xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp (revision afdb42987ca82869eeaecf6dc25c2b6fb7b8370e)
1 //===- HexagonExpandCondsets.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // Replace mux instructions with the corresponding legal instructions.
10 // It is meant to work post-SSA, but still on virtual registers. It was
11 // originally placed between register coalescing and machine instruction
12 // scheduler.
13 // In this place in the optimization sequence, live interval analysis had
14 // been performed, and the live intervals should be preserved. A large part
15 // of the code deals with preserving the liveness information.
16 //
17 // Liveness tracking aside, the main functionality of this pass is divided
18 // into two steps. The first step is to replace an instruction
19 //   %0 = C2_mux %1, %2, %3
20 // with a pair of conditional transfers
21 //   %0 = A2_tfrt %1, %2
22 //   %0 = A2_tfrf %1, %3
23 // It is the intention that the execution of this pass could be terminated
24 // after this step, and the code generated would be functionally correct.
25 //
26 // If the uses of the source values %1 and %2 are kills, and their
27 // definitions are predicable, then in the second step, the conditional
28 // transfers will then be rewritten as predicated instructions. E.g.
29 //   %0 = A2_or %1, %2
30 //   %3 = A2_tfrt %99, killed %0
31 // will be rewritten as
32 //   %3 = A2_port %99, %1, %2
33 //
34 // This replacement has two variants: "up" and "down". Consider this case:
35 //   %0 = A2_or %1, %2
36 //   ... [intervening instructions] ...
37 //   %3 = A2_tfrt %99, killed %0
38 // variant "up":
39 //   %3 = A2_port %99, %1, %2
40 //   ... [intervening instructions, %0->vreg3] ...
41 //   [deleted]
42 // variant "down":
43 //   [deleted]
44 //   ... [intervening instructions] ...
45 //   %3 = A2_port %99, %1, %2
46 //
47 // Both, one or none of these variants may be valid, and checks are made
48 // to rule out inapplicable variants.
49 //
50 // As an additional optimization, before either of the two steps above is
51 // executed, the pass attempts to coalesce the target register with one of
52 // the source registers, e.g. given an instruction
53 //   %3 = C2_mux %0, %1, %2
54 // %3 will be coalesced with either %1 or %2. If this succeeds,
55 // the instruction would then be (for example)
56 //   %3 = C2_mux %0, %3, %2
57 // and, under certain circumstances, this could result in only one predicated
58 // instruction:
59 //   %3 = A2_tfrf %0, %2
60 //
61 
62 // Splitting a definition of a register into two predicated transfers
63 // creates a complication in liveness tracking. Live interval computation
64 // will see both instructions as actual definitions, and will mark the
65 // first one as dead. The definition is not actually dead, and this
66 // situation will need to be fixed. For example:
67 //   dead %1 = A2_tfrt ...  ; marked as dead
68 //   %1 = A2_tfrf ...
69 //
70 // Since any of the individual predicated transfers may end up getting
71 // removed (in case it is an identity copy), some pre-existing def may
72 // be marked as dead after live interval recomputation:
73 //   dead %1 = ...          ; marked as dead
74 //   ...
75 //   %1 = A2_tfrf ...       ; if A2_tfrt is removed
76 // This case happens if %1 was used as a source in A2_tfrt, which means
77 // that is it actually live at the A2_tfrf, and so the now dead definition
78 // of %1 will need to be updated to non-dead at some point.
79 //
80 // This issue could be remedied by adding implicit uses to the predicated
81 // transfers, but this will create a problem with subsequent predication,
82 // since the transfers will no longer be possible to reorder. To avoid
83 // that, the initial splitting will not add any implicit uses. These
84 // implicit uses will be added later, after predication. The extra price,
85 // however, is that finding the locations where the implicit uses need
86 // to be added, and updating the live ranges will be more involved.
87 
88 #include "HexagonInstrInfo.h"
89 #include "HexagonRegisterInfo.h"
90 #include "llvm/ADT/DenseMap.h"
91 #include "llvm/ADT/SetVector.h"
92 #include "llvm/ADT/SmallVector.h"
93 #include "llvm/ADT/StringRef.h"
94 #include "llvm/CodeGen/LiveInterval.h"
95 #include "llvm/CodeGen/LiveIntervals.h"
96 #include "llvm/CodeGen/MachineBasicBlock.h"
97 #include "llvm/CodeGen/MachineDominators.h"
98 #include "llvm/CodeGen/MachineFunction.h"
99 #include "llvm/CodeGen/MachineFunctionPass.h"
100 #include "llvm/CodeGen/MachineInstr.h"
101 #include "llvm/CodeGen/MachineInstrBuilder.h"
102 #include "llvm/CodeGen/MachineOperand.h"
103 #include "llvm/CodeGen/MachineRegisterInfo.h"
104 #include "llvm/CodeGen/SlotIndexes.h"
105 #include "llvm/CodeGen/TargetRegisterInfo.h"
106 #include "llvm/CodeGen/TargetSubtargetInfo.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/InitializePasses.h"
110 #include "llvm/MC/LaneBitmask.h"
111 #include "llvm/Pass.h"
112 #include "llvm/Support/CommandLine.h"
113 #include "llvm/Support/Debug.h"
114 #include "llvm/Support/ErrorHandling.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include <cassert>
117 #include <iterator>
118 #include <set>
119 #include <utility>
120 
121 #define DEBUG_TYPE "expand-condsets"
122 
123 using namespace llvm;
124 
125 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
126   cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
127 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
128   cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
129 
130 namespace llvm {
131 
132   void initializeHexagonExpandCondsetsPass(PassRegistry&);
133   FunctionPass *createHexagonExpandCondsets();
134 
135 } // end namespace llvm
136 
137 namespace {
138 
139   class HexagonExpandCondsets : public MachineFunctionPass {
140   public:
141     static char ID;
142 
143     HexagonExpandCondsets() : MachineFunctionPass(ID) {
144       if (OptCoaLimit.getPosition())
145         CoaLimitActive = true, CoaLimit = OptCoaLimit;
146       if (OptTfrLimit.getPosition())
147         TfrLimitActive = true, TfrLimit = OptTfrLimit;
148       initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
149     }
150 
151     StringRef getPassName() const override { return "Hexagon Expand Condsets"; }
152 
153     void getAnalysisUsage(AnalysisUsage &AU) const override {
154       AU.addRequired<LiveIntervals>();
155       AU.addPreserved<LiveIntervals>();
156       AU.addPreserved<SlotIndexes>();
157       AU.addRequired<MachineDominatorTree>();
158       AU.addPreserved<MachineDominatorTree>();
159       MachineFunctionPass::getAnalysisUsage(AU);
160     }
161 
162     bool runOnMachineFunction(MachineFunction &MF) override;
163 
164   private:
165     const HexagonInstrInfo *HII = nullptr;
166     const TargetRegisterInfo *TRI = nullptr;
167     MachineDominatorTree *MDT;
168     MachineRegisterInfo *MRI = nullptr;
169     LiveIntervals *LIS = nullptr;
170     bool CoaLimitActive = false;
171     bool TfrLimitActive = false;
172     unsigned CoaLimit;
173     unsigned TfrLimit;
174     unsigned CoaCounter = 0;
175     unsigned TfrCounter = 0;
176 
177     // FIXME: Consolidate duplicate definitions of RegisterRef
178     struct RegisterRef {
179       RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
180           Sub(Op.getSubReg()) {}
181       RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
182 
183       bool operator== (RegisterRef RR) const {
184         return Reg == RR.Reg && Sub == RR.Sub;
185       }
186       bool operator!= (RegisterRef RR) const { return !operator==(RR); }
187       bool operator< (RegisterRef RR) const {
188         return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
189       }
190 
191       Register Reg;
192       unsigned Sub;
193     };
194 
195     using ReferenceMap = DenseMap<unsigned, unsigned>;
196     enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
197     enum { Exec_Then = 0x10, Exec_Else = 0x20 };
198 
199     unsigned getMaskForSub(unsigned Sub);
200     bool isCondset(const MachineInstr &MI);
201     LaneBitmask getLaneMask(Register Reg, unsigned Sub);
202 
203     void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
204     bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
205 
206     void updateDeadsInRange(Register Reg, LaneBitmask LM, LiveRange &Range);
207     void updateKillFlags(Register Reg);
208     void updateDeadFlags(Register Reg);
209     void recalculateLiveInterval(Register Reg);
210     void removeInstr(MachineInstr &MI);
211     void updateLiveness(std::set<Register> &RegSet, bool Recalc,
212                         bool UpdateKills, bool UpdateDeads);
213 
214     unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
215     MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
216         MachineBasicBlock::iterator At, unsigned DstR,
217         unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
218         bool ReadUndef, bool ImpUse);
219     bool split(MachineInstr &MI, std::set<Register> &UpdRegs);
220 
221     bool isPredicable(MachineInstr *MI);
222     MachineInstr *getReachingDefForPred(RegisterRef RD,
223         MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
224     bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
225     bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
226     void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
227                      MachineBasicBlock::iterator Where,
228                      const MachineOperand &PredOp, bool Cond,
229                      std::set<Register> &UpdRegs);
230     void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
231         bool Cond, MachineBasicBlock::iterator First,
232         MachineBasicBlock::iterator Last);
233     bool predicate(MachineInstr &TfrI, bool Cond, std::set<Register> &UpdRegs);
234     bool predicateInBlock(MachineBasicBlock &B, std::set<Register> &UpdRegs);
235 
236     bool isIntReg(RegisterRef RR, unsigned &BW);
237     bool isIntraBlocks(LiveInterval &LI);
238     bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
239     bool coalesceSegments(const SmallVectorImpl<MachineInstr *> &Condsets,
240                           std::set<Register> &UpdRegs);
241   };
242 
243 } // end anonymous namespace
244 
245 char HexagonExpandCondsets::ID = 0;
246 
247 namespace llvm {
248 
249   char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID;
250 
251 } // end namespace llvm
252 
253 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
254   "Hexagon Expand Condsets", false, false)
255 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
256 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
257 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
258 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
259   "Hexagon Expand Condsets", false, false)
260 
261 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
262   switch (Sub) {
263     case Hexagon::isub_lo:
264     case Hexagon::vsub_lo:
265       return Sub_Low;
266     case Hexagon::isub_hi:
267     case Hexagon::vsub_hi:
268       return Sub_High;
269     case Hexagon::NoSubRegister:
270       return Sub_None;
271   }
272   llvm_unreachable("Invalid subregister");
273 }
274 
275 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
276   unsigned Opc = MI.getOpcode();
277   switch (Opc) {
278     case Hexagon::C2_mux:
279     case Hexagon::C2_muxii:
280     case Hexagon::C2_muxir:
281     case Hexagon::C2_muxri:
282     case Hexagon::PS_pselect:
283         return true;
284       break;
285   }
286   return false;
287 }
288 
289 LaneBitmask HexagonExpandCondsets::getLaneMask(Register Reg, unsigned Sub) {
290   assert(Reg.isVirtual());
291   return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
292                   : MRI->getMaxLaneMaskForVReg(Reg);
293 }
294 
295 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
296       unsigned Exec) {
297   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
298   ReferenceMap::iterator F = Map.find(RR.Reg);
299   if (F == Map.end())
300     Map.insert(std::make_pair(RR.Reg, Mask));
301   else
302     F->second |= Mask;
303 }
304 
305 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
306       unsigned Exec) {
307   ReferenceMap::iterator F = Map.find(RR.Reg);
308   if (F == Map.end())
309     return false;
310   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
311   if (Mask & F->second)
312     return true;
313   return false;
314 }
315 
316 void HexagonExpandCondsets::updateKillFlags(Register Reg) {
317   auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
318     // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
319     MachineInstr *MI = LIS->getInstructionFromIndex(K);
320     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
321       MachineOperand &Op = MI->getOperand(i);
322       if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg ||
323           MI->isRegTiedToDefOperand(i))
324         continue;
325       LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
326       if ((SLM & LM) == SLM) {
327         // Only set the kill flag on the first encountered use of Reg in this
328         // instruction.
329         Op.setIsKill(true);
330         break;
331       }
332     }
333   };
334 
335   LiveInterval &LI = LIS->getInterval(Reg);
336   for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
337     if (!I->end.isRegister())
338       continue;
339     // Do not mark the end of the segment as <kill>, if the next segment
340     // starts with a predicated instruction.
341     auto NextI = std::next(I);
342     if (NextI != E && NextI->start.isRegister()) {
343       MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
344       if (HII->isPredicated(*DefI))
345         continue;
346     }
347     bool WholeReg = true;
348     if (LI.hasSubRanges()) {
349       auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
350         LiveRange::iterator F = S.find(I->end);
351         return F != S.end() && I->end == F->end;
352       };
353       // Check if all subranges end at I->end. If so, make sure to kill
354       // the whole register.
355       for (LiveInterval::SubRange &S : LI.subranges()) {
356         if (EndsAtI(S))
357           KillAt(I->end, S.LaneMask);
358         else
359           WholeReg = false;
360       }
361     }
362     if (WholeReg)
363       KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
364   }
365 }
366 
367 void HexagonExpandCondsets::updateDeadsInRange(Register Reg, LaneBitmask LM,
368                                                LiveRange &Range) {
369   assert(Reg.isVirtual());
370   if (Range.empty())
371     return;
372 
373   // Return two booleans: { def-modifes-reg, def-covers-reg }.
374   auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
375     if (!Op.isReg() || !Op.isDef())
376       return { false, false };
377     Register DR = Op.getReg(), DSR = Op.getSubReg();
378     if (!DR.isVirtual() || DR != Reg)
379       return { false, false };
380     LaneBitmask SLM = getLaneMask(DR, DSR);
381     LaneBitmask A = SLM & LM;
382     return { A.any(), A == SLM };
383   };
384 
385   // The splitting step will create pairs of predicated definitions without
386   // any implicit uses (since implicit uses would interfere with predication).
387   // This can cause the reaching defs to become dead after live range
388   // recomputation, even though they are not really dead.
389   // We need to identify predicated defs that need implicit uses, and
390   // dead defs that are not really dead, and correct both problems.
391 
392   auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
393                           MachineBasicBlock *Dest) -> bool {
394     for (MachineBasicBlock *D : Defs)
395       if (D != Dest && MDT->dominates(D, Dest))
396         return true;
397 
398     MachineBasicBlock *Entry = &Dest->getParent()->front();
399     SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
400     for (unsigned i = 0; i < Work.size(); ++i) {
401       MachineBasicBlock *B = Work[i];
402       if (Defs.count(B))
403         continue;
404       if (B == Entry)
405         return false;
406       for (auto *P : B->predecessors())
407         Work.insert(P);
408     }
409     return true;
410   };
411 
412   // First, try to extend live range within individual basic blocks. This
413   // will leave us only with dead defs that do not reach any predicated
414   // defs in the same block.
415   SetVector<MachineBasicBlock*> Defs;
416   SmallVector<SlotIndex,4> PredDefs;
417   for (auto &Seg : Range) {
418     if (!Seg.start.isRegister())
419       continue;
420     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
421     Defs.insert(DefI->getParent());
422     if (HII->isPredicated(*DefI))
423       PredDefs.push_back(Seg.start);
424   }
425 
426   SmallVector<SlotIndex,8> Undefs;
427   LiveInterval &LI = LIS->getInterval(Reg);
428   LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());
429 
430   for (auto &SI : PredDefs) {
431     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
432     auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
433     if (P.first != nullptr || P.second)
434       SI = SlotIndex();
435   }
436 
437   // Calculate reachability for those predicated defs that were not handled
438   // by the in-block extension.
439   SmallVector<SlotIndex,4> ExtTo;
440   for (auto &SI : PredDefs) {
441     if (!SI.isValid())
442       continue;
443     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
444     if (BB->pred_empty())
445       continue;
446     // If the defs from this range reach SI via all predecessors, it is live.
447     // It can happen that SI is reached by the defs through some paths, but
448     // not all. In the IR coming into this optimization, SI would not be
449     // considered live, since the defs would then not jointly dominate SI.
450     // That means that SI is an overwriting def, and no implicit use is
451     // needed at this point. Do not add SI to the extension points, since
452     // extendToIndices will abort if there is no joint dominance.
453     // If the abort was avoided by adding extra undefs added to Undefs,
454     // extendToIndices could actually indicate that SI is live, contrary
455     // to the original IR.
456     if (Dominate(Defs, BB))
457       ExtTo.push_back(SI);
458   }
459 
460   if (!ExtTo.empty())
461     LIS->extendToIndices(Range, ExtTo, Undefs);
462 
463   // Remove <dead> flags from all defs that are not dead after live range
464   // extension, and collect all def operands. They will be used to generate
465   // the necessary implicit uses.
466   // At the same time, add <dead> flag to all defs that are actually dead.
467   // This can happen, for example, when a mux with identical inputs is
468   // replaced with a COPY: the use of the predicate register disappears and
469   // the dead can become dead.
470   std::set<RegisterRef> DefRegs;
471   for (auto &Seg : Range) {
472     if (!Seg.start.isRegister())
473       continue;
474     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
475     for (auto &Op : DefI->operands()) {
476       auto P = IsRegDef(Op);
477       if (P.second && Seg.end.isDead()) {
478         Op.setIsDead(true);
479       } else if (P.first) {
480         DefRegs.insert(Op);
481         Op.setIsDead(false);
482       }
483     }
484   }
485 
486   // Now, add implicit uses to each predicated def that is reached
487   // by other defs.
488   for (auto &Seg : Range) {
489     if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
490       continue;
491     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
492     if (!HII->isPredicated(*DefI))
493       continue;
494     // Construct the set of all necessary implicit uses, based on the def
495     // operands in the instruction. We need to tie the implicit uses to
496     // the corresponding defs.
497     std::map<RegisterRef,unsigned> ImpUses;
498     for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) {
499       MachineOperand &Op = DefI->getOperand(i);
500       if (!Op.isReg() || !DefRegs.count(Op))
501         continue;
502       if (Op.isDef()) {
503         // Tied defs will always have corresponding uses, so no extra
504         // implicit uses are needed.
505         if (!Op.isTied())
506           ImpUses.insert({Op, i});
507       } else {
508         // This function can be called for the same register with different
509         // lane masks. If the def in this instruction was for the whole
510         // register, we can get here more than once. Avoid adding multiple
511         // implicit uses (or adding an implicit use when an explicit one is
512         // present).
513         if (Op.isTied())
514           ImpUses.erase(Op);
515       }
516     }
517     if (ImpUses.empty())
518       continue;
519     MachineFunction &MF = *DefI->getParent()->getParent();
520     for (std::pair<RegisterRef, unsigned> P : ImpUses) {
521       RegisterRef R = P.first;
522       MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
523       DefI->tieOperands(P.second, DefI->getNumOperands()-1);
524     }
525   }
526 }
527 
528 void HexagonExpandCondsets::updateDeadFlags(Register Reg) {
529   LiveInterval &LI = LIS->getInterval(Reg);
530   if (LI.hasSubRanges()) {
531     for (LiveInterval::SubRange &S : LI.subranges()) {
532       updateDeadsInRange(Reg, S.LaneMask, S);
533       LIS->shrinkToUses(S, Reg);
534     }
535     LI.clear();
536     LIS->constructMainRangeFromSubranges(LI);
537   } else {
538     updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
539   }
540 }
541 
542 void HexagonExpandCondsets::recalculateLiveInterval(Register Reg) {
543   LIS->removeInterval(Reg);
544   LIS->createAndComputeVirtRegInterval(Reg);
545 }
546 
547 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
548   LIS->RemoveMachineInstrFromMaps(MI);
549   MI.eraseFromParent();
550 }
551 
552 void HexagonExpandCondsets::updateLiveness(std::set<Register> &RegSet,
553                                            bool Recalc, bool UpdateKills,
554                                            bool UpdateDeads) {
555   UpdateKills |= UpdateDeads;
556   for (Register R : RegSet) {
557     if (!R.isVirtual()) {
558       assert(R.isPhysical());
559       // There shouldn't be any physical registers as operands, except
560       // possibly reserved registers.
561       assert(MRI->isReserved(R));
562       continue;
563     }
564     if (Recalc)
565       recalculateLiveInterval(R);
566     if (UpdateKills)
567       MRI->clearKillFlags(R);
568     if (UpdateDeads)
569       updateDeadFlags(R);
570     // Fixing <dead> flags may extend live ranges, so reset <kill> flags
571     // after that.
572     if (UpdateKills)
573       updateKillFlags(R);
574     LIS->getInterval(R).verify();
575   }
576 }
577 
578 /// Get the opcode for a conditional transfer of the value in SO (source
579 /// operand). The condition (true/false) is given in Cond.
580 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
581       bool IfTrue) {
582   using namespace Hexagon;
583 
584   if (SO.isReg()) {
585     MCRegister PhysR;
586     RegisterRef RS = SO;
587     if (RS.Reg.isVirtual()) {
588       const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
589       assert(VC->begin() != VC->end() && "Empty register class");
590       PhysR = *VC->begin();
591     } else {
592       PhysR = RS.Reg;
593     }
594     MCRegister PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
595     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
596     switch (TRI->getRegSizeInBits(*RC)) {
597       case 32:
598         return IfTrue ? A2_tfrt : A2_tfrf;
599       case 64:
600         return IfTrue ? A2_tfrpt : A2_tfrpf;
601     }
602     llvm_unreachable("Invalid register operand");
603   }
604   switch (SO.getType()) {
605     case MachineOperand::MO_Immediate:
606     case MachineOperand::MO_FPImmediate:
607     case MachineOperand::MO_ConstantPoolIndex:
608     case MachineOperand::MO_TargetIndex:
609     case MachineOperand::MO_JumpTableIndex:
610     case MachineOperand::MO_ExternalSymbol:
611     case MachineOperand::MO_GlobalAddress:
612     case MachineOperand::MO_BlockAddress:
613       return IfTrue ? C2_cmoveit : C2_cmoveif;
614     default:
615       break;
616   }
617   llvm_unreachable("Unexpected source operand");
618 }
619 
620 /// Generate a conditional transfer, copying the value SrcOp to the
621 /// destination register DstR:DstSR, and using the predicate register from
622 /// PredOp. The Cond argument specifies whether the predicate is to be
623 /// if(PredOp), or if(!PredOp).
624 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
625       MachineBasicBlock::iterator At,
626       unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
627       bool PredSense, bool ReadUndef, bool ImpUse) {
628   MachineInstr *MI = SrcOp.getParent();
629   MachineBasicBlock &B = *At->getParent();
630   const DebugLoc &DL = MI->getDebugLoc();
631 
632   // Don't avoid identity copies here (i.e. if the source and the destination
633   // are the same registers). It is actually better to generate them here,
634   // since this would cause the copy to potentially be predicated in the next
635   // step. The predication will remove such a copy if it is unable to
636   /// predicate.
637 
638   unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
639   unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0);
640   unsigned PredState = getRegState(PredOp) & ~RegState::Kill;
641   MachineInstrBuilder MIB;
642 
643   if (SrcOp.isReg()) {
644     unsigned SrcState = getRegState(SrcOp);
645     if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR))
646       SrcState &= ~RegState::Kill;
647     MIB = BuildMI(B, At, DL, HII->get(Opc))
648           .addReg(DstR, DstState, DstSR)
649           .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
650           .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg());
651   } else {
652     MIB = BuildMI(B, At, DL, HII->get(Opc))
653               .addReg(DstR, DstState, DstSR)
654               .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
655               .add(SrcOp);
656   }
657 
658   LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB);
659   return &*MIB;
660 }
661 
662 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
663 /// performs all necessary changes to complete the replacement.
664 bool HexagonExpandCondsets::split(MachineInstr &MI,
665                                   std::set<Register> &UpdRegs) {
666   if (TfrLimitActive) {
667     if (TfrCounter >= TfrLimit)
668       return false;
669     TfrCounter++;
670   }
671   LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent())
672                     << ": " << MI);
673   MachineOperand &MD = MI.getOperand(0);  // Definition
674   MachineOperand &MP = MI.getOperand(1);  // Predicate register
675   assert(MD.isDef());
676   Register DR = MD.getReg(), DSR = MD.getSubReg();
677   bool ReadUndef = MD.isUndef();
678   MachineBasicBlock::iterator At = MI;
679 
680   auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void {
681     for (auto &Op : MI.operands())
682       if (Op.isReg())
683         UpdRegs.insert(Op.getReg());
684   };
685 
686   // If this is a mux of the same register, just replace it with COPY.
687   // Ideally, this would happen earlier, so that register coalescing would
688   // see it.
689   MachineOperand &ST = MI.getOperand(2);
690   MachineOperand &SF = MI.getOperand(3);
691   if (ST.isReg() && SF.isReg()) {
692     RegisterRef RT(ST);
693     if (RT == RegisterRef(SF)) {
694       // Copy regs to update first.
695       updateRegs(MI);
696       MI.setDesc(HII->get(TargetOpcode::COPY));
697       unsigned S = getRegState(ST);
698       while (MI.getNumOperands() > 1)
699         MI.removeOperand(MI.getNumOperands()-1);
700       MachineFunction &MF = *MI.getParent()->getParent();
701       MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub);
702       return true;
703     }
704   }
705 
706   // First, create the two invididual conditional transfers, and add each
707   // of them to the live intervals information. Do that first and then remove
708   // the old instruction from live intervals.
709   MachineInstr *TfrT =
710       genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false);
711   MachineInstr *TfrF =
712       genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true);
713   LIS->InsertMachineInstrInMaps(*TfrT);
714   LIS->InsertMachineInstrInMaps(*TfrF);
715 
716   // Will need to recalculate live intervals for all registers in MI.
717   updateRegs(MI);
718 
719   removeInstr(MI);
720   return true;
721 }
722 
723 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
724   if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
725     return false;
726   if (MI->hasUnmodeledSideEffects() || MI->mayStore())
727     return false;
728   // Reject instructions with multiple defs (e.g. post-increment loads).
729   bool HasDef = false;
730   for (auto &Op : MI->operands()) {
731     if (!Op.isReg() || !Op.isDef())
732       continue;
733     if (HasDef)
734       return false;
735     HasDef = true;
736   }
737   for (auto &Mo : MI->memoperands())
738     if (Mo->isVolatile() || Mo->isAtomic())
739       return false;
740   return true;
741 }
742 
743 /// Find the reaching definition for a predicated use of RD. The RD is used
744 /// under the conditions given by PredR and Cond, and this function will ignore
745 /// definitions that set RD under the opposite conditions.
746 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
747       MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
748   MachineBasicBlock &B = *UseIt->getParent();
749   MachineBasicBlock::iterator I = UseIt, S = B.begin();
750   if (I == S)
751     return nullptr;
752 
753   bool PredValid = true;
754   do {
755     --I;
756     MachineInstr *MI = &*I;
757     // Check if this instruction can be ignored, i.e. if it is predicated
758     // on the complementary condition.
759     if (PredValid && HII->isPredicated(*MI)) {
760       if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
761         continue;
762     }
763 
764     // Check the defs. If the PredR is defined, invalidate it. If RD is
765     // defined, return the instruction or 0, depending on the circumstances.
766     for (auto &Op : MI->operands()) {
767       if (!Op.isReg() || !Op.isDef())
768         continue;
769       RegisterRef RR = Op;
770       if (RR.Reg == PredR) {
771         PredValid = false;
772         continue;
773       }
774       if (RR.Reg != RD.Reg)
775         continue;
776       // If the "Reg" part agrees, there is still the subregister to check.
777       // If we are looking for %1:loreg, we can skip %1:hireg, but
778       // not %1 (w/o subregisters).
779       if (RR.Sub == RD.Sub)
780         return MI;
781       if (RR.Sub == 0 || RD.Sub == 0)
782         return nullptr;
783       // We have different subregisters, so we can continue looking.
784     }
785   } while (I != S);
786 
787   return nullptr;
788 }
789 
790 /// Check if the instruction MI can be safely moved over a set of instructions
791 /// whose side-effects (in terms of register defs and uses) are expressed in
792 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
793 /// that depend on the same predicate register to allow moving instructions
794 /// over instructions predicated on the opposite condition.
795 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
796                                         ReferenceMap &Uses) {
797   // In order to be able to safely move MI over instructions that define
798   // "Defs" and use "Uses", no def operand from MI can be defined or used
799   // and no use operand can be defined.
800   for (auto &Op : MI.operands()) {
801     if (!Op.isReg())
802       continue;
803     RegisterRef RR = Op;
804     // For physical register we would need to check register aliases, etc.
805     // and we don't want to bother with that. It would be of little value
806     // before the actual register rewriting (from virtual to physical).
807     if (!RR.Reg.isVirtual())
808       return false;
809     // No redefs for any operand.
810     if (isRefInMap(RR, Defs, Exec_Then))
811       return false;
812     // For defs, there cannot be uses.
813     if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
814       return false;
815   }
816   return true;
817 }
818 
819 /// Check if the instruction accessing memory (TheI) can be moved to the
820 /// location ToI.
821 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
822                                          bool IsDown) {
823   bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
824   if (!IsLoad && !IsStore)
825     return true;
826   if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
827     return true;
828   if (TheI.hasUnmodeledSideEffects())
829     return false;
830 
831   MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
832   MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
833   bool Ordered = TheI.hasOrderedMemoryRef();
834 
835   // Search for aliased memory reference in (StartI, EndI).
836   for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
837     MachineInstr *MI = &*I;
838     if (MI->hasUnmodeledSideEffects())
839       return false;
840     bool L = MI->mayLoad(), S = MI->mayStore();
841     if (!L && !S)
842       continue;
843     if (Ordered && MI->hasOrderedMemoryRef())
844       return false;
845 
846     bool Conflict = (L && IsStore) || S;
847     if (Conflict)
848       return false;
849   }
850   return true;
851 }
852 
853 /// Generate a predicated version of MI (where the condition is given via
854 /// PredR and Cond) at the point indicated by Where.
855 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
856                                         MachineInstr &MI,
857                                         MachineBasicBlock::iterator Where,
858                                         const MachineOperand &PredOp, bool Cond,
859                                         std::set<Register> &UpdRegs) {
860   // The problem with updating live intervals is that we can move one def
861   // past another def. In particular, this can happen when moving an A2_tfrt
862   // over an A2_tfrf defining the same register. From the point of view of
863   // live intervals, these two instructions are two separate definitions,
864   // and each one starts another live segment. LiveIntervals's "handleMove"
865   // does not allow such moves, so we need to handle it ourselves. To avoid
866   // invalidating liveness data while we are using it, the move will be
867   // implemented in 4 steps: (1) add a clone of the instruction MI at the
868   // target location, (2) update liveness, (3) delete the old instruction,
869   // and (4) update liveness again.
870 
871   MachineBasicBlock &B = *MI.getParent();
872   DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
873   unsigned Opc = MI.getOpcode();
874   unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
875   MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
876   unsigned Ox = 0, NP = MI.getNumOperands();
877   // Skip all defs from MI first.
878   while (Ox < NP) {
879     MachineOperand &MO = MI.getOperand(Ox);
880     if (!MO.isReg() || !MO.isDef())
881       break;
882     Ox++;
883   }
884   // Add the new def, then the predicate register, then the rest of the
885   // operands.
886   MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
887   MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
888             PredOp.getSubReg());
889   while (Ox < NP) {
890     MachineOperand &MO = MI.getOperand(Ox);
891     if (!MO.isReg() || !MO.isImplicit())
892       MB.add(MO);
893     Ox++;
894   }
895   MB.cloneMemRefs(MI);
896 
897   MachineInstr *NewI = MB;
898   NewI->clearKillInfo();
899   LIS->InsertMachineInstrInMaps(*NewI);
900 
901   for (auto &Op : NewI->operands())
902     if (Op.isReg())
903       UpdRegs.insert(Op.getReg());
904 }
905 
906 /// In the range [First, Last], rename all references to the "old" register RO
907 /// to the "new" register RN, but only in instructions predicated on the given
908 /// condition.
909 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
910       unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
911       MachineBasicBlock::iterator Last) {
912   MachineBasicBlock::iterator End = std::next(Last);
913   for (MachineBasicBlock::iterator I = First; I != End; ++I) {
914     MachineInstr *MI = &*I;
915     // Do not touch instructions that are not predicated, or are predicated
916     // on the opposite condition.
917     if (!HII->isPredicated(*MI))
918       continue;
919     if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
920       continue;
921 
922     for (auto &Op : MI->operands()) {
923       if (!Op.isReg() || RO != RegisterRef(Op))
924         continue;
925       Op.setReg(RN.Reg);
926       Op.setSubReg(RN.Sub);
927       // In practice, this isn't supposed to see any defs.
928       assert(!Op.isDef() && "Not expecting a def");
929     }
930   }
931 }
932 
933 /// For a given conditional copy, predicate the definition of the source of
934 /// the copy under the given condition (using the same predicate register as
935 /// the copy).
936 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
937                                       std::set<Register> &UpdRegs) {
938   // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
939   unsigned Opc = TfrI.getOpcode();
940   (void)Opc;
941   assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
942   LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
943                     << ": " << TfrI);
944 
945   MachineOperand &MD = TfrI.getOperand(0);
946   MachineOperand &MP = TfrI.getOperand(1);
947   MachineOperand &MS = TfrI.getOperand(2);
948   // The source operand should be a <kill>. This is not strictly necessary,
949   // but it makes things a lot simpler. Otherwise, we would need to rename
950   // some registers, which would complicate the transformation considerably.
951   if (!MS.isKill())
952     return false;
953   // Avoid predicating instructions that define a subregister if subregister
954   // liveness tracking is not enabled.
955   if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
956     return false;
957 
958   RegisterRef RT(MS);
959   Register PredR = MP.getReg();
960   MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
961   if (!DefI || !isPredicable(DefI))
962     return false;
963 
964   LLVM_DEBUG(dbgs() << "Source def: " << *DefI);
965 
966   // Collect the information about registers defined and used between the
967   // DefI and the TfrI.
968   // Map: reg -> bitmask of subregs
969   ReferenceMap Uses, Defs;
970   MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
971 
972   // Check if the predicate register is valid between DefI and TfrI.
973   // If it is, we can then ignore instructions predicated on the negated
974   // conditions when collecting def and use information.
975   bool PredValid = true;
976   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
977     if (!I->modifiesRegister(PredR, nullptr))
978       continue;
979     PredValid = false;
980     break;
981   }
982 
983   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
984     MachineInstr *MI = &*I;
985     // If this instruction is predicated on the same register, it could
986     // potentially be ignored.
987     // By default assume that the instruction executes on the same condition
988     // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
989     unsigned Exec = Exec_Then | Exec_Else;
990     if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
991       Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;
992 
993     for (auto &Op : MI->operands()) {
994       if (!Op.isReg())
995         continue;
996       // We don't want to deal with physical registers. The reason is that
997       // they can be aliased with other physical registers. Aliased virtual
998       // registers must share the same register number, and can only differ
999       // in the subregisters, which we are keeping track of. Physical
1000       // registers ters no longer have subregisters---their super- and
1001       // subregisters are other physical registers, and we are not checking
1002       // that.
1003       RegisterRef RR = Op;
1004       if (!RR.Reg.isVirtual())
1005         return false;
1006 
1007       ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1008       if (Op.isDef() && Op.isUndef()) {
1009         assert(RR.Sub && "Expecting a subregister on <def,read-undef>");
1010         // If this is a <def,read-undef>, then it invalidates the non-written
1011         // part of the register. For the purpose of checking the validity of
1012         // the move, assume that it modifies the whole register.
1013         RR.Sub = 0;
1014       }
1015       addRefToMap(RR, Map, Exec);
1016     }
1017   }
1018 
1019   // The situation:
1020   //   RT = DefI
1021   //   ...
1022   //   RD = TfrI ..., RT
1023 
1024   // If the register-in-the-middle (RT) is used or redefined between
1025   // DefI and TfrI, we may not be able proceed with this transformation.
1026   // We can ignore a def that will not execute together with TfrI, and a
1027   // use that will. If there is such a use (that does execute together with
1028   // TfrI), we will not be able to move DefI down. If there is a use that
1029   // executed if TfrI's condition is false, then RT must be available
1030   // unconditionally (cannot be predicated).
1031   // Essentially, we need to be able to rename RT to RD in this segment.
1032   if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1033     return false;
1034   RegisterRef RD = MD;
1035   // If the predicate register is defined between DefI and TfrI, the only
1036   // potential thing to do would be to move the DefI down to TfrI, and then
1037   // predicate. The reaching def (DefI) must be movable down to the location
1038   // of the TfrI.
1039   // If the target register of the TfrI (RD) is not used or defined between
1040   // DefI and TfrI, consider moving TfrI up to DefI.
1041   bool CanUp =   canMoveOver(TfrI, Defs, Uses);
1042   bool CanDown = canMoveOver(*DefI, Defs, Uses);
1043   // The TfrI does not access memory, but DefI could. Check if it's safe
1044   // to move DefI down to TfrI.
1045   if (DefI->mayLoadOrStore())
1046     if (!canMoveMemTo(*DefI, TfrI, true))
1047       CanDown = false;
1048 
1049   LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1050                     << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1051   MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1052   if (CanUp)
1053     predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
1054   else if (CanDown)
1055     predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
1056   else
1057     return false;
1058 
1059   if (RT != RD) {
1060     renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1061     UpdRegs.insert(RT.Reg);
1062   }
1063 
1064   removeInstr(TfrI);
1065   removeInstr(*DefI);
1066   return true;
1067 }
1068 
1069 /// Predicate all cases of conditional copies in the specified block.
1070 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
1071                                              std::set<Register> &UpdRegs) {
1072   bool Changed = false;
1073   for (MachineInstr &MI : llvm::make_early_inc_range(B)) {
1074     unsigned Opc = MI.getOpcode();
1075     if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1076       bool Done = predicate(MI, (Opc == Hexagon::A2_tfrt), UpdRegs);
1077       if (!Done) {
1078         // If we didn't predicate I, we may need to remove it in case it is
1079         // an "identity" copy, e.g.  %1 = A2_tfrt %2, %1.
1080         if (RegisterRef(MI.getOperand(0)) == RegisterRef(MI.getOperand(2))) {
1081           for (auto &Op : MI.operands())
1082             if (Op.isReg())
1083               UpdRegs.insert(Op.getReg());
1084           removeInstr(MI);
1085         }
1086       }
1087       Changed |= Done;
1088     }
1089   }
1090   return Changed;
1091 }
1092 
1093 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1094   if (!RR.Reg.isVirtual())
1095     return false;
1096   const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1097   if (RC == &Hexagon::IntRegsRegClass) {
1098     BW = 32;
1099     return true;
1100   }
1101   if (RC == &Hexagon::DoubleRegsRegClass) {
1102     BW = (RR.Sub != 0) ? 32 : 64;
1103     return true;
1104   }
1105   return false;
1106 }
1107 
1108 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1109   for (LiveRange::Segment &LR : LI) {
1110     // Range must start at a register...
1111     if (!LR.start.isRegister())
1112       return false;
1113     // ...and end in a register or in a dead slot.
1114     if (!LR.end.isRegister() && !LR.end.isDead())
1115       return false;
1116   }
1117   return true;
1118 }
1119 
1120 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1121   if (CoaLimitActive) {
1122     if (CoaCounter >= CoaLimit)
1123       return false;
1124     CoaCounter++;
1125   }
1126   unsigned BW1, BW2;
1127   if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1128     return false;
1129   if (MRI->isLiveIn(R1.Reg))
1130     return false;
1131   if (MRI->isLiveIn(R2.Reg))
1132     return false;
1133 
1134   LiveInterval &L1 = LIS->getInterval(R1.Reg);
1135   LiveInterval &L2 = LIS->getInterval(R2.Reg);
1136   if (L2.empty())
1137     return false;
1138   if (L1.hasSubRanges() || L2.hasSubRanges())
1139     return false;
1140   bool Overlap = L1.overlaps(L2);
1141 
1142   LLVM_DEBUG(dbgs() << "compatible registers: ("
1143                     << (Overlap ? "overlap" : "disjoint") << ")\n  "
1144                     << printReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
1145                     << printReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
1146   if (R1.Sub || R2.Sub)
1147     return false;
1148   if (Overlap)
1149     return false;
1150 
1151   // Coalescing could have a negative impact on scheduling, so try to limit
1152   // to some reasonable extent. Only consider coalescing segments, when one
1153   // of them does not cross basic block boundaries.
1154   if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1155     return false;
1156 
1157   MRI->replaceRegWith(R2.Reg, R1.Reg);
1158 
1159   // Move all live segments from L2 to L1.
1160   using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>;
1161   ValueInfoMap VM;
1162   for (LiveRange::Segment &I : L2) {
1163     VNInfo *NewVN, *OldVN = I.valno;
1164     ValueInfoMap::iterator F = VM.find(OldVN);
1165     if (F == VM.end()) {
1166       NewVN = L1.getNextValue(I.valno->def, LIS->getVNInfoAllocator());
1167       VM.insert(std::make_pair(OldVN, NewVN));
1168     } else {
1169       NewVN = F->second;
1170     }
1171     L1.addSegment(LiveRange::Segment(I.start, I.end, NewVN));
1172   }
1173   while (!L2.empty())
1174     L2.removeSegment(*L2.begin());
1175   LIS->removeInterval(R2.Reg);
1176 
1177   updateKillFlags(R1.Reg);
1178   LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1179   L1.verify();
1180 
1181   return true;
1182 }
1183 
1184 /// Attempt to coalesce one of the source registers to a MUX instruction with
1185 /// the destination register. This could lead to having only one predicated
1186 /// instruction in the end instead of two.
1187 bool HexagonExpandCondsets::coalesceSegments(
1188     const SmallVectorImpl<MachineInstr *> &Condsets,
1189     std::set<Register> &UpdRegs) {
1190   SmallVector<MachineInstr*,16> TwoRegs;
1191   for (MachineInstr *MI : Condsets) {
1192     MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1193     if (!S1.isReg() && !S2.isReg())
1194       continue;
1195     TwoRegs.push_back(MI);
1196   }
1197 
1198   bool Changed = false;
1199   for (MachineInstr *CI : TwoRegs) {
1200     RegisterRef RD = CI->getOperand(0);
1201     RegisterRef RP = CI->getOperand(1);
1202     MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1203     bool Done = false;
1204     // Consider this case:
1205     //   %1 = instr1 ...
1206     //   %2 = instr2 ...
1207     //   %0 = C2_mux ..., %1, %2
1208     // If %0 was coalesced with %1, we could end up with the following
1209     // code:
1210     //   %0 = instr1 ...
1211     //   %2 = instr2 ...
1212     //   %0 = A2_tfrf ..., %2
1213     // which will later become:
1214     //   %0 = instr1 ...
1215     //   %0 = instr2_cNotPt ...
1216     // i.e. there will be an unconditional definition (instr1) of %0
1217     // followed by a conditional one. The output dependency was there before
1218     // and it unavoidable, but if instr1 is predicable, we will no longer be
1219     // able to predicate it here.
1220     // To avoid this scenario, don't coalesce the destination register with
1221     // a source register that is defined by a predicable instruction.
1222     if (S1.isReg()) {
1223       RegisterRef RS = S1;
1224       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1225       if (!RDef || !HII->isPredicable(*RDef)) {
1226         Done = coalesceRegisters(RD, RegisterRef(S1));
1227         if (Done) {
1228           UpdRegs.insert(RD.Reg);
1229           UpdRegs.insert(S1.getReg());
1230         }
1231       }
1232     }
1233     if (!Done && S2.isReg()) {
1234       RegisterRef RS = S2;
1235       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1236       if (!RDef || !HII->isPredicable(*RDef)) {
1237         Done = coalesceRegisters(RD, RegisterRef(S2));
1238         if (Done) {
1239           UpdRegs.insert(RD.Reg);
1240           UpdRegs.insert(S2.getReg());
1241         }
1242       }
1243     }
1244     Changed |= Done;
1245   }
1246   return Changed;
1247 }
1248 
1249 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1250   if (skipFunction(MF.getFunction()))
1251     return false;
1252 
1253   HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1254   TRI = MF.getSubtarget().getRegisterInfo();
1255   MDT = &getAnalysis<MachineDominatorTree>();
1256   LIS = &getAnalysis<LiveIntervals>();
1257   MRI = &MF.getRegInfo();
1258 
1259   LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
1260                         MF.getFunction().getParent()));
1261 
1262   bool Changed = false;
1263   std::set<Register> CoalUpd, PredUpd;
1264 
1265   SmallVector<MachineInstr*,16> Condsets;
1266   for (auto &B : MF)
1267     for (auto &I : B)
1268       if (isCondset(I))
1269         Condsets.push_back(&I);
1270 
1271   // Try to coalesce the target of a mux with one of its sources.
1272   // This could eliminate a register copy in some circumstances.
1273   Changed |= coalesceSegments(Condsets, CoalUpd);
1274 
1275   // Update kill flags on all source operands. This is done here because
1276   // at this moment (when expand-condsets runs), there are no kill flags
1277   // in the IR (they have been removed by live range analysis).
1278   // Updating them right before we split is the easiest, because splitting
1279   // adds definitions which would interfere with updating kills afterwards.
1280   std::set<Register> KillUpd;
1281   for (MachineInstr *MI : Condsets)
1282     for (MachineOperand &Op : MI->operands())
1283       if (Op.isReg() && Op.isUse())
1284         if (!CoalUpd.count(Op.getReg()))
1285           KillUpd.insert(Op.getReg());
1286   updateLiveness(KillUpd, false, true, false);
1287   LLVM_DEBUG(
1288       LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent()));
1289 
1290   // First, simply split all muxes into a pair of conditional transfers
1291   // and update the live intervals to reflect the new arrangement. The
1292   // goal is to update the kill flags, since predication will rely on
1293   // them.
1294   for (MachineInstr *MI : Condsets)
1295     Changed |= split(*MI, PredUpd);
1296   Condsets.clear(); // The contents of Condsets are invalid here anyway.
1297 
1298   // Do not update live ranges after splitting. Recalculation of live
1299   // intervals removes kill flags, which were preserved by splitting on
1300   // the source operands of condsets. These kill flags are needed by
1301   // predication, and after splitting they are difficult to recalculate
1302   // (because of predicated defs), so make sure they are left untouched.
1303   // Predication does not use live intervals.
1304   LLVM_DEBUG(
1305       LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent()));
1306 
1307   // Traverse all blocks and collapse predicable instructions feeding
1308   // conditional transfers into predicated instructions.
1309   // Walk over all the instructions again, so we may catch pre-existing
1310   // cases that were not created in the previous step.
1311   for (auto &B : MF)
1312     Changed |= predicateInBlock(B, PredUpd);
1313   LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n",
1314                         MF.getFunction().getParent()));
1315 
1316   PredUpd.insert(CoalUpd.begin(), CoalUpd.end());
1317   updateLiveness(PredUpd, true, true, true);
1318 
1319   LLVM_DEBUG({
1320     if (Changed)
1321       LIS->print(dbgs() << "After expand-condsets\n",
1322                  MF.getFunction().getParent());
1323   });
1324 
1325   return Changed;
1326 }
1327 
1328 //===----------------------------------------------------------------------===//
1329 //                         Public Constructor Functions
1330 //===----------------------------------------------------------------------===//
1331 FunctionPass *llvm::createHexagonExpandCondsets() {
1332   return new HexagonExpandCondsets();
1333 }
1334