xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp (revision 06e20d1babecec1f45ffda513f55a8db5f1c0f56)
1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "HexagonFrameLowering.h"
11 #include "HexagonBlockRanges.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonMachineFunctionInfo.h"
14 #include "HexagonRegisterInfo.h"
15 #include "HexagonSubtarget.h"
16 #include "HexagonTargetMachine.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachinePostDominators.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/PseudoSourceValue.h"
40 #include "llvm/CodeGen/RegisterScavenging.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCDwarf.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Target/TargetOptions.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <map>
63 #include <utility>
64 #include <vector>
65 
66 #define DEBUG_TYPE "hexagon-pei"
67 
68 // Hexagon stack frame layout as defined by the ABI:
69 //
70 //                                                       Incoming arguments
71 //                                                       passed via stack
72 //                                                                      |
73 //                                                                      |
74 //        SP during function's                 FP during function's     |
75 //    +-- runtime (top of stack)               runtime (bottom) --+     |
76 //    |                                                           |     |
77 // --++---------------------+------------------+-----------------++-+-------
78 //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
79 //   |   called functions   |  local objects   |  local objects  |FP|
80 // --+----------------------+------------------+-----------------+--+-------
81 //    <-    size known    -> <- size unknown -> <- size known  ->
82 //
83 // Low address                                                 High address
84 //
85 // <--- stack growth
86 //
87 //
88 // - In any circumstances, the outgoing function arguments are always accessi-
89 //   ble using the SP, and the incoming arguments are accessible using the FP.
90 // - If the local objects are not aligned, they can always be accessed using
91 //   the FP.
92 // - If there are no variable-sized objects, the local objects can always be
93 //   accessed using the SP, regardless whether they are aligned or not. (The
94 //   alignment padding will be at the bottom of the stack (highest address),
95 //   and so the offset with respect to the SP will be known at the compile-
96 //   -time.)
97 //
98 // The only complication occurs if there are both, local aligned objects, and
99 // dynamically allocated (variable-sized) objects. The alignment pad will be
100 // placed between the FP and the local objects, thus preventing the use of the
101 // FP to access the local objects. At the same time, the variable-sized objects
102 // will be between the SP and the local objects, thus introducing an unknown
103 // distance from the SP to the locals.
104 //
105 // To avoid this problem, a new register is created that holds the aligned
106 // address of the bottom of the stack, referred in the sources as AP (aligned
107 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
108 // that aligns AP to the required boundary (a maximum of the alignments of
109 // all stack objects, fixed- and variable-sized). All local objects[1] will
110 // then use AP as the base pointer.
111 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
112 // their name from being allocated at fixed locations on the stack, relative
113 // to the FP. In the presence of dynamic allocation and local alignment, such
114 // objects can only be accessed through the FP.
115 //
116 // Illustration of the AP:
117 //                                                                FP --+
118 //                                                                     |
119 // ---------------+---------------------+-----+-----------------------++-+--
120 //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
121 //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
122 // ---------------+---------------------+-----+-----------------+-----+--+--
123 //                                      |<-- Multiple of the -->|
124 //                                           stack alignment    +-- AP
125 //
126 // The AP is set up at the beginning of the function. Since it is not a dedi-
127 // cated (reserved) register, it needs to be kept live throughout the function
128 // to be available as the base register for local object accesses.
129 // Normally, an address of a stack objects is obtained by a pseudo-instruction
130 // PS_fi. To access local objects with the AP register present, a different
131 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
132 // argument compared to PS_fi: the first input register is the AP register.
133 // This keeps the register live between its definition and its uses.
134 
135 // The AP register is originally set up using pseudo-instruction PS_aligna:
136 //   AP = PS_aligna A
137 // where
138 //   A  - required stack alignment
139 // The alignment value must be the maximum of all alignments required by
140 // any stack object.
141 
142 // The dynamic allocation uses a pseudo-instruction PS_alloca:
143 //   Rd = PS_alloca Rs, A
144 // where
145 //   Rd - address of the allocated space
146 //   Rs - minimum size (the actual allocated can be larger to accommodate
147 //        alignment)
148 //   A  - required alignment
149 
150 using namespace llvm;
151 
152 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
153     cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
154 
155 static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots",
156     cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
157     cl::ZeroOrMore);
158 
159 static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
160     cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
161     cl::init(6), cl::ZeroOrMore);
162 
163 static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
164     cl::Hidden, cl::desc("Specify Os spill func threshold"),
165     cl::init(1), cl::ZeroOrMore);
166 
167 static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
168     cl::Hidden, cl::desc("Enable runtime checks for stack overflow."),
169     cl::init(false), cl::ZeroOrMore);
170 
171 static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
172     cl::init(true), cl::Hidden, cl::ZeroOrMore,
173     cl::desc("Enable stack frame shrink wrapping"));
174 
175 static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit",
176     cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore,
177     cl::desc("Max count of stack frame shrink-wraps"));
178 
179 static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long",
180     cl::Hidden, cl::desc("Enable long calls for save-restore stubs."),
181     cl::init(false), cl::ZeroOrMore);
182 
183 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
184     cl::Hidden, cl::desc("Refrain from using FP whenever possible"));
185 
186 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
187     cl::init(true), cl::desc("Optimize spill slots"));
188 
189 #ifndef NDEBUG
190 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
191     cl::init(std::numeric_limits<unsigned>::max()));
192 static unsigned SpillOptCount = 0;
193 #endif
194 
195 namespace llvm {
196 
197   void initializeHexagonCallFrameInformationPass(PassRegistry&);
198   FunctionPass *createHexagonCallFrameInformation();
199 
200 } // end namespace llvm
201 
202 namespace {
203 
204   class HexagonCallFrameInformation : public MachineFunctionPass {
205   public:
206     static char ID;
207 
208     HexagonCallFrameInformation() : MachineFunctionPass(ID) {
209       PassRegistry &PR = *PassRegistry::getPassRegistry();
210       initializeHexagonCallFrameInformationPass(PR);
211     }
212 
213     bool runOnMachineFunction(MachineFunction &MF) override;
214 
215     MachineFunctionProperties getRequiredProperties() const override {
216       return MachineFunctionProperties().set(
217           MachineFunctionProperties::Property::NoVRegs);
218     }
219   };
220 
221   char HexagonCallFrameInformation::ID = 0;
222 
223 } // end anonymous namespace
224 
225 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
226   auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
227   bool NeedCFI = MF.needsFrameMoves();
228 
229   if (!NeedCFI)
230     return false;
231   HFI.insertCFIInstructions(MF);
232   return true;
233 }
234 
235 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
236                 "Hexagon call frame information", false, false)
237 
238 FunctionPass *llvm::createHexagonCallFrameInformation() {
239   return new HexagonCallFrameInformation();
240 }
241 
242 /// Map a register pair Reg to the subregister that has the greater "number",
243 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
244 static unsigned getMax32BitSubRegister(unsigned Reg,
245                                        const TargetRegisterInfo &TRI,
246                                        bool hireg = true) {
247     if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
248       return Reg;
249 
250     unsigned RegNo = 0;
251     for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
252       if (hireg) {
253         if (*SubRegs > RegNo)
254           RegNo = *SubRegs;
255       } else {
256         if (!RegNo || *SubRegs < RegNo)
257           RegNo = *SubRegs;
258       }
259     }
260     return RegNo;
261 }
262 
263 /// Returns the callee saved register with the largest id in the vector.
264 static unsigned getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,
265                                      const TargetRegisterInfo &TRI) {
266   static_assert(Hexagon::R1 > 0,
267                 "Assume physical registers are encoded as positive integers");
268   if (CSI.empty())
269     return 0;
270 
271   unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
272   for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
273     unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
274     if (Reg > Max)
275       Max = Reg;
276   }
277   return Max;
278 }
279 
280 /// Checks if the basic block contains any instruction that needs a stack
281 /// frame to be already in place.
282 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
283                             const HexagonRegisterInfo &HRI) {
284     for (auto &I : MBB) {
285       const MachineInstr *MI = &I;
286       if (MI->isCall())
287         return true;
288       unsigned Opc = MI->getOpcode();
289       switch (Opc) {
290         case Hexagon::PS_alloca:
291         case Hexagon::PS_aligna:
292           return true;
293         default:
294           break;
295       }
296       // Check individual operands.
297       for (const MachineOperand &MO : MI->operands()) {
298         // While the presence of a frame index does not prove that a stack
299         // frame will be required, all frame indexes should be within alloc-
300         // frame/deallocframe. Otherwise, the code that translates a frame
301         // index into an offset would have to be aware of the placement of
302         // the frame creation/destruction instructions.
303         if (MO.isFI())
304           return true;
305         if (MO.isReg()) {
306           Register R = MO.getReg();
307           // Virtual registers will need scavenging, which then may require
308           // a stack slot.
309           if (Register::isVirtualRegister(R))
310             return true;
311           for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
312             if (CSR[*S])
313               return true;
314           continue;
315         }
316         if (MO.isRegMask()) {
317           // A regmask would normally have all callee-saved registers marked
318           // as preserved, so this check would not be needed, but in case of
319           // ever having other regmasks (for other calling conventions),
320           // make sure they would be processed correctly.
321           const uint32_t *BM = MO.getRegMask();
322           for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
323             unsigned R = x;
324             // If this regmask does not preserve a CSR, a frame will be needed.
325             if (!(BM[R/32] & (1u << (R%32))))
326               return true;
327           }
328         }
329       }
330     }
331     return false;
332 }
333 
334   /// Returns true if MBB has a machine instructions that indicates a tail call
335   /// in the block.
336 static bool hasTailCall(const MachineBasicBlock &MBB) {
337     MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
338     if (I == MBB.end())
339       return false;
340     unsigned RetOpc = I->getOpcode();
341     return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
342 }
343 
344 /// Returns true if MBB contains an instruction that returns.
345 static bool hasReturn(const MachineBasicBlock &MBB) {
346     for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
347       if (I->isReturn())
348         return true;
349     return false;
350 }
351 
352 /// Returns the "return" instruction from this block, or nullptr if there
353 /// isn't any.
354 static MachineInstr *getReturn(MachineBasicBlock &MBB) {
355     for (auto &I : MBB)
356       if (I.isReturn())
357         return &I;
358     return nullptr;
359 }
360 
361 static bool isRestoreCall(unsigned Opc) {
362     switch (Opc) {
363       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
364       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
365       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
366       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
367       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
368       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
369       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
370       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
371         return true;
372     }
373     return false;
374 }
375 
376 static inline bool isOptNone(const MachineFunction &MF) {
377     return MF.getFunction().hasOptNone() ||
378            MF.getTarget().getOptLevel() == CodeGenOpt::None;
379 }
380 
381 static inline bool isOptSize(const MachineFunction &MF) {
382     const Function &F = MF.getFunction();
383     return F.hasOptSize() && !F.hasMinSize();
384 }
385 
386 static inline bool isMinSize(const MachineFunction &MF) {
387     return MF.getFunction().hasMinSize();
388 }
389 
390 /// Implements shrink-wrapping of the stack frame. By default, stack frame
391 /// is created in the function entry block, and is cleaned up in every block
392 /// that returns. This function finds alternate blocks: one for the frame
393 /// setup (prolog) and one for the cleanup (epilog).
394 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
395       MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
396   static unsigned ShrinkCounter = 0;
397 
398   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() &&
399       MF.getFunction().isVarArg())
400     return;
401   if (ShrinkLimit.getPosition()) {
402     if (ShrinkCounter >= ShrinkLimit)
403       return;
404     ShrinkCounter++;
405   }
406 
407   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
408 
409   MachineDominatorTree MDT;
410   MDT.runOnMachineFunction(MF);
411   MachinePostDominatorTree MPT;
412   MPT.runOnMachineFunction(MF);
413 
414   using UnsignedMap = DenseMap<unsigned, unsigned>;
415   using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
416 
417   UnsignedMap RPO;
418   RPOTType RPOT(&MF);
419   unsigned RPON = 0;
420   for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
421     RPO[(*I)->getNumber()] = RPON++;
422 
423   // Don't process functions that have loops, at least for now. Placement
424   // of prolog and epilog must take loop structure into account. For simpli-
425   // city don't do it right now.
426   for (auto &I : MF) {
427     unsigned BN = RPO[I.getNumber()];
428     for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
429       // If found a back-edge, return.
430       if (RPO[(*SI)->getNumber()] <= BN)
431         return;
432     }
433   }
434 
435   // Collect the set of blocks that need a stack frame to execute. Scan
436   // each block for uses/defs of callee-saved registers, calls, etc.
437   SmallVector<MachineBasicBlock*,16> SFBlocks;
438   BitVector CSR(Hexagon::NUM_TARGET_REGS);
439   for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
440     for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
441       CSR[*S] = true;
442 
443   for (auto &I : MF)
444     if (needsStackFrame(I, CSR, HRI))
445       SFBlocks.push_back(&I);
446 
447   LLVM_DEBUG({
448     dbgs() << "Blocks needing SF: {";
449     for (auto &B : SFBlocks)
450       dbgs() << " " << printMBBReference(*B);
451     dbgs() << " }\n";
452   });
453   // No frame needed?
454   if (SFBlocks.empty())
455     return;
456 
457   // Pick a common dominator and a common post-dominator.
458   MachineBasicBlock *DomB = SFBlocks[0];
459   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
460     DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
461     if (!DomB)
462       break;
463   }
464   MachineBasicBlock *PDomB = SFBlocks[0];
465   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
466     PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
467     if (!PDomB)
468       break;
469   }
470   LLVM_DEBUG({
471     dbgs() << "Computed dom block: ";
472     if (DomB)
473       dbgs() << printMBBReference(*DomB);
474     else
475       dbgs() << "<null>";
476     dbgs() << ", computed pdom block: ";
477     if (PDomB)
478       dbgs() << printMBBReference(*PDomB);
479     else
480       dbgs() << "<null>";
481     dbgs() << "\n";
482   });
483   if (!DomB || !PDomB)
484     return;
485 
486   // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
487   if (!MDT.dominates(DomB, PDomB)) {
488     LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
489     return;
490   }
491   if (!MPT.dominates(PDomB, DomB)) {
492     LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
493     return;
494   }
495 
496   // Finally, everything seems right.
497   PrologB = DomB;
498   EpilogB = PDomB;
499 }
500 
501 /// Perform most of the PEI work here:
502 /// - saving/restoring of the callee-saved registers,
503 /// - stack frame creation and destruction.
504 /// Normally, this work is distributed among various functions, but doing it
505 /// in one place allows shrink-wrapping of the stack frame.
506 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
507                                         MachineBasicBlock &MBB) const {
508   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
509 
510   MachineFrameInfo &MFI = MF.getFrameInfo();
511   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
512 
513   MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
514   if (EnableShrinkWrapping)
515     findShrunkPrologEpilog(MF, PrologB, EpilogB);
516 
517   bool PrologueStubs = false;
518   insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
519   insertPrologueInBlock(*PrologB, PrologueStubs);
520   updateEntryPaths(MF, *PrologB);
521 
522   if (EpilogB) {
523     insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
524     insertEpilogueInBlock(*EpilogB);
525   } else {
526     for (auto &B : MF)
527       if (B.isReturnBlock())
528         insertCSRRestoresInBlock(B, CSI, HRI);
529 
530     for (auto &B : MF)
531       if (B.isReturnBlock())
532         insertEpilogueInBlock(B);
533 
534     for (auto &B : MF) {
535       if (B.empty())
536         continue;
537       MachineInstr *RetI = getReturn(B);
538       if (!RetI || isRestoreCall(RetI->getOpcode()))
539         continue;
540       for (auto &R : CSI)
541         RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
542     }
543   }
544 
545   if (EpilogB) {
546     // If there is an epilog block, it may not have a return instruction.
547     // In such case, we need to add the callee-saved registers as live-ins
548     // in all blocks on all paths from the epilog to any return block.
549     unsigned MaxBN = MF.getNumBlockIDs();
550     BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
551     updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
552   }
553 }
554 
555 /// Returns true if the target can safely skip saving callee-saved registers
556 /// for noreturn nounwind functions.
557 bool HexagonFrameLowering::enableCalleeSaveSkip(
558     const MachineFunction &MF) const {
559   const auto &F = MF.getFunction();
560   assert(F.hasFnAttribute(Attribute::NoReturn) &&
561          F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
562          !F.getFunction().hasFnAttribute(Attribute::UWTable));
563   (void)F;
564 
565   // No need to save callee saved registers if the function does not return.
566   return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
567 }
568 
569 // Helper function used to determine when to eliminate the stack frame for
570 // functions marked as noreturn and when the noreturn-stack-elim options are
571 // specified. When both these conditions are true, then a FP may not be needed
572 // if the function makes a call. It is very similar to enableCalleeSaveSkip,
573 // but it used to check if the allocframe can be eliminated as well.
574 static bool enableAllocFrameElim(const MachineFunction &MF) {
575   const auto &F = MF.getFunction();
576   const auto &MFI = MF.getFrameInfo();
577   const auto &HST = MF.getSubtarget<HexagonSubtarget>();
578   assert(!MFI.hasVarSizedObjects() &&
579          !HST.getRegisterInfo()->needsStackRealignment(MF));
580   return F.hasFnAttribute(Attribute::NoReturn) &&
581     F.hasFnAttribute(Attribute::NoUnwind) &&
582     !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() &&
583     MFI.getStackSize() == 0;
584 }
585 
586 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
587       bool PrologueStubs) const {
588   MachineFunction &MF = *MBB.getParent();
589   MachineFrameInfo &MFI = MF.getFrameInfo();
590   auto &HST = MF.getSubtarget<HexagonSubtarget>();
591   auto &HII = *HST.getInstrInfo();
592   auto &HRI = *HST.getRegisterInfo();
593 
594   Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign());
595 
596   // Calculate the total stack frame size.
597   // Get the number of bytes to allocate from the FrameInfo.
598   unsigned FrameSize = MFI.getStackSize();
599   // Round up the max call frame size to the max alignment on the stack.
600   unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
601   MFI.setMaxCallFrameSize(MaxCFA);
602 
603   FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
604   MFI.setStackSize(FrameSize);
605 
606   bool AlignStack = (MaxAlign > getStackAlign());
607 
608   // Get the number of bytes to allocate from the FrameInfo.
609   unsigned NumBytes = MFI.getStackSize();
610   unsigned SP = HRI.getStackRegister();
611   unsigned MaxCF = MFI.getMaxCallFrameSize();
612   MachineBasicBlock::iterator InsertPt = MBB.begin();
613 
614   SmallVector<MachineInstr *, 4> AdjustRegs;
615   for (auto &MBB : MF)
616     for (auto &MI : MBB)
617       if (MI.getOpcode() == Hexagon::PS_alloca)
618         AdjustRegs.push_back(&MI);
619 
620   for (auto MI : AdjustRegs) {
621     assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
622     expandAlloca(MI, HII, SP, MaxCF);
623     MI->eraseFromParent();
624   }
625 
626   DebugLoc dl = MBB.findDebugLoc(InsertPt);
627 
628   if (MF.getFunction().isVarArg() &&
629       MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
630     // Calculate the size of register saved area.
631     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
632     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0)
633                                               ? NumVarArgRegs * 4
634                                               : NumVarArgRegs * 4 + 4;
635     if (RegisterSavedAreaSizePlusPadding > 0) {
636       // Decrement the stack pointer by size of register saved area plus
637       // padding if any.
638       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
639         .addReg(SP)
640         .addImm(-RegisterSavedAreaSizePlusPadding)
641         .setMIFlag(MachineInstr::FrameSetup);
642 
643       int NumBytes = 0;
644       // Copy all the named arguments below register saved area.
645       auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
646       for (int i = HMFI.getFirstNamedArgFrameIndex(),
647                e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) {
648         uint64_t ObjSize = MFI.getObjectSize(i);
649         Align ObjAlign = MFI.getObjectAlign(i);
650 
651         // Determine the kind of load/store that should be used.
652         unsigned LDOpc, STOpc;
653         uint64_t OpcodeChecker = ObjAlign.value();
654 
655         // Handle cases where alignment of an object is > its size.
656         if (ObjAlign > ObjSize) {
657           if (ObjSize <= 1)
658             OpcodeChecker = 1;
659           else if (ObjSize <= 2)
660             OpcodeChecker = 2;
661           else if (ObjSize <= 4)
662             OpcodeChecker = 4;
663           else if (ObjSize > 4)
664             OpcodeChecker = 8;
665         }
666 
667         switch (OpcodeChecker) {
668           case 1:
669             LDOpc = Hexagon::L2_loadrb_io;
670             STOpc = Hexagon::S2_storerb_io;
671             break;
672           case 2:
673             LDOpc = Hexagon::L2_loadrh_io;
674             STOpc = Hexagon::S2_storerh_io;
675             break;
676           case 4:
677             LDOpc = Hexagon::L2_loadri_io;
678             STOpc = Hexagon::S2_storeri_io;
679             break;
680           case 8:
681           default:
682             LDOpc = Hexagon::L2_loadrd_io;
683             STOpc = Hexagon::S2_storerd_io;
684             break;
685         }
686 
687         unsigned RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3
688                                                           : Hexagon::R6;
689         int LoadStoreCount = ObjSize / OpcodeChecker;
690 
691         if (ObjSize % OpcodeChecker)
692           ++LoadStoreCount;
693 
694         // Get the start location of the load. NumBytes is basically the
695         // offset from the stack pointer of previous function, which would be
696         // the caller in this case, as this function has variable argument
697         // list.
698         if (NumBytes != 0)
699           NumBytes = alignTo(NumBytes, ObjAlign);
700 
701         int Count = 0;
702         while (Count < LoadStoreCount) {
703           // Load the value of the named argument on stack.
704           BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed)
705               .addReg(SP)
706               .addImm(RegisterSavedAreaSizePlusPadding +
707                       ObjAlign.value() * Count + NumBytes)
708               .setMIFlag(MachineInstr::FrameSetup);
709 
710           // Store it below the register saved area plus padding.
711           BuildMI(MBB, InsertPt, dl, HII.get(STOpc))
712               .addReg(SP)
713               .addImm(ObjAlign.value() * Count + NumBytes)
714               .addReg(RegUsed)
715               .setMIFlag(MachineInstr::FrameSetup);
716 
717           Count++;
718         }
719         NumBytes += MFI.getObjectSize(i);
720       }
721 
722       // Make NumBytes 8 byte aligned
723       NumBytes = alignTo(NumBytes, 8);
724 
725       // If the number of registers having variable arguments is odd,
726       // leave 4 bytes of padding to get to the location where first
727       // variable argument which was passed through register was copied.
728       NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4;
729 
730       for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) {
731         BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io))
732           .addReg(SP)
733           .addImm(NumBytes + 4 * i)
734           .addReg(Hexagon::R0 + j)
735           .setMIFlag(MachineInstr::FrameSetup);
736       }
737     }
738   }
739 
740   if (hasFP(MF)) {
741     insertAllocframe(MBB, InsertPt, NumBytes);
742     if (AlignStack) {
743       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
744           .addReg(SP)
745           .addImm(-int64_t(MaxAlign.value()));
746     }
747     // If the stack-checking is enabled, and we spilled the callee-saved
748     // registers inline (i.e. did not use a spill function), then call
749     // the stack checker directly.
750     if (EnableStackOVFSanitizer && !PrologueStubs)
751       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
752              .addExternalSymbol("__runtime_stack_check");
753   } else if (NumBytes > 0) {
754     assert(alignTo(NumBytes, 8) == NumBytes);
755     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
756       .addReg(SP)
757       .addImm(-int(NumBytes));
758   }
759 }
760 
761 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
762   MachineFunction &MF = *MBB.getParent();
763   auto &HST = MF.getSubtarget<HexagonSubtarget>();
764   auto &HII = *HST.getInstrInfo();
765   auto &HRI = *HST.getRegisterInfo();
766   unsigned SP = HRI.getStackRegister();
767 
768   MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
769   DebugLoc dl = MBB.findDebugLoc(InsertPt);
770 
771   if (!hasFP(MF)) {
772     MachineFrameInfo &MFI = MF.getFrameInfo();
773     unsigned NumBytes = MFI.getStackSize();
774     if (MF.getFunction().isVarArg() &&
775         MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
776       // On Hexagon Linux, deallocate the stack for the register saved area.
777       int NumVarArgRegs = 6 - FirstVarArgSavedReg;
778       int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
779         (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
780       NumBytes += RegisterSavedAreaSizePlusPadding;
781     }
782     if (NumBytes) {
783       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
784         .addReg(SP)
785         .addImm(NumBytes);
786     }
787     return;
788   }
789 
790   MachineInstr *RetI = getReturn(MBB);
791   unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
792 
793   // Handle EH_RETURN.
794   if (RetOpc == Hexagon::EH_RETURN_JMPR) {
795     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
796         .addDef(Hexagon::D15)
797         .addReg(Hexagon::R30);
798     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP)
799         .addReg(SP)
800         .addReg(Hexagon::R28);
801     return;
802   }
803 
804   // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
805   // frame instruction if we encounter it.
806   if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
807       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
808       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
809       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
810     MachineBasicBlock::iterator It = RetI;
811     ++It;
812     // Delete all instructions after the RESTORE (except labels).
813     while (It != MBB.end()) {
814       if (!It->isLabel())
815         It = MBB.erase(It);
816       else
817         ++It;
818     }
819     return;
820   }
821 
822   // It is possible that the restoring code is a call to a library function.
823   // All of the restore* functions include "deallocframe", so we need to make
824   // sure that we don't add an extra one.
825   bool NeedsDeallocframe = true;
826   if (!MBB.empty() && InsertPt != MBB.begin()) {
827     MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
828     unsigned COpc = PrevIt->getOpcode();
829     if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
830         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
831         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
832         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
833         COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
834       NeedsDeallocframe = false;
835   }
836 
837   if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() ||
838       !MF.getFunction().isVarArg()) {
839     if (!NeedsDeallocframe)
840       return;
841     // If the returning instruction is PS_jmpret, replace it with
842     // dealloc_return, otherwise just add deallocframe. The function
843     // could be returning via a tail call.
844     if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
845       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
846       .addDef(Hexagon::D15)
847       .addReg(Hexagon::R30);
848       return;
849     }
850     unsigned NewOpc = Hexagon::L4_return;
851     MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc))
852       .addDef(Hexagon::D15)
853       .addReg(Hexagon::R30);
854     // Transfer the function live-out registers.
855     NewI->copyImplicitOps(MF, *RetI);
856     MBB.erase(RetI);
857   } else {
858     // L2_deallocframe instruction after it.
859     // Calculate the size of register saved area.
860     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
861     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
862       (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
863 
864     MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
865     MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end()
866                                                           : std::prev(Term);
867     if (I == MBB.end() ||
868        (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT &&
869         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC &&
870         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 &&
871         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC))
872       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
873         .addDef(Hexagon::D15)
874         .addReg(Hexagon::R30);
875     if (RegisterSavedAreaSizePlusPadding != 0)
876       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
877         .addReg(SP)
878         .addImm(RegisterSavedAreaSizePlusPadding);
879   }
880 }
881 
882 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
883       MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
884   MachineFunction &MF = *MBB.getParent();
885   auto &HST = MF.getSubtarget<HexagonSubtarget>();
886   auto &HII = *HST.getInstrInfo();
887   auto &HRI = *HST.getRegisterInfo();
888 
889   // Check for overflow.
890   // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
891   const unsigned int ALLOCFRAME_MAX = 16384;
892 
893   // Create a dummy memory operand to avoid allocframe from being treated as
894   // a volatile memory reference.
895   auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0),
896                                       MachineMemOperand::MOStore, 4, Align(4));
897 
898   DebugLoc dl = MBB.findDebugLoc(InsertPt);
899   unsigned SP = HRI.getStackRegister();
900 
901   if (NumBytes >= ALLOCFRAME_MAX) {
902     // Emit allocframe(#0).
903     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
904       .addDef(SP)
905       .addReg(SP)
906       .addImm(0)
907       .addMemOperand(MMO);
908 
909     // Subtract the size from the stack pointer.
910     unsigned SP = HRI.getStackRegister();
911     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
912       .addReg(SP)
913       .addImm(-int(NumBytes));
914   } else {
915     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
916       .addDef(SP)
917       .addReg(SP)
918       .addImm(NumBytes)
919       .addMemOperand(MMO);
920   }
921 }
922 
923 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
924       MachineBasicBlock &SaveB) const {
925   SetVector<unsigned> Worklist;
926 
927   MachineBasicBlock &EntryB = MF.front();
928   Worklist.insert(EntryB.getNumber());
929 
930   unsigned SaveN = SaveB.getNumber();
931   auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
932 
933   for (unsigned i = 0; i < Worklist.size(); ++i) {
934     unsigned BN = Worklist[i];
935     MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
936     for (auto &R : CSI)
937       if (!MBB.isLiveIn(R.getReg()))
938         MBB.addLiveIn(R.getReg());
939     if (BN != SaveN)
940       for (auto &SB : MBB.successors())
941         Worklist.insert(SB->getNumber());
942   }
943 }
944 
945 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
946       MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
947       BitVector &Path) const {
948   assert(MBB.getNumber() >= 0);
949   unsigned BN = MBB.getNumber();
950   if (Path[BN] || DoneF[BN])
951     return false;
952   if (DoneT[BN])
953     return true;
954 
955   auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
956 
957   Path[BN] = true;
958   bool ReachedExit = false;
959   for (auto &SB : MBB.successors())
960     ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
961 
962   if (!MBB.empty() && MBB.back().isReturn()) {
963     // Add implicit uses of all callee-saved registers to the reached
964     // return instructions. This is to prevent the anti-dependency breaker
965     // from renaming these registers.
966     MachineInstr &RetI = MBB.back();
967     if (!isRestoreCall(RetI.getOpcode()))
968       for (auto &R : CSI)
969         RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
970     ReachedExit = true;
971   }
972 
973   // We don't want to add unnecessary live-ins to the restore block: since
974   // the callee-saved registers are being defined in it, the entry of the
975   // restore block cannot be on the path from the definitions to any exit.
976   if (ReachedExit && &MBB != &RestoreB) {
977     for (auto &R : CSI)
978       if (!MBB.isLiveIn(R.getReg()))
979         MBB.addLiveIn(R.getReg());
980     DoneT[BN] = true;
981   }
982   if (!ReachedExit)
983     DoneF[BN] = true;
984 
985   Path[BN] = false;
986   return ReachedExit;
987 }
988 
989 static Optional<MachineBasicBlock::iterator>
990 findCFILocation(MachineBasicBlock &B) {
991     // The CFI instructions need to be inserted right after allocframe.
992     // An exception to this is a situation where allocframe is bundled
993     // with a call: then the CFI instructions need to be inserted before
994     // the packet with the allocframe+call (in case the call throws an
995     // exception).
996     auto End = B.instr_end();
997 
998     for (MachineInstr &I : B) {
999       MachineBasicBlock::iterator It = I.getIterator();
1000       if (!I.isBundle()) {
1001         if (I.getOpcode() == Hexagon::S2_allocframe)
1002           return std::next(It);
1003         continue;
1004       }
1005       // I is a bundle.
1006       bool HasCall = false, HasAllocFrame = false;
1007       auto T = It.getInstrIterator();
1008       while (++T != End && T->isBundled()) {
1009         if (T->getOpcode() == Hexagon::S2_allocframe)
1010           HasAllocFrame = true;
1011         else if (T->isCall())
1012           HasCall = true;
1013       }
1014       if (HasAllocFrame)
1015         return HasCall ? It : std::next(It);
1016     }
1017     return None;
1018 }
1019 
1020 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
1021   for (auto &B : MF) {
1022     auto At = findCFILocation(B);
1023     if (At.hasValue())
1024       insertCFIInstructionsAt(B, At.getValue());
1025   }
1026 }
1027 
1028 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
1029       MachineBasicBlock::iterator At) const {
1030   MachineFunction &MF = *MBB.getParent();
1031   MachineFrameInfo &MFI = MF.getFrameInfo();
1032   MachineModuleInfo &MMI = MF.getMMI();
1033   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1034   auto &HII = *HST.getInstrInfo();
1035   auto &HRI = *HST.getRegisterInfo();
1036 
1037   // If CFI instructions have debug information attached, something goes
1038   // wrong with the final assembly generation: the prolog_end is placed
1039   // in a wrong location.
1040   DebugLoc DL;
1041   const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
1042 
1043   MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1044   bool HasFP = hasFP(MF);
1045 
1046   if (HasFP) {
1047     unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
1048     unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
1049 
1050     // Define CFA via an offset from the value of FP.
1051     //
1052     //  -8   -4    0 (SP)
1053     // --+----+----+---------------------
1054     //   | FP | LR |          increasing addresses -->
1055     // --+----+----+---------------------
1056     //   |         +-- Old SP (before allocframe)
1057     //   +-- New FP (after allocframe)
1058     //
1059     // MCCFIInstruction::cfiDefCfa adds the offset from the register.
1060     // MCCFIInstruction::createOffset takes the offset without sign change.
1061     auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8);
1062     BuildMI(MBB, At, DL, CFID)
1063         .addCFIIndex(MF.addFrameInst(DefCfa));
1064     // R31 (return addr) = CFA - 4
1065     auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
1066     BuildMI(MBB, At, DL, CFID)
1067         .addCFIIndex(MF.addFrameInst(OffR31));
1068     // R30 (frame ptr) = CFA - 8
1069     auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
1070     BuildMI(MBB, At, DL, CFID)
1071         .addCFIIndex(MF.addFrameInst(OffR30));
1072   }
1073 
1074   static unsigned int RegsToMove[] = {
1075     Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
1076     Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
1077     Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
1078     Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
1079     Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,
1080     Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
1081     Hexagon::NoRegister
1082   };
1083 
1084   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1085 
1086   for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
1087     unsigned Reg = RegsToMove[i];
1088     auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
1089       return C.getReg() == Reg;
1090     };
1091     auto F = find_if(CSI, IfR);
1092     if (F == CSI.end())
1093       continue;
1094 
1095     int64_t Offset;
1096     if (HasFP) {
1097       // If the function has a frame pointer (i.e. has an allocframe),
1098       // then the CFA has been defined in terms of FP. Any offsets in
1099       // the following CFI instructions have to be defined relative
1100       // to FP, which points to the bottom of the stack frame.
1101       // The function getFrameIndexReference can still choose to use SP
1102       // for the offset calculation, so we cannot simply call it here.
1103       // Instead, get the offset (relative to the FP) directly.
1104       Offset = MFI.getObjectOffset(F->getFrameIdx());
1105     } else {
1106       Register FrameReg;
1107       Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg);
1108     }
1109     // Subtract 8 to make room for R30 and R31, which are added above.
1110     Offset -= 8;
1111 
1112     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
1113       unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
1114       auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
1115                                                    Offset);
1116       BuildMI(MBB, At, DL, CFID)
1117           .addCFIIndex(MF.addFrameInst(OffReg));
1118     } else {
1119       // Split the double regs into subregs, and generate appropriate
1120       // cfi_offsets.
1121       // The only reason, we are split double regs is, llvm-mc does not
1122       // understand paired registers for cfi_offset.
1123       // Eg .cfi_offset r1:0, -64
1124 
1125       Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
1126       Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
1127       unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
1128       unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
1129       auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
1130                                                   Offset+4);
1131       BuildMI(MBB, At, DL, CFID)
1132           .addCFIIndex(MF.addFrameInst(OffHi));
1133       auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
1134                                                   Offset);
1135       BuildMI(MBB, At, DL, CFID)
1136           .addCFIIndex(MF.addFrameInst(OffLo));
1137     }
1138   }
1139 }
1140 
1141 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
1142   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1143     return false;
1144 
1145   auto &MFI = MF.getFrameInfo();
1146   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1147   bool HasExtraAlign = HRI.needsStackRealignment(MF);
1148   bool HasAlloca = MFI.hasVarSizedObjects();
1149 
1150   // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
1151   // that this shouldn't be required, but doing so now because gcc does and
1152   // gdb can't break at the start of the function without it.  Will remove if
1153   // this turns out to be a gdb bug.
1154   //
1155   if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
1156     return true;
1157 
1158   // By default we want to use SP (since it's always there). FP requires
1159   // some setup (i.e. ALLOCFRAME).
1160   // Both, alloca and stack alignment modify the stack pointer by an
1161   // undetermined value, so we need to save it at the entry to the function
1162   // (i.e. use allocframe).
1163   if (HasAlloca || HasExtraAlign)
1164     return true;
1165 
1166   if (MFI.getStackSize() > 0) {
1167     // If FP-elimination is disabled, we have to use FP at this point.
1168     const TargetMachine &TM = MF.getTarget();
1169     if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
1170       return true;
1171     if (EnableStackOVFSanitizer)
1172       return true;
1173   }
1174 
1175   const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1176   if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
1177     return true;
1178 
1179   return false;
1180 }
1181 
1182 enum SpillKind {
1183   SK_ToMem,
1184   SK_FromMem,
1185   SK_FromMemTailcall
1186 };
1187 
1188 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
1189       bool Stkchk = false) {
1190   const char * V4SpillToMemoryFunctions[] = {
1191     "__save_r16_through_r17",
1192     "__save_r16_through_r19",
1193     "__save_r16_through_r21",
1194     "__save_r16_through_r23",
1195     "__save_r16_through_r25",
1196     "__save_r16_through_r27" };
1197 
1198   const char * V4SpillToMemoryStkchkFunctions[] = {
1199     "__save_r16_through_r17_stkchk",
1200     "__save_r16_through_r19_stkchk",
1201     "__save_r16_through_r21_stkchk",
1202     "__save_r16_through_r23_stkchk",
1203     "__save_r16_through_r25_stkchk",
1204     "__save_r16_through_r27_stkchk" };
1205 
1206   const char * V4SpillFromMemoryFunctions[] = {
1207     "__restore_r16_through_r17_and_deallocframe",
1208     "__restore_r16_through_r19_and_deallocframe",
1209     "__restore_r16_through_r21_and_deallocframe",
1210     "__restore_r16_through_r23_and_deallocframe",
1211     "__restore_r16_through_r25_and_deallocframe",
1212     "__restore_r16_through_r27_and_deallocframe" };
1213 
1214   const char * V4SpillFromMemoryTailcallFunctions[] = {
1215     "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1216     "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1217     "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1218     "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1219     "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1220     "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1221   };
1222 
1223   const char **SpillFunc = nullptr;
1224 
1225   switch(SpillType) {
1226   case SK_ToMem:
1227     SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
1228                        : V4SpillToMemoryFunctions;
1229     break;
1230   case SK_FromMem:
1231     SpillFunc = V4SpillFromMemoryFunctions;
1232     break;
1233   case SK_FromMemTailcall:
1234     SpillFunc = V4SpillFromMemoryTailcallFunctions;
1235     break;
1236   }
1237   assert(SpillFunc && "Unknown spill kind");
1238 
1239   // Spill all callee-saved registers up to the highest register used.
1240   switch (MaxReg) {
1241   case Hexagon::R17:
1242     return SpillFunc[0];
1243   case Hexagon::R19:
1244     return SpillFunc[1];
1245   case Hexagon::R21:
1246     return SpillFunc[2];
1247   case Hexagon::R23:
1248     return SpillFunc[3];
1249   case Hexagon::R25:
1250     return SpillFunc[4];
1251   case Hexagon::R27:
1252     return SpillFunc[5];
1253   default:
1254     llvm_unreachable("Unhandled maximum callee save register");
1255   }
1256   return nullptr;
1257 }
1258 
1259 int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1260                                                  int FI,
1261                                                  Register &FrameReg) const {
1262   auto &MFI = MF.getFrameInfo();
1263   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1264 
1265   int Offset = MFI.getObjectOffset(FI);
1266   bool HasAlloca = MFI.hasVarSizedObjects();
1267   bool HasExtraAlign = HRI.needsStackRealignment(MF);
1268   bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
1269 
1270   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1271   unsigned FrameSize = MFI.getStackSize();
1272   Register SP = HRI.getStackRegister();
1273   Register FP = HRI.getFrameRegister();
1274   Register AP = HMFI.getStackAlignBasePhysReg();
1275   // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1276   // is true. HasExtraAlign may be set because of vector spills, without
1277   // aligned locals or aligned outgoing function arguments. Since vector
1278   // spills will ultimately be "unaligned", it is safe to use FP as the
1279   // base register.
1280   // In fact, in such a scenario the stack is actually not required to be
1281   // aligned, although it may end up being aligned anyway, since this
1282   // particular case is not easily detectable. The alignment will be
1283   // unnecessary, but not incorrect.
1284   // Unfortunately there is no quick way to verify that the above is
1285   // indeed the case (and that it's not a result of an error), so just
1286   // assume that missing AP will be replaced by FP.
1287   // (A better fix would be to rematerialize AP from FP and always align
1288   // vector spills.)
1289   if (AP == 0)
1290     AP = FP;
1291 
1292   bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0).
1293   // Use FP at -O0, except when there are objects with extra alignment.
1294   // That additional alignment requirement may cause a pad to be inserted,
1295   // which will make it impossible to use FP to access objects located
1296   // past the pad.
1297   if (NoOpt && !HasExtraAlign)
1298     UseFP = true;
1299   if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
1300     // Fixed and preallocated objects will be located before any padding
1301     // so FP must be used to access them.
1302     UseFP |= (HasAlloca || HasExtraAlign);
1303   } else {
1304     if (HasAlloca) {
1305       if (HasExtraAlign)
1306         UseAP = true;
1307       else
1308         UseFP = true;
1309     }
1310   }
1311 
1312   // If FP was picked, then there had better be FP.
1313   bool HasFP = hasFP(MF);
1314   assert((HasFP || !UseFP) && "This function must have frame pointer");
1315 
1316   // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1317   // FP/LR. If the base register is used to access an object across these
1318   // 8 bytes, then the offset will need to be adjusted by 8.
1319   //
1320   // After allocframe:
1321   //                    HexagonISelLowering adds 8 to ---+
1322   //                    the offsets of all stack-based   |
1323   //                    arguments (*)                    |
1324   //                                                     |
1325   //   getObjectOffset < 0   0     8  getObjectOffset >= 8
1326   // ------------------------+-----+------------------------> increasing
1327   //     <local objects>     |FP/LR|    <input arguments>     addresses
1328   // -----------------+------+-----+------------------------>
1329   //                  |      |
1330   //    SP/AP point --+      +-- FP points here (**)
1331   //    somewhere on
1332   //    this side of FP/LR
1333   //
1334   // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1335   // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1336 
1337   // The lowering assumes that FP/LR is present, and so the offsets of
1338   // the formal arguments start at 8. If FP/LR is not there we need to
1339   // reduce the offset by 8.
1340   if (Offset > 0 && !HasFP)
1341     Offset -= 8;
1342 
1343   if (UseFP)
1344     FrameReg = FP;
1345   else if (UseAP)
1346     FrameReg = AP;
1347   else
1348     FrameReg = SP;
1349 
1350   // Calculate the actual offset in the instruction. If there is no FP
1351   // (in other words, no allocframe), then SP will not be adjusted (i.e.
1352   // there will be no SP -= FrameSize), so the frame size should not be
1353   // added to the calculated offset.
1354   int RealOffset = Offset;
1355   if (!UseFP && !UseAP)
1356     RealOffset = FrameSize+Offset;
1357   return RealOffset;
1358 }
1359 
1360 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1361       const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1362       bool &PrologueStubs) const {
1363   if (CSI.empty())
1364     return true;
1365 
1366   MachineBasicBlock::iterator MI = MBB.begin();
1367   PrologueStubs = false;
1368   MachineFunction &MF = *MBB.getParent();
1369   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1370   auto &HII = *HST.getInstrInfo();
1371 
1372   if (useSpillFunction(MF, CSI)) {
1373     PrologueStubs = true;
1374     unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
1375     bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1376     const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
1377                                                StkOvrFlowEnabled);
1378     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1379     bool IsPIC = HTM.isPositionIndependent();
1380     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1381 
1382     // Call spill function.
1383     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1384     unsigned SpillOpc;
1385     if (StkOvrFlowEnabled) {
1386       if (LongCalls)
1387         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1388                          : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
1389       else
1390         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1391                          : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1392     } else {
1393       if (LongCalls)
1394         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1395                          : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
1396       else
1397         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1398                          : Hexagon::SAVE_REGISTERS_CALL_V4;
1399     }
1400 
1401     MachineInstr *SaveRegsCall =
1402         BuildMI(MBB, MI, DL, HII.get(SpillOpc))
1403           .addExternalSymbol(SpillFun);
1404 
1405     // Add callee-saved registers as use.
1406     addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
1407     // Add live in registers.
1408     for (unsigned I = 0; I < CSI.size(); ++I)
1409       MBB.addLiveIn(CSI[I].getReg());
1410     return true;
1411   }
1412 
1413   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1414     unsigned Reg = CSI[i].getReg();
1415     // Add live in registers. We treat eh_return callee saved register r0 - r3
1416     // specially. They are not really callee saved registers as they are not
1417     // supposed to be killed.
1418     bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1419     int FI = CSI[i].getFrameIdx();
1420     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1421     HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
1422     if (IsKill)
1423       MBB.addLiveIn(Reg);
1424   }
1425   return true;
1426 }
1427 
1428 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1429       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1430   if (CSI.empty())
1431     return false;
1432 
1433   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1434   MachineFunction &MF = *MBB.getParent();
1435   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1436   auto &HII = *HST.getInstrInfo();
1437 
1438   if (useRestoreFunction(MF, CSI)) {
1439     bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1440     unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
1441     SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1442     const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
1443     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1444     bool IsPIC = HTM.isPositionIndependent();
1445     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1446 
1447     // Call spill function.
1448     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1449                                   : MBB.findDebugLoc(MBB.end());
1450     MachineInstr *DeallocCall = nullptr;
1451 
1452     if (HasTC) {
1453       unsigned RetOpc;
1454       if (LongCalls)
1455         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1456                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
1457       else
1458         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1459                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1460       DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
1461           .addExternalSymbol(RestoreFn);
1462     } else {
1463       // The block has a return.
1464       MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1465       assert(It->isReturn() && std::next(It) == MBB.end());
1466       unsigned RetOpc;
1467       if (LongCalls)
1468         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1469                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
1470       else
1471         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1472                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1473       DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
1474           .addExternalSymbol(RestoreFn);
1475       // Transfer the function live-out registers.
1476       DeallocCall->copyImplicitOps(MF, *It);
1477     }
1478     addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
1479     return true;
1480   }
1481 
1482   for (unsigned i = 0; i < CSI.size(); ++i) {
1483     unsigned Reg = CSI[i].getReg();
1484     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1485     int FI = CSI[i].getFrameIdx();
1486     HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
1487   }
1488 
1489   return true;
1490 }
1491 
1492 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1493     MachineFunction &MF, MachineBasicBlock &MBB,
1494     MachineBasicBlock::iterator I) const {
1495   MachineInstr &MI = *I;
1496   unsigned Opc = MI.getOpcode();
1497   (void)Opc; // Silence compiler warning.
1498   assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1499          "Cannot handle this call frame pseudo instruction");
1500   return MBB.erase(I);
1501 }
1502 
1503 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1504     MachineFunction &MF, RegScavenger *RS) const {
1505   // If this function has uses aligned stack and also has variable sized stack
1506   // objects, then we need to map all spill slots to fixed positions, so that
1507   // they can be accessed through FP. Otherwise they would have to be accessed
1508   // via AP, which may not be available at the particular place in the program.
1509   MachineFrameInfo &MFI = MF.getFrameInfo();
1510   bool HasAlloca = MFI.hasVarSizedObjects();
1511   bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign());
1512 
1513   if (!HasAlloca || !NeedsAlign)
1514     return;
1515 
1516   SmallSet<int, 4> DealignSlots;
1517   unsigned LFS = MFI.getLocalFrameSize();
1518   for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
1519     if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i))
1520       continue;
1521     unsigned S = MFI.getObjectSize(i);
1522     // Reduce the alignment to at most 8. This will require unaligned vector
1523     // stores if they happen here.
1524     Align A = std::max(MFI.getObjectAlign(i), Align(8));
1525     MFI.setObjectAlignment(i, Align(8));
1526     LFS = alignTo(LFS+S, A);
1527     MFI.mapLocalFrameObject(i, -static_cast<int64_t>(LFS));
1528     DealignSlots.insert(i);
1529   }
1530 
1531   MFI.setLocalFrameSize(LFS);
1532   Align A = MFI.getLocalFrameMaxAlign();
1533   assert(A <= 8 && "Unexpected local frame alignment");
1534   if (A == 1)
1535     MFI.setLocalFrameMaxAlign(Align(8));
1536   MFI.setUseLocalStackAllocationBlock(true);
1537 
1538   // Go over all MachineMemOperands in the code, and change the ones that
1539   // refer to the dealigned stack slots to reflect the new alignment.
1540   if (!DealignSlots.empty()) {
1541     for (MachineBasicBlock &BB : MF) {
1542       for (MachineInstr &MI : BB) {
1543         bool KeepOld = true;
1544         ArrayRef<MachineMemOperand*> memops = MI.memoperands();
1545         SmallVector<MachineMemOperand*,1> new_memops;
1546         for (MachineMemOperand *MMO : memops) {
1547           auto *PV = MMO->getPseudoValue();
1548           if (auto *FS = dyn_cast_or_null<FixedStackPseudoSourceValue>(PV)) {
1549             int FI = FS->getFrameIndex();
1550             if (DealignSlots.count(FI)) {
1551               auto *NewMMO = MF.getMachineMemOperand(
1552                   MMO->getPointerInfo(), MMO->getFlags(), MMO->getSize(),
1553                   MFI.getObjectAlign(FI), MMO->getAAInfo(), MMO->getRanges(),
1554                   MMO->getSyncScopeID(), MMO->getOrdering(),
1555                   MMO->getFailureOrdering());
1556               new_memops.push_back(NewMMO);
1557               KeepOld = false;
1558               continue;
1559             }
1560           }
1561           new_memops.push_back(MMO);
1562         }
1563         if (!KeepOld)
1564           MI.setMemRefs(MF, new_memops);
1565       }
1566     }
1567   }
1568 
1569   // Set the physical aligned-stack base address register.
1570   unsigned AP = 0;
1571   if (const MachineInstr *AI = getAlignaInstr(MF))
1572     AP = AI->getOperand(0).getReg();
1573   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1574   HMFI.setStackAlignBasePhysReg(AP);
1575 }
1576 
1577 /// Returns true if there are no caller-saved registers available in class RC.
1578 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1579       const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1580   MachineRegisterInfo &MRI = MF.getRegInfo();
1581 
1582   auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
1583     for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1584       if (MRI.isPhysRegUsed(*AI))
1585         return true;
1586     return false;
1587   };
1588 
1589   // Check for an unused caller-saved register. Callee-saved registers
1590   // have become pristine by now.
1591   for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
1592     if (!IsUsed(*P))
1593       return false;
1594 
1595   // All caller-saved registers are used.
1596   return true;
1597 }
1598 
1599 #ifndef NDEBUG
1600 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1601   dbgs() << '{';
1602   for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1603     unsigned R = x;
1604     dbgs() << ' ' << printReg(R, &TRI);
1605   }
1606   dbgs() << " }";
1607 }
1608 #endif
1609 
1610 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1611       const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1612   LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
1613   MachineFrameInfo &MFI = MF.getFrameInfo();
1614   BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1615 
1616   // Generate a set of unique, callee-saved registers (SRegs), where each
1617   // register in the set is maximal in terms of sub-/super-register relation,
1618   // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1619 
1620   // (1) For each callee-saved register, add that register and all of its
1621   // sub-registers to SRegs.
1622   LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1623   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1624     unsigned R = CSI[i].getReg();
1625     LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
1626     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1627       SRegs[*SR] = true;
1628   }
1629   LLVM_DEBUG(dbgs() << " }\n");
1630   LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
1631              dbgs() << "\n");
1632 
1633   // (2) For each reserved register, remove that register and all of its
1634   // sub- and super-registers from SRegs.
1635   BitVector Reserved = TRI->getReservedRegs(MF);
1636   for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1637     unsigned R = x;
1638     for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1639       SRegs[*SR] = false;
1640   }
1641   LLVM_DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI);
1642              dbgs() << "\n");
1643   LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
1644              dbgs() << "\n");
1645 
1646   // (3) Collect all registers that have at least one sub-register in SRegs,
1647   // and also have no sub-registers that are reserved. These will be the can-
1648   // didates for saving as a whole instead of their individual sub-registers.
1649   // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1650   BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1651   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1652     unsigned R = x;
1653     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
1654       TmpSup[*SR] = true;
1655   }
1656   for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1657     unsigned R = x;
1658     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
1659       if (!Reserved[*SR])
1660         continue;
1661       TmpSup[R] = false;
1662       break;
1663     }
1664   }
1665   LLVM_DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI);
1666              dbgs() << "\n");
1667 
1668   // (4) Include all super-registers found in (3) into SRegs.
1669   SRegs |= TmpSup;
1670   LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
1671              dbgs() << "\n");
1672 
1673   // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1674   // remove R from SRegs.
1675   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1676     unsigned R = x;
1677     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
1678       if (!SRegs[*SR])
1679         continue;
1680       SRegs[R] = false;
1681       break;
1682     }
1683   }
1684   LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
1685              dbgs() << "\n");
1686 
1687   // Now, for each register that has a fixed stack slot, create the stack
1688   // object for it.
1689   CSI.clear();
1690 
1691   using SpillSlot = TargetFrameLowering::SpillSlot;
1692 
1693   unsigned NumFixed;
1694   int MinOffset = 0;  // CS offsets are negative.
1695   const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1696   for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1697     if (!SRegs[S->Reg])
1698       continue;
1699     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1700     int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
1701     MinOffset = std::min(MinOffset, S->Offset);
1702     CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1703     SRegs[S->Reg] = false;
1704   }
1705 
1706   // There can be some registers that don't have fixed slots. For example,
1707   // we need to store R0-R3 in functions with exception handling. For each
1708   // such register, create a non-fixed stack object.
1709   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1710     unsigned R = x;
1711     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1712     unsigned Size = TRI->getSpillSize(*RC);
1713     int Off = MinOffset - Size;
1714     Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign());
1715     Off &= -Alignment.value();
1716     int FI = MFI.CreateFixedSpillStackObject(Size, Off);
1717     MinOffset = std::min(MinOffset, Off);
1718     CSI.push_back(CalleeSavedInfo(R, FI));
1719     SRegs[R] = false;
1720   }
1721 
1722   LLVM_DEBUG({
1723     dbgs() << "CS information: {";
1724     for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1725       int FI = CSI[i].getFrameIdx();
1726       int Off = MFI.getObjectOffset(FI);
1727       dbgs() << ' ' << printReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
1728       if (Off >= 0)
1729         dbgs() << '+';
1730       dbgs() << Off;
1731     }
1732     dbgs() << " }\n";
1733   });
1734 
1735 #ifndef NDEBUG
1736   // Verify that all registers were handled.
1737   bool MissedReg = false;
1738   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1739     unsigned R = x;
1740     dbgs() << printReg(R, TRI) << ' ';
1741     MissedReg = true;
1742   }
1743   if (MissedReg)
1744     llvm_unreachable("...there are unhandled callee-saved registers!");
1745 #endif
1746 
1747   return true;
1748 }
1749 
1750 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1751       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1752       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1753   MachineInstr *MI = &*It;
1754   DebugLoc DL = MI->getDebugLoc();
1755   Register DstR = MI->getOperand(0).getReg();
1756   Register SrcR = MI->getOperand(1).getReg();
1757   if (!Hexagon::ModRegsRegClass.contains(DstR) ||
1758       !Hexagon::ModRegsRegClass.contains(SrcR))
1759     return false;
1760 
1761   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1762   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
1763   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
1764     .addReg(TmpR, RegState::Kill);
1765 
1766   NewRegs.push_back(TmpR);
1767   B.erase(It);
1768   return true;
1769 }
1770 
1771 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1772       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1773       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1774   MachineInstr *MI = &*It;
1775   if (!MI->getOperand(0).isFI())
1776     return false;
1777 
1778   DebugLoc DL = MI->getDebugLoc();
1779   unsigned Opc = MI->getOpcode();
1780   Register SrcR = MI->getOperand(2).getReg();
1781   bool IsKill = MI->getOperand(2).isKill();
1782   int FI = MI->getOperand(0).getIndex();
1783 
1784   // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register
1785   // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register
1786   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1787   unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1788                                                  : Hexagon::A2_tfrcrr;
1789   BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
1790     .addReg(SrcR, getKillRegState(IsKill));
1791 
1792   // S2_storeri_io FI, 0, TmpR
1793   BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
1794       .addFrameIndex(FI)
1795       .addImm(0)
1796       .addReg(TmpR, RegState::Kill)
1797       .cloneMemRefs(*MI);
1798 
1799   NewRegs.push_back(TmpR);
1800   B.erase(It);
1801   return true;
1802 }
1803 
1804 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1805       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1806       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1807   MachineInstr *MI = &*It;
1808   if (!MI->getOperand(1).isFI())
1809     return false;
1810 
1811   DebugLoc DL = MI->getDebugLoc();
1812   unsigned Opc = MI->getOpcode();
1813   Register DstR = MI->getOperand(0).getReg();
1814   int FI = MI->getOperand(1).getIndex();
1815 
1816   // TmpR = L2_loadri_io FI, 0
1817   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1818   BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
1819       .addFrameIndex(FI)
1820       .addImm(0)
1821       .cloneMemRefs(*MI);
1822 
1823   // DstR = C2_tfrrp TmpR   if DstR is a predicate register
1824   // DstR = A2_tfrrcr TmpR  if DstR is a modifier register
1825   unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1826                                                  : Hexagon::A2_tfrrcr;
1827   BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
1828     .addReg(TmpR, RegState::Kill);
1829 
1830   NewRegs.push_back(TmpR);
1831   B.erase(It);
1832   return true;
1833 }
1834 
1835 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1836       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1837       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1838   MachineInstr *MI = &*It;
1839   if (!MI->getOperand(0).isFI())
1840     return false;
1841 
1842   DebugLoc DL = MI->getDebugLoc();
1843   Register SrcR = MI->getOperand(2).getReg();
1844   bool IsKill = MI->getOperand(2).isKill();
1845   int FI = MI->getOperand(0).getIndex();
1846   auto *RC = &Hexagon::HvxVRRegClass;
1847 
1848   // Insert transfer to general vector register.
1849   //   TmpR0 = A2_tfrsi 0x01010101
1850   //   TmpR1 = V6_vandqrt Qx, TmpR0
1851   //   store FI, 0, TmpR1
1852   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1853   Register TmpR1 = MRI.createVirtualRegister(RC);
1854 
1855   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1856     .addImm(0x01010101);
1857 
1858   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1)
1859     .addReg(SrcR, getKillRegState(IsKill))
1860     .addReg(TmpR0, RegState::Kill);
1861 
1862   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1863   HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
1864   expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
1865 
1866   NewRegs.push_back(TmpR0);
1867   NewRegs.push_back(TmpR1);
1868   B.erase(It);
1869   return true;
1870 }
1871 
1872 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1873       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1874       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1875   MachineInstr *MI = &*It;
1876   if (!MI->getOperand(1).isFI())
1877     return false;
1878 
1879   DebugLoc DL = MI->getDebugLoc();
1880   Register DstR = MI->getOperand(0).getReg();
1881   int FI = MI->getOperand(1).getIndex();
1882   auto *RC = &Hexagon::HvxVRRegClass;
1883 
1884   // TmpR0 = A2_tfrsi 0x01010101
1885   // TmpR1 = load FI, 0
1886   // DstR = V6_vandvrt TmpR1, TmpR0
1887   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1888   Register TmpR1 = MRI.createVirtualRegister(RC);
1889 
1890   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1891     .addImm(0x01010101);
1892   MachineFunction &MF = *B.getParent();
1893   auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1894   HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
1895   expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
1896 
1897   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR)
1898     .addReg(TmpR1, RegState::Kill)
1899     .addReg(TmpR0, RegState::Kill);
1900 
1901   NewRegs.push_back(TmpR0);
1902   NewRegs.push_back(TmpR1);
1903   B.erase(It);
1904   return true;
1905 }
1906 
1907 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1908       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1909       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1910   MachineFunction &MF = *B.getParent();
1911   auto &MFI = MF.getFrameInfo();
1912   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1913   MachineInstr *MI = &*It;
1914   if (!MI->getOperand(0).isFI())
1915     return false;
1916 
1917   // It is possible that the double vector being stored is only partially
1918   // defined. From the point of view of the liveness tracking, it is ok to
1919   // store it as a whole, but if we break it up we may end up storing a
1920   // register that is entirely undefined.
1921   LivePhysRegs LPR(HRI);
1922   LPR.addLiveIns(B);
1923   SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
1924   for (auto R = B.begin(); R != It; ++R) {
1925     Clobbers.clear();
1926     LPR.stepForward(*R, Clobbers);
1927   }
1928 
1929   DebugLoc DL = MI->getDebugLoc();
1930   Register SrcR = MI->getOperand(2).getReg();
1931   Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
1932   Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
1933   bool IsKill = MI->getOperand(2).isKill();
1934   int FI = MI->getOperand(0).getIndex();
1935   bool NeedsAligna = needsAligna(MF);
1936 
1937   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1938   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1939   Align HasAlign = MFI.getObjectAlign(FI);
1940   unsigned StoreOpc;
1941 
1942   auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1943     return !NeedsAligna && (NeedAlign <= HasAlign);
1944   };
1945 
1946   // Store low part.
1947   if (LPR.contains(SrcLo)) {
1948     StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1949                                                : Hexagon::V6_vS32Ub_ai;
1950     BuildMI(B, It, DL, HII.get(StoreOpc))
1951         .addFrameIndex(FI)
1952         .addImm(0)
1953         .addReg(SrcLo, getKillRegState(IsKill))
1954         .cloneMemRefs(*MI);
1955   }
1956 
1957   // Store high part.
1958   if (LPR.contains(SrcHi)) {
1959     StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1960                                                : Hexagon::V6_vS32Ub_ai;
1961     BuildMI(B, It, DL, HII.get(StoreOpc))
1962         .addFrameIndex(FI)
1963         .addImm(Size)
1964         .addReg(SrcHi, getKillRegState(IsKill))
1965         .cloneMemRefs(*MI);
1966   }
1967 
1968   B.erase(It);
1969   return true;
1970 }
1971 
1972 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1973       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1974       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1975   MachineFunction &MF = *B.getParent();
1976   auto &MFI = MF.getFrameInfo();
1977   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1978   MachineInstr *MI = &*It;
1979   if (!MI->getOperand(1).isFI())
1980     return false;
1981 
1982   DebugLoc DL = MI->getDebugLoc();
1983   Register DstR = MI->getOperand(0).getReg();
1984   Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
1985   Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
1986   int FI = MI->getOperand(1).getIndex();
1987   bool NeedsAligna = needsAligna(MF);
1988 
1989   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1990   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1991   Align HasAlign = MFI.getObjectAlign(FI);
1992   unsigned LoadOpc;
1993 
1994   auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1995     return !NeedsAligna && (NeedAlign <= HasAlign);
1996   };
1997 
1998   // Load low part.
1999   LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2000                                             : Hexagon::V6_vL32Ub_ai;
2001   BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
2002       .addFrameIndex(FI)
2003       .addImm(0)
2004       .cloneMemRefs(*MI);
2005 
2006   // Load high part.
2007   LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2008                                             : Hexagon::V6_vL32Ub_ai;
2009   BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
2010       .addFrameIndex(FI)
2011       .addImm(Size)
2012       .cloneMemRefs(*MI);
2013 
2014   B.erase(It);
2015   return true;
2016 }
2017 
2018 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
2019       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2020       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2021   MachineFunction &MF = *B.getParent();
2022   auto &MFI = MF.getFrameInfo();
2023   MachineInstr *MI = &*It;
2024   if (!MI->getOperand(0).isFI())
2025     return false;
2026 
2027   bool NeedsAligna = needsAligna(MF);
2028   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2029   DebugLoc DL = MI->getDebugLoc();
2030   Register SrcR = MI->getOperand(2).getReg();
2031   bool IsKill = MI->getOperand(2).isKill();
2032   int FI = MI->getOperand(0).getIndex();
2033 
2034   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2035   Align HasAlign = MFI.getObjectAlign(FI);
2036   bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2037   unsigned StoreOpc = UseAligned ? Hexagon::V6_vS32b_ai
2038                                  : Hexagon::V6_vS32Ub_ai;
2039   BuildMI(B, It, DL, HII.get(StoreOpc))
2040       .addFrameIndex(FI)
2041       .addImm(0)
2042       .addReg(SrcR, getKillRegState(IsKill))
2043       .cloneMemRefs(*MI);
2044 
2045   B.erase(It);
2046   return true;
2047 }
2048 
2049 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
2050       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2051       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2052   MachineFunction &MF = *B.getParent();
2053   auto &MFI = MF.getFrameInfo();
2054   MachineInstr *MI = &*It;
2055   if (!MI->getOperand(1).isFI())
2056     return false;
2057 
2058   bool NeedsAligna = needsAligna(MF);
2059   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2060   DebugLoc DL = MI->getDebugLoc();
2061   Register DstR = MI->getOperand(0).getReg();
2062   int FI = MI->getOperand(1).getIndex();
2063 
2064   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2065   Align HasAlign = MFI.getObjectAlign(FI);
2066   bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2067   unsigned LoadOpc = UseAligned ? Hexagon::V6_vL32b_ai
2068                                 : Hexagon::V6_vL32Ub_ai;
2069   BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
2070       .addFrameIndex(FI)
2071       .addImm(0)
2072       .cloneMemRefs(*MI);
2073 
2074   B.erase(It);
2075   return true;
2076 }
2077 
2078 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
2079       SmallVectorImpl<unsigned> &NewRegs) const {
2080   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
2081   MachineRegisterInfo &MRI = MF.getRegInfo();
2082   bool Changed = false;
2083 
2084   for (auto &B : MF) {
2085     // Traverse the basic block.
2086     MachineBasicBlock::iterator NextI;
2087     for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
2088       MachineInstr *MI = &*I;
2089       NextI = std::next(I);
2090       unsigned Opc = MI->getOpcode();
2091 
2092       switch (Opc) {
2093         case TargetOpcode::COPY:
2094           Changed |= expandCopy(B, I, MRI, HII, NewRegs);
2095           break;
2096         case Hexagon::STriw_pred:
2097         case Hexagon::STriw_ctr:
2098           Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
2099           break;
2100         case Hexagon::LDriw_pred:
2101         case Hexagon::LDriw_ctr:
2102           Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
2103           break;
2104         case Hexagon::PS_vstorerq_ai:
2105           Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
2106           break;
2107         case Hexagon::PS_vloadrq_ai:
2108           Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
2109           break;
2110         case Hexagon::PS_vloadrw_ai:
2111           Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
2112           break;
2113         case Hexagon::PS_vstorerw_ai:
2114           Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
2115           break;
2116       }
2117     }
2118   }
2119 
2120   return Changed;
2121 }
2122 
2123 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
2124                                                 BitVector &SavedRegs,
2125                                                 RegScavenger *RS) const {
2126   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2127 
2128   SavedRegs.resize(HRI.getNumRegs());
2129 
2130   // If we have a function containing __builtin_eh_return we want to spill and
2131   // restore all callee saved registers. Pretend that they are used.
2132   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2133     for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
2134       SavedRegs.set(*R);
2135 
2136   // Replace predicate register pseudo spill code.
2137   SmallVector<unsigned,8> NewRegs;
2138   expandSpillMacros(MF, NewRegs);
2139   if (OptimizeSpillSlots && !isOptNone(MF))
2140     optimizeSpillSlots(MF, NewRegs);
2141 
2142   // We need to reserve a spill slot if scavenging could potentially require
2143   // spilling a scavenged register.
2144   if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
2145     MachineFrameInfo &MFI = MF.getFrameInfo();
2146     MachineRegisterInfo &MRI = MF.getRegInfo();
2147     SetVector<const TargetRegisterClass*> SpillRCs;
2148     // Reserve an int register in any case, because it could be used to hold
2149     // the stack offset in case it does not fit into a spill instruction.
2150     SpillRCs.insert(&Hexagon::IntRegsRegClass);
2151 
2152     for (unsigned VR : NewRegs)
2153       SpillRCs.insert(MRI.getRegClass(VR));
2154 
2155     for (auto *RC : SpillRCs) {
2156       if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
2157         continue;
2158       unsigned Num = 1;
2159       switch (RC->getID()) {
2160         case Hexagon::IntRegsRegClassID:
2161           Num = NumberScavengerSlots;
2162           break;
2163         case Hexagon::HvxQRRegClassID:
2164           Num = 2; // Vector predicate spills also need a vector register.
2165           break;
2166       }
2167       unsigned S = HRI.getSpillSize(*RC);
2168       Align A = HRI.getSpillAlign(*RC);
2169       for (unsigned i = 0; i < Num; i++) {
2170         int NewFI = MFI.CreateSpillStackObject(S, A);
2171         RS->addScavengingFrameIndex(NewFI);
2172       }
2173     }
2174   }
2175 
2176   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2177 }
2178 
2179 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
2180       HexagonBlockRanges::IndexRange &FIR,
2181       HexagonBlockRanges::InstrIndexMap &IndexMap,
2182       HexagonBlockRanges::RegToRangeMap &DeadMap,
2183       const TargetRegisterClass *RC) const {
2184   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2185   auto &MRI = MF.getRegInfo();
2186 
2187   auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
2188     auto F = DeadMap.find({Reg,0});
2189     if (F == DeadMap.end())
2190       return false;
2191     for (auto &DR : F->second)
2192       if (DR.contains(FIR))
2193         return true;
2194     return false;
2195   };
2196 
2197   for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
2198     bool Dead = true;
2199     for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
2200       if (isDead(R.Reg))
2201         continue;
2202       Dead = false;
2203       break;
2204     }
2205     if (Dead)
2206       return Reg;
2207   }
2208   return 0;
2209 }
2210 
2211 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
2212       SmallVectorImpl<unsigned> &VRegs) const {
2213   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2214   auto &HII = *HST.getInstrInfo();
2215   auto &HRI = *HST.getRegisterInfo();
2216   auto &MRI = MF.getRegInfo();
2217   HexagonBlockRanges HBR(MF);
2218 
2219   using BlockIndexMap =
2220       std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
2221   using BlockRangeMap =
2222       std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
2223   using IndexType = HexagonBlockRanges::IndexType;
2224 
2225   struct SlotInfo {
2226     BlockRangeMap Map;
2227     unsigned Size = 0;
2228     const TargetRegisterClass *RC = nullptr;
2229 
2230     SlotInfo() = default;
2231   };
2232 
2233   BlockIndexMap BlockIndexes;
2234   SmallSet<int,4> BadFIs;
2235   std::map<int,SlotInfo> FIRangeMap;
2236 
2237   // Accumulate register classes: get a common class for a pre-existing
2238   // class HaveRC and a new class NewRC. Return nullptr if a common class
2239   // cannot be found, otherwise return the resulting class. If HaveRC is
2240   // nullptr, assume that it is still unset.
2241   auto getCommonRC =
2242       [](const TargetRegisterClass *HaveRC,
2243          const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
2244     if (HaveRC == nullptr || HaveRC == NewRC)
2245       return NewRC;
2246     // Different classes, both non-null. Pick the more general one.
2247     if (HaveRC->hasSubClassEq(NewRC))
2248       return HaveRC;
2249     if (NewRC->hasSubClassEq(HaveRC))
2250       return NewRC;
2251     return nullptr;
2252   };
2253 
2254   // Scan all blocks in the function. Check all occurrences of frame indexes,
2255   // and collect relevant information.
2256   for (auto &B : MF) {
2257     std::map<int,IndexType> LastStore, LastLoad;
2258     // Emplace appears not to be supported in gcc 4.7.2-4.
2259     //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
2260     auto P = BlockIndexes.insert(
2261                 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
2262     auto &IndexMap = P.first->second;
2263     LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
2264                       << IndexMap << '\n');
2265 
2266     for (auto &In : B) {
2267       int LFI, SFI;
2268       bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
2269       bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
2270       if (Load && Store) {
2271         // If it's both a load and a store, then we won't handle it.
2272         BadFIs.insert(LFI);
2273         BadFIs.insert(SFI);
2274         continue;
2275       }
2276       // Check for register classes of the register used as the source for
2277       // the store, and the register used as the destination for the load.
2278       // Also, only accept base+imm_offset addressing modes. Other addressing
2279       // modes can have side-effects (post-increments, etc.). For stack
2280       // slots they are very unlikely, so there is not much loss due to
2281       // this restriction.
2282       if (Load || Store) {
2283         int TFI = Load ? LFI : SFI;
2284         unsigned AM = HII.getAddrMode(In);
2285         SlotInfo &SI = FIRangeMap[TFI];
2286         bool Bad = (AM != HexagonII::BaseImmOffset);
2287         if (!Bad) {
2288           // If the addressing mode is ok, check the register class.
2289           unsigned OpNum = Load ? 0 : 2;
2290           auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
2291           RC = getCommonRC(SI.RC, RC);
2292           if (RC == nullptr)
2293             Bad = true;
2294           else
2295             SI.RC = RC;
2296         }
2297         if (!Bad) {
2298           // Check sizes.
2299           unsigned S = HII.getMemAccessSize(In);
2300           if (SI.Size != 0 && SI.Size != S)
2301             Bad = true;
2302           else
2303             SI.Size = S;
2304         }
2305         if (!Bad) {
2306           for (auto *Mo : In.memoperands()) {
2307             if (!Mo->isVolatile() && !Mo->isAtomic())
2308               continue;
2309             Bad = true;
2310             break;
2311           }
2312         }
2313         if (Bad)
2314           BadFIs.insert(TFI);
2315       }
2316 
2317       // Locate uses of frame indices.
2318       for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
2319         const MachineOperand &Op = In.getOperand(i);
2320         if (!Op.isFI())
2321           continue;
2322         int FI = Op.getIndex();
2323         // Make sure that the following operand is an immediate and that
2324         // it is 0. This is the offset in the stack object.
2325         if (i+1 >= n || !In.getOperand(i+1).isImm() ||
2326             In.getOperand(i+1).getImm() != 0)
2327           BadFIs.insert(FI);
2328         if (BadFIs.count(FI))
2329           continue;
2330 
2331         IndexType Index = IndexMap.getIndex(&In);
2332         if (Load) {
2333           if (LastStore[FI] == IndexType::None)
2334             LastStore[FI] = IndexType::Entry;
2335           LastLoad[FI] = Index;
2336         } else if (Store) {
2337           HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2338           if (LastStore[FI] != IndexType::None)
2339             RL.add(LastStore[FI], LastLoad[FI], false, false);
2340           else if (LastLoad[FI] != IndexType::None)
2341             RL.add(IndexType::Entry, LastLoad[FI], false, false);
2342           LastLoad[FI] = IndexType::None;
2343           LastStore[FI] = Index;
2344         } else {
2345           BadFIs.insert(FI);
2346         }
2347       }
2348     }
2349 
2350     for (auto &I : LastLoad) {
2351       IndexType LL = I.second;
2352       if (LL == IndexType::None)
2353         continue;
2354       auto &RL = FIRangeMap[I.first].Map[&B];
2355       IndexType &LS = LastStore[I.first];
2356       if (LS != IndexType::None)
2357         RL.add(LS, LL, false, false);
2358       else
2359         RL.add(IndexType::Entry, LL, false, false);
2360       LS = IndexType::None;
2361     }
2362     for (auto &I : LastStore) {
2363       IndexType LS = I.second;
2364       if (LS == IndexType::None)
2365         continue;
2366       auto &RL = FIRangeMap[I.first].Map[&B];
2367       RL.add(LS, IndexType::None, false, false);
2368     }
2369   }
2370 
2371   LLVM_DEBUG({
2372     for (auto &P : FIRangeMap) {
2373       dbgs() << "fi#" << P.first;
2374       if (BadFIs.count(P.first))
2375         dbgs() << " (bad)";
2376       dbgs() << "  RC: ";
2377       if (P.second.RC != nullptr)
2378         dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2379       else
2380         dbgs() << "<null>\n";
2381       for (auto &R : P.second.Map)
2382         dbgs() << "  " << printMBBReference(*R.first) << " { " << R.second
2383                << "}\n";
2384     }
2385   });
2386 
2387   // When a slot is loaded from in a block without being stored to in the
2388   // same block, it is live-on-entry to this block. To avoid CFG analysis,
2389   // consider this slot to be live-on-exit from all blocks.
2390   SmallSet<int,4> LoxFIs;
2391 
2392   std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2393 
2394   for (auto &P : FIRangeMap) {
2395     // P = pair(FI, map: BB->RangeList)
2396     if (BadFIs.count(P.first))
2397       continue;
2398     for (auto &B : MF) {
2399       auto F = P.second.Map.find(&B);
2400       // F = pair(BB, RangeList)
2401       if (F == P.second.Map.end() || F->second.empty())
2402         continue;
2403       HexagonBlockRanges::IndexRange &IR = F->second.front();
2404       if (IR.start() == IndexType::Entry)
2405         LoxFIs.insert(P.first);
2406       BlockFIMap[&B].push_back(P.first);
2407     }
2408   }
2409 
2410   LLVM_DEBUG({
2411     dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2412     for (auto &P : BlockFIMap) {
2413       auto &FIs = P.second;
2414       if (FIs.empty())
2415         continue;
2416       dbgs() << "  " << printMBBReference(*P.first) << ": {";
2417       for (auto I : FIs) {
2418         dbgs() << " fi#" << I;
2419         if (LoxFIs.count(I))
2420           dbgs() << '*';
2421       }
2422       dbgs() << " }\n";
2423     }
2424   });
2425 
2426 #ifndef NDEBUG
2427   bool HasOptLimit = SpillOptMax.getPosition();
2428 #endif
2429 
2430   // eliminate loads, when all loads eliminated, eliminate all stores.
2431   for (auto &B : MF) {
2432     auto F = BlockIndexes.find(&B);
2433     assert(F != BlockIndexes.end());
2434     HexagonBlockRanges::InstrIndexMap &IM = F->second;
2435     HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
2436     HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
2437     LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
2438                       << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2439 
2440     for (auto FI : BlockFIMap[&B]) {
2441       if (BadFIs.count(FI))
2442         continue;
2443       LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2444       HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2445       for (auto &Range : RL) {
2446         LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2447         if (!IndexType::isInstr(Range.start()) ||
2448             !IndexType::isInstr(Range.end()))
2449           continue;
2450         MachineInstr &SI = *IM.getInstr(Range.start());
2451         MachineInstr &EI = *IM.getInstr(Range.end());
2452         assert(SI.mayStore() && "Unexpected start instruction");
2453         assert(EI.mayLoad() && "Unexpected end instruction");
2454         MachineOperand &SrcOp = SI.getOperand(2);
2455 
2456         HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
2457                                                   SrcOp.getSubReg() };
2458         auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
2459         // The this-> is needed to unconfuse MSVC.
2460         unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
2461         LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
2462                           << '\n');
2463         if (FoundR == 0)
2464           continue;
2465 #ifndef NDEBUG
2466         if (HasOptLimit) {
2467           if (SpillOptCount >= SpillOptMax)
2468             return;
2469           SpillOptCount++;
2470         }
2471 #endif
2472 
2473         // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2474         MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
2475         MachineInstr *CopyIn = nullptr;
2476         if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2477           const DebugLoc &DL = SI.getDebugLoc();
2478           CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
2479                        .add(SrcOp);
2480         }
2481 
2482         ++StartIt;
2483         // Check if this is a last store and the FI is live-on-exit.
2484         if (LoxFIs.count(FI) && (&Range == &RL.back())) {
2485           // Update store's source register.
2486           if (unsigned SR = SrcOp.getSubReg())
2487             SrcOp.setReg(HRI.getSubReg(FoundR, SR));
2488           else
2489             SrcOp.setReg(FoundR);
2490           SrcOp.setSubReg(0);
2491           // We are keeping this register live.
2492           SrcOp.setIsKill(false);
2493         } else {
2494           B.erase(&SI);
2495           IM.replaceInstr(&SI, CopyIn);
2496         }
2497 
2498         auto EndIt = std::next(EI.getIterator());
2499         for (auto It = StartIt; It != EndIt; It = NextIt) {
2500           MachineInstr &MI = *It;
2501           NextIt = std::next(It);
2502           int TFI;
2503           if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
2504             continue;
2505           Register DstR = MI.getOperand(0).getReg();
2506           assert(MI.getOperand(0).getSubReg() == 0);
2507           MachineInstr *CopyOut = nullptr;
2508           if (DstR != FoundR) {
2509             DebugLoc DL = MI.getDebugLoc();
2510             unsigned MemSize = HII.getMemAccessSize(MI);
2511             assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2512             unsigned CopyOpc = TargetOpcode::COPY;
2513             if (HII.isSignExtendingLoad(MI))
2514               CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2515             else if (HII.isZeroExtendingLoad(MI))
2516               CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2517             CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
2518                         .addReg(FoundR, getKillRegState(&MI == &EI));
2519           }
2520           IM.replaceInstr(&MI, CopyOut);
2521           B.erase(It);
2522         }
2523 
2524         // Update the dead map.
2525         HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
2526         for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
2527           DM[RR].subtract(Range);
2528       } // for Range in range list
2529     }
2530   }
2531 }
2532 
2533 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2534       const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
2535   MachineBasicBlock &MB = *AI->getParent();
2536   DebugLoc DL = AI->getDebugLoc();
2537   unsigned A = AI->getOperand(2).getImm();
2538 
2539   // Have
2540   //    Rd  = alloca Rs, #A
2541   //
2542   // If Rs and Rd are different registers, use this sequence:
2543   //    Rd  = sub(r29, Rs)
2544   //    r29 = sub(r29, Rs)
2545   //    Rd  = and(Rd, #-A)    ; if necessary
2546   //    r29 = and(r29, #-A)   ; if necessary
2547   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2548   // otherwise, do
2549   //    Rd  = sub(r29, Rs)
2550   //    Rd  = and(Rd, #-A)    ; if necessary
2551   //    r29 = Rd
2552   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2553 
2554   MachineOperand &RdOp = AI->getOperand(0);
2555   MachineOperand &RsOp = AI->getOperand(1);
2556   unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
2557 
2558   // Rd = sub(r29, Rs)
2559   BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
2560       .addReg(SP)
2561       .addReg(Rs);
2562   if (Rs != Rd) {
2563     // r29 = sub(r29, Rs)
2564     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
2565         .addReg(SP)
2566         .addReg(Rs);
2567   }
2568   if (A > 8) {
2569     // Rd  = and(Rd, #-A)
2570     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
2571         .addReg(Rd)
2572         .addImm(-int64_t(A));
2573     if (Rs != Rd)
2574       BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
2575           .addReg(SP)
2576           .addImm(-int64_t(A));
2577   }
2578   if (Rs == Rd) {
2579     // r29 = Rd
2580     BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
2581         .addReg(Rd);
2582   }
2583   if (CF > 0) {
2584     // Rd = add(Rd, #CF)
2585     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
2586         .addReg(Rd)
2587         .addImm(CF);
2588   }
2589 }
2590 
2591 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2592   const MachineFrameInfo &MFI = MF.getFrameInfo();
2593   if (!MFI.hasVarSizedObjects())
2594     return false;
2595   // Do not check for max stack object alignment here, because the stack
2596   // may not be complete yet. Assume that we will need PS_aligna if there
2597   // are variable-sized objects.
2598   return true;
2599 }
2600 
2601 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2602       const MachineFunction &MF) const {
2603   for (auto &B : MF)
2604     for (auto &I : B)
2605       if (I.getOpcode() == Hexagon::PS_aligna)
2606         return &I;
2607   return nullptr;
2608 }
2609 
2610 /// Adds all callee-saved registers as implicit uses or defs to the
2611 /// instruction.
2612 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2613       const CSIVect &CSI, bool IsDef, bool IsKill) const {
2614   // Add the callee-saved registers as implicit uses.
2615   for (auto &R : CSI)
2616     MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
2617 }
2618 
2619 /// Determine whether the callee-saved register saves and restores should
2620 /// be generated via inline code. If this function returns "true", inline
2621 /// code will be generated. If this function returns "false", additional
2622 /// checks are performed, which may still lead to the inline code.
2623 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
2624       const CSIVect &CSI) const {
2625   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl())
2626     return true;
2627   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2628     return true;
2629   if (!hasFP(MF))
2630     return true;
2631   if (!isOptSize(MF) && !isMinSize(MF))
2632     if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
2633       return true;
2634 
2635   // Check if CSI only has double registers, and if the registers form
2636   // a contiguous block starting from D8.
2637   BitVector Regs(Hexagon::NUM_TARGET_REGS);
2638   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
2639     unsigned R = CSI[i].getReg();
2640     if (!Hexagon::DoubleRegsRegClass.contains(R))
2641       return true;
2642     Regs[R] = true;
2643   }
2644   int F = Regs.find_first();
2645   if (F != Hexagon::D8)
2646     return true;
2647   while (F >= 0) {
2648     int N = Regs.find_next(F);
2649     if (N >= 0 && N != F+1)
2650       return true;
2651     F = N;
2652   }
2653 
2654   return false;
2655 }
2656 
2657 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
2658       const CSIVect &CSI) const {
2659   if (shouldInlineCSR(MF, CSI))
2660     return false;
2661   unsigned NumCSI = CSI.size();
2662   if (NumCSI <= 1)
2663     return false;
2664 
2665   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2666                                      : SpillFuncThreshold;
2667   return Threshold < NumCSI;
2668 }
2669 
2670 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
2671       const CSIVect &CSI) const {
2672   if (shouldInlineCSR(MF, CSI))
2673     return false;
2674   // The restore functions do a bit more than just restoring registers.
2675   // The non-returning versions will go back directly to the caller's
2676   // caller, others will clean up the stack frame in preparation for
2677   // a tail call. Using them can still save code size even if only one
2678   // register is getting restores. Make the decision based on -Oz:
2679   // using -Os will use inline restore for a single register.
2680   if (isMinSize(MF))
2681     return true;
2682   unsigned NumCSI = CSI.size();
2683   if (NumCSI <= 1)
2684     return false;
2685 
2686   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2687                                      : SpillFuncThreshold;
2688   return Threshold < NumCSI;
2689 }
2690 
2691 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
2692   unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
2693   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2694   // A fairly simplistic guess as to whether a potential load/store to a
2695   // stack location could require an extra register.
2696   if (HST.useHVXOps() && StackSize > 256)
2697     return true;
2698 
2699   // Check if the function has store-immediate instructions that access
2700   // the stack. Since the offset field is not extendable, if the stack
2701   // size exceeds the offset limit (6 bits, shifted), the stores will
2702   // require a new base register.
2703   bool HasImmStack = false;
2704   unsigned MinLS = ~0u;   // Log_2 of the memory access size.
2705 
2706   for (const MachineBasicBlock &B : MF) {
2707     for (const MachineInstr &MI : B) {
2708       unsigned LS = 0;
2709       switch (MI.getOpcode()) {
2710         case Hexagon::S4_storeirit_io:
2711         case Hexagon::S4_storeirif_io:
2712         case Hexagon::S4_storeiri_io:
2713           ++LS;
2714           LLVM_FALLTHROUGH;
2715         case Hexagon::S4_storeirht_io:
2716         case Hexagon::S4_storeirhf_io:
2717         case Hexagon::S4_storeirh_io:
2718           ++LS;
2719           LLVM_FALLTHROUGH;
2720         case Hexagon::S4_storeirbt_io:
2721         case Hexagon::S4_storeirbf_io:
2722         case Hexagon::S4_storeirb_io:
2723           if (MI.getOperand(0).isFI())
2724             HasImmStack = true;
2725           MinLS = std::min(MinLS, LS);
2726           break;
2727       }
2728     }
2729   }
2730 
2731   if (HasImmStack)
2732     return !isUInt<6>(StackSize >> MinLS);
2733 
2734   return false;
2735 }
2736