xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp (revision da759cfa320d5076b075d15ff3f00ab3ba5634fd)
1 //===- HexagonExpandCondsets.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // Replace mux instructions with the corresponding legal instructions.
10 // It is meant to work post-SSA, but still on virtual registers. It was
11 // originally placed between register coalescing and machine instruction
12 // scheduler.
13 // In this place in the optimization sequence, live interval analysis had
14 // been performed, and the live intervals should be preserved. A large part
15 // of the code deals with preserving the liveness information.
16 //
17 // Liveness tracking aside, the main functionality of this pass is divided
18 // into two steps. The first step is to replace an instruction
19 //   %0 = C2_mux %1, %2, %3
20 // with a pair of conditional transfers
21 //   %0 = A2_tfrt %1, %2
22 //   %0 = A2_tfrf %1, %3
23 // It is the intention that the execution of this pass could be terminated
24 // after this step, and the code generated would be functionally correct.
25 //
26 // If the uses of the source values %1 and %2 are kills, and their
27 // definitions are predicable, then in the second step, the conditional
28 // transfers will then be rewritten as predicated instructions. E.g.
29 //   %0 = A2_or %1, %2
30 //   %3 = A2_tfrt %99, killed %0
31 // will be rewritten as
32 //   %3 = A2_port %99, %1, %2
33 //
34 // This replacement has two variants: "up" and "down". Consider this case:
35 //   %0 = A2_or %1, %2
36 //   ... [intervening instructions] ...
37 //   %3 = A2_tfrt %99, killed %0
38 // variant "up":
39 //   %3 = A2_port %99, %1, %2
40 //   ... [intervening instructions, %0->vreg3] ...
41 //   [deleted]
42 // variant "down":
43 //   [deleted]
44 //   ... [intervening instructions] ...
45 //   %3 = A2_port %99, %1, %2
46 //
47 // Both, one or none of these variants may be valid, and checks are made
48 // to rule out inapplicable variants.
49 //
50 // As an additional optimization, before either of the two steps above is
51 // executed, the pass attempts to coalesce the target register with one of
52 // the source registers, e.g. given an instruction
53 //   %3 = C2_mux %0, %1, %2
54 // %3 will be coalesced with either %1 or %2. If this succeeds,
55 // the instruction would then be (for example)
56 //   %3 = C2_mux %0, %3, %2
57 // and, under certain circumstances, this could result in only one predicated
58 // instruction:
59 //   %3 = A2_tfrf %0, %2
60 //
61 
62 // Splitting a definition of a register into two predicated transfers
63 // creates a complication in liveness tracking. Live interval computation
64 // will see both instructions as actual definitions, and will mark the
65 // first one as dead. The definition is not actually dead, and this
66 // situation will need to be fixed. For example:
67 //   dead %1 = A2_tfrt ...  ; marked as dead
68 //   %1 = A2_tfrf ...
69 //
70 // Since any of the individual predicated transfers may end up getting
71 // removed (in case it is an identity copy), some pre-existing def may
72 // be marked as dead after live interval recomputation:
73 //   dead %1 = ...          ; marked as dead
74 //   ...
75 //   %1 = A2_tfrf ...       ; if A2_tfrt is removed
76 // This case happens if %1 was used as a source in A2_tfrt, which means
77 // that is it actually live at the A2_tfrf, and so the now dead definition
78 // of %1 will need to be updated to non-dead at some point.
79 //
80 // This issue could be remedied by adding implicit uses to the predicated
81 // transfers, but this will create a problem with subsequent predication,
82 // since the transfers will no longer be possible to reorder. To avoid
83 // that, the initial splitting will not add any implicit uses. These
84 // implicit uses will be added later, after predication. The extra price,
85 // however, is that finding the locations where the implicit uses need
86 // to be added, and updating the live ranges will be more involved.
87 
88 #include "HexagonInstrInfo.h"
89 #include "HexagonRegisterInfo.h"
90 #include "llvm/ADT/DenseMap.h"
91 #include "llvm/ADT/SetVector.h"
92 #include "llvm/ADT/SmallVector.h"
93 #include "llvm/ADT/StringRef.h"
94 #include "llvm/CodeGen/LiveInterval.h"
95 #include "llvm/CodeGen/LiveIntervals.h"
96 #include "llvm/CodeGen/MachineBasicBlock.h"
97 #include "llvm/CodeGen/MachineDominators.h"
98 #include "llvm/CodeGen/MachineFunction.h"
99 #include "llvm/CodeGen/MachineFunctionPass.h"
100 #include "llvm/CodeGen/MachineInstr.h"
101 #include "llvm/CodeGen/MachineInstrBuilder.h"
102 #include "llvm/CodeGen/MachineOperand.h"
103 #include "llvm/CodeGen/MachineRegisterInfo.h"
104 #include "llvm/CodeGen/SlotIndexes.h"
105 #include "llvm/CodeGen/TargetRegisterInfo.h"
106 #include "llvm/CodeGen/TargetSubtargetInfo.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/InitializePasses.h"
110 #include "llvm/MC/LaneBitmask.h"
111 #include "llvm/Pass.h"
112 #include "llvm/Support/CommandLine.h"
113 #include "llvm/Support/Debug.h"
114 #include "llvm/Support/ErrorHandling.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include <cassert>
117 #include <iterator>
118 #include <set>
119 #include <utility>
120 
121 #define DEBUG_TYPE "expand-condsets"
122 
123 using namespace llvm;
124 
125 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
126   cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
127 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
128   cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
129 
130 namespace llvm {
131 
132   void initializeHexagonExpandCondsetsPass(PassRegistry&);
133   FunctionPass *createHexagonExpandCondsets();
134 
135 } // end namespace llvm
136 
137 namespace {
138 
139   class HexagonExpandCondsets : public MachineFunctionPass {
140   public:
141     static char ID;
142 
143     HexagonExpandCondsets() : MachineFunctionPass(ID) {
144       if (OptCoaLimit.getPosition())
145         CoaLimitActive = true, CoaLimit = OptCoaLimit;
146       if (OptTfrLimit.getPosition())
147         TfrLimitActive = true, TfrLimit = OptTfrLimit;
148       initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
149     }
150 
151     StringRef getPassName() const override { return "Hexagon Expand Condsets"; }
152 
153     void getAnalysisUsage(AnalysisUsage &AU) const override {
154       AU.addRequired<LiveIntervals>();
155       AU.addPreserved<LiveIntervals>();
156       AU.addPreserved<SlotIndexes>();
157       AU.addRequired<MachineDominatorTree>();
158       AU.addPreserved<MachineDominatorTree>();
159       MachineFunctionPass::getAnalysisUsage(AU);
160     }
161 
162     bool runOnMachineFunction(MachineFunction &MF) override;
163 
164   private:
165     const HexagonInstrInfo *HII = nullptr;
166     const TargetRegisterInfo *TRI = nullptr;
167     MachineDominatorTree *MDT;
168     MachineRegisterInfo *MRI = nullptr;
169     LiveIntervals *LIS = nullptr;
170     bool CoaLimitActive = false;
171     bool TfrLimitActive = false;
172     unsigned CoaLimit;
173     unsigned TfrLimit;
174     unsigned CoaCounter = 0;
175     unsigned TfrCounter = 0;
176 
177     struct RegisterRef {
178       RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
179           Sub(Op.getSubReg()) {}
180       RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
181 
182       bool operator== (RegisterRef RR) const {
183         return Reg == RR.Reg && Sub == RR.Sub;
184       }
185       bool operator!= (RegisterRef RR) const { return !operator==(RR); }
186       bool operator< (RegisterRef RR) const {
187         return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
188       }
189 
190       unsigned Reg, Sub;
191     };
192 
193     using ReferenceMap = DenseMap<unsigned, unsigned>;
194     enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
195     enum { Exec_Then = 0x10, Exec_Else = 0x20 };
196 
197     unsigned getMaskForSub(unsigned Sub);
198     bool isCondset(const MachineInstr &MI);
199     LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);
200 
201     void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
202     bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
203 
204     void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
205     void updateKillFlags(unsigned Reg);
206     void updateDeadFlags(unsigned Reg);
207     void recalculateLiveInterval(unsigned Reg);
208     void removeInstr(MachineInstr &MI);
209     void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
210         bool UpdateKills, bool UpdateDeads);
211 
212     unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
213     MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
214         MachineBasicBlock::iterator At, unsigned DstR,
215         unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
216         bool ReadUndef, bool ImpUse);
217     bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);
218 
219     bool isPredicable(MachineInstr *MI);
220     MachineInstr *getReachingDefForPred(RegisterRef RD,
221         MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
222     bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
223     bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
224     void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
225                      MachineBasicBlock::iterator Where,
226                      const MachineOperand &PredOp, bool Cond,
227                      std::set<unsigned> &UpdRegs);
228     void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
229         bool Cond, MachineBasicBlock::iterator First,
230         MachineBasicBlock::iterator Last);
231     bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
232     bool predicateInBlock(MachineBasicBlock &B,
233         std::set<unsigned> &UpdRegs);
234 
235     bool isIntReg(RegisterRef RR, unsigned &BW);
236     bool isIntraBlocks(LiveInterval &LI);
237     bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
238     bool coalesceSegments(const SmallVectorImpl<MachineInstr*> &Condsets,
239                           std::set<unsigned> &UpdRegs);
240   };
241 
242 } // end anonymous namespace
243 
244 char HexagonExpandCondsets::ID = 0;
245 
246 namespace llvm {
247 
248   char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID;
249 
250 } // end namespace llvm
251 
252 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
253   "Hexagon Expand Condsets", false, false)
254 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
255 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
256 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
257 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
258   "Hexagon Expand Condsets", false, false)
259 
260 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
261   switch (Sub) {
262     case Hexagon::isub_lo:
263     case Hexagon::vsub_lo:
264       return Sub_Low;
265     case Hexagon::isub_hi:
266     case Hexagon::vsub_hi:
267       return Sub_High;
268     case Hexagon::NoSubRegister:
269       return Sub_None;
270   }
271   llvm_unreachable("Invalid subregister");
272 }
273 
274 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
275   unsigned Opc = MI.getOpcode();
276   switch (Opc) {
277     case Hexagon::C2_mux:
278     case Hexagon::C2_muxii:
279     case Hexagon::C2_muxir:
280     case Hexagon::C2_muxri:
281     case Hexagon::PS_pselect:
282         return true;
283       break;
284   }
285   return false;
286 }
287 
288 LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
289   assert(Register::isVirtualRegister(Reg));
290   return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
291                   : MRI->getMaxLaneMaskForVReg(Reg);
292 }
293 
294 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
295       unsigned Exec) {
296   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
297   ReferenceMap::iterator F = Map.find(RR.Reg);
298   if (F == Map.end())
299     Map.insert(std::make_pair(RR.Reg, Mask));
300   else
301     F->second |= Mask;
302 }
303 
304 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
305       unsigned Exec) {
306   ReferenceMap::iterator F = Map.find(RR.Reg);
307   if (F == Map.end())
308     return false;
309   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
310   if (Mask & F->second)
311     return true;
312   return false;
313 }
314 
315 void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
316   auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
317     // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
318     MachineInstr *MI = LIS->getInstructionFromIndex(K);
319     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
320       MachineOperand &Op = MI->getOperand(i);
321       if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg ||
322           MI->isRegTiedToDefOperand(i))
323         continue;
324       LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
325       if ((SLM & LM) == SLM) {
326         // Only set the kill flag on the first encountered use of Reg in this
327         // instruction.
328         Op.setIsKill(true);
329         break;
330       }
331     }
332   };
333 
334   LiveInterval &LI = LIS->getInterval(Reg);
335   for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
336     if (!I->end.isRegister())
337       continue;
338     // Do not mark the end of the segment as <kill>, if the next segment
339     // starts with a predicated instruction.
340     auto NextI = std::next(I);
341     if (NextI != E && NextI->start.isRegister()) {
342       MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
343       if (HII->isPredicated(*DefI))
344         continue;
345     }
346     bool WholeReg = true;
347     if (LI.hasSubRanges()) {
348       auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
349         LiveRange::iterator F = S.find(I->end);
350         return F != S.end() && I->end == F->end;
351       };
352       // Check if all subranges end at I->end. If so, make sure to kill
353       // the whole register.
354       for (LiveInterval::SubRange &S : LI.subranges()) {
355         if (EndsAtI(S))
356           KillAt(I->end, S.LaneMask);
357         else
358           WholeReg = false;
359       }
360     }
361     if (WholeReg)
362       KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
363   }
364 }
365 
366 void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
367       LiveRange &Range) {
368   assert(Register::isVirtualRegister(Reg));
369   if (Range.empty())
370     return;
371 
372   // Return two booleans: { def-modifes-reg, def-covers-reg }.
373   auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
374     if (!Op.isReg() || !Op.isDef())
375       return { false, false };
376     Register DR = Op.getReg(), DSR = Op.getSubReg();
377     if (!Register::isVirtualRegister(DR) || DR != Reg)
378       return { false, false };
379     LaneBitmask SLM = getLaneMask(DR, DSR);
380     LaneBitmask A = SLM & LM;
381     return { A.any(), A == SLM };
382   };
383 
384   // The splitting step will create pairs of predicated definitions without
385   // any implicit uses (since implicit uses would interfere with predication).
386   // This can cause the reaching defs to become dead after live range
387   // recomputation, even though they are not really dead.
388   // We need to identify predicated defs that need implicit uses, and
389   // dead defs that are not really dead, and correct both problems.
390 
391   auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
392                           MachineBasicBlock *Dest) -> bool {
393     for (MachineBasicBlock *D : Defs)
394       if (D != Dest && MDT->dominates(D, Dest))
395         return true;
396 
397     MachineBasicBlock *Entry = &Dest->getParent()->front();
398     SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
399     for (unsigned i = 0; i < Work.size(); ++i) {
400       MachineBasicBlock *B = Work[i];
401       if (Defs.count(B))
402         continue;
403       if (B == Entry)
404         return false;
405       for (auto *P : B->predecessors())
406         Work.insert(P);
407     }
408     return true;
409   };
410 
411   // First, try to extend live range within individual basic blocks. This
412   // will leave us only with dead defs that do not reach any predicated
413   // defs in the same block.
414   SetVector<MachineBasicBlock*> Defs;
415   SmallVector<SlotIndex,4> PredDefs;
416   for (auto &Seg : Range) {
417     if (!Seg.start.isRegister())
418       continue;
419     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
420     Defs.insert(DefI->getParent());
421     if (HII->isPredicated(*DefI))
422       PredDefs.push_back(Seg.start);
423   }
424 
425   SmallVector<SlotIndex,8> Undefs;
426   LiveInterval &LI = LIS->getInterval(Reg);
427   LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());
428 
429   for (auto &SI : PredDefs) {
430     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
431     auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
432     if (P.first != nullptr || P.second)
433       SI = SlotIndex();
434   }
435 
436   // Calculate reachability for those predicated defs that were not handled
437   // by the in-block extension.
438   SmallVector<SlotIndex,4> ExtTo;
439   for (auto &SI : PredDefs) {
440     if (!SI.isValid())
441       continue;
442     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
443     if (BB->pred_empty())
444       continue;
445     // If the defs from this range reach SI via all predecessors, it is live.
446     // It can happen that SI is reached by the defs through some paths, but
447     // not all. In the IR coming into this optimization, SI would not be
448     // considered live, since the defs would then not jointly dominate SI.
449     // That means that SI is an overwriting def, and no implicit use is
450     // needed at this point. Do not add SI to the extension points, since
451     // extendToIndices will abort if there is no joint dominance.
452     // If the abort was avoided by adding extra undefs added to Undefs,
453     // extendToIndices could actually indicate that SI is live, contrary
454     // to the original IR.
455     if (Dominate(Defs, BB))
456       ExtTo.push_back(SI);
457   }
458 
459   if (!ExtTo.empty())
460     LIS->extendToIndices(Range, ExtTo, Undefs);
461 
462   // Remove <dead> flags from all defs that are not dead after live range
463   // extension, and collect all def operands. They will be used to generate
464   // the necessary implicit uses.
465   // At the same time, add <dead> flag to all defs that are actually dead.
466   // This can happen, for example, when a mux with identical inputs is
467   // replaced with a COPY: the use of the predicate register disappears and
468   // the dead can become dead.
469   std::set<RegisterRef> DefRegs;
470   for (auto &Seg : Range) {
471     if (!Seg.start.isRegister())
472       continue;
473     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
474     for (auto &Op : DefI->operands()) {
475       auto P = IsRegDef(Op);
476       if (P.second && Seg.end.isDead()) {
477         Op.setIsDead(true);
478       } else if (P.first) {
479         DefRegs.insert(Op);
480         Op.setIsDead(false);
481       }
482     }
483   }
484 
485   // Now, add implicit uses to each predicated def that is reached
486   // by other defs.
487   for (auto &Seg : Range) {
488     if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
489       continue;
490     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
491     if (!HII->isPredicated(*DefI))
492       continue;
493     // Construct the set of all necessary implicit uses, based on the def
494     // operands in the instruction. We need to tie the implicit uses to
495     // the corresponding defs.
496     std::map<RegisterRef,unsigned> ImpUses;
497     for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) {
498       MachineOperand &Op = DefI->getOperand(i);
499       if (!Op.isReg() || !DefRegs.count(Op))
500         continue;
501       if (Op.isDef()) {
502         // Tied defs will always have corresponding uses, so no extra
503         // implicit uses are needed.
504         if (!Op.isTied())
505           ImpUses.insert({Op, i});
506       } else {
507         // This function can be called for the same register with different
508         // lane masks. If the def in this instruction was for the whole
509         // register, we can get here more than once. Avoid adding multiple
510         // implicit uses (or adding an implicit use when an explicit one is
511         // present).
512         if (Op.isTied())
513           ImpUses.erase(Op);
514       }
515     }
516     if (ImpUses.empty())
517       continue;
518     MachineFunction &MF = *DefI->getParent()->getParent();
519     for (std::pair<RegisterRef, unsigned> P : ImpUses) {
520       RegisterRef R = P.first;
521       MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
522       DefI->tieOperands(P.second, DefI->getNumOperands()-1);
523     }
524   }
525 }
526 
527 void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
528   LiveInterval &LI = LIS->getInterval(Reg);
529   if (LI.hasSubRanges()) {
530     for (LiveInterval::SubRange &S : LI.subranges()) {
531       updateDeadsInRange(Reg, S.LaneMask, S);
532       LIS->shrinkToUses(S, Reg);
533     }
534     LI.clear();
535     LIS->constructMainRangeFromSubranges(LI);
536   } else {
537     updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
538   }
539 }
540 
541 void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
542   LIS->removeInterval(Reg);
543   LIS->createAndComputeVirtRegInterval(Reg);
544 }
545 
546 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
547   LIS->RemoveMachineInstrFromMaps(MI);
548   MI.eraseFromParent();
549 }
550 
551 void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
552       bool Recalc, bool UpdateKills, bool UpdateDeads) {
553   UpdateKills |= UpdateDeads;
554   for (unsigned R : RegSet) {
555     if (!Register::isVirtualRegister(R)) {
556       assert(Register::isPhysicalRegister(R));
557       // There shouldn't be any physical registers as operands, except
558       // possibly reserved registers.
559       assert(MRI->isReserved(R));
560       continue;
561     }
562     if (Recalc)
563       recalculateLiveInterval(R);
564     if (UpdateKills)
565       MRI->clearKillFlags(R);
566     if (UpdateDeads)
567       updateDeadFlags(R);
568     // Fixing <dead> flags may extend live ranges, so reset <kill> flags
569     // after that.
570     if (UpdateKills)
571       updateKillFlags(R);
572     LIS->getInterval(R).verify();
573   }
574 }
575 
576 /// Get the opcode for a conditional transfer of the value in SO (source
577 /// operand). The condition (true/false) is given in Cond.
578 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
579       bool IfTrue) {
580   using namespace Hexagon;
581 
582   if (SO.isReg()) {
583     Register PhysR;
584     RegisterRef RS = SO;
585     if (Register::isVirtualRegister(RS.Reg)) {
586       const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
587       assert(VC->begin() != VC->end() && "Empty register class");
588       PhysR = *VC->begin();
589     } else {
590       assert(Register::isPhysicalRegister(RS.Reg));
591       PhysR = RS.Reg;
592     }
593     Register PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
594     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
595     switch (TRI->getRegSizeInBits(*RC)) {
596       case 32:
597         return IfTrue ? A2_tfrt : A2_tfrf;
598       case 64:
599         return IfTrue ? A2_tfrpt : A2_tfrpf;
600     }
601     llvm_unreachable("Invalid register operand");
602   }
603   switch (SO.getType()) {
604     case MachineOperand::MO_Immediate:
605     case MachineOperand::MO_FPImmediate:
606     case MachineOperand::MO_ConstantPoolIndex:
607     case MachineOperand::MO_TargetIndex:
608     case MachineOperand::MO_JumpTableIndex:
609     case MachineOperand::MO_ExternalSymbol:
610     case MachineOperand::MO_GlobalAddress:
611     case MachineOperand::MO_BlockAddress:
612       return IfTrue ? C2_cmoveit : C2_cmoveif;
613     default:
614       break;
615   }
616   llvm_unreachable("Unexpected source operand");
617 }
618 
619 /// Generate a conditional transfer, copying the value SrcOp to the
620 /// destination register DstR:DstSR, and using the predicate register from
621 /// PredOp. The Cond argument specifies whether the predicate is to be
622 /// if(PredOp), or if(!PredOp).
623 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
624       MachineBasicBlock::iterator At,
625       unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
626       bool PredSense, bool ReadUndef, bool ImpUse) {
627   MachineInstr *MI = SrcOp.getParent();
628   MachineBasicBlock &B = *At->getParent();
629   const DebugLoc &DL = MI->getDebugLoc();
630 
631   // Don't avoid identity copies here (i.e. if the source and the destination
632   // are the same registers). It is actually better to generate them here,
633   // since this would cause the copy to potentially be predicated in the next
634   // step. The predication will remove such a copy if it is unable to
635   /// predicate.
636 
637   unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
638   unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0);
639   unsigned PredState = getRegState(PredOp) & ~RegState::Kill;
640   MachineInstrBuilder MIB;
641 
642   if (SrcOp.isReg()) {
643     unsigned SrcState = getRegState(SrcOp);
644     if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR))
645       SrcState &= ~RegState::Kill;
646     MIB = BuildMI(B, At, DL, HII->get(Opc))
647           .addReg(DstR, DstState, DstSR)
648           .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
649           .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg());
650   } else {
651     MIB = BuildMI(B, At, DL, HII->get(Opc))
652               .addReg(DstR, DstState, DstSR)
653               .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
654               .add(SrcOp);
655   }
656 
657   LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB);
658   return &*MIB;
659 }
660 
661 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
662 /// performs all necessary changes to complete the replacement.
663 bool HexagonExpandCondsets::split(MachineInstr &MI,
664                                   std::set<unsigned> &UpdRegs) {
665   if (TfrLimitActive) {
666     if (TfrCounter >= TfrLimit)
667       return false;
668     TfrCounter++;
669   }
670   LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent())
671                     << ": " << MI);
672   MachineOperand &MD = MI.getOperand(0);  // Definition
673   MachineOperand &MP = MI.getOperand(1);  // Predicate register
674   assert(MD.isDef());
675   Register DR = MD.getReg(), DSR = MD.getSubReg();
676   bool ReadUndef = MD.isUndef();
677   MachineBasicBlock::iterator At = MI;
678 
679   auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void {
680     for (auto &Op : MI.operands())
681       if (Op.isReg())
682         UpdRegs.insert(Op.getReg());
683   };
684 
685   // If this is a mux of the same register, just replace it with COPY.
686   // Ideally, this would happen earlier, so that register coalescing would
687   // see it.
688   MachineOperand &ST = MI.getOperand(2);
689   MachineOperand &SF = MI.getOperand(3);
690   if (ST.isReg() && SF.isReg()) {
691     RegisterRef RT(ST);
692     if (RT == RegisterRef(SF)) {
693       // Copy regs to update first.
694       updateRegs(MI);
695       MI.setDesc(HII->get(TargetOpcode::COPY));
696       unsigned S = getRegState(ST);
697       while (MI.getNumOperands() > 1)
698         MI.RemoveOperand(MI.getNumOperands()-1);
699       MachineFunction &MF = *MI.getParent()->getParent();
700       MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub);
701       return true;
702     }
703   }
704 
705   // First, create the two invididual conditional transfers, and add each
706   // of them to the live intervals information. Do that first and then remove
707   // the old instruction from live intervals.
708   MachineInstr *TfrT =
709       genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false);
710   MachineInstr *TfrF =
711       genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true);
712   LIS->InsertMachineInstrInMaps(*TfrT);
713   LIS->InsertMachineInstrInMaps(*TfrF);
714 
715   // Will need to recalculate live intervals for all registers in MI.
716   updateRegs(MI);
717 
718   removeInstr(MI);
719   return true;
720 }
721 
722 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
723   if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
724     return false;
725   if (MI->hasUnmodeledSideEffects() || MI->mayStore())
726     return false;
727   // Reject instructions with multiple defs (e.g. post-increment loads).
728   bool HasDef = false;
729   for (auto &Op : MI->operands()) {
730     if (!Op.isReg() || !Op.isDef())
731       continue;
732     if (HasDef)
733       return false;
734     HasDef = true;
735   }
736   for (auto &Mo : MI->memoperands())
737     if (Mo->isVolatile() || Mo->isAtomic())
738       return false;
739   return true;
740 }
741 
742 /// Find the reaching definition for a predicated use of RD. The RD is used
743 /// under the conditions given by PredR and Cond, and this function will ignore
744 /// definitions that set RD under the opposite conditions.
745 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
746       MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
747   MachineBasicBlock &B = *UseIt->getParent();
748   MachineBasicBlock::iterator I = UseIt, S = B.begin();
749   if (I == S)
750     return nullptr;
751 
752   bool PredValid = true;
753   do {
754     --I;
755     MachineInstr *MI = &*I;
756     // Check if this instruction can be ignored, i.e. if it is predicated
757     // on the complementary condition.
758     if (PredValid && HII->isPredicated(*MI)) {
759       if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
760         continue;
761     }
762 
763     // Check the defs. If the PredR is defined, invalidate it. If RD is
764     // defined, return the instruction or 0, depending on the circumstances.
765     for (auto &Op : MI->operands()) {
766       if (!Op.isReg() || !Op.isDef())
767         continue;
768       RegisterRef RR = Op;
769       if (RR.Reg == PredR) {
770         PredValid = false;
771         continue;
772       }
773       if (RR.Reg != RD.Reg)
774         continue;
775       // If the "Reg" part agrees, there is still the subregister to check.
776       // If we are looking for %1:loreg, we can skip %1:hireg, but
777       // not %1 (w/o subregisters).
778       if (RR.Sub == RD.Sub)
779         return MI;
780       if (RR.Sub == 0 || RD.Sub == 0)
781         return nullptr;
782       // We have different subregisters, so we can continue looking.
783     }
784   } while (I != S);
785 
786   return nullptr;
787 }
788 
789 /// Check if the instruction MI can be safely moved over a set of instructions
790 /// whose side-effects (in terms of register defs and uses) are expressed in
791 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
792 /// that depend on the same predicate register to allow moving instructions
793 /// over instructions predicated on the opposite condition.
794 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
795                                         ReferenceMap &Uses) {
796   // In order to be able to safely move MI over instructions that define
797   // "Defs" and use "Uses", no def operand from MI can be defined or used
798   // and no use operand can be defined.
799   for (auto &Op : MI.operands()) {
800     if (!Op.isReg())
801       continue;
802     RegisterRef RR = Op;
803     // For physical register we would need to check register aliases, etc.
804     // and we don't want to bother with that. It would be of little value
805     // before the actual register rewriting (from virtual to physical).
806     if (!Register::isVirtualRegister(RR.Reg))
807       return false;
808     // No redefs for any operand.
809     if (isRefInMap(RR, Defs, Exec_Then))
810       return false;
811     // For defs, there cannot be uses.
812     if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
813       return false;
814   }
815   return true;
816 }
817 
818 /// Check if the instruction accessing memory (TheI) can be moved to the
819 /// location ToI.
820 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
821                                          bool IsDown) {
822   bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
823   if (!IsLoad && !IsStore)
824     return true;
825   if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
826     return true;
827   if (TheI.hasUnmodeledSideEffects())
828     return false;
829 
830   MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
831   MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
832   bool Ordered = TheI.hasOrderedMemoryRef();
833 
834   // Search for aliased memory reference in (StartI, EndI).
835   for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
836     MachineInstr *MI = &*I;
837     if (MI->hasUnmodeledSideEffects())
838       return false;
839     bool L = MI->mayLoad(), S = MI->mayStore();
840     if (!L && !S)
841       continue;
842     if (Ordered && MI->hasOrderedMemoryRef())
843       return false;
844 
845     bool Conflict = (L && IsStore) || S;
846     if (Conflict)
847       return false;
848   }
849   return true;
850 }
851 
852 /// Generate a predicated version of MI (where the condition is given via
853 /// PredR and Cond) at the point indicated by Where.
854 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
855                                         MachineInstr &MI,
856                                         MachineBasicBlock::iterator Where,
857                                         const MachineOperand &PredOp, bool Cond,
858                                         std::set<unsigned> &UpdRegs) {
859   // The problem with updating live intervals is that we can move one def
860   // past another def. In particular, this can happen when moving an A2_tfrt
861   // over an A2_tfrf defining the same register. From the point of view of
862   // live intervals, these two instructions are two separate definitions,
863   // and each one starts another live segment. LiveIntervals's "handleMove"
864   // does not allow such moves, so we need to handle it ourselves. To avoid
865   // invalidating liveness data while we are using it, the move will be
866   // implemented in 4 steps: (1) add a clone of the instruction MI at the
867   // target location, (2) update liveness, (3) delete the old instruction,
868   // and (4) update liveness again.
869 
870   MachineBasicBlock &B = *MI.getParent();
871   DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
872   unsigned Opc = MI.getOpcode();
873   unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
874   MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
875   unsigned Ox = 0, NP = MI.getNumOperands();
876   // Skip all defs from MI first.
877   while (Ox < NP) {
878     MachineOperand &MO = MI.getOperand(Ox);
879     if (!MO.isReg() || !MO.isDef())
880       break;
881     Ox++;
882   }
883   // Add the new def, then the predicate register, then the rest of the
884   // operands.
885   MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
886   MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
887             PredOp.getSubReg());
888   while (Ox < NP) {
889     MachineOperand &MO = MI.getOperand(Ox);
890     if (!MO.isReg() || !MO.isImplicit())
891       MB.add(MO);
892     Ox++;
893   }
894   MB.cloneMemRefs(MI);
895 
896   MachineInstr *NewI = MB;
897   NewI->clearKillInfo();
898   LIS->InsertMachineInstrInMaps(*NewI);
899 
900   for (auto &Op : NewI->operands())
901     if (Op.isReg())
902       UpdRegs.insert(Op.getReg());
903 }
904 
905 /// In the range [First, Last], rename all references to the "old" register RO
906 /// to the "new" register RN, but only in instructions predicated on the given
907 /// condition.
908 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
909       unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
910       MachineBasicBlock::iterator Last) {
911   MachineBasicBlock::iterator End = std::next(Last);
912   for (MachineBasicBlock::iterator I = First; I != End; ++I) {
913     MachineInstr *MI = &*I;
914     // Do not touch instructions that are not predicated, or are predicated
915     // on the opposite condition.
916     if (!HII->isPredicated(*MI))
917       continue;
918     if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
919       continue;
920 
921     for (auto &Op : MI->operands()) {
922       if (!Op.isReg() || RO != RegisterRef(Op))
923         continue;
924       Op.setReg(RN.Reg);
925       Op.setSubReg(RN.Sub);
926       // In practice, this isn't supposed to see any defs.
927       assert(!Op.isDef() && "Not expecting a def");
928     }
929   }
930 }
931 
932 /// For a given conditional copy, predicate the definition of the source of
933 /// the copy under the given condition (using the same predicate register as
934 /// the copy).
935 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
936                                       std::set<unsigned> &UpdRegs) {
937   // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
938   unsigned Opc = TfrI.getOpcode();
939   (void)Opc;
940   assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
941   LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
942                     << ": " << TfrI);
943 
944   MachineOperand &MD = TfrI.getOperand(0);
945   MachineOperand &MP = TfrI.getOperand(1);
946   MachineOperand &MS = TfrI.getOperand(2);
947   // The source operand should be a <kill>. This is not strictly necessary,
948   // but it makes things a lot simpler. Otherwise, we would need to rename
949   // some registers, which would complicate the transformation considerably.
950   if (!MS.isKill())
951     return false;
952   // Avoid predicating instructions that define a subregister if subregister
953   // liveness tracking is not enabled.
954   if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
955     return false;
956 
957   RegisterRef RT(MS);
958   Register PredR = MP.getReg();
959   MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
960   if (!DefI || !isPredicable(DefI))
961     return false;
962 
963   LLVM_DEBUG(dbgs() << "Source def: " << *DefI);
964 
965   // Collect the information about registers defined and used between the
966   // DefI and the TfrI.
967   // Map: reg -> bitmask of subregs
968   ReferenceMap Uses, Defs;
969   MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
970 
971   // Check if the predicate register is valid between DefI and TfrI.
972   // If it is, we can then ignore instructions predicated on the negated
973   // conditions when collecting def and use information.
974   bool PredValid = true;
975   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
976     if (!I->modifiesRegister(PredR, nullptr))
977       continue;
978     PredValid = false;
979     break;
980   }
981 
982   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
983     MachineInstr *MI = &*I;
984     // If this instruction is predicated on the same register, it could
985     // potentially be ignored.
986     // By default assume that the instruction executes on the same condition
987     // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
988     unsigned Exec = Exec_Then | Exec_Else;
989     if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
990       Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;
991 
992     for (auto &Op : MI->operands()) {
993       if (!Op.isReg())
994         continue;
995       // We don't want to deal with physical registers. The reason is that
996       // they can be aliased with other physical registers. Aliased virtual
997       // registers must share the same register number, and can only differ
998       // in the subregisters, which we are keeping track of. Physical
999       // registers ters no longer have subregisters---their super- and
1000       // subregisters are other physical registers, and we are not checking
1001       // that.
1002       RegisterRef RR = Op;
1003       if (!Register::isVirtualRegister(RR.Reg))
1004         return false;
1005 
1006       ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1007       if (Op.isDef() && Op.isUndef()) {
1008         assert(RR.Sub && "Expecting a subregister on <def,read-undef>");
1009         // If this is a <def,read-undef>, then it invalidates the non-written
1010         // part of the register. For the purpose of checking the validity of
1011         // the move, assume that it modifies the whole register.
1012         RR.Sub = 0;
1013       }
1014       addRefToMap(RR, Map, Exec);
1015     }
1016   }
1017 
1018   // The situation:
1019   //   RT = DefI
1020   //   ...
1021   //   RD = TfrI ..., RT
1022 
1023   // If the register-in-the-middle (RT) is used or redefined between
1024   // DefI and TfrI, we may not be able proceed with this transformation.
1025   // We can ignore a def that will not execute together with TfrI, and a
1026   // use that will. If there is such a use (that does execute together with
1027   // TfrI), we will not be able to move DefI down. If there is a use that
1028   // executed if TfrI's condition is false, then RT must be available
1029   // unconditionally (cannot be predicated).
1030   // Essentially, we need to be able to rename RT to RD in this segment.
1031   if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1032     return false;
1033   RegisterRef RD = MD;
1034   // If the predicate register is defined between DefI and TfrI, the only
1035   // potential thing to do would be to move the DefI down to TfrI, and then
1036   // predicate. The reaching def (DefI) must be movable down to the location
1037   // of the TfrI.
1038   // If the target register of the TfrI (RD) is not used or defined between
1039   // DefI and TfrI, consider moving TfrI up to DefI.
1040   bool CanUp =   canMoveOver(TfrI, Defs, Uses);
1041   bool CanDown = canMoveOver(*DefI, Defs, Uses);
1042   // The TfrI does not access memory, but DefI could. Check if it's safe
1043   // to move DefI down to TfrI.
1044   if (DefI->mayLoadOrStore())
1045     if (!canMoveMemTo(*DefI, TfrI, true))
1046       CanDown = false;
1047 
1048   LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1049                     << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1050   MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1051   if (CanUp)
1052     predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
1053   else if (CanDown)
1054     predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
1055   else
1056     return false;
1057 
1058   if (RT != RD) {
1059     renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1060     UpdRegs.insert(RT.Reg);
1061   }
1062 
1063   removeInstr(TfrI);
1064   removeInstr(*DefI);
1065   return true;
1066 }
1067 
1068 /// Predicate all cases of conditional copies in the specified block.
1069 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
1070       std::set<unsigned> &UpdRegs) {
1071   bool Changed = false;
1072   MachineBasicBlock::iterator I, E, NextI;
1073   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
1074     NextI = std::next(I);
1075     unsigned Opc = I->getOpcode();
1076     if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1077       bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
1078       if (!Done) {
1079         // If we didn't predicate I, we may need to remove it in case it is
1080         // an "identity" copy, e.g.  %1 = A2_tfrt %2, %1.
1081         if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
1082           for (auto &Op : I->operands())
1083             if (Op.isReg())
1084               UpdRegs.insert(Op.getReg());
1085           removeInstr(*I);
1086         }
1087       }
1088       Changed |= Done;
1089     }
1090   }
1091   return Changed;
1092 }
1093 
1094 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1095   if (!Register::isVirtualRegister(RR.Reg))
1096     return false;
1097   const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1098   if (RC == &Hexagon::IntRegsRegClass) {
1099     BW = 32;
1100     return true;
1101   }
1102   if (RC == &Hexagon::DoubleRegsRegClass) {
1103     BW = (RR.Sub != 0) ? 32 : 64;
1104     return true;
1105   }
1106   return false;
1107 }
1108 
1109 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1110   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
1111     LiveRange::Segment &LR = *I;
1112     // Range must start at a register...
1113     if (!LR.start.isRegister())
1114       return false;
1115     // ...and end in a register or in a dead slot.
1116     if (!LR.end.isRegister() && !LR.end.isDead())
1117       return false;
1118   }
1119   return true;
1120 }
1121 
1122 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1123   if (CoaLimitActive) {
1124     if (CoaCounter >= CoaLimit)
1125       return false;
1126     CoaCounter++;
1127   }
1128   unsigned BW1, BW2;
1129   if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1130     return false;
1131   if (MRI->isLiveIn(R1.Reg))
1132     return false;
1133   if (MRI->isLiveIn(R2.Reg))
1134     return false;
1135 
1136   LiveInterval &L1 = LIS->getInterval(R1.Reg);
1137   LiveInterval &L2 = LIS->getInterval(R2.Reg);
1138   if (L2.empty())
1139     return false;
1140   if (L1.hasSubRanges() || L2.hasSubRanges())
1141     return false;
1142   bool Overlap = L1.overlaps(L2);
1143 
1144   LLVM_DEBUG(dbgs() << "compatible registers: ("
1145                     << (Overlap ? "overlap" : "disjoint") << ")\n  "
1146                     << printReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
1147                     << printReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
1148   if (R1.Sub || R2.Sub)
1149     return false;
1150   if (Overlap)
1151     return false;
1152 
1153   // Coalescing could have a negative impact on scheduling, so try to limit
1154   // to some reasonable extent. Only consider coalescing segments, when one
1155   // of them does not cross basic block boundaries.
1156   if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1157     return false;
1158 
1159   MRI->replaceRegWith(R2.Reg, R1.Reg);
1160 
1161   // Move all live segments from L2 to L1.
1162   using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>;
1163   ValueInfoMap VM;
1164   for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
1165     VNInfo *NewVN, *OldVN = I->valno;
1166     ValueInfoMap::iterator F = VM.find(OldVN);
1167     if (F == VM.end()) {
1168       NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
1169       VM.insert(std::make_pair(OldVN, NewVN));
1170     } else {
1171       NewVN = F->second;
1172     }
1173     L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
1174   }
1175   while (L2.begin() != L2.end())
1176     L2.removeSegment(*L2.begin());
1177   LIS->removeInterval(R2.Reg);
1178 
1179   updateKillFlags(R1.Reg);
1180   LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1181   L1.verify();
1182 
1183   return true;
1184 }
1185 
1186 /// Attempt to coalesce one of the source registers to a MUX instruction with
1187 /// the destination register. This could lead to having only one predicated
1188 /// instruction in the end instead of two.
1189 bool HexagonExpandCondsets::coalesceSegments(
1190       const SmallVectorImpl<MachineInstr*> &Condsets,
1191       std::set<unsigned> &UpdRegs) {
1192   SmallVector<MachineInstr*,16> TwoRegs;
1193   for (MachineInstr *MI : Condsets) {
1194     MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1195     if (!S1.isReg() && !S2.isReg())
1196       continue;
1197     TwoRegs.push_back(MI);
1198   }
1199 
1200   bool Changed = false;
1201   for (MachineInstr *CI : TwoRegs) {
1202     RegisterRef RD = CI->getOperand(0);
1203     RegisterRef RP = CI->getOperand(1);
1204     MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1205     bool Done = false;
1206     // Consider this case:
1207     //   %1 = instr1 ...
1208     //   %2 = instr2 ...
1209     //   %0 = C2_mux ..., %1, %2
1210     // If %0 was coalesced with %1, we could end up with the following
1211     // code:
1212     //   %0 = instr1 ...
1213     //   %2 = instr2 ...
1214     //   %0 = A2_tfrf ..., %2
1215     // which will later become:
1216     //   %0 = instr1 ...
1217     //   %0 = instr2_cNotPt ...
1218     // i.e. there will be an unconditional definition (instr1) of %0
1219     // followed by a conditional one. The output dependency was there before
1220     // and it unavoidable, but if instr1 is predicable, we will no longer be
1221     // able to predicate it here.
1222     // To avoid this scenario, don't coalesce the destination register with
1223     // a source register that is defined by a predicable instruction.
1224     if (S1.isReg()) {
1225       RegisterRef RS = S1;
1226       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1227       if (!RDef || !HII->isPredicable(*RDef)) {
1228         Done = coalesceRegisters(RD, RegisterRef(S1));
1229         if (Done) {
1230           UpdRegs.insert(RD.Reg);
1231           UpdRegs.insert(S1.getReg());
1232         }
1233       }
1234     }
1235     if (!Done && S2.isReg()) {
1236       RegisterRef RS = S2;
1237       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1238       if (!RDef || !HII->isPredicable(*RDef)) {
1239         Done = coalesceRegisters(RD, RegisterRef(S2));
1240         if (Done) {
1241           UpdRegs.insert(RD.Reg);
1242           UpdRegs.insert(S2.getReg());
1243         }
1244       }
1245     }
1246     Changed |= Done;
1247   }
1248   return Changed;
1249 }
1250 
1251 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1252   if (skipFunction(MF.getFunction()))
1253     return false;
1254 
1255   HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1256   TRI = MF.getSubtarget().getRegisterInfo();
1257   MDT = &getAnalysis<MachineDominatorTree>();
1258   LIS = &getAnalysis<LiveIntervals>();
1259   MRI = &MF.getRegInfo();
1260 
1261   LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
1262                         MF.getFunction().getParent()));
1263 
1264   bool Changed = false;
1265   std::set<unsigned> CoalUpd, PredUpd;
1266 
1267   SmallVector<MachineInstr*,16> Condsets;
1268   for (auto &B : MF)
1269     for (auto &I : B)
1270       if (isCondset(I))
1271         Condsets.push_back(&I);
1272 
1273   // Try to coalesce the target of a mux with one of its sources.
1274   // This could eliminate a register copy in some circumstances.
1275   Changed |= coalesceSegments(Condsets, CoalUpd);
1276 
1277   // Update kill flags on all source operands. This is done here because
1278   // at this moment (when expand-condsets runs), there are no kill flags
1279   // in the IR (they have been removed by live range analysis).
1280   // Updating them right before we split is the easiest, because splitting
1281   // adds definitions which would interfere with updating kills afterwards.
1282   std::set<unsigned> KillUpd;
1283   for (MachineInstr *MI : Condsets)
1284     for (MachineOperand &Op : MI->operands())
1285       if (Op.isReg() && Op.isUse())
1286         if (!CoalUpd.count(Op.getReg()))
1287           KillUpd.insert(Op.getReg());
1288   updateLiveness(KillUpd, false, true, false);
1289   LLVM_DEBUG(
1290       LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent()));
1291 
1292   // First, simply split all muxes into a pair of conditional transfers
1293   // and update the live intervals to reflect the new arrangement. The
1294   // goal is to update the kill flags, since predication will rely on
1295   // them.
1296   for (MachineInstr *MI : Condsets)
1297     Changed |= split(*MI, PredUpd);
1298   Condsets.clear(); // The contents of Condsets are invalid here anyway.
1299 
1300   // Do not update live ranges after splitting. Recalculation of live
1301   // intervals removes kill flags, which were preserved by splitting on
1302   // the source operands of condsets. These kill flags are needed by
1303   // predication, and after splitting they are difficult to recalculate
1304   // (because of predicated defs), so make sure they are left untouched.
1305   // Predication does not use live intervals.
1306   LLVM_DEBUG(
1307       LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent()));
1308 
1309   // Traverse all blocks and collapse predicable instructions feeding
1310   // conditional transfers into predicated instructions.
1311   // Walk over all the instructions again, so we may catch pre-existing
1312   // cases that were not created in the previous step.
1313   for (auto &B : MF)
1314     Changed |= predicateInBlock(B, PredUpd);
1315   LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n",
1316                         MF.getFunction().getParent()));
1317 
1318   PredUpd.insert(CoalUpd.begin(), CoalUpd.end());
1319   updateLiveness(PredUpd, true, true, true);
1320 
1321   LLVM_DEBUG({
1322     if (Changed)
1323       LIS->print(dbgs() << "After expand-condsets\n",
1324                  MF.getFunction().getParent());
1325   });
1326 
1327   return Changed;
1328 }
1329 
1330 //===----------------------------------------------------------------------===//
1331 //                         Public Constructor Functions
1332 //===----------------------------------------------------------------------===//
1333 FunctionPass *llvm::createHexagonExpandCondsets() {
1334   return new HexagonExpandCondsets();
1335 }
1336