1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "HexagonFrameLowering.h" 11 #include "HexagonBlockRanges.h" 12 #include "HexagonInstrInfo.h" 13 #include "HexagonMachineFunctionInfo.h" 14 #include "HexagonRegisterInfo.h" 15 #include "HexagonSubtarget.h" 16 #include "HexagonTargetMachine.h" 17 #include "MCTargetDesc/HexagonBaseInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/PseudoSourceValue.h" 38 #include "llvm/CodeGen/RegisterScavenging.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/MC/MCDwarf.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CodeGen.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <iterator> 59 #include <limits> 60 #include <map> 61 #include <optional> 62 #include <utility> 63 #include <vector> 64 65 #define DEBUG_TYPE "hexagon-pei" 66 67 // Hexagon stack frame layout as defined by the ABI: 68 // 69 // Incoming arguments 70 // passed via stack 71 // | 72 // | 73 // SP during function's FP during function's | 74 // +-- runtime (top of stack) runtime (bottom) --+ | 75 // | | | 76 // --++---------------------+------------------+-----------------++-+------- 77 // | parameter area for | variable-size | fixed-size |LR| arg 78 // | called functions | local objects | local objects |FP| 79 // --+----------------------+------------------+-----------------+--+------- 80 // <- size known -> <- size unknown -> <- size known -> 81 // 82 // Low address High address 83 // 84 // <--- stack growth 85 // 86 // 87 // - In any circumstances, the outgoing function arguments are always accessi- 88 // ble using the SP, and the incoming arguments are accessible using the FP. 89 // - If the local objects are not aligned, they can always be accessed using 90 // the FP. 91 // - If there are no variable-sized objects, the local objects can always be 92 // accessed using the SP, regardless whether they are aligned or not. (The 93 // alignment padding will be at the bottom of the stack (highest address), 94 // and so the offset with respect to the SP will be known at the compile- 95 // -time.) 96 // 97 // The only complication occurs if there are both, local aligned objects, and 98 // dynamically allocated (variable-sized) objects. The alignment pad will be 99 // placed between the FP and the local objects, thus preventing the use of the 100 // FP to access the local objects. At the same time, the variable-sized objects 101 // will be between the SP and the local objects, thus introducing an unknown 102 // distance from the SP to the locals. 103 // 104 // To avoid this problem, a new register is created that holds the aligned 105 // address of the bottom of the stack, referred in the sources as AP (aligned 106 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad 107 // that aligns AP to the required boundary (a maximum of the alignments of 108 // all stack objects, fixed- and variable-sized). All local objects[1] will 109 // then use AP as the base pointer. 110 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get 111 // their name from being allocated at fixed locations on the stack, relative 112 // to the FP. In the presence of dynamic allocation and local alignment, such 113 // objects can only be accessed through the FP. 114 // 115 // Illustration of the AP: 116 // FP --+ 117 // | 118 // ---------------+---------------------+-----+-----------------------++-+-- 119 // Rest of the | Local stack objects | Pad | Fixed stack objects |LR| 120 // stack frame | (aligned) | | (CSR, spills, etc.) |FP| 121 // ---------------+---------------------+-----+-----------------+-----+--+-- 122 // |<-- Multiple of the -->| 123 // stack alignment +-- AP 124 // 125 // The AP is set up at the beginning of the function. Since it is not a dedi- 126 // cated (reserved) register, it needs to be kept live throughout the function 127 // to be available as the base register for local object accesses. 128 // Normally, an address of a stack objects is obtained by a pseudo-instruction 129 // PS_fi. To access local objects with the AP register present, a different 130 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra 131 // argument compared to PS_fi: the first input register is the AP register. 132 // This keeps the register live between its definition and its uses. 133 134 // The AP register is originally set up using pseudo-instruction PS_aligna: 135 // AP = PS_aligna A 136 // where 137 // A - required stack alignment 138 // The alignment value must be the maximum of all alignments required by 139 // any stack object. 140 141 // The dynamic allocation uses a pseudo-instruction PS_alloca: 142 // Rd = PS_alloca Rs, A 143 // where 144 // Rd - address of the allocated space 145 // Rs - minimum size (the actual allocated can be larger to accommodate 146 // alignment) 147 // A - required alignment 148 149 using namespace llvm; 150 151 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret", 152 cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); 153 154 static cl::opt<unsigned> 155 NumberScavengerSlots("number-scavenger-slots", cl::Hidden, 156 cl::desc("Set the number of scavenger slots"), 157 cl::init(2)); 158 159 static cl::opt<int> 160 SpillFuncThreshold("spill-func-threshold", cl::Hidden, 161 cl::desc("Specify O2(not Os) spill func threshold"), 162 cl::init(6)); 163 164 static cl::opt<int> 165 SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden, 166 cl::desc("Specify Os spill func threshold"), 167 cl::init(1)); 168 169 static cl::opt<bool> EnableStackOVFSanitizer( 170 "enable-stackovf-sanitizer", cl::Hidden, 171 cl::desc("Enable runtime checks for stack overflow."), cl::init(false)); 172 173 static cl::opt<bool> 174 EnableShrinkWrapping("hexagon-shrink-frame", cl::init(true), cl::Hidden, 175 cl::desc("Enable stack frame shrink wrapping")); 176 177 static cl::opt<unsigned> 178 ShrinkLimit("shrink-frame-limit", 179 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, 180 cl::desc("Max count of stack frame shrink-wraps")); 181 182 static cl::opt<bool> 183 EnableSaveRestoreLong("enable-save-restore-long", cl::Hidden, 184 cl::desc("Enable long calls for save-restore stubs."), 185 cl::init(false)); 186 187 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true), 188 cl::Hidden, cl::desc("Refrain from using FP whenever possible")); 189 190 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden, 191 cl::init(true), cl::desc("Optimize spill slots")); 192 193 #ifndef NDEBUG 194 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden, 195 cl::init(std::numeric_limits<unsigned>::max())); 196 static unsigned SpillOptCount = 0; 197 #endif 198 199 namespace llvm { 200 201 void initializeHexagonCallFrameInformationPass(PassRegistry&); 202 FunctionPass *createHexagonCallFrameInformation(); 203 204 } // end namespace llvm 205 206 namespace { 207 208 class HexagonCallFrameInformation : public MachineFunctionPass { 209 public: 210 static char ID; 211 212 HexagonCallFrameInformation() : MachineFunctionPass(ID) { 213 PassRegistry &PR = *PassRegistry::getPassRegistry(); 214 initializeHexagonCallFrameInformationPass(PR); 215 } 216 217 bool runOnMachineFunction(MachineFunction &MF) override; 218 219 MachineFunctionProperties getRequiredProperties() const override { 220 return MachineFunctionProperties().set( 221 MachineFunctionProperties::Property::NoVRegs); 222 } 223 }; 224 225 char HexagonCallFrameInformation::ID = 0; 226 227 } // end anonymous namespace 228 229 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { 230 auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); 231 bool NeedCFI = MF.needsFrameMoves(); 232 233 if (!NeedCFI) 234 return false; 235 HFI.insertCFIInstructions(MF); 236 return true; 237 } 238 239 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", 240 "Hexagon call frame information", false, false) 241 242 FunctionPass *llvm::createHexagonCallFrameInformation() { 243 return new HexagonCallFrameInformation(); 244 } 245 246 /// Map a register pair Reg to the subregister that has the greater "number", 247 /// i.e. D3 (aka R7:6) will be mapped to R7, etc. 248 static Register getMax32BitSubRegister(Register Reg, 249 const TargetRegisterInfo &TRI, 250 bool hireg = true) { 251 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) 252 return Reg; 253 254 Register RegNo = 0; 255 for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) { 256 if (hireg) { 257 if (*SubRegs > RegNo) 258 RegNo = *SubRegs; 259 } else { 260 if (!RegNo || *SubRegs < RegNo) 261 RegNo = *SubRegs; 262 } 263 } 264 return RegNo; 265 } 266 267 /// Returns the callee saved register with the largest id in the vector. 268 static Register getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI, 269 const TargetRegisterInfo &TRI) { 270 static_assert(Hexagon::R1 > 0, 271 "Assume physical registers are encoded as positive integers"); 272 if (CSI.empty()) 273 return 0; 274 275 Register Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); 276 for (unsigned I = 1, E = CSI.size(); I < E; ++I) { 277 Register Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); 278 if (Reg > Max) 279 Max = Reg; 280 } 281 return Max; 282 } 283 284 /// Checks if the basic block contains any instruction that needs a stack 285 /// frame to be already in place. 286 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, 287 const HexagonRegisterInfo &HRI) { 288 for (const MachineInstr &MI : MBB) { 289 if (MI.isCall()) 290 return true; 291 unsigned Opc = MI.getOpcode(); 292 switch (Opc) { 293 case Hexagon::PS_alloca: 294 case Hexagon::PS_aligna: 295 return true; 296 default: 297 break; 298 } 299 // Check individual operands. 300 for (const MachineOperand &MO : MI.operands()) { 301 // While the presence of a frame index does not prove that a stack 302 // frame will be required, all frame indexes should be within alloc- 303 // frame/deallocframe. Otherwise, the code that translates a frame 304 // index into an offset would have to be aware of the placement of 305 // the frame creation/destruction instructions. 306 if (MO.isFI()) 307 return true; 308 if (MO.isReg()) { 309 Register R = MO.getReg(); 310 // Virtual registers will need scavenging, which then may require 311 // a stack slot. 312 if (R.isVirtual()) 313 return true; 314 for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S) 315 if (CSR[*S]) 316 return true; 317 continue; 318 } 319 if (MO.isRegMask()) { 320 // A regmask would normally have all callee-saved registers marked 321 // as preserved, so this check would not be needed, but in case of 322 // ever having other regmasks (for other calling conventions), 323 // make sure they would be processed correctly. 324 const uint32_t *BM = MO.getRegMask(); 325 for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) { 326 unsigned R = x; 327 // If this regmask does not preserve a CSR, a frame will be needed. 328 if (!(BM[R/32] & (1u << (R%32)))) 329 return true; 330 } 331 } 332 } 333 } 334 return false; 335 } 336 337 /// Returns true if MBB has a machine instructions that indicates a tail call 338 /// in the block. 339 static bool hasTailCall(const MachineBasicBlock &MBB) { 340 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 341 if (I == MBB.end()) 342 return false; 343 unsigned RetOpc = I->getOpcode(); 344 return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r; 345 } 346 347 /// Returns true if MBB contains an instruction that returns. 348 static bool hasReturn(const MachineBasicBlock &MBB) { 349 for (const MachineInstr &MI : MBB.terminators()) 350 if (MI.isReturn()) 351 return true; 352 return false; 353 } 354 355 /// Returns the "return" instruction from this block, or nullptr if there 356 /// isn't any. 357 static MachineInstr *getReturn(MachineBasicBlock &MBB) { 358 for (auto &I : MBB) 359 if (I.isReturn()) 360 return &I; 361 return nullptr; 362 } 363 364 static bool isRestoreCall(unsigned Opc) { 365 switch (Opc) { 366 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: 367 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: 368 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT: 369 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC: 370 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT: 371 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC: 372 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: 373 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: 374 return true; 375 } 376 return false; 377 } 378 379 static inline bool isOptNone(const MachineFunction &MF) { 380 return MF.getFunction().hasOptNone() || 381 MF.getTarget().getOptLevel() == CodeGenOpt::None; 382 } 383 384 static inline bool isOptSize(const MachineFunction &MF) { 385 const Function &F = MF.getFunction(); 386 return F.hasOptSize() && !F.hasMinSize(); 387 } 388 389 static inline bool isMinSize(const MachineFunction &MF) { 390 return MF.getFunction().hasMinSize(); 391 } 392 393 /// Implements shrink-wrapping of the stack frame. By default, stack frame 394 /// is created in the function entry block, and is cleaned up in every block 395 /// that returns. This function finds alternate blocks: one for the frame 396 /// setup (prolog) and one for the cleanup (epilog). 397 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, 398 MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { 399 static unsigned ShrinkCounter = 0; 400 401 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() && 402 MF.getFunction().isVarArg()) 403 return; 404 if (ShrinkLimit.getPosition()) { 405 if (ShrinkCounter >= ShrinkLimit) 406 return; 407 ShrinkCounter++; 408 } 409 410 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 411 412 MachineDominatorTree MDT; 413 MDT.runOnMachineFunction(MF); 414 MachinePostDominatorTree MPT; 415 MPT.runOnMachineFunction(MF); 416 417 using UnsignedMap = DenseMap<unsigned, unsigned>; 418 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; 419 420 UnsignedMap RPO; 421 RPOTType RPOT(&MF); 422 unsigned RPON = 0; 423 for (auto &I : RPOT) 424 RPO[I->getNumber()] = RPON++; 425 426 // Don't process functions that have loops, at least for now. Placement 427 // of prolog and epilog must take loop structure into account. For simpli- 428 // city don't do it right now. 429 for (auto &I : MF) { 430 unsigned BN = RPO[I.getNumber()]; 431 for (MachineBasicBlock *Succ : I.successors()) 432 // If found a back-edge, return. 433 if (RPO[Succ->getNumber()] <= BN) 434 return; 435 } 436 437 // Collect the set of blocks that need a stack frame to execute. Scan 438 // each block for uses/defs of callee-saved registers, calls, etc. 439 SmallVector<MachineBasicBlock*,16> SFBlocks; 440 BitVector CSR(Hexagon::NUM_TARGET_REGS); 441 for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) 442 for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S) 443 CSR[*S] = true; 444 445 for (auto &I : MF) 446 if (needsStackFrame(I, CSR, HRI)) 447 SFBlocks.push_back(&I); 448 449 LLVM_DEBUG({ 450 dbgs() << "Blocks needing SF: {"; 451 for (auto &B : SFBlocks) 452 dbgs() << " " << printMBBReference(*B); 453 dbgs() << " }\n"; 454 }); 455 // No frame needed? 456 if (SFBlocks.empty()) 457 return; 458 459 // Pick a common dominator and a common post-dominator. 460 MachineBasicBlock *DomB = SFBlocks[0]; 461 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { 462 DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); 463 if (!DomB) 464 break; 465 } 466 MachineBasicBlock *PDomB = SFBlocks[0]; 467 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { 468 PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); 469 if (!PDomB) 470 break; 471 } 472 LLVM_DEBUG({ 473 dbgs() << "Computed dom block: "; 474 if (DomB) 475 dbgs() << printMBBReference(*DomB); 476 else 477 dbgs() << "<null>"; 478 dbgs() << ", computed pdom block: "; 479 if (PDomB) 480 dbgs() << printMBBReference(*PDomB); 481 else 482 dbgs() << "<null>"; 483 dbgs() << "\n"; 484 }); 485 if (!DomB || !PDomB) 486 return; 487 488 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. 489 if (!MDT.dominates(DomB, PDomB)) { 490 LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); 491 return; 492 } 493 if (!MPT.dominates(PDomB, DomB)) { 494 LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); 495 return; 496 } 497 498 // Finally, everything seems right. 499 PrologB = DomB; 500 EpilogB = PDomB; 501 } 502 503 /// Perform most of the PEI work here: 504 /// - saving/restoring of the callee-saved registers, 505 /// - stack frame creation and destruction. 506 /// Normally, this work is distributed among various functions, but doing it 507 /// in one place allows shrink-wrapping of the stack frame. 508 void HexagonFrameLowering::emitPrologue(MachineFunction &MF, 509 MachineBasicBlock &MBB) const { 510 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 511 512 MachineFrameInfo &MFI = MF.getFrameInfo(); 513 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 514 515 MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; 516 if (EnableShrinkWrapping) 517 findShrunkPrologEpilog(MF, PrologB, EpilogB); 518 519 bool PrologueStubs = false; 520 insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs); 521 insertPrologueInBlock(*PrologB, PrologueStubs); 522 updateEntryPaths(MF, *PrologB); 523 524 if (EpilogB) { 525 insertCSRRestoresInBlock(*EpilogB, CSI, HRI); 526 insertEpilogueInBlock(*EpilogB); 527 } else { 528 for (auto &B : MF) 529 if (B.isReturnBlock()) 530 insertCSRRestoresInBlock(B, CSI, HRI); 531 532 for (auto &B : MF) 533 if (B.isReturnBlock()) 534 insertEpilogueInBlock(B); 535 536 for (auto &B : MF) { 537 if (B.empty()) 538 continue; 539 MachineInstr *RetI = getReturn(B); 540 if (!RetI || isRestoreCall(RetI->getOpcode())) 541 continue; 542 for (auto &R : CSI) 543 RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); 544 } 545 } 546 547 if (EpilogB) { 548 // If there is an epilog block, it may not have a return instruction. 549 // In such case, we need to add the callee-saved registers as live-ins 550 // in all blocks on all paths from the epilog to any return block. 551 unsigned MaxBN = MF.getNumBlockIDs(); 552 BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); 553 updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path); 554 } 555 } 556 557 /// Returns true if the target can safely skip saving callee-saved registers 558 /// for noreturn nounwind functions. 559 bool HexagonFrameLowering::enableCalleeSaveSkip( 560 const MachineFunction &MF) const { 561 const auto &F = MF.getFunction(); 562 assert(F.hasFnAttribute(Attribute::NoReturn) && 563 F.getFunction().hasFnAttribute(Attribute::NoUnwind) && 564 !F.getFunction().hasFnAttribute(Attribute::UWTable)); 565 (void)F; 566 567 // No need to save callee saved registers if the function does not return. 568 return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim(); 569 } 570 571 // Helper function used to determine when to eliminate the stack frame for 572 // functions marked as noreturn and when the noreturn-stack-elim options are 573 // specified. When both these conditions are true, then a FP may not be needed 574 // if the function makes a call. It is very similar to enableCalleeSaveSkip, 575 // but it used to check if the allocframe can be eliminated as well. 576 static bool enableAllocFrameElim(const MachineFunction &MF) { 577 const auto &F = MF.getFunction(); 578 const auto &MFI = MF.getFrameInfo(); 579 const auto &HST = MF.getSubtarget<HexagonSubtarget>(); 580 assert(!MFI.hasVarSizedObjects() && 581 !HST.getRegisterInfo()->hasStackRealignment(MF)); 582 return F.hasFnAttribute(Attribute::NoReturn) && 583 F.hasFnAttribute(Attribute::NoUnwind) && 584 !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() && 585 MFI.getStackSize() == 0; 586 } 587 588 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, 589 bool PrologueStubs) const { 590 MachineFunction &MF = *MBB.getParent(); 591 MachineFrameInfo &MFI = MF.getFrameInfo(); 592 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 593 auto &HII = *HST.getInstrInfo(); 594 auto &HRI = *HST.getRegisterInfo(); 595 596 Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign()); 597 598 // Calculate the total stack frame size. 599 // Get the number of bytes to allocate from the FrameInfo. 600 unsigned FrameSize = MFI.getStackSize(); 601 // Round up the max call frame size to the max alignment on the stack. 602 unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign); 603 MFI.setMaxCallFrameSize(MaxCFA); 604 605 FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign); 606 MFI.setStackSize(FrameSize); 607 608 bool AlignStack = (MaxAlign > getStackAlign()); 609 610 // Get the number of bytes to allocate from the FrameInfo. 611 unsigned NumBytes = MFI.getStackSize(); 612 Register SP = HRI.getStackRegister(); 613 unsigned MaxCF = MFI.getMaxCallFrameSize(); 614 MachineBasicBlock::iterator InsertPt = MBB.begin(); 615 616 SmallVector<MachineInstr *, 4> AdjustRegs; 617 for (auto &MBB : MF) 618 for (auto &MI : MBB) 619 if (MI.getOpcode() == Hexagon::PS_alloca) 620 AdjustRegs.push_back(&MI); 621 622 for (auto *MI : AdjustRegs) { 623 assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca"); 624 expandAlloca(MI, HII, SP, MaxCF); 625 MI->eraseFromParent(); 626 } 627 628 DebugLoc dl = MBB.findDebugLoc(InsertPt); 629 630 if (MF.getFunction().isVarArg() && 631 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { 632 // Calculate the size of register saved area. 633 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 634 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) 635 ? NumVarArgRegs * 4 636 : NumVarArgRegs * 4 + 4; 637 if (RegisterSavedAreaSizePlusPadding > 0) { 638 // Decrement the stack pointer by size of register saved area plus 639 // padding if any. 640 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 641 .addReg(SP) 642 .addImm(-RegisterSavedAreaSizePlusPadding) 643 .setMIFlag(MachineInstr::FrameSetup); 644 645 int NumBytes = 0; 646 // Copy all the named arguments below register saved area. 647 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 648 for (int i = HMFI.getFirstNamedArgFrameIndex(), 649 e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) { 650 uint64_t ObjSize = MFI.getObjectSize(i); 651 Align ObjAlign = MFI.getObjectAlign(i); 652 653 // Determine the kind of load/store that should be used. 654 unsigned LDOpc, STOpc; 655 uint64_t OpcodeChecker = ObjAlign.value(); 656 657 // Handle cases where alignment of an object is > its size. 658 if (ObjAlign > ObjSize) { 659 if (ObjSize <= 1) 660 OpcodeChecker = 1; 661 else if (ObjSize <= 2) 662 OpcodeChecker = 2; 663 else if (ObjSize <= 4) 664 OpcodeChecker = 4; 665 else if (ObjSize > 4) 666 OpcodeChecker = 8; 667 } 668 669 switch (OpcodeChecker) { 670 case 1: 671 LDOpc = Hexagon::L2_loadrb_io; 672 STOpc = Hexagon::S2_storerb_io; 673 break; 674 case 2: 675 LDOpc = Hexagon::L2_loadrh_io; 676 STOpc = Hexagon::S2_storerh_io; 677 break; 678 case 4: 679 LDOpc = Hexagon::L2_loadri_io; 680 STOpc = Hexagon::S2_storeri_io; 681 break; 682 case 8: 683 default: 684 LDOpc = Hexagon::L2_loadrd_io; 685 STOpc = Hexagon::S2_storerd_io; 686 break; 687 } 688 689 Register RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3 690 : Hexagon::R6; 691 int LoadStoreCount = ObjSize / OpcodeChecker; 692 693 if (ObjSize % OpcodeChecker) 694 ++LoadStoreCount; 695 696 // Get the start location of the load. NumBytes is basically the 697 // offset from the stack pointer of previous function, which would be 698 // the caller in this case, as this function has variable argument 699 // list. 700 if (NumBytes != 0) 701 NumBytes = alignTo(NumBytes, ObjAlign); 702 703 int Count = 0; 704 while (Count < LoadStoreCount) { 705 // Load the value of the named argument on stack. 706 BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed) 707 .addReg(SP) 708 .addImm(RegisterSavedAreaSizePlusPadding + 709 ObjAlign.value() * Count + NumBytes) 710 .setMIFlag(MachineInstr::FrameSetup); 711 712 // Store it below the register saved area plus padding. 713 BuildMI(MBB, InsertPt, dl, HII.get(STOpc)) 714 .addReg(SP) 715 .addImm(ObjAlign.value() * Count + NumBytes) 716 .addReg(RegUsed) 717 .setMIFlag(MachineInstr::FrameSetup); 718 719 Count++; 720 } 721 NumBytes += MFI.getObjectSize(i); 722 } 723 724 // Make NumBytes 8 byte aligned 725 NumBytes = alignTo(NumBytes, 8); 726 727 // If the number of registers having variable arguments is odd, 728 // leave 4 bytes of padding to get to the location where first 729 // variable argument which was passed through register was copied. 730 NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4; 731 732 for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) { 733 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io)) 734 .addReg(SP) 735 .addImm(NumBytes + 4 * i) 736 .addReg(Hexagon::R0 + j) 737 .setMIFlag(MachineInstr::FrameSetup); 738 } 739 } 740 } 741 742 if (hasFP(MF)) { 743 insertAllocframe(MBB, InsertPt, NumBytes); 744 if (AlignStack) { 745 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) 746 .addReg(SP) 747 .addImm(-int64_t(MaxAlign.value())); 748 } 749 // If the stack-checking is enabled, and we spilled the callee-saved 750 // registers inline (i.e. did not use a spill function), then call 751 // the stack checker directly. 752 if (EnableStackOVFSanitizer && !PrologueStubs) 753 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk)) 754 .addExternalSymbol("__runtime_stack_check"); 755 } else if (NumBytes > 0) { 756 assert(alignTo(NumBytes, 8) == NumBytes); 757 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 758 .addReg(SP) 759 .addImm(-int(NumBytes)); 760 } 761 } 762 763 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { 764 MachineFunction &MF = *MBB.getParent(); 765 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 766 auto &HII = *HST.getInstrInfo(); 767 auto &HRI = *HST.getRegisterInfo(); 768 Register SP = HRI.getStackRegister(); 769 770 MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); 771 DebugLoc dl = MBB.findDebugLoc(InsertPt); 772 773 if (!hasFP(MF)) { 774 MachineFrameInfo &MFI = MF.getFrameInfo(); 775 unsigned NumBytes = MFI.getStackSize(); 776 if (MF.getFunction().isVarArg() && 777 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { 778 // On Hexagon Linux, deallocate the stack for the register saved area. 779 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 780 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? 781 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); 782 NumBytes += RegisterSavedAreaSizePlusPadding; 783 } 784 if (NumBytes) { 785 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 786 .addReg(SP) 787 .addImm(NumBytes); 788 } 789 return; 790 } 791 792 MachineInstr *RetI = getReturn(MBB); 793 unsigned RetOpc = RetI ? RetI->getOpcode() : 0; 794 795 // Handle EH_RETURN. 796 if (RetOpc == Hexagon::EH_RETURN_JMPR) { 797 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 798 .addDef(Hexagon::D15) 799 .addReg(Hexagon::R30); 800 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP) 801 .addReg(SP) 802 .addReg(Hexagon::R28); 803 return; 804 } 805 806 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- 807 // frame instruction if we encounter it. 808 if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || 809 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC || 810 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT || 811 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) { 812 MachineBasicBlock::iterator It = RetI; 813 ++It; 814 // Delete all instructions after the RESTORE (except labels). 815 while (It != MBB.end()) { 816 if (!It->isLabel()) 817 It = MBB.erase(It); 818 else 819 ++It; 820 } 821 return; 822 } 823 824 // It is possible that the restoring code is a call to a library function. 825 // All of the restore* functions include "deallocframe", so we need to make 826 // sure that we don't add an extra one. 827 bool NeedsDeallocframe = true; 828 if (!MBB.empty() && InsertPt != MBB.begin()) { 829 MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); 830 unsigned COpc = PrevIt->getOpcode(); 831 if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || 832 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC || 833 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT || 834 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC || 835 COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr) 836 NeedsDeallocframe = false; 837 } 838 839 if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() || 840 !MF.getFunction().isVarArg()) { 841 if (!NeedsDeallocframe) 842 return; 843 // If the returning instruction is PS_jmpret, replace it with 844 // dealloc_return, otherwise just add deallocframe. The function 845 // could be returning via a tail call. 846 if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) { 847 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 848 .addDef(Hexagon::D15) 849 .addReg(Hexagon::R30); 850 return; 851 } 852 unsigned NewOpc = Hexagon::L4_return; 853 MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc)) 854 .addDef(Hexagon::D15) 855 .addReg(Hexagon::R30); 856 // Transfer the function live-out registers. 857 NewI->copyImplicitOps(MF, *RetI); 858 MBB.erase(RetI); 859 } else { 860 // L2_deallocframe instruction after it. 861 // Calculate the size of register saved area. 862 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 863 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? 864 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); 865 866 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 867 MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end() 868 : std::prev(Term); 869 if (I == MBB.end() || 870 (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT && 871 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC && 872 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 && 873 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC)) 874 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 875 .addDef(Hexagon::D15) 876 .addReg(Hexagon::R30); 877 if (RegisterSavedAreaSizePlusPadding != 0) 878 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 879 .addReg(SP) 880 .addImm(RegisterSavedAreaSizePlusPadding); 881 } 882 } 883 884 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB, 885 MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const { 886 MachineFunction &MF = *MBB.getParent(); 887 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 888 auto &HII = *HST.getInstrInfo(); 889 auto &HRI = *HST.getRegisterInfo(); 890 891 // Check for overflow. 892 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? 893 const unsigned int ALLOCFRAME_MAX = 16384; 894 895 // Create a dummy memory operand to avoid allocframe from being treated as 896 // a volatile memory reference. 897 auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0), 898 MachineMemOperand::MOStore, 4, Align(4)); 899 900 DebugLoc dl = MBB.findDebugLoc(InsertPt); 901 Register SP = HRI.getStackRegister(); 902 903 if (NumBytes >= ALLOCFRAME_MAX) { 904 // Emit allocframe(#0). 905 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) 906 .addDef(SP) 907 .addReg(SP) 908 .addImm(0) 909 .addMemOperand(MMO); 910 911 // Subtract the size from the stack pointer. 912 Register SP = HRI.getStackRegister(); 913 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 914 .addReg(SP) 915 .addImm(-int(NumBytes)); 916 } else { 917 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) 918 .addDef(SP) 919 .addReg(SP) 920 .addImm(NumBytes) 921 .addMemOperand(MMO); 922 } 923 } 924 925 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF, 926 MachineBasicBlock &SaveB) const { 927 SetVector<unsigned> Worklist; 928 929 MachineBasicBlock &EntryB = MF.front(); 930 Worklist.insert(EntryB.getNumber()); 931 932 unsigned SaveN = SaveB.getNumber(); 933 auto &CSI = MF.getFrameInfo().getCalleeSavedInfo(); 934 935 for (unsigned i = 0; i < Worklist.size(); ++i) { 936 unsigned BN = Worklist[i]; 937 MachineBasicBlock &MBB = *MF.getBlockNumbered(BN); 938 for (auto &R : CSI) 939 if (!MBB.isLiveIn(R.getReg())) 940 MBB.addLiveIn(R.getReg()); 941 if (BN != SaveN) 942 for (auto &SB : MBB.successors()) 943 Worklist.insert(SB->getNumber()); 944 } 945 } 946 947 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, 948 MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF, 949 BitVector &Path) const { 950 assert(MBB.getNumber() >= 0); 951 unsigned BN = MBB.getNumber(); 952 if (Path[BN] || DoneF[BN]) 953 return false; 954 if (DoneT[BN]) 955 return true; 956 957 auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo(); 958 959 Path[BN] = true; 960 bool ReachedExit = false; 961 for (auto &SB : MBB.successors()) 962 ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path); 963 964 if (!MBB.empty() && MBB.back().isReturn()) { 965 // Add implicit uses of all callee-saved registers to the reached 966 // return instructions. This is to prevent the anti-dependency breaker 967 // from renaming these registers. 968 MachineInstr &RetI = MBB.back(); 969 if (!isRestoreCall(RetI.getOpcode())) 970 for (auto &R : CSI) 971 RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); 972 ReachedExit = true; 973 } 974 975 // We don't want to add unnecessary live-ins to the restore block: since 976 // the callee-saved registers are being defined in it, the entry of the 977 // restore block cannot be on the path from the definitions to any exit. 978 if (ReachedExit && &MBB != &RestoreB) { 979 for (auto &R : CSI) 980 if (!MBB.isLiveIn(R.getReg())) 981 MBB.addLiveIn(R.getReg()); 982 DoneT[BN] = true; 983 } 984 if (!ReachedExit) 985 DoneF[BN] = true; 986 987 Path[BN] = false; 988 return ReachedExit; 989 } 990 991 static std::optional<MachineBasicBlock::iterator> 992 findCFILocation(MachineBasicBlock &B) { 993 // The CFI instructions need to be inserted right after allocframe. 994 // An exception to this is a situation where allocframe is bundled 995 // with a call: then the CFI instructions need to be inserted before 996 // the packet with the allocframe+call (in case the call throws an 997 // exception). 998 auto End = B.instr_end(); 999 1000 for (MachineInstr &I : B) { 1001 MachineBasicBlock::iterator It = I.getIterator(); 1002 if (!I.isBundle()) { 1003 if (I.getOpcode() == Hexagon::S2_allocframe) 1004 return std::next(It); 1005 continue; 1006 } 1007 // I is a bundle. 1008 bool HasCall = false, HasAllocFrame = false; 1009 auto T = It.getInstrIterator(); 1010 while (++T != End && T->isBundled()) { 1011 if (T->getOpcode() == Hexagon::S2_allocframe) 1012 HasAllocFrame = true; 1013 else if (T->isCall()) 1014 HasCall = true; 1015 } 1016 if (HasAllocFrame) 1017 return HasCall ? It : std::next(It); 1018 } 1019 return std::nullopt; 1020 } 1021 1022 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { 1023 for (auto &B : MF) 1024 if (auto At = findCFILocation(B)) 1025 insertCFIInstructionsAt(B, *At); 1026 } 1027 1028 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, 1029 MachineBasicBlock::iterator At) const { 1030 MachineFunction &MF = *MBB.getParent(); 1031 MachineFrameInfo &MFI = MF.getFrameInfo(); 1032 MachineModuleInfo &MMI = MF.getMMI(); 1033 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1034 auto &HII = *HST.getInstrInfo(); 1035 auto &HRI = *HST.getRegisterInfo(); 1036 1037 // If CFI instructions have debug information attached, something goes 1038 // wrong with the final assembly generation: the prolog_end is placed 1039 // in a wrong location. 1040 DebugLoc DL; 1041 const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); 1042 1043 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 1044 bool HasFP = hasFP(MF); 1045 1046 if (HasFP) { 1047 unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); 1048 unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); 1049 1050 // Define CFA via an offset from the value of FP. 1051 // 1052 // -8 -4 0 (SP) 1053 // --+----+----+--------------------- 1054 // | FP | LR | increasing addresses --> 1055 // --+----+----+--------------------- 1056 // | +-- Old SP (before allocframe) 1057 // +-- New FP (after allocframe) 1058 // 1059 // MCCFIInstruction::cfiDefCfa adds the offset from the register. 1060 // MCCFIInstruction::createOffset takes the offset without sign change. 1061 auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8); 1062 BuildMI(MBB, At, DL, CFID) 1063 .addCFIIndex(MF.addFrameInst(DefCfa)); 1064 // R31 (return addr) = CFA - 4 1065 auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); 1066 BuildMI(MBB, At, DL, CFID) 1067 .addCFIIndex(MF.addFrameInst(OffR31)); 1068 // R30 (frame ptr) = CFA - 8 1069 auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); 1070 BuildMI(MBB, At, DL, CFID) 1071 .addCFIIndex(MF.addFrameInst(OffR30)); 1072 } 1073 1074 static Register RegsToMove[] = { 1075 Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, 1076 Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, 1077 Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, 1078 Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, 1079 Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, 1080 Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, 1081 Hexagon::NoRegister 1082 }; 1083 1084 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1085 1086 for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { 1087 Register Reg = RegsToMove[i]; 1088 auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { 1089 return C.getReg() == Reg; 1090 }; 1091 auto F = find_if(CSI, IfR); 1092 if (F == CSI.end()) 1093 continue; 1094 1095 int64_t Offset; 1096 if (HasFP) { 1097 // If the function has a frame pointer (i.e. has an allocframe), 1098 // then the CFA has been defined in terms of FP. Any offsets in 1099 // the following CFI instructions have to be defined relative 1100 // to FP, which points to the bottom of the stack frame. 1101 // The function getFrameIndexReference can still choose to use SP 1102 // for the offset calculation, so we cannot simply call it here. 1103 // Instead, get the offset (relative to the FP) directly. 1104 Offset = MFI.getObjectOffset(F->getFrameIdx()); 1105 } else { 1106 Register FrameReg; 1107 Offset = 1108 getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed(); 1109 } 1110 // Subtract 8 to make room for R30 and R31, which are added above. 1111 Offset -= 8; 1112 1113 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { 1114 unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); 1115 auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, 1116 Offset); 1117 BuildMI(MBB, At, DL, CFID) 1118 .addCFIIndex(MF.addFrameInst(OffReg)); 1119 } else { 1120 // Split the double regs into subregs, and generate appropriate 1121 // cfi_offsets. 1122 // The only reason, we are split double regs is, llvm-mc does not 1123 // understand paired registers for cfi_offset. 1124 // Eg .cfi_offset r1:0, -64 1125 1126 Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi); 1127 Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo); 1128 unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); 1129 unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); 1130 auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, 1131 Offset+4); 1132 BuildMI(MBB, At, DL, CFID) 1133 .addCFIIndex(MF.addFrameInst(OffHi)); 1134 auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, 1135 Offset); 1136 BuildMI(MBB, At, DL, CFID) 1137 .addCFIIndex(MF.addFrameInst(OffLo)); 1138 } 1139 } 1140 } 1141 1142 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { 1143 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1144 return false; 1145 1146 auto &MFI = MF.getFrameInfo(); 1147 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1148 bool HasExtraAlign = HRI.hasStackRealignment(MF); 1149 bool HasAlloca = MFI.hasVarSizedObjects(); 1150 1151 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think 1152 // that this shouldn't be required, but doing so now because gcc does and 1153 // gdb can't break at the start of the function without it. Will remove if 1154 // this turns out to be a gdb bug. 1155 // 1156 if (MF.getTarget().getOptLevel() == CodeGenOpt::None) 1157 return true; 1158 1159 // By default we want to use SP (since it's always there). FP requires 1160 // some setup (i.e. ALLOCFRAME). 1161 // Both, alloca and stack alignment modify the stack pointer by an 1162 // undetermined value, so we need to save it at the entry to the function 1163 // (i.e. use allocframe). 1164 if (HasAlloca || HasExtraAlign) 1165 return true; 1166 1167 if (MFI.getStackSize() > 0) { 1168 // If FP-elimination is disabled, we have to use FP at this point. 1169 const TargetMachine &TM = MF.getTarget(); 1170 if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer) 1171 return true; 1172 if (EnableStackOVFSanitizer) 1173 return true; 1174 } 1175 1176 const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1177 if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR()) 1178 return true; 1179 1180 return false; 1181 } 1182 1183 enum SpillKind { 1184 SK_ToMem, 1185 SK_FromMem, 1186 SK_FromMemTailcall 1187 }; 1188 1189 static const char *getSpillFunctionFor(Register MaxReg, SpillKind SpillType, 1190 bool Stkchk = false) { 1191 const char * V4SpillToMemoryFunctions[] = { 1192 "__save_r16_through_r17", 1193 "__save_r16_through_r19", 1194 "__save_r16_through_r21", 1195 "__save_r16_through_r23", 1196 "__save_r16_through_r25", 1197 "__save_r16_through_r27" }; 1198 1199 const char * V4SpillToMemoryStkchkFunctions[] = { 1200 "__save_r16_through_r17_stkchk", 1201 "__save_r16_through_r19_stkchk", 1202 "__save_r16_through_r21_stkchk", 1203 "__save_r16_through_r23_stkchk", 1204 "__save_r16_through_r25_stkchk", 1205 "__save_r16_through_r27_stkchk" }; 1206 1207 const char * V4SpillFromMemoryFunctions[] = { 1208 "__restore_r16_through_r17_and_deallocframe", 1209 "__restore_r16_through_r19_and_deallocframe", 1210 "__restore_r16_through_r21_and_deallocframe", 1211 "__restore_r16_through_r23_and_deallocframe", 1212 "__restore_r16_through_r25_and_deallocframe", 1213 "__restore_r16_through_r27_and_deallocframe" }; 1214 1215 const char * V4SpillFromMemoryTailcallFunctions[] = { 1216 "__restore_r16_through_r17_and_deallocframe_before_tailcall", 1217 "__restore_r16_through_r19_and_deallocframe_before_tailcall", 1218 "__restore_r16_through_r21_and_deallocframe_before_tailcall", 1219 "__restore_r16_through_r23_and_deallocframe_before_tailcall", 1220 "__restore_r16_through_r25_and_deallocframe_before_tailcall", 1221 "__restore_r16_through_r27_and_deallocframe_before_tailcall" 1222 }; 1223 1224 const char **SpillFunc = nullptr; 1225 1226 switch(SpillType) { 1227 case SK_ToMem: 1228 SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions 1229 : V4SpillToMemoryFunctions; 1230 break; 1231 case SK_FromMem: 1232 SpillFunc = V4SpillFromMemoryFunctions; 1233 break; 1234 case SK_FromMemTailcall: 1235 SpillFunc = V4SpillFromMemoryTailcallFunctions; 1236 break; 1237 } 1238 assert(SpillFunc && "Unknown spill kind"); 1239 1240 // Spill all callee-saved registers up to the highest register used. 1241 switch (MaxReg) { 1242 case Hexagon::R17: 1243 return SpillFunc[0]; 1244 case Hexagon::R19: 1245 return SpillFunc[1]; 1246 case Hexagon::R21: 1247 return SpillFunc[2]; 1248 case Hexagon::R23: 1249 return SpillFunc[3]; 1250 case Hexagon::R25: 1251 return SpillFunc[4]; 1252 case Hexagon::R27: 1253 return SpillFunc[5]; 1254 default: 1255 llvm_unreachable("Unhandled maximum callee save register"); 1256 } 1257 return nullptr; 1258 } 1259 1260 StackOffset 1261 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1262 Register &FrameReg) const { 1263 auto &MFI = MF.getFrameInfo(); 1264 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1265 1266 int Offset = MFI.getObjectOffset(FI); 1267 bool HasAlloca = MFI.hasVarSizedObjects(); 1268 bool HasExtraAlign = HRI.hasStackRealignment(MF); 1269 bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None; 1270 1271 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1272 unsigned FrameSize = MFI.getStackSize(); 1273 Register SP = HRI.getStackRegister(); 1274 Register FP = HRI.getFrameRegister(); 1275 Register AP = HMFI.getStackAlignBaseReg(); 1276 // It may happen that AP will be absent even HasAlloca && HasExtraAlign 1277 // is true. HasExtraAlign may be set because of vector spills, without 1278 // aligned locals or aligned outgoing function arguments. Since vector 1279 // spills will ultimately be "unaligned", it is safe to use FP as the 1280 // base register. 1281 // In fact, in such a scenario the stack is actually not required to be 1282 // aligned, although it may end up being aligned anyway, since this 1283 // particular case is not easily detectable. The alignment will be 1284 // unnecessary, but not incorrect. 1285 // Unfortunately there is no quick way to verify that the above is 1286 // indeed the case (and that it's not a result of an error), so just 1287 // assume that missing AP will be replaced by FP. 1288 // (A better fix would be to rematerialize AP from FP and always align 1289 // vector spills.) 1290 bool UseFP = false, UseAP = false; // Default: use SP (except at -O0). 1291 // Use FP at -O0, except when there are objects with extra alignment. 1292 // That additional alignment requirement may cause a pad to be inserted, 1293 // which will make it impossible to use FP to access objects located 1294 // past the pad. 1295 if (NoOpt && !HasExtraAlign) 1296 UseFP = true; 1297 if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { 1298 // Fixed and preallocated objects will be located before any padding 1299 // so FP must be used to access them. 1300 UseFP |= (HasAlloca || HasExtraAlign); 1301 } else { 1302 if (HasAlloca) { 1303 if (HasExtraAlign) 1304 UseAP = true; 1305 else 1306 UseFP = true; 1307 } 1308 } 1309 1310 // If FP was picked, then there had better be FP. 1311 bool HasFP = hasFP(MF); 1312 assert((HasFP || !UseFP) && "This function must have frame pointer"); 1313 1314 // Having FP implies allocframe. Allocframe will store extra 8 bytes: 1315 // FP/LR. If the base register is used to access an object across these 1316 // 8 bytes, then the offset will need to be adjusted by 8. 1317 // 1318 // After allocframe: 1319 // HexagonISelLowering adds 8 to ---+ 1320 // the offsets of all stack-based | 1321 // arguments (*) | 1322 // | 1323 // getObjectOffset < 0 0 8 getObjectOffset >= 8 1324 // ------------------------+-----+------------------------> increasing 1325 // <local objects> |FP/LR| <input arguments> addresses 1326 // -----------------+------+-----+------------------------> 1327 // | | 1328 // SP/AP point --+ +-- FP points here (**) 1329 // somewhere on 1330 // this side of FP/LR 1331 // 1332 // (*) See LowerFormalArguments. The FP/LR is assumed to be present. 1333 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. 1334 1335 // The lowering assumes that FP/LR is present, and so the offsets of 1336 // the formal arguments start at 8. If FP/LR is not there we need to 1337 // reduce the offset by 8. 1338 if (Offset > 0 && !HasFP) 1339 Offset -= 8; 1340 1341 if (UseFP) 1342 FrameReg = FP; 1343 else if (UseAP) 1344 FrameReg = AP; 1345 else 1346 FrameReg = SP; 1347 1348 // Calculate the actual offset in the instruction. If there is no FP 1349 // (in other words, no allocframe), then SP will not be adjusted (i.e. 1350 // there will be no SP -= FrameSize), so the frame size should not be 1351 // added to the calculated offset. 1352 int RealOffset = Offset; 1353 if (!UseFP && !UseAP) 1354 RealOffset = FrameSize+Offset; 1355 return StackOffset::getFixed(RealOffset); 1356 } 1357 1358 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, 1359 const CSIVect &CSI, const HexagonRegisterInfo &HRI, 1360 bool &PrologueStubs) const { 1361 if (CSI.empty()) 1362 return true; 1363 1364 MachineBasicBlock::iterator MI = MBB.begin(); 1365 PrologueStubs = false; 1366 MachineFunction &MF = *MBB.getParent(); 1367 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1368 auto &HII = *HST.getInstrInfo(); 1369 1370 if (useSpillFunction(MF, CSI)) { 1371 PrologueStubs = true; 1372 Register MaxReg = getMaxCalleeSavedReg(CSI, HRI); 1373 bool StkOvrFlowEnabled = EnableStackOVFSanitizer; 1374 const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem, 1375 StkOvrFlowEnabled); 1376 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); 1377 bool IsPIC = HTM.isPositionIndependent(); 1378 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; 1379 1380 // Call spill function. 1381 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1382 unsigned SpillOpc; 1383 if (StkOvrFlowEnabled) { 1384 if (LongCalls) 1385 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC 1386 : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT; 1387 else 1388 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC 1389 : Hexagon::SAVE_REGISTERS_CALL_V4STK; 1390 } else { 1391 if (LongCalls) 1392 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC 1393 : Hexagon::SAVE_REGISTERS_CALL_V4_EXT; 1394 else 1395 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC 1396 : Hexagon::SAVE_REGISTERS_CALL_V4; 1397 } 1398 1399 MachineInstr *SaveRegsCall = 1400 BuildMI(MBB, MI, DL, HII.get(SpillOpc)) 1401 .addExternalSymbol(SpillFun); 1402 1403 // Add callee-saved registers as use. 1404 addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true); 1405 // Add live in registers. 1406 for (const CalleeSavedInfo &I : CSI) 1407 MBB.addLiveIn(I.getReg()); 1408 return true; 1409 } 1410 1411 for (const CalleeSavedInfo &I : CSI) { 1412 Register Reg = I.getReg(); 1413 // Add live in registers. We treat eh_return callee saved register r0 - r3 1414 // specially. They are not really callee saved registers as they are not 1415 // supposed to be killed. 1416 bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); 1417 int FI = I.getFrameIdx(); 1418 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); 1419 HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI, Register()); 1420 if (IsKill) 1421 MBB.addLiveIn(Reg); 1422 } 1423 return true; 1424 } 1425 1426 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, 1427 const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { 1428 if (CSI.empty()) 1429 return false; 1430 1431 MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); 1432 MachineFunction &MF = *MBB.getParent(); 1433 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1434 auto &HII = *HST.getInstrInfo(); 1435 1436 if (useRestoreFunction(MF, CSI)) { 1437 bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); 1438 Register MaxR = getMaxCalleeSavedReg(CSI, HRI); 1439 SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; 1440 const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); 1441 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); 1442 bool IsPIC = HTM.isPositionIndependent(); 1443 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; 1444 1445 // Call spill function. 1446 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() 1447 : MBB.findDebugLoc(MBB.end()); 1448 MachineInstr *DeallocCall = nullptr; 1449 1450 if (HasTC) { 1451 unsigned RetOpc; 1452 if (LongCalls) 1453 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC 1454 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT; 1455 else 1456 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC 1457 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; 1458 DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc)) 1459 .addExternalSymbol(RestoreFn); 1460 } else { 1461 // The block has a return. 1462 MachineBasicBlock::iterator It = MBB.getFirstTerminator(); 1463 assert(It->isReturn() && std::next(It) == MBB.end()); 1464 unsigned RetOpc; 1465 if (LongCalls) 1466 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC 1467 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT; 1468 else 1469 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC 1470 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; 1471 DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc)) 1472 .addExternalSymbol(RestoreFn); 1473 // Transfer the function live-out registers. 1474 DeallocCall->copyImplicitOps(MF, *It); 1475 } 1476 addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false); 1477 return true; 1478 } 1479 1480 for (const CalleeSavedInfo &I : CSI) { 1481 Register Reg = I.getReg(); 1482 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); 1483 int FI = I.getFrameIdx(); 1484 HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI, Register()); 1485 } 1486 1487 return true; 1488 } 1489 1490 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( 1491 MachineFunction &MF, MachineBasicBlock &MBB, 1492 MachineBasicBlock::iterator I) const { 1493 MachineInstr &MI = *I; 1494 unsigned Opc = MI.getOpcode(); 1495 (void)Opc; // Silence compiler warning. 1496 assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && 1497 "Cannot handle this call frame pseudo instruction"); 1498 return MBB.erase(I); 1499 } 1500 1501 void HexagonFrameLowering::processFunctionBeforeFrameFinalized( 1502 MachineFunction &MF, RegScavenger *RS) const { 1503 // If this function has uses aligned stack and also has variable sized stack 1504 // objects, then we need to map all spill slots to fixed positions, so that 1505 // they can be accessed through FP. Otherwise they would have to be accessed 1506 // via AP, which may not be available at the particular place in the program. 1507 MachineFrameInfo &MFI = MF.getFrameInfo(); 1508 bool HasAlloca = MFI.hasVarSizedObjects(); 1509 bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign()); 1510 1511 if (!HasAlloca || !NeedsAlign) 1512 return; 1513 1514 // Set the physical aligned-stack base address register. 1515 Register AP = 0; 1516 if (const MachineInstr *AI = getAlignaInstr(MF)) 1517 AP = AI->getOperand(0).getReg(); 1518 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1519 assert(!AP.isValid() || AP.isPhysical()); 1520 HMFI.setStackAlignBaseReg(AP); 1521 } 1522 1523 /// Returns true if there are no caller-saved registers available in class RC. 1524 static bool needToReserveScavengingSpillSlots(MachineFunction &MF, 1525 const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { 1526 MachineRegisterInfo &MRI = MF.getRegInfo(); 1527 1528 auto IsUsed = [&HRI,&MRI] (Register Reg) -> bool { 1529 for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) 1530 if (MRI.isPhysRegUsed(*AI)) 1531 return true; 1532 return false; 1533 }; 1534 1535 // Check for an unused caller-saved register. Callee-saved registers 1536 // have become pristine by now. 1537 for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P) 1538 if (!IsUsed(*P)) 1539 return false; 1540 1541 // All caller-saved registers are used. 1542 return true; 1543 } 1544 1545 #ifndef NDEBUG 1546 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { 1547 dbgs() << '{'; 1548 for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { 1549 Register R = x; 1550 dbgs() << ' ' << printReg(R, &TRI); 1551 } 1552 dbgs() << " }"; 1553 } 1554 #endif 1555 1556 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, 1557 const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { 1558 LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n'); 1559 MachineFrameInfo &MFI = MF.getFrameInfo(); 1560 BitVector SRegs(Hexagon::NUM_TARGET_REGS); 1561 1562 // Generate a set of unique, callee-saved registers (SRegs), where each 1563 // register in the set is maximal in terms of sub-/super-register relation, 1564 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. 1565 1566 // (1) For each callee-saved register, add that register and all of its 1567 // sub-registers to SRegs. 1568 LLVM_DEBUG(dbgs() << "Initial CS registers: {"); 1569 for (const CalleeSavedInfo &I : CSI) { 1570 Register R = I.getReg(); 1571 LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI)); 1572 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) 1573 SRegs[*SR] = true; 1574 } 1575 LLVM_DEBUG(dbgs() << " }\n"); 1576 LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); 1577 dbgs() << "\n"); 1578 1579 // (2) For each reserved register, remove that register and all of its 1580 // sub- and super-registers from SRegs. 1581 BitVector Reserved = TRI->getReservedRegs(MF); 1582 // Unreserve the stack align register: it is reserved for this function 1583 // only, it still needs to be saved/restored. 1584 Register AP = 1585 MF.getInfo<HexagonMachineFunctionInfo>()->getStackAlignBaseReg(); 1586 if (AP.isValid()) { 1587 Reserved[AP] = false; 1588 // Unreserve super-regs if no other subregisters are reserved. 1589 for (MCSuperRegIterator SP(AP, TRI, false); SP.isValid(); ++SP) { 1590 bool HasResSub = false; 1591 for (MCSubRegIterator SB(*SP, TRI, false); SB.isValid(); ++SB) { 1592 if (!Reserved[*SB]) 1593 continue; 1594 HasResSub = true; 1595 break; 1596 } 1597 if (!HasResSub) 1598 Reserved[*SP] = false; 1599 } 1600 } 1601 1602 for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { 1603 Register R = x; 1604 for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR) 1605 SRegs[*SR] = false; 1606 } 1607 LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); 1608 dbgs() << "\n"); 1609 LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); 1610 dbgs() << "\n"); 1611 1612 // (3) Collect all registers that have at least one sub-register in SRegs, 1613 // and also have no sub-registers that are reserved. These will be the can- 1614 // didates for saving as a whole instead of their individual sub-registers. 1615 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) 1616 BitVector TmpSup(Hexagon::NUM_TARGET_REGS); 1617 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1618 Register R = x; 1619 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) 1620 TmpSup[*SR] = true; 1621 } 1622 for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { 1623 Register R = x; 1624 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) { 1625 if (!Reserved[*SR]) 1626 continue; 1627 TmpSup[R] = false; 1628 break; 1629 } 1630 } 1631 LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); 1632 dbgs() << "\n"); 1633 1634 // (4) Include all super-registers found in (3) into SRegs. 1635 SRegs |= TmpSup; 1636 LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); 1637 dbgs() << "\n"); 1638 1639 // (5) For each register R in SRegs, if any super-register of R is in SRegs, 1640 // remove R from SRegs. 1641 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1642 Register R = x; 1643 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) { 1644 if (!SRegs[*SR]) 1645 continue; 1646 SRegs[R] = false; 1647 break; 1648 } 1649 } 1650 LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); 1651 dbgs() << "\n"); 1652 1653 // Now, for each register that has a fixed stack slot, create the stack 1654 // object for it. 1655 CSI.clear(); 1656 1657 using SpillSlot = TargetFrameLowering::SpillSlot; 1658 1659 unsigned NumFixed; 1660 int MinOffset = 0; // CS offsets are negative. 1661 const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); 1662 for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { 1663 if (!SRegs[S->Reg]) 1664 continue; 1665 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); 1666 int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset); 1667 MinOffset = std::min(MinOffset, S->Offset); 1668 CSI.push_back(CalleeSavedInfo(S->Reg, FI)); 1669 SRegs[S->Reg] = false; 1670 } 1671 1672 // There can be some registers that don't have fixed slots. For example, 1673 // we need to store R0-R3 in functions with exception handling. For each 1674 // such register, create a non-fixed stack object. 1675 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1676 Register R = x; 1677 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); 1678 unsigned Size = TRI->getSpillSize(*RC); 1679 int Off = MinOffset - Size; 1680 Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign()); 1681 Off &= -Alignment.value(); 1682 int FI = MFI.CreateFixedSpillStackObject(Size, Off); 1683 MinOffset = std::min(MinOffset, Off); 1684 CSI.push_back(CalleeSavedInfo(R, FI)); 1685 SRegs[R] = false; 1686 } 1687 1688 LLVM_DEBUG({ 1689 dbgs() << "CS information: {"; 1690 for (const CalleeSavedInfo &I : CSI) { 1691 int FI = I.getFrameIdx(); 1692 int Off = MFI.getObjectOffset(FI); 1693 dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp"; 1694 if (Off >= 0) 1695 dbgs() << '+'; 1696 dbgs() << Off; 1697 } 1698 dbgs() << " }\n"; 1699 }); 1700 1701 #ifndef NDEBUG 1702 // Verify that all registers were handled. 1703 bool MissedReg = false; 1704 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1705 Register R = x; 1706 dbgs() << printReg(R, TRI) << ' '; 1707 MissedReg = true; 1708 } 1709 if (MissedReg) 1710 llvm_unreachable("...there are unhandled callee-saved registers!"); 1711 #endif 1712 1713 return true; 1714 } 1715 1716 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, 1717 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1718 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1719 MachineInstr *MI = &*It; 1720 DebugLoc DL = MI->getDebugLoc(); 1721 Register DstR = MI->getOperand(0).getReg(); 1722 Register SrcR = MI->getOperand(1).getReg(); 1723 if (!Hexagon::ModRegsRegClass.contains(DstR) || 1724 !Hexagon::ModRegsRegClass.contains(SrcR)) 1725 return false; 1726 1727 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1728 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1)); 1729 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR) 1730 .addReg(TmpR, RegState::Kill); 1731 1732 NewRegs.push_back(TmpR); 1733 B.erase(It); 1734 return true; 1735 } 1736 1737 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, 1738 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1739 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1740 MachineInstr *MI = &*It; 1741 if (!MI->getOperand(0).isFI()) 1742 return false; 1743 1744 DebugLoc DL = MI->getDebugLoc(); 1745 unsigned Opc = MI->getOpcode(); 1746 Register SrcR = MI->getOperand(2).getReg(); 1747 bool IsKill = MI->getOperand(2).isKill(); 1748 int FI = MI->getOperand(0).getIndex(); 1749 1750 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register 1751 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register 1752 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1753 unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr 1754 : Hexagon::A2_tfrcrr; 1755 BuildMI(B, It, DL, HII.get(TfrOpc), TmpR) 1756 .addReg(SrcR, getKillRegState(IsKill)); 1757 1758 // S2_storeri_io FI, 0, TmpR 1759 BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io)) 1760 .addFrameIndex(FI) 1761 .addImm(0) 1762 .addReg(TmpR, RegState::Kill) 1763 .cloneMemRefs(*MI); 1764 1765 NewRegs.push_back(TmpR); 1766 B.erase(It); 1767 return true; 1768 } 1769 1770 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, 1771 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1772 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1773 MachineInstr *MI = &*It; 1774 if (!MI->getOperand(1).isFI()) 1775 return false; 1776 1777 DebugLoc DL = MI->getDebugLoc(); 1778 unsigned Opc = MI->getOpcode(); 1779 Register DstR = MI->getOperand(0).getReg(); 1780 int FI = MI->getOperand(1).getIndex(); 1781 1782 // TmpR = L2_loadri_io FI, 0 1783 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1784 BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR) 1785 .addFrameIndex(FI) 1786 .addImm(0) 1787 .cloneMemRefs(*MI); 1788 1789 // DstR = C2_tfrrp TmpR if DstR is a predicate register 1790 // DstR = A2_tfrrcr TmpR if DstR is a modifier register 1791 unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp 1792 : Hexagon::A2_tfrrcr; 1793 BuildMI(B, It, DL, HII.get(TfrOpc), DstR) 1794 .addReg(TmpR, RegState::Kill); 1795 1796 NewRegs.push_back(TmpR); 1797 B.erase(It); 1798 return true; 1799 } 1800 1801 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, 1802 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1803 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1804 MachineInstr *MI = &*It; 1805 if (!MI->getOperand(0).isFI()) 1806 return false; 1807 1808 DebugLoc DL = MI->getDebugLoc(); 1809 Register SrcR = MI->getOperand(2).getReg(); 1810 bool IsKill = MI->getOperand(2).isKill(); 1811 int FI = MI->getOperand(0).getIndex(); 1812 auto *RC = &Hexagon::HvxVRRegClass; 1813 1814 // Insert transfer to general vector register. 1815 // TmpR0 = A2_tfrsi 0x01010101 1816 // TmpR1 = V6_vandqrt Qx, TmpR0 1817 // store FI, 0, TmpR1 1818 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1819 Register TmpR1 = MRI.createVirtualRegister(RC); 1820 1821 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) 1822 .addImm(0x01010101); 1823 1824 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1) 1825 .addReg(SrcR, getKillRegState(IsKill)) 1826 .addReg(TmpR0, RegState::Kill); 1827 1828 auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1829 HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI, Register()); 1830 expandStoreVec(B, std::prev(It), MRI, HII, NewRegs); 1831 1832 NewRegs.push_back(TmpR0); 1833 NewRegs.push_back(TmpR1); 1834 B.erase(It); 1835 return true; 1836 } 1837 1838 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, 1839 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1840 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1841 MachineInstr *MI = &*It; 1842 if (!MI->getOperand(1).isFI()) 1843 return false; 1844 1845 DebugLoc DL = MI->getDebugLoc(); 1846 Register DstR = MI->getOperand(0).getReg(); 1847 int FI = MI->getOperand(1).getIndex(); 1848 auto *RC = &Hexagon::HvxVRRegClass; 1849 1850 // TmpR0 = A2_tfrsi 0x01010101 1851 // TmpR1 = load FI, 0 1852 // DstR = V6_vandvrt TmpR1, TmpR0 1853 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1854 Register TmpR1 = MRI.createVirtualRegister(RC); 1855 1856 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) 1857 .addImm(0x01010101); 1858 MachineFunction &MF = *B.getParent(); 1859 auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1860 HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI, Register()); 1861 expandLoadVec(B, std::prev(It), MRI, HII, NewRegs); 1862 1863 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR) 1864 .addReg(TmpR1, RegState::Kill) 1865 .addReg(TmpR0, RegState::Kill); 1866 1867 NewRegs.push_back(TmpR0); 1868 NewRegs.push_back(TmpR1); 1869 B.erase(It); 1870 return true; 1871 } 1872 1873 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, 1874 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1875 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1876 MachineFunction &MF = *B.getParent(); 1877 auto &MFI = MF.getFrameInfo(); 1878 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1879 MachineInstr *MI = &*It; 1880 if (!MI->getOperand(0).isFI()) 1881 return false; 1882 1883 // It is possible that the double vector being stored is only partially 1884 // defined. From the point of view of the liveness tracking, it is ok to 1885 // store it as a whole, but if we break it up we may end up storing a 1886 // register that is entirely undefined. 1887 LivePhysRegs LPR(HRI); 1888 LPR.addLiveIns(B); 1889 SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; 1890 for (auto R = B.begin(); R != It; ++R) { 1891 Clobbers.clear(); 1892 LPR.stepForward(*R, Clobbers); 1893 } 1894 1895 DebugLoc DL = MI->getDebugLoc(); 1896 Register SrcR = MI->getOperand(2).getReg(); 1897 Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo); 1898 Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi); 1899 bool IsKill = MI->getOperand(2).isKill(); 1900 int FI = MI->getOperand(0).getIndex(); 1901 1902 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1903 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1904 Align HasAlign = MFI.getObjectAlign(FI); 1905 unsigned StoreOpc; 1906 1907 // Store low part. 1908 if (LPR.contains(SrcLo)) { 1909 StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai 1910 : Hexagon::V6_vS32Ub_ai; 1911 BuildMI(B, It, DL, HII.get(StoreOpc)) 1912 .addFrameIndex(FI) 1913 .addImm(0) 1914 .addReg(SrcLo, getKillRegState(IsKill)) 1915 .cloneMemRefs(*MI); 1916 } 1917 1918 // Store high part. 1919 if (LPR.contains(SrcHi)) { 1920 StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai 1921 : Hexagon::V6_vS32Ub_ai; 1922 BuildMI(B, It, DL, HII.get(StoreOpc)) 1923 .addFrameIndex(FI) 1924 .addImm(Size) 1925 .addReg(SrcHi, getKillRegState(IsKill)) 1926 .cloneMemRefs(*MI); 1927 } 1928 1929 B.erase(It); 1930 return true; 1931 } 1932 1933 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, 1934 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1935 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1936 MachineFunction &MF = *B.getParent(); 1937 auto &MFI = MF.getFrameInfo(); 1938 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1939 MachineInstr *MI = &*It; 1940 if (!MI->getOperand(1).isFI()) 1941 return false; 1942 1943 DebugLoc DL = MI->getDebugLoc(); 1944 Register DstR = MI->getOperand(0).getReg(); 1945 Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi); 1946 Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo); 1947 int FI = MI->getOperand(1).getIndex(); 1948 1949 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1950 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1951 Align HasAlign = MFI.getObjectAlign(FI); 1952 unsigned LoadOpc; 1953 1954 // Load low part. 1955 LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai 1956 : Hexagon::V6_vL32Ub_ai; 1957 BuildMI(B, It, DL, HII.get(LoadOpc), DstLo) 1958 .addFrameIndex(FI) 1959 .addImm(0) 1960 .cloneMemRefs(*MI); 1961 1962 // Load high part. 1963 LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai 1964 : Hexagon::V6_vL32Ub_ai; 1965 BuildMI(B, It, DL, HII.get(LoadOpc), DstHi) 1966 .addFrameIndex(FI) 1967 .addImm(Size) 1968 .cloneMemRefs(*MI); 1969 1970 B.erase(It); 1971 return true; 1972 } 1973 1974 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, 1975 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1976 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1977 MachineFunction &MF = *B.getParent(); 1978 auto &MFI = MF.getFrameInfo(); 1979 MachineInstr *MI = &*It; 1980 if (!MI->getOperand(0).isFI()) 1981 return false; 1982 1983 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1984 DebugLoc DL = MI->getDebugLoc(); 1985 Register SrcR = MI->getOperand(2).getReg(); 1986 bool IsKill = MI->getOperand(2).isKill(); 1987 int FI = MI->getOperand(0).getIndex(); 1988 1989 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1990 Align HasAlign = MFI.getObjectAlign(FI); 1991 unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai 1992 : Hexagon::V6_vS32Ub_ai; 1993 BuildMI(B, It, DL, HII.get(StoreOpc)) 1994 .addFrameIndex(FI) 1995 .addImm(0) 1996 .addReg(SrcR, getKillRegState(IsKill)) 1997 .cloneMemRefs(*MI); 1998 1999 B.erase(It); 2000 return true; 2001 } 2002 2003 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, 2004 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 2005 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 2006 MachineFunction &MF = *B.getParent(); 2007 auto &MFI = MF.getFrameInfo(); 2008 MachineInstr *MI = &*It; 2009 if (!MI->getOperand(1).isFI()) 2010 return false; 2011 2012 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2013 DebugLoc DL = MI->getDebugLoc(); 2014 Register DstR = MI->getOperand(0).getReg(); 2015 int FI = MI->getOperand(1).getIndex(); 2016 2017 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 2018 Align HasAlign = MFI.getObjectAlign(FI); 2019 unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai 2020 : Hexagon::V6_vL32Ub_ai; 2021 BuildMI(B, It, DL, HII.get(LoadOpc), DstR) 2022 .addFrameIndex(FI) 2023 .addImm(0) 2024 .cloneMemRefs(*MI); 2025 2026 B.erase(It); 2027 return true; 2028 } 2029 2030 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, 2031 SmallVectorImpl<Register> &NewRegs) const { 2032 auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 2033 MachineRegisterInfo &MRI = MF.getRegInfo(); 2034 bool Changed = false; 2035 2036 for (auto &B : MF) { 2037 // Traverse the basic block. 2038 MachineBasicBlock::iterator NextI; 2039 for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { 2040 MachineInstr *MI = &*I; 2041 NextI = std::next(I); 2042 unsigned Opc = MI->getOpcode(); 2043 2044 switch (Opc) { 2045 case TargetOpcode::COPY: 2046 Changed |= expandCopy(B, I, MRI, HII, NewRegs); 2047 break; 2048 case Hexagon::STriw_pred: 2049 case Hexagon::STriw_ctr: 2050 Changed |= expandStoreInt(B, I, MRI, HII, NewRegs); 2051 break; 2052 case Hexagon::LDriw_pred: 2053 case Hexagon::LDriw_ctr: 2054 Changed |= expandLoadInt(B, I, MRI, HII, NewRegs); 2055 break; 2056 case Hexagon::PS_vstorerq_ai: 2057 Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs); 2058 break; 2059 case Hexagon::PS_vloadrq_ai: 2060 Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs); 2061 break; 2062 case Hexagon::PS_vloadrw_ai: 2063 Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs); 2064 break; 2065 case Hexagon::PS_vstorerw_ai: 2066 Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs); 2067 break; 2068 } 2069 } 2070 } 2071 2072 return Changed; 2073 } 2074 2075 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, 2076 BitVector &SavedRegs, 2077 RegScavenger *RS) const { 2078 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2079 2080 SavedRegs.resize(HRI.getNumRegs()); 2081 2082 // If we have a function containing __builtin_eh_return we want to spill and 2083 // restore all callee saved registers. Pretend that they are used. 2084 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) 2085 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R) 2086 SavedRegs.set(*R); 2087 2088 // Replace predicate register pseudo spill code. 2089 SmallVector<Register,8> NewRegs; 2090 expandSpillMacros(MF, NewRegs); 2091 if (OptimizeSpillSlots && !isOptNone(MF)) 2092 optimizeSpillSlots(MF, NewRegs); 2093 2094 // We need to reserve a spill slot if scavenging could potentially require 2095 // spilling a scavenged register. 2096 if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) { 2097 MachineFrameInfo &MFI = MF.getFrameInfo(); 2098 MachineRegisterInfo &MRI = MF.getRegInfo(); 2099 SetVector<const TargetRegisterClass*> SpillRCs; 2100 // Reserve an int register in any case, because it could be used to hold 2101 // the stack offset in case it does not fit into a spill instruction. 2102 SpillRCs.insert(&Hexagon::IntRegsRegClass); 2103 2104 for (Register VR : NewRegs) 2105 SpillRCs.insert(MRI.getRegClass(VR)); 2106 2107 for (const auto *RC : SpillRCs) { 2108 if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) 2109 continue; 2110 unsigned Num = 1; 2111 switch (RC->getID()) { 2112 case Hexagon::IntRegsRegClassID: 2113 Num = NumberScavengerSlots; 2114 break; 2115 case Hexagon::HvxQRRegClassID: 2116 Num = 2; // Vector predicate spills also need a vector register. 2117 break; 2118 } 2119 unsigned S = HRI.getSpillSize(*RC); 2120 Align A = HRI.getSpillAlign(*RC); 2121 for (unsigned i = 0; i < Num; i++) { 2122 int NewFI = MFI.CreateSpillStackObject(S, A); 2123 RS->addScavengingFrameIndex(NewFI); 2124 } 2125 } 2126 } 2127 2128 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2129 } 2130 2131 Register HexagonFrameLowering::findPhysReg(MachineFunction &MF, 2132 HexagonBlockRanges::IndexRange &FIR, 2133 HexagonBlockRanges::InstrIndexMap &IndexMap, 2134 HexagonBlockRanges::RegToRangeMap &DeadMap, 2135 const TargetRegisterClass *RC) const { 2136 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2137 auto &MRI = MF.getRegInfo(); 2138 2139 auto isDead = [&FIR,&DeadMap] (Register Reg) -> bool { 2140 auto F = DeadMap.find({Reg,0}); 2141 if (F == DeadMap.end()) 2142 return false; 2143 for (auto &DR : F->second) 2144 if (DR.contains(FIR)) 2145 return true; 2146 return false; 2147 }; 2148 2149 for (Register Reg : RC->getRawAllocationOrder(MF)) { 2150 bool Dead = true; 2151 for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) { 2152 if (isDead(R.Reg)) 2153 continue; 2154 Dead = false; 2155 break; 2156 } 2157 if (Dead) 2158 return Reg; 2159 } 2160 return 0; 2161 } 2162 2163 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, 2164 SmallVectorImpl<Register> &VRegs) const { 2165 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2166 auto &HII = *HST.getInstrInfo(); 2167 auto &HRI = *HST.getRegisterInfo(); 2168 auto &MRI = MF.getRegInfo(); 2169 HexagonBlockRanges HBR(MF); 2170 2171 using BlockIndexMap = 2172 std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>; 2173 using BlockRangeMap = 2174 std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>; 2175 using IndexType = HexagonBlockRanges::IndexType; 2176 2177 struct SlotInfo { 2178 BlockRangeMap Map; 2179 unsigned Size = 0; 2180 const TargetRegisterClass *RC = nullptr; 2181 2182 SlotInfo() = default; 2183 }; 2184 2185 BlockIndexMap BlockIndexes; 2186 SmallSet<int,4> BadFIs; 2187 std::map<int,SlotInfo> FIRangeMap; 2188 2189 // Accumulate register classes: get a common class for a pre-existing 2190 // class HaveRC and a new class NewRC. Return nullptr if a common class 2191 // cannot be found, otherwise return the resulting class. If HaveRC is 2192 // nullptr, assume that it is still unset. 2193 auto getCommonRC = 2194 [](const TargetRegisterClass *HaveRC, 2195 const TargetRegisterClass *NewRC) -> const TargetRegisterClass * { 2196 if (HaveRC == nullptr || HaveRC == NewRC) 2197 return NewRC; 2198 // Different classes, both non-null. Pick the more general one. 2199 if (HaveRC->hasSubClassEq(NewRC)) 2200 return HaveRC; 2201 if (NewRC->hasSubClassEq(HaveRC)) 2202 return NewRC; 2203 return nullptr; 2204 }; 2205 2206 // Scan all blocks in the function. Check all occurrences of frame indexes, 2207 // and collect relevant information. 2208 for (auto &B : MF) { 2209 std::map<int,IndexType> LastStore, LastLoad; 2210 // Emplace appears not to be supported in gcc 4.7.2-4. 2211 //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); 2212 auto P = BlockIndexes.insert( 2213 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B))); 2214 auto &IndexMap = P.first->second; 2215 LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n" 2216 << IndexMap << '\n'); 2217 2218 for (auto &In : B) { 2219 int LFI, SFI; 2220 bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In); 2221 bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In); 2222 if (Load && Store) { 2223 // If it's both a load and a store, then we won't handle it. 2224 BadFIs.insert(LFI); 2225 BadFIs.insert(SFI); 2226 continue; 2227 } 2228 // Check for register classes of the register used as the source for 2229 // the store, and the register used as the destination for the load. 2230 // Also, only accept base+imm_offset addressing modes. Other addressing 2231 // modes can have side-effects (post-increments, etc.). For stack 2232 // slots they are very unlikely, so there is not much loss due to 2233 // this restriction. 2234 if (Load || Store) { 2235 int TFI = Load ? LFI : SFI; 2236 unsigned AM = HII.getAddrMode(In); 2237 SlotInfo &SI = FIRangeMap[TFI]; 2238 bool Bad = (AM != HexagonII::BaseImmOffset); 2239 if (!Bad) { 2240 // If the addressing mode is ok, check the register class. 2241 unsigned OpNum = Load ? 0 : 2; 2242 auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF); 2243 RC = getCommonRC(SI.RC, RC); 2244 if (RC == nullptr) 2245 Bad = true; 2246 else 2247 SI.RC = RC; 2248 } 2249 if (!Bad) { 2250 // Check sizes. 2251 unsigned S = HII.getMemAccessSize(In); 2252 if (SI.Size != 0 && SI.Size != S) 2253 Bad = true; 2254 else 2255 SI.Size = S; 2256 } 2257 if (!Bad) { 2258 for (auto *Mo : In.memoperands()) { 2259 if (!Mo->isVolatile() && !Mo->isAtomic()) 2260 continue; 2261 Bad = true; 2262 break; 2263 } 2264 } 2265 if (Bad) 2266 BadFIs.insert(TFI); 2267 } 2268 2269 // Locate uses of frame indices. 2270 for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { 2271 const MachineOperand &Op = In.getOperand(i); 2272 if (!Op.isFI()) 2273 continue; 2274 int FI = Op.getIndex(); 2275 // Make sure that the following operand is an immediate and that 2276 // it is 0. This is the offset in the stack object. 2277 if (i+1 >= n || !In.getOperand(i+1).isImm() || 2278 In.getOperand(i+1).getImm() != 0) 2279 BadFIs.insert(FI); 2280 if (BadFIs.count(FI)) 2281 continue; 2282 2283 IndexType Index = IndexMap.getIndex(&In); 2284 if (Load) { 2285 if (LastStore[FI] == IndexType::None) 2286 LastStore[FI] = IndexType::Entry; 2287 LastLoad[FI] = Index; 2288 } else if (Store) { 2289 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; 2290 if (LastStore[FI] != IndexType::None) 2291 RL.add(LastStore[FI], LastLoad[FI], false, false); 2292 else if (LastLoad[FI] != IndexType::None) 2293 RL.add(IndexType::Entry, LastLoad[FI], false, false); 2294 LastLoad[FI] = IndexType::None; 2295 LastStore[FI] = Index; 2296 } else { 2297 BadFIs.insert(FI); 2298 } 2299 } 2300 } 2301 2302 for (auto &I : LastLoad) { 2303 IndexType LL = I.second; 2304 if (LL == IndexType::None) 2305 continue; 2306 auto &RL = FIRangeMap[I.first].Map[&B]; 2307 IndexType &LS = LastStore[I.first]; 2308 if (LS != IndexType::None) 2309 RL.add(LS, LL, false, false); 2310 else 2311 RL.add(IndexType::Entry, LL, false, false); 2312 LS = IndexType::None; 2313 } 2314 for (auto &I : LastStore) { 2315 IndexType LS = I.second; 2316 if (LS == IndexType::None) 2317 continue; 2318 auto &RL = FIRangeMap[I.first].Map[&B]; 2319 RL.add(LS, IndexType::None, false, false); 2320 } 2321 } 2322 2323 LLVM_DEBUG({ 2324 for (auto &P : FIRangeMap) { 2325 dbgs() << "fi#" << P.first; 2326 if (BadFIs.count(P.first)) 2327 dbgs() << " (bad)"; 2328 dbgs() << " RC: "; 2329 if (P.second.RC != nullptr) 2330 dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; 2331 else 2332 dbgs() << "<null>\n"; 2333 for (auto &R : P.second.Map) 2334 dbgs() << " " << printMBBReference(*R.first) << " { " << R.second 2335 << "}\n"; 2336 } 2337 }); 2338 2339 // When a slot is loaded from in a block without being stored to in the 2340 // same block, it is live-on-entry to this block. To avoid CFG analysis, 2341 // consider this slot to be live-on-exit from all blocks. 2342 SmallSet<int,4> LoxFIs; 2343 2344 std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap; 2345 2346 for (auto &P : FIRangeMap) { 2347 // P = pair(FI, map: BB->RangeList) 2348 if (BadFIs.count(P.first)) 2349 continue; 2350 for (auto &B : MF) { 2351 auto F = P.second.Map.find(&B); 2352 // F = pair(BB, RangeList) 2353 if (F == P.second.Map.end() || F->second.empty()) 2354 continue; 2355 HexagonBlockRanges::IndexRange &IR = F->second.front(); 2356 if (IR.start() == IndexType::Entry) 2357 LoxFIs.insert(P.first); 2358 BlockFIMap[&B].push_back(P.first); 2359 } 2360 } 2361 2362 LLVM_DEBUG({ 2363 dbgs() << "Block-to-FI map (* -- live-on-exit):\n"; 2364 for (auto &P : BlockFIMap) { 2365 auto &FIs = P.second; 2366 if (FIs.empty()) 2367 continue; 2368 dbgs() << " " << printMBBReference(*P.first) << ": {"; 2369 for (auto I : FIs) { 2370 dbgs() << " fi#" << I; 2371 if (LoxFIs.count(I)) 2372 dbgs() << '*'; 2373 } 2374 dbgs() << " }\n"; 2375 } 2376 }); 2377 2378 #ifndef NDEBUG 2379 bool HasOptLimit = SpillOptMax.getPosition(); 2380 #endif 2381 2382 // eliminate loads, when all loads eliminated, eliminate all stores. 2383 for (auto &B : MF) { 2384 auto F = BlockIndexes.find(&B); 2385 assert(F != BlockIndexes.end()); 2386 HexagonBlockRanges::InstrIndexMap &IM = F->second; 2387 HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM); 2388 HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM); 2389 LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n" 2390 << HexagonBlockRanges::PrintRangeMap(DM, HRI)); 2391 2392 for (auto FI : BlockFIMap[&B]) { 2393 if (BadFIs.count(FI)) 2394 continue; 2395 LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n'); 2396 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; 2397 for (auto &Range : RL) { 2398 LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n'); 2399 if (!IndexType::isInstr(Range.start()) || 2400 !IndexType::isInstr(Range.end())) 2401 continue; 2402 MachineInstr &SI = *IM.getInstr(Range.start()); 2403 MachineInstr &EI = *IM.getInstr(Range.end()); 2404 assert(SI.mayStore() && "Unexpected start instruction"); 2405 assert(EI.mayLoad() && "Unexpected end instruction"); 2406 MachineOperand &SrcOp = SI.getOperand(2); 2407 2408 HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(), 2409 SrcOp.getSubReg() }; 2410 auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF); 2411 // The this-> is needed to unconfuse MSVC. 2412 Register FoundR = this->findPhysReg(MF, Range, IM, DM, RC); 2413 LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI) 2414 << '\n'); 2415 if (FoundR == 0) 2416 continue; 2417 #ifndef NDEBUG 2418 if (HasOptLimit) { 2419 if (SpillOptCount >= SpillOptMax) 2420 return; 2421 SpillOptCount++; 2422 } 2423 #endif 2424 2425 // Generate the copy-in: "FoundR = COPY SrcR" at the store location. 2426 MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt; 2427 MachineInstr *CopyIn = nullptr; 2428 if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { 2429 const DebugLoc &DL = SI.getDebugLoc(); 2430 CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR) 2431 .add(SrcOp); 2432 } 2433 2434 ++StartIt; 2435 // Check if this is a last store and the FI is live-on-exit. 2436 if (LoxFIs.count(FI) && (&Range == &RL.back())) { 2437 // Update store's source register. 2438 if (unsigned SR = SrcOp.getSubReg()) 2439 SrcOp.setReg(HRI.getSubReg(FoundR, SR)); 2440 else 2441 SrcOp.setReg(FoundR); 2442 SrcOp.setSubReg(0); 2443 // We are keeping this register live. 2444 SrcOp.setIsKill(false); 2445 } else { 2446 B.erase(&SI); 2447 IM.replaceInstr(&SI, CopyIn); 2448 } 2449 2450 auto EndIt = std::next(EI.getIterator()); 2451 for (auto It = StartIt; It != EndIt; It = NextIt) { 2452 MachineInstr &MI = *It; 2453 NextIt = std::next(It); 2454 int TFI; 2455 if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI) 2456 continue; 2457 Register DstR = MI.getOperand(0).getReg(); 2458 assert(MI.getOperand(0).getSubReg() == 0); 2459 MachineInstr *CopyOut = nullptr; 2460 if (DstR != FoundR) { 2461 DebugLoc DL = MI.getDebugLoc(); 2462 unsigned MemSize = HII.getMemAccessSize(MI); 2463 assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); 2464 unsigned CopyOpc = TargetOpcode::COPY; 2465 if (HII.isSignExtendingLoad(MI)) 2466 CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; 2467 else if (HII.isZeroExtendingLoad(MI)) 2468 CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; 2469 CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR) 2470 .addReg(FoundR, getKillRegState(&MI == &EI)); 2471 } 2472 IM.replaceInstr(&MI, CopyOut); 2473 B.erase(It); 2474 } 2475 2476 // Update the dead map. 2477 HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 }; 2478 for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI)) 2479 DM[RR].subtract(Range); 2480 } // for Range in range list 2481 } 2482 } 2483 } 2484 2485 void HexagonFrameLowering::expandAlloca(MachineInstr *AI, 2486 const HexagonInstrInfo &HII, Register SP, unsigned CF) const { 2487 MachineBasicBlock &MB = *AI->getParent(); 2488 DebugLoc DL = AI->getDebugLoc(); 2489 unsigned A = AI->getOperand(2).getImm(); 2490 2491 // Have 2492 // Rd = alloca Rs, #A 2493 // 2494 // If Rs and Rd are different registers, use this sequence: 2495 // Rd = sub(r29, Rs) 2496 // r29 = sub(r29, Rs) 2497 // Rd = and(Rd, #-A) ; if necessary 2498 // r29 = and(r29, #-A) ; if necessary 2499 // Rd = add(Rd, #CF) ; CF size aligned to at most A 2500 // otherwise, do 2501 // Rd = sub(r29, Rs) 2502 // Rd = and(Rd, #-A) ; if necessary 2503 // r29 = Rd 2504 // Rd = add(Rd, #CF) ; CF size aligned to at most A 2505 2506 MachineOperand &RdOp = AI->getOperand(0); 2507 MachineOperand &RsOp = AI->getOperand(1); 2508 Register Rd = RdOp.getReg(), Rs = RsOp.getReg(); 2509 2510 // Rd = sub(r29, Rs) 2511 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) 2512 .addReg(SP) 2513 .addReg(Rs); 2514 if (Rs != Rd) { 2515 // r29 = sub(r29, Rs) 2516 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) 2517 .addReg(SP) 2518 .addReg(Rs); 2519 } 2520 if (A > 8) { 2521 // Rd = and(Rd, #-A) 2522 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) 2523 .addReg(Rd) 2524 .addImm(-int64_t(A)); 2525 if (Rs != Rd) 2526 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) 2527 .addReg(SP) 2528 .addImm(-int64_t(A)); 2529 } 2530 if (Rs == Rd) { 2531 // r29 = Rd 2532 BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) 2533 .addReg(Rd); 2534 } 2535 if (CF > 0) { 2536 // Rd = add(Rd, #CF) 2537 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) 2538 .addReg(Rd) 2539 .addImm(CF); 2540 } 2541 } 2542 2543 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { 2544 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2545 if (!MFI.hasVarSizedObjects()) 2546 return false; 2547 // Do not check for max stack object alignment here, because the stack 2548 // may not be complete yet. Assume that we will need PS_aligna if there 2549 // are variable-sized objects. 2550 return true; 2551 } 2552 2553 const MachineInstr *HexagonFrameLowering::getAlignaInstr( 2554 const MachineFunction &MF) const { 2555 for (auto &B : MF) 2556 for (auto &I : B) 2557 if (I.getOpcode() == Hexagon::PS_aligna) 2558 return &I; 2559 return nullptr; 2560 } 2561 2562 /// Adds all callee-saved registers as implicit uses or defs to the 2563 /// instruction. 2564 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, 2565 const CSIVect &CSI, bool IsDef, bool IsKill) const { 2566 // Add the callee-saved registers as implicit uses. 2567 for (auto &R : CSI) 2568 MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill)); 2569 } 2570 2571 /// Determine whether the callee-saved register saves and restores should 2572 /// be generated via inline code. If this function returns "true", inline 2573 /// code will be generated. If this function returns "false", additional 2574 /// checks are performed, which may still lead to the inline code. 2575 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF, 2576 const CSIVect &CSI) const { 2577 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) 2578 return true; 2579 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) 2580 return true; 2581 if (!hasFP(MF)) 2582 return true; 2583 if (!isOptSize(MF) && !isMinSize(MF)) 2584 if (MF.getTarget().getOptLevel() > CodeGenOpt::Default) 2585 return true; 2586 2587 // Check if CSI only has double registers, and if the registers form 2588 // a contiguous block starting from D8. 2589 BitVector Regs(Hexagon::NUM_TARGET_REGS); 2590 for (const CalleeSavedInfo &I : CSI) { 2591 Register R = I.getReg(); 2592 if (!Hexagon::DoubleRegsRegClass.contains(R)) 2593 return true; 2594 Regs[R] = true; 2595 } 2596 int F = Regs.find_first(); 2597 if (F != Hexagon::D8) 2598 return true; 2599 while (F >= 0) { 2600 int N = Regs.find_next(F); 2601 if (N >= 0 && N != F+1) 2602 return true; 2603 F = N; 2604 } 2605 2606 return false; 2607 } 2608 2609 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF, 2610 const CSIVect &CSI) const { 2611 if (shouldInlineCSR(MF, CSI)) 2612 return false; 2613 unsigned NumCSI = CSI.size(); 2614 if (NumCSI <= 1) 2615 return false; 2616 2617 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs 2618 : SpillFuncThreshold; 2619 return Threshold < NumCSI; 2620 } 2621 2622 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF, 2623 const CSIVect &CSI) const { 2624 if (shouldInlineCSR(MF, CSI)) 2625 return false; 2626 // The restore functions do a bit more than just restoring registers. 2627 // The non-returning versions will go back directly to the caller's 2628 // caller, others will clean up the stack frame in preparation for 2629 // a tail call. Using them can still save code size even if only one 2630 // register is getting restores. Make the decision based on -Oz: 2631 // using -Os will use inline restore for a single register. 2632 if (isMinSize(MF)) 2633 return true; 2634 unsigned NumCSI = CSI.size(); 2635 if (NumCSI <= 1) 2636 return false; 2637 2638 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 2639 : SpillFuncThreshold; 2640 return Threshold < NumCSI; 2641 } 2642 2643 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const { 2644 unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF); 2645 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2646 // A fairly simplistic guess as to whether a potential load/store to a 2647 // stack location could require an extra register. 2648 if (HST.useHVXOps() && StackSize > 256) 2649 return true; 2650 2651 // Check if the function has store-immediate instructions that access 2652 // the stack. Since the offset field is not extendable, if the stack 2653 // size exceeds the offset limit (6 bits, shifted), the stores will 2654 // require a new base register. 2655 bool HasImmStack = false; 2656 unsigned MinLS = ~0u; // Log_2 of the memory access size. 2657 2658 for (const MachineBasicBlock &B : MF) { 2659 for (const MachineInstr &MI : B) { 2660 unsigned LS = 0; 2661 switch (MI.getOpcode()) { 2662 case Hexagon::S4_storeirit_io: 2663 case Hexagon::S4_storeirif_io: 2664 case Hexagon::S4_storeiri_io: 2665 ++LS; 2666 [[fallthrough]]; 2667 case Hexagon::S4_storeirht_io: 2668 case Hexagon::S4_storeirhf_io: 2669 case Hexagon::S4_storeirh_io: 2670 ++LS; 2671 [[fallthrough]]; 2672 case Hexagon::S4_storeirbt_io: 2673 case Hexagon::S4_storeirbf_io: 2674 case Hexagon::S4_storeirb_io: 2675 if (MI.getOperand(0).isFI()) 2676 HasImmStack = true; 2677 MinLS = std::min(MinLS, LS); 2678 break; 2679 } 2680 } 2681 } 2682 2683 if (HasImmStack) 2684 return !isUInt<6>(StackSize >> MinLS); 2685 2686 return false; 2687 } 2688