xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonGenInsert.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- HexagonGenInsert.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "BitTracker.h"
10 #include "HexagonBitTracker.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/Timer.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <utility>
43 #include <vector>
44 
45 #define DEBUG_TYPE "hexinsert"
46 
47 using namespace llvm;
48 
49 static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
50   cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
51 // The distance cutoff is selected based on the precheckin-perf results:
52 // cutoffs 20, 25, 35, and 40 are worse than 30.
53 static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
54   cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
55   "generation."));
56 
57 // Limit the container sizes for extreme cases where we run out of memory.
58 static cl::opt<unsigned> MaxORLSize("insert-max-orl", cl::init(4096),
59   cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of OrderedRegisterList"));
60 static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
61   cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of IFMap"));
62 
63 static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
64   cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
65 static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
66   cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
67   "generation"));
68 
69 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
70   cl::ZeroOrMore);
71 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
72   cl::ZeroOrMore);
73 // Whether to construct constant values via "insert". Could eliminate constant
74 // extenders, but often not practical.
75 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
76   cl::ZeroOrMore);
77 
78 // The preprocessor gets confused when the DEBUG macro is passed larger
79 // chunks of code. Use this function to detect debugging.
80 inline static bool isDebug() {
81 #ifndef NDEBUG
82   return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
83 #else
84   return false;
85 #endif
86 }
87 
88 namespace {
89 
90   // Set of virtual registers, based on BitVector.
91   struct RegisterSet : private BitVector {
92     RegisterSet() = default;
93     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
94     RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
95 
96     using BitVector::clear;
97 
98     unsigned find_first() const {
99       int First = BitVector::find_first();
100       if (First < 0)
101         return 0;
102       return x2v(First);
103     }
104 
105     unsigned find_next(unsigned Prev) const {
106       int Next = BitVector::find_next(v2x(Prev));
107       if (Next < 0)
108         return 0;
109       return x2v(Next);
110     }
111 
112     RegisterSet &insert(unsigned R) {
113       unsigned Idx = v2x(R);
114       ensure(Idx);
115       return static_cast<RegisterSet&>(BitVector::set(Idx));
116     }
117     RegisterSet &remove(unsigned R) {
118       unsigned Idx = v2x(R);
119       if (Idx >= size())
120         return *this;
121       return static_cast<RegisterSet&>(BitVector::reset(Idx));
122     }
123 
124     RegisterSet &insert(const RegisterSet &Rs) {
125       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
126     }
127     RegisterSet &remove(const RegisterSet &Rs) {
128       return static_cast<RegisterSet&>(BitVector::reset(Rs));
129     }
130 
131     reference operator[](unsigned R) {
132       unsigned Idx = v2x(R);
133       ensure(Idx);
134       return BitVector::operator[](Idx);
135     }
136     bool operator[](unsigned R) const {
137       unsigned Idx = v2x(R);
138       assert(Idx < size());
139       return BitVector::operator[](Idx);
140     }
141     bool has(unsigned R) const {
142       unsigned Idx = v2x(R);
143       if (Idx >= size())
144         return false;
145       return BitVector::test(Idx);
146     }
147 
148     bool empty() const {
149       return !BitVector::any();
150     }
151     bool includes(const RegisterSet &Rs) const {
152       // A.BitVector::test(B)  <=>  A-B != {}
153       return !Rs.BitVector::test(*this);
154     }
155     bool intersects(const RegisterSet &Rs) const {
156       return BitVector::anyCommon(Rs);
157     }
158 
159   private:
160     void ensure(unsigned Idx) {
161       if (size() <= Idx)
162         resize(std::max(Idx+1, 32U));
163     }
164 
165     static inline unsigned v2x(unsigned v) {
166       return TargetRegisterInfo::virtReg2Index(v);
167     }
168 
169     static inline unsigned x2v(unsigned x) {
170       return TargetRegisterInfo::index2VirtReg(x);
171     }
172   };
173 
174   struct PrintRegSet {
175     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
176       : RS(S), TRI(RI) {}
177 
178     friend raw_ostream &operator<< (raw_ostream &OS,
179           const PrintRegSet &P);
180 
181   private:
182     const RegisterSet &RS;
183     const TargetRegisterInfo *TRI;
184   };
185 
186   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
187     OS << '{';
188     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
189       OS << ' ' << printReg(R, P.TRI);
190     OS << " }";
191     return OS;
192   }
193 
194   // A convenience class to associate unsigned numbers (such as virtual
195   // registers) with unsigned numbers.
196   struct UnsignedMap : public DenseMap<unsigned,unsigned> {
197     UnsignedMap() = default;
198 
199   private:
200     using BaseType = DenseMap<unsigned, unsigned>;
201   };
202 
203   // A utility to establish an ordering between virtual registers:
204   // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
205   // This is meant as a cache for the ordering of virtual registers defined
206   // by a potentially expensive comparison function, or obtained by a proce-
207   // dure that should not be repeated each time two registers are compared.
208   struct RegisterOrdering : public UnsignedMap {
209     RegisterOrdering() = default;
210 
211     unsigned operator[](unsigned VR) const {
212       const_iterator F = find(VR);
213       assert(F != end());
214       return F->second;
215     }
216 
217     // Add operator(), so that objects of this class can be used as
218     // comparators in std::sort et al.
219     bool operator() (unsigned VR1, unsigned VR2) const {
220       return operator[](VR1) < operator[](VR2);
221     }
222   };
223 
224   // Ordering of bit values. This class does not have operator[], but
225   // is supplies a comparison operator() for use in std:: algorithms.
226   // The order is as follows:
227   // - 0 < 1 < ref
228   // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
229   //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
230   struct BitValueOrdering {
231     BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
232 
233     bool operator() (const BitTracker::BitValue &V1,
234           const BitTracker::BitValue &V2) const;
235 
236     const RegisterOrdering &BaseOrd;
237   };
238 
239 } // end anonymous namespace
240 
241 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
242       const BitTracker::BitValue &V2) const {
243   if (V1 == V2)
244     return false;
245   // V1==0 => true, V2==0 => false
246   if (V1.is(0) || V2.is(0))
247     return V1.is(0);
248   // Neither of V1,V2 is 0, and V1!=V2.
249   // V2==1 => false, V1==1 => true
250   if (V2.is(1) || V1.is(1))
251     return !V2.is(1);
252   // Both V1,V2 are refs.
253   unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
254   if (Ind1 != Ind2)
255     return Ind1 < Ind2;
256   // If V1.Pos==V2.Pos
257   assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
258   return V1.RefI.Pos < V2.RefI.Pos;
259 }
260 
261 namespace {
262 
263   // Cache for the BitTracker's cell map. Map lookup has a logarithmic
264   // complexity, this class will memoize the lookup results to reduce
265   // the access time for repeated lookups of the same cell.
266   struct CellMapShadow {
267     CellMapShadow(const BitTracker &T) : BT(T) {}
268 
269     const BitTracker::RegisterCell &lookup(unsigned VR) {
270       unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
271       // Grow the vector to at least 32 elements.
272       if (RInd >= CVect.size())
273         CVect.resize(std::max(RInd+16, 32U), nullptr);
274       const BitTracker::RegisterCell *CP = CVect[RInd];
275       if (CP == nullptr)
276         CP = CVect[RInd] = &BT.lookup(VR);
277       return *CP;
278     }
279 
280     const BitTracker &BT;
281 
282   private:
283     using CellVectType = std::vector<const BitTracker::RegisterCell *>;
284 
285     CellVectType CVect;
286   };
287 
288   // Comparator class for lexicographic ordering of virtual registers
289   // according to the corresponding BitTracker::RegisterCell objects.
290   struct RegisterCellLexCompare {
291     RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
292       : BitOrd(BO), CM(M) {}
293 
294     bool operator() (unsigned VR1, unsigned VR2) const;
295 
296   private:
297     const BitValueOrdering &BitOrd;
298     CellMapShadow &CM;
299   };
300 
301   // Comparator class for lexicographic ordering of virtual registers
302   // according to the specified bits of the corresponding BitTracker::
303   // RegisterCell objects.
304   // Specifically, this class will be used to compare bit B of a register
305   // cell for a selected virtual register R with bit N of any register
306   // other than R.
307   struct RegisterCellBitCompareSel {
308     RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
309           const BitValueOrdering &BO, CellMapShadow &M)
310       : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
311 
312     bool operator() (unsigned VR1, unsigned VR2) const;
313 
314   private:
315     const unsigned SelR, SelB;
316     const unsigned BitN;
317     const BitValueOrdering &BitOrd;
318     CellMapShadow &CM;
319   };
320 
321 } // end anonymous namespace
322 
323 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
324   // Ordering of registers, made up from two given orderings:
325   // - the ordering of the register numbers, and
326   // - the ordering of register cells.
327   // Def. R1 < R2 if:
328   // - cell(R1) < cell(R2), or
329   // - cell(R1) == cell(R2), and index(R1) < index(R2).
330   //
331   // For register cells, the ordering is lexicographic, with index 0 being
332   // the most significant.
333   if (VR1 == VR2)
334     return false;
335 
336   const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
337   uint16_t W1 = RC1.width(), W2 = RC2.width();
338   for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
339     const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
340     if (V1 != V2)
341       return BitOrd(V1, V2);
342   }
343   // Cells are equal up until the common length.
344   if (W1 != W2)
345     return W1 < W2;
346 
347   return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
348 }
349 
350 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
351   if (VR1 == VR2)
352     return false;
353   const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
354   const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
355   uint16_t W1 = RC1.width(), W2 = RC2.width();
356   uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
357   uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
358   // If Bit1 exceeds the width of VR1, then:
359   // - return false, if at the same time Bit2 exceeds VR2, or
360   // - return true, otherwise.
361   // (I.e. "a bit value that does not exist is less than any bit value
362   // that does exist".)
363   if (W1 <= Bit1)
364     return Bit2 < W2;
365   // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
366   if (W2 <= Bit2)
367     return false;
368 
369   const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
370   if (V1 != V2)
371     return BitOrd(V1, V2);
372   return false;
373 }
374 
375 namespace {
376 
377   class OrderedRegisterList {
378     using ListType = std::vector<unsigned>;
379     const unsigned MaxSize;
380 
381   public:
382     OrderedRegisterList(const RegisterOrdering &RO)
383       : MaxSize(MaxORLSize), Ord(RO) {}
384 
385     void insert(unsigned VR);
386     void remove(unsigned VR);
387 
388     unsigned operator[](unsigned Idx) const {
389       assert(Idx < Seq.size());
390       return Seq[Idx];
391     }
392 
393     unsigned size() const {
394       return Seq.size();
395     }
396 
397     using iterator = ListType::iterator;
398     using const_iterator = ListType::const_iterator;
399 
400     iterator begin() { return Seq.begin(); }
401     iterator end() { return Seq.end(); }
402     const_iterator begin() const { return Seq.begin(); }
403     const_iterator end() const { return Seq.end(); }
404 
405     // Convenience function to convert an iterator to the corresponding index.
406     unsigned idx(iterator It) const { return It-begin(); }
407 
408   private:
409     ListType Seq;
410     const RegisterOrdering &Ord;
411   };
412 
413   struct PrintORL {
414     PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
415       : RL(L), TRI(RI) {}
416 
417     friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
418 
419   private:
420     const OrderedRegisterList &RL;
421     const TargetRegisterInfo *TRI;
422   };
423 
424   raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
425     OS << '(';
426     OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
427     for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
428       if (I != B)
429         OS << ", ";
430       OS << printReg(*I, P.TRI);
431     }
432     OS << ')';
433     return OS;
434   }
435 
436 } // end anonymous namespace
437 
438 void OrderedRegisterList::insert(unsigned VR) {
439   iterator L = llvm::lower_bound(Seq, VR, Ord);
440   if (L == Seq.end())
441     Seq.push_back(VR);
442   else
443     Seq.insert(L, VR);
444 
445   unsigned S = Seq.size();
446   if (S > MaxSize)
447     Seq.resize(MaxSize);
448   assert(Seq.size() <= MaxSize);
449 }
450 
451 void OrderedRegisterList::remove(unsigned VR) {
452   iterator L = llvm::lower_bound(Seq, VR, Ord);
453   if (L != Seq.end())
454     Seq.erase(L);
455 }
456 
457 namespace {
458 
459   // A record of the insert form. The fields correspond to the operands
460   // of the "insert" instruction:
461   // ... = insert(SrcR, InsR, #Wdh, #Off)
462   struct IFRecord {
463     IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
464       : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
465 
466     unsigned SrcR, InsR;
467     uint16_t Wdh, Off;
468   };
469 
470   struct PrintIFR {
471     PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
472       : IFR(R), TRI(RI) {}
473 
474   private:
475     friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
476 
477     const IFRecord &IFR;
478     const TargetRegisterInfo *TRI;
479   };
480 
481   raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
482     unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
483     OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
484        << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
485     return OS;
486   }
487 
488   using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
489 
490 } // end anonymous namespace
491 
492 namespace llvm {
493 
494   void initializeHexagonGenInsertPass(PassRegistry&);
495   FunctionPass *createHexagonGenInsert();
496 
497 } // end namespace llvm
498 
499 namespace {
500 
501   class HexagonGenInsert : public MachineFunctionPass {
502   public:
503     static char ID;
504 
505     HexagonGenInsert() : MachineFunctionPass(ID) {
506       initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
507     }
508 
509     StringRef getPassName() const override {
510       return "Hexagon generate \"insert\" instructions";
511     }
512 
513     void getAnalysisUsage(AnalysisUsage &AU) const override {
514       AU.addRequired<MachineDominatorTree>();
515       AU.addPreserved<MachineDominatorTree>();
516       MachineFunctionPass::getAnalysisUsage(AU);
517     }
518 
519     bool runOnMachineFunction(MachineFunction &MF) override;
520 
521   private:
522     using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
523 
524     void buildOrderingMF(RegisterOrdering &RO) const;
525     void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
526     bool isIntClass(const TargetRegisterClass *RC) const;
527     bool isConstant(unsigned VR) const;
528     bool isSmallConstant(unsigned VR) const;
529     bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
530           uint16_t L, uint16_t S) const;
531     bool findSelfReference(unsigned VR) const;
532     bool findNonSelfReference(unsigned VR) const;
533     void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
534     void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
535     unsigned distance(const MachineBasicBlock *FromB,
536           const MachineBasicBlock *ToB, const UnsignedMap &RPO,
537           PairMapType &M) const;
538     unsigned distance(MachineBasicBlock::const_iterator FromI,
539           MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
540           PairMapType &M) const;
541     bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
542     void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
543     void findRemovableRegisters(unsigned VR, IFRecord IF,
544           RegisterSet &RMs) const;
545     void computeRemovableRegisters();
546 
547     void pruneEmptyLists();
548     void pruneCoveredSets(unsigned VR);
549     void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
550     void pruneRegCopies(unsigned VR);
551     void pruneCandidates();
552     void selectCandidates();
553     bool generateInserts();
554 
555     bool removeDeadCode(MachineDomTreeNode *N);
556 
557     // IFRecord coupled with a set of potentially removable registers:
558     using IFListType = std::vector<IFRecordWithRegSet>;
559     using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
560 
561     void dump_map() const;
562 
563     const HexagonInstrInfo *HII = nullptr;
564     const HexagonRegisterInfo *HRI = nullptr;
565 
566     MachineFunction *MFN;
567     MachineRegisterInfo *MRI;
568     MachineDominatorTree *MDT;
569     CellMapShadow *CMS;
570 
571     RegisterOrdering BaseOrd;
572     RegisterOrdering CellOrd;
573     IFMapType IFMap;
574   };
575 
576 } // end anonymous namespace
577 
578 char HexagonGenInsert::ID = 0;
579 
580 void HexagonGenInsert::dump_map() const {
581   using iterator = IFMapType::const_iterator;
582 
583   for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
584     dbgs() << "  " << printReg(I->first, HRI) << ":\n";
585     const IFListType &LL = I->second;
586     for (unsigned i = 0, n = LL.size(); i < n; ++i)
587       dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
588              << PrintRegSet(LL[i].second, HRI) << '\n';
589   }
590 }
591 
592 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
593   unsigned Index = 0;
594 
595   using mf_iterator = MachineFunction::const_iterator;
596 
597   for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
598     const MachineBasicBlock &B = *A;
599     if (!CMS->BT.reached(&B))
600       continue;
601 
602     using mb_iterator = MachineBasicBlock::const_iterator;
603 
604     for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
605       const MachineInstr *MI = &*I;
606       for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
607         const MachineOperand &MO = MI->getOperand(i);
608         if (MO.isReg() && MO.isDef()) {
609           unsigned R = MO.getReg();
610           assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
611           if (TargetRegisterInfo::isVirtualRegister(R))
612             RO.insert(std::make_pair(R, Index++));
613         }
614       }
615     }
616   }
617   // Since some virtual registers may have had their def and uses eliminated,
618   // they are no longer referenced in the code, and so they will not appear
619   // in the map.
620 }
621 
622 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
623       RegisterOrdering &RO) const {
624   // Create a vector of all virtual registers (collect them from the base
625   // ordering RB), and then sort it using the RegisterCell comparator.
626   BitValueOrdering BVO(RB);
627   RegisterCellLexCompare LexCmp(BVO, *CMS);
628 
629   using SortableVectorType = std::vector<unsigned>;
630 
631   SortableVectorType VRs;
632   for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
633     VRs.push_back(I->first);
634   llvm::sort(VRs, LexCmp);
635   // Transfer the results to the outgoing register ordering.
636   for (unsigned i = 0, n = VRs.size(); i < n; ++i)
637     RO.insert(std::make_pair(VRs[i], i));
638 }
639 
640 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
641   return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
642 }
643 
644 bool HexagonGenInsert::isConstant(unsigned VR) const {
645   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
646   uint16_t W = RC.width();
647   for (uint16_t i = 0; i < W; ++i) {
648     const BitTracker::BitValue &BV = RC[i];
649     if (BV.is(0) || BV.is(1))
650       continue;
651     return false;
652   }
653   return true;
654 }
655 
656 bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
657   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
658   uint16_t W = RC.width();
659   if (W > 64)
660     return false;
661   uint64_t V = 0, B = 1;
662   for (uint16_t i = 0; i < W; ++i) {
663     const BitTracker::BitValue &BV = RC[i];
664     if (BV.is(1))
665       V |= B;
666     else if (!BV.is(0))
667       return false;
668     B <<= 1;
669   }
670 
671   // For 32-bit registers, consider: Rd = #s16.
672   if (W == 32)
673     return isInt<16>(V);
674 
675   // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
676   return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
677 }
678 
679 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
680       unsigned InsR, uint16_t L, uint16_t S) const {
681   const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
682   const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
683   const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
684   // Only integet (32-/64-bit) register classes.
685   if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
686     return false;
687   // The "source" register must be of the same class as DstR.
688   if (DstRC != SrcRC)
689     return false;
690   if (DstRC == InsRC)
691     return true;
692   // A 64-bit register can only be generated from other 64-bit registers.
693   if (DstRC == &Hexagon::DoubleRegsRegClass)
694     return false;
695   // Otherwise, the L and S cannot span 32-bit word boundary.
696   if (S < 32 && S+L > 32)
697     return false;
698   return true;
699 }
700 
701 bool HexagonGenInsert::findSelfReference(unsigned VR) const {
702   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
703   for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
704     const BitTracker::BitValue &V = RC[i];
705     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
706       return true;
707   }
708   return false;
709 }
710 
711 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
712   BitTracker::RegisterCell RC = CMS->lookup(VR);
713   for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
714     const BitTracker::BitValue &V = RC[i];
715     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
716       return true;
717   }
718   return false;
719 }
720 
721 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
722       RegisterSet &Defs) const {
723   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
724     const MachineOperand &MO = MI->getOperand(i);
725     if (!MO.isReg() || !MO.isDef())
726       continue;
727     unsigned R = MO.getReg();
728     if (!TargetRegisterInfo::isVirtualRegister(R))
729       continue;
730     Defs.insert(R);
731   }
732 }
733 
734 void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
735       RegisterSet &Uses) const {
736   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
737     const MachineOperand &MO = MI->getOperand(i);
738     if (!MO.isReg() || !MO.isUse())
739       continue;
740     unsigned R = MO.getReg();
741     if (!TargetRegisterInfo::isVirtualRegister(R))
742       continue;
743     Uses.insert(R);
744   }
745 }
746 
747 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
748       const MachineBasicBlock *ToB, const UnsignedMap &RPO,
749       PairMapType &M) const {
750   // Forward distance from the end of a block to the beginning of it does
751   // not make sense. This function should not be called with FromB == ToB.
752   assert(FromB != ToB);
753 
754   unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
755   // If we have already computed it, return the cached result.
756   PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
757   if (F != M.end())
758     return F->second;
759   unsigned ToRPO = RPO.lookup(ToN);
760 
761   unsigned MaxD = 0;
762 
763   using pred_iterator = MachineBasicBlock::const_pred_iterator;
764 
765   for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
766     const MachineBasicBlock *PB = *I;
767     // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
768     // along that path will be 0, and we don't need to do any calculations
769     // on it.
770     if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
771       continue;
772     unsigned D = PB->size() + distance(FromB, PB, RPO, M);
773     if (D > MaxD)
774       MaxD = D;
775   }
776 
777   // Memoize the result for later lookup.
778   M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
779   return MaxD;
780 }
781 
782 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
783       MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
784       PairMapType &M) const {
785   const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
786   if (FB == TB)
787     return std::distance(FromI, ToI);
788   unsigned D1 = std::distance(TB->begin(), ToI);
789   unsigned D2 = distance(FB, TB, RPO, M);
790   unsigned D3 = std::distance(FromI, FB->end());
791   return D1+D2+D3;
792 }
793 
794 bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
795       OrderedRegisterList &AVs) {
796   if (isDebug()) {
797     dbgs() << __func__ << ": " << printReg(VR, HRI)
798            << "  AVs: " << PrintORL(AVs, HRI) << "\n";
799   }
800   if (AVs.size() == 0)
801     return false;
802 
803   using iterator = OrderedRegisterList::iterator;
804 
805   BitValueOrdering BVO(BaseOrd);
806   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
807   uint16_t W = RC.width();
808 
809   using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
810   using RSListType = std::vector<RSRecord>;
811   // Have a map, with key being the matching prefix length, and the value
812   // being the list of pairs (R,S), where R's prefix matches VR at S.
813   // (DenseMap<uint16_t,RSListType> fails to instantiate.)
814   using LRSMapType = DenseMap<unsigned, RSListType>;
815   LRSMapType LM;
816 
817   // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
818   // and find matching prefixes from AVs with the rotated RC. Such a prefix
819   // would match a string of bits (of length L) in RC starting at S.
820   for (uint16_t S = 0; S < W; ++S) {
821     iterator B = AVs.begin(), E = AVs.end();
822     // The registers in AVs are ordered according to the lexical order of
823     // the corresponding register cells. This means that the range of regis-
824     // ters in AVs that match a prefix of length L+1 will be contained in
825     // the range that matches a prefix of length L. This means that we can
826     // keep narrowing the search space as the prefix length goes up. This
827     // helps reduce the overall complexity of the search.
828     uint16_t L;
829     for (L = 0; L < W-S; ++L) {
830       // Compare against VR's bits starting at S, which emulates rotation
831       // of VR by S.
832       RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
833       iterator NewB = std::lower_bound(B, E, VR, RCB);
834       iterator NewE = std::upper_bound(NewB, E, VR, RCB);
835       // For the registers that are eliminated from the next range, L is
836       // the longest prefix matching VR at position S (their prefixes
837       // differ from VR at S+L). If L>0, record this information for later
838       // use.
839       if (L > 0) {
840         for (iterator I = B; I != NewB; ++I)
841           LM[L].push_back(std::make_pair(*I, S));
842         for (iterator I = NewE; I != E; ++I)
843           LM[L].push_back(std::make_pair(*I, S));
844       }
845       B = NewB, E = NewE;
846       if (B == E)
847         break;
848     }
849     // Record the final register range. If this range is non-empty, then
850     // L=W-S.
851     assert(B == E || L == W-S);
852     if (B != E) {
853       for (iterator I = B; I != E; ++I)
854         LM[L].push_back(std::make_pair(*I, S));
855       // If B!=E, then we found a range of registers whose prefixes cover the
856       // rest of VR from position S. There is no need to further advance S.
857       break;
858     }
859   }
860 
861   if (isDebug()) {
862     dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
863     for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
864       dbgs() << "  L=" << I->first << ':';
865       const RSListType &LL = I->second;
866       for (unsigned i = 0, n = LL.size(); i < n; ++i)
867         dbgs() << " (" << printReg(LL[i].first, HRI) << ",@"
868                << LL[i].second << ')';
869       dbgs() << '\n';
870     }
871   }
872 
873   bool Recorded = false;
874 
875   for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
876     unsigned SrcR = *I;
877     int FDi = -1, LDi = -1;   // First/last different bit.
878     const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
879     uint16_t AW = AC.width();
880     for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
881       if (RC[i] == AC[i])
882         continue;
883       if (FDi == -1)
884         FDi = i;
885       LDi = i;
886     }
887     if (FDi == -1)
888       continue;  // TODO (future): Record identical registers.
889     // Look for a register whose prefix could patch the range [FD..LD]
890     // where VR and SrcR differ.
891     uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
892     uint16_t MinL = LD-FD+1;
893     for (uint16_t L = MinL; L < W; ++L) {
894       LRSMapType::iterator F = LM.find(L);
895       if (F == LM.end())
896         continue;
897       RSListType &LL = F->second;
898       for (unsigned i = 0, n = LL.size(); i < n; ++i) {
899         uint16_t S = LL[i].second;
900         // MinL is the minimum length of the prefix. Any length above MinL
901         // allows some flexibility as to where the prefix can start:
902         // given the extra length EL=L-MinL, the prefix must start between
903         // max(0,FD-EL) and FD.
904         if (S > FD)   // Starts too late.
905           continue;
906         uint16_t EL = L-MinL;
907         uint16_t LowS = (EL < FD) ? FD-EL : 0;
908         if (S < LowS) // Starts too early.
909           continue;
910         unsigned InsR = LL[i].first;
911         if (!isValidInsertForm(VR, SrcR, InsR, L, S))
912           continue;
913         if (isDebug()) {
914           dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
915                  << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
916                  << S << ")\n";
917         }
918         IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
919         IFMap[VR].push_back(RR);
920         Recorded = true;
921       }
922     }
923   }
924 
925   return Recorded;
926 }
927 
928 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
929       OrderedRegisterList &AVs) {
930   if (isDebug())
931     dbgs() << "visiting block " << printMBBReference(*B) << "\n";
932 
933   // First, check if this block is reachable at all. If not, the bit tracker
934   // will not have any information about registers in it.
935   if (!CMS->BT.reached(B))
936     return;
937 
938   bool DoConst = OptConst;
939   // Keep a separate set of registers defined in this block, so that we
940   // can remove them from the list of available registers once all DT
941   // successors have been processed.
942   RegisterSet BlockDefs, InsDefs;
943   for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
944     MachineInstr *MI = &*I;
945     InsDefs.clear();
946     getInstrDefs(MI, InsDefs);
947     // Leave those alone. They are more transparent than "insert".
948     bool Skip = MI->isCopy() || MI->isRegSequence();
949 
950     if (!Skip) {
951       // Visit all defined registers, and attempt to find the corresponding
952       // "insert" representations.
953       for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
954         // Do not collect registers that are known to be compile-time cons-
955         // tants, unless requested.
956         if (!DoConst && isConstant(VR))
957           continue;
958         // If VR's cell contains a reference to VR, then VR cannot be defined
959         // via "insert". If VR is a constant that can be generated in a single
960         // instruction (without constant extenders), generating it via insert
961         // makes no sense.
962         if (findSelfReference(VR) || isSmallConstant(VR))
963           continue;
964 
965         findRecordInsertForms(VR, AVs);
966         // Stop if the map size is too large.
967         if (IFMap.size() > MaxIFMSize)
968           return;
969       }
970     }
971 
972     // Insert the defined registers into the list of available registers
973     // after they have been processed.
974     for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
975       AVs.insert(VR);
976     BlockDefs.insert(InsDefs);
977   }
978 
979   for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
980     MachineBasicBlock *SB = DTN->getBlock();
981     collectInBlock(SB, AVs);
982   }
983 
984   for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
985     AVs.remove(VR);
986 }
987 
988 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
989       RegisterSet &RMs) const {
990   // For a given register VR and a insert form, find the registers that are
991   // used by the current definition of VR, and which would no longer be
992   // needed for it after the definition of VR is replaced with the insert
993   // form. These are the registers that could potentially become dead.
994   RegisterSet Regs[2];
995 
996   unsigned S = 0;  // Register set selector.
997   Regs[S].insert(VR);
998 
999   while (!Regs[S].empty()) {
1000     // Breadth-first search.
1001     unsigned OtherS = 1-S;
1002     Regs[OtherS].clear();
1003     for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
1004       Regs[S].remove(R);
1005       if (R == IF.SrcR || R == IF.InsR)
1006         continue;
1007       // Check if a given register has bits that are references to any other
1008       // registers. This is to detect situations where the instruction that
1009       // defines register R takes register Q as an operand, but R itself does
1010       // not contain any bits from Q. Loads are examples of how this could
1011       // happen:
1012       //   R = load Q
1013       // In this case (assuming we do not have any knowledge about the loaded
1014       // value), we must not treat R as a "conveyance" of the bits from Q.
1015       // (The information in BT about R's bits would have them as constants,
1016       // in case of zero-extending loads, or refs to R.)
1017       if (!findNonSelfReference(R))
1018         continue;
1019       RMs.insert(R);
1020       const MachineInstr *DefI = MRI->getVRegDef(R);
1021       assert(DefI);
1022       // Do not iterate past PHI nodes to avoid infinite loops. This can
1023       // make the final set a bit less accurate, but the removable register
1024       // sets are an approximation anyway.
1025       if (DefI->isPHI())
1026         continue;
1027       getInstrUses(DefI, Regs[OtherS]);
1028     }
1029     S = OtherS;
1030   }
1031   // The register VR is added to the list as a side-effect of the algorithm,
1032   // but it is not "potentially removable". A potentially removable register
1033   // is one that may become unused (dead) after conversion to the insert form
1034   // IF, and obviously VR (or its replacement) will not become dead by apply-
1035   // ing IF.
1036   RMs.remove(VR);
1037 }
1038 
1039 void HexagonGenInsert::computeRemovableRegisters() {
1040   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1041     IFListType &LL = I->second;
1042     for (unsigned i = 0, n = LL.size(); i < n; ++i)
1043       findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1044   }
1045 }
1046 
1047 void HexagonGenInsert::pruneEmptyLists() {
1048   // Remove all entries from the map, where the register has no insert forms
1049   // associated with it.
1050   using IterListType = SmallVector<IFMapType::iterator, 16>;
1051   IterListType Prune;
1052   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1053     if (I->second.empty())
1054       Prune.push_back(I);
1055   }
1056   for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1057     IFMap.erase(Prune[i]);
1058 }
1059 
1060 void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1061   IFMapType::iterator F = IFMap.find(VR);
1062   assert(F != IFMap.end());
1063   IFListType &LL = F->second;
1064 
1065   // First, examine the IF candidates for register VR whose removable-regis-
1066   // ter sets are empty. This means that a given candidate will not help eli-
1067   // minate any registers, but since "insert" is not a constant-extendable
1068   // instruction, using such a candidate may reduce code size if the defini-
1069   // tion of VR is constant-extended.
1070   // If there exists a candidate with a non-empty set, the ones with empty
1071   // sets will not be used and can be removed.
1072   MachineInstr *DefVR = MRI->getVRegDef(VR);
1073   bool DefEx = HII->isConstExtended(*DefVR);
1074   bool HasNE = false;
1075   for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1076     if (LL[i].second.empty())
1077       continue;
1078     HasNE = true;
1079     break;
1080   }
1081   if (!DefEx || HasNE) {
1082     // The definition of VR is not constant-extended, or there is a candidate
1083     // with a non-empty set. Remove all candidates with empty sets.
1084     auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1085       return IR.second.empty();
1086     };
1087     auto End = llvm::remove_if(LL, IsEmpty);
1088     if (End != LL.end())
1089       LL.erase(End, LL.end());
1090   } else {
1091     // The definition of VR is constant-extended, and all candidates have
1092     // empty removable-register sets. Pick the maximum candidate, and remove
1093     // all others. The "maximum" does not have any special meaning here, it
1094     // is only so that the candidate that will remain on the list is selec-
1095     // ted deterministically.
1096     IFRecord MaxIF = LL[0].first;
1097     for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1098       // If LL[MaxI] < LL[i], then MaxI = i.
1099       const IFRecord &IF = LL[i].first;
1100       unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1101       unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1102       if (M0 > R0)
1103         continue;
1104       if (M0 == R0) {
1105         if (M1 > R1)
1106           continue;
1107         if (M1 == R1) {
1108           if (MaxIF.Wdh > IF.Wdh)
1109             continue;
1110           if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1111             continue;
1112         }
1113       }
1114       // MaxIF < IF.
1115       MaxIF = IF;
1116     }
1117     // Remove everything except the maximum candidate. All register sets
1118     // are empty, so no need to preserve anything.
1119     LL.clear();
1120     LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1121   }
1122 
1123   // Now, remove those whose sets of potentially removable registers are
1124   // contained in another IF candidate for VR. For example, given these
1125   // candidates for %45,
1126   //   %45:
1127   //     (%44,%41,#9,#8), { %42 }
1128   //     (%43,%41,#9,#8), { %42 %44 }
1129   // remove the first one, since it is contained in the second one.
1130   for (unsigned i = 0, n = LL.size(); i < n; ) {
1131     const RegisterSet &RMi = LL[i].second;
1132     unsigned j = 0;
1133     while (j < n) {
1134       if (j != i && LL[j].second.includes(RMi))
1135         break;
1136       j++;
1137     }
1138     if (j == n) {   // RMi not contained in anything else.
1139       i++;
1140       continue;
1141     }
1142     LL.erase(LL.begin()+i);
1143     n = LL.size();
1144   }
1145 }
1146 
1147 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1148       PairMapType &M) {
1149   IFMapType::iterator F = IFMap.find(VR);
1150   assert(F != IFMap.end());
1151   IFListType &LL = F->second;
1152   unsigned Cutoff = VRegDistCutoff;
1153   const MachineInstr *DefV = MRI->getVRegDef(VR);
1154 
1155   for (unsigned i = LL.size(); i > 0; --i) {
1156     unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1157     const MachineInstr *DefS = MRI->getVRegDef(SR);
1158     const MachineInstr *DefI = MRI->getVRegDef(IR);
1159     unsigned DSV = distance(DefS, DefV, RPO, M);
1160     if (DSV < Cutoff) {
1161       unsigned DIV = distance(DefI, DefV, RPO, M);
1162       if (DIV < Cutoff)
1163         continue;
1164     }
1165     LL.erase(LL.begin()+(i-1));
1166   }
1167 }
1168 
1169 void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1170   IFMapType::iterator F = IFMap.find(VR);
1171   assert(F != IFMap.end());
1172   IFListType &LL = F->second;
1173 
1174   auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1175     return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1176   };
1177   auto End = llvm::remove_if(LL, IsCopy);
1178   if (End != LL.end())
1179     LL.erase(End, LL.end());
1180 }
1181 
1182 void HexagonGenInsert::pruneCandidates() {
1183   // Remove candidates that are not beneficial, regardless of the final
1184   // selection method.
1185   // First, remove candidates whose potentially removable set is a subset
1186   // of another candidate's set.
1187   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1188     pruneCoveredSets(I->first);
1189 
1190   UnsignedMap RPO;
1191 
1192   using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
1193 
1194   RPOTType RPOT(MFN);
1195   unsigned RPON = 0;
1196   for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1197     RPO[(*I)->getNumber()] = RPON++;
1198 
1199   PairMapType Memo; // Memoization map for distance calculation.
1200   // Remove candidates that would use registers defined too far away.
1201   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1202     pruneUsesTooFar(I->first, RPO, Memo);
1203 
1204   pruneEmptyLists();
1205 
1206   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1207     pruneRegCopies(I->first);
1208 }
1209 
1210 namespace {
1211 
1212   // Class for comparing IF candidates for registers that have multiple of
1213   // them. The smaller the candidate, according to this ordering, the better.
1214   // First, compare the number of zeros in the associated potentially remova-
1215   // ble register sets. "Zero" indicates that the register is very likely to
1216   // become dead after this transformation.
1217   // Second, compare "averages", i.e. use-count per size. The lower wins.
1218   // After that, it does not really matter which one is smaller. Resolve
1219   // the tie in some deterministic way.
1220   struct IFOrdering {
1221     IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1222       : UseC(UC), BaseOrd(BO) {}
1223 
1224     bool operator() (const IFRecordWithRegSet &A,
1225                      const IFRecordWithRegSet &B) const;
1226 
1227   private:
1228     void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1229           unsigned &Sum) const;
1230 
1231     const UnsignedMap &UseC;
1232     const RegisterOrdering &BaseOrd;
1233   };
1234 
1235 } // end anonymous namespace
1236 
1237 bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1238       const IFRecordWithRegSet &B) const {
1239   unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1240   unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1241   stats(A.second, SizeA, ZeroA, SumA);
1242   stats(B.second, SizeB, ZeroB, SumB);
1243 
1244   // We will pick the minimum element. The more zeros, the better.
1245   if (ZeroA != ZeroB)
1246     return ZeroA > ZeroB;
1247   // Compare SumA/SizeA with SumB/SizeB, lower is better.
1248   uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1249   if (AvgA != AvgB)
1250     return AvgA < AvgB;
1251 
1252   // The sets compare identical so far. Resort to comparing the IF records.
1253   // The actual values don't matter, this is only for determinism.
1254   unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1255   if (OSA != OSB)
1256     return OSA < OSB;
1257   unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1258   if (OIA != OIB)
1259     return OIA < OIB;
1260   if (A.first.Wdh != B.first.Wdh)
1261     return A.first.Wdh < B.first.Wdh;
1262   return A.first.Off < B.first.Off;
1263 }
1264 
1265 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1266       unsigned &Sum) const {
1267   for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1268     UnsignedMap::const_iterator F = UseC.find(R);
1269     assert(F != UseC.end());
1270     unsigned UC = F->second;
1271     if (UC == 0)
1272       Zero++;
1273     Sum += UC;
1274     Size++;
1275   }
1276 }
1277 
1278 void HexagonGenInsert::selectCandidates() {
1279   // Some registers may have multiple valid candidates. Pick the best one
1280   // (or decide not to use any).
1281 
1282   // Compute the "removability" measure of R:
1283   // For each potentially removable register R, record the number of regis-
1284   // ters with IF candidates, where R appears in at least one set.
1285   RegisterSet AllRMs;
1286   UnsignedMap UseC, RemC;
1287   IFMapType::iterator End = IFMap.end();
1288 
1289   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1290     const IFListType &LL = I->second;
1291     RegisterSet TT;
1292     for (unsigned i = 0, n = LL.size(); i < n; ++i)
1293       TT.insert(LL[i].second);
1294     for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1295       RemC[R]++;
1296     AllRMs.insert(TT);
1297   }
1298 
1299   for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1300     using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
1301     using InstrSet = SmallSet<const MachineInstr *, 16>;
1302 
1303     InstrSet UIs;
1304     // Count as the number of instructions in which R is used, not the
1305     // number of operands.
1306     use_iterator E = MRI->use_nodbg_end();
1307     for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1308       UIs.insert(I->getParent());
1309     unsigned C = UIs.size();
1310     // Calculate a measure, which is the number of instructions using R,
1311     // minus the "removability" count computed earlier.
1312     unsigned D = RemC[R];
1313     UseC[R] = (C > D) ? C-D : 0;  // doz
1314   }
1315 
1316   bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1317   if (!SelectAll0 && !SelectHas0)
1318     SelectAll0 = true;
1319 
1320   // The smaller the number UseC for a given register R, the "less used"
1321   // R is aside from the opportunities for removal offered by generating
1322   // "insert" instructions.
1323   // Iterate over the IF map, and for those registers that have multiple
1324   // candidates, pick the minimum one according to IFOrdering.
1325   IFOrdering IFO(UseC, BaseOrd);
1326   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1327     IFListType &LL = I->second;
1328     if (LL.empty())
1329       continue;
1330     // Get the minimum element, remember it and clear the list. If the
1331     // element found is adequate, we will put it back on the list, other-
1332     // wise the list will remain empty, and the entry for this register
1333     // will be removed (i.e. this register will not be replaced by insert).
1334     IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1335     assert(MinI != LL.end());
1336     IFRecordWithRegSet M = *MinI;
1337     LL.clear();
1338 
1339     // We want to make sure that this replacement will have a chance to be
1340     // beneficial, and that means that we want to have indication that some
1341     // register will be removed. The most likely registers to be eliminated
1342     // are the use operands in the definition of I->first. Accept/reject a
1343     // candidate based on how many of its uses it can potentially eliminate.
1344 
1345     RegisterSet Us;
1346     const MachineInstr *DefI = MRI->getVRegDef(I->first);
1347     getInstrUses(DefI, Us);
1348     bool Accept = false;
1349 
1350     if (SelectAll0) {
1351       bool All0 = true;
1352       for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1353         if (UseC[R] == 0)
1354           continue;
1355         All0 = false;
1356         break;
1357       }
1358       Accept = All0;
1359     } else if (SelectHas0) {
1360       bool Has0 = false;
1361       for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1362         if (UseC[R] != 0)
1363           continue;
1364         Has0 = true;
1365         break;
1366       }
1367       Accept = Has0;
1368     }
1369     if (Accept)
1370       LL.push_back(M);
1371   }
1372 
1373   // Remove candidates that add uses of removable registers, unless the
1374   // removable registers are among replacement candidates.
1375   // Recompute the removable registers, since some candidates may have
1376   // been eliminated.
1377   AllRMs.clear();
1378   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1379     const IFListType &LL = I->second;
1380     if (!LL.empty())
1381       AllRMs.insert(LL[0].second);
1382   }
1383   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1384     IFListType &LL = I->second;
1385     if (LL.empty())
1386       continue;
1387     unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1388     if (AllRMs[SR] || AllRMs[IR])
1389       LL.clear();
1390   }
1391 
1392   pruneEmptyLists();
1393 }
1394 
1395 bool HexagonGenInsert::generateInserts() {
1396   // Create a new register for each one from IFMap, and store them in the
1397   // map.
1398   UnsignedMap RegMap;
1399   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1400     unsigned VR = I->first;
1401     const TargetRegisterClass *RC = MRI->getRegClass(VR);
1402     unsigned NewVR = MRI->createVirtualRegister(RC);
1403     RegMap[VR] = NewVR;
1404   }
1405 
1406   // We can generate the "insert" instructions using potentially stale re-
1407   // gisters: SrcR and InsR for a given VR may be among other registers that
1408   // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1409   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1410     MachineInstr *MI = MRI->getVRegDef(I->first);
1411     MachineBasicBlock &B = *MI->getParent();
1412     DebugLoc DL = MI->getDebugLoc();
1413     unsigned NewR = RegMap[I->first];
1414     bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1415     const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1416                                : HII->get(Hexagon::S2_insertp);
1417     IFRecord IF = I->second[0].first;
1418     unsigned Wdh = IF.Wdh, Off = IF.Off;
1419     unsigned InsS = 0;
1420     if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1421       InsS = Hexagon::isub_lo;
1422       if (Off >= 32) {
1423         InsS = Hexagon::isub_hi;
1424         Off -= 32;
1425       }
1426     }
1427     // Advance to the proper location for inserting instructions. This could
1428     // be B.end().
1429     MachineBasicBlock::iterator At = MI;
1430     if (MI->isPHI())
1431       At = B.getFirstNonPHI();
1432 
1433     BuildMI(B, At, DL, D, NewR)
1434       .addReg(IF.SrcR)
1435       .addReg(IF.InsR, 0, InsS)
1436       .addImm(Wdh)
1437       .addImm(Off);
1438 
1439     MRI->clearKillFlags(IF.SrcR);
1440     MRI->clearKillFlags(IF.InsR);
1441   }
1442 
1443   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1444     MachineInstr *DefI = MRI->getVRegDef(I->first);
1445     MRI->replaceRegWith(I->first, RegMap[I->first]);
1446     DefI->eraseFromParent();
1447   }
1448 
1449   return true;
1450 }
1451 
1452 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1453   bool Changed = false;
1454 
1455   for (auto *DTN : children<MachineDomTreeNode*>(N))
1456     Changed |= removeDeadCode(DTN);
1457 
1458   MachineBasicBlock *B = N->getBlock();
1459   std::vector<MachineInstr*> Instrs;
1460   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1461     Instrs.push_back(&*I);
1462 
1463   for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1464     MachineInstr *MI = *I;
1465     unsigned Opc = MI->getOpcode();
1466     // Do not touch lifetime markers. This is why the target-independent DCE
1467     // cannot be used.
1468     if (Opc == TargetOpcode::LIFETIME_START ||
1469         Opc == TargetOpcode::LIFETIME_END)
1470       continue;
1471     bool Store = false;
1472     if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1473       continue;
1474 
1475     bool AllDead = true;
1476     SmallVector<unsigned,2> Regs;
1477     for (const MachineOperand &MO : MI->operands()) {
1478       if (!MO.isReg() || !MO.isDef())
1479         continue;
1480       unsigned R = MO.getReg();
1481       if (!TargetRegisterInfo::isVirtualRegister(R) ||
1482           !MRI->use_nodbg_empty(R)) {
1483         AllDead = false;
1484         break;
1485       }
1486       Regs.push_back(R);
1487     }
1488     if (!AllDead)
1489       continue;
1490 
1491     B->erase(MI);
1492     for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1493       MRI->markUsesInDebugValueAsUndef(Regs[I]);
1494     Changed = true;
1495   }
1496 
1497   return Changed;
1498 }
1499 
1500 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1501   if (skipFunction(MF.getFunction()))
1502     return false;
1503 
1504   bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1505   bool Changed = false;
1506 
1507   // Sanity check: one, but not both.
1508   assert(!OptSelectAll0 || !OptSelectHas0);
1509 
1510   IFMap.clear();
1511   BaseOrd.clear();
1512   CellOrd.clear();
1513 
1514   const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1515   HII = ST.getInstrInfo();
1516   HRI = ST.getRegisterInfo();
1517   MFN = &MF;
1518   MRI = &MF.getRegInfo();
1519   MDT = &getAnalysis<MachineDominatorTree>();
1520 
1521   // Clean up before any further processing, so that dead code does not
1522   // get used in a newly generated "insert" instruction. Have a custom
1523   // version of DCE that preserves lifetime markers. Without it, merging
1524   // of stack objects can fail to recognize and merge disjoint objects
1525   // leading to unnecessary stack growth.
1526   Changed = removeDeadCode(MDT->getRootNode());
1527 
1528   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1529   BitTracker BTLoc(HE, MF);
1530   BTLoc.trace(isDebug());
1531   BTLoc.run();
1532   CellMapShadow MS(BTLoc);
1533   CMS = &MS;
1534 
1535   buildOrderingMF(BaseOrd);
1536   buildOrderingBT(BaseOrd, CellOrd);
1537 
1538   if (isDebug()) {
1539     dbgs() << "Cell ordering:\n";
1540     for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1541         I != E; ++I) {
1542       unsigned VR = I->first, Pos = I->second;
1543       dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
1544     }
1545   }
1546 
1547   // Collect candidates for conversion into the insert forms.
1548   MachineBasicBlock *RootB = MDT->getRoot();
1549   OrderedRegisterList AvailR(CellOrd);
1550 
1551   const char *const TGName = "hexinsert";
1552   const char *const TGDesc = "Generate Insert Instructions";
1553 
1554   {
1555     NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
1556                         TimingDetail);
1557     collectInBlock(RootB, AvailR);
1558     // Complete the information gathered in IFMap.
1559     computeRemovableRegisters();
1560   }
1561 
1562   if (isDebug()) {
1563     dbgs() << "Candidates after collection:\n";
1564     dump_map();
1565   }
1566 
1567   if (IFMap.empty())
1568     return Changed;
1569 
1570   {
1571     NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
1572     pruneCandidates();
1573   }
1574 
1575   if (isDebug()) {
1576     dbgs() << "Candidates after pruning:\n";
1577     dump_map();
1578   }
1579 
1580   if (IFMap.empty())
1581     return Changed;
1582 
1583   {
1584     NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
1585     selectCandidates();
1586   }
1587 
1588   if (isDebug()) {
1589     dbgs() << "Candidates after selection:\n";
1590     dump_map();
1591   }
1592 
1593   // Filter out vregs beyond the cutoff.
1594   if (VRegIndexCutoff.getPosition()) {
1595     unsigned Cutoff = VRegIndexCutoff;
1596 
1597     using IterListType = SmallVector<IFMapType::iterator, 16>;
1598 
1599     IterListType Out;
1600     for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1601       unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1602       if (Idx >= Cutoff)
1603         Out.push_back(I);
1604     }
1605     for (unsigned i = 0, n = Out.size(); i < n; ++i)
1606       IFMap.erase(Out[i]);
1607   }
1608   if (IFMap.empty())
1609     return Changed;
1610 
1611   {
1612     NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
1613                         TimingDetail);
1614     generateInserts();
1615   }
1616 
1617   return true;
1618 }
1619 
1620 FunctionPass *llvm::createHexagonGenInsert() {
1621   return new HexagonGenInsert();
1622 }
1623 
1624 //===----------------------------------------------------------------------===//
1625 //                         Public Constructor Functions
1626 //===----------------------------------------------------------------------===//
1627 
1628 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1629   "Hexagon generate \"insert\" instructions", false, false)
1630 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1631 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1632   "Hexagon generate \"insert\" instructions", false, false)
1633