xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "HexagonFrameLowering.h"
11 #include "HexagonBlockRanges.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonMachineFunctionInfo.h"
14 #include "HexagonRegisterInfo.h"
15 #include "HexagonSubtarget.h"
16 #include "HexagonTargetMachine.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachinePostDominators.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/PseudoSourceValue.h"
40 #include "llvm/CodeGen/RegisterScavenging.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCDwarf.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Target/TargetOptions.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <map>
63 #include <utility>
64 #include <vector>
65 
66 #define DEBUG_TYPE "hexagon-pei"
67 
68 // Hexagon stack frame layout as defined by the ABI:
69 //
70 //                                                       Incoming arguments
71 //                                                       passed via stack
72 //                                                                      |
73 //                                                                      |
74 //        SP during function's                 FP during function's     |
75 //    +-- runtime (top of stack)               runtime (bottom) --+     |
76 //    |                                                           |     |
77 // --++---------------------+------------------+-----------------++-+-------
78 //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
79 //   |   called functions   |  local objects   |  local objects  |FP|
80 // --+----------------------+------------------+-----------------+--+-------
81 //    <-    size known    -> <- size unknown -> <- size known  ->
82 //
83 // Low address                                                 High address
84 //
85 // <--- stack growth
86 //
87 //
88 // - In any circumstances, the outgoing function arguments are always accessi-
89 //   ble using the SP, and the incoming arguments are accessible using the FP.
90 // - If the local objects are not aligned, they can always be accessed using
91 //   the FP.
92 // - If there are no variable-sized objects, the local objects can always be
93 //   accessed using the SP, regardless whether they are aligned or not. (The
94 //   alignment padding will be at the bottom of the stack (highest address),
95 //   and so the offset with respect to the SP will be known at the compile-
96 //   -time.)
97 //
98 // The only complication occurs if there are both, local aligned objects, and
99 // dynamically allocated (variable-sized) objects. The alignment pad will be
100 // placed between the FP and the local objects, thus preventing the use of the
101 // FP to access the local objects. At the same time, the variable-sized objects
102 // will be between the SP and the local objects, thus introducing an unknown
103 // distance from the SP to the locals.
104 //
105 // To avoid this problem, a new register is created that holds the aligned
106 // address of the bottom of the stack, referred in the sources as AP (aligned
107 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
108 // that aligns AP to the required boundary (a maximum of the alignments of
109 // all stack objects, fixed- and variable-sized). All local objects[1] will
110 // then use AP as the base pointer.
111 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
112 // their name from being allocated at fixed locations on the stack, relative
113 // to the FP. In the presence of dynamic allocation and local alignment, such
114 // objects can only be accessed through the FP.
115 //
116 // Illustration of the AP:
117 //                                                                FP --+
118 //                                                                     |
119 // ---------------+---------------------+-----+-----------------------++-+--
120 //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
121 //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
122 // ---------------+---------------------+-----+-----------------+-----+--+--
123 //                                      |<-- Multiple of the -->|
124 //                                           stack alignment    +-- AP
125 //
126 // The AP is set up at the beginning of the function. Since it is not a dedi-
127 // cated (reserved) register, it needs to be kept live throughout the function
128 // to be available as the base register for local object accesses.
129 // Normally, an address of a stack objects is obtained by a pseudo-instruction
130 // PS_fi. To access local objects with the AP register present, a different
131 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
132 // argument compared to PS_fi: the first input register is the AP register.
133 // This keeps the register live between its definition and its uses.
134 
135 // The AP register is originally set up using pseudo-instruction PS_aligna:
136 //   AP = PS_aligna A
137 // where
138 //   A  - required stack alignment
139 // The alignment value must be the maximum of all alignments required by
140 // any stack object.
141 
142 // The dynamic allocation uses a pseudo-instruction PS_alloca:
143 //   Rd = PS_alloca Rs, A
144 // where
145 //   Rd - address of the allocated space
146 //   Rs - minimum size (the actual allocated can be larger to accommodate
147 //        alignment)
148 //   A  - required alignment
149 
150 using namespace llvm;
151 
152 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
153     cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
154 
155 static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots",
156     cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
157     cl::ZeroOrMore);
158 
159 static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
160     cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
161     cl::init(6), cl::ZeroOrMore);
162 
163 static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
164     cl::Hidden, cl::desc("Specify Os spill func threshold"),
165     cl::init(1), cl::ZeroOrMore);
166 
167 static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
168     cl::Hidden, cl::desc("Enable runtime checks for stack overflow."),
169     cl::init(false), cl::ZeroOrMore);
170 
171 static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
172     cl::init(true), cl::Hidden, cl::ZeroOrMore,
173     cl::desc("Enable stack frame shrink wrapping"));
174 
175 static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit",
176     cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore,
177     cl::desc("Max count of stack frame shrink-wraps"));
178 
179 static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long",
180     cl::Hidden, cl::desc("Enable long calls for save-restore stubs."),
181     cl::init(false), cl::ZeroOrMore);
182 
183 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
184     cl::Hidden, cl::desc("Refrain from using FP whenever possible"));
185 
186 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
187     cl::init(true), cl::desc("Optimize spill slots"));
188 
189 #ifndef NDEBUG
190 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
191     cl::init(std::numeric_limits<unsigned>::max()));
192 static unsigned SpillOptCount = 0;
193 #endif
194 
195 namespace llvm {
196 
197   void initializeHexagonCallFrameInformationPass(PassRegistry&);
198   FunctionPass *createHexagonCallFrameInformation();
199 
200 } // end namespace llvm
201 
202 namespace {
203 
204   class HexagonCallFrameInformation : public MachineFunctionPass {
205   public:
206     static char ID;
207 
208     HexagonCallFrameInformation() : MachineFunctionPass(ID) {
209       PassRegistry &PR = *PassRegistry::getPassRegistry();
210       initializeHexagonCallFrameInformationPass(PR);
211     }
212 
213     bool runOnMachineFunction(MachineFunction &MF) override;
214 
215     MachineFunctionProperties getRequiredProperties() const override {
216       return MachineFunctionProperties().set(
217           MachineFunctionProperties::Property::NoVRegs);
218     }
219   };
220 
221   char HexagonCallFrameInformation::ID = 0;
222 
223 } // end anonymous namespace
224 
225 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
226   auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
227   bool NeedCFI = MF.needsFrameMoves();
228 
229   if (!NeedCFI)
230     return false;
231   HFI.insertCFIInstructions(MF);
232   return true;
233 }
234 
235 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
236                 "Hexagon call frame information", false, false)
237 
238 FunctionPass *llvm::createHexagonCallFrameInformation() {
239   return new HexagonCallFrameInformation();
240 }
241 
242 /// Map a register pair Reg to the subregister that has the greater "number",
243 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
244 static unsigned getMax32BitSubRegister(unsigned Reg,
245                                        const TargetRegisterInfo &TRI,
246                                        bool hireg = true) {
247     if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
248       return Reg;
249 
250     unsigned RegNo = 0;
251     for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
252       if (hireg) {
253         if (*SubRegs > RegNo)
254           RegNo = *SubRegs;
255       } else {
256         if (!RegNo || *SubRegs < RegNo)
257           RegNo = *SubRegs;
258       }
259     }
260     return RegNo;
261 }
262 
263 /// Returns the callee saved register with the largest id in the vector.
264 static unsigned getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,
265                                      const TargetRegisterInfo &TRI) {
266   static_assert(Hexagon::R1 > 0,
267                 "Assume physical registers are encoded as positive integers");
268   if (CSI.empty())
269     return 0;
270 
271   unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
272   for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
273     unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
274     if (Reg > Max)
275       Max = Reg;
276   }
277   return Max;
278 }
279 
280 /// Checks if the basic block contains any instruction that needs a stack
281 /// frame to be already in place.
282 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
283                             const HexagonRegisterInfo &HRI) {
284     for (auto &I : MBB) {
285       const MachineInstr *MI = &I;
286       if (MI->isCall())
287         return true;
288       unsigned Opc = MI->getOpcode();
289       switch (Opc) {
290         case Hexagon::PS_alloca:
291         case Hexagon::PS_aligna:
292           return true;
293         default:
294           break;
295       }
296       // Check individual operands.
297       for (const MachineOperand &MO : MI->operands()) {
298         // While the presence of a frame index does not prove that a stack
299         // frame will be required, all frame indexes should be within alloc-
300         // frame/deallocframe. Otherwise, the code that translates a frame
301         // index into an offset would have to be aware of the placement of
302         // the frame creation/destruction instructions.
303         if (MO.isFI())
304           return true;
305         if (MO.isReg()) {
306           Register R = MO.getReg();
307           // Virtual registers will need scavenging, which then may require
308           // a stack slot.
309           if (R.isVirtual())
310             return true;
311           for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
312             if (CSR[*S])
313               return true;
314           continue;
315         }
316         if (MO.isRegMask()) {
317           // A regmask would normally have all callee-saved registers marked
318           // as preserved, so this check would not be needed, but in case of
319           // ever having other regmasks (for other calling conventions),
320           // make sure they would be processed correctly.
321           const uint32_t *BM = MO.getRegMask();
322           for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
323             unsigned R = x;
324             // If this regmask does not preserve a CSR, a frame will be needed.
325             if (!(BM[R/32] & (1u << (R%32))))
326               return true;
327           }
328         }
329       }
330     }
331     return false;
332 }
333 
334   /// Returns true if MBB has a machine instructions that indicates a tail call
335   /// in the block.
336 static bool hasTailCall(const MachineBasicBlock &MBB) {
337     MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
338     if (I == MBB.end())
339       return false;
340     unsigned RetOpc = I->getOpcode();
341     return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
342 }
343 
344 /// Returns true if MBB contains an instruction that returns.
345 static bool hasReturn(const MachineBasicBlock &MBB) {
346     for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
347       if (I->isReturn())
348         return true;
349     return false;
350 }
351 
352 /// Returns the "return" instruction from this block, or nullptr if there
353 /// isn't any.
354 static MachineInstr *getReturn(MachineBasicBlock &MBB) {
355     for (auto &I : MBB)
356       if (I.isReturn())
357         return &I;
358     return nullptr;
359 }
360 
361 static bool isRestoreCall(unsigned Opc) {
362     switch (Opc) {
363       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
364       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
365       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
366       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
367       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
368       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
369       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
370       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
371         return true;
372     }
373     return false;
374 }
375 
376 static inline bool isOptNone(const MachineFunction &MF) {
377     return MF.getFunction().hasOptNone() ||
378            MF.getTarget().getOptLevel() == CodeGenOpt::None;
379 }
380 
381 static inline bool isOptSize(const MachineFunction &MF) {
382     const Function &F = MF.getFunction();
383     return F.hasOptSize() && !F.hasMinSize();
384 }
385 
386 static inline bool isMinSize(const MachineFunction &MF) {
387     return MF.getFunction().hasMinSize();
388 }
389 
390 /// Implements shrink-wrapping of the stack frame. By default, stack frame
391 /// is created in the function entry block, and is cleaned up in every block
392 /// that returns. This function finds alternate blocks: one for the frame
393 /// setup (prolog) and one for the cleanup (epilog).
394 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
395       MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
396   static unsigned ShrinkCounter = 0;
397 
398   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() &&
399       MF.getFunction().isVarArg())
400     return;
401   if (ShrinkLimit.getPosition()) {
402     if (ShrinkCounter >= ShrinkLimit)
403       return;
404     ShrinkCounter++;
405   }
406 
407   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
408 
409   MachineDominatorTree MDT;
410   MDT.runOnMachineFunction(MF);
411   MachinePostDominatorTree MPT;
412   MPT.runOnMachineFunction(MF);
413 
414   using UnsignedMap = DenseMap<unsigned, unsigned>;
415   using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
416 
417   UnsignedMap RPO;
418   RPOTType RPOT(&MF);
419   unsigned RPON = 0;
420   for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
421     RPO[(*I)->getNumber()] = RPON++;
422 
423   // Don't process functions that have loops, at least for now. Placement
424   // of prolog and epilog must take loop structure into account. For simpli-
425   // city don't do it right now.
426   for (auto &I : MF) {
427     unsigned BN = RPO[I.getNumber()];
428     for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
429       // If found a back-edge, return.
430       if (RPO[(*SI)->getNumber()] <= BN)
431         return;
432     }
433   }
434 
435   // Collect the set of blocks that need a stack frame to execute. Scan
436   // each block for uses/defs of callee-saved registers, calls, etc.
437   SmallVector<MachineBasicBlock*,16> SFBlocks;
438   BitVector CSR(Hexagon::NUM_TARGET_REGS);
439   for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
440     for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
441       CSR[*S] = true;
442 
443   for (auto &I : MF)
444     if (needsStackFrame(I, CSR, HRI))
445       SFBlocks.push_back(&I);
446 
447   LLVM_DEBUG({
448     dbgs() << "Blocks needing SF: {";
449     for (auto &B : SFBlocks)
450       dbgs() << " " << printMBBReference(*B);
451     dbgs() << " }\n";
452   });
453   // No frame needed?
454   if (SFBlocks.empty())
455     return;
456 
457   // Pick a common dominator and a common post-dominator.
458   MachineBasicBlock *DomB = SFBlocks[0];
459   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
460     DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
461     if (!DomB)
462       break;
463   }
464   MachineBasicBlock *PDomB = SFBlocks[0];
465   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
466     PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
467     if (!PDomB)
468       break;
469   }
470   LLVM_DEBUG({
471     dbgs() << "Computed dom block: ";
472     if (DomB)
473       dbgs() << printMBBReference(*DomB);
474     else
475       dbgs() << "<null>";
476     dbgs() << ", computed pdom block: ";
477     if (PDomB)
478       dbgs() << printMBBReference(*PDomB);
479     else
480       dbgs() << "<null>";
481     dbgs() << "\n";
482   });
483   if (!DomB || !PDomB)
484     return;
485 
486   // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
487   if (!MDT.dominates(DomB, PDomB)) {
488     LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
489     return;
490   }
491   if (!MPT.dominates(PDomB, DomB)) {
492     LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
493     return;
494   }
495 
496   // Finally, everything seems right.
497   PrologB = DomB;
498   EpilogB = PDomB;
499 }
500 
501 /// Perform most of the PEI work here:
502 /// - saving/restoring of the callee-saved registers,
503 /// - stack frame creation and destruction.
504 /// Normally, this work is distributed among various functions, but doing it
505 /// in one place allows shrink-wrapping of the stack frame.
506 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
507                                         MachineBasicBlock &MBB) const {
508   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
509 
510   MachineFrameInfo &MFI = MF.getFrameInfo();
511   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
512 
513   MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
514   if (EnableShrinkWrapping)
515     findShrunkPrologEpilog(MF, PrologB, EpilogB);
516 
517   bool PrologueStubs = false;
518   insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
519   insertPrologueInBlock(*PrologB, PrologueStubs);
520   updateEntryPaths(MF, *PrologB);
521 
522   if (EpilogB) {
523     insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
524     insertEpilogueInBlock(*EpilogB);
525   } else {
526     for (auto &B : MF)
527       if (B.isReturnBlock())
528         insertCSRRestoresInBlock(B, CSI, HRI);
529 
530     for (auto &B : MF)
531       if (B.isReturnBlock())
532         insertEpilogueInBlock(B);
533 
534     for (auto &B : MF) {
535       if (B.empty())
536         continue;
537       MachineInstr *RetI = getReturn(B);
538       if (!RetI || isRestoreCall(RetI->getOpcode()))
539         continue;
540       for (auto &R : CSI)
541         RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
542     }
543   }
544 
545   if (EpilogB) {
546     // If there is an epilog block, it may not have a return instruction.
547     // In such case, we need to add the callee-saved registers as live-ins
548     // in all blocks on all paths from the epilog to any return block.
549     unsigned MaxBN = MF.getNumBlockIDs();
550     BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
551     updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
552   }
553 }
554 
555 /// Returns true if the target can safely skip saving callee-saved registers
556 /// for noreturn nounwind functions.
557 bool HexagonFrameLowering::enableCalleeSaveSkip(
558     const MachineFunction &MF) const {
559   const auto &F = MF.getFunction();
560   assert(F.hasFnAttribute(Attribute::NoReturn) &&
561          F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
562          !F.getFunction().hasFnAttribute(Attribute::UWTable));
563   (void)F;
564 
565   // No need to save callee saved registers if the function does not return.
566   return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
567 }
568 
569 // Helper function used to determine when to eliminate the stack frame for
570 // functions marked as noreturn and when the noreturn-stack-elim options are
571 // specified. When both these conditions are true, then a FP may not be needed
572 // if the function makes a call. It is very similar to enableCalleeSaveSkip,
573 // but it used to check if the allocframe can be eliminated as well.
574 static bool enableAllocFrameElim(const MachineFunction &MF) {
575   const auto &F = MF.getFunction();
576   const auto &MFI = MF.getFrameInfo();
577   const auto &HST = MF.getSubtarget<HexagonSubtarget>();
578   assert(!MFI.hasVarSizedObjects() &&
579          !HST.getRegisterInfo()->hasStackRealignment(MF));
580   return F.hasFnAttribute(Attribute::NoReturn) &&
581     F.hasFnAttribute(Attribute::NoUnwind) &&
582     !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() &&
583     MFI.getStackSize() == 0;
584 }
585 
586 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
587       bool PrologueStubs) const {
588   MachineFunction &MF = *MBB.getParent();
589   MachineFrameInfo &MFI = MF.getFrameInfo();
590   auto &HST = MF.getSubtarget<HexagonSubtarget>();
591   auto &HII = *HST.getInstrInfo();
592   auto &HRI = *HST.getRegisterInfo();
593 
594   Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign());
595 
596   // Calculate the total stack frame size.
597   // Get the number of bytes to allocate from the FrameInfo.
598   unsigned FrameSize = MFI.getStackSize();
599   // Round up the max call frame size to the max alignment on the stack.
600   unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
601   MFI.setMaxCallFrameSize(MaxCFA);
602 
603   FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
604   MFI.setStackSize(FrameSize);
605 
606   bool AlignStack = (MaxAlign > getStackAlign());
607 
608   // Get the number of bytes to allocate from the FrameInfo.
609   unsigned NumBytes = MFI.getStackSize();
610   unsigned SP = HRI.getStackRegister();
611   unsigned MaxCF = MFI.getMaxCallFrameSize();
612   MachineBasicBlock::iterator InsertPt = MBB.begin();
613 
614   SmallVector<MachineInstr *, 4> AdjustRegs;
615   for (auto &MBB : MF)
616     for (auto &MI : MBB)
617       if (MI.getOpcode() == Hexagon::PS_alloca)
618         AdjustRegs.push_back(&MI);
619 
620   for (auto MI : AdjustRegs) {
621     assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
622     expandAlloca(MI, HII, SP, MaxCF);
623     MI->eraseFromParent();
624   }
625 
626   DebugLoc dl = MBB.findDebugLoc(InsertPt);
627 
628   if (MF.getFunction().isVarArg() &&
629       MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
630     // Calculate the size of register saved area.
631     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
632     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0)
633                                               ? NumVarArgRegs * 4
634                                               : NumVarArgRegs * 4 + 4;
635     if (RegisterSavedAreaSizePlusPadding > 0) {
636       // Decrement the stack pointer by size of register saved area plus
637       // padding if any.
638       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
639         .addReg(SP)
640         .addImm(-RegisterSavedAreaSizePlusPadding)
641         .setMIFlag(MachineInstr::FrameSetup);
642 
643       int NumBytes = 0;
644       // Copy all the named arguments below register saved area.
645       auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
646       for (int i = HMFI.getFirstNamedArgFrameIndex(),
647                e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) {
648         uint64_t ObjSize = MFI.getObjectSize(i);
649         Align ObjAlign = MFI.getObjectAlign(i);
650 
651         // Determine the kind of load/store that should be used.
652         unsigned LDOpc, STOpc;
653         uint64_t OpcodeChecker = ObjAlign.value();
654 
655         // Handle cases where alignment of an object is > its size.
656         if (ObjAlign > ObjSize) {
657           if (ObjSize <= 1)
658             OpcodeChecker = 1;
659           else if (ObjSize <= 2)
660             OpcodeChecker = 2;
661           else if (ObjSize <= 4)
662             OpcodeChecker = 4;
663           else if (ObjSize > 4)
664             OpcodeChecker = 8;
665         }
666 
667         switch (OpcodeChecker) {
668           case 1:
669             LDOpc = Hexagon::L2_loadrb_io;
670             STOpc = Hexagon::S2_storerb_io;
671             break;
672           case 2:
673             LDOpc = Hexagon::L2_loadrh_io;
674             STOpc = Hexagon::S2_storerh_io;
675             break;
676           case 4:
677             LDOpc = Hexagon::L2_loadri_io;
678             STOpc = Hexagon::S2_storeri_io;
679             break;
680           case 8:
681           default:
682             LDOpc = Hexagon::L2_loadrd_io;
683             STOpc = Hexagon::S2_storerd_io;
684             break;
685         }
686 
687         unsigned RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3
688                                                           : Hexagon::R6;
689         int LoadStoreCount = ObjSize / OpcodeChecker;
690 
691         if (ObjSize % OpcodeChecker)
692           ++LoadStoreCount;
693 
694         // Get the start location of the load. NumBytes is basically the
695         // offset from the stack pointer of previous function, which would be
696         // the caller in this case, as this function has variable argument
697         // list.
698         if (NumBytes != 0)
699           NumBytes = alignTo(NumBytes, ObjAlign);
700 
701         int Count = 0;
702         while (Count < LoadStoreCount) {
703           // Load the value of the named argument on stack.
704           BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed)
705               .addReg(SP)
706               .addImm(RegisterSavedAreaSizePlusPadding +
707                       ObjAlign.value() * Count + NumBytes)
708               .setMIFlag(MachineInstr::FrameSetup);
709 
710           // Store it below the register saved area plus padding.
711           BuildMI(MBB, InsertPt, dl, HII.get(STOpc))
712               .addReg(SP)
713               .addImm(ObjAlign.value() * Count + NumBytes)
714               .addReg(RegUsed)
715               .setMIFlag(MachineInstr::FrameSetup);
716 
717           Count++;
718         }
719         NumBytes += MFI.getObjectSize(i);
720       }
721 
722       // Make NumBytes 8 byte aligned
723       NumBytes = alignTo(NumBytes, 8);
724 
725       // If the number of registers having variable arguments is odd,
726       // leave 4 bytes of padding to get to the location where first
727       // variable argument which was passed through register was copied.
728       NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4;
729 
730       for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) {
731         BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io))
732           .addReg(SP)
733           .addImm(NumBytes + 4 * i)
734           .addReg(Hexagon::R0 + j)
735           .setMIFlag(MachineInstr::FrameSetup);
736       }
737     }
738   }
739 
740   if (hasFP(MF)) {
741     insertAllocframe(MBB, InsertPt, NumBytes);
742     if (AlignStack) {
743       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
744           .addReg(SP)
745           .addImm(-int64_t(MaxAlign.value()));
746     }
747     // If the stack-checking is enabled, and we spilled the callee-saved
748     // registers inline (i.e. did not use a spill function), then call
749     // the stack checker directly.
750     if (EnableStackOVFSanitizer && !PrologueStubs)
751       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
752              .addExternalSymbol("__runtime_stack_check");
753   } else if (NumBytes > 0) {
754     assert(alignTo(NumBytes, 8) == NumBytes);
755     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
756       .addReg(SP)
757       .addImm(-int(NumBytes));
758   }
759 }
760 
761 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
762   MachineFunction &MF = *MBB.getParent();
763   auto &HST = MF.getSubtarget<HexagonSubtarget>();
764   auto &HII = *HST.getInstrInfo();
765   auto &HRI = *HST.getRegisterInfo();
766   unsigned SP = HRI.getStackRegister();
767 
768   MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
769   DebugLoc dl = MBB.findDebugLoc(InsertPt);
770 
771   if (!hasFP(MF)) {
772     MachineFrameInfo &MFI = MF.getFrameInfo();
773     unsigned NumBytes = MFI.getStackSize();
774     if (MF.getFunction().isVarArg() &&
775         MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
776       // On Hexagon Linux, deallocate the stack for the register saved area.
777       int NumVarArgRegs = 6 - FirstVarArgSavedReg;
778       int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
779         (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
780       NumBytes += RegisterSavedAreaSizePlusPadding;
781     }
782     if (NumBytes) {
783       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
784         .addReg(SP)
785         .addImm(NumBytes);
786     }
787     return;
788   }
789 
790   MachineInstr *RetI = getReturn(MBB);
791   unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
792 
793   // Handle EH_RETURN.
794   if (RetOpc == Hexagon::EH_RETURN_JMPR) {
795     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
796         .addDef(Hexagon::D15)
797         .addReg(Hexagon::R30);
798     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP)
799         .addReg(SP)
800         .addReg(Hexagon::R28);
801     return;
802   }
803 
804   // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
805   // frame instruction if we encounter it.
806   if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
807       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
808       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
809       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
810     MachineBasicBlock::iterator It = RetI;
811     ++It;
812     // Delete all instructions after the RESTORE (except labels).
813     while (It != MBB.end()) {
814       if (!It->isLabel())
815         It = MBB.erase(It);
816       else
817         ++It;
818     }
819     return;
820   }
821 
822   // It is possible that the restoring code is a call to a library function.
823   // All of the restore* functions include "deallocframe", so we need to make
824   // sure that we don't add an extra one.
825   bool NeedsDeallocframe = true;
826   if (!MBB.empty() && InsertPt != MBB.begin()) {
827     MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
828     unsigned COpc = PrevIt->getOpcode();
829     if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
830         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
831         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
832         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
833         COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
834       NeedsDeallocframe = false;
835   }
836 
837   if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() ||
838       !MF.getFunction().isVarArg()) {
839     if (!NeedsDeallocframe)
840       return;
841     // If the returning instruction is PS_jmpret, replace it with
842     // dealloc_return, otherwise just add deallocframe. The function
843     // could be returning via a tail call.
844     if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
845       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
846       .addDef(Hexagon::D15)
847       .addReg(Hexagon::R30);
848       return;
849     }
850     unsigned NewOpc = Hexagon::L4_return;
851     MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc))
852       .addDef(Hexagon::D15)
853       .addReg(Hexagon::R30);
854     // Transfer the function live-out registers.
855     NewI->copyImplicitOps(MF, *RetI);
856     MBB.erase(RetI);
857   } else {
858     // L2_deallocframe instruction after it.
859     // Calculate the size of register saved area.
860     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
861     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
862       (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
863 
864     MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
865     MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end()
866                                                           : std::prev(Term);
867     if (I == MBB.end() ||
868        (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT &&
869         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC &&
870         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 &&
871         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC))
872       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
873         .addDef(Hexagon::D15)
874         .addReg(Hexagon::R30);
875     if (RegisterSavedAreaSizePlusPadding != 0)
876       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
877         .addReg(SP)
878         .addImm(RegisterSavedAreaSizePlusPadding);
879   }
880 }
881 
882 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
883       MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
884   MachineFunction &MF = *MBB.getParent();
885   auto &HST = MF.getSubtarget<HexagonSubtarget>();
886   auto &HII = *HST.getInstrInfo();
887   auto &HRI = *HST.getRegisterInfo();
888 
889   // Check for overflow.
890   // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
891   const unsigned int ALLOCFRAME_MAX = 16384;
892 
893   // Create a dummy memory operand to avoid allocframe from being treated as
894   // a volatile memory reference.
895   auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0),
896                                       MachineMemOperand::MOStore, 4, Align(4));
897 
898   DebugLoc dl = MBB.findDebugLoc(InsertPt);
899   unsigned SP = HRI.getStackRegister();
900 
901   if (NumBytes >= ALLOCFRAME_MAX) {
902     // Emit allocframe(#0).
903     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
904       .addDef(SP)
905       .addReg(SP)
906       .addImm(0)
907       .addMemOperand(MMO);
908 
909     // Subtract the size from the stack pointer.
910     unsigned SP = HRI.getStackRegister();
911     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
912       .addReg(SP)
913       .addImm(-int(NumBytes));
914   } else {
915     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
916       .addDef(SP)
917       .addReg(SP)
918       .addImm(NumBytes)
919       .addMemOperand(MMO);
920   }
921 }
922 
923 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
924       MachineBasicBlock &SaveB) const {
925   SetVector<unsigned> Worklist;
926 
927   MachineBasicBlock &EntryB = MF.front();
928   Worklist.insert(EntryB.getNumber());
929 
930   unsigned SaveN = SaveB.getNumber();
931   auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
932 
933   for (unsigned i = 0; i < Worklist.size(); ++i) {
934     unsigned BN = Worklist[i];
935     MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
936     for (auto &R : CSI)
937       if (!MBB.isLiveIn(R.getReg()))
938         MBB.addLiveIn(R.getReg());
939     if (BN != SaveN)
940       for (auto &SB : MBB.successors())
941         Worklist.insert(SB->getNumber());
942   }
943 }
944 
945 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
946       MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
947       BitVector &Path) const {
948   assert(MBB.getNumber() >= 0);
949   unsigned BN = MBB.getNumber();
950   if (Path[BN] || DoneF[BN])
951     return false;
952   if (DoneT[BN])
953     return true;
954 
955   auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
956 
957   Path[BN] = true;
958   bool ReachedExit = false;
959   for (auto &SB : MBB.successors())
960     ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
961 
962   if (!MBB.empty() && MBB.back().isReturn()) {
963     // Add implicit uses of all callee-saved registers to the reached
964     // return instructions. This is to prevent the anti-dependency breaker
965     // from renaming these registers.
966     MachineInstr &RetI = MBB.back();
967     if (!isRestoreCall(RetI.getOpcode()))
968       for (auto &R : CSI)
969         RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
970     ReachedExit = true;
971   }
972 
973   // We don't want to add unnecessary live-ins to the restore block: since
974   // the callee-saved registers are being defined in it, the entry of the
975   // restore block cannot be on the path from the definitions to any exit.
976   if (ReachedExit && &MBB != &RestoreB) {
977     for (auto &R : CSI)
978       if (!MBB.isLiveIn(R.getReg()))
979         MBB.addLiveIn(R.getReg());
980     DoneT[BN] = true;
981   }
982   if (!ReachedExit)
983     DoneF[BN] = true;
984 
985   Path[BN] = false;
986   return ReachedExit;
987 }
988 
989 static Optional<MachineBasicBlock::iterator>
990 findCFILocation(MachineBasicBlock &B) {
991     // The CFI instructions need to be inserted right after allocframe.
992     // An exception to this is a situation where allocframe is bundled
993     // with a call: then the CFI instructions need to be inserted before
994     // the packet with the allocframe+call (in case the call throws an
995     // exception).
996     auto End = B.instr_end();
997 
998     for (MachineInstr &I : B) {
999       MachineBasicBlock::iterator It = I.getIterator();
1000       if (!I.isBundle()) {
1001         if (I.getOpcode() == Hexagon::S2_allocframe)
1002           return std::next(It);
1003         continue;
1004       }
1005       // I is a bundle.
1006       bool HasCall = false, HasAllocFrame = false;
1007       auto T = It.getInstrIterator();
1008       while (++T != End && T->isBundled()) {
1009         if (T->getOpcode() == Hexagon::S2_allocframe)
1010           HasAllocFrame = true;
1011         else if (T->isCall())
1012           HasCall = true;
1013       }
1014       if (HasAllocFrame)
1015         return HasCall ? It : std::next(It);
1016     }
1017     return None;
1018 }
1019 
1020 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
1021   for (auto &B : MF) {
1022     auto At = findCFILocation(B);
1023     if (At.hasValue())
1024       insertCFIInstructionsAt(B, At.getValue());
1025   }
1026 }
1027 
1028 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
1029       MachineBasicBlock::iterator At) const {
1030   MachineFunction &MF = *MBB.getParent();
1031   MachineFrameInfo &MFI = MF.getFrameInfo();
1032   MachineModuleInfo &MMI = MF.getMMI();
1033   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1034   auto &HII = *HST.getInstrInfo();
1035   auto &HRI = *HST.getRegisterInfo();
1036 
1037   // If CFI instructions have debug information attached, something goes
1038   // wrong with the final assembly generation: the prolog_end is placed
1039   // in a wrong location.
1040   DebugLoc DL;
1041   const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
1042 
1043   MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1044   bool HasFP = hasFP(MF);
1045 
1046   if (HasFP) {
1047     unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
1048     unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
1049 
1050     // Define CFA via an offset from the value of FP.
1051     //
1052     //  -8   -4    0 (SP)
1053     // --+----+----+---------------------
1054     //   | FP | LR |          increasing addresses -->
1055     // --+----+----+---------------------
1056     //   |         +-- Old SP (before allocframe)
1057     //   +-- New FP (after allocframe)
1058     //
1059     // MCCFIInstruction::cfiDefCfa adds the offset from the register.
1060     // MCCFIInstruction::createOffset takes the offset without sign change.
1061     auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8);
1062     BuildMI(MBB, At, DL, CFID)
1063         .addCFIIndex(MF.addFrameInst(DefCfa));
1064     // R31 (return addr) = CFA - 4
1065     auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
1066     BuildMI(MBB, At, DL, CFID)
1067         .addCFIIndex(MF.addFrameInst(OffR31));
1068     // R30 (frame ptr) = CFA - 8
1069     auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
1070     BuildMI(MBB, At, DL, CFID)
1071         .addCFIIndex(MF.addFrameInst(OffR30));
1072   }
1073 
1074   static unsigned int RegsToMove[] = {
1075     Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
1076     Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
1077     Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
1078     Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
1079     Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,
1080     Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
1081     Hexagon::NoRegister
1082   };
1083 
1084   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1085 
1086   for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
1087     unsigned Reg = RegsToMove[i];
1088     auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
1089       return C.getReg() == Reg;
1090     };
1091     auto F = find_if(CSI, IfR);
1092     if (F == CSI.end())
1093       continue;
1094 
1095     int64_t Offset;
1096     if (HasFP) {
1097       // If the function has a frame pointer (i.e. has an allocframe),
1098       // then the CFA has been defined in terms of FP. Any offsets in
1099       // the following CFI instructions have to be defined relative
1100       // to FP, which points to the bottom of the stack frame.
1101       // The function getFrameIndexReference can still choose to use SP
1102       // for the offset calculation, so we cannot simply call it here.
1103       // Instead, get the offset (relative to the FP) directly.
1104       Offset = MFI.getObjectOffset(F->getFrameIdx());
1105     } else {
1106       Register FrameReg;
1107       Offset =
1108           getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed();
1109     }
1110     // Subtract 8 to make room for R30 and R31, which are added above.
1111     Offset -= 8;
1112 
1113     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
1114       unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
1115       auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
1116                                                    Offset);
1117       BuildMI(MBB, At, DL, CFID)
1118           .addCFIIndex(MF.addFrameInst(OffReg));
1119     } else {
1120       // Split the double regs into subregs, and generate appropriate
1121       // cfi_offsets.
1122       // The only reason, we are split double regs is, llvm-mc does not
1123       // understand paired registers for cfi_offset.
1124       // Eg .cfi_offset r1:0, -64
1125 
1126       Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
1127       Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
1128       unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
1129       unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
1130       auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
1131                                                   Offset+4);
1132       BuildMI(MBB, At, DL, CFID)
1133           .addCFIIndex(MF.addFrameInst(OffHi));
1134       auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
1135                                                   Offset);
1136       BuildMI(MBB, At, DL, CFID)
1137           .addCFIIndex(MF.addFrameInst(OffLo));
1138     }
1139   }
1140 }
1141 
1142 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
1143   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1144     return false;
1145 
1146   auto &MFI = MF.getFrameInfo();
1147   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1148   bool HasExtraAlign = HRI.hasStackRealignment(MF);
1149   bool HasAlloca = MFI.hasVarSizedObjects();
1150 
1151   // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
1152   // that this shouldn't be required, but doing so now because gcc does and
1153   // gdb can't break at the start of the function without it.  Will remove if
1154   // this turns out to be a gdb bug.
1155   //
1156   if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
1157     return true;
1158 
1159   // By default we want to use SP (since it's always there). FP requires
1160   // some setup (i.e. ALLOCFRAME).
1161   // Both, alloca and stack alignment modify the stack pointer by an
1162   // undetermined value, so we need to save it at the entry to the function
1163   // (i.e. use allocframe).
1164   if (HasAlloca || HasExtraAlign)
1165     return true;
1166 
1167   if (MFI.getStackSize() > 0) {
1168     // If FP-elimination is disabled, we have to use FP at this point.
1169     const TargetMachine &TM = MF.getTarget();
1170     if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
1171       return true;
1172     if (EnableStackOVFSanitizer)
1173       return true;
1174   }
1175 
1176   const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1177   if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
1178     return true;
1179 
1180   return false;
1181 }
1182 
1183 enum SpillKind {
1184   SK_ToMem,
1185   SK_FromMem,
1186   SK_FromMemTailcall
1187 };
1188 
1189 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
1190       bool Stkchk = false) {
1191   const char * V4SpillToMemoryFunctions[] = {
1192     "__save_r16_through_r17",
1193     "__save_r16_through_r19",
1194     "__save_r16_through_r21",
1195     "__save_r16_through_r23",
1196     "__save_r16_through_r25",
1197     "__save_r16_through_r27" };
1198 
1199   const char * V4SpillToMemoryStkchkFunctions[] = {
1200     "__save_r16_through_r17_stkchk",
1201     "__save_r16_through_r19_stkchk",
1202     "__save_r16_through_r21_stkchk",
1203     "__save_r16_through_r23_stkchk",
1204     "__save_r16_through_r25_stkchk",
1205     "__save_r16_through_r27_stkchk" };
1206 
1207   const char * V4SpillFromMemoryFunctions[] = {
1208     "__restore_r16_through_r17_and_deallocframe",
1209     "__restore_r16_through_r19_and_deallocframe",
1210     "__restore_r16_through_r21_and_deallocframe",
1211     "__restore_r16_through_r23_and_deallocframe",
1212     "__restore_r16_through_r25_and_deallocframe",
1213     "__restore_r16_through_r27_and_deallocframe" };
1214 
1215   const char * V4SpillFromMemoryTailcallFunctions[] = {
1216     "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1217     "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1218     "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1219     "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1220     "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1221     "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1222   };
1223 
1224   const char **SpillFunc = nullptr;
1225 
1226   switch(SpillType) {
1227   case SK_ToMem:
1228     SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
1229                        : V4SpillToMemoryFunctions;
1230     break;
1231   case SK_FromMem:
1232     SpillFunc = V4SpillFromMemoryFunctions;
1233     break;
1234   case SK_FromMemTailcall:
1235     SpillFunc = V4SpillFromMemoryTailcallFunctions;
1236     break;
1237   }
1238   assert(SpillFunc && "Unknown spill kind");
1239 
1240   // Spill all callee-saved registers up to the highest register used.
1241   switch (MaxReg) {
1242   case Hexagon::R17:
1243     return SpillFunc[0];
1244   case Hexagon::R19:
1245     return SpillFunc[1];
1246   case Hexagon::R21:
1247     return SpillFunc[2];
1248   case Hexagon::R23:
1249     return SpillFunc[3];
1250   case Hexagon::R25:
1251     return SpillFunc[4];
1252   case Hexagon::R27:
1253     return SpillFunc[5];
1254   default:
1255     llvm_unreachable("Unhandled maximum callee save register");
1256   }
1257   return nullptr;
1258 }
1259 
1260 StackOffset
1261 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1262                                              Register &FrameReg) const {
1263   auto &MFI = MF.getFrameInfo();
1264   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1265 
1266   int Offset = MFI.getObjectOffset(FI);
1267   bool HasAlloca = MFI.hasVarSizedObjects();
1268   bool HasExtraAlign = HRI.hasStackRealignment(MF);
1269   bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
1270 
1271   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1272   unsigned FrameSize = MFI.getStackSize();
1273   Register SP = HRI.getStackRegister();
1274   Register FP = HRI.getFrameRegister();
1275   Register AP = HMFI.getStackAlignBasePhysReg();
1276   // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1277   // is true. HasExtraAlign may be set because of vector spills, without
1278   // aligned locals or aligned outgoing function arguments. Since vector
1279   // spills will ultimately be "unaligned", it is safe to use FP as the
1280   // base register.
1281   // In fact, in such a scenario the stack is actually not required to be
1282   // aligned, although it may end up being aligned anyway, since this
1283   // particular case is not easily detectable. The alignment will be
1284   // unnecessary, but not incorrect.
1285   // Unfortunately there is no quick way to verify that the above is
1286   // indeed the case (and that it's not a result of an error), so just
1287   // assume that missing AP will be replaced by FP.
1288   // (A better fix would be to rematerialize AP from FP and always align
1289   // vector spills.)
1290   if (AP == 0)
1291     AP = FP;
1292 
1293   bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0).
1294   // Use FP at -O0, except when there are objects with extra alignment.
1295   // That additional alignment requirement may cause a pad to be inserted,
1296   // which will make it impossible to use FP to access objects located
1297   // past the pad.
1298   if (NoOpt && !HasExtraAlign)
1299     UseFP = true;
1300   if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
1301     // Fixed and preallocated objects will be located before any padding
1302     // so FP must be used to access them.
1303     UseFP |= (HasAlloca || HasExtraAlign);
1304   } else {
1305     if (HasAlloca) {
1306       if (HasExtraAlign)
1307         UseAP = true;
1308       else
1309         UseFP = true;
1310     }
1311   }
1312 
1313   // If FP was picked, then there had better be FP.
1314   bool HasFP = hasFP(MF);
1315   assert((HasFP || !UseFP) && "This function must have frame pointer");
1316 
1317   // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1318   // FP/LR. If the base register is used to access an object across these
1319   // 8 bytes, then the offset will need to be adjusted by 8.
1320   //
1321   // After allocframe:
1322   //                    HexagonISelLowering adds 8 to ---+
1323   //                    the offsets of all stack-based   |
1324   //                    arguments (*)                    |
1325   //                                                     |
1326   //   getObjectOffset < 0   0     8  getObjectOffset >= 8
1327   // ------------------------+-----+------------------------> increasing
1328   //     <local objects>     |FP/LR|    <input arguments>     addresses
1329   // -----------------+------+-----+------------------------>
1330   //                  |      |
1331   //    SP/AP point --+      +-- FP points here (**)
1332   //    somewhere on
1333   //    this side of FP/LR
1334   //
1335   // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1336   // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1337 
1338   // The lowering assumes that FP/LR is present, and so the offsets of
1339   // the formal arguments start at 8. If FP/LR is not there we need to
1340   // reduce the offset by 8.
1341   if (Offset > 0 && !HasFP)
1342     Offset -= 8;
1343 
1344   if (UseFP)
1345     FrameReg = FP;
1346   else if (UseAP)
1347     FrameReg = AP;
1348   else
1349     FrameReg = SP;
1350 
1351   // Calculate the actual offset in the instruction. If there is no FP
1352   // (in other words, no allocframe), then SP will not be adjusted (i.e.
1353   // there will be no SP -= FrameSize), so the frame size should not be
1354   // added to the calculated offset.
1355   int RealOffset = Offset;
1356   if (!UseFP && !UseAP)
1357     RealOffset = FrameSize+Offset;
1358   return StackOffset::getFixed(RealOffset);
1359 }
1360 
1361 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1362       const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1363       bool &PrologueStubs) const {
1364   if (CSI.empty())
1365     return true;
1366 
1367   MachineBasicBlock::iterator MI = MBB.begin();
1368   PrologueStubs = false;
1369   MachineFunction &MF = *MBB.getParent();
1370   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1371   auto &HII = *HST.getInstrInfo();
1372 
1373   if (useSpillFunction(MF, CSI)) {
1374     PrologueStubs = true;
1375     unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
1376     bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1377     const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
1378                                                StkOvrFlowEnabled);
1379     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1380     bool IsPIC = HTM.isPositionIndependent();
1381     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1382 
1383     // Call spill function.
1384     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1385     unsigned SpillOpc;
1386     if (StkOvrFlowEnabled) {
1387       if (LongCalls)
1388         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1389                          : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
1390       else
1391         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1392                          : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1393     } else {
1394       if (LongCalls)
1395         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1396                          : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
1397       else
1398         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1399                          : Hexagon::SAVE_REGISTERS_CALL_V4;
1400     }
1401 
1402     MachineInstr *SaveRegsCall =
1403         BuildMI(MBB, MI, DL, HII.get(SpillOpc))
1404           .addExternalSymbol(SpillFun);
1405 
1406     // Add callee-saved registers as use.
1407     addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
1408     // Add live in registers.
1409     for (unsigned I = 0; I < CSI.size(); ++I)
1410       MBB.addLiveIn(CSI[I].getReg());
1411     return true;
1412   }
1413 
1414   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1415     unsigned Reg = CSI[i].getReg();
1416     // Add live in registers. We treat eh_return callee saved register r0 - r3
1417     // specially. They are not really callee saved registers as they are not
1418     // supposed to be killed.
1419     bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1420     int FI = CSI[i].getFrameIdx();
1421     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1422     HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
1423     if (IsKill)
1424       MBB.addLiveIn(Reg);
1425   }
1426   return true;
1427 }
1428 
1429 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1430       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1431   if (CSI.empty())
1432     return false;
1433 
1434   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1435   MachineFunction &MF = *MBB.getParent();
1436   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1437   auto &HII = *HST.getInstrInfo();
1438 
1439   if (useRestoreFunction(MF, CSI)) {
1440     bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1441     unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
1442     SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1443     const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
1444     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1445     bool IsPIC = HTM.isPositionIndependent();
1446     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1447 
1448     // Call spill function.
1449     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1450                                   : MBB.findDebugLoc(MBB.end());
1451     MachineInstr *DeallocCall = nullptr;
1452 
1453     if (HasTC) {
1454       unsigned RetOpc;
1455       if (LongCalls)
1456         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1457                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
1458       else
1459         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1460                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1461       DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
1462           .addExternalSymbol(RestoreFn);
1463     } else {
1464       // The block has a return.
1465       MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1466       assert(It->isReturn() && std::next(It) == MBB.end());
1467       unsigned RetOpc;
1468       if (LongCalls)
1469         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1470                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
1471       else
1472         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1473                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1474       DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
1475           .addExternalSymbol(RestoreFn);
1476       // Transfer the function live-out registers.
1477       DeallocCall->copyImplicitOps(MF, *It);
1478     }
1479     addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
1480     return true;
1481   }
1482 
1483   for (unsigned i = 0; i < CSI.size(); ++i) {
1484     unsigned Reg = CSI[i].getReg();
1485     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1486     int FI = CSI[i].getFrameIdx();
1487     HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
1488   }
1489 
1490   return true;
1491 }
1492 
1493 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1494     MachineFunction &MF, MachineBasicBlock &MBB,
1495     MachineBasicBlock::iterator I) const {
1496   MachineInstr &MI = *I;
1497   unsigned Opc = MI.getOpcode();
1498   (void)Opc; // Silence compiler warning.
1499   assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1500          "Cannot handle this call frame pseudo instruction");
1501   return MBB.erase(I);
1502 }
1503 
1504 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1505     MachineFunction &MF, RegScavenger *RS) const {
1506   // If this function has uses aligned stack and also has variable sized stack
1507   // objects, then we need to map all spill slots to fixed positions, so that
1508   // they can be accessed through FP. Otherwise they would have to be accessed
1509   // via AP, which may not be available at the particular place in the program.
1510   MachineFrameInfo &MFI = MF.getFrameInfo();
1511   bool HasAlloca = MFI.hasVarSizedObjects();
1512   bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign());
1513 
1514   if (!HasAlloca || !NeedsAlign)
1515     return;
1516 
1517   SmallSet<int, 4> DealignSlots;
1518   unsigned LFS = MFI.getLocalFrameSize();
1519   for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
1520     if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i))
1521       continue;
1522     unsigned S = MFI.getObjectSize(i);
1523     // Reduce the alignment to at most 8. This will require unaligned vector
1524     // stores if they happen here.
1525     Align A = std::max(MFI.getObjectAlign(i), Align(8));
1526     MFI.setObjectAlignment(i, Align(8));
1527     LFS = alignTo(LFS+S, A);
1528     MFI.mapLocalFrameObject(i, -static_cast<int64_t>(LFS));
1529     DealignSlots.insert(i);
1530   }
1531 
1532   MFI.setLocalFrameSize(LFS);
1533   Align A = MFI.getLocalFrameMaxAlign();
1534   assert(A <= 8 && "Unexpected local frame alignment");
1535   if (A == 1)
1536     MFI.setLocalFrameMaxAlign(Align(8));
1537   MFI.setUseLocalStackAllocationBlock(true);
1538 
1539   // Go over all MachineMemOperands in the code, and change the ones that
1540   // refer to the dealigned stack slots to reflect the new alignment.
1541   if (!DealignSlots.empty()) {
1542     for (MachineBasicBlock &BB : MF) {
1543       for (MachineInstr &MI : BB) {
1544         bool KeepOld = true;
1545         ArrayRef<MachineMemOperand*> memops = MI.memoperands();
1546         SmallVector<MachineMemOperand*,1> new_memops;
1547         for (MachineMemOperand *MMO : memops) {
1548           auto *PV = MMO->getPseudoValue();
1549           if (auto *FS = dyn_cast_or_null<FixedStackPseudoSourceValue>(PV)) {
1550             int FI = FS->getFrameIndex();
1551             if (DealignSlots.count(FI)) {
1552               auto *NewMMO = MF.getMachineMemOperand(
1553                   MMO->getPointerInfo(), MMO->getFlags(), MMO->getSize(),
1554                   MFI.getObjectAlign(FI), MMO->getAAInfo(), MMO->getRanges(),
1555                   MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
1556                   MMO->getFailureOrdering());
1557               new_memops.push_back(NewMMO);
1558               KeepOld = false;
1559               continue;
1560             }
1561           }
1562           new_memops.push_back(MMO);
1563         }
1564         if (!KeepOld)
1565           MI.setMemRefs(MF, new_memops);
1566       }
1567     }
1568   }
1569 
1570   // Set the physical aligned-stack base address register.
1571   unsigned AP = 0;
1572   if (const MachineInstr *AI = getAlignaInstr(MF))
1573     AP = AI->getOperand(0).getReg();
1574   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1575   HMFI.setStackAlignBasePhysReg(AP);
1576 }
1577 
1578 /// Returns true if there are no caller-saved registers available in class RC.
1579 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1580       const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1581   MachineRegisterInfo &MRI = MF.getRegInfo();
1582 
1583   auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
1584     for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1585       if (MRI.isPhysRegUsed(*AI))
1586         return true;
1587     return false;
1588   };
1589 
1590   // Check for an unused caller-saved register. Callee-saved registers
1591   // have become pristine by now.
1592   for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
1593     if (!IsUsed(*P))
1594       return false;
1595 
1596   // All caller-saved registers are used.
1597   return true;
1598 }
1599 
1600 #ifndef NDEBUG
1601 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1602   dbgs() << '{';
1603   for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1604     unsigned R = x;
1605     dbgs() << ' ' << printReg(R, &TRI);
1606   }
1607   dbgs() << " }";
1608 }
1609 #endif
1610 
1611 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1612       const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1613   LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
1614   MachineFrameInfo &MFI = MF.getFrameInfo();
1615   BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1616 
1617   // Generate a set of unique, callee-saved registers (SRegs), where each
1618   // register in the set is maximal in terms of sub-/super-register relation,
1619   // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1620 
1621   // (1) For each callee-saved register, add that register and all of its
1622   // sub-registers to SRegs.
1623   LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1624   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1625     unsigned R = CSI[i].getReg();
1626     LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
1627     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1628       SRegs[*SR] = true;
1629   }
1630   LLVM_DEBUG(dbgs() << " }\n");
1631   LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
1632              dbgs() << "\n");
1633 
1634   // (2) For each reserved register, remove that register and all of its
1635   // sub- and super-registers from SRegs.
1636   BitVector Reserved = TRI->getReservedRegs(MF);
1637   for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1638     unsigned R = x;
1639     for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1640       SRegs[*SR] = false;
1641   }
1642   LLVM_DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI);
1643              dbgs() << "\n");
1644   LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
1645              dbgs() << "\n");
1646 
1647   // (3) Collect all registers that have at least one sub-register in SRegs,
1648   // and also have no sub-registers that are reserved. These will be the can-
1649   // didates for saving as a whole instead of their individual sub-registers.
1650   // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1651   BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1652   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1653     unsigned R = x;
1654     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
1655       TmpSup[*SR] = true;
1656   }
1657   for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1658     unsigned R = x;
1659     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
1660       if (!Reserved[*SR])
1661         continue;
1662       TmpSup[R] = false;
1663       break;
1664     }
1665   }
1666   LLVM_DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI);
1667              dbgs() << "\n");
1668 
1669   // (4) Include all super-registers found in (3) into SRegs.
1670   SRegs |= TmpSup;
1671   LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
1672              dbgs() << "\n");
1673 
1674   // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1675   // remove R from SRegs.
1676   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1677     unsigned R = x;
1678     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
1679       if (!SRegs[*SR])
1680         continue;
1681       SRegs[R] = false;
1682       break;
1683     }
1684   }
1685   LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
1686              dbgs() << "\n");
1687 
1688   // Now, for each register that has a fixed stack slot, create the stack
1689   // object for it.
1690   CSI.clear();
1691 
1692   using SpillSlot = TargetFrameLowering::SpillSlot;
1693 
1694   unsigned NumFixed;
1695   int MinOffset = 0;  // CS offsets are negative.
1696   const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1697   for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1698     if (!SRegs[S->Reg])
1699       continue;
1700     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1701     int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
1702     MinOffset = std::min(MinOffset, S->Offset);
1703     CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1704     SRegs[S->Reg] = false;
1705   }
1706 
1707   // There can be some registers that don't have fixed slots. For example,
1708   // we need to store R0-R3 in functions with exception handling. For each
1709   // such register, create a non-fixed stack object.
1710   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1711     unsigned R = x;
1712     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1713     unsigned Size = TRI->getSpillSize(*RC);
1714     int Off = MinOffset - Size;
1715     Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign());
1716     Off &= -Alignment.value();
1717     int FI = MFI.CreateFixedSpillStackObject(Size, Off);
1718     MinOffset = std::min(MinOffset, Off);
1719     CSI.push_back(CalleeSavedInfo(R, FI));
1720     SRegs[R] = false;
1721   }
1722 
1723   LLVM_DEBUG({
1724     dbgs() << "CS information: {";
1725     for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1726       int FI = CSI[i].getFrameIdx();
1727       int Off = MFI.getObjectOffset(FI);
1728       dbgs() << ' ' << printReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
1729       if (Off >= 0)
1730         dbgs() << '+';
1731       dbgs() << Off;
1732     }
1733     dbgs() << " }\n";
1734   });
1735 
1736 #ifndef NDEBUG
1737   // Verify that all registers were handled.
1738   bool MissedReg = false;
1739   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1740     unsigned R = x;
1741     dbgs() << printReg(R, TRI) << ' ';
1742     MissedReg = true;
1743   }
1744   if (MissedReg)
1745     llvm_unreachable("...there are unhandled callee-saved registers!");
1746 #endif
1747 
1748   return true;
1749 }
1750 
1751 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1752       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1753       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1754   MachineInstr *MI = &*It;
1755   DebugLoc DL = MI->getDebugLoc();
1756   Register DstR = MI->getOperand(0).getReg();
1757   Register SrcR = MI->getOperand(1).getReg();
1758   if (!Hexagon::ModRegsRegClass.contains(DstR) ||
1759       !Hexagon::ModRegsRegClass.contains(SrcR))
1760     return false;
1761 
1762   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1763   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
1764   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
1765     .addReg(TmpR, RegState::Kill);
1766 
1767   NewRegs.push_back(TmpR);
1768   B.erase(It);
1769   return true;
1770 }
1771 
1772 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1773       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1774       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1775   MachineInstr *MI = &*It;
1776   if (!MI->getOperand(0).isFI())
1777     return false;
1778 
1779   DebugLoc DL = MI->getDebugLoc();
1780   unsigned Opc = MI->getOpcode();
1781   Register SrcR = MI->getOperand(2).getReg();
1782   bool IsKill = MI->getOperand(2).isKill();
1783   int FI = MI->getOperand(0).getIndex();
1784 
1785   // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register
1786   // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register
1787   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1788   unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1789                                                  : Hexagon::A2_tfrcrr;
1790   BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
1791     .addReg(SrcR, getKillRegState(IsKill));
1792 
1793   // S2_storeri_io FI, 0, TmpR
1794   BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
1795       .addFrameIndex(FI)
1796       .addImm(0)
1797       .addReg(TmpR, RegState::Kill)
1798       .cloneMemRefs(*MI);
1799 
1800   NewRegs.push_back(TmpR);
1801   B.erase(It);
1802   return true;
1803 }
1804 
1805 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1806       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1807       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1808   MachineInstr *MI = &*It;
1809   if (!MI->getOperand(1).isFI())
1810     return false;
1811 
1812   DebugLoc DL = MI->getDebugLoc();
1813   unsigned Opc = MI->getOpcode();
1814   Register DstR = MI->getOperand(0).getReg();
1815   int FI = MI->getOperand(1).getIndex();
1816 
1817   // TmpR = L2_loadri_io FI, 0
1818   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1819   BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
1820       .addFrameIndex(FI)
1821       .addImm(0)
1822       .cloneMemRefs(*MI);
1823 
1824   // DstR = C2_tfrrp TmpR   if DstR is a predicate register
1825   // DstR = A2_tfrrcr TmpR  if DstR is a modifier register
1826   unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1827                                                  : Hexagon::A2_tfrrcr;
1828   BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
1829     .addReg(TmpR, RegState::Kill);
1830 
1831   NewRegs.push_back(TmpR);
1832   B.erase(It);
1833   return true;
1834 }
1835 
1836 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1837       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1838       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1839   MachineInstr *MI = &*It;
1840   if (!MI->getOperand(0).isFI())
1841     return false;
1842 
1843   DebugLoc DL = MI->getDebugLoc();
1844   Register SrcR = MI->getOperand(2).getReg();
1845   bool IsKill = MI->getOperand(2).isKill();
1846   int FI = MI->getOperand(0).getIndex();
1847   auto *RC = &Hexagon::HvxVRRegClass;
1848 
1849   // Insert transfer to general vector register.
1850   //   TmpR0 = A2_tfrsi 0x01010101
1851   //   TmpR1 = V6_vandqrt Qx, TmpR0
1852   //   store FI, 0, TmpR1
1853   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1854   Register TmpR1 = MRI.createVirtualRegister(RC);
1855 
1856   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1857     .addImm(0x01010101);
1858 
1859   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1)
1860     .addReg(SrcR, getKillRegState(IsKill))
1861     .addReg(TmpR0, RegState::Kill);
1862 
1863   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1864   HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
1865   expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
1866 
1867   NewRegs.push_back(TmpR0);
1868   NewRegs.push_back(TmpR1);
1869   B.erase(It);
1870   return true;
1871 }
1872 
1873 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1874       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1875       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1876   MachineInstr *MI = &*It;
1877   if (!MI->getOperand(1).isFI())
1878     return false;
1879 
1880   DebugLoc DL = MI->getDebugLoc();
1881   Register DstR = MI->getOperand(0).getReg();
1882   int FI = MI->getOperand(1).getIndex();
1883   auto *RC = &Hexagon::HvxVRRegClass;
1884 
1885   // TmpR0 = A2_tfrsi 0x01010101
1886   // TmpR1 = load FI, 0
1887   // DstR = V6_vandvrt TmpR1, TmpR0
1888   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1889   Register TmpR1 = MRI.createVirtualRegister(RC);
1890 
1891   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1892     .addImm(0x01010101);
1893   MachineFunction &MF = *B.getParent();
1894   auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1895   HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
1896   expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
1897 
1898   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR)
1899     .addReg(TmpR1, RegState::Kill)
1900     .addReg(TmpR0, RegState::Kill);
1901 
1902   NewRegs.push_back(TmpR0);
1903   NewRegs.push_back(TmpR1);
1904   B.erase(It);
1905   return true;
1906 }
1907 
1908 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1909       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1910       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1911   MachineFunction &MF = *B.getParent();
1912   auto &MFI = MF.getFrameInfo();
1913   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1914   MachineInstr *MI = &*It;
1915   if (!MI->getOperand(0).isFI())
1916     return false;
1917 
1918   // It is possible that the double vector being stored is only partially
1919   // defined. From the point of view of the liveness tracking, it is ok to
1920   // store it as a whole, but if we break it up we may end up storing a
1921   // register that is entirely undefined.
1922   LivePhysRegs LPR(HRI);
1923   LPR.addLiveIns(B);
1924   SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
1925   for (auto R = B.begin(); R != It; ++R) {
1926     Clobbers.clear();
1927     LPR.stepForward(*R, Clobbers);
1928   }
1929 
1930   DebugLoc DL = MI->getDebugLoc();
1931   Register SrcR = MI->getOperand(2).getReg();
1932   Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
1933   Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
1934   bool IsKill = MI->getOperand(2).isKill();
1935   int FI = MI->getOperand(0).getIndex();
1936   bool NeedsAligna = needsAligna(MF);
1937 
1938   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1939   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1940   Align HasAlign = MFI.getObjectAlign(FI);
1941   unsigned StoreOpc;
1942 
1943   auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1944     return !NeedsAligna && (NeedAlign <= HasAlign);
1945   };
1946 
1947   // Store low part.
1948   if (LPR.contains(SrcLo)) {
1949     StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1950                                                : Hexagon::V6_vS32Ub_ai;
1951     BuildMI(B, It, DL, HII.get(StoreOpc))
1952         .addFrameIndex(FI)
1953         .addImm(0)
1954         .addReg(SrcLo, getKillRegState(IsKill))
1955         .cloneMemRefs(*MI);
1956   }
1957 
1958   // Store high part.
1959   if (LPR.contains(SrcHi)) {
1960     StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1961                                                : Hexagon::V6_vS32Ub_ai;
1962     BuildMI(B, It, DL, HII.get(StoreOpc))
1963         .addFrameIndex(FI)
1964         .addImm(Size)
1965         .addReg(SrcHi, getKillRegState(IsKill))
1966         .cloneMemRefs(*MI);
1967   }
1968 
1969   B.erase(It);
1970   return true;
1971 }
1972 
1973 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1974       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1975       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1976   MachineFunction &MF = *B.getParent();
1977   auto &MFI = MF.getFrameInfo();
1978   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1979   MachineInstr *MI = &*It;
1980   if (!MI->getOperand(1).isFI())
1981     return false;
1982 
1983   DebugLoc DL = MI->getDebugLoc();
1984   Register DstR = MI->getOperand(0).getReg();
1985   Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
1986   Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
1987   int FI = MI->getOperand(1).getIndex();
1988   bool NeedsAligna = needsAligna(MF);
1989 
1990   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1991   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1992   Align HasAlign = MFI.getObjectAlign(FI);
1993   unsigned LoadOpc;
1994 
1995   auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1996     return !NeedsAligna && (NeedAlign <= HasAlign);
1997   };
1998 
1999   // Load low part.
2000   LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2001                                             : Hexagon::V6_vL32Ub_ai;
2002   BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
2003       .addFrameIndex(FI)
2004       .addImm(0)
2005       .cloneMemRefs(*MI);
2006 
2007   // Load high part.
2008   LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2009                                             : Hexagon::V6_vL32Ub_ai;
2010   BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
2011       .addFrameIndex(FI)
2012       .addImm(Size)
2013       .cloneMemRefs(*MI);
2014 
2015   B.erase(It);
2016   return true;
2017 }
2018 
2019 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
2020       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2021       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2022   MachineFunction &MF = *B.getParent();
2023   auto &MFI = MF.getFrameInfo();
2024   MachineInstr *MI = &*It;
2025   if (!MI->getOperand(0).isFI())
2026     return false;
2027 
2028   bool NeedsAligna = needsAligna(MF);
2029   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2030   DebugLoc DL = MI->getDebugLoc();
2031   Register SrcR = MI->getOperand(2).getReg();
2032   bool IsKill = MI->getOperand(2).isKill();
2033   int FI = MI->getOperand(0).getIndex();
2034 
2035   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2036   Align HasAlign = MFI.getObjectAlign(FI);
2037   bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2038   unsigned StoreOpc = UseAligned ? Hexagon::V6_vS32b_ai
2039                                  : Hexagon::V6_vS32Ub_ai;
2040   BuildMI(B, It, DL, HII.get(StoreOpc))
2041       .addFrameIndex(FI)
2042       .addImm(0)
2043       .addReg(SrcR, getKillRegState(IsKill))
2044       .cloneMemRefs(*MI);
2045 
2046   B.erase(It);
2047   return true;
2048 }
2049 
2050 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
2051       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2052       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2053   MachineFunction &MF = *B.getParent();
2054   auto &MFI = MF.getFrameInfo();
2055   MachineInstr *MI = &*It;
2056   if (!MI->getOperand(1).isFI())
2057     return false;
2058 
2059   bool NeedsAligna = needsAligna(MF);
2060   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2061   DebugLoc DL = MI->getDebugLoc();
2062   Register DstR = MI->getOperand(0).getReg();
2063   int FI = MI->getOperand(1).getIndex();
2064 
2065   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2066   Align HasAlign = MFI.getObjectAlign(FI);
2067   bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2068   unsigned LoadOpc = UseAligned ? Hexagon::V6_vL32b_ai
2069                                 : Hexagon::V6_vL32Ub_ai;
2070   BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
2071       .addFrameIndex(FI)
2072       .addImm(0)
2073       .cloneMemRefs(*MI);
2074 
2075   B.erase(It);
2076   return true;
2077 }
2078 
2079 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
2080       SmallVectorImpl<unsigned> &NewRegs) const {
2081   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
2082   MachineRegisterInfo &MRI = MF.getRegInfo();
2083   bool Changed = false;
2084 
2085   for (auto &B : MF) {
2086     // Traverse the basic block.
2087     MachineBasicBlock::iterator NextI;
2088     for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
2089       MachineInstr *MI = &*I;
2090       NextI = std::next(I);
2091       unsigned Opc = MI->getOpcode();
2092 
2093       switch (Opc) {
2094         case TargetOpcode::COPY:
2095           Changed |= expandCopy(B, I, MRI, HII, NewRegs);
2096           break;
2097         case Hexagon::STriw_pred:
2098         case Hexagon::STriw_ctr:
2099           Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
2100           break;
2101         case Hexagon::LDriw_pred:
2102         case Hexagon::LDriw_ctr:
2103           Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
2104           break;
2105         case Hexagon::PS_vstorerq_ai:
2106           Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
2107           break;
2108         case Hexagon::PS_vloadrq_ai:
2109           Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
2110           break;
2111         case Hexagon::PS_vloadrw_ai:
2112           Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
2113           break;
2114         case Hexagon::PS_vstorerw_ai:
2115           Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
2116           break;
2117       }
2118     }
2119   }
2120 
2121   return Changed;
2122 }
2123 
2124 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
2125                                                 BitVector &SavedRegs,
2126                                                 RegScavenger *RS) const {
2127   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2128 
2129   SavedRegs.resize(HRI.getNumRegs());
2130 
2131   // If we have a function containing __builtin_eh_return we want to spill and
2132   // restore all callee saved registers. Pretend that they are used.
2133   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2134     for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
2135       SavedRegs.set(*R);
2136 
2137   // Replace predicate register pseudo spill code.
2138   SmallVector<unsigned,8> NewRegs;
2139   expandSpillMacros(MF, NewRegs);
2140   if (OptimizeSpillSlots && !isOptNone(MF))
2141     optimizeSpillSlots(MF, NewRegs);
2142 
2143   // We need to reserve a spill slot if scavenging could potentially require
2144   // spilling a scavenged register.
2145   if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
2146     MachineFrameInfo &MFI = MF.getFrameInfo();
2147     MachineRegisterInfo &MRI = MF.getRegInfo();
2148     SetVector<const TargetRegisterClass*> SpillRCs;
2149     // Reserve an int register in any case, because it could be used to hold
2150     // the stack offset in case it does not fit into a spill instruction.
2151     SpillRCs.insert(&Hexagon::IntRegsRegClass);
2152 
2153     for (unsigned VR : NewRegs)
2154       SpillRCs.insert(MRI.getRegClass(VR));
2155 
2156     for (auto *RC : SpillRCs) {
2157       if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
2158         continue;
2159       unsigned Num = 1;
2160       switch (RC->getID()) {
2161         case Hexagon::IntRegsRegClassID:
2162           Num = NumberScavengerSlots;
2163           break;
2164         case Hexagon::HvxQRRegClassID:
2165           Num = 2; // Vector predicate spills also need a vector register.
2166           break;
2167       }
2168       unsigned S = HRI.getSpillSize(*RC);
2169       Align A = HRI.getSpillAlign(*RC);
2170       for (unsigned i = 0; i < Num; i++) {
2171         int NewFI = MFI.CreateSpillStackObject(S, A);
2172         RS->addScavengingFrameIndex(NewFI);
2173       }
2174     }
2175   }
2176 
2177   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2178 }
2179 
2180 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
2181       HexagonBlockRanges::IndexRange &FIR,
2182       HexagonBlockRanges::InstrIndexMap &IndexMap,
2183       HexagonBlockRanges::RegToRangeMap &DeadMap,
2184       const TargetRegisterClass *RC) const {
2185   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2186   auto &MRI = MF.getRegInfo();
2187 
2188   auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
2189     auto F = DeadMap.find({Reg,0});
2190     if (F == DeadMap.end())
2191       return false;
2192     for (auto &DR : F->second)
2193       if (DR.contains(FIR))
2194         return true;
2195     return false;
2196   };
2197 
2198   for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
2199     bool Dead = true;
2200     for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
2201       if (isDead(R.Reg))
2202         continue;
2203       Dead = false;
2204       break;
2205     }
2206     if (Dead)
2207       return Reg;
2208   }
2209   return 0;
2210 }
2211 
2212 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
2213       SmallVectorImpl<unsigned> &VRegs) const {
2214   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2215   auto &HII = *HST.getInstrInfo();
2216   auto &HRI = *HST.getRegisterInfo();
2217   auto &MRI = MF.getRegInfo();
2218   HexagonBlockRanges HBR(MF);
2219 
2220   using BlockIndexMap =
2221       std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
2222   using BlockRangeMap =
2223       std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
2224   using IndexType = HexagonBlockRanges::IndexType;
2225 
2226   struct SlotInfo {
2227     BlockRangeMap Map;
2228     unsigned Size = 0;
2229     const TargetRegisterClass *RC = nullptr;
2230 
2231     SlotInfo() = default;
2232   };
2233 
2234   BlockIndexMap BlockIndexes;
2235   SmallSet<int,4> BadFIs;
2236   std::map<int,SlotInfo> FIRangeMap;
2237 
2238   // Accumulate register classes: get a common class for a pre-existing
2239   // class HaveRC and a new class NewRC. Return nullptr if a common class
2240   // cannot be found, otherwise return the resulting class. If HaveRC is
2241   // nullptr, assume that it is still unset.
2242   auto getCommonRC =
2243       [](const TargetRegisterClass *HaveRC,
2244          const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
2245     if (HaveRC == nullptr || HaveRC == NewRC)
2246       return NewRC;
2247     // Different classes, both non-null. Pick the more general one.
2248     if (HaveRC->hasSubClassEq(NewRC))
2249       return HaveRC;
2250     if (NewRC->hasSubClassEq(HaveRC))
2251       return NewRC;
2252     return nullptr;
2253   };
2254 
2255   // Scan all blocks in the function. Check all occurrences of frame indexes,
2256   // and collect relevant information.
2257   for (auto &B : MF) {
2258     std::map<int,IndexType> LastStore, LastLoad;
2259     // Emplace appears not to be supported in gcc 4.7.2-4.
2260     //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
2261     auto P = BlockIndexes.insert(
2262                 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
2263     auto &IndexMap = P.first->second;
2264     LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
2265                       << IndexMap << '\n');
2266 
2267     for (auto &In : B) {
2268       int LFI, SFI;
2269       bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
2270       bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
2271       if (Load && Store) {
2272         // If it's both a load and a store, then we won't handle it.
2273         BadFIs.insert(LFI);
2274         BadFIs.insert(SFI);
2275         continue;
2276       }
2277       // Check for register classes of the register used as the source for
2278       // the store, and the register used as the destination for the load.
2279       // Also, only accept base+imm_offset addressing modes. Other addressing
2280       // modes can have side-effects (post-increments, etc.). For stack
2281       // slots they are very unlikely, so there is not much loss due to
2282       // this restriction.
2283       if (Load || Store) {
2284         int TFI = Load ? LFI : SFI;
2285         unsigned AM = HII.getAddrMode(In);
2286         SlotInfo &SI = FIRangeMap[TFI];
2287         bool Bad = (AM != HexagonII::BaseImmOffset);
2288         if (!Bad) {
2289           // If the addressing mode is ok, check the register class.
2290           unsigned OpNum = Load ? 0 : 2;
2291           auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
2292           RC = getCommonRC(SI.RC, RC);
2293           if (RC == nullptr)
2294             Bad = true;
2295           else
2296             SI.RC = RC;
2297         }
2298         if (!Bad) {
2299           // Check sizes.
2300           unsigned S = HII.getMemAccessSize(In);
2301           if (SI.Size != 0 && SI.Size != S)
2302             Bad = true;
2303           else
2304             SI.Size = S;
2305         }
2306         if (!Bad) {
2307           for (auto *Mo : In.memoperands()) {
2308             if (!Mo->isVolatile() && !Mo->isAtomic())
2309               continue;
2310             Bad = true;
2311             break;
2312           }
2313         }
2314         if (Bad)
2315           BadFIs.insert(TFI);
2316       }
2317 
2318       // Locate uses of frame indices.
2319       for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
2320         const MachineOperand &Op = In.getOperand(i);
2321         if (!Op.isFI())
2322           continue;
2323         int FI = Op.getIndex();
2324         // Make sure that the following operand is an immediate and that
2325         // it is 0. This is the offset in the stack object.
2326         if (i+1 >= n || !In.getOperand(i+1).isImm() ||
2327             In.getOperand(i+1).getImm() != 0)
2328           BadFIs.insert(FI);
2329         if (BadFIs.count(FI))
2330           continue;
2331 
2332         IndexType Index = IndexMap.getIndex(&In);
2333         if (Load) {
2334           if (LastStore[FI] == IndexType::None)
2335             LastStore[FI] = IndexType::Entry;
2336           LastLoad[FI] = Index;
2337         } else if (Store) {
2338           HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2339           if (LastStore[FI] != IndexType::None)
2340             RL.add(LastStore[FI], LastLoad[FI], false, false);
2341           else if (LastLoad[FI] != IndexType::None)
2342             RL.add(IndexType::Entry, LastLoad[FI], false, false);
2343           LastLoad[FI] = IndexType::None;
2344           LastStore[FI] = Index;
2345         } else {
2346           BadFIs.insert(FI);
2347         }
2348       }
2349     }
2350 
2351     for (auto &I : LastLoad) {
2352       IndexType LL = I.second;
2353       if (LL == IndexType::None)
2354         continue;
2355       auto &RL = FIRangeMap[I.first].Map[&B];
2356       IndexType &LS = LastStore[I.first];
2357       if (LS != IndexType::None)
2358         RL.add(LS, LL, false, false);
2359       else
2360         RL.add(IndexType::Entry, LL, false, false);
2361       LS = IndexType::None;
2362     }
2363     for (auto &I : LastStore) {
2364       IndexType LS = I.second;
2365       if (LS == IndexType::None)
2366         continue;
2367       auto &RL = FIRangeMap[I.first].Map[&B];
2368       RL.add(LS, IndexType::None, false, false);
2369     }
2370   }
2371 
2372   LLVM_DEBUG({
2373     for (auto &P : FIRangeMap) {
2374       dbgs() << "fi#" << P.first;
2375       if (BadFIs.count(P.first))
2376         dbgs() << " (bad)";
2377       dbgs() << "  RC: ";
2378       if (P.second.RC != nullptr)
2379         dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2380       else
2381         dbgs() << "<null>\n";
2382       for (auto &R : P.second.Map)
2383         dbgs() << "  " << printMBBReference(*R.first) << " { " << R.second
2384                << "}\n";
2385     }
2386   });
2387 
2388   // When a slot is loaded from in a block without being stored to in the
2389   // same block, it is live-on-entry to this block. To avoid CFG analysis,
2390   // consider this slot to be live-on-exit from all blocks.
2391   SmallSet<int,4> LoxFIs;
2392 
2393   std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2394 
2395   for (auto &P : FIRangeMap) {
2396     // P = pair(FI, map: BB->RangeList)
2397     if (BadFIs.count(P.first))
2398       continue;
2399     for (auto &B : MF) {
2400       auto F = P.second.Map.find(&B);
2401       // F = pair(BB, RangeList)
2402       if (F == P.second.Map.end() || F->second.empty())
2403         continue;
2404       HexagonBlockRanges::IndexRange &IR = F->second.front();
2405       if (IR.start() == IndexType::Entry)
2406         LoxFIs.insert(P.first);
2407       BlockFIMap[&B].push_back(P.first);
2408     }
2409   }
2410 
2411   LLVM_DEBUG({
2412     dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2413     for (auto &P : BlockFIMap) {
2414       auto &FIs = P.second;
2415       if (FIs.empty())
2416         continue;
2417       dbgs() << "  " << printMBBReference(*P.first) << ": {";
2418       for (auto I : FIs) {
2419         dbgs() << " fi#" << I;
2420         if (LoxFIs.count(I))
2421           dbgs() << '*';
2422       }
2423       dbgs() << " }\n";
2424     }
2425   });
2426 
2427 #ifndef NDEBUG
2428   bool HasOptLimit = SpillOptMax.getPosition();
2429 #endif
2430 
2431   // eliminate loads, when all loads eliminated, eliminate all stores.
2432   for (auto &B : MF) {
2433     auto F = BlockIndexes.find(&B);
2434     assert(F != BlockIndexes.end());
2435     HexagonBlockRanges::InstrIndexMap &IM = F->second;
2436     HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
2437     HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
2438     LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
2439                       << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2440 
2441     for (auto FI : BlockFIMap[&B]) {
2442       if (BadFIs.count(FI))
2443         continue;
2444       LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2445       HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2446       for (auto &Range : RL) {
2447         LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2448         if (!IndexType::isInstr(Range.start()) ||
2449             !IndexType::isInstr(Range.end()))
2450           continue;
2451         MachineInstr &SI = *IM.getInstr(Range.start());
2452         MachineInstr &EI = *IM.getInstr(Range.end());
2453         assert(SI.mayStore() && "Unexpected start instruction");
2454         assert(EI.mayLoad() && "Unexpected end instruction");
2455         MachineOperand &SrcOp = SI.getOperand(2);
2456 
2457         HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
2458                                                   SrcOp.getSubReg() };
2459         auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
2460         // The this-> is needed to unconfuse MSVC.
2461         unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
2462         LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
2463                           << '\n');
2464         if (FoundR == 0)
2465           continue;
2466 #ifndef NDEBUG
2467         if (HasOptLimit) {
2468           if (SpillOptCount >= SpillOptMax)
2469             return;
2470           SpillOptCount++;
2471         }
2472 #endif
2473 
2474         // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2475         MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
2476         MachineInstr *CopyIn = nullptr;
2477         if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2478           const DebugLoc &DL = SI.getDebugLoc();
2479           CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
2480                        .add(SrcOp);
2481         }
2482 
2483         ++StartIt;
2484         // Check if this is a last store and the FI is live-on-exit.
2485         if (LoxFIs.count(FI) && (&Range == &RL.back())) {
2486           // Update store's source register.
2487           if (unsigned SR = SrcOp.getSubReg())
2488             SrcOp.setReg(HRI.getSubReg(FoundR, SR));
2489           else
2490             SrcOp.setReg(FoundR);
2491           SrcOp.setSubReg(0);
2492           // We are keeping this register live.
2493           SrcOp.setIsKill(false);
2494         } else {
2495           B.erase(&SI);
2496           IM.replaceInstr(&SI, CopyIn);
2497         }
2498 
2499         auto EndIt = std::next(EI.getIterator());
2500         for (auto It = StartIt; It != EndIt; It = NextIt) {
2501           MachineInstr &MI = *It;
2502           NextIt = std::next(It);
2503           int TFI;
2504           if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
2505             continue;
2506           Register DstR = MI.getOperand(0).getReg();
2507           assert(MI.getOperand(0).getSubReg() == 0);
2508           MachineInstr *CopyOut = nullptr;
2509           if (DstR != FoundR) {
2510             DebugLoc DL = MI.getDebugLoc();
2511             unsigned MemSize = HII.getMemAccessSize(MI);
2512             assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2513             unsigned CopyOpc = TargetOpcode::COPY;
2514             if (HII.isSignExtendingLoad(MI))
2515               CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2516             else if (HII.isZeroExtendingLoad(MI))
2517               CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2518             CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
2519                         .addReg(FoundR, getKillRegState(&MI == &EI));
2520           }
2521           IM.replaceInstr(&MI, CopyOut);
2522           B.erase(It);
2523         }
2524 
2525         // Update the dead map.
2526         HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
2527         for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
2528           DM[RR].subtract(Range);
2529       } // for Range in range list
2530     }
2531   }
2532 }
2533 
2534 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2535       const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
2536   MachineBasicBlock &MB = *AI->getParent();
2537   DebugLoc DL = AI->getDebugLoc();
2538   unsigned A = AI->getOperand(2).getImm();
2539 
2540   // Have
2541   //    Rd  = alloca Rs, #A
2542   //
2543   // If Rs and Rd are different registers, use this sequence:
2544   //    Rd  = sub(r29, Rs)
2545   //    r29 = sub(r29, Rs)
2546   //    Rd  = and(Rd, #-A)    ; if necessary
2547   //    r29 = and(r29, #-A)   ; if necessary
2548   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2549   // otherwise, do
2550   //    Rd  = sub(r29, Rs)
2551   //    Rd  = and(Rd, #-A)    ; if necessary
2552   //    r29 = Rd
2553   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2554 
2555   MachineOperand &RdOp = AI->getOperand(0);
2556   MachineOperand &RsOp = AI->getOperand(1);
2557   unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
2558 
2559   // Rd = sub(r29, Rs)
2560   BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
2561       .addReg(SP)
2562       .addReg(Rs);
2563   if (Rs != Rd) {
2564     // r29 = sub(r29, Rs)
2565     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
2566         .addReg(SP)
2567         .addReg(Rs);
2568   }
2569   if (A > 8) {
2570     // Rd  = and(Rd, #-A)
2571     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
2572         .addReg(Rd)
2573         .addImm(-int64_t(A));
2574     if (Rs != Rd)
2575       BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
2576           .addReg(SP)
2577           .addImm(-int64_t(A));
2578   }
2579   if (Rs == Rd) {
2580     // r29 = Rd
2581     BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
2582         .addReg(Rd);
2583   }
2584   if (CF > 0) {
2585     // Rd = add(Rd, #CF)
2586     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
2587         .addReg(Rd)
2588         .addImm(CF);
2589   }
2590 }
2591 
2592 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2593   const MachineFrameInfo &MFI = MF.getFrameInfo();
2594   if (!MFI.hasVarSizedObjects())
2595     return false;
2596   // Do not check for max stack object alignment here, because the stack
2597   // may not be complete yet. Assume that we will need PS_aligna if there
2598   // are variable-sized objects.
2599   return true;
2600 }
2601 
2602 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2603       const MachineFunction &MF) const {
2604   for (auto &B : MF)
2605     for (auto &I : B)
2606       if (I.getOpcode() == Hexagon::PS_aligna)
2607         return &I;
2608   return nullptr;
2609 }
2610 
2611 /// Adds all callee-saved registers as implicit uses or defs to the
2612 /// instruction.
2613 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2614       const CSIVect &CSI, bool IsDef, bool IsKill) const {
2615   // Add the callee-saved registers as implicit uses.
2616   for (auto &R : CSI)
2617     MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
2618 }
2619 
2620 /// Determine whether the callee-saved register saves and restores should
2621 /// be generated via inline code. If this function returns "true", inline
2622 /// code will be generated. If this function returns "false", additional
2623 /// checks are performed, which may still lead to the inline code.
2624 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
2625       const CSIVect &CSI) const {
2626   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl())
2627     return true;
2628   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2629     return true;
2630   if (!hasFP(MF))
2631     return true;
2632   if (!isOptSize(MF) && !isMinSize(MF))
2633     if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
2634       return true;
2635 
2636   // Check if CSI only has double registers, and if the registers form
2637   // a contiguous block starting from D8.
2638   BitVector Regs(Hexagon::NUM_TARGET_REGS);
2639   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
2640     unsigned R = CSI[i].getReg();
2641     if (!Hexagon::DoubleRegsRegClass.contains(R))
2642       return true;
2643     Regs[R] = true;
2644   }
2645   int F = Regs.find_first();
2646   if (F != Hexagon::D8)
2647     return true;
2648   while (F >= 0) {
2649     int N = Regs.find_next(F);
2650     if (N >= 0 && N != F+1)
2651       return true;
2652     F = N;
2653   }
2654 
2655   return false;
2656 }
2657 
2658 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
2659       const CSIVect &CSI) const {
2660   if (shouldInlineCSR(MF, CSI))
2661     return false;
2662   unsigned NumCSI = CSI.size();
2663   if (NumCSI <= 1)
2664     return false;
2665 
2666   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2667                                      : SpillFuncThreshold;
2668   return Threshold < NumCSI;
2669 }
2670 
2671 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
2672       const CSIVect &CSI) const {
2673   if (shouldInlineCSR(MF, CSI))
2674     return false;
2675   // The restore functions do a bit more than just restoring registers.
2676   // The non-returning versions will go back directly to the caller's
2677   // caller, others will clean up the stack frame in preparation for
2678   // a tail call. Using them can still save code size even if only one
2679   // register is getting restores. Make the decision based on -Oz:
2680   // using -Os will use inline restore for a single register.
2681   if (isMinSize(MF))
2682     return true;
2683   unsigned NumCSI = CSI.size();
2684   if (NumCSI <= 1)
2685     return false;
2686 
2687   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2688                                      : SpillFuncThreshold;
2689   return Threshold < NumCSI;
2690 }
2691 
2692 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
2693   unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
2694   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2695   // A fairly simplistic guess as to whether a potential load/store to a
2696   // stack location could require an extra register.
2697   if (HST.useHVXOps() && StackSize > 256)
2698     return true;
2699 
2700   // Check if the function has store-immediate instructions that access
2701   // the stack. Since the offset field is not extendable, if the stack
2702   // size exceeds the offset limit (6 bits, shifted), the stores will
2703   // require a new base register.
2704   bool HasImmStack = false;
2705   unsigned MinLS = ~0u;   // Log_2 of the memory access size.
2706 
2707   for (const MachineBasicBlock &B : MF) {
2708     for (const MachineInstr &MI : B) {
2709       unsigned LS = 0;
2710       switch (MI.getOpcode()) {
2711         case Hexagon::S4_storeirit_io:
2712         case Hexagon::S4_storeirif_io:
2713         case Hexagon::S4_storeiri_io:
2714           ++LS;
2715           LLVM_FALLTHROUGH;
2716         case Hexagon::S4_storeirht_io:
2717         case Hexagon::S4_storeirhf_io:
2718         case Hexagon::S4_storeirh_io:
2719           ++LS;
2720           LLVM_FALLTHROUGH;
2721         case Hexagon::S4_storeirbt_io:
2722         case Hexagon::S4_storeirbf_io:
2723         case Hexagon::S4_storeirb_io:
2724           if (MI.getOperand(0).isFI())
2725             HasImmStack = true;
2726           MinLS = std::min(MinLS, LS);
2727           break;
2728       }
2729     }
2730   }
2731 
2732   if (HasImmStack)
2733     return !isUInt<6>(StackSize >> MinLS);
2734 
2735   return false;
2736 }
2737