. This class does not have operator[], but
230   // is supplies a comparison operator() for use in std:: algorithms.
231   // The order is as follows:
232   // - 0 < 1 < ref
233   // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
234   //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
235   struct BitValueOrdering {
236     BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
237 
238     bool operator() (const BitTracker::BitValue &V1,
239           const BitTracker::BitValue &V2) const;
240 
241     const RegisterOrdering &BaseOrd;
242   };
243 
244 } // end anonymous namespace
245 
246 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
247       const BitTracker::BitValue &V2) const {
248   if (V1 == V2)
249     return false;
250   // V1==0 => true, V2==0 => false
251   if (V1.is(0) || V2.is(0))
252     return V1.is(0);
253   // Neither of V1,V2 is 0, and V1!=V2.
254   // V2==1 => false, V1==1 => true
255   if (V2.is(1) || V1.is(1))
256     return !V2.is(1);
257   // Both V1,V2 are refs.
258   unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
259   if (Ind1 != Ind2)
260     return Ind1 < Ind2;
261   // If V1.Pos==V2.Pos
262   assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
263   return V1.RefI.Pos < V2.RefI.Pos;
264 }
265 
266 namespace {
267 
268   // Cache for the BitTracker's cell map. Map lookup has a logarithmic
269   // complexity, this class will memoize the lookup results to reduce
270   // the access time for repeated lookups of the same cell.
271   struct CellMapShadow {
272     CellMapShadow(const BitTracker &T) : BT(T) {}
273 
274     const BitTracker::RegisterCell &lookup(unsigned VR) {
275       unsigned RInd = Register::virtReg2Index(VR);
276       // Grow the vector to at least 32 elements.
277       if (RInd >= CVect.size())
278         CVect.resize(std::max(RInd+16, 32U), nullptr);
279       const BitTracker::RegisterCell *CP = CVect[RInd];
280       if (CP == nullptr)
281         CP = CVect[RInd] = &BT.lookup(VR);
282       return *CP;
283     }
284 
285     const BitTracker &BT;
286 
287   private:
288     using CellVectType = std::vector<const BitTracker::RegisterCell *>;
289 
290     CellVectType CVect;
291   };
292 
293   // Comparator class for lexicographic ordering of virtual registers
294   // according to the corresponding BitTracker::RegisterCell objects.
295   struct RegisterCellLexCompare {
296     RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
297       : BitOrd(BO), CM(M) {}
298 
299     bool operator() (unsigned VR1, unsigned VR2) const;
300 
301   private:
302     const BitValueOrdering &BitOrd;
303     CellMapShadow &CM;
304   };
305 
306   // Comparator class for lexicographic ordering of virtual registers
307   // according to the specified bits of the corresponding BitTracker::
308   // RegisterCell objects.
309   // Specifically, this class will be used to compare bit B of a register
310   // cell for a selected virtual register R with bit N of any register
311   // other than R.
312   struct RegisterCellBitCompareSel {
313     RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
314           const BitValueOrdering &BO, CellMapShadow &M)
315       : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
316 
317     bool operator() (unsigned VR1, unsigned VR2) const;
318 
319   private:
320     const unsigned SelR, SelB;
321     const unsigned BitN;
322     const BitValueOrdering &BitOrd;
323     CellMapShadow &CM;
324   };
325 
326 } // end anonymous namespace
327 
328 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
329   // Ordering of registers, made up from two given orderings:
330   // - the ordering of the register numbers, and
331   // - the ordering of register cells.
332   // Def. R1 < R2 if:
333   // - cell(R1) < cell(R2), or
334   // - cell(R1) == cell(R2), and index(R1) < index(R2).
335   //
336   // For register cells, the ordering is lexicographic, with index 0 being
337   // the most significant.
338   if (VR1 == VR2)
339     return false;
340 
341   const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
342   uint16_t W1 = RC1.width(), W2 = RC2.width();
343   for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
344     const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
345     if (V1 != V2)
346       return BitOrd(V1, V2);
347   }
348   // Cells are equal up until the common length.
349   if (W1 != W2)
350     return W1 < W2;
351 
352   return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
353 }
354 
355 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
356   if (VR1 == VR2)
357     return false;
358   const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
359   const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
360   uint16_t W1 = RC1.width(), W2 = RC2.width();
361   uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
362   uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
363   // If Bit1 exceeds the width of VR1, then:
364   // - return false, if at the same time Bit2 exceeds VR2, or
365   // - return true, otherwise.
366   // (I.e. "a bit value that does not exist is less than any bit value
367   // that does exist".)
368   if (W1 <= Bit1)
369     return Bit2 < W2;
370   // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
371   if (W2 <= Bit2)
372     return false;
373 
374   const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
375   if (V1 != V2)
376     return BitOrd(V1, V2);
377   return false;
378 }
379 
380 namespace {
381 
382   class OrderedRegisterList {
383     using ListType = std::vector<unsigned>;
384     const unsigned MaxSize;
385 
386   public:
387     OrderedRegisterList(const RegisterOrdering &RO)
388       : MaxSize(MaxORLSize), Ord(RO) {}
389 
390     void insert(unsigned VR);
391     void remove(unsigned VR);
392 
393     unsigned operator[](unsigned Idx) const {
394       assert(Idx < Seq.size());
395       return Seq[Idx];
396     }
397 
398     unsigned size() const {
399       return Seq.size();
400     }
401 
402     using iterator = ListType::iterator;
403     using const_iterator = ListType::const_iterator;
404 
405     iterator begin() { return Seq.begin(); }
406     iterator end() { return Seq.end(); }
407     const_iterator begin() const { return Seq.begin(); }
408     const_iterator end() const { return Seq.end(); }
409 
410     // Convenience function to convert an iterator to the corresponding index.
411     unsigned idx(iterator It) const { return It-begin(); }
412 
413   private:
414     ListType Seq;
415     const RegisterOrdering &Ord;
416   };
417 
418   struct PrintORL {
419     PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
420       : RL(L), TRI(RI) {}
421 
422     friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
423 
424   private:
425     const OrderedRegisterList &RL;
426     const TargetRegisterInfo *TRI;
427   };
428 
429   raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
430     OS << '(';
431     OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
432     for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
433       if (I != B)
434         OS << ", ";
435       OS << printReg(*I, P.TRI);
436     }
437     OS << ')';
438     return OS;
439   }
440 
441 } // end anonymous namespace
442 
443 void OrderedRegisterList::insert(unsigned VR) {
444   iterator L = llvm::lower_bound(Seq, VR, Ord);
445   if (L == Seq.end())
446     Seq.push_back(VR);
447   else
448     Seq.insert(L, VR);
449 
450   unsigned S = Seq.size();
451   if (S > MaxSize)
452     Seq.resize(MaxSize);
453   assert(Seq.size() <= MaxSize);
454 }
455 
456 void OrderedRegisterList::remove(unsigned VR) {
457   iterator L = llvm::lower_bound(Seq, VR, Ord);
458   if (L != Seq.end())
459     Seq.erase(L);
460 }
461 
462 namespace {
463 
464   // A record of the insert form. The fields correspond to the operands
465   // of the "insert" instruction:
466   // ... = insert(SrcR, InsR, #Wdh, #Off)
467   struct IFRecord {
468     IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
469       : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
470 
471     unsigned SrcR, InsR;
472     uint16_t Wdh, Off;
473   };
474 
475   struct PrintIFR {
476     PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
477       : IFR(R), TRI(RI) {}
478 
479   private:
480     friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
481 
482     const IFRecord &IFR;
483     const TargetRegisterInfo *TRI;
484   };
485 
486   raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
487     unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
488     OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
489        << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
490     return OS;
491   }
492 
493   using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
494 
495 } // end anonymous namespace
496 
497 namespace llvm {
498 
499   void initializeHexagonGenInsertPass(PassRegistry&);
500   FunctionPass *createHexagonGenInsert();
501 
502 } // end namespace llvm
503 
504 namespace {
505 
506   class HexagonGenInsert : public MachineFunctionPass {
507   public:
508     static char ID;
509 
510     HexagonGenInsert() : MachineFunctionPass(ID) {
511       initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
512     }
513 
514     StringRef getPassName() const override {
515       return "Hexagon generate \"insert\" instructions";
516     }
517 
518     void getAnalysisUsage(AnalysisUsage &AU) const override {
519       AU.addRequired<MachineDominatorTree>();
520       AU.addPreserved<MachineDominatorTree>();
521       MachineFunctionPass::getAnalysisUsage(AU);
522     }
523 
524     bool runOnMachineFunction(MachineFunction &MF) override;
525 
526   private:
527     using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
528 
529     void buildOrderingMF(RegisterOrdering &RO) const;
530     void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
531     bool isIntClass(const TargetRegisterClass *RC) const;
532     bool isConstant(unsigned VR) const;
533     bool isSmallConstant(unsigned VR) const;
534     bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
535           uint16_t L, uint16_t S) const;
536     bool findSelfReference(unsigned VR) const;
537     bool findNonSelfReference(unsigned VR) const;
538     void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
539     void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
540     unsigned distance(const MachineBasicBlock *FromB,
541           const MachineBasicBlock *ToB, const UnsignedMap &RPO,
542           PairMapType &M) const;
543     unsigned distance(MachineBasicBlock::const_iterator FromI,
544           MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
545           PairMapType &M) const;
546     bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
547     void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
548     void findRemovableRegisters(unsigned VR, IFRecord IF,
549           RegisterSet &RMs) const;
550     void computeRemovableRegisters();
551 
552     void pruneEmptyLists();
553     void pruneCoveredSets(unsigned VR);
554     void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
555     void pruneRegCopies(unsigned VR);
556     void pruneCandidates();
557     void selectCandidates();
558     bool generateInserts();
559 
560     bool removeDeadCode(MachineDomTreeNode *N);
561 
562     // IFRecord coupled with a set of potentially removable registers:
563     using IFListType = std::vector<IFRecordWithRegSet>;
564     using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
565 
566     void dump_map() const;
567 
568     const HexagonInstrInfo *HII = nullptr;
569     const HexagonRegisterInfo *HRI = nullptr;
570 
571     MachineFunction *MFN;
572     MachineRegisterInfo *MRI;
573     MachineDominatorTree *MDT;
574     CellMapShadow *CMS;
575 
576     RegisterOrdering BaseOrd;
577     RegisterOrdering CellOrd;
578     IFMapType IFMap;
579   };
580 
581 } // end anonymous namespace
582 
583 char HexagonGenInsert::ID = 0;
584 
585 void HexagonGenInsert::dump_map() const {
586   for (const auto &I : IFMap) {
587     dbgs() << "  " << printReg(I.first, HRI) << ":\n";
588     const IFListType &LL = I.second;
589     for (const auto &J : LL)
590       dbgs() << "    " << PrintIFR(J.first, HRI) << ", "
591              << PrintRegSet(J.second, HRI) << '\n';
592   }
593 }
594 
595 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
596   unsigned Index = 0;
597 
598   for (const MachineBasicBlock &B : *MFN) {
599     if (!CMS->BT.reached(&B))
600       continue;
601 
602     for (const MachineInstr &MI : B) {
603       for (const MachineOperand &MO : MI.operands()) {
604         if (MO.isReg() && MO.isDef()) {
605           Register R = MO.getReg();
606           assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
607           if (R.isVirtual())
608             RO.insert(std::make_pair(R, Index++));
609         }
610       }
611     }
612   }
613   // Since some virtual registers may have had their def and uses eliminated,
614   // they are no longer referenced in the code, and so they will not appear
615   // in the map.
616 }
617 
618 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
619       RegisterOrdering &RO) const {
620   // Create a vector of all virtual registers (collect them from the base
621   // ordering RB), and then sort it using the RegisterCell comparator.
622   BitValueOrdering BVO(RB);
623   RegisterCellLexCompare LexCmp(BVO, *CMS);
624 
625   using SortableVectorType = std::vector<unsigned>;
626 
627   SortableVectorType VRs;
628   for (auto &I : RB)
629     VRs.push_back(I.first);
630   llvm::sort(VRs, LexCmp);
631   // Transfer the results to the outgoing register ordering.
632   for (unsigned i = 0, n = VRs.size(); i < n; ++i)
633     RO.insert(std::make_pair(VRs[i], i));
634 }
635 
636 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
637   return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
638 }
639 
640 bool HexagonGenInsert::isConstant(unsigned VR) const {
641   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
642   uint16_t W = RC.width();
643   for (uint16_t i = 0; i < W; ++i) {
644     const BitTracker::BitValue &BV = RC[i];
645     if (BV.is(0) || BV.is(1))
646       continue;
647     return false;
648   }
649   return true;
650 }
651 
652 bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
653   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
654   uint16_t W = RC.width();
655   if (W > 64)
656     return false;
657   uint64_t V = 0, B = 1;
658   for (uint16_t i = 0; i < W; ++i) {
659     const BitTracker::BitValue &BV = RC[i];
660     if (BV.is(1))
661       V |= B;
662     else if (!BV.is(0))
663       return false;
664     B <<= 1;
665   }
666 
667   // For 32-bit registers, consider: Rd = #s16.
668   if (W == 32)
669     return isInt<16>(V);
670 
671   // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
672   return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
673 }
674 
675 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
676       unsigned InsR, uint16_t L, uint16_t S) const {
677   const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
678   const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
679   const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
680   // Only integet (32-/64-bit) register classes.
681   if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
682     return false;
683   // The "source" register must be of the same class as DstR.
684   if (DstRC != SrcRC)
685     return false;
686   if (DstRC == InsRC)
687     return true;
688   // A 64-bit register can only be generated from other 64-bit registers.
689   if (DstRC == &Hexagon::DoubleRegsRegClass)
690     return false;
691   // Otherwise, the L and S cannot span 32-bit word boundary.
692   if (S < 32 && S+L > 32)
693     return false;
694   return true;
695 }
696 
697 bool HexagonGenInsert::findSelfReference(unsigned VR) const {
698   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
699   for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
700     const BitTracker::BitValue &V = RC[i];
701     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
702       return true;
703   }
704   return false;
705 }
706 
707 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
708   BitTracker::RegisterCell RC = CMS->lookup(VR);
709   for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
710     const BitTracker::BitValue &V = RC[i];
711     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
712       return true;
713   }
714   return false;
715 }
716 
717 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
718       RegisterSet &Defs) const {
719   for (const MachineOperand &MO : MI->operands()) {
720     if (!MO.isReg() || !MO.isDef())
721       continue;
722     Register R = MO.getReg();
723     if (!R.isVirtual())
724       continue;
725     Defs.insert(R);
726   }
727 }
728 
729 void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
730       RegisterSet &Uses) const {
731   for (const MachineOperand &MO : MI->operands()) {
732     if (!MO.isReg() || !MO.isUse())
733       continue;
734     Register R = MO.getReg();
735     if (!R.isVirtual())
736       continue;
737     Uses.insert(R);
738   }
739 }
740 
741 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
742       const MachineBasicBlock *ToB, const UnsignedMap &RPO,
743       PairMapType &M) const {
744   // Forward distance from the end of a block to the beginning of it does
745   // not make sense. This function should not be called with FromB == ToB.
746   assert(FromB != ToB);
747 
748   unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
749   // If we have already computed it, return the cached result.
750   PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
751   if (F != M.end())
752     return F->second;
753   unsigned ToRPO = RPO.lookup(ToN);
754 
755   unsigned MaxD = 0;
756 
757   for (const MachineBasicBlock *PB : ToB->predecessors()) {
758     // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
759     // along that path will be 0, and we don't need to do any calculations
760     // on it.
761     if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
762       continue;
763     unsigned D = PB->size() + distance(FromB, PB, RPO, M);
764     if (D > MaxD)
765       MaxD = D;
766   }
767 
768   // Memoize the result for later lookup.
769   M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
770   return MaxD;
771 }
772 
773 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
774       MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
775       PairMapType &M) const {
776   const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
777   if (FB == TB)
778     return std::distance(FromI, ToI);
779   unsigned D1 = std::distance(TB->begin(), ToI);
780   unsigned D2 = distance(FB, TB, RPO, M);
781   unsigned D3 = std::distance(FromI, FB->end());
782   return D1+D2+D3;
783 }
784 
785 bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
786       OrderedRegisterList &AVs) {
787   if (isDebug()) {
788     dbgs() << __func__ << ": " << printReg(VR, HRI)
789            << "  AVs: " << PrintORL(AVs, HRI) << "\n";
790   }
791   if (AVs.size() == 0)
792     return false;
793 
794   using iterator = OrderedRegisterList::iterator;
795 
796   BitValueOrdering BVO(BaseOrd);
797   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
798   uint16_t W = RC.width();
799 
800   using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
801   using RSListType = std::vector<RSRecord>;
802   // Have a map, with key being the matching prefix length, and the value
803   // being the list of pairs (R,S), where R's prefix matches VR at S.
804   // (DenseMap<uint16_t,RSListType> fails to instantiate.)
805   using LRSMapType = DenseMap<unsigned, RSListType>;
806   LRSMapType LM;
807 
808   // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
809   // and find matching prefixes from AVs with the rotated RC. Such a prefix
810   // would match a string of bits (of length L) in RC starting at S.
811   for (uint16_t S = 0; S < W; ++S) {
812     iterator B = AVs.begin(), E = AVs.end();
813     // The registers in AVs are ordered according to the lexical order of
814     // the corresponding register cells. This means that the range of regis-
815     // ters in AVs that match a prefix of length L+1 will be contained in
816     // the range that matches a prefix of length L. This means that we can
817     // keep narrowing the search space as the prefix length goes up. This
818     // helps reduce the overall complexity of the search.
819     uint16_t L;
820     for (L = 0; L < W-S; ++L) {
821       // Compare against VR's bits starting at S, which emulates rotation
822       // of VR by S.
823       RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
824       iterator NewB = std::lower_bound(B, E, VR, RCB);
825       iterator NewE = std::upper_bound(NewB, E, VR, RCB);
826       // For the registers that are eliminated from the next range, L is
827       // the longest prefix matching VR at position S (their prefixes
828       // differ from VR at S+L). If L>0, record this information for later
829       // use.
830       if (L > 0) {
831         for (iterator I = B; I != NewB; ++I)
832           LM[L].push_back(std::make_pair(*I, S));
833         for (iterator I = NewE; I != E; ++I)
834           LM[L].push_back(std::make_pair(*I, S));
835       }
836       B = NewB, E = NewE;
837       if (B == E)
838         break;
839     }
840     // Record the final register range. If this range is non-empty, then
841     // L=W-S.
842     assert(B == E || L == W-S);
843     if (B != E) {
844       for (iterator I = B; I != E; ++I)
845         LM[L].push_back(std::make_pair(*I, S));
846       // If B!=E, then we found a range of registers whose prefixes cover the
847       // rest of VR from position S. There is no need to further advance S.
848       break;
849     }
850   }
851 
852   if (isDebug()) {
853     dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
854     for (const auto &I : LM) {
855       dbgs() << "  L=" << I.first << ':';
856       const RSListType &LL = I.second;
857       for (const auto &J : LL)
858         dbgs() << " (" << printReg(J.first, HRI) << ",@" << J.second << ')';
859       dbgs() << '\n';
860     }
861   }
862 
863   bool Recorded = false;
864 
865   for (unsigned SrcR : AVs) {
866     int FDi = -1, LDi = -1;   // First/last different bit.
867     const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
868     uint16_t AW = AC.width();
869     for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
870       if (RC[i] == AC[i])
871         continue;
872       if (FDi == -1)
873         FDi = i;
874       LDi = i;
875     }
876     if (FDi == -1)
877       continue;  // TODO (future): Record identical registers.
878     // Look for a register whose prefix could patch the range [FD..LD]
879     // where VR and SrcR differ.
880     uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
881     uint16_t MinL = LD-FD+1;
882     for (uint16_t L = MinL; L < W; ++L) {
883       LRSMapType::iterator F = LM.find(L);
884       if (F == LM.end())
885         continue;
886       RSListType &LL = F->second;
887       for (const auto &I : LL) {
888         uint16_t S = I.second;
889         // MinL is the minimum length of the prefix. Any length above MinL
890         // allows some flexibility as to where the prefix can start:
891         // given the extra length EL=L-MinL, the prefix must start between
892         // max(0,FD-EL) and FD.
893         if (S > FD)   // Starts too late.
894           continue;
895         uint16_t EL = L-MinL;
896         uint16_t LowS = (EL < FD) ? FD-EL : 0;
897         if (S < LowS) // Starts too early.
898           continue;
899         unsigned InsR = I.first;
900         if (!isValidInsertForm(VR, SrcR, InsR, L, S))
901           continue;
902         if (isDebug()) {
903           dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
904                  << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
905                  << S << ")\n";
906         }
907         IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
908         IFMap[VR].push_back(RR);
909         Recorded = true;
910       }
911     }
912   }
913 
914   return Recorded;
915 }
916 
917 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
918       OrderedRegisterList &AVs) {
919   if (isDebug())
920     dbgs() << "visiting block " << printMBBReference(*B) << "\n";
921 
922   // First, check if this block is reachable at all. If not, the bit tracker
923   // will not have any information about registers in it.
924   if (!CMS->BT.reached(B))
925     return;
926 
927   bool DoConst = OptConst;
928   // Keep a separate set of registers defined in this block, so that we
929   // can remove them from the list of available registers once all DT
930   // successors have been processed.
931   RegisterSet BlockDefs, InsDefs;
932   for (MachineInstr &MI : *B) {
933     InsDefs.clear();
934     getInstrDefs(&MI, InsDefs);
935     // Leave those alone. They are more transparent than "insert".
936     bool Skip = MI.isCopy() || MI.isRegSequence();
937 
938     if (!Skip) {
939       // Visit all defined registers, and attempt to find the corresponding
940       // "insert" representations.
941       for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
942         // Do not collect registers that are known to be compile-time cons-
943         // tants, unless requested.
944         if (!DoConst && isConstant(VR))
945           continue;
946         // If VR's cell contains a reference to VR, then VR cannot be defined
947         // via "insert". If VR is a constant that can be generated in a single
948         // instruction (without constant extenders), generating it via insert
949         // makes no sense.
950         if (findSelfReference(VR) || isSmallConstant(VR))
951           continue;
952 
953         findRecordInsertForms(VR, AVs);
954         // Stop if the map size is too large.
955         if (IFMap.size() > MaxIFMSize)
956           return;
957       }
958     }
959 
960     // Insert the defined registers into the list of available registers
961     // after they have been processed.
962     for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
963       AVs.insert(VR);
964     BlockDefs.insert(InsDefs);
965   }
966 
967   for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
968     MachineBasicBlock *SB = DTN->getBlock();
969     collectInBlock(SB, AVs);
970   }
971 
972   for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
973     AVs.remove(VR);
974 }
975 
976 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
977       RegisterSet &RMs) const {
978   // For a given register VR and a insert form, find the registers that are
979   // used by the current definition of VR, and which would no longer be
980   // needed for it after the definition of VR is replaced with the insert
981   // form. These are the registers that could potentially become dead.
982   RegisterSet Regs[2];
983 
984   unsigned S = 0;  // Register set selector.
985   Regs[S].insert(VR);
986 
987   while (!Regs[S].empty()) {
988     // Breadth-first search.
989     unsigned OtherS = 1-S;
990     Regs[OtherS].clear();
991     for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
992       Regs[S].remove(R);
993       if (R == IF.SrcR || R == IF.InsR)
994         continue;
995       // Check if a given register has bits that are references to any other
996       // registers. This is to detect situations where the instruction that
997       // defines register R takes register Q as an operand, but R itself does
998       // not contain any bits from Q. Loads are examples of how this could
999       // happen:
1000       //   R = load Q
1001       // In this case (assuming we do not have any knowledge about the loaded
1002       // value), we must not treat R as a "conveyance" of the bits from Q.
1003       // (The information in BT about R's bits would have them as constants,
1004       // in case of zero-extending loads, or refs to R.)
1005       if (!findNonSelfReference(R))
1006         continue;
1007       RMs.insert(R);
1008       const MachineInstr *DefI = MRI->getVRegDef(R);
1009       assert(DefI);
1010       // Do not iterate past PHI nodes to avoid infinite loops. This can
1011       // make the final set a bit less accurate, but the removable register
1012       // sets are an approximation anyway.
1013       if (DefI->isPHI())
1014         continue;
1015       getInstrUses(DefI, Regs[OtherS]);
1016     }
1017     S = OtherS;
1018   }
1019   // The register VR is added to the list as a side-effect of the algorithm,
1020   // but it is not "potentially removable". A potentially removable register
1021   // is one that may become unused (dead) after conversion to the insert form
1022   // IF, and obviously VR (or its replacement) will not become dead by apply-
1023   // ing IF.
1024   RMs.remove(VR);
1025 }
1026 
1027 void HexagonGenInsert::computeRemovableRegisters() {
1028   for (auto &I : IFMap) {
1029     IFListType &LL = I.second;
1030     for (auto &J : LL)
1031       findRemovableRegisters(I.first, J.first, J.second);
1032   }
1033 }
1034 
1035 void HexagonGenInsert::pruneEmptyLists() {
1036   // Remove all entries from the map, where the register has no insert forms
1037   // associated with it.
1038   using IterListType = SmallVector<IFMapType::iterator, 16>;
1039   IterListType Prune;
1040   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1041     if (I->second.empty())
1042       Prune.push_back(I);
1043   }
1044   for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1045     IFMap.erase(Prune[i]);
1046 }
1047 
1048 void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1049   IFMapType::iterator F = IFMap.find(VR);
1050   assert(F != IFMap.end());
1051   IFListType &LL = F->second;
1052 
1053   // First, examine the IF candidates for register VR whose removable-regis-
1054   // ter sets are empty. This means that a given candidate will not help eli-
1055   // minate any registers, but since "insert" is not a constant-extendable
1056   // instruction, using such a candidate may reduce code size if the defini-
1057   // tion of VR is constant-extended.
1058   // If there exists a candidate with a non-empty set, the ones with empty
1059   // sets will not be used and can be removed.
1060   MachineInstr *DefVR = MRI->getVRegDef(VR);
1061   bool DefEx = HII->isConstExtended(*DefVR);
1062   bool HasNE = false;
1063   for (const auto &I : LL) {
1064     if (I.second.empty())
1065       continue;
1066     HasNE = true;
1067     break;
1068   }
1069   if (!DefEx || HasNE) {
1070     // The definition of VR is not constant-extended, or there is a candidate
1071     // with a non-empty set. Remove all candidates with empty sets.
1072     auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1073       return IR.second.empty();
1074     };
1075     llvm::erase_if(LL, IsEmpty);
1076   } else {
1077     // The definition of VR is constant-extended, and all candidates have
1078     // empty removable-register sets. Pick the maximum candidate, and remove
1079     // all others. The "maximum" does not have any special meaning here, it
1080     // is only so that the candidate that will remain on the list is selec-
1081     // ted deterministically.
1082     IFRecord MaxIF = LL[0].first;
1083     for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1084       // If LL[MaxI] < LL[i], then MaxI = i.
1085       const IFRecord &IF = LL[i].first;
1086       unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1087       unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1088       if (M0 > R0)
1089         continue;
1090       if (M0 == R0) {
1091         if (M1 > R1)
1092           continue;
1093         if (M1 == R1) {
1094           if (MaxIF.Wdh > IF.Wdh)
1095             continue;
1096           if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1097             continue;
1098         }
1099       }
1100       // MaxIF < IF.
1101       MaxIF = IF;
1102     }
1103     // Remove everything except the maximum candidate. All register sets
1104     // are empty, so no need to preserve anything.
1105     LL.clear();
1106     LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1107   }
1108 
1109   // Now, remove those whose sets of potentially removable registers are
1110   // contained in another IF candidate for VR. For example, given these
1111   // candidates for %45,
1112   //   %45:
1113   //     (%44,%41,#9,#8), { %42 }
1114   //     (%43,%41,#9,#8), { %42 %44 }
1115   // remove the first one, since it is contained in the second one.
1116   for (unsigned i = 0, n = LL.size(); i < n; ) {
1117     const RegisterSet &RMi = LL[i].second;
1118     unsigned j = 0;
1119     while (j < n) {
1120       if (j != i && LL[j].second.includes(RMi))
1121         break;
1122       j++;
1123     }
1124     if (j == n) {   // RMi not contained in anything else.
1125       i++;
1126       continue;
1127     }
1128     LL.erase(LL.begin()+i);
1129     n = LL.size();
1130   }
1131 }
1132 
1133 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1134       PairMapType &M) {
1135   IFMapType::iterator F = IFMap.find(VR);
1136   assert(F != IFMap.end());
1137   IFListType &LL = F->second;
1138   unsigned Cutoff = VRegDistCutoff;
1139   const MachineInstr *DefV = MRI->getVRegDef(VR);
1140 
1141   for (unsigned i = LL.size(); i > 0; --i) {
1142     unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1143     const MachineInstr *DefS = MRI->getVRegDef(SR);
1144     const MachineInstr *DefI = MRI->getVRegDef(IR);
1145     unsigned DSV = distance(DefS, DefV, RPO, M);
1146     if (DSV < Cutoff) {
1147       unsigned DIV = distance(DefI, DefV, RPO, M);
1148       if (DIV < Cutoff)
1149         continue;
1150     }
1151     LL.erase(LL.begin()+(i-1));
1152   }
1153 }
1154 
1155 void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1156   IFMapType::iterator F = IFMap.find(VR);
1157   assert(F != IFMap.end());
1158   IFListType &LL = F->second;
1159 
1160   auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1161     return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1162   };
1163   llvm::erase_if(LL, IsCopy);
1164 }
1165 
1166 void HexagonGenInsert::pruneCandidates() {
1167   // Remove candidates that are not beneficial, regardless of the final
1168   // selection method.
1169   // First, remove candidates whose potentially removable set is a subset
1170   // of another candidate's set.
1171   for (const auto &I : IFMap)
1172     pruneCoveredSets(I.first);
1173 
1174   UnsignedMap RPO;
1175 
1176   using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
1177 
1178   RPOTType RPOT(MFN);
1179   unsigned RPON = 0;
1180   for (const auto &I : RPOT)
1181     RPO[I->getNumber()] = RPON++;
1182 
1183   PairMapType Memo; // Memoization map for distance calculation.
1184   // Remove candidates that would use registers defined too far away.
1185   for (const auto &I : IFMap)
1186     pruneUsesTooFar(I.first, RPO, Memo);
1187 
1188   pruneEmptyLists();
1189 
1190   for (const auto &I : IFMap)
1191     pruneRegCopies(I.first);
1192 }
1193 
1194 namespace {
1195 
1196   // Class for comparing IF candidates for registers that have multiple of
1197   // them. The smaller the candidate, according to this ordering, the better.
1198   // First, compare the number of zeros in the associated potentially remova-
1199   // ble register sets. "Zero" indicates that the register is very likely to
1200   // become dead after this transformation.
1201   // Second, compare "averages", i.e. use-count per size. The lower wins.
1202   // After that, it does not really matter which one is smaller. Resolve
1203   // the tie in some deterministic way.
1204   struct IFOrdering {
1205     IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1206       : UseC(UC), BaseOrd(BO) {}
1207 
1208     bool operator() (const IFRecordWithRegSet &A,
1209                      const IFRecordWithRegSet &B) const;
1210 
1211   private:
1212     void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1213           unsigned &Sum) const;
1214 
1215     const UnsignedMap &UseC;
1216     const RegisterOrdering &BaseOrd;
1217   };
1218 
1219 } // end anonymous namespace
1220 
1221 bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1222       const IFRecordWithRegSet &B) const {
1223   unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1224   unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1225   stats(A.second, SizeA, ZeroA, SumA);
1226   stats(B.second, SizeB, ZeroB, SumB);
1227 
1228   // We will pick the minimum element. The more zeros, the better.
1229   if (ZeroA != ZeroB)
1230     return ZeroA > ZeroB;
1231   // Compare SumA/SizeA with SumB/SizeB, lower is better.
1232   uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1233   if (AvgA != AvgB)
1234     return AvgA < AvgB;
1235 
1236   // The sets compare identical so far. Resort to comparing the IF records.
1237   // The actual values don't matter, this is only for determinism.
1238   unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1239   if (OSA != OSB)
1240     return OSA < OSB;
1241   unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1242   if (OIA != OIB)
1243     return OIA < OIB;
1244   if (A.first.Wdh != B.first.Wdh)
1245     return A.first.Wdh < B.first.Wdh;
1246   return A.first.Off < B.first.Off;
1247 }
1248 
1249 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1250       unsigned &Sum) const {
1251   for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1252     UnsignedMap::const_iterator F = UseC.find(R);
1253     assert(F != UseC.end());
1254     unsigned UC = F->second;
1255     if (UC == 0)
1256       Zero++;
1257     Sum += UC;
1258     Size++;
1259   }
1260 }
1261 
1262 void HexagonGenInsert::selectCandidates() {
1263   // Some registers may have multiple valid candidates. Pick the best one
1264   // (or decide not to use any).
1265 
1266   // Compute the "removability" measure of R:
1267   // For each potentially removable register R, record the number of regis-
1268   // ters with IF candidates, where R appears in at least one set.
1269   RegisterSet AllRMs;
1270   UnsignedMap UseC, RemC;
1271   IFMapType::iterator End = IFMap.end();
1272 
1273   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1274     const IFListType &LL = I->second;
1275     RegisterSet TT;
1276     for (const auto &J : LL)
1277       TT.insert(J.second);
1278     for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1279       RemC[R]++;
1280     AllRMs.insert(TT);
1281   }
1282 
1283   for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1284     using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
1285     using InstrSet = SmallSet<const MachineInstr *, 16>;
1286 
1287     InstrSet UIs;
1288     // Count as the number of instructions in which R is used, not the
1289     // number of operands.
1290     use_iterator E = MRI->use_nodbg_end();
1291     for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1292       UIs.insert(I->getParent());
1293     unsigned C = UIs.size();
1294     // Calculate a measure, which is the number of instructions using R,
1295     // minus the "removability" count computed earlier.
1296     unsigned D = RemC[R];
1297     UseC[R] = (C > D) ? C-D : 0;  // doz
1298   }
1299 
1300   bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1301   if (!SelectAll0 && !SelectHas0)
1302     SelectAll0 = true;
1303 
1304   // The smaller the number UseC for a given register R, the "less used"
1305   // R is aside from the opportunities for removal offered by generating
1306   // "insert" instructions.
1307   // Iterate over the IF map, and for those registers that have multiple
1308   // candidates, pick the minimum one according to IFOrdering.
1309   IFOrdering IFO(UseC, BaseOrd);
1310   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1311     IFListType &LL = I->second;
1312     if (LL.empty())
1313       continue;
1314     // Get the minimum element, remember it and clear the list. If the
1315     // element found is adequate, we will put it back on the list, other-
1316     // wise the list will remain empty, and the entry for this register
1317     // will be removed (i.e. this register will not be replaced by insert).
1318     IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1319     assert(MinI != LL.end());
1320     IFRecordWithRegSet M = *MinI;
1321     LL.clear();
1322 
1323     // We want to make sure that this replacement will have a chance to be
1324     // beneficial, and that means that we want to have indication that some
1325     // register will be removed. The most likely registers to be eliminated
1326     // are the use operands in the definition of I->first. Accept/reject a
1327     // candidate based on how many of its uses it can potentially eliminate.
1328 
1329     RegisterSet Us;
1330     const MachineInstr *DefI = MRI->getVRegDef(I->first);
1331     getInstrUses(DefI, Us);
1332     bool Accept = false;
1333 
1334     if (SelectAll0) {
1335       bool All0 = true;
1336       for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1337         if (UseC[R] == 0)
1338           continue;
1339         All0 = false;
1340         break;
1341       }
1342       Accept = All0;
1343     } else if (SelectHas0) {
1344       bool Has0 = false;
1345       for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1346         if (UseC[R] != 0)
1347           continue;
1348         Has0 = true;
1349         break;
1350       }
1351       Accept = Has0;
1352     }
1353     if (Accept)
1354       LL.push_back(M);
1355   }
1356 
1357   // Remove candidates that add uses of removable registers, unless the
1358   // removable registers are among replacement candidates.
1359   // Recompute the removable registers, since some candidates may have
1360   // been eliminated.
1361   AllRMs.clear();
1362   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1363     const IFListType &LL = I->second;
1364     if (!LL.empty())
1365       AllRMs.insert(LL[0].second);
1366   }
1367   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1368     IFListType &LL = I->second;
1369     if (LL.empty())
1370       continue;
1371     unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1372     if (AllRMs[SR] || AllRMs[IR])
1373       LL.clear();
1374   }
1375 
1376   pruneEmptyLists();
1377 }
1378 
1379 bool HexagonGenInsert::generateInserts() {
1380   // Create a new register for each one from IFMap, and store them in the
1381   // map.
1382   UnsignedMap RegMap;
1383   for (auto &I : IFMap) {
1384     unsigned VR = I.first;
1385     const TargetRegisterClass *RC = MRI->getRegClass(VR);
1386     Register NewVR = MRI->createVirtualRegister(RC);
1387     RegMap[VR] = NewVR;
1388   }
1389 
1390   // We can generate the "insert" instructions using potentially stale re-
1391   // gisters: SrcR and InsR for a given VR may be among other registers that
1392   // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1393   for (auto &I : IFMap) {
1394     MachineInstr *MI = MRI->getVRegDef(I.first);
1395     MachineBasicBlock &B = *MI->getParent();
1396     DebugLoc DL = MI->getDebugLoc();
1397     unsigned NewR = RegMap[I.first];
1398     bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1399     const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1400                                : HII->get(Hexagon::S2_insertp);
1401     IFRecord IF = I.second[0].first;
1402     unsigned Wdh = IF.Wdh, Off = IF.Off;
1403     unsigned InsS = 0;
1404     if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1405       InsS = Hexagon::isub_lo;
1406       if (Off >= 32) {
1407         InsS = Hexagon::isub_hi;
1408         Off -= 32;
1409       }
1410     }
1411     // Advance to the proper location for inserting instructions. This could
1412     // be B.end().
1413     MachineBasicBlock::iterator At = MI;
1414     if (MI->isPHI())
1415       At = B.getFirstNonPHI();
1416 
1417     BuildMI(B, At, DL, D, NewR)
1418       .addReg(IF.SrcR)
1419       .addReg(IF.InsR, 0, InsS)
1420       .addImm(Wdh)
1421       .addImm(Off);
1422 
1423     MRI->clearKillFlags(IF.SrcR);
1424     MRI->clearKillFlags(IF.InsR);
1425   }
1426 
1427   for (const auto &I : IFMap) {
1428     MachineInstr *DefI = MRI->getVRegDef(I.first);
1429     MRI->replaceRegWith(I.first, RegMap[I.first]);
1430     DefI->eraseFromParent();
1431   }
1432 
1433   return true;
1434 }
1435 
1436 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1437   bool Changed = false;
1438 
1439   for (auto *DTN : children<MachineDomTreeNode*>(N))
1440     Changed |= removeDeadCode(DTN);
1441 
1442   MachineBasicBlock *B = N->getBlock();
1443   std::vector<MachineInstr*> Instrs;
1444   for (MachineInstr &MI : llvm::reverse(*B))
1445     Instrs.push_back(&MI);
1446 
1447   for (MachineInstr *MI : Instrs) {
1448     unsigned Opc = MI->getOpcode();
1449     // Do not touch lifetime markers. This is why the target-independent DCE
1450     // cannot be used.
1451     if (Opc == TargetOpcode::LIFETIME_START ||
1452         Opc == TargetOpcode::LIFETIME_END)
1453       continue;
1454     bool Store = false;
1455     if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1456       continue;
1457 
1458     bool AllDead = true;
1459     SmallVector<unsigned,2> Regs;
1460     for (const MachineOperand &MO : MI->operands()) {
1461       if (!MO.isReg() || !MO.isDef())
1462         continue;
1463       Register R = MO.getReg();
1464       if (!R.isVirtual() || !MRI->use_nodbg_empty(R)) {
1465         AllDead = false;
1466         break;
1467       }
1468       Regs.push_back(R);
1469     }
1470     if (!AllDead)
1471       continue;
1472 
1473     B->erase(MI);
1474     for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1475       MRI->markUsesInDebugValueAsUndef(Regs[I]);
1476     Changed = true;
1477   }
1478 
1479   return Changed;
1480 }
1481 
1482 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1483   if (skipFunction(MF.getFunction()))
1484     return false;
1485 
1486   bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1487   bool Changed = false;
1488 
1489   // Verify: one, but not both.
1490   assert(!OptSelectAll0 || !OptSelectHas0);
1491 
1492   IFMap.clear();
1493   BaseOrd.clear();
1494   CellOrd.clear();
1495 
1496   const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1497   HII = ST.getInstrInfo();
1498   HRI = ST.getRegisterInfo();
1499   MFN = &MF;
1500   MRI = &MF.getRegInfo();
1501   MDT = &getAnalysis<MachineDominatorTree>();
1502 
1503   // Clean up before any further processing, so that dead code does not
1504   // get used in a newly generated "insert" instruction. Have a custom
1505   // version of DCE that preserves lifetime markers. Without it, merging
1506   // of stack objects can fail to recognize and merge disjoint objects
1507   // leading to unnecessary stack growth.
1508   Changed = removeDeadCode(MDT->getRootNode());
1509 
1510   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1511   BitTracker BTLoc(HE, MF);
1512   BTLoc.trace(isDebug());
1513   BTLoc.run();
1514   CellMapShadow MS(BTLoc);
1515   CMS = &MS;
1516 
1517   buildOrderingMF(BaseOrd);
1518   buildOrderingBT(BaseOrd, CellOrd);
1519 
1520   if (isDebug()) {
1521     dbgs() << "Cell ordering:\n";
1522     for (const auto &I : CellOrd) {
1523       unsigned VR = I.first, Pos = I.second;
1524       dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
1525     }
1526   }
1527 
1528   // Collect candidates for conversion into the insert forms.
1529   MachineBasicBlock *RootB = MDT->getRoot();
1530   OrderedRegisterList AvailR(CellOrd);
1531 
1532   const char *const TGName = "hexinsert";
1533   const char *const TGDesc = "Generate Insert Instructions";
1534 
1535   {
1536     NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
1537                         TimingDetail);
1538     collectInBlock(RootB, AvailR);
1539     // Complete the information gathered in IFMap.
1540     computeRemovableRegisters();
1541   }
1542 
1543   if (isDebug()) {
1544     dbgs() << "Candidates after collection:\n";
1545     dump_map();
1546   }
1547 
1548   if (IFMap.empty())
1549     return Changed;
1550 
1551   {
1552     NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
1553     pruneCandidates();
1554   }
1555 
1556   if (isDebug()) {
1557     dbgs() << "Candidates after pruning:\n";
1558     dump_map();
1559   }
1560 
1561   if (IFMap.empty())
1562     return Changed;
1563 
1564   {
1565     NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
1566     selectCandidates();
1567   }
1568 
1569   if (isDebug()) {
1570     dbgs() << "Candidates after selection:\n";
1571     dump_map();
1572   }
1573 
1574   // Filter out vregs beyond the cutoff.
1575   if (VRegIndexCutoff.getPosition()) {
1576     unsigned Cutoff = VRegIndexCutoff;
1577 
1578     using IterListType = SmallVector<IFMapType::iterator, 16>;
1579 
1580     IterListType Out;
1581     for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1582       unsigned Idx = Register::virtReg2Index(I->first);
1583       if (Idx >= Cutoff)
1584         Out.push_back(I);
1585     }
1586     for (unsigned i = 0, n = Out.size(); i < n; ++i)
1587       IFMap.erase(Out[i]);
1588   }
1589   if (IFMap.empty())
1590     return Changed;
1591 
1592   {
1593     NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
1594                         TimingDetail);
1595     generateInserts();
1596   }
1597 
1598   return true;
1599 }
1600 
1601 FunctionPass *llvm::createHexagonGenInsert() {
1602   return new HexagonGenInsert();
1603 }
1604 
1605 //===----------------------------------------------------------------------===//
1606 //                         Public Constructor Functions
1607 //===----------------------------------------------------------------------===//
1608 
1609 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1610   "Hexagon generate \"insert\" instructions", false, false)
1611 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1612 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1613   "Hexagon generate \"insert\" instructions", false, false)
1614