1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "HexagonFrameLowering.h" 11 #include "HexagonBlockRanges.h" 12 #include "HexagonInstrInfo.h" 13 #include "HexagonMachineFunctionInfo.h" 14 #include "HexagonRegisterInfo.h" 15 #include "HexagonSubtarget.h" 16 #include "HexagonTargetMachine.h" 17 #include "MCTargetDesc/HexagonBaseInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/CodeGen/LivePhysRegs.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachinePostDominators.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/PseudoSourceValue.h" 40 #include "llvm/CodeGen/RegisterScavenging.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/MC/MCDwarf.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CodeGen.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include "llvm/Target/TargetOptions.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <map> 63 #include <utility> 64 #include <vector> 65 66 #define DEBUG_TYPE "hexagon-pei" 67 68 // Hexagon stack frame layout as defined by the ABI: 69 // 70 // Incoming arguments 71 // passed via stack 72 // | 73 // | 74 // SP during function's FP during function's | 75 // +-- runtime (top of stack) runtime (bottom) --+ | 76 // | | | 77 // --++---------------------+------------------+-----------------++-+------- 78 // | parameter area for | variable-size | fixed-size |LR| arg 79 // | called functions | local objects | local objects |FP| 80 // --+----------------------+------------------+-----------------+--+------- 81 // <- size known -> <- size unknown -> <- size known -> 82 // 83 // Low address High address 84 // 85 // <--- stack growth 86 // 87 // 88 // - In any circumstances, the outgoing function arguments are always accessi- 89 // ble using the SP, and the incoming arguments are accessible using the FP. 90 // - If the local objects are not aligned, they can always be accessed using 91 // the FP. 92 // - If there are no variable-sized objects, the local objects can always be 93 // accessed using the SP, regardless whether they are aligned or not. (The 94 // alignment padding will be at the bottom of the stack (highest address), 95 // and so the offset with respect to the SP will be known at the compile- 96 // -time.) 97 // 98 // The only complication occurs if there are both, local aligned objects, and 99 // dynamically allocated (variable-sized) objects. The alignment pad will be 100 // placed between the FP and the local objects, thus preventing the use of the 101 // FP to access the local objects. At the same time, the variable-sized objects 102 // will be between the SP and the local objects, thus introducing an unknown 103 // distance from the SP to the locals. 104 // 105 // To avoid this problem, a new register is created that holds the aligned 106 // address of the bottom of the stack, referred in the sources as AP (aligned 107 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad 108 // that aligns AP to the required boundary (a maximum of the alignments of 109 // all stack objects, fixed- and variable-sized). All local objects[1] will 110 // then use AP as the base pointer. 111 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get 112 // their name from being allocated at fixed locations on the stack, relative 113 // to the FP. In the presence of dynamic allocation and local alignment, such 114 // objects can only be accessed through the FP. 115 // 116 // Illustration of the AP: 117 // FP --+ 118 // | 119 // ---------------+---------------------+-----+-----------------------++-+-- 120 // Rest of the | Local stack objects | Pad | Fixed stack objects |LR| 121 // stack frame | (aligned) | | (CSR, spills, etc.) |FP| 122 // ---------------+---------------------+-----+-----------------+-----+--+-- 123 // |<-- Multiple of the -->| 124 // stack alignment +-- AP 125 // 126 // The AP is set up at the beginning of the function. Since it is not a dedi- 127 // cated (reserved) register, it needs to be kept live throughout the function 128 // to be available as the base register for local object accesses. 129 // Normally, an address of a stack objects is obtained by a pseudo-instruction 130 // PS_fi. To access local objects with the AP register present, a different 131 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra 132 // argument compared to PS_fi: the first input register is the AP register. 133 // This keeps the register live between its definition and its uses. 134 135 // The AP register is originally set up using pseudo-instruction PS_aligna: 136 // AP = PS_aligna A 137 // where 138 // A - required stack alignment 139 // The alignment value must be the maximum of all alignments required by 140 // any stack object. 141 142 // The dynamic allocation uses a pseudo-instruction PS_alloca: 143 // Rd = PS_alloca Rs, A 144 // where 145 // Rd - address of the allocated space 146 // Rs - minimum size (the actual allocated can be larger to accommodate 147 // alignment) 148 // A - required alignment 149 150 using namespace llvm; 151 152 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret", 153 cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); 154 155 static cl::opt<unsigned> 156 NumberScavengerSlots("number-scavenger-slots", cl::Hidden, 157 cl::desc("Set the number of scavenger slots"), 158 cl::init(2)); 159 160 static cl::opt<int> 161 SpillFuncThreshold("spill-func-threshold", cl::Hidden, 162 cl::desc("Specify O2(not Os) spill func threshold"), 163 cl::init(6)); 164 165 static cl::opt<int> 166 SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden, 167 cl::desc("Specify Os spill func threshold"), 168 cl::init(1)); 169 170 static cl::opt<bool> EnableStackOVFSanitizer( 171 "enable-stackovf-sanitizer", cl::Hidden, 172 cl::desc("Enable runtime checks for stack overflow."), cl::init(false)); 173 174 static cl::opt<bool> 175 EnableShrinkWrapping("hexagon-shrink-frame", cl::init(true), cl::Hidden, 176 cl::desc("Enable stack frame shrink wrapping")); 177 178 static cl::opt<unsigned> 179 ShrinkLimit("shrink-frame-limit", 180 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, 181 cl::desc("Max count of stack frame shrink-wraps")); 182 183 static cl::opt<bool> 184 EnableSaveRestoreLong("enable-save-restore-long", cl::Hidden, 185 cl::desc("Enable long calls for save-restore stubs."), 186 cl::init(false)); 187 188 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true), 189 cl::Hidden, cl::desc("Refrain from using FP whenever possible")); 190 191 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden, 192 cl::init(true), cl::desc("Optimize spill slots")); 193 194 #ifndef NDEBUG 195 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden, 196 cl::init(std::numeric_limits<unsigned>::max())); 197 static unsigned SpillOptCount = 0; 198 #endif 199 200 namespace llvm { 201 202 void initializeHexagonCallFrameInformationPass(PassRegistry&); 203 FunctionPass *createHexagonCallFrameInformation(); 204 205 } // end namespace llvm 206 207 namespace { 208 209 class HexagonCallFrameInformation : public MachineFunctionPass { 210 public: 211 static char ID; 212 213 HexagonCallFrameInformation() : MachineFunctionPass(ID) { 214 PassRegistry &PR = *PassRegistry::getPassRegistry(); 215 initializeHexagonCallFrameInformationPass(PR); 216 } 217 218 bool runOnMachineFunction(MachineFunction &MF) override; 219 220 MachineFunctionProperties getRequiredProperties() const override { 221 return MachineFunctionProperties().set( 222 MachineFunctionProperties::Property::NoVRegs); 223 } 224 }; 225 226 char HexagonCallFrameInformation::ID = 0; 227 228 } // end anonymous namespace 229 230 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { 231 auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); 232 bool NeedCFI = MF.needsFrameMoves(); 233 234 if (!NeedCFI) 235 return false; 236 HFI.insertCFIInstructions(MF); 237 return true; 238 } 239 240 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", 241 "Hexagon call frame information", false, false) 242 243 FunctionPass *llvm::createHexagonCallFrameInformation() { 244 return new HexagonCallFrameInformation(); 245 } 246 247 /// Map a register pair Reg to the subregister that has the greater "number", 248 /// i.e. D3 (aka R7:6) will be mapped to R7, etc. 249 static unsigned getMax32BitSubRegister(unsigned Reg, 250 const TargetRegisterInfo &TRI, 251 bool hireg = true) { 252 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) 253 return Reg; 254 255 unsigned RegNo = 0; 256 for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) { 257 if (hireg) { 258 if (*SubRegs > RegNo) 259 RegNo = *SubRegs; 260 } else { 261 if (!RegNo || *SubRegs < RegNo) 262 RegNo = *SubRegs; 263 } 264 } 265 return RegNo; 266 } 267 268 /// Returns the callee saved register with the largest id in the vector. 269 static unsigned getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI, 270 const TargetRegisterInfo &TRI) { 271 static_assert(Hexagon::R1 > 0, 272 "Assume physical registers are encoded as positive integers"); 273 if (CSI.empty()) 274 return 0; 275 276 unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); 277 for (unsigned I = 1, E = CSI.size(); I < E; ++I) { 278 unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); 279 if (Reg > Max) 280 Max = Reg; 281 } 282 return Max; 283 } 284 285 /// Checks if the basic block contains any instruction that needs a stack 286 /// frame to be already in place. 287 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, 288 const HexagonRegisterInfo &HRI) { 289 for (const MachineInstr &MI : MBB) { 290 if (MI.isCall()) 291 return true; 292 unsigned Opc = MI.getOpcode(); 293 switch (Opc) { 294 case Hexagon::PS_alloca: 295 case Hexagon::PS_aligna: 296 return true; 297 default: 298 break; 299 } 300 // Check individual operands. 301 for (const MachineOperand &MO : MI.operands()) { 302 // While the presence of a frame index does not prove that a stack 303 // frame will be required, all frame indexes should be within alloc- 304 // frame/deallocframe. Otherwise, the code that translates a frame 305 // index into an offset would have to be aware of the placement of 306 // the frame creation/destruction instructions. 307 if (MO.isFI()) 308 return true; 309 if (MO.isReg()) { 310 Register R = MO.getReg(); 311 // Virtual registers will need scavenging, which then may require 312 // a stack slot. 313 if (R.isVirtual()) 314 return true; 315 for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S) 316 if (CSR[*S]) 317 return true; 318 continue; 319 } 320 if (MO.isRegMask()) { 321 // A regmask would normally have all callee-saved registers marked 322 // as preserved, so this check would not be needed, but in case of 323 // ever having other regmasks (for other calling conventions), 324 // make sure they would be processed correctly. 325 const uint32_t *BM = MO.getRegMask(); 326 for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) { 327 unsigned R = x; 328 // If this regmask does not preserve a CSR, a frame will be needed. 329 if (!(BM[R/32] & (1u << (R%32)))) 330 return true; 331 } 332 } 333 } 334 } 335 return false; 336 } 337 338 /// Returns true if MBB has a machine instructions that indicates a tail call 339 /// in the block. 340 static bool hasTailCall(const MachineBasicBlock &MBB) { 341 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 342 if (I == MBB.end()) 343 return false; 344 unsigned RetOpc = I->getOpcode(); 345 return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r; 346 } 347 348 /// Returns true if MBB contains an instruction that returns. 349 static bool hasReturn(const MachineBasicBlock &MBB) { 350 for (const MachineInstr &MI : MBB.terminators()) 351 if (MI.isReturn()) 352 return true; 353 return false; 354 } 355 356 /// Returns the "return" instruction from this block, or nullptr if there 357 /// isn't any. 358 static MachineInstr *getReturn(MachineBasicBlock &MBB) { 359 for (auto &I : MBB) 360 if (I.isReturn()) 361 return &I; 362 return nullptr; 363 } 364 365 static bool isRestoreCall(unsigned Opc) { 366 switch (Opc) { 367 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: 368 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: 369 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT: 370 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC: 371 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT: 372 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC: 373 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: 374 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: 375 return true; 376 } 377 return false; 378 } 379 380 static inline bool isOptNone(const MachineFunction &MF) { 381 return MF.getFunction().hasOptNone() || 382 MF.getTarget().getOptLevel() == CodeGenOpt::None; 383 } 384 385 static inline bool isOptSize(const MachineFunction &MF) { 386 const Function &F = MF.getFunction(); 387 return F.hasOptSize() && !F.hasMinSize(); 388 } 389 390 static inline bool isMinSize(const MachineFunction &MF) { 391 return MF.getFunction().hasMinSize(); 392 } 393 394 /// Implements shrink-wrapping of the stack frame. By default, stack frame 395 /// is created in the function entry block, and is cleaned up in every block 396 /// that returns. This function finds alternate blocks: one for the frame 397 /// setup (prolog) and one for the cleanup (epilog). 398 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, 399 MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { 400 static unsigned ShrinkCounter = 0; 401 402 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() && 403 MF.getFunction().isVarArg()) 404 return; 405 if (ShrinkLimit.getPosition()) { 406 if (ShrinkCounter >= ShrinkLimit) 407 return; 408 ShrinkCounter++; 409 } 410 411 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 412 413 MachineDominatorTree MDT; 414 MDT.runOnMachineFunction(MF); 415 MachinePostDominatorTree MPT; 416 MPT.runOnMachineFunction(MF); 417 418 using UnsignedMap = DenseMap<unsigned, unsigned>; 419 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; 420 421 UnsignedMap RPO; 422 RPOTType RPOT(&MF); 423 unsigned RPON = 0; 424 for (auto &I : RPOT) 425 RPO[I->getNumber()] = RPON++; 426 427 // Don't process functions that have loops, at least for now. Placement 428 // of prolog and epilog must take loop structure into account. For simpli- 429 // city don't do it right now. 430 for (auto &I : MF) { 431 unsigned BN = RPO[I.getNumber()]; 432 for (MachineBasicBlock *Succ : I.successors()) 433 // If found a back-edge, return. 434 if (RPO[Succ->getNumber()] <= BN) 435 return; 436 } 437 438 // Collect the set of blocks that need a stack frame to execute. Scan 439 // each block for uses/defs of callee-saved registers, calls, etc. 440 SmallVector<MachineBasicBlock*,16> SFBlocks; 441 BitVector CSR(Hexagon::NUM_TARGET_REGS); 442 for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) 443 for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S) 444 CSR[*S] = true; 445 446 for (auto &I : MF) 447 if (needsStackFrame(I, CSR, HRI)) 448 SFBlocks.push_back(&I); 449 450 LLVM_DEBUG({ 451 dbgs() << "Blocks needing SF: {"; 452 for (auto &B : SFBlocks) 453 dbgs() << " " << printMBBReference(*B); 454 dbgs() << " }\n"; 455 }); 456 // No frame needed? 457 if (SFBlocks.empty()) 458 return; 459 460 // Pick a common dominator and a common post-dominator. 461 MachineBasicBlock *DomB = SFBlocks[0]; 462 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { 463 DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); 464 if (!DomB) 465 break; 466 } 467 MachineBasicBlock *PDomB = SFBlocks[0]; 468 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { 469 PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); 470 if (!PDomB) 471 break; 472 } 473 LLVM_DEBUG({ 474 dbgs() << "Computed dom block: "; 475 if (DomB) 476 dbgs() << printMBBReference(*DomB); 477 else 478 dbgs() << "<null>"; 479 dbgs() << ", computed pdom block: "; 480 if (PDomB) 481 dbgs() << printMBBReference(*PDomB); 482 else 483 dbgs() << "<null>"; 484 dbgs() << "\n"; 485 }); 486 if (!DomB || !PDomB) 487 return; 488 489 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. 490 if (!MDT.dominates(DomB, PDomB)) { 491 LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); 492 return; 493 } 494 if (!MPT.dominates(PDomB, DomB)) { 495 LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); 496 return; 497 } 498 499 // Finally, everything seems right. 500 PrologB = DomB; 501 EpilogB = PDomB; 502 } 503 504 /// Perform most of the PEI work here: 505 /// - saving/restoring of the callee-saved registers, 506 /// - stack frame creation and destruction. 507 /// Normally, this work is distributed among various functions, but doing it 508 /// in one place allows shrink-wrapping of the stack frame. 509 void HexagonFrameLowering::emitPrologue(MachineFunction &MF, 510 MachineBasicBlock &MBB) const { 511 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 512 513 MachineFrameInfo &MFI = MF.getFrameInfo(); 514 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 515 516 MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; 517 if (EnableShrinkWrapping) 518 findShrunkPrologEpilog(MF, PrologB, EpilogB); 519 520 bool PrologueStubs = false; 521 insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs); 522 insertPrologueInBlock(*PrologB, PrologueStubs); 523 updateEntryPaths(MF, *PrologB); 524 525 if (EpilogB) { 526 insertCSRRestoresInBlock(*EpilogB, CSI, HRI); 527 insertEpilogueInBlock(*EpilogB); 528 } else { 529 for (auto &B : MF) 530 if (B.isReturnBlock()) 531 insertCSRRestoresInBlock(B, CSI, HRI); 532 533 for (auto &B : MF) 534 if (B.isReturnBlock()) 535 insertEpilogueInBlock(B); 536 537 for (auto &B : MF) { 538 if (B.empty()) 539 continue; 540 MachineInstr *RetI = getReturn(B); 541 if (!RetI || isRestoreCall(RetI->getOpcode())) 542 continue; 543 for (auto &R : CSI) 544 RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); 545 } 546 } 547 548 if (EpilogB) { 549 // If there is an epilog block, it may not have a return instruction. 550 // In such case, we need to add the callee-saved registers as live-ins 551 // in all blocks on all paths from the epilog to any return block. 552 unsigned MaxBN = MF.getNumBlockIDs(); 553 BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); 554 updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path); 555 } 556 } 557 558 /// Returns true if the target can safely skip saving callee-saved registers 559 /// for noreturn nounwind functions. 560 bool HexagonFrameLowering::enableCalleeSaveSkip( 561 const MachineFunction &MF) const { 562 const auto &F = MF.getFunction(); 563 assert(F.hasFnAttribute(Attribute::NoReturn) && 564 F.getFunction().hasFnAttribute(Attribute::NoUnwind) && 565 !F.getFunction().hasFnAttribute(Attribute::UWTable)); 566 (void)F; 567 568 // No need to save callee saved registers if the function does not return. 569 return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim(); 570 } 571 572 // Helper function used to determine when to eliminate the stack frame for 573 // functions marked as noreturn and when the noreturn-stack-elim options are 574 // specified. When both these conditions are true, then a FP may not be needed 575 // if the function makes a call. It is very similar to enableCalleeSaveSkip, 576 // but it used to check if the allocframe can be eliminated as well. 577 static bool enableAllocFrameElim(const MachineFunction &MF) { 578 const auto &F = MF.getFunction(); 579 const auto &MFI = MF.getFrameInfo(); 580 const auto &HST = MF.getSubtarget<HexagonSubtarget>(); 581 assert(!MFI.hasVarSizedObjects() && 582 !HST.getRegisterInfo()->hasStackRealignment(MF)); 583 return F.hasFnAttribute(Attribute::NoReturn) && 584 F.hasFnAttribute(Attribute::NoUnwind) && 585 !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() && 586 MFI.getStackSize() == 0; 587 } 588 589 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, 590 bool PrologueStubs) const { 591 MachineFunction &MF = *MBB.getParent(); 592 MachineFrameInfo &MFI = MF.getFrameInfo(); 593 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 594 auto &HII = *HST.getInstrInfo(); 595 auto &HRI = *HST.getRegisterInfo(); 596 597 Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign()); 598 599 // Calculate the total stack frame size. 600 // Get the number of bytes to allocate from the FrameInfo. 601 unsigned FrameSize = MFI.getStackSize(); 602 // Round up the max call frame size to the max alignment on the stack. 603 unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign); 604 MFI.setMaxCallFrameSize(MaxCFA); 605 606 FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign); 607 MFI.setStackSize(FrameSize); 608 609 bool AlignStack = (MaxAlign > getStackAlign()); 610 611 // Get the number of bytes to allocate from the FrameInfo. 612 unsigned NumBytes = MFI.getStackSize(); 613 unsigned SP = HRI.getStackRegister(); 614 unsigned MaxCF = MFI.getMaxCallFrameSize(); 615 MachineBasicBlock::iterator InsertPt = MBB.begin(); 616 617 SmallVector<MachineInstr *, 4> AdjustRegs; 618 for (auto &MBB : MF) 619 for (auto &MI : MBB) 620 if (MI.getOpcode() == Hexagon::PS_alloca) 621 AdjustRegs.push_back(&MI); 622 623 for (auto MI : AdjustRegs) { 624 assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca"); 625 expandAlloca(MI, HII, SP, MaxCF); 626 MI->eraseFromParent(); 627 } 628 629 DebugLoc dl = MBB.findDebugLoc(InsertPt); 630 631 if (MF.getFunction().isVarArg() && 632 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { 633 // Calculate the size of register saved area. 634 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 635 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) 636 ? NumVarArgRegs * 4 637 : NumVarArgRegs * 4 + 4; 638 if (RegisterSavedAreaSizePlusPadding > 0) { 639 // Decrement the stack pointer by size of register saved area plus 640 // padding if any. 641 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 642 .addReg(SP) 643 .addImm(-RegisterSavedAreaSizePlusPadding) 644 .setMIFlag(MachineInstr::FrameSetup); 645 646 int NumBytes = 0; 647 // Copy all the named arguments below register saved area. 648 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 649 for (int i = HMFI.getFirstNamedArgFrameIndex(), 650 e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) { 651 uint64_t ObjSize = MFI.getObjectSize(i); 652 Align ObjAlign = MFI.getObjectAlign(i); 653 654 // Determine the kind of load/store that should be used. 655 unsigned LDOpc, STOpc; 656 uint64_t OpcodeChecker = ObjAlign.value(); 657 658 // Handle cases where alignment of an object is > its size. 659 if (ObjAlign > ObjSize) { 660 if (ObjSize <= 1) 661 OpcodeChecker = 1; 662 else if (ObjSize <= 2) 663 OpcodeChecker = 2; 664 else if (ObjSize <= 4) 665 OpcodeChecker = 4; 666 else if (ObjSize > 4) 667 OpcodeChecker = 8; 668 } 669 670 switch (OpcodeChecker) { 671 case 1: 672 LDOpc = Hexagon::L2_loadrb_io; 673 STOpc = Hexagon::S2_storerb_io; 674 break; 675 case 2: 676 LDOpc = Hexagon::L2_loadrh_io; 677 STOpc = Hexagon::S2_storerh_io; 678 break; 679 case 4: 680 LDOpc = Hexagon::L2_loadri_io; 681 STOpc = Hexagon::S2_storeri_io; 682 break; 683 case 8: 684 default: 685 LDOpc = Hexagon::L2_loadrd_io; 686 STOpc = Hexagon::S2_storerd_io; 687 break; 688 } 689 690 unsigned RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3 691 : Hexagon::R6; 692 int LoadStoreCount = ObjSize / OpcodeChecker; 693 694 if (ObjSize % OpcodeChecker) 695 ++LoadStoreCount; 696 697 // Get the start location of the load. NumBytes is basically the 698 // offset from the stack pointer of previous function, which would be 699 // the caller in this case, as this function has variable argument 700 // list. 701 if (NumBytes != 0) 702 NumBytes = alignTo(NumBytes, ObjAlign); 703 704 int Count = 0; 705 while (Count < LoadStoreCount) { 706 // Load the value of the named argument on stack. 707 BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed) 708 .addReg(SP) 709 .addImm(RegisterSavedAreaSizePlusPadding + 710 ObjAlign.value() * Count + NumBytes) 711 .setMIFlag(MachineInstr::FrameSetup); 712 713 // Store it below the register saved area plus padding. 714 BuildMI(MBB, InsertPt, dl, HII.get(STOpc)) 715 .addReg(SP) 716 .addImm(ObjAlign.value() * Count + NumBytes) 717 .addReg(RegUsed) 718 .setMIFlag(MachineInstr::FrameSetup); 719 720 Count++; 721 } 722 NumBytes += MFI.getObjectSize(i); 723 } 724 725 // Make NumBytes 8 byte aligned 726 NumBytes = alignTo(NumBytes, 8); 727 728 // If the number of registers having variable arguments is odd, 729 // leave 4 bytes of padding to get to the location where first 730 // variable argument which was passed through register was copied. 731 NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4; 732 733 for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) { 734 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io)) 735 .addReg(SP) 736 .addImm(NumBytes + 4 * i) 737 .addReg(Hexagon::R0 + j) 738 .setMIFlag(MachineInstr::FrameSetup); 739 } 740 } 741 } 742 743 if (hasFP(MF)) { 744 insertAllocframe(MBB, InsertPt, NumBytes); 745 if (AlignStack) { 746 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) 747 .addReg(SP) 748 .addImm(-int64_t(MaxAlign.value())); 749 } 750 // If the stack-checking is enabled, and we spilled the callee-saved 751 // registers inline (i.e. did not use a spill function), then call 752 // the stack checker directly. 753 if (EnableStackOVFSanitizer && !PrologueStubs) 754 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk)) 755 .addExternalSymbol("__runtime_stack_check"); 756 } else if (NumBytes > 0) { 757 assert(alignTo(NumBytes, 8) == NumBytes); 758 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 759 .addReg(SP) 760 .addImm(-int(NumBytes)); 761 } 762 } 763 764 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { 765 MachineFunction &MF = *MBB.getParent(); 766 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 767 auto &HII = *HST.getInstrInfo(); 768 auto &HRI = *HST.getRegisterInfo(); 769 unsigned SP = HRI.getStackRegister(); 770 771 MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); 772 DebugLoc dl = MBB.findDebugLoc(InsertPt); 773 774 if (!hasFP(MF)) { 775 MachineFrameInfo &MFI = MF.getFrameInfo(); 776 unsigned NumBytes = MFI.getStackSize(); 777 if (MF.getFunction().isVarArg() && 778 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { 779 // On Hexagon Linux, deallocate the stack for the register saved area. 780 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 781 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? 782 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); 783 NumBytes += RegisterSavedAreaSizePlusPadding; 784 } 785 if (NumBytes) { 786 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 787 .addReg(SP) 788 .addImm(NumBytes); 789 } 790 return; 791 } 792 793 MachineInstr *RetI = getReturn(MBB); 794 unsigned RetOpc = RetI ? RetI->getOpcode() : 0; 795 796 // Handle EH_RETURN. 797 if (RetOpc == Hexagon::EH_RETURN_JMPR) { 798 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 799 .addDef(Hexagon::D15) 800 .addReg(Hexagon::R30); 801 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP) 802 .addReg(SP) 803 .addReg(Hexagon::R28); 804 return; 805 } 806 807 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- 808 // frame instruction if we encounter it. 809 if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || 810 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC || 811 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT || 812 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) { 813 MachineBasicBlock::iterator It = RetI; 814 ++It; 815 // Delete all instructions after the RESTORE (except labels). 816 while (It != MBB.end()) { 817 if (!It->isLabel()) 818 It = MBB.erase(It); 819 else 820 ++It; 821 } 822 return; 823 } 824 825 // It is possible that the restoring code is a call to a library function. 826 // All of the restore* functions include "deallocframe", so we need to make 827 // sure that we don't add an extra one. 828 bool NeedsDeallocframe = true; 829 if (!MBB.empty() && InsertPt != MBB.begin()) { 830 MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); 831 unsigned COpc = PrevIt->getOpcode(); 832 if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || 833 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC || 834 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT || 835 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC || 836 COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr) 837 NeedsDeallocframe = false; 838 } 839 840 if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() || 841 !MF.getFunction().isVarArg()) { 842 if (!NeedsDeallocframe) 843 return; 844 // If the returning instruction is PS_jmpret, replace it with 845 // dealloc_return, otherwise just add deallocframe. The function 846 // could be returning via a tail call. 847 if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) { 848 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 849 .addDef(Hexagon::D15) 850 .addReg(Hexagon::R30); 851 return; 852 } 853 unsigned NewOpc = Hexagon::L4_return; 854 MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc)) 855 .addDef(Hexagon::D15) 856 .addReg(Hexagon::R30); 857 // Transfer the function live-out registers. 858 NewI->copyImplicitOps(MF, *RetI); 859 MBB.erase(RetI); 860 } else { 861 // L2_deallocframe instruction after it. 862 // Calculate the size of register saved area. 863 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 864 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? 865 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); 866 867 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 868 MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end() 869 : std::prev(Term); 870 if (I == MBB.end() || 871 (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT && 872 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC && 873 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 && 874 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC)) 875 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 876 .addDef(Hexagon::D15) 877 .addReg(Hexagon::R30); 878 if (RegisterSavedAreaSizePlusPadding != 0) 879 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 880 .addReg(SP) 881 .addImm(RegisterSavedAreaSizePlusPadding); 882 } 883 } 884 885 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB, 886 MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const { 887 MachineFunction &MF = *MBB.getParent(); 888 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 889 auto &HII = *HST.getInstrInfo(); 890 auto &HRI = *HST.getRegisterInfo(); 891 892 // Check for overflow. 893 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? 894 const unsigned int ALLOCFRAME_MAX = 16384; 895 896 // Create a dummy memory operand to avoid allocframe from being treated as 897 // a volatile memory reference. 898 auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0), 899 MachineMemOperand::MOStore, 4, Align(4)); 900 901 DebugLoc dl = MBB.findDebugLoc(InsertPt); 902 unsigned SP = HRI.getStackRegister(); 903 904 if (NumBytes >= ALLOCFRAME_MAX) { 905 // Emit allocframe(#0). 906 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) 907 .addDef(SP) 908 .addReg(SP) 909 .addImm(0) 910 .addMemOperand(MMO); 911 912 // Subtract the size from the stack pointer. 913 unsigned SP = HRI.getStackRegister(); 914 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 915 .addReg(SP) 916 .addImm(-int(NumBytes)); 917 } else { 918 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) 919 .addDef(SP) 920 .addReg(SP) 921 .addImm(NumBytes) 922 .addMemOperand(MMO); 923 } 924 } 925 926 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF, 927 MachineBasicBlock &SaveB) const { 928 SetVector<unsigned> Worklist; 929 930 MachineBasicBlock &EntryB = MF.front(); 931 Worklist.insert(EntryB.getNumber()); 932 933 unsigned SaveN = SaveB.getNumber(); 934 auto &CSI = MF.getFrameInfo().getCalleeSavedInfo(); 935 936 for (unsigned i = 0; i < Worklist.size(); ++i) { 937 unsigned BN = Worklist[i]; 938 MachineBasicBlock &MBB = *MF.getBlockNumbered(BN); 939 for (auto &R : CSI) 940 if (!MBB.isLiveIn(R.getReg())) 941 MBB.addLiveIn(R.getReg()); 942 if (BN != SaveN) 943 for (auto &SB : MBB.successors()) 944 Worklist.insert(SB->getNumber()); 945 } 946 } 947 948 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, 949 MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF, 950 BitVector &Path) const { 951 assert(MBB.getNumber() >= 0); 952 unsigned BN = MBB.getNumber(); 953 if (Path[BN] || DoneF[BN]) 954 return false; 955 if (DoneT[BN]) 956 return true; 957 958 auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo(); 959 960 Path[BN] = true; 961 bool ReachedExit = false; 962 for (auto &SB : MBB.successors()) 963 ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path); 964 965 if (!MBB.empty() && MBB.back().isReturn()) { 966 // Add implicit uses of all callee-saved registers to the reached 967 // return instructions. This is to prevent the anti-dependency breaker 968 // from renaming these registers. 969 MachineInstr &RetI = MBB.back(); 970 if (!isRestoreCall(RetI.getOpcode())) 971 for (auto &R : CSI) 972 RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); 973 ReachedExit = true; 974 } 975 976 // We don't want to add unnecessary live-ins to the restore block: since 977 // the callee-saved registers are being defined in it, the entry of the 978 // restore block cannot be on the path from the definitions to any exit. 979 if (ReachedExit && &MBB != &RestoreB) { 980 for (auto &R : CSI) 981 if (!MBB.isLiveIn(R.getReg())) 982 MBB.addLiveIn(R.getReg()); 983 DoneT[BN] = true; 984 } 985 if (!ReachedExit) 986 DoneF[BN] = true; 987 988 Path[BN] = false; 989 return ReachedExit; 990 } 991 992 static Optional<MachineBasicBlock::iterator> 993 findCFILocation(MachineBasicBlock &B) { 994 // The CFI instructions need to be inserted right after allocframe. 995 // An exception to this is a situation where allocframe is bundled 996 // with a call: then the CFI instructions need to be inserted before 997 // the packet with the allocframe+call (in case the call throws an 998 // exception). 999 auto End = B.instr_end(); 1000 1001 for (MachineInstr &I : B) { 1002 MachineBasicBlock::iterator It = I.getIterator(); 1003 if (!I.isBundle()) { 1004 if (I.getOpcode() == Hexagon::S2_allocframe) 1005 return std::next(It); 1006 continue; 1007 } 1008 // I is a bundle. 1009 bool HasCall = false, HasAllocFrame = false; 1010 auto T = It.getInstrIterator(); 1011 while (++T != End && T->isBundled()) { 1012 if (T->getOpcode() == Hexagon::S2_allocframe) 1013 HasAllocFrame = true; 1014 else if (T->isCall()) 1015 HasCall = true; 1016 } 1017 if (HasAllocFrame) 1018 return HasCall ? It : std::next(It); 1019 } 1020 return None; 1021 } 1022 1023 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { 1024 for (auto &B : MF) { 1025 auto At = findCFILocation(B); 1026 if (At) 1027 insertCFIInstructionsAt(B, At.value()); 1028 } 1029 } 1030 1031 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, 1032 MachineBasicBlock::iterator At) const { 1033 MachineFunction &MF = *MBB.getParent(); 1034 MachineFrameInfo &MFI = MF.getFrameInfo(); 1035 MachineModuleInfo &MMI = MF.getMMI(); 1036 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1037 auto &HII = *HST.getInstrInfo(); 1038 auto &HRI = *HST.getRegisterInfo(); 1039 1040 // If CFI instructions have debug information attached, something goes 1041 // wrong with the final assembly generation: the prolog_end is placed 1042 // in a wrong location. 1043 DebugLoc DL; 1044 const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); 1045 1046 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 1047 bool HasFP = hasFP(MF); 1048 1049 if (HasFP) { 1050 unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); 1051 unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); 1052 1053 // Define CFA via an offset from the value of FP. 1054 // 1055 // -8 -4 0 (SP) 1056 // --+----+----+--------------------- 1057 // | FP | LR | increasing addresses --> 1058 // --+----+----+--------------------- 1059 // | +-- Old SP (before allocframe) 1060 // +-- New FP (after allocframe) 1061 // 1062 // MCCFIInstruction::cfiDefCfa adds the offset from the register. 1063 // MCCFIInstruction::createOffset takes the offset without sign change. 1064 auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8); 1065 BuildMI(MBB, At, DL, CFID) 1066 .addCFIIndex(MF.addFrameInst(DefCfa)); 1067 // R31 (return addr) = CFA - 4 1068 auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); 1069 BuildMI(MBB, At, DL, CFID) 1070 .addCFIIndex(MF.addFrameInst(OffR31)); 1071 // R30 (frame ptr) = CFA - 8 1072 auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); 1073 BuildMI(MBB, At, DL, CFID) 1074 .addCFIIndex(MF.addFrameInst(OffR30)); 1075 } 1076 1077 static unsigned int RegsToMove[] = { 1078 Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, 1079 Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, 1080 Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, 1081 Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, 1082 Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, 1083 Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, 1084 Hexagon::NoRegister 1085 }; 1086 1087 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1088 1089 for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { 1090 unsigned Reg = RegsToMove[i]; 1091 auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { 1092 return C.getReg() == Reg; 1093 }; 1094 auto F = find_if(CSI, IfR); 1095 if (F == CSI.end()) 1096 continue; 1097 1098 int64_t Offset; 1099 if (HasFP) { 1100 // If the function has a frame pointer (i.e. has an allocframe), 1101 // then the CFA has been defined in terms of FP. Any offsets in 1102 // the following CFI instructions have to be defined relative 1103 // to FP, which points to the bottom of the stack frame. 1104 // The function getFrameIndexReference can still choose to use SP 1105 // for the offset calculation, so we cannot simply call it here. 1106 // Instead, get the offset (relative to the FP) directly. 1107 Offset = MFI.getObjectOffset(F->getFrameIdx()); 1108 } else { 1109 Register FrameReg; 1110 Offset = 1111 getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed(); 1112 } 1113 // Subtract 8 to make room for R30 and R31, which are added above. 1114 Offset -= 8; 1115 1116 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { 1117 unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); 1118 auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, 1119 Offset); 1120 BuildMI(MBB, At, DL, CFID) 1121 .addCFIIndex(MF.addFrameInst(OffReg)); 1122 } else { 1123 // Split the double regs into subregs, and generate appropriate 1124 // cfi_offsets. 1125 // The only reason, we are split double regs is, llvm-mc does not 1126 // understand paired registers for cfi_offset. 1127 // Eg .cfi_offset r1:0, -64 1128 1129 Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi); 1130 Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo); 1131 unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); 1132 unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); 1133 auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, 1134 Offset+4); 1135 BuildMI(MBB, At, DL, CFID) 1136 .addCFIIndex(MF.addFrameInst(OffHi)); 1137 auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, 1138 Offset); 1139 BuildMI(MBB, At, DL, CFID) 1140 .addCFIIndex(MF.addFrameInst(OffLo)); 1141 } 1142 } 1143 } 1144 1145 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { 1146 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1147 return false; 1148 1149 auto &MFI = MF.getFrameInfo(); 1150 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1151 bool HasExtraAlign = HRI.hasStackRealignment(MF); 1152 bool HasAlloca = MFI.hasVarSizedObjects(); 1153 1154 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think 1155 // that this shouldn't be required, but doing so now because gcc does and 1156 // gdb can't break at the start of the function without it. Will remove if 1157 // this turns out to be a gdb bug. 1158 // 1159 if (MF.getTarget().getOptLevel() == CodeGenOpt::None) 1160 return true; 1161 1162 // By default we want to use SP (since it's always there). FP requires 1163 // some setup (i.e. ALLOCFRAME). 1164 // Both, alloca and stack alignment modify the stack pointer by an 1165 // undetermined value, so we need to save it at the entry to the function 1166 // (i.e. use allocframe). 1167 if (HasAlloca || HasExtraAlign) 1168 return true; 1169 1170 if (MFI.getStackSize() > 0) { 1171 // If FP-elimination is disabled, we have to use FP at this point. 1172 const TargetMachine &TM = MF.getTarget(); 1173 if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer) 1174 return true; 1175 if (EnableStackOVFSanitizer) 1176 return true; 1177 } 1178 1179 const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1180 if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR()) 1181 return true; 1182 1183 return false; 1184 } 1185 1186 enum SpillKind { 1187 SK_ToMem, 1188 SK_FromMem, 1189 SK_FromMemTailcall 1190 }; 1191 1192 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType, 1193 bool Stkchk = false) { 1194 const char * V4SpillToMemoryFunctions[] = { 1195 "__save_r16_through_r17", 1196 "__save_r16_through_r19", 1197 "__save_r16_through_r21", 1198 "__save_r16_through_r23", 1199 "__save_r16_through_r25", 1200 "__save_r16_through_r27" }; 1201 1202 const char * V4SpillToMemoryStkchkFunctions[] = { 1203 "__save_r16_through_r17_stkchk", 1204 "__save_r16_through_r19_stkchk", 1205 "__save_r16_through_r21_stkchk", 1206 "__save_r16_through_r23_stkchk", 1207 "__save_r16_through_r25_stkchk", 1208 "__save_r16_through_r27_stkchk" }; 1209 1210 const char * V4SpillFromMemoryFunctions[] = { 1211 "__restore_r16_through_r17_and_deallocframe", 1212 "__restore_r16_through_r19_and_deallocframe", 1213 "__restore_r16_through_r21_and_deallocframe", 1214 "__restore_r16_through_r23_and_deallocframe", 1215 "__restore_r16_through_r25_and_deallocframe", 1216 "__restore_r16_through_r27_and_deallocframe" }; 1217 1218 const char * V4SpillFromMemoryTailcallFunctions[] = { 1219 "__restore_r16_through_r17_and_deallocframe_before_tailcall", 1220 "__restore_r16_through_r19_and_deallocframe_before_tailcall", 1221 "__restore_r16_through_r21_and_deallocframe_before_tailcall", 1222 "__restore_r16_through_r23_and_deallocframe_before_tailcall", 1223 "__restore_r16_through_r25_and_deallocframe_before_tailcall", 1224 "__restore_r16_through_r27_and_deallocframe_before_tailcall" 1225 }; 1226 1227 const char **SpillFunc = nullptr; 1228 1229 switch(SpillType) { 1230 case SK_ToMem: 1231 SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions 1232 : V4SpillToMemoryFunctions; 1233 break; 1234 case SK_FromMem: 1235 SpillFunc = V4SpillFromMemoryFunctions; 1236 break; 1237 case SK_FromMemTailcall: 1238 SpillFunc = V4SpillFromMemoryTailcallFunctions; 1239 break; 1240 } 1241 assert(SpillFunc && "Unknown spill kind"); 1242 1243 // Spill all callee-saved registers up to the highest register used. 1244 switch (MaxReg) { 1245 case Hexagon::R17: 1246 return SpillFunc[0]; 1247 case Hexagon::R19: 1248 return SpillFunc[1]; 1249 case Hexagon::R21: 1250 return SpillFunc[2]; 1251 case Hexagon::R23: 1252 return SpillFunc[3]; 1253 case Hexagon::R25: 1254 return SpillFunc[4]; 1255 case Hexagon::R27: 1256 return SpillFunc[5]; 1257 default: 1258 llvm_unreachable("Unhandled maximum callee save register"); 1259 } 1260 return nullptr; 1261 } 1262 1263 StackOffset 1264 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1265 Register &FrameReg) const { 1266 auto &MFI = MF.getFrameInfo(); 1267 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1268 1269 int Offset = MFI.getObjectOffset(FI); 1270 bool HasAlloca = MFI.hasVarSizedObjects(); 1271 bool HasExtraAlign = HRI.hasStackRealignment(MF); 1272 bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None; 1273 1274 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1275 unsigned FrameSize = MFI.getStackSize(); 1276 Register SP = HRI.getStackRegister(); 1277 Register FP = HRI.getFrameRegister(); 1278 Register AP = HMFI.getStackAlignBasePhysReg(); 1279 // It may happen that AP will be absent even HasAlloca && HasExtraAlign 1280 // is true. HasExtraAlign may be set because of vector spills, without 1281 // aligned locals or aligned outgoing function arguments. Since vector 1282 // spills will ultimately be "unaligned", it is safe to use FP as the 1283 // base register. 1284 // In fact, in such a scenario the stack is actually not required to be 1285 // aligned, although it may end up being aligned anyway, since this 1286 // particular case is not easily detectable. The alignment will be 1287 // unnecessary, but not incorrect. 1288 // Unfortunately there is no quick way to verify that the above is 1289 // indeed the case (and that it's not a result of an error), so just 1290 // assume that missing AP will be replaced by FP. 1291 // (A better fix would be to rematerialize AP from FP and always align 1292 // vector spills.) 1293 if (AP == 0) 1294 AP = FP; 1295 1296 bool UseFP = false, UseAP = false; // Default: use SP (except at -O0). 1297 // Use FP at -O0, except when there are objects with extra alignment. 1298 // That additional alignment requirement may cause a pad to be inserted, 1299 // which will make it impossible to use FP to access objects located 1300 // past the pad. 1301 if (NoOpt && !HasExtraAlign) 1302 UseFP = true; 1303 if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { 1304 // Fixed and preallocated objects will be located before any padding 1305 // so FP must be used to access them. 1306 UseFP |= (HasAlloca || HasExtraAlign); 1307 } else { 1308 if (HasAlloca) { 1309 if (HasExtraAlign) 1310 UseAP = true; 1311 else 1312 UseFP = true; 1313 } 1314 } 1315 1316 // If FP was picked, then there had better be FP. 1317 bool HasFP = hasFP(MF); 1318 assert((HasFP || !UseFP) && "This function must have frame pointer"); 1319 1320 // Having FP implies allocframe. Allocframe will store extra 8 bytes: 1321 // FP/LR. If the base register is used to access an object across these 1322 // 8 bytes, then the offset will need to be adjusted by 8. 1323 // 1324 // After allocframe: 1325 // HexagonISelLowering adds 8 to ---+ 1326 // the offsets of all stack-based | 1327 // arguments (*) | 1328 // | 1329 // getObjectOffset < 0 0 8 getObjectOffset >= 8 1330 // ------------------------+-----+------------------------> increasing 1331 // <local objects> |FP/LR| <input arguments> addresses 1332 // -----------------+------+-----+------------------------> 1333 // | | 1334 // SP/AP point --+ +-- FP points here (**) 1335 // somewhere on 1336 // this side of FP/LR 1337 // 1338 // (*) See LowerFormalArguments. The FP/LR is assumed to be present. 1339 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. 1340 1341 // The lowering assumes that FP/LR is present, and so the offsets of 1342 // the formal arguments start at 8. If FP/LR is not there we need to 1343 // reduce the offset by 8. 1344 if (Offset > 0 && !HasFP) 1345 Offset -= 8; 1346 1347 if (UseFP) 1348 FrameReg = FP; 1349 else if (UseAP) 1350 FrameReg = AP; 1351 else 1352 FrameReg = SP; 1353 1354 // Calculate the actual offset in the instruction. If there is no FP 1355 // (in other words, no allocframe), then SP will not be adjusted (i.e. 1356 // there will be no SP -= FrameSize), so the frame size should not be 1357 // added to the calculated offset. 1358 int RealOffset = Offset; 1359 if (!UseFP && !UseAP) 1360 RealOffset = FrameSize+Offset; 1361 return StackOffset::getFixed(RealOffset); 1362 } 1363 1364 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, 1365 const CSIVect &CSI, const HexagonRegisterInfo &HRI, 1366 bool &PrologueStubs) const { 1367 if (CSI.empty()) 1368 return true; 1369 1370 MachineBasicBlock::iterator MI = MBB.begin(); 1371 PrologueStubs = false; 1372 MachineFunction &MF = *MBB.getParent(); 1373 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1374 auto &HII = *HST.getInstrInfo(); 1375 1376 if (useSpillFunction(MF, CSI)) { 1377 PrologueStubs = true; 1378 unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI); 1379 bool StkOvrFlowEnabled = EnableStackOVFSanitizer; 1380 const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem, 1381 StkOvrFlowEnabled); 1382 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); 1383 bool IsPIC = HTM.isPositionIndependent(); 1384 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; 1385 1386 // Call spill function. 1387 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1388 unsigned SpillOpc; 1389 if (StkOvrFlowEnabled) { 1390 if (LongCalls) 1391 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC 1392 : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT; 1393 else 1394 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC 1395 : Hexagon::SAVE_REGISTERS_CALL_V4STK; 1396 } else { 1397 if (LongCalls) 1398 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC 1399 : Hexagon::SAVE_REGISTERS_CALL_V4_EXT; 1400 else 1401 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC 1402 : Hexagon::SAVE_REGISTERS_CALL_V4; 1403 } 1404 1405 MachineInstr *SaveRegsCall = 1406 BuildMI(MBB, MI, DL, HII.get(SpillOpc)) 1407 .addExternalSymbol(SpillFun); 1408 1409 // Add callee-saved registers as use. 1410 addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true); 1411 // Add live in registers. 1412 for (const CalleeSavedInfo &I : CSI) 1413 MBB.addLiveIn(I.getReg()); 1414 return true; 1415 } 1416 1417 for (const CalleeSavedInfo &I : CSI) { 1418 Register Reg = I.getReg(); 1419 // Add live in registers. We treat eh_return callee saved register r0 - r3 1420 // specially. They are not really callee saved registers as they are not 1421 // supposed to be killed. 1422 bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); 1423 int FI = I.getFrameIdx(); 1424 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); 1425 HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI); 1426 if (IsKill) 1427 MBB.addLiveIn(Reg); 1428 } 1429 return true; 1430 } 1431 1432 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, 1433 const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { 1434 if (CSI.empty()) 1435 return false; 1436 1437 MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); 1438 MachineFunction &MF = *MBB.getParent(); 1439 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1440 auto &HII = *HST.getInstrInfo(); 1441 1442 if (useRestoreFunction(MF, CSI)) { 1443 bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); 1444 unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI); 1445 SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; 1446 const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); 1447 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); 1448 bool IsPIC = HTM.isPositionIndependent(); 1449 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; 1450 1451 // Call spill function. 1452 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() 1453 : MBB.findDebugLoc(MBB.end()); 1454 MachineInstr *DeallocCall = nullptr; 1455 1456 if (HasTC) { 1457 unsigned RetOpc; 1458 if (LongCalls) 1459 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC 1460 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT; 1461 else 1462 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC 1463 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; 1464 DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc)) 1465 .addExternalSymbol(RestoreFn); 1466 } else { 1467 // The block has a return. 1468 MachineBasicBlock::iterator It = MBB.getFirstTerminator(); 1469 assert(It->isReturn() && std::next(It) == MBB.end()); 1470 unsigned RetOpc; 1471 if (LongCalls) 1472 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC 1473 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT; 1474 else 1475 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC 1476 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; 1477 DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc)) 1478 .addExternalSymbol(RestoreFn); 1479 // Transfer the function live-out registers. 1480 DeallocCall->copyImplicitOps(MF, *It); 1481 } 1482 addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false); 1483 return true; 1484 } 1485 1486 for (const CalleeSavedInfo &I : CSI) { 1487 Register Reg = I.getReg(); 1488 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); 1489 int FI = I.getFrameIdx(); 1490 HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI); 1491 } 1492 1493 return true; 1494 } 1495 1496 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( 1497 MachineFunction &MF, MachineBasicBlock &MBB, 1498 MachineBasicBlock::iterator I) const { 1499 MachineInstr &MI = *I; 1500 unsigned Opc = MI.getOpcode(); 1501 (void)Opc; // Silence compiler warning. 1502 assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && 1503 "Cannot handle this call frame pseudo instruction"); 1504 return MBB.erase(I); 1505 } 1506 1507 void HexagonFrameLowering::processFunctionBeforeFrameFinalized( 1508 MachineFunction &MF, RegScavenger *RS) const { 1509 // If this function has uses aligned stack and also has variable sized stack 1510 // objects, then we need to map all spill slots to fixed positions, so that 1511 // they can be accessed through FP. Otherwise they would have to be accessed 1512 // via AP, which may not be available at the particular place in the program. 1513 MachineFrameInfo &MFI = MF.getFrameInfo(); 1514 bool HasAlloca = MFI.hasVarSizedObjects(); 1515 bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign()); 1516 1517 if (!HasAlloca || !NeedsAlign) 1518 return; 1519 1520 SmallSet<int, 4> DealignSlots; 1521 unsigned LFS = MFI.getLocalFrameSize(); 1522 for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) { 1523 if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i)) 1524 continue; 1525 unsigned S = MFI.getObjectSize(i); 1526 // Reduce the alignment to at most 8. This will require unaligned vector 1527 // stores if they happen here. 1528 Align A = std::max(MFI.getObjectAlign(i), Align(8)); 1529 MFI.setObjectAlignment(i, Align(8)); 1530 LFS = alignTo(LFS+S, A); 1531 MFI.mapLocalFrameObject(i, -static_cast<int64_t>(LFS)); 1532 DealignSlots.insert(i); 1533 } 1534 1535 MFI.setLocalFrameSize(LFS); 1536 Align A = MFI.getLocalFrameMaxAlign(); 1537 assert(A <= 8 && "Unexpected local frame alignment"); 1538 if (A == 1) 1539 MFI.setLocalFrameMaxAlign(Align(8)); 1540 MFI.setUseLocalStackAllocationBlock(true); 1541 1542 // Go over all MachineMemOperands in the code, and change the ones that 1543 // refer to the dealigned stack slots to reflect the new alignment. 1544 if (!DealignSlots.empty()) { 1545 for (MachineBasicBlock &BB : MF) { 1546 for (MachineInstr &MI : BB) { 1547 bool KeepOld = true; 1548 ArrayRef<MachineMemOperand*> memops = MI.memoperands(); 1549 SmallVector<MachineMemOperand*,1> new_memops; 1550 for (MachineMemOperand *MMO : memops) { 1551 auto *PV = MMO->getPseudoValue(); 1552 if (auto *FS = dyn_cast_or_null<FixedStackPseudoSourceValue>(PV)) { 1553 int FI = FS->getFrameIndex(); 1554 if (DealignSlots.count(FI)) { 1555 auto *NewMMO = MF.getMachineMemOperand( 1556 MMO->getPointerInfo(), MMO->getFlags(), MMO->getSize(), 1557 MFI.getObjectAlign(FI), MMO->getAAInfo(), MMO->getRanges(), 1558 MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 1559 MMO->getFailureOrdering()); 1560 new_memops.push_back(NewMMO); 1561 KeepOld = false; 1562 continue; 1563 } 1564 } 1565 new_memops.push_back(MMO); 1566 } 1567 if (!KeepOld) 1568 MI.setMemRefs(MF, new_memops); 1569 } 1570 } 1571 } 1572 1573 // Set the physical aligned-stack base address register. 1574 unsigned AP = 0; 1575 if (const MachineInstr *AI = getAlignaInstr(MF)) 1576 AP = AI->getOperand(0).getReg(); 1577 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1578 HMFI.setStackAlignBasePhysReg(AP); 1579 } 1580 1581 /// Returns true if there are no caller-saved registers available in class RC. 1582 static bool needToReserveScavengingSpillSlots(MachineFunction &MF, 1583 const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { 1584 MachineRegisterInfo &MRI = MF.getRegInfo(); 1585 1586 auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool { 1587 for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) 1588 if (MRI.isPhysRegUsed(*AI)) 1589 return true; 1590 return false; 1591 }; 1592 1593 // Check for an unused caller-saved register. Callee-saved registers 1594 // have become pristine by now. 1595 for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P) 1596 if (!IsUsed(*P)) 1597 return false; 1598 1599 // All caller-saved registers are used. 1600 return true; 1601 } 1602 1603 #ifndef NDEBUG 1604 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { 1605 dbgs() << '{'; 1606 for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { 1607 unsigned R = x; 1608 dbgs() << ' ' << printReg(R, &TRI); 1609 } 1610 dbgs() << " }"; 1611 } 1612 #endif 1613 1614 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, 1615 const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { 1616 LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n'); 1617 MachineFrameInfo &MFI = MF.getFrameInfo(); 1618 BitVector SRegs(Hexagon::NUM_TARGET_REGS); 1619 1620 // Generate a set of unique, callee-saved registers (SRegs), where each 1621 // register in the set is maximal in terms of sub-/super-register relation, 1622 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. 1623 1624 // (1) For each callee-saved register, add that register and all of its 1625 // sub-registers to SRegs. 1626 LLVM_DEBUG(dbgs() << "Initial CS registers: {"); 1627 for (const CalleeSavedInfo &I : CSI) { 1628 Register R = I.getReg(); 1629 LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI)); 1630 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) 1631 SRegs[*SR] = true; 1632 } 1633 LLVM_DEBUG(dbgs() << " }\n"); 1634 LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); 1635 dbgs() << "\n"); 1636 1637 // (2) For each reserved register, remove that register and all of its 1638 // sub- and super-registers from SRegs. 1639 BitVector Reserved = TRI->getReservedRegs(MF); 1640 for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { 1641 unsigned R = x; 1642 for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR) 1643 SRegs[*SR] = false; 1644 } 1645 LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); 1646 dbgs() << "\n"); 1647 LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); 1648 dbgs() << "\n"); 1649 1650 // (3) Collect all registers that have at least one sub-register in SRegs, 1651 // and also have no sub-registers that are reserved. These will be the can- 1652 // didates for saving as a whole instead of their individual sub-registers. 1653 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) 1654 BitVector TmpSup(Hexagon::NUM_TARGET_REGS); 1655 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1656 unsigned R = x; 1657 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) 1658 TmpSup[*SR] = true; 1659 } 1660 for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { 1661 unsigned R = x; 1662 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) { 1663 if (!Reserved[*SR]) 1664 continue; 1665 TmpSup[R] = false; 1666 break; 1667 } 1668 } 1669 LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); 1670 dbgs() << "\n"); 1671 1672 // (4) Include all super-registers found in (3) into SRegs. 1673 SRegs |= TmpSup; 1674 LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); 1675 dbgs() << "\n"); 1676 1677 // (5) For each register R in SRegs, if any super-register of R is in SRegs, 1678 // remove R from SRegs. 1679 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1680 unsigned R = x; 1681 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) { 1682 if (!SRegs[*SR]) 1683 continue; 1684 SRegs[R] = false; 1685 break; 1686 } 1687 } 1688 LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); 1689 dbgs() << "\n"); 1690 1691 // Now, for each register that has a fixed stack slot, create the stack 1692 // object for it. 1693 CSI.clear(); 1694 1695 using SpillSlot = TargetFrameLowering::SpillSlot; 1696 1697 unsigned NumFixed; 1698 int MinOffset = 0; // CS offsets are negative. 1699 const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); 1700 for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { 1701 if (!SRegs[S->Reg]) 1702 continue; 1703 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); 1704 int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset); 1705 MinOffset = std::min(MinOffset, S->Offset); 1706 CSI.push_back(CalleeSavedInfo(S->Reg, FI)); 1707 SRegs[S->Reg] = false; 1708 } 1709 1710 // There can be some registers that don't have fixed slots. For example, 1711 // we need to store R0-R3 in functions with exception handling. For each 1712 // such register, create a non-fixed stack object. 1713 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1714 unsigned R = x; 1715 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); 1716 unsigned Size = TRI->getSpillSize(*RC); 1717 int Off = MinOffset - Size; 1718 Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign()); 1719 Off &= -Alignment.value(); 1720 int FI = MFI.CreateFixedSpillStackObject(Size, Off); 1721 MinOffset = std::min(MinOffset, Off); 1722 CSI.push_back(CalleeSavedInfo(R, FI)); 1723 SRegs[R] = false; 1724 } 1725 1726 LLVM_DEBUG({ 1727 dbgs() << "CS information: {"; 1728 for (const CalleeSavedInfo &I : CSI) { 1729 int FI = I.getFrameIdx(); 1730 int Off = MFI.getObjectOffset(FI); 1731 dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp"; 1732 if (Off >= 0) 1733 dbgs() << '+'; 1734 dbgs() << Off; 1735 } 1736 dbgs() << " }\n"; 1737 }); 1738 1739 #ifndef NDEBUG 1740 // Verify that all registers were handled. 1741 bool MissedReg = false; 1742 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1743 unsigned R = x; 1744 dbgs() << printReg(R, TRI) << ' '; 1745 MissedReg = true; 1746 } 1747 if (MissedReg) 1748 llvm_unreachable("...there are unhandled callee-saved registers!"); 1749 #endif 1750 1751 return true; 1752 } 1753 1754 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, 1755 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1756 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1757 MachineInstr *MI = &*It; 1758 DebugLoc DL = MI->getDebugLoc(); 1759 Register DstR = MI->getOperand(0).getReg(); 1760 Register SrcR = MI->getOperand(1).getReg(); 1761 if (!Hexagon::ModRegsRegClass.contains(DstR) || 1762 !Hexagon::ModRegsRegClass.contains(SrcR)) 1763 return false; 1764 1765 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1766 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1)); 1767 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR) 1768 .addReg(TmpR, RegState::Kill); 1769 1770 NewRegs.push_back(TmpR); 1771 B.erase(It); 1772 return true; 1773 } 1774 1775 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, 1776 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1777 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1778 MachineInstr *MI = &*It; 1779 if (!MI->getOperand(0).isFI()) 1780 return false; 1781 1782 DebugLoc DL = MI->getDebugLoc(); 1783 unsigned Opc = MI->getOpcode(); 1784 Register SrcR = MI->getOperand(2).getReg(); 1785 bool IsKill = MI->getOperand(2).isKill(); 1786 int FI = MI->getOperand(0).getIndex(); 1787 1788 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register 1789 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register 1790 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1791 unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr 1792 : Hexagon::A2_tfrcrr; 1793 BuildMI(B, It, DL, HII.get(TfrOpc), TmpR) 1794 .addReg(SrcR, getKillRegState(IsKill)); 1795 1796 // S2_storeri_io FI, 0, TmpR 1797 BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io)) 1798 .addFrameIndex(FI) 1799 .addImm(0) 1800 .addReg(TmpR, RegState::Kill) 1801 .cloneMemRefs(*MI); 1802 1803 NewRegs.push_back(TmpR); 1804 B.erase(It); 1805 return true; 1806 } 1807 1808 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, 1809 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1810 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1811 MachineInstr *MI = &*It; 1812 if (!MI->getOperand(1).isFI()) 1813 return false; 1814 1815 DebugLoc DL = MI->getDebugLoc(); 1816 unsigned Opc = MI->getOpcode(); 1817 Register DstR = MI->getOperand(0).getReg(); 1818 int FI = MI->getOperand(1).getIndex(); 1819 1820 // TmpR = L2_loadri_io FI, 0 1821 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1822 BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR) 1823 .addFrameIndex(FI) 1824 .addImm(0) 1825 .cloneMemRefs(*MI); 1826 1827 // DstR = C2_tfrrp TmpR if DstR is a predicate register 1828 // DstR = A2_tfrrcr TmpR if DstR is a modifier register 1829 unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp 1830 : Hexagon::A2_tfrrcr; 1831 BuildMI(B, It, DL, HII.get(TfrOpc), DstR) 1832 .addReg(TmpR, RegState::Kill); 1833 1834 NewRegs.push_back(TmpR); 1835 B.erase(It); 1836 return true; 1837 } 1838 1839 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, 1840 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1841 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1842 MachineInstr *MI = &*It; 1843 if (!MI->getOperand(0).isFI()) 1844 return false; 1845 1846 DebugLoc DL = MI->getDebugLoc(); 1847 Register SrcR = MI->getOperand(2).getReg(); 1848 bool IsKill = MI->getOperand(2).isKill(); 1849 int FI = MI->getOperand(0).getIndex(); 1850 auto *RC = &Hexagon::HvxVRRegClass; 1851 1852 // Insert transfer to general vector register. 1853 // TmpR0 = A2_tfrsi 0x01010101 1854 // TmpR1 = V6_vandqrt Qx, TmpR0 1855 // store FI, 0, TmpR1 1856 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1857 Register TmpR1 = MRI.createVirtualRegister(RC); 1858 1859 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) 1860 .addImm(0x01010101); 1861 1862 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1) 1863 .addReg(SrcR, getKillRegState(IsKill)) 1864 .addReg(TmpR0, RegState::Kill); 1865 1866 auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1867 HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI); 1868 expandStoreVec(B, std::prev(It), MRI, HII, NewRegs); 1869 1870 NewRegs.push_back(TmpR0); 1871 NewRegs.push_back(TmpR1); 1872 B.erase(It); 1873 return true; 1874 } 1875 1876 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, 1877 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1878 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1879 MachineInstr *MI = &*It; 1880 if (!MI->getOperand(1).isFI()) 1881 return false; 1882 1883 DebugLoc DL = MI->getDebugLoc(); 1884 Register DstR = MI->getOperand(0).getReg(); 1885 int FI = MI->getOperand(1).getIndex(); 1886 auto *RC = &Hexagon::HvxVRRegClass; 1887 1888 // TmpR0 = A2_tfrsi 0x01010101 1889 // TmpR1 = load FI, 0 1890 // DstR = V6_vandvrt TmpR1, TmpR0 1891 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1892 Register TmpR1 = MRI.createVirtualRegister(RC); 1893 1894 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) 1895 .addImm(0x01010101); 1896 MachineFunction &MF = *B.getParent(); 1897 auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1898 HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI); 1899 expandLoadVec(B, std::prev(It), MRI, HII, NewRegs); 1900 1901 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR) 1902 .addReg(TmpR1, RegState::Kill) 1903 .addReg(TmpR0, RegState::Kill); 1904 1905 NewRegs.push_back(TmpR0); 1906 NewRegs.push_back(TmpR1); 1907 B.erase(It); 1908 return true; 1909 } 1910 1911 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, 1912 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1913 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1914 MachineFunction &MF = *B.getParent(); 1915 auto &MFI = MF.getFrameInfo(); 1916 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1917 MachineInstr *MI = &*It; 1918 if (!MI->getOperand(0).isFI()) 1919 return false; 1920 1921 // It is possible that the double vector being stored is only partially 1922 // defined. From the point of view of the liveness tracking, it is ok to 1923 // store it as a whole, but if we break it up we may end up storing a 1924 // register that is entirely undefined. 1925 LivePhysRegs LPR(HRI); 1926 LPR.addLiveIns(B); 1927 SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; 1928 for (auto R = B.begin(); R != It; ++R) { 1929 Clobbers.clear(); 1930 LPR.stepForward(*R, Clobbers); 1931 } 1932 1933 DebugLoc DL = MI->getDebugLoc(); 1934 Register SrcR = MI->getOperand(2).getReg(); 1935 Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo); 1936 Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi); 1937 bool IsKill = MI->getOperand(2).isKill(); 1938 int FI = MI->getOperand(0).getIndex(); 1939 bool NeedsAligna = needsAligna(MF); 1940 1941 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1942 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1943 Align HasAlign = MFI.getObjectAlign(FI); 1944 unsigned StoreOpc; 1945 1946 auto UseAligned = [&](Align NeedAlign, Align HasAlign) { 1947 return !NeedsAligna && (NeedAlign <= HasAlign); 1948 }; 1949 1950 // Store low part. 1951 if (LPR.contains(SrcLo)) { 1952 StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai 1953 : Hexagon::V6_vS32Ub_ai; 1954 BuildMI(B, It, DL, HII.get(StoreOpc)) 1955 .addFrameIndex(FI) 1956 .addImm(0) 1957 .addReg(SrcLo, getKillRegState(IsKill)) 1958 .cloneMemRefs(*MI); 1959 } 1960 1961 // Store high part. 1962 if (LPR.contains(SrcHi)) { 1963 StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai 1964 : Hexagon::V6_vS32Ub_ai; 1965 BuildMI(B, It, DL, HII.get(StoreOpc)) 1966 .addFrameIndex(FI) 1967 .addImm(Size) 1968 .addReg(SrcHi, getKillRegState(IsKill)) 1969 .cloneMemRefs(*MI); 1970 } 1971 1972 B.erase(It); 1973 return true; 1974 } 1975 1976 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, 1977 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1978 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1979 MachineFunction &MF = *B.getParent(); 1980 auto &MFI = MF.getFrameInfo(); 1981 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1982 MachineInstr *MI = &*It; 1983 if (!MI->getOperand(1).isFI()) 1984 return false; 1985 1986 DebugLoc DL = MI->getDebugLoc(); 1987 Register DstR = MI->getOperand(0).getReg(); 1988 Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi); 1989 Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo); 1990 int FI = MI->getOperand(1).getIndex(); 1991 bool NeedsAligna = needsAligna(MF); 1992 1993 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1994 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1995 Align HasAlign = MFI.getObjectAlign(FI); 1996 unsigned LoadOpc; 1997 1998 auto UseAligned = [&](Align NeedAlign, Align HasAlign) { 1999 return !NeedsAligna && (NeedAlign <= HasAlign); 2000 }; 2001 2002 // Load low part. 2003 LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai 2004 : Hexagon::V6_vL32Ub_ai; 2005 BuildMI(B, It, DL, HII.get(LoadOpc), DstLo) 2006 .addFrameIndex(FI) 2007 .addImm(0) 2008 .cloneMemRefs(*MI); 2009 2010 // Load high part. 2011 LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai 2012 : Hexagon::V6_vL32Ub_ai; 2013 BuildMI(B, It, DL, HII.get(LoadOpc), DstHi) 2014 .addFrameIndex(FI) 2015 .addImm(Size) 2016 .cloneMemRefs(*MI); 2017 2018 B.erase(It); 2019 return true; 2020 } 2021 2022 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, 2023 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 2024 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 2025 MachineFunction &MF = *B.getParent(); 2026 auto &MFI = MF.getFrameInfo(); 2027 MachineInstr *MI = &*It; 2028 if (!MI->getOperand(0).isFI()) 2029 return false; 2030 2031 bool NeedsAligna = needsAligna(MF); 2032 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2033 DebugLoc DL = MI->getDebugLoc(); 2034 Register SrcR = MI->getOperand(2).getReg(); 2035 bool IsKill = MI->getOperand(2).isKill(); 2036 int FI = MI->getOperand(0).getIndex(); 2037 2038 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 2039 Align HasAlign = MFI.getObjectAlign(FI); 2040 bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign); 2041 unsigned StoreOpc = UseAligned ? Hexagon::V6_vS32b_ai 2042 : Hexagon::V6_vS32Ub_ai; 2043 BuildMI(B, It, DL, HII.get(StoreOpc)) 2044 .addFrameIndex(FI) 2045 .addImm(0) 2046 .addReg(SrcR, getKillRegState(IsKill)) 2047 .cloneMemRefs(*MI); 2048 2049 B.erase(It); 2050 return true; 2051 } 2052 2053 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, 2054 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 2055 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 2056 MachineFunction &MF = *B.getParent(); 2057 auto &MFI = MF.getFrameInfo(); 2058 MachineInstr *MI = &*It; 2059 if (!MI->getOperand(1).isFI()) 2060 return false; 2061 2062 bool NeedsAligna = needsAligna(MF); 2063 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2064 DebugLoc DL = MI->getDebugLoc(); 2065 Register DstR = MI->getOperand(0).getReg(); 2066 int FI = MI->getOperand(1).getIndex(); 2067 2068 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 2069 Align HasAlign = MFI.getObjectAlign(FI); 2070 bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign); 2071 unsigned LoadOpc = UseAligned ? Hexagon::V6_vL32b_ai 2072 : Hexagon::V6_vL32Ub_ai; 2073 BuildMI(B, It, DL, HII.get(LoadOpc), DstR) 2074 .addFrameIndex(FI) 2075 .addImm(0) 2076 .cloneMemRefs(*MI); 2077 2078 B.erase(It); 2079 return true; 2080 } 2081 2082 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, 2083 SmallVectorImpl<unsigned> &NewRegs) const { 2084 auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 2085 MachineRegisterInfo &MRI = MF.getRegInfo(); 2086 bool Changed = false; 2087 2088 for (auto &B : MF) { 2089 // Traverse the basic block. 2090 MachineBasicBlock::iterator NextI; 2091 for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { 2092 MachineInstr *MI = &*I; 2093 NextI = std::next(I); 2094 unsigned Opc = MI->getOpcode(); 2095 2096 switch (Opc) { 2097 case TargetOpcode::COPY: 2098 Changed |= expandCopy(B, I, MRI, HII, NewRegs); 2099 break; 2100 case Hexagon::STriw_pred: 2101 case Hexagon::STriw_ctr: 2102 Changed |= expandStoreInt(B, I, MRI, HII, NewRegs); 2103 break; 2104 case Hexagon::LDriw_pred: 2105 case Hexagon::LDriw_ctr: 2106 Changed |= expandLoadInt(B, I, MRI, HII, NewRegs); 2107 break; 2108 case Hexagon::PS_vstorerq_ai: 2109 Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs); 2110 break; 2111 case Hexagon::PS_vloadrq_ai: 2112 Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs); 2113 break; 2114 case Hexagon::PS_vloadrw_ai: 2115 Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs); 2116 break; 2117 case Hexagon::PS_vstorerw_ai: 2118 Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs); 2119 break; 2120 } 2121 } 2122 } 2123 2124 return Changed; 2125 } 2126 2127 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, 2128 BitVector &SavedRegs, 2129 RegScavenger *RS) const { 2130 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2131 2132 SavedRegs.resize(HRI.getNumRegs()); 2133 2134 // If we have a function containing __builtin_eh_return we want to spill and 2135 // restore all callee saved registers. Pretend that they are used. 2136 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) 2137 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R) 2138 SavedRegs.set(*R); 2139 2140 // Replace predicate register pseudo spill code. 2141 SmallVector<unsigned,8> NewRegs; 2142 expandSpillMacros(MF, NewRegs); 2143 if (OptimizeSpillSlots && !isOptNone(MF)) 2144 optimizeSpillSlots(MF, NewRegs); 2145 2146 // We need to reserve a spill slot if scavenging could potentially require 2147 // spilling a scavenged register. 2148 if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) { 2149 MachineFrameInfo &MFI = MF.getFrameInfo(); 2150 MachineRegisterInfo &MRI = MF.getRegInfo(); 2151 SetVector<const TargetRegisterClass*> SpillRCs; 2152 // Reserve an int register in any case, because it could be used to hold 2153 // the stack offset in case it does not fit into a spill instruction. 2154 SpillRCs.insert(&Hexagon::IntRegsRegClass); 2155 2156 for (unsigned VR : NewRegs) 2157 SpillRCs.insert(MRI.getRegClass(VR)); 2158 2159 for (auto *RC : SpillRCs) { 2160 if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) 2161 continue; 2162 unsigned Num = 1; 2163 switch (RC->getID()) { 2164 case Hexagon::IntRegsRegClassID: 2165 Num = NumberScavengerSlots; 2166 break; 2167 case Hexagon::HvxQRRegClassID: 2168 Num = 2; // Vector predicate spills also need a vector register. 2169 break; 2170 } 2171 unsigned S = HRI.getSpillSize(*RC); 2172 Align A = HRI.getSpillAlign(*RC); 2173 for (unsigned i = 0; i < Num; i++) { 2174 int NewFI = MFI.CreateSpillStackObject(S, A); 2175 RS->addScavengingFrameIndex(NewFI); 2176 } 2177 } 2178 } 2179 2180 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2181 } 2182 2183 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF, 2184 HexagonBlockRanges::IndexRange &FIR, 2185 HexagonBlockRanges::InstrIndexMap &IndexMap, 2186 HexagonBlockRanges::RegToRangeMap &DeadMap, 2187 const TargetRegisterClass *RC) const { 2188 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2189 auto &MRI = MF.getRegInfo(); 2190 2191 auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool { 2192 auto F = DeadMap.find({Reg,0}); 2193 if (F == DeadMap.end()) 2194 return false; 2195 for (auto &DR : F->second) 2196 if (DR.contains(FIR)) 2197 return true; 2198 return false; 2199 }; 2200 2201 for (unsigned Reg : RC->getRawAllocationOrder(MF)) { 2202 bool Dead = true; 2203 for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) { 2204 if (isDead(R.Reg)) 2205 continue; 2206 Dead = false; 2207 break; 2208 } 2209 if (Dead) 2210 return Reg; 2211 } 2212 return 0; 2213 } 2214 2215 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, 2216 SmallVectorImpl<unsigned> &VRegs) const { 2217 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2218 auto &HII = *HST.getInstrInfo(); 2219 auto &HRI = *HST.getRegisterInfo(); 2220 auto &MRI = MF.getRegInfo(); 2221 HexagonBlockRanges HBR(MF); 2222 2223 using BlockIndexMap = 2224 std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>; 2225 using BlockRangeMap = 2226 std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>; 2227 using IndexType = HexagonBlockRanges::IndexType; 2228 2229 struct SlotInfo { 2230 BlockRangeMap Map; 2231 unsigned Size = 0; 2232 const TargetRegisterClass *RC = nullptr; 2233 2234 SlotInfo() = default; 2235 }; 2236 2237 BlockIndexMap BlockIndexes; 2238 SmallSet<int,4> BadFIs; 2239 std::map<int,SlotInfo> FIRangeMap; 2240 2241 // Accumulate register classes: get a common class for a pre-existing 2242 // class HaveRC and a new class NewRC. Return nullptr if a common class 2243 // cannot be found, otherwise return the resulting class. If HaveRC is 2244 // nullptr, assume that it is still unset. 2245 auto getCommonRC = 2246 [](const TargetRegisterClass *HaveRC, 2247 const TargetRegisterClass *NewRC) -> const TargetRegisterClass * { 2248 if (HaveRC == nullptr || HaveRC == NewRC) 2249 return NewRC; 2250 // Different classes, both non-null. Pick the more general one. 2251 if (HaveRC->hasSubClassEq(NewRC)) 2252 return HaveRC; 2253 if (NewRC->hasSubClassEq(HaveRC)) 2254 return NewRC; 2255 return nullptr; 2256 }; 2257 2258 // Scan all blocks in the function. Check all occurrences of frame indexes, 2259 // and collect relevant information. 2260 for (auto &B : MF) { 2261 std::map<int,IndexType> LastStore, LastLoad; 2262 // Emplace appears not to be supported in gcc 4.7.2-4. 2263 //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); 2264 auto P = BlockIndexes.insert( 2265 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B))); 2266 auto &IndexMap = P.first->second; 2267 LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n" 2268 << IndexMap << '\n'); 2269 2270 for (auto &In : B) { 2271 int LFI, SFI; 2272 bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In); 2273 bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In); 2274 if (Load && Store) { 2275 // If it's both a load and a store, then we won't handle it. 2276 BadFIs.insert(LFI); 2277 BadFIs.insert(SFI); 2278 continue; 2279 } 2280 // Check for register classes of the register used as the source for 2281 // the store, and the register used as the destination for the load. 2282 // Also, only accept base+imm_offset addressing modes. Other addressing 2283 // modes can have side-effects (post-increments, etc.). For stack 2284 // slots they are very unlikely, so there is not much loss due to 2285 // this restriction. 2286 if (Load || Store) { 2287 int TFI = Load ? LFI : SFI; 2288 unsigned AM = HII.getAddrMode(In); 2289 SlotInfo &SI = FIRangeMap[TFI]; 2290 bool Bad = (AM != HexagonII::BaseImmOffset); 2291 if (!Bad) { 2292 // If the addressing mode is ok, check the register class. 2293 unsigned OpNum = Load ? 0 : 2; 2294 auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF); 2295 RC = getCommonRC(SI.RC, RC); 2296 if (RC == nullptr) 2297 Bad = true; 2298 else 2299 SI.RC = RC; 2300 } 2301 if (!Bad) { 2302 // Check sizes. 2303 unsigned S = HII.getMemAccessSize(In); 2304 if (SI.Size != 0 && SI.Size != S) 2305 Bad = true; 2306 else 2307 SI.Size = S; 2308 } 2309 if (!Bad) { 2310 for (auto *Mo : In.memoperands()) { 2311 if (!Mo->isVolatile() && !Mo->isAtomic()) 2312 continue; 2313 Bad = true; 2314 break; 2315 } 2316 } 2317 if (Bad) 2318 BadFIs.insert(TFI); 2319 } 2320 2321 // Locate uses of frame indices. 2322 for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { 2323 const MachineOperand &Op = In.getOperand(i); 2324 if (!Op.isFI()) 2325 continue; 2326 int FI = Op.getIndex(); 2327 // Make sure that the following operand is an immediate and that 2328 // it is 0. This is the offset in the stack object. 2329 if (i+1 >= n || !In.getOperand(i+1).isImm() || 2330 In.getOperand(i+1).getImm() != 0) 2331 BadFIs.insert(FI); 2332 if (BadFIs.count(FI)) 2333 continue; 2334 2335 IndexType Index = IndexMap.getIndex(&In); 2336 if (Load) { 2337 if (LastStore[FI] == IndexType::None) 2338 LastStore[FI] = IndexType::Entry; 2339 LastLoad[FI] = Index; 2340 } else if (Store) { 2341 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; 2342 if (LastStore[FI] != IndexType::None) 2343 RL.add(LastStore[FI], LastLoad[FI], false, false); 2344 else if (LastLoad[FI] != IndexType::None) 2345 RL.add(IndexType::Entry, LastLoad[FI], false, false); 2346 LastLoad[FI] = IndexType::None; 2347 LastStore[FI] = Index; 2348 } else { 2349 BadFIs.insert(FI); 2350 } 2351 } 2352 } 2353 2354 for (auto &I : LastLoad) { 2355 IndexType LL = I.second; 2356 if (LL == IndexType::None) 2357 continue; 2358 auto &RL = FIRangeMap[I.first].Map[&B]; 2359 IndexType &LS = LastStore[I.first]; 2360 if (LS != IndexType::None) 2361 RL.add(LS, LL, false, false); 2362 else 2363 RL.add(IndexType::Entry, LL, false, false); 2364 LS = IndexType::None; 2365 } 2366 for (auto &I : LastStore) { 2367 IndexType LS = I.second; 2368 if (LS == IndexType::None) 2369 continue; 2370 auto &RL = FIRangeMap[I.first].Map[&B]; 2371 RL.add(LS, IndexType::None, false, false); 2372 } 2373 } 2374 2375 LLVM_DEBUG({ 2376 for (auto &P : FIRangeMap) { 2377 dbgs() << "fi#" << P.first; 2378 if (BadFIs.count(P.first)) 2379 dbgs() << " (bad)"; 2380 dbgs() << " RC: "; 2381 if (P.second.RC != nullptr) 2382 dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; 2383 else 2384 dbgs() << "<null>\n"; 2385 for (auto &R : P.second.Map) 2386 dbgs() << " " << printMBBReference(*R.first) << " { " << R.second 2387 << "}\n"; 2388 } 2389 }); 2390 2391 // When a slot is loaded from in a block without being stored to in the 2392 // same block, it is live-on-entry to this block. To avoid CFG analysis, 2393 // consider this slot to be live-on-exit from all blocks. 2394 SmallSet<int,4> LoxFIs; 2395 2396 std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap; 2397 2398 for (auto &P : FIRangeMap) { 2399 // P = pair(FI, map: BB->RangeList) 2400 if (BadFIs.count(P.first)) 2401 continue; 2402 for (auto &B : MF) { 2403 auto F = P.second.Map.find(&B); 2404 // F = pair(BB, RangeList) 2405 if (F == P.second.Map.end() || F->second.empty()) 2406 continue; 2407 HexagonBlockRanges::IndexRange &IR = F->second.front(); 2408 if (IR.start() == IndexType::Entry) 2409 LoxFIs.insert(P.first); 2410 BlockFIMap[&B].push_back(P.first); 2411 } 2412 } 2413 2414 LLVM_DEBUG({ 2415 dbgs() << "Block-to-FI map (* -- live-on-exit):\n"; 2416 for (auto &P : BlockFIMap) { 2417 auto &FIs = P.second; 2418 if (FIs.empty()) 2419 continue; 2420 dbgs() << " " << printMBBReference(*P.first) << ": {"; 2421 for (auto I : FIs) { 2422 dbgs() << " fi#" << I; 2423 if (LoxFIs.count(I)) 2424 dbgs() << '*'; 2425 } 2426 dbgs() << " }\n"; 2427 } 2428 }); 2429 2430 #ifndef NDEBUG 2431 bool HasOptLimit = SpillOptMax.getPosition(); 2432 #endif 2433 2434 // eliminate loads, when all loads eliminated, eliminate all stores. 2435 for (auto &B : MF) { 2436 auto F = BlockIndexes.find(&B); 2437 assert(F != BlockIndexes.end()); 2438 HexagonBlockRanges::InstrIndexMap &IM = F->second; 2439 HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM); 2440 HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM); 2441 LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n" 2442 << HexagonBlockRanges::PrintRangeMap(DM, HRI)); 2443 2444 for (auto FI : BlockFIMap[&B]) { 2445 if (BadFIs.count(FI)) 2446 continue; 2447 LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n'); 2448 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; 2449 for (auto &Range : RL) { 2450 LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n'); 2451 if (!IndexType::isInstr(Range.start()) || 2452 !IndexType::isInstr(Range.end())) 2453 continue; 2454 MachineInstr &SI = *IM.getInstr(Range.start()); 2455 MachineInstr &EI = *IM.getInstr(Range.end()); 2456 assert(SI.mayStore() && "Unexpected start instruction"); 2457 assert(EI.mayLoad() && "Unexpected end instruction"); 2458 MachineOperand &SrcOp = SI.getOperand(2); 2459 2460 HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(), 2461 SrcOp.getSubReg() }; 2462 auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF); 2463 // The this-> is needed to unconfuse MSVC. 2464 unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC); 2465 LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI) 2466 << '\n'); 2467 if (FoundR == 0) 2468 continue; 2469 #ifndef NDEBUG 2470 if (HasOptLimit) { 2471 if (SpillOptCount >= SpillOptMax) 2472 return; 2473 SpillOptCount++; 2474 } 2475 #endif 2476 2477 // Generate the copy-in: "FoundR = COPY SrcR" at the store location. 2478 MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt; 2479 MachineInstr *CopyIn = nullptr; 2480 if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { 2481 const DebugLoc &DL = SI.getDebugLoc(); 2482 CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR) 2483 .add(SrcOp); 2484 } 2485 2486 ++StartIt; 2487 // Check if this is a last store and the FI is live-on-exit. 2488 if (LoxFIs.count(FI) && (&Range == &RL.back())) { 2489 // Update store's source register. 2490 if (unsigned SR = SrcOp.getSubReg()) 2491 SrcOp.setReg(HRI.getSubReg(FoundR, SR)); 2492 else 2493 SrcOp.setReg(FoundR); 2494 SrcOp.setSubReg(0); 2495 // We are keeping this register live. 2496 SrcOp.setIsKill(false); 2497 } else { 2498 B.erase(&SI); 2499 IM.replaceInstr(&SI, CopyIn); 2500 } 2501 2502 auto EndIt = std::next(EI.getIterator()); 2503 for (auto It = StartIt; It != EndIt; It = NextIt) { 2504 MachineInstr &MI = *It; 2505 NextIt = std::next(It); 2506 int TFI; 2507 if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI) 2508 continue; 2509 Register DstR = MI.getOperand(0).getReg(); 2510 assert(MI.getOperand(0).getSubReg() == 0); 2511 MachineInstr *CopyOut = nullptr; 2512 if (DstR != FoundR) { 2513 DebugLoc DL = MI.getDebugLoc(); 2514 unsigned MemSize = HII.getMemAccessSize(MI); 2515 assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); 2516 unsigned CopyOpc = TargetOpcode::COPY; 2517 if (HII.isSignExtendingLoad(MI)) 2518 CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; 2519 else if (HII.isZeroExtendingLoad(MI)) 2520 CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; 2521 CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR) 2522 .addReg(FoundR, getKillRegState(&MI == &EI)); 2523 } 2524 IM.replaceInstr(&MI, CopyOut); 2525 B.erase(It); 2526 } 2527 2528 // Update the dead map. 2529 HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 }; 2530 for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI)) 2531 DM[RR].subtract(Range); 2532 } // for Range in range list 2533 } 2534 } 2535 } 2536 2537 void HexagonFrameLowering::expandAlloca(MachineInstr *AI, 2538 const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const { 2539 MachineBasicBlock &MB = *AI->getParent(); 2540 DebugLoc DL = AI->getDebugLoc(); 2541 unsigned A = AI->getOperand(2).getImm(); 2542 2543 // Have 2544 // Rd = alloca Rs, #A 2545 // 2546 // If Rs and Rd are different registers, use this sequence: 2547 // Rd = sub(r29, Rs) 2548 // r29 = sub(r29, Rs) 2549 // Rd = and(Rd, #-A) ; if necessary 2550 // r29 = and(r29, #-A) ; if necessary 2551 // Rd = add(Rd, #CF) ; CF size aligned to at most A 2552 // otherwise, do 2553 // Rd = sub(r29, Rs) 2554 // Rd = and(Rd, #-A) ; if necessary 2555 // r29 = Rd 2556 // Rd = add(Rd, #CF) ; CF size aligned to at most A 2557 2558 MachineOperand &RdOp = AI->getOperand(0); 2559 MachineOperand &RsOp = AI->getOperand(1); 2560 unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg(); 2561 2562 // Rd = sub(r29, Rs) 2563 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) 2564 .addReg(SP) 2565 .addReg(Rs); 2566 if (Rs != Rd) { 2567 // r29 = sub(r29, Rs) 2568 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) 2569 .addReg(SP) 2570 .addReg(Rs); 2571 } 2572 if (A > 8) { 2573 // Rd = and(Rd, #-A) 2574 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) 2575 .addReg(Rd) 2576 .addImm(-int64_t(A)); 2577 if (Rs != Rd) 2578 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) 2579 .addReg(SP) 2580 .addImm(-int64_t(A)); 2581 } 2582 if (Rs == Rd) { 2583 // r29 = Rd 2584 BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) 2585 .addReg(Rd); 2586 } 2587 if (CF > 0) { 2588 // Rd = add(Rd, #CF) 2589 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) 2590 .addReg(Rd) 2591 .addImm(CF); 2592 } 2593 } 2594 2595 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { 2596 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2597 if (!MFI.hasVarSizedObjects()) 2598 return false; 2599 // Do not check for max stack object alignment here, because the stack 2600 // may not be complete yet. Assume that we will need PS_aligna if there 2601 // are variable-sized objects. 2602 return true; 2603 } 2604 2605 const MachineInstr *HexagonFrameLowering::getAlignaInstr( 2606 const MachineFunction &MF) const { 2607 for (auto &B : MF) 2608 for (auto &I : B) 2609 if (I.getOpcode() == Hexagon::PS_aligna) 2610 return &I; 2611 return nullptr; 2612 } 2613 2614 /// Adds all callee-saved registers as implicit uses or defs to the 2615 /// instruction. 2616 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, 2617 const CSIVect &CSI, bool IsDef, bool IsKill) const { 2618 // Add the callee-saved registers as implicit uses. 2619 for (auto &R : CSI) 2620 MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill)); 2621 } 2622 2623 /// Determine whether the callee-saved register saves and restores should 2624 /// be generated via inline code. If this function returns "true", inline 2625 /// code will be generated. If this function returns "false", additional 2626 /// checks are performed, which may still lead to the inline code. 2627 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF, 2628 const CSIVect &CSI) const { 2629 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) 2630 return true; 2631 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) 2632 return true; 2633 if (!hasFP(MF)) 2634 return true; 2635 if (!isOptSize(MF) && !isMinSize(MF)) 2636 if (MF.getTarget().getOptLevel() > CodeGenOpt::Default) 2637 return true; 2638 2639 // Check if CSI only has double registers, and if the registers form 2640 // a contiguous block starting from D8. 2641 BitVector Regs(Hexagon::NUM_TARGET_REGS); 2642 for (const CalleeSavedInfo &I : CSI) { 2643 Register R = I.getReg(); 2644 if (!Hexagon::DoubleRegsRegClass.contains(R)) 2645 return true; 2646 Regs[R] = true; 2647 } 2648 int F = Regs.find_first(); 2649 if (F != Hexagon::D8) 2650 return true; 2651 while (F >= 0) { 2652 int N = Regs.find_next(F); 2653 if (N >= 0 && N != F+1) 2654 return true; 2655 F = N; 2656 } 2657 2658 return false; 2659 } 2660 2661 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF, 2662 const CSIVect &CSI) const { 2663 if (shouldInlineCSR(MF, CSI)) 2664 return false; 2665 unsigned NumCSI = CSI.size(); 2666 if (NumCSI <= 1) 2667 return false; 2668 2669 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs 2670 : SpillFuncThreshold; 2671 return Threshold < NumCSI; 2672 } 2673 2674 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF, 2675 const CSIVect &CSI) const { 2676 if (shouldInlineCSR(MF, CSI)) 2677 return false; 2678 // The restore functions do a bit more than just restoring registers. 2679 // The non-returning versions will go back directly to the caller's 2680 // caller, others will clean up the stack frame in preparation for 2681 // a tail call. Using them can still save code size even if only one 2682 // register is getting restores. Make the decision based on -Oz: 2683 // using -Os will use inline restore for a single register. 2684 if (isMinSize(MF)) 2685 return true; 2686 unsigned NumCSI = CSI.size(); 2687 if (NumCSI <= 1) 2688 return false; 2689 2690 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 2691 : SpillFuncThreshold; 2692 return Threshold < NumCSI; 2693 } 2694 2695 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const { 2696 unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF); 2697 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2698 // A fairly simplistic guess as to whether a potential load/store to a 2699 // stack location could require an extra register. 2700 if (HST.useHVXOps() && StackSize > 256) 2701 return true; 2702 2703 // Check if the function has store-immediate instructions that access 2704 // the stack. Since the offset field is not extendable, if the stack 2705 // size exceeds the offset limit (6 bits, shifted), the stores will 2706 // require a new base register. 2707 bool HasImmStack = false; 2708 unsigned MinLS = ~0u; // Log_2 of the memory access size. 2709 2710 for (const MachineBasicBlock &B : MF) { 2711 for (const MachineInstr &MI : B) { 2712 unsigned LS = 0; 2713 switch (MI.getOpcode()) { 2714 case Hexagon::S4_storeirit_io: 2715 case Hexagon::S4_storeirif_io: 2716 case Hexagon::S4_storeiri_io: 2717 ++LS; 2718 LLVM_FALLTHROUGH; 2719 case Hexagon::S4_storeirht_io: 2720 case Hexagon::S4_storeirhf_io: 2721 case Hexagon::S4_storeirh_io: 2722 ++LS; 2723 LLVM_FALLTHROUGH; 2724 case Hexagon::S4_storeirbt_io: 2725 case Hexagon::S4_storeirbf_io: 2726 case Hexagon::S4_storeirb_io: 2727 if (MI.getOperand(0).isFI()) 2728 HasImmStack = true; 2729 MinLS = std::min(MinLS, LS); 2730 break; 2731 } 2732 } 2733 } 2734 2735 if (HasImmStack) 2736 return !isUInt<6>(StackSize >> MinLS); 2737 2738 return false; 2739 } 2740