1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "HexagonFrameLowering.h" 11 #include "HexagonBlockRanges.h" 12 #include "HexagonInstrInfo.h" 13 #include "HexagonMachineFunctionInfo.h" 14 #include "HexagonRegisterInfo.h" 15 #include "HexagonSubtarget.h" 16 #include "HexagonTargetMachine.h" 17 #include "MCTargetDesc/HexagonBaseInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/PseudoSourceValue.h" 38 #include "llvm/CodeGen/RegisterScavenging.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/MC/MCDwarf.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CodeGen.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <iterator> 59 #include <limits> 60 #include <map> 61 #include <optional> 62 #include <utility> 63 #include <vector> 64 65 #define DEBUG_TYPE "hexagon-pei" 66 67 // Hexagon stack frame layout as defined by the ABI: 68 // 69 // Incoming arguments 70 // passed via stack 71 // | 72 // | 73 // SP during function's FP during function's | 74 // +-- runtime (top of stack) runtime (bottom) --+ | 75 // | | | 76 // --++---------------------+------------------+-----------------++-+------- 77 // | parameter area for | variable-size | fixed-size |LR| arg 78 // | called functions | local objects | local objects |FP| 79 // --+----------------------+------------------+-----------------+--+------- 80 // <- size known -> <- size unknown -> <- size known -> 81 // 82 // Low address High address 83 // 84 // <--- stack growth 85 // 86 // 87 // - In any circumstances, the outgoing function arguments are always accessi- 88 // ble using the SP, and the incoming arguments are accessible using the FP. 89 // - If the local objects are not aligned, they can always be accessed using 90 // the FP. 91 // - If there are no variable-sized objects, the local objects can always be 92 // accessed using the SP, regardless whether they are aligned or not. (The 93 // alignment padding will be at the bottom of the stack (highest address), 94 // and so the offset with respect to the SP will be known at the compile- 95 // -time.) 96 // 97 // The only complication occurs if there are both, local aligned objects, and 98 // dynamically allocated (variable-sized) objects. The alignment pad will be 99 // placed between the FP and the local objects, thus preventing the use of the 100 // FP to access the local objects. At the same time, the variable-sized objects 101 // will be between the SP and the local objects, thus introducing an unknown 102 // distance from the SP to the locals. 103 // 104 // To avoid this problem, a new register is created that holds the aligned 105 // address of the bottom of the stack, referred in the sources as AP (aligned 106 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad 107 // that aligns AP to the required boundary (a maximum of the alignments of 108 // all stack objects, fixed- and variable-sized). All local objects[1] will 109 // then use AP as the base pointer. 110 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get 111 // their name from being allocated at fixed locations on the stack, relative 112 // to the FP. In the presence of dynamic allocation and local alignment, such 113 // objects can only be accessed through the FP. 114 // 115 // Illustration of the AP: 116 // FP --+ 117 // | 118 // ---------------+---------------------+-----+-----------------------++-+-- 119 // Rest of the | Local stack objects | Pad | Fixed stack objects |LR| 120 // stack frame | (aligned) | | (CSR, spills, etc.) |FP| 121 // ---------------+---------------------+-----+-----------------+-----+--+-- 122 // |<-- Multiple of the -->| 123 // stack alignment +-- AP 124 // 125 // The AP is set up at the beginning of the function. Since it is not a dedi- 126 // cated (reserved) register, it needs to be kept live throughout the function 127 // to be available as the base register for local object accesses. 128 // Normally, an address of a stack objects is obtained by a pseudo-instruction 129 // PS_fi. To access local objects with the AP register present, a different 130 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra 131 // argument compared to PS_fi: the first input register is the AP register. 132 // This keeps the register live between its definition and its uses. 133 134 // The AP register is originally set up using pseudo-instruction PS_aligna: 135 // AP = PS_aligna A 136 // where 137 // A - required stack alignment 138 // The alignment value must be the maximum of all alignments required by 139 // any stack object. 140 141 // The dynamic allocation uses a pseudo-instruction PS_alloca: 142 // Rd = PS_alloca Rs, A 143 // where 144 // Rd - address of the allocated space 145 // Rs - minimum size (the actual allocated can be larger to accommodate 146 // alignment) 147 // A - required alignment 148 149 using namespace llvm; 150 151 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret", 152 cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); 153 154 static cl::opt<unsigned> 155 NumberScavengerSlots("number-scavenger-slots", cl::Hidden, 156 cl::desc("Set the number of scavenger slots"), 157 cl::init(2)); 158 159 static cl::opt<int> 160 SpillFuncThreshold("spill-func-threshold", cl::Hidden, 161 cl::desc("Specify O2(not Os) spill func threshold"), 162 cl::init(6)); 163 164 static cl::opt<int> 165 SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden, 166 cl::desc("Specify Os spill func threshold"), 167 cl::init(1)); 168 169 static cl::opt<bool> EnableStackOVFSanitizer( 170 "enable-stackovf-sanitizer", cl::Hidden, 171 cl::desc("Enable runtime checks for stack overflow."), cl::init(false)); 172 173 static cl::opt<bool> 174 EnableShrinkWrapping("hexagon-shrink-frame", cl::init(true), cl::Hidden, 175 cl::desc("Enable stack frame shrink wrapping")); 176 177 static cl::opt<unsigned> 178 ShrinkLimit("shrink-frame-limit", 179 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, 180 cl::desc("Max count of stack frame shrink-wraps")); 181 182 static cl::opt<bool> 183 EnableSaveRestoreLong("enable-save-restore-long", cl::Hidden, 184 cl::desc("Enable long calls for save-restore stubs."), 185 cl::init(false)); 186 187 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true), 188 cl::Hidden, cl::desc("Refrain from using FP whenever possible")); 189 190 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden, 191 cl::init(true), cl::desc("Optimize spill slots")); 192 193 #ifndef NDEBUG 194 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden, 195 cl::init(std::numeric_limits<unsigned>::max())); 196 static unsigned SpillOptCount = 0; 197 #endif 198 199 namespace llvm { 200 201 void initializeHexagonCallFrameInformationPass(PassRegistry&); 202 FunctionPass *createHexagonCallFrameInformation(); 203 204 } // end namespace llvm 205 206 namespace { 207 208 class HexagonCallFrameInformation : public MachineFunctionPass { 209 public: 210 static char ID; 211 212 HexagonCallFrameInformation() : MachineFunctionPass(ID) { 213 PassRegistry &PR = *PassRegistry::getPassRegistry(); 214 initializeHexagonCallFrameInformationPass(PR); 215 } 216 217 bool runOnMachineFunction(MachineFunction &MF) override; 218 219 MachineFunctionProperties getRequiredProperties() const override { 220 return MachineFunctionProperties().set( 221 MachineFunctionProperties::Property::NoVRegs); 222 } 223 }; 224 225 char HexagonCallFrameInformation::ID = 0; 226 227 } // end anonymous namespace 228 229 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { 230 auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); 231 bool NeedCFI = MF.needsFrameMoves(); 232 233 if (!NeedCFI) 234 return false; 235 HFI.insertCFIInstructions(MF); 236 return true; 237 } 238 239 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", 240 "Hexagon call frame information", false, false) 241 242 FunctionPass *llvm::createHexagonCallFrameInformation() { 243 return new HexagonCallFrameInformation(); 244 } 245 246 /// Map a register pair Reg to the subregister that has the greater "number", 247 /// i.e. D3 (aka R7:6) will be mapped to R7, etc. 248 static Register getMax32BitSubRegister(Register Reg, 249 const TargetRegisterInfo &TRI, 250 bool hireg = true) { 251 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) 252 return Reg; 253 254 Register RegNo = 0; 255 for (MCPhysReg SubReg : TRI.subregs(Reg)) { 256 if (hireg) { 257 if (SubReg > RegNo) 258 RegNo = SubReg; 259 } else { 260 if (!RegNo || SubReg < RegNo) 261 RegNo = SubReg; 262 } 263 } 264 return RegNo; 265 } 266 267 /// Returns the callee saved register with the largest id in the vector. 268 static Register getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI, 269 const TargetRegisterInfo &TRI) { 270 static_assert(Hexagon::R1 > 0, 271 "Assume physical registers are encoded as positive integers"); 272 if (CSI.empty()) 273 return 0; 274 275 Register Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); 276 for (unsigned I = 1, E = CSI.size(); I < E; ++I) { 277 Register Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); 278 if (Reg > Max) 279 Max = Reg; 280 } 281 return Max; 282 } 283 284 /// Checks if the basic block contains any instruction that needs a stack 285 /// frame to be already in place. 286 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, 287 const HexagonRegisterInfo &HRI) { 288 for (const MachineInstr &MI : MBB) { 289 if (MI.isCall()) 290 return true; 291 unsigned Opc = MI.getOpcode(); 292 switch (Opc) { 293 case Hexagon::PS_alloca: 294 case Hexagon::PS_aligna: 295 return true; 296 default: 297 break; 298 } 299 // Check individual operands. 300 for (const MachineOperand &MO : MI.operands()) { 301 // While the presence of a frame index does not prove that a stack 302 // frame will be required, all frame indexes should be within alloc- 303 // frame/deallocframe. Otherwise, the code that translates a frame 304 // index into an offset would have to be aware of the placement of 305 // the frame creation/destruction instructions. 306 if (MO.isFI()) 307 return true; 308 if (MO.isReg()) { 309 Register R = MO.getReg(); 310 // Debug instructions may refer to $noreg. 311 if (!R) 312 continue; 313 // Virtual registers will need scavenging, which then may require 314 // a stack slot. 315 if (R.isVirtual()) 316 return true; 317 for (MCPhysReg S : HRI.subregs_inclusive(R)) 318 if (CSR[S]) 319 return true; 320 continue; 321 } 322 if (MO.isRegMask()) { 323 // A regmask would normally have all callee-saved registers marked 324 // as preserved, so this check would not be needed, but in case of 325 // ever having other regmasks (for other calling conventions), 326 // make sure they would be processed correctly. 327 const uint32_t *BM = MO.getRegMask(); 328 for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) { 329 unsigned R = x; 330 // If this regmask does not preserve a CSR, a frame will be needed. 331 if (!(BM[R/32] & (1u << (R%32)))) 332 return true; 333 } 334 } 335 } 336 } 337 return false; 338 } 339 340 /// Returns true if MBB has a machine instructions that indicates a tail call 341 /// in the block. 342 static bool hasTailCall(const MachineBasicBlock &MBB) { 343 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 344 if (I == MBB.end()) 345 return false; 346 unsigned RetOpc = I->getOpcode(); 347 return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r; 348 } 349 350 /// Returns true if MBB contains an instruction that returns. 351 static bool hasReturn(const MachineBasicBlock &MBB) { 352 for (const MachineInstr &MI : MBB.terminators()) 353 if (MI.isReturn()) 354 return true; 355 return false; 356 } 357 358 /// Returns the "return" instruction from this block, or nullptr if there 359 /// isn't any. 360 static MachineInstr *getReturn(MachineBasicBlock &MBB) { 361 for (auto &I : MBB) 362 if (I.isReturn()) 363 return &I; 364 return nullptr; 365 } 366 367 static bool isRestoreCall(unsigned Opc) { 368 switch (Opc) { 369 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: 370 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: 371 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT: 372 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC: 373 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT: 374 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC: 375 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: 376 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: 377 return true; 378 } 379 return false; 380 } 381 382 static inline bool isOptNone(const MachineFunction &MF) { 383 return MF.getFunction().hasOptNone() || 384 MF.getTarget().getOptLevel() == CodeGenOptLevel::None; 385 } 386 387 static inline bool isOptSize(const MachineFunction &MF) { 388 const Function &F = MF.getFunction(); 389 return F.hasOptSize() && !F.hasMinSize(); 390 } 391 392 static inline bool isMinSize(const MachineFunction &MF) { 393 return MF.getFunction().hasMinSize(); 394 } 395 396 /// Implements shrink-wrapping of the stack frame. By default, stack frame 397 /// is created in the function entry block, and is cleaned up in every block 398 /// that returns. This function finds alternate blocks: one for the frame 399 /// setup (prolog) and one for the cleanup (epilog). 400 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, 401 MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { 402 static unsigned ShrinkCounter = 0; 403 404 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() && 405 MF.getFunction().isVarArg()) 406 return; 407 if (ShrinkLimit.getPosition()) { 408 if (ShrinkCounter >= ShrinkLimit) 409 return; 410 ShrinkCounter++; 411 } 412 413 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 414 415 MachineDominatorTree MDT; 416 MDT.calculate(MF); 417 MachinePostDominatorTree MPT; 418 MPT.recalculate(MF); 419 420 using UnsignedMap = DenseMap<unsigned, unsigned>; 421 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; 422 423 UnsignedMap RPO; 424 RPOTType RPOT(&MF); 425 unsigned RPON = 0; 426 for (auto &I : RPOT) 427 RPO[I->getNumber()] = RPON++; 428 429 // Don't process functions that have loops, at least for now. Placement 430 // of prolog and epilog must take loop structure into account. For simpli- 431 // city don't do it right now. 432 for (auto &I : MF) { 433 unsigned BN = RPO[I.getNumber()]; 434 for (MachineBasicBlock *Succ : I.successors()) 435 // If found a back-edge, return. 436 if (RPO[Succ->getNumber()] <= BN) 437 return; 438 } 439 440 // Collect the set of blocks that need a stack frame to execute. Scan 441 // each block for uses/defs of callee-saved registers, calls, etc. 442 SmallVector<MachineBasicBlock*,16> SFBlocks; 443 BitVector CSR(Hexagon::NUM_TARGET_REGS); 444 for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) 445 for (MCPhysReg S : HRI.subregs_inclusive(*P)) 446 CSR[S] = true; 447 448 for (auto &I : MF) 449 if (needsStackFrame(I, CSR, HRI)) 450 SFBlocks.push_back(&I); 451 452 LLVM_DEBUG({ 453 dbgs() << "Blocks needing SF: {"; 454 for (auto &B : SFBlocks) 455 dbgs() << " " << printMBBReference(*B); 456 dbgs() << " }\n"; 457 }); 458 // No frame needed? 459 if (SFBlocks.empty()) 460 return; 461 462 // Pick a common dominator and a common post-dominator. 463 MachineBasicBlock *DomB = SFBlocks[0]; 464 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { 465 DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); 466 if (!DomB) 467 break; 468 } 469 MachineBasicBlock *PDomB = SFBlocks[0]; 470 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { 471 PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); 472 if (!PDomB) 473 break; 474 } 475 LLVM_DEBUG({ 476 dbgs() << "Computed dom block: "; 477 if (DomB) 478 dbgs() << printMBBReference(*DomB); 479 else 480 dbgs() << "<null>"; 481 dbgs() << ", computed pdom block: "; 482 if (PDomB) 483 dbgs() << printMBBReference(*PDomB); 484 else 485 dbgs() << "<null>"; 486 dbgs() << "\n"; 487 }); 488 if (!DomB || !PDomB) 489 return; 490 491 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. 492 if (!MDT.dominates(DomB, PDomB)) { 493 LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); 494 return; 495 } 496 if (!MPT.dominates(PDomB, DomB)) { 497 LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); 498 return; 499 } 500 501 // Finally, everything seems right. 502 PrologB = DomB; 503 EpilogB = PDomB; 504 } 505 506 /// Perform most of the PEI work here: 507 /// - saving/restoring of the callee-saved registers, 508 /// - stack frame creation and destruction. 509 /// Normally, this work is distributed among various functions, but doing it 510 /// in one place allows shrink-wrapping of the stack frame. 511 void HexagonFrameLowering::emitPrologue(MachineFunction &MF, 512 MachineBasicBlock &MBB) const { 513 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 514 515 MachineFrameInfo &MFI = MF.getFrameInfo(); 516 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 517 518 MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; 519 if (EnableShrinkWrapping) 520 findShrunkPrologEpilog(MF, PrologB, EpilogB); 521 522 bool PrologueStubs = false; 523 insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs); 524 insertPrologueInBlock(*PrologB, PrologueStubs); 525 updateEntryPaths(MF, *PrologB); 526 527 if (EpilogB) { 528 insertCSRRestoresInBlock(*EpilogB, CSI, HRI); 529 insertEpilogueInBlock(*EpilogB); 530 } else { 531 for (auto &B : MF) 532 if (B.isReturnBlock()) 533 insertCSRRestoresInBlock(B, CSI, HRI); 534 535 for (auto &B : MF) 536 if (B.isReturnBlock()) 537 insertEpilogueInBlock(B); 538 539 for (auto &B : MF) { 540 if (B.empty()) 541 continue; 542 MachineInstr *RetI = getReturn(B); 543 if (!RetI || isRestoreCall(RetI->getOpcode())) 544 continue; 545 for (auto &R : CSI) 546 RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); 547 } 548 } 549 550 if (EpilogB) { 551 // If there is an epilog block, it may not have a return instruction. 552 // In such case, we need to add the callee-saved registers as live-ins 553 // in all blocks on all paths from the epilog to any return block. 554 unsigned MaxBN = MF.getNumBlockIDs(); 555 BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); 556 updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path); 557 } 558 } 559 560 /// Returns true if the target can safely skip saving callee-saved registers 561 /// for noreturn nounwind functions. 562 bool HexagonFrameLowering::enableCalleeSaveSkip( 563 const MachineFunction &MF) const { 564 const auto &F = MF.getFunction(); 565 assert(F.hasFnAttribute(Attribute::NoReturn) && 566 F.getFunction().hasFnAttribute(Attribute::NoUnwind) && 567 !F.getFunction().hasFnAttribute(Attribute::UWTable)); 568 (void)F; 569 570 // No need to save callee saved registers if the function does not return. 571 return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim(); 572 } 573 574 // Helper function used to determine when to eliminate the stack frame for 575 // functions marked as noreturn and when the noreturn-stack-elim options are 576 // specified. When both these conditions are true, then a FP may not be needed 577 // if the function makes a call. It is very similar to enableCalleeSaveSkip, 578 // but it used to check if the allocframe can be eliminated as well. 579 static bool enableAllocFrameElim(const MachineFunction &MF) { 580 const auto &F = MF.getFunction(); 581 const auto &MFI = MF.getFrameInfo(); 582 const auto &HST = MF.getSubtarget<HexagonSubtarget>(); 583 assert(!MFI.hasVarSizedObjects() && 584 !HST.getRegisterInfo()->hasStackRealignment(MF)); 585 return F.hasFnAttribute(Attribute::NoReturn) && 586 F.hasFnAttribute(Attribute::NoUnwind) && 587 !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() && 588 MFI.getStackSize() == 0; 589 } 590 591 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, 592 bool PrologueStubs) const { 593 MachineFunction &MF = *MBB.getParent(); 594 MachineFrameInfo &MFI = MF.getFrameInfo(); 595 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 596 auto &HII = *HST.getInstrInfo(); 597 auto &HRI = *HST.getRegisterInfo(); 598 599 Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign()); 600 601 // Calculate the total stack frame size. 602 // Get the number of bytes to allocate from the FrameInfo. 603 unsigned FrameSize = MFI.getStackSize(); 604 // Round up the max call frame size to the max alignment on the stack. 605 unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign); 606 MFI.setMaxCallFrameSize(MaxCFA); 607 608 FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign); 609 MFI.setStackSize(FrameSize); 610 611 bool AlignStack = (MaxAlign > getStackAlign()); 612 613 // Get the number of bytes to allocate from the FrameInfo. 614 unsigned NumBytes = MFI.getStackSize(); 615 Register SP = HRI.getStackRegister(); 616 unsigned MaxCF = MFI.getMaxCallFrameSize(); 617 MachineBasicBlock::iterator InsertPt = MBB.begin(); 618 619 SmallVector<MachineInstr *, 4> AdjustRegs; 620 for (auto &MBB : MF) 621 for (auto &MI : MBB) 622 if (MI.getOpcode() == Hexagon::PS_alloca) 623 AdjustRegs.push_back(&MI); 624 625 for (auto *MI : AdjustRegs) { 626 assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca"); 627 expandAlloca(MI, HII, SP, MaxCF); 628 MI->eraseFromParent(); 629 } 630 631 DebugLoc dl = MBB.findDebugLoc(InsertPt); 632 633 if (MF.getFunction().isVarArg() && 634 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { 635 // Calculate the size of register saved area. 636 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 637 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) 638 ? NumVarArgRegs * 4 639 : NumVarArgRegs * 4 + 4; 640 if (RegisterSavedAreaSizePlusPadding > 0) { 641 // Decrement the stack pointer by size of register saved area plus 642 // padding if any. 643 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 644 .addReg(SP) 645 .addImm(-RegisterSavedAreaSizePlusPadding) 646 .setMIFlag(MachineInstr::FrameSetup); 647 648 int NumBytes = 0; 649 // Copy all the named arguments below register saved area. 650 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 651 for (int i = HMFI.getFirstNamedArgFrameIndex(), 652 e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) { 653 uint64_t ObjSize = MFI.getObjectSize(i); 654 Align ObjAlign = MFI.getObjectAlign(i); 655 656 // Determine the kind of load/store that should be used. 657 unsigned LDOpc, STOpc; 658 uint64_t OpcodeChecker = ObjAlign.value(); 659 660 // Handle cases where alignment of an object is > its size. 661 if (ObjAlign > ObjSize) { 662 if (ObjSize <= 1) 663 OpcodeChecker = 1; 664 else if (ObjSize <= 2) 665 OpcodeChecker = 2; 666 else if (ObjSize <= 4) 667 OpcodeChecker = 4; 668 else if (ObjSize > 4) 669 OpcodeChecker = 8; 670 } 671 672 switch (OpcodeChecker) { 673 case 1: 674 LDOpc = Hexagon::L2_loadrb_io; 675 STOpc = Hexagon::S2_storerb_io; 676 break; 677 case 2: 678 LDOpc = Hexagon::L2_loadrh_io; 679 STOpc = Hexagon::S2_storerh_io; 680 break; 681 case 4: 682 LDOpc = Hexagon::L2_loadri_io; 683 STOpc = Hexagon::S2_storeri_io; 684 break; 685 case 8: 686 default: 687 LDOpc = Hexagon::L2_loadrd_io; 688 STOpc = Hexagon::S2_storerd_io; 689 break; 690 } 691 692 Register RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3 693 : Hexagon::R6; 694 int LoadStoreCount = ObjSize / OpcodeChecker; 695 696 if (ObjSize % OpcodeChecker) 697 ++LoadStoreCount; 698 699 // Get the start location of the load. NumBytes is basically the 700 // offset from the stack pointer of previous function, which would be 701 // the caller in this case, as this function has variable argument 702 // list. 703 if (NumBytes != 0) 704 NumBytes = alignTo(NumBytes, ObjAlign); 705 706 int Count = 0; 707 while (Count < LoadStoreCount) { 708 // Load the value of the named argument on stack. 709 BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed) 710 .addReg(SP) 711 .addImm(RegisterSavedAreaSizePlusPadding + 712 ObjAlign.value() * Count + NumBytes) 713 .setMIFlag(MachineInstr::FrameSetup); 714 715 // Store it below the register saved area plus padding. 716 BuildMI(MBB, InsertPt, dl, HII.get(STOpc)) 717 .addReg(SP) 718 .addImm(ObjAlign.value() * Count + NumBytes) 719 .addReg(RegUsed) 720 .setMIFlag(MachineInstr::FrameSetup); 721 722 Count++; 723 } 724 NumBytes += MFI.getObjectSize(i); 725 } 726 727 // Make NumBytes 8 byte aligned 728 NumBytes = alignTo(NumBytes, 8); 729 730 // If the number of registers having variable arguments is odd, 731 // leave 4 bytes of padding to get to the location where first 732 // variable argument which was passed through register was copied. 733 NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4; 734 735 for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) { 736 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io)) 737 .addReg(SP) 738 .addImm(NumBytes + 4 * i) 739 .addReg(Hexagon::R0 + j) 740 .setMIFlag(MachineInstr::FrameSetup); 741 } 742 } 743 } 744 745 if (hasFP(MF)) { 746 insertAllocframe(MBB, InsertPt, NumBytes); 747 if (AlignStack) { 748 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) 749 .addReg(SP) 750 .addImm(-int64_t(MaxAlign.value())); 751 } 752 // If the stack-checking is enabled, and we spilled the callee-saved 753 // registers inline (i.e. did not use a spill function), then call 754 // the stack checker directly. 755 if (EnableStackOVFSanitizer && !PrologueStubs) 756 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk)) 757 .addExternalSymbol("__runtime_stack_check"); 758 } else if (NumBytes > 0) { 759 assert(alignTo(NumBytes, 8) == NumBytes); 760 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 761 .addReg(SP) 762 .addImm(-int(NumBytes)); 763 } 764 } 765 766 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { 767 MachineFunction &MF = *MBB.getParent(); 768 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 769 auto &HII = *HST.getInstrInfo(); 770 auto &HRI = *HST.getRegisterInfo(); 771 Register SP = HRI.getStackRegister(); 772 773 MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); 774 DebugLoc dl = MBB.findDebugLoc(InsertPt); 775 776 if (!hasFP(MF)) { 777 MachineFrameInfo &MFI = MF.getFrameInfo(); 778 unsigned NumBytes = MFI.getStackSize(); 779 if (MF.getFunction().isVarArg() && 780 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { 781 // On Hexagon Linux, deallocate the stack for the register saved area. 782 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 783 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? 784 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); 785 NumBytes += RegisterSavedAreaSizePlusPadding; 786 } 787 if (NumBytes) { 788 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 789 .addReg(SP) 790 .addImm(NumBytes); 791 } 792 return; 793 } 794 795 MachineInstr *RetI = getReturn(MBB); 796 unsigned RetOpc = RetI ? RetI->getOpcode() : 0; 797 798 // Handle EH_RETURN. 799 if (RetOpc == Hexagon::EH_RETURN_JMPR) { 800 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 801 .addDef(Hexagon::D15) 802 .addReg(Hexagon::R30); 803 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP) 804 .addReg(SP) 805 .addReg(Hexagon::R28); 806 return; 807 } 808 809 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- 810 // frame instruction if we encounter it. 811 if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || 812 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC || 813 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT || 814 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) { 815 MachineBasicBlock::iterator It = RetI; 816 ++It; 817 // Delete all instructions after the RESTORE (except labels). 818 while (It != MBB.end()) { 819 if (!It->isLabel()) 820 It = MBB.erase(It); 821 else 822 ++It; 823 } 824 return; 825 } 826 827 // It is possible that the restoring code is a call to a library function. 828 // All of the restore* functions include "deallocframe", so we need to make 829 // sure that we don't add an extra one. 830 bool NeedsDeallocframe = true; 831 if (!MBB.empty() && InsertPt != MBB.begin()) { 832 MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); 833 unsigned COpc = PrevIt->getOpcode(); 834 if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || 835 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC || 836 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT || 837 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC || 838 COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr) 839 NeedsDeallocframe = false; 840 } 841 842 if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() || 843 !MF.getFunction().isVarArg()) { 844 if (!NeedsDeallocframe) 845 return; 846 // If the returning instruction is PS_jmpret, replace it with 847 // dealloc_return, otherwise just add deallocframe. The function 848 // could be returning via a tail call. 849 if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) { 850 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 851 .addDef(Hexagon::D15) 852 .addReg(Hexagon::R30); 853 return; 854 } 855 unsigned NewOpc = Hexagon::L4_return; 856 MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc)) 857 .addDef(Hexagon::D15) 858 .addReg(Hexagon::R30); 859 // Transfer the function live-out registers. 860 NewI->copyImplicitOps(MF, *RetI); 861 MBB.erase(RetI); 862 } else { 863 // L2_deallocframe instruction after it. 864 // Calculate the size of register saved area. 865 int NumVarArgRegs = 6 - FirstVarArgSavedReg; 866 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? 867 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); 868 869 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 870 MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end() 871 : std::prev(Term); 872 if (I == MBB.end() || 873 (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT && 874 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC && 875 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 && 876 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC)) 877 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) 878 .addDef(Hexagon::D15) 879 .addReg(Hexagon::R30); 880 if (RegisterSavedAreaSizePlusPadding != 0) 881 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 882 .addReg(SP) 883 .addImm(RegisterSavedAreaSizePlusPadding); 884 } 885 } 886 887 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB, 888 MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const { 889 MachineFunction &MF = *MBB.getParent(); 890 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 891 auto &HII = *HST.getInstrInfo(); 892 auto &HRI = *HST.getRegisterInfo(); 893 894 // Check for overflow. 895 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? 896 const unsigned int ALLOCFRAME_MAX = 16384; 897 898 // Create a dummy memory operand to avoid allocframe from being treated as 899 // a volatile memory reference. 900 auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0), 901 MachineMemOperand::MOStore, 4, Align(4)); 902 903 DebugLoc dl = MBB.findDebugLoc(InsertPt); 904 Register SP = HRI.getStackRegister(); 905 906 if (NumBytes >= ALLOCFRAME_MAX) { 907 // Emit allocframe(#0). 908 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) 909 .addDef(SP) 910 .addReg(SP) 911 .addImm(0) 912 .addMemOperand(MMO); 913 914 // Subtract the size from the stack pointer. 915 Register SP = HRI.getStackRegister(); 916 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) 917 .addReg(SP) 918 .addImm(-int(NumBytes)); 919 } else { 920 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) 921 .addDef(SP) 922 .addReg(SP) 923 .addImm(NumBytes) 924 .addMemOperand(MMO); 925 } 926 } 927 928 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF, 929 MachineBasicBlock &SaveB) const { 930 SetVector<unsigned> Worklist; 931 932 MachineBasicBlock &EntryB = MF.front(); 933 Worklist.insert(EntryB.getNumber()); 934 935 unsigned SaveN = SaveB.getNumber(); 936 auto &CSI = MF.getFrameInfo().getCalleeSavedInfo(); 937 938 for (unsigned i = 0; i < Worklist.size(); ++i) { 939 unsigned BN = Worklist[i]; 940 MachineBasicBlock &MBB = *MF.getBlockNumbered(BN); 941 for (auto &R : CSI) 942 if (!MBB.isLiveIn(R.getReg())) 943 MBB.addLiveIn(R.getReg()); 944 if (BN != SaveN) 945 for (auto &SB : MBB.successors()) 946 Worklist.insert(SB->getNumber()); 947 } 948 } 949 950 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, 951 MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF, 952 BitVector &Path) const { 953 assert(MBB.getNumber() >= 0); 954 unsigned BN = MBB.getNumber(); 955 if (Path[BN] || DoneF[BN]) 956 return false; 957 if (DoneT[BN]) 958 return true; 959 960 auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo(); 961 962 Path[BN] = true; 963 bool ReachedExit = false; 964 for (auto &SB : MBB.successors()) 965 ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path); 966 967 if (!MBB.empty() && MBB.back().isReturn()) { 968 // Add implicit uses of all callee-saved registers to the reached 969 // return instructions. This is to prevent the anti-dependency breaker 970 // from renaming these registers. 971 MachineInstr &RetI = MBB.back(); 972 if (!isRestoreCall(RetI.getOpcode())) 973 for (auto &R : CSI) 974 RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); 975 ReachedExit = true; 976 } 977 978 // We don't want to add unnecessary live-ins to the restore block: since 979 // the callee-saved registers are being defined in it, the entry of the 980 // restore block cannot be on the path from the definitions to any exit. 981 if (ReachedExit && &MBB != &RestoreB) { 982 for (auto &R : CSI) 983 if (!MBB.isLiveIn(R.getReg())) 984 MBB.addLiveIn(R.getReg()); 985 DoneT[BN] = true; 986 } 987 if (!ReachedExit) 988 DoneF[BN] = true; 989 990 Path[BN] = false; 991 return ReachedExit; 992 } 993 994 static std::optional<MachineBasicBlock::iterator> 995 findCFILocation(MachineBasicBlock &B) { 996 // The CFI instructions need to be inserted right after allocframe. 997 // An exception to this is a situation where allocframe is bundled 998 // with a call: then the CFI instructions need to be inserted before 999 // the packet with the allocframe+call (in case the call throws an 1000 // exception). 1001 auto End = B.instr_end(); 1002 1003 for (MachineInstr &I : B) { 1004 MachineBasicBlock::iterator It = I.getIterator(); 1005 if (!I.isBundle()) { 1006 if (I.getOpcode() == Hexagon::S2_allocframe) 1007 return std::next(It); 1008 continue; 1009 } 1010 // I is a bundle. 1011 bool HasCall = false, HasAllocFrame = false; 1012 auto T = It.getInstrIterator(); 1013 while (++T != End && T->isBundled()) { 1014 if (T->getOpcode() == Hexagon::S2_allocframe) 1015 HasAllocFrame = true; 1016 else if (T->isCall()) 1017 HasCall = true; 1018 } 1019 if (HasAllocFrame) 1020 return HasCall ? It : std::next(It); 1021 } 1022 return std::nullopt; 1023 } 1024 1025 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { 1026 for (auto &B : MF) 1027 if (auto At = findCFILocation(B)) 1028 insertCFIInstructionsAt(B, *At); 1029 } 1030 1031 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, 1032 MachineBasicBlock::iterator At) const { 1033 MachineFunction &MF = *MBB.getParent(); 1034 MachineFrameInfo &MFI = MF.getFrameInfo(); 1035 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1036 auto &HII = *HST.getInstrInfo(); 1037 auto &HRI = *HST.getRegisterInfo(); 1038 1039 // If CFI instructions have debug information attached, something goes 1040 // wrong with the final assembly generation: the prolog_end is placed 1041 // in a wrong location. 1042 DebugLoc DL; 1043 const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); 1044 1045 MCSymbol *FrameLabel = MF.getContext().createTempSymbol(); 1046 bool HasFP = hasFP(MF); 1047 1048 if (HasFP) { 1049 unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); 1050 unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); 1051 1052 // Define CFA via an offset from the value of FP. 1053 // 1054 // -8 -4 0 (SP) 1055 // --+----+----+--------------------- 1056 // | FP | LR | increasing addresses --> 1057 // --+----+----+--------------------- 1058 // | +-- Old SP (before allocframe) 1059 // +-- New FP (after allocframe) 1060 // 1061 // MCCFIInstruction::cfiDefCfa adds the offset from the register. 1062 // MCCFIInstruction::createOffset takes the offset without sign change. 1063 auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8); 1064 BuildMI(MBB, At, DL, CFID) 1065 .addCFIIndex(MF.addFrameInst(DefCfa)); 1066 // R31 (return addr) = CFA - 4 1067 auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); 1068 BuildMI(MBB, At, DL, CFID) 1069 .addCFIIndex(MF.addFrameInst(OffR31)); 1070 // R30 (frame ptr) = CFA - 8 1071 auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); 1072 BuildMI(MBB, At, DL, CFID) 1073 .addCFIIndex(MF.addFrameInst(OffR30)); 1074 } 1075 1076 static Register RegsToMove[] = { 1077 Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, 1078 Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, 1079 Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, 1080 Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, 1081 Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, 1082 Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, 1083 Hexagon::NoRegister 1084 }; 1085 1086 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1087 1088 for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { 1089 Register Reg = RegsToMove[i]; 1090 auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { 1091 return C.getReg() == Reg; 1092 }; 1093 auto F = find_if(CSI, IfR); 1094 if (F == CSI.end()) 1095 continue; 1096 1097 int64_t Offset; 1098 if (HasFP) { 1099 // If the function has a frame pointer (i.e. has an allocframe), 1100 // then the CFA has been defined in terms of FP. Any offsets in 1101 // the following CFI instructions have to be defined relative 1102 // to FP, which points to the bottom of the stack frame. 1103 // The function getFrameIndexReference can still choose to use SP 1104 // for the offset calculation, so we cannot simply call it here. 1105 // Instead, get the offset (relative to the FP) directly. 1106 Offset = MFI.getObjectOffset(F->getFrameIdx()); 1107 } else { 1108 Register FrameReg; 1109 Offset = 1110 getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed(); 1111 } 1112 // Subtract 8 to make room for R30 and R31, which are added above. 1113 Offset -= 8; 1114 1115 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { 1116 unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); 1117 auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, 1118 Offset); 1119 BuildMI(MBB, At, DL, CFID) 1120 .addCFIIndex(MF.addFrameInst(OffReg)); 1121 } else { 1122 // Split the double regs into subregs, and generate appropriate 1123 // cfi_offsets. 1124 // The only reason, we are split double regs is, llvm-mc does not 1125 // understand paired registers for cfi_offset. 1126 // Eg .cfi_offset r1:0, -64 1127 1128 Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi); 1129 Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo); 1130 unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); 1131 unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); 1132 auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, 1133 Offset+4); 1134 BuildMI(MBB, At, DL, CFID) 1135 .addCFIIndex(MF.addFrameInst(OffHi)); 1136 auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, 1137 Offset); 1138 BuildMI(MBB, At, DL, CFID) 1139 .addCFIIndex(MF.addFrameInst(OffLo)); 1140 } 1141 } 1142 } 1143 1144 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { 1145 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1146 return false; 1147 1148 auto &MFI = MF.getFrameInfo(); 1149 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1150 bool HasExtraAlign = HRI.hasStackRealignment(MF); 1151 bool HasAlloca = MFI.hasVarSizedObjects(); 1152 1153 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think 1154 // that this shouldn't be required, but doing so now because gcc does and 1155 // gdb can't break at the start of the function without it. Will remove if 1156 // this turns out to be a gdb bug. 1157 // 1158 if (MF.getTarget().getOptLevel() == CodeGenOptLevel::None) 1159 return true; 1160 1161 // By default we want to use SP (since it's always there). FP requires 1162 // some setup (i.e. ALLOCFRAME). 1163 // Both, alloca and stack alignment modify the stack pointer by an 1164 // undetermined value, so we need to save it at the entry to the function 1165 // (i.e. use allocframe). 1166 if (HasAlloca || HasExtraAlign) 1167 return true; 1168 1169 if (MFI.getStackSize() > 0) { 1170 // If FP-elimination is disabled, we have to use FP at this point. 1171 const TargetMachine &TM = MF.getTarget(); 1172 if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer) 1173 return true; 1174 if (EnableStackOVFSanitizer) 1175 return true; 1176 } 1177 1178 const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1179 if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR()) 1180 return true; 1181 1182 return false; 1183 } 1184 1185 enum SpillKind { 1186 SK_ToMem, 1187 SK_FromMem, 1188 SK_FromMemTailcall 1189 }; 1190 1191 static const char *getSpillFunctionFor(Register MaxReg, SpillKind SpillType, 1192 bool Stkchk = false) { 1193 const char * V4SpillToMemoryFunctions[] = { 1194 "__save_r16_through_r17", 1195 "__save_r16_through_r19", 1196 "__save_r16_through_r21", 1197 "__save_r16_through_r23", 1198 "__save_r16_through_r25", 1199 "__save_r16_through_r27" }; 1200 1201 const char * V4SpillToMemoryStkchkFunctions[] = { 1202 "__save_r16_through_r17_stkchk", 1203 "__save_r16_through_r19_stkchk", 1204 "__save_r16_through_r21_stkchk", 1205 "__save_r16_through_r23_stkchk", 1206 "__save_r16_through_r25_stkchk", 1207 "__save_r16_through_r27_stkchk" }; 1208 1209 const char * V4SpillFromMemoryFunctions[] = { 1210 "__restore_r16_through_r17_and_deallocframe", 1211 "__restore_r16_through_r19_and_deallocframe", 1212 "__restore_r16_through_r21_and_deallocframe", 1213 "__restore_r16_through_r23_and_deallocframe", 1214 "__restore_r16_through_r25_and_deallocframe", 1215 "__restore_r16_through_r27_and_deallocframe" }; 1216 1217 const char * V4SpillFromMemoryTailcallFunctions[] = { 1218 "__restore_r16_through_r17_and_deallocframe_before_tailcall", 1219 "__restore_r16_through_r19_and_deallocframe_before_tailcall", 1220 "__restore_r16_through_r21_and_deallocframe_before_tailcall", 1221 "__restore_r16_through_r23_and_deallocframe_before_tailcall", 1222 "__restore_r16_through_r25_and_deallocframe_before_tailcall", 1223 "__restore_r16_through_r27_and_deallocframe_before_tailcall" 1224 }; 1225 1226 const char **SpillFunc = nullptr; 1227 1228 switch(SpillType) { 1229 case SK_ToMem: 1230 SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions 1231 : V4SpillToMemoryFunctions; 1232 break; 1233 case SK_FromMem: 1234 SpillFunc = V4SpillFromMemoryFunctions; 1235 break; 1236 case SK_FromMemTailcall: 1237 SpillFunc = V4SpillFromMemoryTailcallFunctions; 1238 break; 1239 } 1240 assert(SpillFunc && "Unknown spill kind"); 1241 1242 // Spill all callee-saved registers up to the highest register used. 1243 switch (MaxReg) { 1244 case Hexagon::R17: 1245 return SpillFunc[0]; 1246 case Hexagon::R19: 1247 return SpillFunc[1]; 1248 case Hexagon::R21: 1249 return SpillFunc[2]; 1250 case Hexagon::R23: 1251 return SpillFunc[3]; 1252 case Hexagon::R25: 1253 return SpillFunc[4]; 1254 case Hexagon::R27: 1255 return SpillFunc[5]; 1256 default: 1257 llvm_unreachable("Unhandled maximum callee save register"); 1258 } 1259 return nullptr; 1260 } 1261 1262 StackOffset 1263 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1264 Register &FrameReg) const { 1265 auto &MFI = MF.getFrameInfo(); 1266 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1267 1268 int Offset = MFI.getObjectOffset(FI); 1269 bool HasAlloca = MFI.hasVarSizedObjects(); 1270 bool HasExtraAlign = HRI.hasStackRealignment(MF); 1271 bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOptLevel::None; 1272 1273 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1274 unsigned FrameSize = MFI.getStackSize(); 1275 Register SP = HRI.getStackRegister(); 1276 Register FP = HRI.getFrameRegister(); 1277 Register AP = HMFI.getStackAlignBaseReg(); 1278 // It may happen that AP will be absent even HasAlloca && HasExtraAlign 1279 // is true. HasExtraAlign may be set because of vector spills, without 1280 // aligned locals or aligned outgoing function arguments. Since vector 1281 // spills will ultimately be "unaligned", it is safe to use FP as the 1282 // base register. 1283 // In fact, in such a scenario the stack is actually not required to be 1284 // aligned, although it may end up being aligned anyway, since this 1285 // particular case is not easily detectable. The alignment will be 1286 // unnecessary, but not incorrect. 1287 // Unfortunately there is no quick way to verify that the above is 1288 // indeed the case (and that it's not a result of an error), so just 1289 // assume that missing AP will be replaced by FP. 1290 // (A better fix would be to rematerialize AP from FP and always align 1291 // vector spills.) 1292 bool UseFP = false, UseAP = false; // Default: use SP (except at -O0). 1293 // Use FP at -O0, except when there are objects with extra alignment. 1294 // That additional alignment requirement may cause a pad to be inserted, 1295 // which will make it impossible to use FP to access objects located 1296 // past the pad. 1297 if (NoOpt && !HasExtraAlign) 1298 UseFP = true; 1299 if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { 1300 // Fixed and preallocated objects will be located before any padding 1301 // so FP must be used to access them. 1302 UseFP |= (HasAlloca || HasExtraAlign); 1303 } else { 1304 if (HasAlloca) { 1305 if (HasExtraAlign) 1306 UseAP = true; 1307 else 1308 UseFP = true; 1309 } 1310 } 1311 1312 // If FP was picked, then there had better be FP. 1313 bool HasFP = hasFP(MF); 1314 assert((HasFP || !UseFP) && "This function must have frame pointer"); 1315 1316 // Having FP implies allocframe. Allocframe will store extra 8 bytes: 1317 // FP/LR. If the base register is used to access an object across these 1318 // 8 bytes, then the offset will need to be adjusted by 8. 1319 // 1320 // After allocframe: 1321 // HexagonISelLowering adds 8 to ---+ 1322 // the offsets of all stack-based | 1323 // arguments (*) | 1324 // | 1325 // getObjectOffset < 0 0 8 getObjectOffset >= 8 1326 // ------------------------+-----+------------------------> increasing 1327 // <local objects> |FP/LR| <input arguments> addresses 1328 // -----------------+------+-----+------------------------> 1329 // | | 1330 // SP/AP point --+ +-- FP points here (**) 1331 // somewhere on 1332 // this side of FP/LR 1333 // 1334 // (*) See LowerFormalArguments. The FP/LR is assumed to be present. 1335 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. 1336 1337 // The lowering assumes that FP/LR is present, and so the offsets of 1338 // the formal arguments start at 8. If FP/LR is not there we need to 1339 // reduce the offset by 8. 1340 if (Offset > 0 && !HasFP) 1341 Offset -= 8; 1342 1343 if (UseFP) 1344 FrameReg = FP; 1345 else if (UseAP) 1346 FrameReg = AP; 1347 else 1348 FrameReg = SP; 1349 1350 // Calculate the actual offset in the instruction. If there is no FP 1351 // (in other words, no allocframe), then SP will not be adjusted (i.e. 1352 // there will be no SP -= FrameSize), so the frame size should not be 1353 // added to the calculated offset. 1354 int RealOffset = Offset; 1355 if (!UseFP && !UseAP) 1356 RealOffset = FrameSize+Offset; 1357 return StackOffset::getFixed(RealOffset); 1358 } 1359 1360 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, 1361 const CSIVect &CSI, const HexagonRegisterInfo &HRI, 1362 bool &PrologueStubs) const { 1363 if (CSI.empty()) 1364 return true; 1365 1366 MachineBasicBlock::iterator MI = MBB.begin(); 1367 PrologueStubs = false; 1368 MachineFunction &MF = *MBB.getParent(); 1369 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1370 auto &HII = *HST.getInstrInfo(); 1371 1372 if (useSpillFunction(MF, CSI)) { 1373 PrologueStubs = true; 1374 Register MaxReg = getMaxCalleeSavedReg(CSI, HRI); 1375 bool StkOvrFlowEnabled = EnableStackOVFSanitizer; 1376 const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem, 1377 StkOvrFlowEnabled); 1378 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); 1379 bool IsPIC = HTM.isPositionIndependent(); 1380 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; 1381 1382 // Call spill function. 1383 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1384 unsigned SpillOpc; 1385 if (StkOvrFlowEnabled) { 1386 if (LongCalls) 1387 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC 1388 : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT; 1389 else 1390 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC 1391 : Hexagon::SAVE_REGISTERS_CALL_V4STK; 1392 } else { 1393 if (LongCalls) 1394 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC 1395 : Hexagon::SAVE_REGISTERS_CALL_V4_EXT; 1396 else 1397 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC 1398 : Hexagon::SAVE_REGISTERS_CALL_V4; 1399 } 1400 1401 MachineInstr *SaveRegsCall = 1402 BuildMI(MBB, MI, DL, HII.get(SpillOpc)) 1403 .addExternalSymbol(SpillFun); 1404 1405 // Add callee-saved registers as use. 1406 addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true); 1407 // Add live in registers. 1408 for (const CalleeSavedInfo &I : CSI) 1409 MBB.addLiveIn(I.getReg()); 1410 return true; 1411 } 1412 1413 for (const CalleeSavedInfo &I : CSI) { 1414 Register Reg = I.getReg(); 1415 // Add live in registers. We treat eh_return callee saved register r0 - r3 1416 // specially. They are not really callee saved registers as they are not 1417 // supposed to be killed. 1418 bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); 1419 int FI = I.getFrameIdx(); 1420 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); 1421 HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI, Register()); 1422 if (IsKill) 1423 MBB.addLiveIn(Reg); 1424 } 1425 return true; 1426 } 1427 1428 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, 1429 const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { 1430 if (CSI.empty()) 1431 return false; 1432 1433 MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); 1434 MachineFunction &MF = *MBB.getParent(); 1435 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1436 auto &HII = *HST.getInstrInfo(); 1437 1438 if (useRestoreFunction(MF, CSI)) { 1439 bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); 1440 Register MaxR = getMaxCalleeSavedReg(CSI, HRI); 1441 SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; 1442 const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); 1443 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); 1444 bool IsPIC = HTM.isPositionIndependent(); 1445 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; 1446 1447 // Call spill function. 1448 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() 1449 : MBB.findDebugLoc(MBB.end()); 1450 MachineInstr *DeallocCall = nullptr; 1451 1452 if (HasTC) { 1453 unsigned RetOpc; 1454 if (LongCalls) 1455 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC 1456 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT; 1457 else 1458 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC 1459 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; 1460 DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc)) 1461 .addExternalSymbol(RestoreFn); 1462 } else { 1463 // The block has a return. 1464 MachineBasicBlock::iterator It = MBB.getFirstTerminator(); 1465 assert(It->isReturn() && std::next(It) == MBB.end()); 1466 unsigned RetOpc; 1467 if (LongCalls) 1468 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC 1469 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT; 1470 else 1471 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC 1472 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; 1473 DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc)) 1474 .addExternalSymbol(RestoreFn); 1475 // Transfer the function live-out registers. 1476 DeallocCall->copyImplicitOps(MF, *It); 1477 } 1478 addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false); 1479 return true; 1480 } 1481 1482 for (const CalleeSavedInfo &I : CSI) { 1483 Register Reg = I.getReg(); 1484 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); 1485 int FI = I.getFrameIdx(); 1486 HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI, Register()); 1487 } 1488 1489 return true; 1490 } 1491 1492 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( 1493 MachineFunction &MF, MachineBasicBlock &MBB, 1494 MachineBasicBlock::iterator I) const { 1495 MachineInstr &MI = *I; 1496 unsigned Opc = MI.getOpcode(); 1497 (void)Opc; // Silence compiler warning. 1498 assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && 1499 "Cannot handle this call frame pseudo instruction"); 1500 return MBB.erase(I); 1501 } 1502 1503 void HexagonFrameLowering::processFunctionBeforeFrameFinalized( 1504 MachineFunction &MF, RegScavenger *RS) const { 1505 // If this function has uses aligned stack and also has variable sized stack 1506 // objects, then we need to map all spill slots to fixed positions, so that 1507 // they can be accessed through FP. Otherwise they would have to be accessed 1508 // via AP, which may not be available at the particular place in the program. 1509 MachineFrameInfo &MFI = MF.getFrameInfo(); 1510 bool HasAlloca = MFI.hasVarSizedObjects(); 1511 bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign()); 1512 1513 if (!HasAlloca || !NeedsAlign) 1514 return; 1515 1516 // Set the physical aligned-stack base address register. 1517 Register AP = 0; 1518 if (const MachineInstr *AI = getAlignaInstr(MF)) 1519 AP = AI->getOperand(0).getReg(); 1520 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); 1521 assert(!AP.isValid() || AP.isPhysical()); 1522 HMFI.setStackAlignBaseReg(AP); 1523 } 1524 1525 /// Returns true if there are no caller-saved registers available in class RC. 1526 static bool needToReserveScavengingSpillSlots(MachineFunction &MF, 1527 const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { 1528 MachineRegisterInfo &MRI = MF.getRegInfo(); 1529 1530 auto IsUsed = [&HRI,&MRI] (Register Reg) -> bool { 1531 for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) 1532 if (MRI.isPhysRegUsed(*AI)) 1533 return true; 1534 return false; 1535 }; 1536 1537 // Check for an unused caller-saved register. Callee-saved registers 1538 // have become pristine by now. 1539 for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P) 1540 if (!IsUsed(*P)) 1541 return false; 1542 1543 // All caller-saved registers are used. 1544 return true; 1545 } 1546 1547 #ifndef NDEBUG 1548 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { 1549 dbgs() << '{'; 1550 for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { 1551 Register R = x; 1552 dbgs() << ' ' << printReg(R, &TRI); 1553 } 1554 dbgs() << " }"; 1555 } 1556 #endif 1557 1558 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, 1559 const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { 1560 LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n'); 1561 MachineFrameInfo &MFI = MF.getFrameInfo(); 1562 BitVector SRegs(Hexagon::NUM_TARGET_REGS); 1563 1564 // Generate a set of unique, callee-saved registers (SRegs), where each 1565 // register in the set is maximal in terms of sub-/super-register relation, 1566 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. 1567 1568 // (1) For each callee-saved register, add that register and all of its 1569 // sub-registers to SRegs. 1570 LLVM_DEBUG(dbgs() << "Initial CS registers: {"); 1571 for (const CalleeSavedInfo &I : CSI) { 1572 Register R = I.getReg(); 1573 LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI)); 1574 for (MCPhysReg SR : TRI->subregs_inclusive(R)) 1575 SRegs[SR] = true; 1576 } 1577 LLVM_DEBUG(dbgs() << " }\n"); 1578 LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); 1579 dbgs() << "\n"); 1580 1581 // (2) For each reserved register, remove that register and all of its 1582 // sub- and super-registers from SRegs. 1583 BitVector Reserved = TRI->getReservedRegs(MF); 1584 // Unreserve the stack align register: it is reserved for this function 1585 // only, it still needs to be saved/restored. 1586 Register AP = 1587 MF.getInfo<HexagonMachineFunctionInfo>()->getStackAlignBaseReg(); 1588 if (AP.isValid()) { 1589 Reserved[AP] = false; 1590 // Unreserve super-regs if no other subregisters are reserved. 1591 for (MCPhysReg SP : TRI->superregs(AP)) { 1592 bool HasResSub = false; 1593 for (MCPhysReg SB : TRI->subregs(SP)) { 1594 if (!Reserved[SB]) 1595 continue; 1596 HasResSub = true; 1597 break; 1598 } 1599 if (!HasResSub) 1600 Reserved[SP] = false; 1601 } 1602 } 1603 1604 for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { 1605 Register R = x; 1606 for (MCPhysReg SR : TRI->superregs_inclusive(R)) 1607 SRegs[SR] = false; 1608 } 1609 LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); 1610 dbgs() << "\n"); 1611 LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); 1612 dbgs() << "\n"); 1613 1614 // (3) Collect all registers that have at least one sub-register in SRegs, 1615 // and also have no sub-registers that are reserved. These will be the can- 1616 // didates for saving as a whole instead of their individual sub-registers. 1617 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) 1618 BitVector TmpSup(Hexagon::NUM_TARGET_REGS); 1619 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1620 Register R = x; 1621 for (MCPhysReg SR : TRI->superregs(R)) 1622 TmpSup[SR] = true; 1623 } 1624 for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { 1625 Register R = x; 1626 for (MCPhysReg SR : TRI->subregs_inclusive(R)) { 1627 if (!Reserved[SR]) 1628 continue; 1629 TmpSup[R] = false; 1630 break; 1631 } 1632 } 1633 LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); 1634 dbgs() << "\n"); 1635 1636 // (4) Include all super-registers found in (3) into SRegs. 1637 SRegs |= TmpSup; 1638 LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); 1639 dbgs() << "\n"); 1640 1641 // (5) For each register R in SRegs, if any super-register of R is in SRegs, 1642 // remove R from SRegs. 1643 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1644 Register R = x; 1645 for (MCPhysReg SR : TRI->superregs(R)) { 1646 if (!SRegs[SR]) 1647 continue; 1648 SRegs[R] = false; 1649 break; 1650 } 1651 } 1652 LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); 1653 dbgs() << "\n"); 1654 1655 // Now, for each register that has a fixed stack slot, create the stack 1656 // object for it. 1657 CSI.clear(); 1658 1659 using SpillSlot = TargetFrameLowering::SpillSlot; 1660 1661 unsigned NumFixed; 1662 int64_t MinOffset = 0; // CS offsets are negative. 1663 const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); 1664 for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { 1665 if (!SRegs[S->Reg]) 1666 continue; 1667 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); 1668 int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset); 1669 MinOffset = std::min(MinOffset, S->Offset); 1670 CSI.push_back(CalleeSavedInfo(S->Reg, FI)); 1671 SRegs[S->Reg] = false; 1672 } 1673 1674 // There can be some registers that don't have fixed slots. For example, 1675 // we need to store R0-R3 in functions with exception handling. For each 1676 // such register, create a non-fixed stack object. 1677 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1678 Register R = x; 1679 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); 1680 unsigned Size = TRI->getSpillSize(*RC); 1681 int64_t Off = MinOffset - Size; 1682 Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign()); 1683 Off &= -Alignment.value(); 1684 int FI = MFI.CreateFixedSpillStackObject(Size, Off); 1685 MinOffset = std::min(MinOffset, Off); 1686 CSI.push_back(CalleeSavedInfo(R, FI)); 1687 SRegs[R] = false; 1688 } 1689 1690 LLVM_DEBUG({ 1691 dbgs() << "CS information: {"; 1692 for (const CalleeSavedInfo &I : CSI) { 1693 int FI = I.getFrameIdx(); 1694 int Off = MFI.getObjectOffset(FI); 1695 dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp"; 1696 if (Off >= 0) 1697 dbgs() << '+'; 1698 dbgs() << Off; 1699 } 1700 dbgs() << " }\n"; 1701 }); 1702 1703 #ifndef NDEBUG 1704 // Verify that all registers were handled. 1705 bool MissedReg = false; 1706 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { 1707 Register R = x; 1708 dbgs() << printReg(R, TRI) << ' '; 1709 MissedReg = true; 1710 } 1711 if (MissedReg) 1712 llvm_unreachable("...there are unhandled callee-saved registers!"); 1713 #endif 1714 1715 return true; 1716 } 1717 1718 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, 1719 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1720 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1721 MachineInstr *MI = &*It; 1722 DebugLoc DL = MI->getDebugLoc(); 1723 Register DstR = MI->getOperand(0).getReg(); 1724 Register SrcR = MI->getOperand(1).getReg(); 1725 if (!Hexagon::ModRegsRegClass.contains(DstR) || 1726 !Hexagon::ModRegsRegClass.contains(SrcR)) 1727 return false; 1728 1729 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1730 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1)); 1731 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR) 1732 .addReg(TmpR, RegState::Kill); 1733 1734 NewRegs.push_back(TmpR); 1735 B.erase(It); 1736 return true; 1737 } 1738 1739 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, 1740 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1741 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1742 MachineInstr *MI = &*It; 1743 if (!MI->getOperand(0).isFI()) 1744 return false; 1745 1746 DebugLoc DL = MI->getDebugLoc(); 1747 unsigned Opc = MI->getOpcode(); 1748 Register SrcR = MI->getOperand(2).getReg(); 1749 bool IsKill = MI->getOperand(2).isKill(); 1750 int FI = MI->getOperand(0).getIndex(); 1751 1752 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register 1753 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register 1754 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1755 unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr 1756 : Hexagon::A2_tfrcrr; 1757 BuildMI(B, It, DL, HII.get(TfrOpc), TmpR) 1758 .addReg(SrcR, getKillRegState(IsKill)); 1759 1760 // S2_storeri_io FI, 0, TmpR 1761 BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io)) 1762 .addFrameIndex(FI) 1763 .addImm(0) 1764 .addReg(TmpR, RegState::Kill) 1765 .cloneMemRefs(*MI); 1766 1767 NewRegs.push_back(TmpR); 1768 B.erase(It); 1769 return true; 1770 } 1771 1772 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, 1773 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1774 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1775 MachineInstr *MI = &*It; 1776 if (!MI->getOperand(1).isFI()) 1777 return false; 1778 1779 DebugLoc DL = MI->getDebugLoc(); 1780 unsigned Opc = MI->getOpcode(); 1781 Register DstR = MI->getOperand(0).getReg(); 1782 int FI = MI->getOperand(1).getIndex(); 1783 1784 // TmpR = L2_loadri_io FI, 0 1785 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1786 BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR) 1787 .addFrameIndex(FI) 1788 .addImm(0) 1789 .cloneMemRefs(*MI); 1790 1791 // DstR = C2_tfrrp TmpR if DstR is a predicate register 1792 // DstR = A2_tfrrcr TmpR if DstR is a modifier register 1793 unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp 1794 : Hexagon::A2_tfrrcr; 1795 BuildMI(B, It, DL, HII.get(TfrOpc), DstR) 1796 .addReg(TmpR, RegState::Kill); 1797 1798 NewRegs.push_back(TmpR); 1799 B.erase(It); 1800 return true; 1801 } 1802 1803 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, 1804 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1805 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1806 MachineInstr *MI = &*It; 1807 if (!MI->getOperand(0).isFI()) 1808 return false; 1809 1810 DebugLoc DL = MI->getDebugLoc(); 1811 Register SrcR = MI->getOperand(2).getReg(); 1812 bool IsKill = MI->getOperand(2).isKill(); 1813 int FI = MI->getOperand(0).getIndex(); 1814 auto *RC = &Hexagon::HvxVRRegClass; 1815 1816 // Insert transfer to general vector register. 1817 // TmpR0 = A2_tfrsi 0x01010101 1818 // TmpR1 = V6_vandqrt Qx, TmpR0 1819 // store FI, 0, TmpR1 1820 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1821 Register TmpR1 = MRI.createVirtualRegister(RC); 1822 1823 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) 1824 .addImm(0x01010101); 1825 1826 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1) 1827 .addReg(SrcR, getKillRegState(IsKill)) 1828 .addReg(TmpR0, RegState::Kill); 1829 1830 auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1831 HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI, Register()); 1832 expandStoreVec(B, std::prev(It), MRI, HII, NewRegs); 1833 1834 NewRegs.push_back(TmpR0); 1835 NewRegs.push_back(TmpR1); 1836 B.erase(It); 1837 return true; 1838 } 1839 1840 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, 1841 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1842 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1843 MachineInstr *MI = &*It; 1844 if (!MI->getOperand(1).isFI()) 1845 return false; 1846 1847 DebugLoc DL = MI->getDebugLoc(); 1848 Register DstR = MI->getOperand(0).getReg(); 1849 int FI = MI->getOperand(1).getIndex(); 1850 auto *RC = &Hexagon::HvxVRRegClass; 1851 1852 // TmpR0 = A2_tfrsi 0x01010101 1853 // TmpR1 = load FI, 0 1854 // DstR = V6_vandvrt TmpR1, TmpR0 1855 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 1856 Register TmpR1 = MRI.createVirtualRegister(RC); 1857 1858 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) 1859 .addImm(0x01010101); 1860 MachineFunction &MF = *B.getParent(); 1861 auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1862 HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI, Register()); 1863 expandLoadVec(B, std::prev(It), MRI, HII, NewRegs); 1864 1865 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR) 1866 .addReg(TmpR1, RegState::Kill) 1867 .addReg(TmpR0, RegState::Kill); 1868 1869 NewRegs.push_back(TmpR0); 1870 NewRegs.push_back(TmpR1); 1871 B.erase(It); 1872 return true; 1873 } 1874 1875 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, 1876 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1877 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1878 MachineFunction &MF = *B.getParent(); 1879 auto &MFI = MF.getFrameInfo(); 1880 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1881 MachineInstr *MI = &*It; 1882 if (!MI->getOperand(0).isFI()) 1883 return false; 1884 1885 // It is possible that the double vector being stored is only partially 1886 // defined. From the point of view of the liveness tracking, it is ok to 1887 // store it as a whole, but if we break it up we may end up storing a 1888 // register that is entirely undefined. 1889 LivePhysRegs LPR(HRI); 1890 LPR.addLiveIns(B); 1891 SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; 1892 for (auto R = B.begin(); R != It; ++R) { 1893 Clobbers.clear(); 1894 LPR.stepForward(*R, Clobbers); 1895 } 1896 1897 DebugLoc DL = MI->getDebugLoc(); 1898 Register SrcR = MI->getOperand(2).getReg(); 1899 Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo); 1900 Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi); 1901 bool IsKill = MI->getOperand(2).isKill(); 1902 int FI = MI->getOperand(0).getIndex(); 1903 1904 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1905 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1906 Align HasAlign = MFI.getObjectAlign(FI); 1907 unsigned StoreOpc; 1908 1909 // Store low part. 1910 if (LPR.contains(SrcLo)) { 1911 StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai 1912 : Hexagon::V6_vS32Ub_ai; 1913 BuildMI(B, It, DL, HII.get(StoreOpc)) 1914 .addFrameIndex(FI) 1915 .addImm(0) 1916 .addReg(SrcLo, getKillRegState(IsKill)) 1917 .cloneMemRefs(*MI); 1918 } 1919 1920 // Store high part. 1921 if (LPR.contains(SrcHi)) { 1922 StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai 1923 : Hexagon::V6_vS32Ub_ai; 1924 BuildMI(B, It, DL, HII.get(StoreOpc)) 1925 .addFrameIndex(FI) 1926 .addImm(Size) 1927 .addReg(SrcHi, getKillRegState(IsKill)) 1928 .cloneMemRefs(*MI); 1929 } 1930 1931 B.erase(It); 1932 return true; 1933 } 1934 1935 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, 1936 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1937 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1938 MachineFunction &MF = *B.getParent(); 1939 auto &MFI = MF.getFrameInfo(); 1940 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1941 MachineInstr *MI = &*It; 1942 if (!MI->getOperand(1).isFI()) 1943 return false; 1944 1945 DebugLoc DL = MI->getDebugLoc(); 1946 Register DstR = MI->getOperand(0).getReg(); 1947 Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi); 1948 Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo); 1949 int FI = MI->getOperand(1).getIndex(); 1950 1951 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); 1952 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1953 Align HasAlign = MFI.getObjectAlign(FI); 1954 unsigned LoadOpc; 1955 1956 // Load low part. 1957 LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai 1958 : Hexagon::V6_vL32Ub_ai; 1959 BuildMI(B, It, DL, HII.get(LoadOpc), DstLo) 1960 .addFrameIndex(FI) 1961 .addImm(0) 1962 .cloneMemRefs(*MI); 1963 1964 // Load high part. 1965 LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai 1966 : Hexagon::V6_vL32Ub_ai; 1967 BuildMI(B, It, DL, HII.get(LoadOpc), DstHi) 1968 .addFrameIndex(FI) 1969 .addImm(Size) 1970 .cloneMemRefs(*MI); 1971 1972 B.erase(It); 1973 return true; 1974 } 1975 1976 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, 1977 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 1978 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 1979 MachineFunction &MF = *B.getParent(); 1980 auto &MFI = MF.getFrameInfo(); 1981 MachineInstr *MI = &*It; 1982 if (!MI->getOperand(0).isFI()) 1983 return false; 1984 1985 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1986 DebugLoc DL = MI->getDebugLoc(); 1987 Register SrcR = MI->getOperand(2).getReg(); 1988 bool IsKill = MI->getOperand(2).isKill(); 1989 int FI = MI->getOperand(0).getIndex(); 1990 1991 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 1992 Align HasAlign = MFI.getObjectAlign(FI); 1993 unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai 1994 : Hexagon::V6_vS32Ub_ai; 1995 BuildMI(B, It, DL, HII.get(StoreOpc)) 1996 .addFrameIndex(FI) 1997 .addImm(0) 1998 .addReg(SrcR, getKillRegState(IsKill)) 1999 .cloneMemRefs(*MI); 2000 2001 B.erase(It); 2002 return true; 2003 } 2004 2005 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, 2006 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, 2007 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { 2008 MachineFunction &MF = *B.getParent(); 2009 auto &MFI = MF.getFrameInfo(); 2010 MachineInstr *MI = &*It; 2011 if (!MI->getOperand(1).isFI()) 2012 return false; 2013 2014 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2015 DebugLoc DL = MI->getDebugLoc(); 2016 Register DstR = MI->getOperand(0).getReg(); 2017 int FI = MI->getOperand(1).getIndex(); 2018 2019 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); 2020 Align HasAlign = MFI.getObjectAlign(FI); 2021 unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai 2022 : Hexagon::V6_vL32Ub_ai; 2023 BuildMI(B, It, DL, HII.get(LoadOpc), DstR) 2024 .addFrameIndex(FI) 2025 .addImm(0) 2026 .cloneMemRefs(*MI); 2027 2028 B.erase(It); 2029 return true; 2030 } 2031 2032 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, 2033 SmallVectorImpl<Register> &NewRegs) const { 2034 auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 2035 MachineRegisterInfo &MRI = MF.getRegInfo(); 2036 bool Changed = false; 2037 2038 for (auto &B : MF) { 2039 // Traverse the basic block. 2040 MachineBasicBlock::iterator NextI; 2041 for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { 2042 MachineInstr *MI = &*I; 2043 NextI = std::next(I); 2044 unsigned Opc = MI->getOpcode(); 2045 2046 switch (Opc) { 2047 case TargetOpcode::COPY: 2048 Changed |= expandCopy(B, I, MRI, HII, NewRegs); 2049 break; 2050 case Hexagon::STriw_pred: 2051 case Hexagon::STriw_ctr: 2052 Changed |= expandStoreInt(B, I, MRI, HII, NewRegs); 2053 break; 2054 case Hexagon::LDriw_pred: 2055 case Hexagon::LDriw_ctr: 2056 Changed |= expandLoadInt(B, I, MRI, HII, NewRegs); 2057 break; 2058 case Hexagon::PS_vstorerq_ai: 2059 Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs); 2060 break; 2061 case Hexagon::PS_vloadrq_ai: 2062 Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs); 2063 break; 2064 case Hexagon::PS_vloadrw_ai: 2065 Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs); 2066 break; 2067 case Hexagon::PS_vstorerw_ai: 2068 Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs); 2069 break; 2070 } 2071 } 2072 } 2073 2074 return Changed; 2075 } 2076 2077 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, 2078 BitVector &SavedRegs, 2079 RegScavenger *RS) const { 2080 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2081 2082 SavedRegs.resize(HRI.getNumRegs()); 2083 2084 // If we have a function containing __builtin_eh_return we want to spill and 2085 // restore all callee saved registers. Pretend that they are used. 2086 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) 2087 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R) 2088 SavedRegs.set(*R); 2089 2090 // Replace predicate register pseudo spill code. 2091 SmallVector<Register,8> NewRegs; 2092 expandSpillMacros(MF, NewRegs); 2093 if (OptimizeSpillSlots && !isOptNone(MF)) 2094 optimizeSpillSlots(MF, NewRegs); 2095 2096 // We need to reserve a spill slot if scavenging could potentially require 2097 // spilling a scavenged register. 2098 if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) { 2099 MachineFrameInfo &MFI = MF.getFrameInfo(); 2100 MachineRegisterInfo &MRI = MF.getRegInfo(); 2101 SetVector<const TargetRegisterClass*> SpillRCs; 2102 // Reserve an int register in any case, because it could be used to hold 2103 // the stack offset in case it does not fit into a spill instruction. 2104 SpillRCs.insert(&Hexagon::IntRegsRegClass); 2105 2106 for (Register VR : NewRegs) 2107 SpillRCs.insert(MRI.getRegClass(VR)); 2108 2109 for (const auto *RC : SpillRCs) { 2110 if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) 2111 continue; 2112 unsigned Num = 1; 2113 switch (RC->getID()) { 2114 case Hexagon::IntRegsRegClassID: 2115 Num = NumberScavengerSlots; 2116 break; 2117 case Hexagon::HvxQRRegClassID: 2118 Num = 2; // Vector predicate spills also need a vector register. 2119 break; 2120 } 2121 unsigned S = HRI.getSpillSize(*RC); 2122 Align A = HRI.getSpillAlign(*RC); 2123 for (unsigned i = 0; i < Num; i++) { 2124 int NewFI = MFI.CreateSpillStackObject(S, A); 2125 RS->addScavengingFrameIndex(NewFI); 2126 } 2127 } 2128 } 2129 2130 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2131 } 2132 2133 Register HexagonFrameLowering::findPhysReg(MachineFunction &MF, 2134 HexagonBlockRanges::IndexRange &FIR, 2135 HexagonBlockRanges::InstrIndexMap &IndexMap, 2136 HexagonBlockRanges::RegToRangeMap &DeadMap, 2137 const TargetRegisterClass *RC) const { 2138 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 2139 auto &MRI = MF.getRegInfo(); 2140 2141 auto isDead = [&FIR,&DeadMap] (Register Reg) -> bool { 2142 auto F = DeadMap.find({Reg,0}); 2143 if (F == DeadMap.end()) 2144 return false; 2145 for (auto &DR : F->second) 2146 if (DR.contains(FIR)) 2147 return true; 2148 return false; 2149 }; 2150 2151 for (Register Reg : RC->getRawAllocationOrder(MF)) { 2152 bool Dead = true; 2153 for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) { 2154 if (isDead(R.Reg)) 2155 continue; 2156 Dead = false; 2157 break; 2158 } 2159 if (Dead) 2160 return Reg; 2161 } 2162 return 0; 2163 } 2164 2165 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, 2166 SmallVectorImpl<Register> &VRegs) const { 2167 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2168 auto &HII = *HST.getInstrInfo(); 2169 auto &HRI = *HST.getRegisterInfo(); 2170 auto &MRI = MF.getRegInfo(); 2171 HexagonBlockRanges HBR(MF); 2172 2173 using BlockIndexMap = 2174 std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>; 2175 using BlockRangeMap = 2176 std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>; 2177 using IndexType = HexagonBlockRanges::IndexType; 2178 2179 struct SlotInfo { 2180 BlockRangeMap Map; 2181 unsigned Size = 0; 2182 const TargetRegisterClass *RC = nullptr; 2183 2184 SlotInfo() = default; 2185 }; 2186 2187 BlockIndexMap BlockIndexes; 2188 SmallSet<int,4> BadFIs; 2189 std::map<int,SlotInfo> FIRangeMap; 2190 2191 // Accumulate register classes: get a common class for a pre-existing 2192 // class HaveRC and a new class NewRC. Return nullptr if a common class 2193 // cannot be found, otherwise return the resulting class. If HaveRC is 2194 // nullptr, assume that it is still unset. 2195 auto getCommonRC = 2196 [](const TargetRegisterClass *HaveRC, 2197 const TargetRegisterClass *NewRC) -> const TargetRegisterClass * { 2198 if (HaveRC == nullptr || HaveRC == NewRC) 2199 return NewRC; 2200 // Different classes, both non-null. Pick the more general one. 2201 if (HaveRC->hasSubClassEq(NewRC)) 2202 return HaveRC; 2203 if (NewRC->hasSubClassEq(HaveRC)) 2204 return NewRC; 2205 return nullptr; 2206 }; 2207 2208 // Scan all blocks in the function. Check all occurrences of frame indexes, 2209 // and collect relevant information. 2210 for (auto &B : MF) { 2211 std::map<int,IndexType> LastStore, LastLoad; 2212 // Emplace appears not to be supported in gcc 4.7.2-4. 2213 //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); 2214 auto P = BlockIndexes.insert( 2215 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B))); 2216 auto &IndexMap = P.first->second; 2217 LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n" 2218 << IndexMap << '\n'); 2219 2220 for (auto &In : B) { 2221 int LFI, SFI; 2222 bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In); 2223 bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In); 2224 if (Load && Store) { 2225 // If it's both a load and a store, then we won't handle it. 2226 BadFIs.insert(LFI); 2227 BadFIs.insert(SFI); 2228 continue; 2229 } 2230 // Check for register classes of the register used as the source for 2231 // the store, and the register used as the destination for the load. 2232 // Also, only accept base+imm_offset addressing modes. Other addressing 2233 // modes can have side-effects (post-increments, etc.). For stack 2234 // slots they are very unlikely, so there is not much loss due to 2235 // this restriction. 2236 if (Load || Store) { 2237 int TFI = Load ? LFI : SFI; 2238 unsigned AM = HII.getAddrMode(In); 2239 SlotInfo &SI = FIRangeMap[TFI]; 2240 bool Bad = (AM != HexagonII::BaseImmOffset); 2241 if (!Bad) { 2242 // If the addressing mode is ok, check the register class. 2243 unsigned OpNum = Load ? 0 : 2; 2244 auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF); 2245 RC = getCommonRC(SI.RC, RC); 2246 if (RC == nullptr) 2247 Bad = true; 2248 else 2249 SI.RC = RC; 2250 } 2251 if (!Bad) { 2252 // Check sizes. 2253 unsigned S = HII.getMemAccessSize(In); 2254 if (SI.Size != 0 && SI.Size != S) 2255 Bad = true; 2256 else 2257 SI.Size = S; 2258 } 2259 if (!Bad) { 2260 for (auto *Mo : In.memoperands()) { 2261 if (!Mo->isVolatile() && !Mo->isAtomic()) 2262 continue; 2263 Bad = true; 2264 break; 2265 } 2266 } 2267 if (Bad) 2268 BadFIs.insert(TFI); 2269 } 2270 2271 // Locate uses of frame indices. 2272 for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { 2273 const MachineOperand &Op = In.getOperand(i); 2274 if (!Op.isFI()) 2275 continue; 2276 int FI = Op.getIndex(); 2277 // Make sure that the following operand is an immediate and that 2278 // it is 0. This is the offset in the stack object. 2279 if (i+1 >= n || !In.getOperand(i+1).isImm() || 2280 In.getOperand(i+1).getImm() != 0) 2281 BadFIs.insert(FI); 2282 if (BadFIs.count(FI)) 2283 continue; 2284 2285 IndexType Index = IndexMap.getIndex(&In); 2286 if (Load) { 2287 if (LastStore[FI] == IndexType::None) 2288 LastStore[FI] = IndexType::Entry; 2289 LastLoad[FI] = Index; 2290 } else if (Store) { 2291 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; 2292 if (LastStore[FI] != IndexType::None) 2293 RL.add(LastStore[FI], LastLoad[FI], false, false); 2294 else if (LastLoad[FI] != IndexType::None) 2295 RL.add(IndexType::Entry, LastLoad[FI], false, false); 2296 LastLoad[FI] = IndexType::None; 2297 LastStore[FI] = Index; 2298 } else { 2299 BadFIs.insert(FI); 2300 } 2301 } 2302 } 2303 2304 for (auto &I : LastLoad) { 2305 IndexType LL = I.second; 2306 if (LL == IndexType::None) 2307 continue; 2308 auto &RL = FIRangeMap[I.first].Map[&B]; 2309 IndexType &LS = LastStore[I.first]; 2310 if (LS != IndexType::None) 2311 RL.add(LS, LL, false, false); 2312 else 2313 RL.add(IndexType::Entry, LL, false, false); 2314 LS = IndexType::None; 2315 } 2316 for (auto &I : LastStore) { 2317 IndexType LS = I.second; 2318 if (LS == IndexType::None) 2319 continue; 2320 auto &RL = FIRangeMap[I.first].Map[&B]; 2321 RL.add(LS, IndexType::None, false, false); 2322 } 2323 } 2324 2325 LLVM_DEBUG({ 2326 for (auto &P : FIRangeMap) { 2327 dbgs() << "fi#" << P.first; 2328 if (BadFIs.count(P.first)) 2329 dbgs() << " (bad)"; 2330 dbgs() << " RC: "; 2331 if (P.second.RC != nullptr) 2332 dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; 2333 else 2334 dbgs() << "<null>\n"; 2335 for (auto &R : P.second.Map) 2336 dbgs() << " " << printMBBReference(*R.first) << " { " << R.second 2337 << "}\n"; 2338 } 2339 }); 2340 2341 // When a slot is loaded from in a block without being stored to in the 2342 // same block, it is live-on-entry to this block. To avoid CFG analysis, 2343 // consider this slot to be live-on-exit from all blocks. 2344 SmallSet<int,4> LoxFIs; 2345 2346 std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap; 2347 2348 for (auto &P : FIRangeMap) { 2349 // P = pair(FI, map: BB->RangeList) 2350 if (BadFIs.count(P.first)) 2351 continue; 2352 for (auto &B : MF) { 2353 auto F = P.second.Map.find(&B); 2354 // F = pair(BB, RangeList) 2355 if (F == P.second.Map.end() || F->second.empty()) 2356 continue; 2357 HexagonBlockRanges::IndexRange &IR = F->second.front(); 2358 if (IR.start() == IndexType::Entry) 2359 LoxFIs.insert(P.first); 2360 BlockFIMap[&B].push_back(P.first); 2361 } 2362 } 2363 2364 LLVM_DEBUG({ 2365 dbgs() << "Block-to-FI map (* -- live-on-exit):\n"; 2366 for (auto &P : BlockFIMap) { 2367 auto &FIs = P.second; 2368 if (FIs.empty()) 2369 continue; 2370 dbgs() << " " << printMBBReference(*P.first) << ": {"; 2371 for (auto I : FIs) { 2372 dbgs() << " fi#" << I; 2373 if (LoxFIs.count(I)) 2374 dbgs() << '*'; 2375 } 2376 dbgs() << " }\n"; 2377 } 2378 }); 2379 2380 #ifndef NDEBUG 2381 bool HasOptLimit = SpillOptMax.getPosition(); 2382 #endif 2383 2384 // eliminate loads, when all loads eliminated, eliminate all stores. 2385 for (auto &B : MF) { 2386 auto F = BlockIndexes.find(&B); 2387 assert(F != BlockIndexes.end()); 2388 HexagonBlockRanges::InstrIndexMap &IM = F->second; 2389 HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM); 2390 HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM); 2391 LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n" 2392 << HexagonBlockRanges::PrintRangeMap(DM, HRI)); 2393 2394 for (auto FI : BlockFIMap[&B]) { 2395 if (BadFIs.count(FI)) 2396 continue; 2397 LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n'); 2398 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; 2399 for (auto &Range : RL) { 2400 LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n'); 2401 if (!IndexType::isInstr(Range.start()) || 2402 !IndexType::isInstr(Range.end())) 2403 continue; 2404 MachineInstr &SI = *IM.getInstr(Range.start()); 2405 MachineInstr &EI = *IM.getInstr(Range.end()); 2406 assert(SI.mayStore() && "Unexpected start instruction"); 2407 assert(EI.mayLoad() && "Unexpected end instruction"); 2408 MachineOperand &SrcOp = SI.getOperand(2); 2409 2410 HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(), 2411 SrcOp.getSubReg() }; 2412 auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF); 2413 // The this-> is needed to unconfuse MSVC. 2414 Register FoundR = this->findPhysReg(MF, Range, IM, DM, RC); 2415 LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI) 2416 << '\n'); 2417 if (FoundR == 0) 2418 continue; 2419 #ifndef NDEBUG 2420 if (HasOptLimit) { 2421 if (SpillOptCount >= SpillOptMax) 2422 return; 2423 SpillOptCount++; 2424 } 2425 #endif 2426 2427 // Generate the copy-in: "FoundR = COPY SrcR" at the store location. 2428 MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt; 2429 MachineInstr *CopyIn = nullptr; 2430 if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { 2431 const DebugLoc &DL = SI.getDebugLoc(); 2432 CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR) 2433 .add(SrcOp); 2434 } 2435 2436 ++StartIt; 2437 // Check if this is a last store and the FI is live-on-exit. 2438 if (LoxFIs.count(FI) && (&Range == &RL.back())) { 2439 // Update store's source register. 2440 if (unsigned SR = SrcOp.getSubReg()) 2441 SrcOp.setReg(HRI.getSubReg(FoundR, SR)); 2442 else 2443 SrcOp.setReg(FoundR); 2444 SrcOp.setSubReg(0); 2445 // We are keeping this register live. 2446 SrcOp.setIsKill(false); 2447 } else { 2448 B.erase(&SI); 2449 IM.replaceInstr(&SI, CopyIn); 2450 } 2451 2452 auto EndIt = std::next(EI.getIterator()); 2453 for (auto It = StartIt; It != EndIt; It = NextIt) { 2454 MachineInstr &MI = *It; 2455 NextIt = std::next(It); 2456 int TFI; 2457 if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI) 2458 continue; 2459 Register DstR = MI.getOperand(0).getReg(); 2460 assert(MI.getOperand(0).getSubReg() == 0); 2461 MachineInstr *CopyOut = nullptr; 2462 if (DstR != FoundR) { 2463 DebugLoc DL = MI.getDebugLoc(); 2464 unsigned MemSize = HII.getMemAccessSize(MI); 2465 assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); 2466 unsigned CopyOpc = TargetOpcode::COPY; 2467 if (HII.isSignExtendingLoad(MI)) 2468 CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; 2469 else if (HII.isZeroExtendingLoad(MI)) 2470 CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; 2471 CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR) 2472 .addReg(FoundR, getKillRegState(&MI == &EI)); 2473 } 2474 IM.replaceInstr(&MI, CopyOut); 2475 B.erase(It); 2476 } 2477 2478 // Update the dead map. 2479 HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 }; 2480 for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI)) 2481 DM[RR].subtract(Range); 2482 } // for Range in range list 2483 } 2484 } 2485 } 2486 2487 void HexagonFrameLowering::expandAlloca(MachineInstr *AI, 2488 const HexagonInstrInfo &HII, Register SP, unsigned CF) const { 2489 MachineBasicBlock &MB = *AI->getParent(); 2490 DebugLoc DL = AI->getDebugLoc(); 2491 unsigned A = AI->getOperand(2).getImm(); 2492 2493 // Have 2494 // Rd = alloca Rs, #A 2495 // 2496 // If Rs and Rd are different registers, use this sequence: 2497 // Rd = sub(r29, Rs) 2498 // r29 = sub(r29, Rs) 2499 // Rd = and(Rd, #-A) ; if necessary 2500 // r29 = and(r29, #-A) ; if necessary 2501 // Rd = add(Rd, #CF) ; CF size aligned to at most A 2502 // otherwise, do 2503 // Rd = sub(r29, Rs) 2504 // Rd = and(Rd, #-A) ; if necessary 2505 // r29 = Rd 2506 // Rd = add(Rd, #CF) ; CF size aligned to at most A 2507 2508 MachineOperand &RdOp = AI->getOperand(0); 2509 MachineOperand &RsOp = AI->getOperand(1); 2510 Register Rd = RdOp.getReg(), Rs = RsOp.getReg(); 2511 2512 // Rd = sub(r29, Rs) 2513 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) 2514 .addReg(SP) 2515 .addReg(Rs); 2516 if (Rs != Rd) { 2517 // r29 = sub(r29, Rs) 2518 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) 2519 .addReg(SP) 2520 .addReg(Rs); 2521 } 2522 if (A > 8) { 2523 // Rd = and(Rd, #-A) 2524 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) 2525 .addReg(Rd) 2526 .addImm(-int64_t(A)); 2527 if (Rs != Rd) 2528 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) 2529 .addReg(SP) 2530 .addImm(-int64_t(A)); 2531 } 2532 if (Rs == Rd) { 2533 // r29 = Rd 2534 BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) 2535 .addReg(Rd); 2536 } 2537 if (CF > 0) { 2538 // Rd = add(Rd, #CF) 2539 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) 2540 .addReg(Rd) 2541 .addImm(CF); 2542 } 2543 } 2544 2545 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { 2546 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2547 if (!MFI.hasVarSizedObjects()) 2548 return false; 2549 // Do not check for max stack object alignment here, because the stack 2550 // may not be complete yet. Assume that we will need PS_aligna if there 2551 // are variable-sized objects. 2552 return true; 2553 } 2554 2555 const MachineInstr *HexagonFrameLowering::getAlignaInstr( 2556 const MachineFunction &MF) const { 2557 for (auto &B : MF) 2558 for (auto &I : B) 2559 if (I.getOpcode() == Hexagon::PS_aligna) 2560 return &I; 2561 return nullptr; 2562 } 2563 2564 /// Adds all callee-saved registers as implicit uses or defs to the 2565 /// instruction. 2566 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, 2567 const CSIVect &CSI, bool IsDef, bool IsKill) const { 2568 // Add the callee-saved registers as implicit uses. 2569 for (auto &R : CSI) 2570 MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill)); 2571 } 2572 2573 /// Determine whether the callee-saved register saves and restores should 2574 /// be generated via inline code. If this function returns "true", inline 2575 /// code will be generated. If this function returns "false", additional 2576 /// checks are performed, which may still lead to the inline code. 2577 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF, 2578 const CSIVect &CSI) const { 2579 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) 2580 return true; 2581 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) 2582 return true; 2583 if (!hasFP(MF)) 2584 return true; 2585 if (!isOptSize(MF) && !isMinSize(MF)) 2586 if (MF.getTarget().getOptLevel() > CodeGenOptLevel::Default) 2587 return true; 2588 2589 // Check if CSI only has double registers, and if the registers form 2590 // a contiguous block starting from D8. 2591 BitVector Regs(Hexagon::NUM_TARGET_REGS); 2592 for (const CalleeSavedInfo &I : CSI) { 2593 Register R = I.getReg(); 2594 if (!Hexagon::DoubleRegsRegClass.contains(R)) 2595 return true; 2596 Regs[R] = true; 2597 } 2598 int F = Regs.find_first(); 2599 if (F != Hexagon::D8) 2600 return true; 2601 while (F >= 0) { 2602 int N = Regs.find_next(F); 2603 if (N >= 0 && N != F+1) 2604 return true; 2605 F = N; 2606 } 2607 2608 return false; 2609 } 2610 2611 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF, 2612 const CSIVect &CSI) const { 2613 if (shouldInlineCSR(MF, CSI)) 2614 return false; 2615 unsigned NumCSI = CSI.size(); 2616 if (NumCSI <= 1) 2617 return false; 2618 2619 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs 2620 : SpillFuncThreshold; 2621 return Threshold < NumCSI; 2622 } 2623 2624 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF, 2625 const CSIVect &CSI) const { 2626 if (shouldInlineCSR(MF, CSI)) 2627 return false; 2628 // The restore functions do a bit more than just restoring registers. 2629 // The non-returning versions will go back directly to the caller's 2630 // caller, others will clean up the stack frame in preparation for 2631 // a tail call. Using them can still save code size even if only one 2632 // register is getting restores. Make the decision based on -Oz: 2633 // using -Os will use inline restore for a single register. 2634 if (isMinSize(MF)) 2635 return true; 2636 unsigned NumCSI = CSI.size(); 2637 if (NumCSI <= 1) 2638 return false; 2639 2640 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 2641 : SpillFuncThreshold; 2642 return Threshold < NumCSI; 2643 } 2644 2645 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const { 2646 unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF); 2647 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2648 // A fairly simplistic guess as to whether a potential load/store to a 2649 // stack location could require an extra register. 2650 if (HST.useHVXOps() && StackSize > 256) 2651 return true; 2652 2653 // Check if the function has store-immediate instructions that access 2654 // the stack. Since the offset field is not extendable, if the stack 2655 // size exceeds the offset limit (6 bits, shifted), the stores will 2656 // require a new base register. 2657 bool HasImmStack = false; 2658 unsigned MinLS = ~0u; // Log_2 of the memory access size. 2659 2660 for (const MachineBasicBlock &B : MF) { 2661 for (const MachineInstr &MI : B) { 2662 unsigned LS = 0; 2663 switch (MI.getOpcode()) { 2664 case Hexagon::S4_storeirit_io: 2665 case Hexagon::S4_storeirif_io: 2666 case Hexagon::S4_storeiri_io: 2667 ++LS; 2668 [[fallthrough]]; 2669 case Hexagon::S4_storeirht_io: 2670 case Hexagon::S4_storeirhf_io: 2671 case Hexagon::S4_storeirh_io: 2672 ++LS; 2673 [[fallthrough]]; 2674 case Hexagon::S4_storeirbt_io: 2675 case Hexagon::S4_storeirbf_io: 2676 case Hexagon::S4_storeirb_io: 2677 if (MI.getOperand(0).isFI()) 2678 HasImmStack = true; 2679 MinLS = std::min(MinLS, LS); 2680 break; 2681 } 2682 } 2683 } 2684 2685 if (HasImmStack) 2686 return !isUInt<6>(StackSize >> MinLS); 2687 2688 return false; 2689 } 2690 2691 namespace { 2692 // Struct used by orderFrameObjects to help sort the stack objects. 2693 struct HexagonFrameSortingObject { 2694 bool IsValid = false; 2695 unsigned Index = 0; // Index of Object into MFI list. 2696 unsigned Size = 0; 2697 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 2698 }; 2699 2700 struct HexagonFrameSortingComparator { 2701 inline bool operator()(const HexagonFrameSortingObject &A, 2702 const HexagonFrameSortingObject &B) const { 2703 return std::make_tuple(!A.IsValid, A.ObjectAlignment, A.Size) < 2704 std::make_tuple(!B.IsValid, B.ObjectAlignment, B.Size); 2705 } 2706 }; 2707 } // namespace 2708 2709 // Sort objects on the stack by alignment value and then by size to minimize 2710 // padding. 2711 void HexagonFrameLowering::orderFrameObjects( 2712 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 2713 2714 if (ObjectsToAllocate.empty()) 2715 return; 2716 2717 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2718 int NObjects = ObjectsToAllocate.size(); 2719 2720 // Create an array of all MFI objects. 2721 SmallVector<HexagonFrameSortingObject> SortingObjects( 2722 MFI.getObjectIndexEnd()); 2723 2724 for (int i = 0, j = 0, e = MFI.getObjectIndexEnd(); i < e && j != NObjects; 2725 ++i) { 2726 if (i != ObjectsToAllocate[j]) 2727 continue; 2728 j++; 2729 2730 // A variable size object has size equal to 0. Since Hexagon sets 2731 // getUseLocalStackAllocationBlock() to true, a local block is allocated 2732 // earlier. This case is not handled here for now. 2733 int Size = MFI.getObjectSize(i); 2734 if (Size == 0) 2735 return; 2736 2737 SortingObjects[i].IsValid = true; 2738 SortingObjects[i].Index = i; 2739 SortingObjects[i].Size = Size; 2740 SortingObjects[i].ObjectAlignment = MFI.getObjectAlign(i); 2741 } 2742 2743 // Sort objects by alignment and then by size. 2744 llvm::stable_sort(SortingObjects, HexagonFrameSortingComparator()); 2745 2746 // Modify the original list to represent the final order. 2747 int i = NObjects; 2748 for (auto &Obj : SortingObjects) { 2749 if (i == 0) 2750 break; 2751 ObjectsToAllocate[--i] = Obj.Index; 2752 } 2753 } 2754