1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "HexagonFrameLowering.h" 11 #include "HexagonBlockRanges.h" 12 #include "HexagonInstrInfo.h" 13 #include "HexagonMachineFunctionInfo.h" 14 #include "HexagonRegisterInfo.h" 15 #include "HexagonSubtarget.h" 16 #include "HexagonTargetMachine.h" 17 #include "MCTargetDesc/HexagonBaseInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/CodeGen/LivePhysRegs.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachinePostDominators.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/PseudoSourceValue.h" 40 #include "llvm/CodeGen/RegisterScavenging.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/MC/MCDwarf.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CodeGen.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include "llvm/Target/TargetOptions.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <map> 63 #include <utility> 64 #include <vector> 65 66 #define DEBUG_TYPE "hexagon-pei" 67 68 // Hexagon stack frame layout as defined by the ABI: 69 // 70 // Incoming arguments 71 // passed via stack 72 // | 73 // | 74 // SP during function's FP during function's | 75 // +-- runtime (top of stack) runtime (bottom) --+ | 76 // | | | 77 // --++---------------------+------------------+-----------------++-+------- 78 // | parameter area for | variable-size | fixed-size |LR| arg 79 // | called functions | local objects | local objects |FP| 80 // --+----------------------+------------------+-----------------+--+------- 81 // <- size known -> <- size unknown -> <- size known -> 82 // 83 // Low address High address 84 // 85 // <--- stack growth 86 // 87 // 88 // - In any circumstances, the outgoing function arguments are always accessi- 89 // ble using the SP, and the incoming arguments are accessible using the FP. 90 // - If the local objects are not aligned, they can always be accessed using 91 // the FP. 92 // - If there are no variable-sized objects, the local objects can always be 93 // accessed using the SP, regardless whether they are aligned or not. (The 94 // alignment padding will be at the bottom of the stack (highest address), 95 // and so the offset with respect to the SP will be known at the compile- 96 // -time.) 97 // 98 // The only complication occurs if there are both, local aligned objects, and 99 // dynamically allocated (variable-sized) objects. The alignment pad will be 100 // placed between the FP and the local objects, thus preventing the use of the 101 // FP to access the local objects. At the same time, the variable-sized objects 102 // will be between the SP and the local objects, thus introducing an unknown 103 // distance from the SP to the locals. 104 // 105 // To avoid this problem, a new register is created that holds the aligned 106 // address of the bottom of the stack, referred in the sources as AP (aligned 107 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad 108 // that aligns AP to the required boundary (a maximum of the alignments of 109 // all stack objects, fixed- and variable-sized). All local objects[1] will 110 // then use AP as the base pointer. 111 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get 112 // their name from being allocated at fixed locations on the stack, relative 113 // to the FP. In the presence of dynamic allocation and local alignment, such 114 // objects can only be accessed through the FP. 115 // 116 // Illustration of the AP: 117 // FP --+ 118 // | 119 // ---------------+---------------------+-----+-----------------------++-+-- 120 // Rest of the | Local stack objects | Pad | Fixed stack objects |LR| 121 // stack frame | (aligned) | | (CSR, spills, etc.) |FP| 122 // ---------------+---------------------+-----+-----------------+-----+--+-- 123 // |<-- Multiple of the -->| 124 // stack alignment +-- AP 125 // 126 // The AP is set up at the beginning of the function. Since it is not a dedi- 127 // cated (reserved) register, it needs to be kept live throughout the function 128 // to be available as the base register for local object accesses. 129 // Normally, an address of a stack objects is obtained by a pseudo-instruction 130 // PS_fi. To access local objects with the AP register present, a different 131 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra 132 // argument compared to PS_fi: the first input register is the AP register. 133 // This keeps the register live between its definition and its uses. 134 135 // The AP register is originally set up using pseudo-instruction PS_aligna: 136 // AP = PS_aligna A 137 // where 138 // A - required stack alignment 139 // The alignment value must be the maximum of all alignments required by 140 // any stack object. 141 142 // The dynamic allocation uses a pseudo-instruction PS_alloca: 143 // Rd = PS_alloca Rs, A 144 // where 145 // Rd - address of the allocated space 146 // Rs - minimum size (the actual allocated can be larger to accommodate 147 // alignment) 148 // A - required alignment 149 150 using namespace llvm; 151 152 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret", 153 cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); 154 155 static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots", 156 cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2), 157 cl::ZeroOrMore); 158 159 static cl::opt<int> SpillFuncThreshold("spill-func-threshold", 160 cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"), 161 cl::init(6), cl::ZeroOrMore); 162 163 static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os", 164 cl::Hidden, cl::desc("Specify Os spill func threshold"), 165 cl::init(1), cl::ZeroOrMore); 166 167 static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer", 168 cl::Hidden, cl::desc("Enable runtime checks for stack overflow."), 169 cl::init(false), cl::ZeroOrMore); 170 171 static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame", 172 cl::init(true), cl::Hidden, cl::ZeroOrMore, 173 cl::desc("Enable stack frame shrink wrapping")); 174 175 static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", 176 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore, 177 cl::desc("Max count of stack frame shrink-wraps")); 178 179 static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long", 180 cl::Hidden, cl::desc("Enable long calls for save-restore stubs."), 181 cl::init(false), cl::ZeroOrMore); 182 183 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true), 184 cl::Hidden, cl::desc("Refrain from using FP whenever possible")); 185 186 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden, 187 cl::init(true), cl::desc("Optimize spill slots")); 188 189 #ifndef NDEBUG 190 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden, 191 cl::init(std::numeric_limits<unsigned>::max())); 192 static unsigned SpillOptCount = 0; 193 #endif 194 195 namespace llvm { 196 197 void initializeHexagonCallFrameInformationPass(PassRegistry&); 198 FunctionPass *createHexagonCallFrameInformation(); 199 200 } // end namespace llvm 201 202 namespace { 203 204 class HexagonCallFrameInformation : public MachineFunctionPass { 205 public: 206 static char ID; 207 208 HexagonCallFrameInformation() : MachineFunctionPass(ID) { 209 PassRegistry &PR = *PassRegistry::getPassRegistry(); 210 initializeHexagonCallFrameInformationPass(PR); 211 } 212 213 bool runOnMachineFunction(MachineFunction &MF) override; 214 215 MachineFunctionProperties getRequiredProperties() const override { 216 return MachineFunctionProperties().set( 217 MachineFunctionProperties::Property::NoVRegs); 218 } 219 }; 220 221 char HexagonCallFrameInformation::ID = 0; 222 223 } // end anonymous namespace 224 225 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { 226 auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); 227 bool NeedCFI = MF.needsFrameMoves(); 228 229 if (!NeedCFI) 230 return false; 231 HFI.insertCFIInstructions(MF); 232 return true; 233 } 234 235 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", 236 "Hexagon call frame information", false, false) 237 238 FunctionPass *llvm::createHexagonCallFrameInformation() { 239 return new HexagonCallFrameInformation(); 240 } 241 242 /// Map a register pair Reg to the subregister that has the greater "number", 243 /// i.e. D3 (aka R7:6) will be mapped to R7, etc. 244 static unsigned getMax32BitSubRegister(unsigned Reg, 245 const TargetRegisterInfo &TRI, 246 bool hireg = true) { 247 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) 248 return Reg; 249 250 unsigned RegNo = 0; 251 for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) { 252 if (hireg) { 253 if (*SubRegs > RegNo) 254 RegNo = *SubRegs; 255 } else { 256 if (!RegNo || *SubRegs < RegNo) 257 RegNo = *SubRegs; 258 } 259 } 260 return RegNo; 261 } 262 263 /// Returns the callee saved register with the largest id in the vector. 264 static unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI, 265 const TargetRegisterInfo &TRI) { 266 static_assert(Hexagon::R1 > 0, 267 "Assume physical registers are encoded as positive integers"); 268 if (CSI.empty()) 269 return 0; 270 271 unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); 272 for (unsigned I = 1, E = CSI.size(); I < E; ++I) { 273 unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); 274 if (Reg > Max) 275 Max = Reg; 276 } 277 return Max; 278 } 279 280 /// Checks if the basic block contains any instruction that needs a stack 281 /// frame to be already in place. 282 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, 283 const HexagonRegisterInfo &HRI) { 284 for (auto &I : MBB) { 285 const MachineInstr *MI = &I; 286 if (MI->isCall()) 287 return true; 288 unsigned Opc = MI->getOpcode(); 289 switch (Opc) { 290 case Hexagon::PS_alloca: 291 case Hexagon::PS_aligna: 292 return true; 293 default: 294 break; 295 } 296 // Check individual operands. 297 for (const MachineOperand &MO : MI->operands()) { 298 // While the presence of a frame index does not prove that a stack 299 // frame will be required, all frame indexes should be within alloc- 300 // frame/deallocframe. Otherwise, the code that translates a frame 301 // index into an offset would have to be aware of the placement of 302 // the frame creation/destruction instructions. 303 if (MO.isFI()) 304 return true; 305 if (MO.isReg()) { 306 Register R = MO.getReg(); 307 // Virtual registers will need scavenging, which then may require 308 // a stack slot. 309 if (Register::isVirtualRegister(R)) 310 return true; 311 for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S) 312 if (CSR[*S]) 313 return true; 314 continue; 315 } 316 if (MO.isRegMask()) { 317 // A regmask would normally have all callee-saved registers marked 318 // as preserved, so this check would not be needed, but in case of 319 // ever having other regmasks (for other calling conventions), 320 // make sure they would be processed correctly. 321 const uint32_t *BM = MO.getRegMask(); 322 for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) { 323 unsigned R = x; 324 // If this regmask does not preserve a CSR, a frame will be needed. 325 if (!(BM[R/32] & (1u << (R%32)))) 326 return true; 327 } 328 } 329 } 330 } 331 return false; 332 } 333 334 /// Returns true if MBB has a machine instructions that indicates a tail call 335 /// in the block. 336 static bool hasTailCall(const MachineBasicBlock &MBB) { 337 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 338 if (I == MBB.end()) 339 return false; 340 unsigned RetOpc = I->getOpcode(); 341 return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r; 342 } 343 344 /// Returns true if MBB contains an instruction that returns. 345 static bool hasReturn(const MachineBasicBlock &MBB) { 346 for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I) 347 if (I->isReturn()) 348 return true; 349 return false; 350 } 351 352 /// Returns the "return" instruction from this block, or nullptr if there 353 /// isn't any. 354 static MachineInstr *getReturn(MachineBasicBlock &MBB) { 355 for (auto &I : MBB) 356 if (I.isReturn()) 357 return &I; 358 return nullptr; 359 } 360 361 static bool isRestoreCall(unsigned Opc) { 362 switch (Opc) { 363 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: 364 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: 365 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT: 366 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC: 367 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT: 368 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC: 369 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: 370 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: 371 return true; 372 } 373 return false; 374 } 375 376 static inline bool isOptNone(const MachineFunction &MF) { 377 return MF.getFunction().hasOptNone() || 378 MF.getTarget().getOptLevel() == CodeGenOpt::None; 379 } 380 381 static inline bool isOptSize(const MachineFunction &MF) { 382 const Function &F = MF.getFunction(); 383 return F.hasOptSize() && !F.hasMinSize(); 384 } 385 386 static inline bool isMinSize(const MachineFunction &MF) { 387 return MF.getFunction().hasMinSize(); 388 } 389 390 /// Implements shrink-wrapping of the stack frame. By default, stack frame 391 /// is created in the function entry block, and is cleaned up in every block 392 /// that returns. This function finds alternate blocks: one for the frame 393 /// setup (prolog) and one for the cleanup (epilog). 394 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, 395 MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { 396 static unsigned ShrinkCounter = 0; 397 398 if (ShrinkLimit.getPosition()) { 399 if (ShrinkCounter >= ShrinkLimit) 400 return; 401 ShrinkCounter++; 402 } 403 404 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 405 406 MachineDominatorTree MDT; 407 MDT.runOnMachineFunction(MF); 408 MachinePostDominatorTree MPT; 409 MPT.runOnMachineFunction(MF); 410 411 using UnsignedMap = DenseMap<unsigned, unsigned>; 412 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; 413 414 UnsignedMap RPO; 415 RPOTType RPOT(&MF); 416 unsigned RPON = 0; 417 for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) 418 RPO[(*I)->getNumber()] = RPON++; 419 420 // Don't process functions that have loops, at least for now. Placement 421 // of prolog and epilog must take loop structure into account. For simpli- 422 // city don't do it right now. 423 for (auto &I : MF) { 424 unsigned BN = RPO[I.getNumber()]; 425 for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) { 426 // If found a back-edge, return. 427 if (RPO[(*SI)->getNumber()] <= BN) 428 return; 429 } 430 } 431 432 // Collect the set of blocks that need a stack frame to execute. Scan 433 // each block for uses/defs of callee-saved registers, calls, etc. 434 SmallVector<MachineBasicBlock*,16> SFBlocks; 435 BitVector CSR(Hexagon::NUM_TARGET_REGS); 436 for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) 437 for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S) 438 CSR[*S] = true; 439 440 for (auto &I : MF) 441 if (needsStackFrame(I, CSR, HRI)) 442 SFBlocks.push_back(&I); 443 444 LLVM_DEBUG({ 445 dbgs() << "Blocks needing SF: {"; 446 for (auto &B : SFBlocks) 447 dbgs() << " " << printMBBReference(*B); 448 dbgs() << " }\n"; 449 }); 450 // No frame needed? 451 if (SFBlocks.empty()) 452 return; 453 454 // Pick a common dominator and a common post-dominator. 455 MachineBasicBlock *DomB = SFBlocks[0]; 456 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { 457 DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); 458 if (!DomB) 459 break; 460 } 461 MachineBasicBlock *PDomB = SFBlocks[0]; 462 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { 463 PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); 464 if (!PDomB) 465 break; 466 } 467 LLVM_DEBUG({ 468 dbgs() << "Computed dom block: "; 469 if (DomB) 470 dbgs() << printMBBReference(*DomB); 471 else 472 dbgs() << "<null>"; 473 dbgs() << ", computed pdom block: "; 474 if (PDomB) 475 dbgs() << printMBBReference(*PDomB); 476 else 477 dbgs() << "<null>"; 478 dbgs() << "\n"; 479 }); 480 if (!DomB || !PDomB) 481 return; 482 483 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. 484 if (!MDT.dominates(DomB, PDomB)) { 485 LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); 486 return; 487 } 488 if (!MPT.dominates(PDomB, DomB)) { 489 LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); 490 return; 491 } 492 493 // Finally, everything seems right. 494 PrologB = DomB; 495 EpilogB = PDomB; 496 } 497 498 /// Perform most of the PEI work here: 499 /// - saving/restoring of the callee-saved registers, 500 /// - stack frame creation and destruction. 501 /// Normally, this work is distributed among various functions, but doing it 502 /// in one place allows shrink-wrapping of the stack frame. 503 void HexagonFrameLowering::emitPrologue(MachineFunction &MF, 504 MachineBasicBlock &MBB) const { 505 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 506 507 MachineFrameInfo &MFI = MF.getFrameInfo(); 508 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 509 510 MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; 511 if (EnableShrinkWrapping) 512 findShrunkPrologEpilog(MF, PrologB, EpilogB); 513 514 bool PrologueStubs = false; 515 insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs); 516 insertPrologueInBlock(*PrologB, PrologueStubs); 517 updateEntryPaths(MF, *PrologB); 518 519 if (EpilogB) { 520 insertCSRRestoresInBlock(*EpilogB, CSI, HRI); 521 insertEpilogueInBlock(*EpilogB); 522 } else { 523 for (auto &B : MF) 524 if (B.isReturnBlock()) 525 insertCSRRestoresInBlock(B, CSI, HRI); 526 527 for (auto &B : MF) 528 if (B.isReturnBlock()) 529 insertEpilogueInBlock(B); 530 531 for (auto &B : MF) { 532 if (B.empty()) 533 continue; 534 MachineInstr *RetI = getReturn(B); 535 if (!RetI || isRestoreCall(RetI->getOpcode())) 536 continue; 537 for (auto &R : CSI) 538 RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); 539 } 540 } 541 542 if (EpilogB) { 543 // If there is an epilog block, it may not have a return instruction. 544 // In such case, we need to add the callee-saved registers as live-ins 545 // in all blocks on all paths from the epilog to any return block. 546 unsigned MaxBN = MF.getNumBlockIDs(); 547 BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); 548 updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path); 549 } 550 } 551 552 /// Returns true if the target can safely skip saving callee-saved registers 553 /// for noreturn nounwind functions. 554 bool HexagonFrameLowering::enableCalleeSaveSkip( 555 const MachineFunction &MF) const { 556 const auto &F = MF.getFunction(); 557 assert(F.hasFnAttribute(Attribute::NoReturn) && 558 F.getFunction().hasFnAttribute(Attribute::NoUnwind) && 559 !F.getFunction().hasFnAttribute(Attribute::UWTable)); 560 (void)F; 561 562 // No need to save callee saved registers if the function does not return. 563 return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim(); 564 } 565 566 // Helper function used to determine when to eliminate the stack frame for 567 // functions marked as noreturn and when the noreturn-stack-elim options are 568 // specified. When both these conditions are true, then a FP may not be needed 569 // if the function makes a call. It is very similar to enableCalleeSaveSkip, 570 // but it used to check if the allocframe can be eliminated as well. 571 static bool enableAllocFrameElim(const MachineFunction &MF) { 572 const auto &F = MF.getFunction(); 573 const auto &MFI = MF.getFrameInfo(); 574 const auto &HST = MF.getSubtarget<HexagonSubtarget>(); 575 assert(!MFI.hasVarSizedObjects() && 576 !HST.getRegisterInfo()->needsStackRealignment(MF)); 577 return F.hasFnAttribute(Attribute::NoReturn) && 578 F.hasFnAttribute(Attribute::NoUnwind) && 579 !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() && 580 MFI.getStackSize() == 0; 581 } 582 583 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, 584 bool PrologueStubs) const { 585 MachineFunction &MF = *MBB.getParent(); 586 MachineFrameInfo &MFI = MF.getFrameInfo(); 587 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 588 auto &HII = *HST.getInstrInfo(); 589 auto &HRI = *HST.getRegisterInfo(); 590 591 unsigned MaxAlign = std::max(MFI.getMaxAlignment(), getStackAlignment()); 592 593 // Calculate the total stack frame size. 594 // Get the number of bytes to allocate from the FrameInfo. 595 unsigned FrameSize = MFI.getStackSize(); 596 // Round up the max call frame size to the max alignment on the stack. 597 unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign); 598 MFI.setMaxCallFrameSize(MaxCFA); 599 600 FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign); 601 MFI.setStackSize(FrameSize); 602 603 bool AlignStack = (MaxAlign > getStackAlignment()); 604 605 // Get the number of bytes to allocate from the FrameInfo. 606 unsigned NumBytes = MFI.getStackSize(); 607 unsigned SP = HRI.getStackRegister(); 608 unsigned MaxCF = MFI.getMaxCallFrameSize(); 609 MachineBasicBlock::iterator InsertPt = MBB.begin(); 610 611 SmallVector<MachineInstr *, 4> AdjustRegs; 612 for (auto &MBB : MF) 613 for (auto &MI : MBB) 614 if (MI.getOpcode() == Hexagon::PS_alloca) 615 AdjustRegs.push_back(&MI); 616 617 for (auto MI : AdjustRegs) { 618 assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca"); 619 expandAlloca(MI, HII, SP, MaxCF); 620 MI->eraseFromParent(); 621 } 622 623 DebugLoc dl = MBB.findDebugLoc(InsertPt); 624 625 if (hasFP(MF)) { 626 insertAllocframe(MBB, InsertPt, NumBytes); 627 if (AlignStack) { 628 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) 629 .addReg(SP) 630 .addImm(-int64_t(MaxAlign)); 631 } 632 // If the stack-checking is enabled, and we spilled the callee-saved 633 // registers inline (i.e. did not use a spill function), then call 634 // the stack checker directly. 635 if (EnableStackOVFSanitizer && !PrologueStubs) 636 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk)) 637 .addExternalSymbol("__runtime_stack_check"); 638 } else if (NumBytes > 0) { 639 assert(alignTo(NumBytes, 8) == NumBytes); 640 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 641 .addReg(SP) 642 .addImm(-int(NumBytes)); 643 } 644 } 645 646 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { 647 MachineFunction &MF = *MBB.getParent(); 648 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 649 auto &HII = *HST.getInstrInfo(); 650 auto &HRI = *HST.getRegisterInfo(); 651 unsigned SP = HRI.getStackRegister(); 652 653 MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); 654 DebugLoc dl = MBB.findDebugLoc(InsertPt); 655 656 if (!hasFP(MF)) { 657 MachineFrameInfo &MFI = MF.getFrameInfo(); 658 if (unsigned NumBytes = MFI.getStackSize()) { 659 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 660 .addReg(SP) 661 .addImm(NumBytes); 662 } 663 return; 664 } 665 666 MachineInstr *RetI = getReturn(MBB); 667 unsigned RetOpc = RetI ? RetI->getOpcode() : 0; 668 669 // Handle EH_RETURN. 670 if (RetOpc == Hexagon::EH_RETURN_JMPR) { 671 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 672 .addDef(Hexagon::D15) 673 .addReg(Hexagon::R30); 674 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP) 675 .addReg(SP) 676 .addReg(Hexagon::R28); 677 return; 678 } 679 680 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- 681 // frame instruction if we encounter it. 682 if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || 683 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC || 684 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT || 685 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) { 686 MachineBasicBlock::iterator It = RetI; 687 ++It; 688 // Delete all instructions after the RESTORE (except labels). 689 while (It != MBB.end()) { 690 if (!It->isLabel()) 691 It = MBB.erase(It); 692 else 693 ++It; 694 } 695 return; 696 } 697 698 // It is possible that the restoring code is a call to a library function. 699 // All of the restore* functions include "deallocframe", so we need to make 700 // sure that we don't add an extra one. 701 bool NeedsDeallocframe = true; 702 if (!MBB.empty() && InsertPt != MBB.begin()) { 703 MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); 704 unsigned COpc = PrevIt->getOpcode(); 705 if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || 706 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC || 707 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT || 708 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC || 709 COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr) 710 NeedsDeallocframe = false; 711 } 712 713 if (!NeedsDeallocframe) 714 return; 715 // If the returning instruction is PS_jmpret, replace it with dealloc_return, 716 // otherwise just add deallocframe. The function could be returning via a 717 // tail call. 718 if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) { 719 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 720 .addDef(Hexagon::D15) 721 .addReg(Hexagon::R30); 722 return; 723 } 724 unsigned NewOpc = Hexagon::L4_return; 725 MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc)) 726 .addDef(Hexagon::D15) 727 .addReg(Hexagon::R30); 728 // Transfer the function live-out registers. 729 NewI->copyImplicitOps(MF, *RetI); 730 MBB.erase(RetI); 731 } 732 733 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB, 734 MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const { 735 MachineFunction &MF = *MBB.getParent(); 736 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 737 auto &HII = *HST.getInstrInfo(); 738 auto &HRI = *HST.getRegisterInfo(); 739 740 // Check for overflow. 741 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? 742 const unsigned int ALLOCFRAME_MAX = 16384; 743 744 // Create a dummy memory operand to avoid allocframe from being treated as 745 // a volatile memory reference. 746 auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0), 747 MachineMemOperand::MOStore, 4, 4); 748 749 DebugLoc dl = MBB.findDebugLoc(InsertPt); 750 unsigned SP = HRI.getStackRegister(); 751 752 if (NumBytes >= ALLOCFRAME_MAX) { 753 // Emit allocframe(#0). 754 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) 755 .addDef(SP) 756 .addReg(SP) 757 .addImm(0) 758 .addMemOperand(MMO); 759 760 // Subtract the size from the stack pointer. 761 unsigned SP = HRI.getStackRegister(); 762 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 763 .addReg(SP) 764 .addImm(-int(NumBytes)); 765 } else { 766 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) 767 .addDef(SP) 768 .addReg(SP) 769 .addImm(NumBytes) 770 .addMemOperand(MMO); 771 } 772 } 773 774 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF, 775 MachineBasicBlock &SaveB) const { 776 SetVector<unsigned> Worklist; 777 778 MachineBasicBlock &EntryB = MF.front(); 779 Worklist.insert(EntryB.getNumber()); 780 781 unsigned SaveN = SaveB.getNumber(); 782 auto &CSI = MF.getFrameInfo().getCalleeSavedInfo(); 783 784 for (unsigned i = 0; i < Worklist.size(); ++i) { 785 unsigned BN = Worklist[i]; 786 MachineBasicBlock &MBB = *MF.getBlockNumbered(BN); 787 for (auto &R : CSI) 788 if (!MBB.isLiveIn(R.getReg())) 789 MBB.addLiveIn(R.getReg()); 790 if (BN != SaveN) 791 for (auto &SB : MBB.successors()) 792 Worklist.insert(SB->getNumber()); 793 } 794 } 795 796 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, 797 MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF, 798 BitVector &Path) const { 799 assert(MBB.getNumber() >= 0); 800 unsigned BN = MBB.getNumber(); 801 if (Path[BN] || DoneF[BN]) 802 return false; 803 if (DoneT[BN]) 804 return true; 805 806 auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo(); 807 808 Path[BN] = true; 809 bool ReachedExit = false; 810 for (auto &SB : MBB.successors()) 811 ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path); 812 813 if (!MBB.empty() && MBB.back().isReturn()) { 814 // Add implicit uses of all callee-saved registers to the reached 815 // return instructions. This is to prevent the anti-dependency breaker 816 // from renaming these registers. 817 MachineInstr &RetI = MBB.back(); 818 if (!isRestoreCall(RetI.getOpcode())) 819 for (auto &R : CSI) 820 RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); 821 ReachedExit = true; 822 } 823 824 // We don't want to add unnecessary live-ins to the restore block: since 825 // the callee-saved registers are being defined in it, the entry of the 826 // restore block cannot be on the path from the definitions to any exit. 827 if (ReachedExit && &MBB != &RestoreB) { 828 for (auto &R : CSI) 829 if (!MBB.isLiveIn(R.getReg())) 830 MBB.addLiveIn(R.getReg()); 831 DoneT[BN] = true; 832 } 833 if (!ReachedExit) 834 DoneF[BN] = true; 835 836 Path[BN] = false; 837 return ReachedExit; 838 } 839 840 static Optional<MachineBasicBlock::iterator> 841 findCFILocation(MachineBasicBlock &B) { 842 // The CFI instructions need to be inserted right after allocframe. 843 // An exception to this is a situation where allocframe is bundled 844 // with a call: then the CFI instructions need to be inserted before 845 // the packet with the allocframe+call (in case the call throws an 846 // exception). 847 auto End = B.instr_end(); 848 849 for (MachineInstr &I : B) { 850 MachineBasicBlock::iterator It = I.getIterator(); 851 if (!I.isBundle()) { 852 if (I.getOpcode() == Hexagon::S2_allocframe) 853 return std::next(It); 854 continue; 855 } 856 // I is a bundle. 857 bool HasCall = false, HasAllocFrame = false; 858 auto T = It.getInstrIterator(); 859 while (++T != End && T->isBundled()) { 860 if (T->getOpcode() == Hexagon::S2_allocframe) 861 HasAllocFrame = true; 862 else if (T->isCall()) 863 HasCall = true; 864 } 865 if (HasAllocFrame) 866 return HasCall ? It : std::next(It); 867 } 868 return None; 869 } 870 871 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { 872 for (auto &B : MF) { 873 auto At = findCFILocation(B); 874 if (At.hasValue()) 875 insertCFIInstructionsAt(B, At.getValue()); 876 } 877 } 878 879 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, 880 MachineBasicBlock::iterator At) const { 881 MachineFunction &MF = *MBB.getParent(); 882 MachineFrameInfo &MFI = MF.getFrameInfo(); 883 MachineModuleInfo &MMI = MF.getMMI(); 884 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 885 auto &HII = *HST.getInstrInfo(); 886 auto &HRI = *HST.getRegisterInfo(); 887 888 // If CFI instructions have debug information attached, something goes 889 // wrong with the final assembly generation: the prolog_end is placed 890 // in a wrong location. 891 DebugLoc DL; 892 const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); 893 894 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 895 bool HasFP = hasFP(MF); 896 897 if (HasFP) { 898 unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); 899 unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); 900 901 // Define CFA via an offset from the value of FP. 902 // 903 // -8 -4 0 (SP) 904 // --+----+----+--------------------- 905 // | FP | LR | increasing addresses --> 906 // --+----+----+--------------------- 907 // | +-- Old SP (before allocframe) 908 // +-- New FP (after allocframe) 909 // 910 // MCCFIInstruction::createDefCfa subtracts the offset from the register. 911 // MCCFIInstruction::createOffset takes the offset without sign change. 912 auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8); 913 BuildMI(MBB, At, DL, CFID) 914 .addCFIIndex(MF.addFrameInst(DefCfa)); 915 // R31 (return addr) = CFA - 4 916 auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); 917 BuildMI(MBB, At, DL, CFID) 918 .addCFIIndex(MF.addFrameInst(OffR31)); 919 // R30 (frame ptr) = CFA - 8 920 auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); 921 BuildMI(MBB, At, DL, CFID) 922 .addCFIIndex(MF.addFrameInst(OffR30)); 923 } 924 925 static unsigned int RegsToMove[] = { 926 Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, 927 Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, 928 Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, 929 Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, 930 Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, 931 Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, 932 Hexagon::NoRegister 933 }; 934 935 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 936 937 for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { 938 unsigned Reg = RegsToMove[i]; 939 auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { 940 return C.getReg() == Reg; 941 }; 942 auto F = find_if(CSI, IfR); 943 if (F == CSI.end()) 944 continue; 945 946 int64_t Offset; 947 if (HasFP) { 948 // If the function has a frame pointer (i.e. has an allocframe), 949 // then the CFA has been defined in terms of FP. Any offsets in 950 // the following CFI instructions have to be defined relative 951 // to FP, which points to the bottom of the stack frame. 952 // The function getFrameIndexReference can still choose to use SP 953 // for the offset calculation, so we cannot simply call it here. 954 // Instead, get the offset (relative to the FP) directly. 955 Offset = MFI.getObjectOffset(F->getFrameIdx()); 956 } else { 957 unsigned FrameReg; 958 Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg); 959 } 960 // Subtract 8 to make room for R30 and R31, which are added above. 961 Offset -= 8; 962 963 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { 964 unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); 965 auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, 966 Offset); 967 BuildMI(MBB, At, DL, CFID) 968 .addCFIIndex(MF.addFrameInst(OffReg)); 969 } else { 970 // Split the double regs into subregs, and generate appropriate 971 // cfi_offsets. 972 // The only reason, we are split double regs is, llvm-mc does not 973 // understand paired registers for cfi_offset. 974 // Eg .cfi_offset r1:0, -64 975 976 Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi); 977 Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo); 978 unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); 979 unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); 980 auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, 981 Offset+4); 982 BuildMI(MBB, At, DL, CFID) 983 .addCFIIndex(MF.addFrameInst(OffHi)); 984 auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, 985 Offset); 986 BuildMI(MBB, At, DL, CFID) 987 .addCFIIndex(MF.addFrameInst(OffLo)); 988 } 989 } 990 } 991 992 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { 993 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 994 return false; 995 996 auto &MFI = MF.getFrameInfo(); 997 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 998 bool HasExtraAlign = HRI.needsStackRealignment(MF); 999 bool HasAlloca = MFI.hasVarSizedObjects(); 1000 1001 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think 1002 // that this shouldn't be required, but doing so now because gcc does and 1003 // gdb can't break at the start of the function without it. Will remove if 1004 // this turns out to be a gdb bug. 1005 // 1006 if (MF.getTarget().getOptLevel() == CodeGenOpt::None) 1007 return true; 1008 1009 // By default we want to use SP (since it's always there). FP requires 1010 // some setup (i.e. ALLOCFRAME). 1011 // Both, alloca and stack alignment modify the stack pointer by an 1012 // undetermined value, so we need to save it at the entry to the function 1013 // (i.e. use allocframe). 1014 if (HasAlloca || HasExtraAlign) 1015 return true; 1016 1017 if (MFI.getStackSize() > 0) { 1018 // If FP-elimination is disabled, we have to use FP at this point. 1019 const TargetMachine &TM = MF.getTarget(); 1020 if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer) 1021 return true; 1022 if (EnableStackOVFSanitizer) 1023 return true; 1024 } 1025 1026 const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1027 if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR()) 1028 return true; 1029 1030 return false; 1031 } 1032 1033 enum SpillKind { 1034 SK_ToMem, 1035 SK_FromMem, 1036 SK_FromMemTailcall 1037 }; 1038 1039 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType, 1040 bool Stkchk = false) { 1041 const char * V4SpillToMemoryFunctions[] = { 1042 "__save_r16_through_r17", 1043 "__save_r16_through_r19", 1044 "__save_r16_through_r21", 1045 "__save_r16_through_r23", 1046 "__save_r16_through_r25", 1047 "__save_r16_through_r27" }; 1048 1049 const char * V4SpillToMemoryStkchkFunctions[] = { 1050 "__save_r16_through_r17_stkchk", 1051 "__save_r16_through_r19_stkchk", 1052 "__save_r16_through_r21_stkchk", 1053 "__save_r16_through_r23_stkchk", 1054 "__save_r16_through_r25_stkchk", 1055 "__save_r16_through_r27_stkchk" }; 1056 1057 const char * V4SpillFromMemoryFunctions[] = { 1058 "__restore_r16_through_r17_and_deallocframe", 1059 "__restore_r16_through_r19_and_deallocframe", 1060 "__restore_r16_through_r21_and_deallocframe", 1061 "__restore_r16_through_r23_and_deallocframe", 1062 "__restore_r16_through_r25_and_deallocframe", 1063 "__restore_r16_through_r27_and_deallocframe" }; 1064 1065 const char * V4SpillFromMemoryTailcallFunctions[] = { 1066 "__restore_r16_through_r17_and_deallocframe_before_tailcall", 1067 "__restore_r16_through_r19_and_deallocframe_before_tailcall", 1068 "__restore_r16_through_r21_and_deallocframe_before_tailcall", 1069 "__restore_r16_through_r23_and_deallocframe_before_tailcall", 1070 "__restore_r16_through_r25_and_deallocframe_before_tailcall", 1071 "__restore_r16_through_r27_and_deallocframe_before_tailcall" 1072 }; 1073 1074 const char **SpillFunc = nullptr; 1075 1076 switch(SpillType) { 1077 case SK_ToMem: 1078 SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions 1079 : V4SpillToMemoryFunctions; 1080 break; 1081 case SK_FromMem: 1082 SpillFunc = V4SpillFromMemoryFunctions; 1083 break; 1084 case SK_FromMemTailcall: 1085 SpillFunc = V4SpillFromMemoryTailcallFunctions; 1086 break; 1087 } 1088 assert(SpillFunc && "Unknown spill kind"); 1089 1090 // Spill all callee-saved registers up to the highest register used. 1091 switch (MaxReg) { 1092 case Hexagon::R17: 1093 return SpillFunc[0]; 1094 case Hexagon::R19: 1095 return SpillFunc[1]; 1096 case Hexagon::R21: 1097 return SpillFunc[2]; 1098 case Hexagon::R23: 1099 return SpillFunc[3]; 1100 case Hexagon::R25: 1101 return SpillFunc[4]; 1102 case Hexagon::R27: 1103 return SpillFunc[5]; 1104 default: 1105 llvm_unreachable("Unhandled maximum callee save register"); 1106 } 1107 return nullptr; 1108 } 1109 1110 int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1111 int FI, unsigned &FrameReg) const { 1112 auto &MFI = MF.getFrameInfo(); 1113 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1114 1115 int Offset = MFI.getObjectOffset(FI); 1116 bool HasAlloca = MFI.hasVarSizedObjects(); 1117 bool HasExtraAlign = HRI.needsStackRealignment(MF); 1118 bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None; 1119 1120 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1121 unsigned FrameSize = MFI.getStackSize(); 1122 unsigned SP = HRI.getStackRegister(); 1123 unsigned FP = HRI.getFrameRegister(); 1124 unsigned AP = HMFI.getStackAlignBasePhysReg(); 1125 // It may happen that AP will be absent even HasAlloca && HasExtraAlign 1126 // is true. HasExtraAlign may be set because of vector spills, without 1127 // aligned locals or aligned outgoing function arguments. Since vector 1128 // spills will ultimately be "unaligned", it is safe to use FP as the 1129 // base register. 1130 // In fact, in such a scenario the stack is actually not required to be 1131 // aligned, although it may end up being aligned anyway, since this 1132 // particular case is not easily detectable. The alignment will be 1133 // unnecessary, but not incorrect. 1134 // Unfortunately there is no quick way to verify that the above is 1135 // indeed the case (and that it's not a result of an error), so just 1136 // assume that missing AP will be replaced by FP. 1137 // (A better fix would be to rematerialize AP from FP and always align 1138 // vector spills.) 1139 if (AP == 0) 1140 AP = FP; 1141 1142 bool UseFP = false, UseAP = false; // Default: use SP (except at -O0). 1143 // Use FP at -O0, except when there are objects with extra alignment. 1144 // That additional alignment requirement may cause a pad to be inserted, 1145 // which will make it impossible to use FP to access objects located 1146 // past the pad. 1147 if (NoOpt && !HasExtraAlign) 1148 UseFP = true; 1149 if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { 1150 // Fixed and preallocated objects will be located before any padding 1151 // so FP must be used to access them. 1152 UseFP |= (HasAlloca || HasExtraAlign); 1153 } else { 1154 if (HasAlloca) { 1155 if (HasExtraAlign) 1156 UseAP = true; 1157 else 1158 UseFP = true; 1159 } 1160 } 1161 1162 // If FP was picked, then there had better be FP. 1163 bool HasFP = hasFP(MF); 1164 assert((HasFP || !UseFP) && "This function must have frame pointer"); 1165 1166 // Having FP implies allocframe. Allocframe will store extra 8 bytes: 1167 // FP/LR. If the base register is used to access an object across these 1168 // 8 bytes, then the offset will need to be adjusted by 8. 1169 // 1170 // After allocframe: 1171 // HexagonISelLowering adds 8 to ---+ 1172 // the offsets of all stack-based | 1173 // arguments (*) | 1174 // | 1175 // getObjectOffset < 0 0 8 getObjectOffset >= 8 1176 // ------------------------+-----+------------------------> increasing 1177 // <local objects> |FP/LR| <input arguments> addresses 1178 // -----------------+------+-----+------------------------> 1179 // | | 1180 // SP/AP point --+ +-- FP points here (**) 1181 // somewhere on 1182 // this side of FP/LR 1183 // 1184 // (*) See LowerFormalArguments. The FP/LR is assumed to be present. 1185 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. 1186 1187 // The lowering assumes that FP/LR is present, and so the offsets of 1188 // the formal arguments start at 8. If FP/LR is not there we need to 1189 // reduce the offset by 8. 1190 if (Offset > 0 && !HasFP) 1191 Offset -= 8; 1192 1193 if (UseFP) 1194 FrameReg = FP; 1195 else if (UseAP) 1196 FrameReg = AP; 1197 else 1198 FrameReg = SP; 1199 1200 // Calculate the actual offset in the instruction. If there is no FP 1201 // (in other words, no allocframe), then SP will not be adjusted (i.e. 1202 // there will be no SP -= FrameSize), so the frame size should not be 1203 // added to the calculated offset. 1204 int RealOffset = Offset; 1205 if (!UseFP && !UseAP) 1206 RealOffset = FrameSize+Offset; 1207 return RealOffset; 1208 } 1209 1210 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, 1211 const CSIVect &CSI, const HexagonRegisterInfo &HRI, 1212 bool &PrologueStubs) const { 1213 if (CSI.empty()) 1214 return true; 1215 1216 MachineBasicBlock::iterator MI = MBB.begin(); 1217 PrologueStubs = false; 1218 MachineFunction &MF = *MBB.getParent(); 1219 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1220 auto &HII = *HST.getInstrInfo(); 1221 1222 if (useSpillFunction(MF, CSI)) { 1223 PrologueStubs = true; 1224 unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI); 1225 bool StkOvrFlowEnabled = EnableStackOVFSanitizer; 1226 const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem, 1227 StkOvrFlowEnabled); 1228 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); 1229 bool IsPIC = HTM.isPositionIndependent(); 1230 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; 1231 1232 // Call spill function. 1233 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1234 unsigned SpillOpc; 1235 if (StkOvrFlowEnabled) { 1236 if (LongCalls) 1237 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC 1238 : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT; 1239 else 1240 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC 1241 : Hexagon::SAVE_REGISTERS_CALL_V4STK; 1242 } else { 1243 if (LongCalls) 1244 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC 1245 : Hexagon::SAVE_REGISTERS_CALL_V4_EXT; 1246 else 1247 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC 1248 : Hexagon::SAVE_REGISTERS_CALL_V4; 1249 } 1250 1251 MachineInstr *SaveRegsCall = 1252 BuildMI(MBB, MI, DL, HII.get(SpillOpc)) 1253 .addExternalSymbol(SpillFun); 1254 1255 // Add callee-saved registers as use. 1256 addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true); 1257 // Add live in registers. 1258 for (unsigned I = 0; I < CSI.size(); ++I) 1259 MBB.addLiveIn(CSI[I].getReg()); 1260 return true; 1261 } 1262 1263 for (unsigned i = 0, n = CSI.size(); i < n; ++i) { 1264 unsigned Reg = CSI[i].getReg(); 1265 // Add live in registers. We treat eh_return callee saved register r0 - r3 1266 // specially. They are not really callee saved registers as they are not 1267 // supposed to be killed. 1268 bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); 1269 int FI = CSI[i].getFrameIdx(); 1270 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); 1271 HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI); 1272 if (IsKill) 1273 MBB.addLiveIn(Reg); 1274 } 1275 return true; 1276 } 1277 1278 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, 1279 const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { 1280 if (CSI.empty()) 1281 return false; 1282 1283 MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); 1284 MachineFunction &MF = *MBB.getParent(); 1285 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1286 auto &HII = *HST.getInstrInfo(); 1287 1288 if (useRestoreFunction(MF, CSI)) { 1289 bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); 1290 unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI); 1291 SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; 1292 const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); 1293 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); 1294 bool IsPIC = HTM.isPositionIndependent(); 1295 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; 1296 1297 // Call spill function. 1298 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() 1299 : MBB.findDebugLoc(MBB.end()); 1300 MachineInstr *DeallocCall = nullptr; 1301 1302 if (HasTC) { 1303 unsigned RetOpc; 1304 if (LongCalls) 1305 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC 1306 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT; 1307 else 1308 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC 1309 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; 1310 DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc)) 1311 .addExternalSymbol(RestoreFn); 1312 } else { 1313 // The block has a return. 1314 MachineBasicBlock::iterator It = MBB.getFirstTerminator(); 1315 assert(It->isReturn() && std::next(It) == MBB.end()); 1316 unsigned RetOpc; 1317 if (LongCalls) 1318 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC 1319 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT; 1320 else 1321 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC 1322 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; 1323 DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc)) 1324 .addExternalSymbol(RestoreFn); 1325 // Transfer the function live-out registers. 1326 DeallocCall->copyImplicitOps(MF, *It); 1327 } 1328 addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false); 1329 return true; 1330 } 1331 1332 for (unsigned i = 0; i < CSI.size(); ++i) { 1333 unsigned Reg = CSI[i].getReg(); 1334 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); 1335 int FI = CSI[i].getFrameIdx(); 1336 HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI); 1337 } 1338 1339 return true; 1340 } 1341 1342 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( 1343 MachineFunction &MF, MachineBasicBlock &MBB, 1344 MachineBasicBlock::iterator I) const { 1345 MachineInstr &MI = *I; 1346 unsigned Opc = MI.getOpcode(); 1347 (void)Opc; // Silence compiler warning. 1348 assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && 1349 "Cannot handle this call frame pseudo instruction"); 1350 return MBB.erase(I); 1351 } 1352 1353 void HexagonFrameLowering::processFunctionBeforeFrameFinalized( 1354 MachineFunction &MF, RegScavenger *RS) const { 1355 // If this function has uses aligned stack and also has variable sized stack 1356 // objects, then we need to map all spill slots to fixed positions, so that 1357 // they can be accessed through FP. Otherwise they would have to be accessed 1358 // via AP, which may not be available at the particular place in the program. 1359 MachineFrameInfo &MFI = MF.getFrameInfo(); 1360 bool HasAlloca = MFI.hasVarSizedObjects(); 1361 bool NeedsAlign = (MFI.getMaxAlignment() > getStackAlignment()); 1362 1363 if (!HasAlloca || !NeedsAlign) 1364 return; 1365 1366 SmallSet<int, 4> DealignSlots; 1367 unsigned LFS = MFI.getLocalFrameSize(); 1368 for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) { 1369 if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i)) 1370 continue; 1371 unsigned S = MFI.getObjectSize(i); 1372 // Reduce the alignment to at most 8. This will require unaligned vector 1373 // stores if they happen here. 1374 unsigned A = std::max(MFI.getObjectAlignment(i), 8U); 1375 MFI.setObjectAlignment(i, 8); 1376 LFS = alignTo(LFS+S, A); 1377 MFI.mapLocalFrameObject(i, -static_cast<int64_t>(LFS)); 1378 DealignSlots.insert(i); 1379 } 1380 1381 MFI.setLocalFrameSize(LFS); 1382 Align A = MFI.getLocalFrameMaxAlign(); 1383 assert(A <= 8 && "Unexpected local frame alignment"); 1384 if (A == 1) 1385 MFI.setLocalFrameMaxAlign(Align(8)); 1386 MFI.setUseLocalStackAllocationBlock(true); 1387 1388 // Go over all MachineMemOperands in the code, and change the ones that 1389 // refer to the dealigned stack slots to reflect the new alignment. 1390 if (!DealignSlots.empty()) { 1391 for (MachineBasicBlock &BB : MF) { 1392 for (MachineInstr &MI : BB) { 1393 bool KeepOld = true; 1394 ArrayRef<MachineMemOperand*> memops = MI.memoperands(); 1395 SmallVector<MachineMemOperand*,1> new_memops; 1396 for (MachineMemOperand *MMO : memops) { 1397 auto *PV = MMO->getPseudoValue(); 1398 if (auto *FS = dyn_cast_or_null<FixedStackPseudoSourceValue>(PV)) { 1399 int FI = FS->getFrameIndex(); 1400 if (DealignSlots.count(FI)) { 1401 unsigned A = MFI.getObjectAlignment(FI); 1402 auto *NewMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), 1403 MMO->getFlags(), MMO->getSize(), A, 1404 MMO->getAAInfo(), MMO->getRanges(), 1405 MMO->getSyncScopeID(), MMO->getOrdering(), 1406 MMO->getFailureOrdering()); 1407 new_memops.push_back(NewMMO); 1408 KeepOld = false; 1409 continue; 1410 } 1411 } 1412 new_memops.push_back(MMO); 1413 } 1414 if (!KeepOld) 1415 MI.setMemRefs(MF, new_memops); 1416 } 1417 } 1418 } 1419 1420 // Set the physical aligned-stack base address register. 1421 unsigned AP = 0; 1422 if (const MachineInstr *AI = getAlignaInstr(MF)) 1423 AP = AI->getOperand(0).getReg(); 1424 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1425 HMFI.setStackAlignBasePhysReg(AP); 1426 } 1427 1428 /// Returns true if there are no caller-saved registers available in class RC. 1429 static bool needToReserveScavengingSpillSlots(MachineFunction &MF, 1430 const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { 1431 MachineRegisterInfo &MRI = MF.getRegInfo(); 1432 1433 auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool { 1434 for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) 1435 if (MRI.isPhysRegUsed(*AI)) 1436 return true; 1437 return false; 1438 }; 1439 1440 // Check for an unused caller-saved register. Callee-saved registers 1441 // have become pristine by now. 1442 for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P) 1443 if (!IsUsed(*P)) 1444 return false; 1445 1446 // All caller-saved registers are used. 1447 return true; 1448 } 1449 1450 #ifndef NDEBUG 1451 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { 1452 dbgs() << '{'; 1453 for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { 1454 unsigned R = x; 1455 dbgs() << ' ' << printReg(R, &TRI); 1456 } 1457 dbgs() << " }"; 1458 } 1459 #endif 1460 1461 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, 1462 const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { 1463 LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n'); 1464 MachineFrameInfo &MFI = MF.getFrameInfo(); 1465 BitVector SRegs(Hexagon::NUM_TARGET_REGS); 1466 1467 // Generate a set of unique, callee-saved registers (SRegs), where each 1468 // register in the set is maximal in terms of sub-/super-register relation, 1469 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. 1470 1471 // (1) For each callee-saved register, add that register and all of its 1472 // sub-registers to SRegs. 1473 LLVM_DEBUG(dbgs() << "Initial CS registers: {"); 1474 for (unsigned i = 0, n = CSI.size(); i < n; ++i) { 1475 unsigned R = CSI[i].getReg(); 1476 LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI)); 1477 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) 1478 SRegs[*SR] = true; 1479 } 1480 LLVM_DEBUG(dbgs() << " }\n"); 1481 LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); 1482 dbgs() << "\n"); 1483 1484 // (2) For each reserved register, remove that register and all of its 1485 // sub- and super-registers from SRegs. 1486 BitVector Reserved = TRI->getReservedRegs(MF); 1487 for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { 1488 unsigned R = x; 1489 for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR) 1490 SRegs[*SR] = false; 1491 } 1492 LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); 1493 dbgs() << "\n"); 1494 LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); 1495 dbgs() << "\n"); 1496 1497 // (3) Collect all registers that have at least one sub-register in SRegs, 1498 // and also have no sub-registers that are reserved. These will be the can- 1499 // didates for saving as a whole instead of their individual sub-registers. 1500 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) 1501 BitVector TmpSup(Hexagon::NUM_TARGET_REGS); 1502 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1503 unsigned R = x; 1504 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) 1505 TmpSup[*SR] = true; 1506 } 1507 for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { 1508 unsigned R = x; 1509 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) { 1510 if (!Reserved[*SR]) 1511 continue; 1512 TmpSup[R] = false; 1513 break; 1514 } 1515 } 1516 LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); 1517 dbgs() << "\n"); 1518 1519 // (4) Include all super-registers found in (3) into SRegs. 1520 SRegs |= TmpSup; 1521 LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); 1522 dbgs() << "\n"); 1523 1524 // (5) For each register R in SRegs, if any super-register of R is in SRegs, 1525 // remove R from SRegs. 1526 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1527 unsigned R = x; 1528 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) { 1529 if (!SRegs[*SR]) 1530 continue; 1531 SRegs[R] = false; 1532 break; 1533 } 1534 } 1535 LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); 1536 dbgs() << "\n"); 1537 1538 // Now, for each register that has a fixed stack slot, create the stack 1539 // object for it. 1540 CSI.clear(); 1541 1542 using SpillSlot = TargetFrameLowering::SpillSlot; 1543 1544 unsigned NumFixed; 1545 int MinOffset = 0; // CS offsets are negative. 1546 const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); 1547 for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { 1548 if (!SRegs[S->Reg]) 1549 continue; 1550 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); 1551 int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset); 1552 MinOffset = std::min(MinOffset, S->Offset); 1553 CSI.push_back(CalleeSavedInfo(S->Reg, FI)); 1554 SRegs[S->Reg] = false; 1555 } 1556 1557 // There can be some registers that don't have fixed slots. For example, 1558 // we need to store R0-R3 in functions with exception handling. For each 1559 // such register, create a non-fixed stack object. 1560 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1561 unsigned R = x; 1562 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); 1563 unsigned Size = TRI->getSpillSize(*RC); 1564 int Off = MinOffset - Size; 1565 unsigned Align = std::min(TRI->getSpillAlignment(*RC), getStackAlignment()); 1566 assert(isPowerOf2_32(Align)); 1567 Off &= -Align; 1568 int FI = MFI.CreateFixedSpillStackObject(Size, Off); 1569 MinOffset = std::min(MinOffset, Off); 1570 CSI.push_back(CalleeSavedInfo(R, FI)); 1571 SRegs[R] = false; 1572 } 1573 1574 LLVM_DEBUG({ 1575 dbgs() << "CS information: {"; 1576 for (unsigned i = 0, n = CSI.size(); i < n; ++i) { 1577 int FI = CSI[i].getFrameIdx(); 1578 int Off = MFI.getObjectOffset(FI); 1579 dbgs() << ' ' << printReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp"; 1580 if (Off >= 0) 1581 dbgs() << '+'; 1582 dbgs() << Off; 1583 } 1584 dbgs() << " }\n"; 1585 }); 1586 1587 #ifndef NDEBUG 1588 // Verify that all registers were handled. 1589 bool MissedReg = false; 1590 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1591 unsigned R = x; 1592 dbgs() << printReg(R, TRI) << ' '; 1593 MissedReg = true; 1594 } 1595 if (MissedReg) 1596 llvm_unreachable("...there are unhandled callee-saved registers!"); 1597 #endif 1598 1599 return true; 1600 } 1601 1602 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, 1603 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1604 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1605 MachineInstr *MI = &*It; 1606 DebugLoc DL = MI->getDebugLoc(); 1607 Register DstR = MI->getOperand(0).getReg(); 1608 Register SrcR = MI->getOperand(1).getReg(); 1609 if (!Hexagon::ModRegsRegClass.contains(DstR) || 1610 !Hexagon::ModRegsRegClass.contains(SrcR)) 1611 return false; 1612 1613 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1614 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1)); 1615 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR) 1616 .addReg(TmpR, RegState::Kill); 1617 1618 NewRegs.push_back(TmpR); 1619 B.erase(It); 1620 return true; 1621 } 1622 1623 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, 1624 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1625 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1626 MachineInstr *MI = &*It; 1627 if (!MI->getOperand(0).isFI()) 1628 return false; 1629 1630 DebugLoc DL = MI->getDebugLoc(); 1631 unsigned Opc = MI->getOpcode(); 1632 Register SrcR = MI->getOperand(2).getReg(); 1633 bool IsKill = MI->getOperand(2).isKill(); 1634 int FI = MI->getOperand(0).getIndex(); 1635 1636 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register 1637 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register 1638 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1639 unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr 1640 : Hexagon::A2_tfrcrr; 1641 BuildMI(B, It, DL, HII.get(TfrOpc), TmpR) 1642 .addReg(SrcR, getKillRegState(IsKill)); 1643 1644 // S2_storeri_io FI, 0, TmpR 1645 BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io)) 1646 .addFrameIndex(FI) 1647 .addImm(0) 1648 .addReg(TmpR, RegState::Kill) 1649 .cloneMemRefs(*MI); 1650 1651 NewRegs.push_back(TmpR); 1652 B.erase(It); 1653 return true; 1654 } 1655 1656 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, 1657 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1658 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1659 MachineInstr *MI = &*It; 1660 if (!MI->getOperand(1).isFI()) 1661 return false; 1662 1663 DebugLoc DL = MI->getDebugLoc(); 1664 unsigned Opc = MI->getOpcode(); 1665 Register DstR = MI->getOperand(0).getReg(); 1666 int FI = MI->getOperand(1).getIndex(); 1667 1668 // TmpR = L2_loadri_io FI, 0 1669 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1670 BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR) 1671 .addFrameIndex(FI) 1672 .addImm(0) 1673 .cloneMemRefs(*MI); 1674 1675 // DstR = C2_tfrrp TmpR if DstR is a predicate register 1676 // DstR = A2_tfrrcr TmpR if DstR is a modifier register 1677 unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp 1678 : Hexagon::A2_tfrrcr; 1679 BuildMI(B, It, DL, HII.get(TfrOpc), DstR) 1680 .addReg(TmpR, RegState::Kill); 1681 1682 NewRegs.push_back(TmpR); 1683 B.erase(It); 1684 return true; 1685 } 1686 1687 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, 1688 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1689 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1690 MachineInstr *MI = &*It; 1691 if (!MI->getOperand(0).isFI()) 1692 return false; 1693 1694 DebugLoc DL = MI->getDebugLoc(); 1695 Register SrcR = MI->getOperand(2).getReg(); 1696 bool IsKill = MI->getOperand(2).isKill(); 1697 int FI = MI->getOperand(0).getIndex(); 1698 auto *RC = &Hexagon::HvxVRRegClass; 1699 1700 // Insert transfer to general vector register. 1701 // TmpR0 = A2_tfrsi 0x01010101 1702 // TmpR1 = V6_vandqrt Qx, TmpR0 1703 // store FI, 0, TmpR1 1704 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1705 Register TmpR1 = MRI.createVirtualRegister(RC); 1706 1707 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) 1708 .addImm(0x01010101); 1709 1710 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1) 1711 .addReg(SrcR, getKillRegState(IsKill)) 1712 .addReg(TmpR0, RegState::Kill); 1713 1714 auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1715 HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI); 1716 expandStoreVec(B, std::prev(It), MRI, HII, NewRegs); 1717 1718 NewRegs.push_back(TmpR0); 1719 NewRegs.push_back(TmpR1); 1720 B.erase(It); 1721 return true; 1722 } 1723 1724 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, 1725 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1726 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1727 MachineInstr *MI = &*It; 1728 if (!MI->getOperand(1).isFI()) 1729 return false; 1730 1731 DebugLoc DL = MI->getDebugLoc(); 1732 Register DstR = MI->getOperand(0).getReg(); 1733 int FI = MI->getOperand(1).getIndex(); 1734 auto *RC = &Hexagon::HvxVRRegClass; 1735 1736 // TmpR0 = A2_tfrsi 0x01010101 1737 // TmpR1 = load FI, 0 1738 // DstR = V6_vandvrt TmpR1, TmpR0 1739 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1740 Register TmpR1 = MRI.createVirtualRegister(RC); 1741 1742 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) 1743 .addImm(0x01010101); 1744 MachineFunction &MF = *B.getParent(); 1745 auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1746 HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI); 1747 expandLoadVec(B, std::prev(It), MRI, HII, NewRegs); 1748 1749 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR) 1750 .addReg(TmpR1, RegState::Kill) 1751 .addReg(TmpR0, RegState::Kill); 1752 1753 NewRegs.push_back(TmpR0); 1754 NewRegs.push_back(TmpR1); 1755 B.erase(It); 1756 return true; 1757 } 1758 1759 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, 1760 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1761 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1762 MachineFunction &MF = *B.getParent(); 1763 auto &MFI = MF.getFrameInfo(); 1764 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1765 MachineInstr *MI = &*It; 1766 if (!MI->getOperand(0).isFI()) 1767 return false; 1768 1769 // It is possible that the double vector being stored is only partially 1770 // defined. From the point of view of the liveness tracking, it is ok to 1771 // store it as a whole, but if we break it up we may end up storing a 1772 // register that is entirely undefined. 1773 LivePhysRegs LPR(HRI); 1774 LPR.addLiveIns(B); 1775 SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; 1776 for (auto R = B.begin(); R != It; ++R) { 1777 Clobbers.clear(); 1778 LPR.stepForward(*R, Clobbers); 1779 } 1780 1781 DebugLoc DL = MI->getDebugLoc(); 1782 Register SrcR = MI->getOperand(2).getReg(); 1783 Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo); 1784 Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi); 1785 bool IsKill = MI->getOperand(2).isKill(); 1786 int FI = MI->getOperand(0).getIndex(); 1787 bool NeedsAligna = needsAligna(MF); 1788 1789 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1790 unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); 1791 unsigned HasAlign = MFI.getObjectAlignment(FI); 1792 unsigned StoreOpc; 1793 1794 auto UseAligned = [&] (unsigned NeedAlign, unsigned HasAlign) { 1795 return !NeedsAligna && (NeedAlign <= HasAlign); 1796 }; 1797 1798 // Store low part. 1799 if (LPR.contains(SrcLo)) { 1800 StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai 1801 : Hexagon::V6_vS32Ub_ai; 1802 BuildMI(B, It, DL, HII.get(StoreOpc)) 1803 .addFrameIndex(FI) 1804 .addImm(0) 1805 .addReg(SrcLo, getKillRegState(IsKill)) 1806 .cloneMemRefs(*MI); 1807 } 1808 1809 // Store high part. 1810 if (LPR.contains(SrcHi)) { 1811 StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai 1812 : Hexagon::V6_vS32Ub_ai; 1813 BuildMI(B, It, DL, HII.get(StoreOpc)) 1814 .addFrameIndex(FI) 1815 .addImm(Size) 1816 .addReg(SrcHi, getKillRegState(IsKill)) 1817 .cloneMemRefs(*MI); 1818 } 1819 1820 B.erase(It); 1821 return true; 1822 } 1823 1824 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, 1825 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1826 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1827 MachineFunction &MF = *B.getParent(); 1828 auto &MFI = MF.getFrameInfo(); 1829 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1830 MachineInstr *MI = &*It; 1831 if (!MI->getOperand(1).isFI()) 1832 return false; 1833 1834 DebugLoc DL = MI->getDebugLoc(); 1835 Register DstR = MI->getOperand(0).getReg(); 1836 Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi); 1837 Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo); 1838 int FI = MI->getOperand(1).getIndex(); 1839 bool NeedsAligna = needsAligna(MF); 1840 1841 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1842 unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); 1843 unsigned HasAlign = MFI.getObjectAlignment(FI); 1844 unsigned LoadOpc; 1845 1846 auto UseAligned = [&] (unsigned NeedAlign, unsigned HasAlign) { 1847 return !NeedsAligna && (NeedAlign <= HasAlign); 1848 }; 1849 1850 // Load low part. 1851 LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai 1852 : Hexagon::V6_vL32Ub_ai; 1853 BuildMI(B, It, DL, HII.get(LoadOpc), DstLo) 1854 .addFrameIndex(FI) 1855 .addImm(0) 1856 .cloneMemRefs(*MI); 1857 1858 // Load high part. 1859 LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai 1860 : Hexagon::V6_vL32Ub_ai; 1861 BuildMI(B, It, DL, HII.get(LoadOpc), DstHi) 1862 .addFrameIndex(FI) 1863 .addImm(Size) 1864 .cloneMemRefs(*MI); 1865 1866 B.erase(It); 1867 return true; 1868 } 1869 1870 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, 1871 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1872 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1873 MachineFunction &MF = *B.getParent(); 1874 auto &MFI = MF.getFrameInfo(); 1875 MachineInstr *MI = &*It; 1876 if (!MI->getOperand(0).isFI()) 1877 return false; 1878 1879 bool NeedsAligna = needsAligna(MF); 1880 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1881 DebugLoc DL = MI->getDebugLoc(); 1882 Register SrcR = MI->getOperand(2).getReg(); 1883 bool IsKill = MI->getOperand(2).isKill(); 1884 int FI = MI->getOperand(0).getIndex(); 1885 1886 unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); 1887 unsigned HasAlign = MFI.getObjectAlignment(FI); 1888 bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign); 1889 unsigned StoreOpc = UseAligned ? Hexagon::V6_vS32b_ai 1890 : Hexagon::V6_vS32Ub_ai; 1891 BuildMI(B, It, DL, HII.get(StoreOpc)) 1892 .addFrameIndex(FI) 1893 .addImm(0) 1894 .addReg(SrcR, getKillRegState(IsKill)) 1895 .cloneMemRefs(*MI); 1896 1897 B.erase(It); 1898 return true; 1899 } 1900 1901 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, 1902 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1903 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { 1904 MachineFunction &MF = *B.getParent(); 1905 auto &MFI = MF.getFrameInfo(); 1906 MachineInstr *MI = &*It; 1907 if (!MI->getOperand(1).isFI()) 1908 return false; 1909 1910 bool NeedsAligna = needsAligna(MF); 1911 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1912 DebugLoc DL = MI->getDebugLoc(); 1913 Register DstR = MI->getOperand(0).getReg(); 1914 int FI = MI->getOperand(1).getIndex(); 1915 1916 unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); 1917 unsigned HasAlign = MFI.getObjectAlignment(FI); 1918 bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign); 1919 unsigned LoadOpc = UseAligned ? Hexagon::V6_vL32b_ai 1920 : Hexagon::V6_vL32Ub_ai; 1921 BuildMI(B, It, DL, HII.get(LoadOpc), DstR) 1922 .addFrameIndex(FI) 1923 .addImm(0) 1924 .cloneMemRefs(*MI); 1925 1926 B.erase(It); 1927 return true; 1928 } 1929 1930 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, 1931 SmallVectorImpl<unsigned> &NewRegs) const { 1932 auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 1933 MachineRegisterInfo &MRI = MF.getRegInfo(); 1934 bool Changed = false; 1935 1936 for (auto &B : MF) { 1937 // Traverse the basic block. 1938 MachineBasicBlock::iterator NextI; 1939 for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { 1940 MachineInstr *MI = &*I; 1941 NextI = std::next(I); 1942 unsigned Opc = MI->getOpcode(); 1943 1944 switch (Opc) { 1945 case TargetOpcode::COPY: 1946 Changed |= expandCopy(B, I, MRI, HII, NewRegs); 1947 break; 1948 case Hexagon::STriw_pred: 1949 case Hexagon::STriw_ctr: 1950 Changed |= expandStoreInt(B, I, MRI, HII, NewRegs); 1951 break; 1952 case Hexagon::LDriw_pred: 1953 case Hexagon::LDriw_ctr: 1954 Changed |= expandLoadInt(B, I, MRI, HII, NewRegs); 1955 break; 1956 case Hexagon::PS_vstorerq_ai: 1957 Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs); 1958 break; 1959 case Hexagon::PS_vloadrq_ai: 1960 Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs); 1961 break; 1962 case Hexagon::PS_vloadrw_ai: 1963 Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs); 1964 break; 1965 case Hexagon::PS_vstorerw_ai: 1966 Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs); 1967 break; 1968 } 1969 } 1970 } 1971 1972 return Changed; 1973 } 1974 1975 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, 1976 BitVector &SavedRegs, 1977 RegScavenger *RS) const { 1978 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1979 1980 SavedRegs.resize(HRI.getNumRegs()); 1981 1982 // If we have a function containing __builtin_eh_return we want to spill and 1983 // restore all callee saved registers. Pretend that they are used. 1984 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) 1985 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R) 1986 SavedRegs.set(*R); 1987 1988 // Replace predicate register pseudo spill code. 1989 SmallVector<unsigned,8> NewRegs; 1990 expandSpillMacros(MF, NewRegs); 1991 if (OptimizeSpillSlots && !isOptNone(MF)) 1992 optimizeSpillSlots(MF, NewRegs); 1993 1994 // We need to reserve a spill slot if scavenging could potentially require 1995 // spilling a scavenged register. 1996 if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) { 1997 MachineFrameInfo &MFI = MF.getFrameInfo(); 1998 MachineRegisterInfo &MRI = MF.getRegInfo(); 1999 SetVector<const TargetRegisterClass*> SpillRCs; 2000 // Reserve an int register in any case, because it could be used to hold 2001 // the stack offset in case it does not fit into a spill instruction. 2002 SpillRCs.insert(&Hexagon::IntRegsRegClass); 2003 2004 for (unsigned VR : NewRegs) 2005 SpillRCs.insert(MRI.getRegClass(VR)); 2006 2007 for (auto *RC : SpillRCs) { 2008 if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) 2009 continue; 2010 unsigned Num = 1; 2011 switch (RC->getID()) { 2012 case Hexagon::IntRegsRegClassID: 2013 Num = NumberScavengerSlots; 2014 break; 2015 case Hexagon::HvxQRRegClassID: 2016 Num = 2; // Vector predicate spills also need a vector register. 2017 break; 2018 } 2019 unsigned S = HRI.getSpillSize(*RC), A = HRI.getSpillAlignment(*RC); 2020 for (unsigned i = 0; i < Num; i++) { 2021 int NewFI = MFI.CreateSpillStackObject(S, A); 2022 RS->addScavengingFrameIndex(NewFI); 2023 } 2024 } 2025 } 2026 2027 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2028 } 2029 2030 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF, 2031 HexagonBlockRanges::IndexRange &FIR, 2032 HexagonBlockRanges::InstrIndexMap &IndexMap, 2033 HexagonBlockRanges::RegToRangeMap &DeadMap, 2034 const TargetRegisterClass *RC) const { 2035 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2036 auto &MRI = MF.getRegInfo(); 2037 2038 auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool { 2039 auto F = DeadMap.find({Reg,0}); 2040 if (F == DeadMap.end()) 2041 return false; 2042 for (auto &DR : F->second) 2043 if (DR.contains(FIR)) 2044 return true; 2045 return false; 2046 }; 2047 2048 for (unsigned Reg : RC->getRawAllocationOrder(MF)) { 2049 bool Dead = true; 2050 for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) { 2051 if (isDead(R.Reg)) 2052 continue; 2053 Dead = false; 2054 break; 2055 } 2056 if (Dead) 2057 return Reg; 2058 } 2059 return 0; 2060 } 2061 2062 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, 2063 SmallVectorImpl<unsigned> &VRegs) const { 2064 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2065 auto &HII = *HST.getInstrInfo(); 2066 auto &HRI = *HST.getRegisterInfo(); 2067 auto &MRI = MF.getRegInfo(); 2068 HexagonBlockRanges HBR(MF); 2069 2070 using BlockIndexMap = 2071 std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>; 2072 using BlockRangeMap = 2073 std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>; 2074 using IndexType = HexagonBlockRanges::IndexType; 2075 2076 struct SlotInfo { 2077 BlockRangeMap Map; 2078 unsigned Size = 0; 2079 const TargetRegisterClass *RC = nullptr; 2080 2081 SlotInfo() = default; 2082 }; 2083 2084 BlockIndexMap BlockIndexes; 2085 SmallSet<int,4> BadFIs; 2086 std::map<int,SlotInfo> FIRangeMap; 2087 2088 // Accumulate register classes: get a common class for a pre-existing 2089 // class HaveRC and a new class NewRC. Return nullptr if a common class 2090 // cannot be found, otherwise return the resulting class. If HaveRC is 2091 // nullptr, assume that it is still unset. 2092 auto getCommonRC = 2093 [](const TargetRegisterClass *HaveRC, 2094 const TargetRegisterClass *NewRC) -> const TargetRegisterClass * { 2095 if (HaveRC == nullptr || HaveRC == NewRC) 2096 return NewRC; 2097 // Different classes, both non-null. Pick the more general one. 2098 if (HaveRC->hasSubClassEq(NewRC)) 2099 return HaveRC; 2100 if (NewRC->hasSubClassEq(HaveRC)) 2101 return NewRC; 2102 return nullptr; 2103 }; 2104 2105 // Scan all blocks in the function. Check all occurrences of frame indexes, 2106 // and collect relevant information. 2107 for (auto &B : MF) { 2108 std::map<int,IndexType> LastStore, LastLoad; 2109 // Emplace appears not to be supported in gcc 4.7.2-4. 2110 //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); 2111 auto P = BlockIndexes.insert( 2112 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B))); 2113 auto &IndexMap = P.first->second; 2114 LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n" 2115 << IndexMap << '\n'); 2116 2117 for (auto &In : B) { 2118 int LFI, SFI; 2119 bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In); 2120 bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In); 2121 if (Load && Store) { 2122 // If it's both a load and a store, then we won't handle it. 2123 BadFIs.insert(LFI); 2124 BadFIs.insert(SFI); 2125 continue; 2126 } 2127 // Check for register classes of the register used as the source for 2128 // the store, and the register used as the destination for the load. 2129 // Also, only accept base+imm_offset addressing modes. Other addressing 2130 // modes can have side-effects (post-increments, etc.). For stack 2131 // slots they are very unlikely, so there is not much loss due to 2132 // this restriction. 2133 if (Load || Store) { 2134 int TFI = Load ? LFI : SFI; 2135 unsigned AM = HII.getAddrMode(In); 2136 SlotInfo &SI = FIRangeMap[TFI]; 2137 bool Bad = (AM != HexagonII::BaseImmOffset); 2138 if (!Bad) { 2139 // If the addressing mode is ok, check the register class. 2140 unsigned OpNum = Load ? 0 : 2; 2141 auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF); 2142 RC = getCommonRC(SI.RC, RC); 2143 if (RC == nullptr) 2144 Bad = true; 2145 else 2146 SI.RC = RC; 2147 } 2148 if (!Bad) { 2149 // Check sizes. 2150 unsigned S = HII.getMemAccessSize(In); 2151 if (SI.Size != 0 && SI.Size != S) 2152 Bad = true; 2153 else 2154 SI.Size = S; 2155 } 2156 if (!Bad) { 2157 for (auto *Mo : In.memoperands()) { 2158 if (!Mo->isVolatile() && !Mo->isAtomic()) 2159 continue; 2160 Bad = true; 2161 break; 2162 } 2163 } 2164 if (Bad) 2165 BadFIs.insert(TFI); 2166 } 2167 2168 // Locate uses of frame indices. 2169 for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { 2170 const MachineOperand &Op = In.getOperand(i); 2171 if (!Op.isFI()) 2172 continue; 2173 int FI = Op.getIndex(); 2174 // Make sure that the following operand is an immediate and that 2175 // it is 0. This is the offset in the stack object. 2176 if (i+1 >= n || !In.getOperand(i+1).isImm() || 2177 In.getOperand(i+1).getImm() != 0) 2178 BadFIs.insert(FI); 2179 if (BadFIs.count(FI)) 2180 continue; 2181 2182 IndexType Index = IndexMap.getIndex(&In); 2183 if (Load) { 2184 if (LastStore[FI] == IndexType::None) 2185 LastStore[FI] = IndexType::Entry; 2186 LastLoad[FI] = Index; 2187 } else if (Store) { 2188 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; 2189 if (LastStore[FI] != IndexType::None) 2190 RL.add(LastStore[FI], LastLoad[FI], false, false); 2191 else if (LastLoad[FI] != IndexType::None) 2192 RL.add(IndexType::Entry, LastLoad[FI], false, false); 2193 LastLoad[FI] = IndexType::None; 2194 LastStore[FI] = Index; 2195 } else { 2196 BadFIs.insert(FI); 2197 } 2198 } 2199 } 2200 2201 for (auto &I : LastLoad) { 2202 IndexType LL = I.second; 2203 if (LL == IndexType::None) 2204 continue; 2205 auto &RL = FIRangeMap[I.first].Map[&B]; 2206 IndexType &LS = LastStore[I.first]; 2207 if (LS != IndexType::None) 2208 RL.add(LS, LL, false, false); 2209 else 2210 RL.add(IndexType::Entry, LL, false, false); 2211 LS = IndexType::None; 2212 } 2213 for (auto &I : LastStore) { 2214 IndexType LS = I.second; 2215 if (LS == IndexType::None) 2216 continue; 2217 auto &RL = FIRangeMap[I.first].Map[&B]; 2218 RL.add(LS, IndexType::None, false, false); 2219 } 2220 } 2221 2222 LLVM_DEBUG({ 2223 for (auto &P : FIRangeMap) { 2224 dbgs() << "fi#" << P.first; 2225 if (BadFIs.count(P.first)) 2226 dbgs() << " (bad)"; 2227 dbgs() << " RC: "; 2228 if (P.second.RC != nullptr) 2229 dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; 2230 else 2231 dbgs() << "<null>\n"; 2232 for (auto &R : P.second.Map) 2233 dbgs() << " " << printMBBReference(*R.first) << " { " << R.second 2234 << "}\n"; 2235 } 2236 }); 2237 2238 // When a slot is loaded from in a block without being stored to in the 2239 // same block, it is live-on-entry to this block. To avoid CFG analysis, 2240 // consider this slot to be live-on-exit from all blocks. 2241 SmallSet<int,4> LoxFIs; 2242 2243 std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap; 2244 2245 for (auto &P : FIRangeMap) { 2246 // P = pair(FI, map: BB->RangeList) 2247 if (BadFIs.count(P.first)) 2248 continue; 2249 for (auto &B : MF) { 2250 auto F = P.second.Map.find(&B); 2251 // F = pair(BB, RangeList) 2252 if (F == P.second.Map.end() || F->second.empty()) 2253 continue; 2254 HexagonBlockRanges::IndexRange &IR = F->second.front(); 2255 if (IR.start() == IndexType::Entry) 2256 LoxFIs.insert(P.first); 2257 BlockFIMap[&B].push_back(P.first); 2258 } 2259 } 2260 2261 LLVM_DEBUG({ 2262 dbgs() << "Block-to-FI map (* -- live-on-exit):\n"; 2263 for (auto &P : BlockFIMap) { 2264 auto &FIs = P.second; 2265 if (FIs.empty()) 2266 continue; 2267 dbgs() << " " << printMBBReference(*P.first) << ": {"; 2268 for (auto I : FIs) { 2269 dbgs() << " fi#" << I; 2270 if (LoxFIs.count(I)) 2271 dbgs() << '*'; 2272 } 2273 dbgs() << " }\n"; 2274 } 2275 }); 2276 2277 #ifndef NDEBUG 2278 bool HasOptLimit = SpillOptMax.getPosition(); 2279 #endif 2280 2281 // eliminate loads, when all loads eliminated, eliminate all stores. 2282 for (auto &B : MF) { 2283 auto F = BlockIndexes.find(&B); 2284 assert(F != BlockIndexes.end()); 2285 HexagonBlockRanges::InstrIndexMap &IM = F->second; 2286 HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM); 2287 HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM); 2288 LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n" 2289 << HexagonBlockRanges::PrintRangeMap(DM, HRI)); 2290 2291 for (auto FI : BlockFIMap[&B]) { 2292 if (BadFIs.count(FI)) 2293 continue; 2294 LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n'); 2295 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; 2296 for (auto &Range : RL) { 2297 LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n'); 2298 if (!IndexType::isInstr(Range.start()) || 2299 !IndexType::isInstr(Range.end())) 2300 continue; 2301 MachineInstr &SI = *IM.getInstr(Range.start()); 2302 MachineInstr &EI = *IM.getInstr(Range.end()); 2303 assert(SI.mayStore() && "Unexpected start instruction"); 2304 assert(EI.mayLoad() && "Unexpected end instruction"); 2305 MachineOperand &SrcOp = SI.getOperand(2); 2306 2307 HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(), 2308 SrcOp.getSubReg() }; 2309 auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF); 2310 // The this-> is needed to unconfuse MSVC. 2311 unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC); 2312 LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI) 2313 << '\n'); 2314 if (FoundR == 0) 2315 continue; 2316 #ifndef NDEBUG 2317 if (HasOptLimit) { 2318 if (SpillOptCount >= SpillOptMax) 2319 return; 2320 SpillOptCount++; 2321 } 2322 #endif 2323 2324 // Generate the copy-in: "FoundR = COPY SrcR" at the store location. 2325 MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt; 2326 MachineInstr *CopyIn = nullptr; 2327 if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { 2328 const DebugLoc &DL = SI.getDebugLoc(); 2329 CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR) 2330 .add(SrcOp); 2331 } 2332 2333 ++StartIt; 2334 // Check if this is a last store and the FI is live-on-exit. 2335 if (LoxFIs.count(FI) && (&Range == &RL.back())) { 2336 // Update store's source register. 2337 if (unsigned SR = SrcOp.getSubReg()) 2338 SrcOp.setReg(HRI.getSubReg(FoundR, SR)); 2339 else 2340 SrcOp.setReg(FoundR); 2341 SrcOp.setSubReg(0); 2342 // We are keeping this register live. 2343 SrcOp.setIsKill(false); 2344 } else { 2345 B.erase(&SI); 2346 IM.replaceInstr(&SI, CopyIn); 2347 } 2348 2349 auto EndIt = std::next(EI.getIterator()); 2350 for (auto It = StartIt; It != EndIt; It = NextIt) { 2351 MachineInstr &MI = *It; 2352 NextIt = std::next(It); 2353 int TFI; 2354 if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI) 2355 continue; 2356 Register DstR = MI.getOperand(0).getReg(); 2357 assert(MI.getOperand(0).getSubReg() == 0); 2358 MachineInstr *CopyOut = nullptr; 2359 if (DstR != FoundR) { 2360 DebugLoc DL = MI.getDebugLoc(); 2361 unsigned MemSize = HII.getMemAccessSize(MI); 2362 assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); 2363 unsigned CopyOpc = TargetOpcode::COPY; 2364 if (HII.isSignExtendingLoad(MI)) 2365 CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; 2366 else if (HII.isZeroExtendingLoad(MI)) 2367 CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; 2368 CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR) 2369 .addReg(FoundR, getKillRegState(&MI == &EI)); 2370 } 2371 IM.replaceInstr(&MI, CopyOut); 2372 B.erase(It); 2373 } 2374 2375 // Update the dead map. 2376 HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 }; 2377 for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI)) 2378 DM[RR].subtract(Range); 2379 } // for Range in range list 2380 } 2381 } 2382 } 2383 2384 void HexagonFrameLowering::expandAlloca(MachineInstr *AI, 2385 const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const { 2386 MachineBasicBlock &MB = *AI->getParent(); 2387 DebugLoc DL = AI->getDebugLoc(); 2388 unsigned A = AI->getOperand(2).getImm(); 2389 2390 // Have 2391 // Rd = alloca Rs, #A 2392 // 2393 // If Rs and Rd are different registers, use this sequence: 2394 // Rd = sub(r29, Rs) 2395 // r29 = sub(r29, Rs) 2396 // Rd = and(Rd, #-A) ; if necessary 2397 // r29 = and(r29, #-A) ; if necessary 2398 // Rd = add(Rd, #CF) ; CF size aligned to at most A 2399 // otherwise, do 2400 // Rd = sub(r29, Rs) 2401 // Rd = and(Rd, #-A) ; if necessary 2402 // r29 = Rd 2403 // Rd = add(Rd, #CF) ; CF size aligned to at most A 2404 2405 MachineOperand &RdOp = AI->getOperand(0); 2406 MachineOperand &RsOp = AI->getOperand(1); 2407 unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg(); 2408 2409 // Rd = sub(r29, Rs) 2410 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) 2411 .addReg(SP) 2412 .addReg(Rs); 2413 if (Rs != Rd) { 2414 // r29 = sub(r29, Rs) 2415 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) 2416 .addReg(SP) 2417 .addReg(Rs); 2418 } 2419 if (A > 8) { 2420 // Rd = and(Rd, #-A) 2421 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) 2422 .addReg(Rd) 2423 .addImm(-int64_t(A)); 2424 if (Rs != Rd) 2425 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) 2426 .addReg(SP) 2427 .addImm(-int64_t(A)); 2428 } 2429 if (Rs == Rd) { 2430 // r29 = Rd 2431 BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) 2432 .addReg(Rd); 2433 } 2434 if (CF > 0) { 2435 // Rd = add(Rd, #CF) 2436 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) 2437 .addReg(Rd) 2438 .addImm(CF); 2439 } 2440 } 2441 2442 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { 2443 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2444 if (!MFI.hasVarSizedObjects()) 2445 return false; 2446 // Do not check for max stack object alignment here, because the stack 2447 // may not be complete yet. Assume that we will need PS_aligna if there 2448 // are variable-sized objects. 2449 return true; 2450 } 2451 2452 const MachineInstr *HexagonFrameLowering::getAlignaInstr( 2453 const MachineFunction &MF) const { 2454 for (auto &B : MF) 2455 for (auto &I : B) 2456 if (I.getOpcode() == Hexagon::PS_aligna) 2457 return &I; 2458 return nullptr; 2459 } 2460 2461 /// Adds all callee-saved registers as implicit uses or defs to the 2462 /// instruction. 2463 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, 2464 const CSIVect &CSI, bool IsDef, bool IsKill) const { 2465 // Add the callee-saved registers as implicit uses. 2466 for (auto &R : CSI) 2467 MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill)); 2468 } 2469 2470 /// Determine whether the callee-saved register saves and restores should 2471 /// be generated via inline code. If this function returns "true", inline 2472 /// code will be generated. If this function returns "false", additional 2473 /// checks are performed, which may still lead to the inline code. 2474 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF, 2475 const CSIVect &CSI) const { 2476 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) 2477 return true; 2478 if (!hasFP(MF)) 2479 return true; 2480 if (!isOptSize(MF) && !isMinSize(MF)) 2481 if (MF.getTarget().getOptLevel() > CodeGenOpt::Default) 2482 return true; 2483 2484 // Check if CSI only has double registers, and if the registers form 2485 // a contiguous block starting from D8. 2486 BitVector Regs(Hexagon::NUM_TARGET_REGS); 2487 for (unsigned i = 0, n = CSI.size(); i < n; ++i) { 2488 unsigned R = CSI[i].getReg(); 2489 if (!Hexagon::DoubleRegsRegClass.contains(R)) 2490 return true; 2491 Regs[R] = true; 2492 } 2493 int F = Regs.find_first(); 2494 if (F != Hexagon::D8) 2495 return true; 2496 while (F >= 0) { 2497 int N = Regs.find_next(F); 2498 if (N >= 0 && N != F+1) 2499 return true; 2500 F = N; 2501 } 2502 2503 return false; 2504 } 2505 2506 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF, 2507 const CSIVect &CSI) const { 2508 if (shouldInlineCSR(MF, CSI)) 2509 return false; 2510 unsigned NumCSI = CSI.size(); 2511 if (NumCSI <= 1) 2512 return false; 2513 2514 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs 2515 : SpillFuncThreshold; 2516 return Threshold < NumCSI; 2517 } 2518 2519 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF, 2520 const CSIVect &CSI) const { 2521 if (shouldInlineCSR(MF, CSI)) 2522 return false; 2523 // The restore functions do a bit more than just restoring registers. 2524 // The non-returning versions will go back directly to the caller's 2525 // caller, others will clean up the stack frame in preparation for 2526 // a tail call. Using them can still save code size even if only one 2527 // register is getting restores. Make the decision based on -Oz: 2528 // using -Os will use inline restore for a single register. 2529 if (isMinSize(MF)) 2530 return true; 2531 unsigned NumCSI = CSI.size(); 2532 if (NumCSI <= 1) 2533 return false; 2534 2535 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 2536 : SpillFuncThreshold; 2537 return Threshold < NumCSI; 2538 } 2539 2540 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const { 2541 unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF); 2542 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2543 // A fairly simplistic guess as to whether a potential load/store to a 2544 // stack location could require an extra register. 2545 if (HST.useHVXOps() && StackSize > 256) 2546 return true; 2547 2548 // Check if the function has store-immediate instructions that access 2549 // the stack. Since the offset field is not extendable, if the stack 2550 // size exceeds the offset limit (6 bits, shifted), the stores will 2551 // require a new base register. 2552 bool HasImmStack = false; 2553 unsigned MinLS = ~0u; // Log_2 of the memory access size. 2554 2555 for (const MachineBasicBlock &B : MF) { 2556 for (const MachineInstr &MI : B) { 2557 unsigned LS = 0; 2558 switch (MI.getOpcode()) { 2559 case Hexagon::S4_storeirit_io: 2560 case Hexagon::S4_storeirif_io: 2561 case Hexagon::S4_storeiri_io: 2562 ++LS; 2563 LLVM_FALLTHROUGH; 2564 case Hexagon::S4_storeirht_io: 2565 case Hexagon::S4_storeirhf_io: 2566 case Hexagon::S4_storeirh_io: 2567 ++LS; 2568 LLVM_FALLTHROUGH; 2569 case Hexagon::S4_storeirbt_io: 2570 case Hexagon::S4_storeirbf_io: 2571 case Hexagon::S4_storeirb_io: 2572 if (MI.getOperand(0).isFI()) 2573 HasImmStack = true; 2574 MinLS = std::min(MinLS, LS); 2575 break; 2576 } 2577 } 2578 } 2579 2580 if (HasImmStack) 2581 return !isUInt<6>(StackSize >> MinLS); 2582 2583 return false; 2584 } 2585