xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- HexagonExpandCondsets.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // Replace mux instructions with the corresponding legal instructions.
10 // It is meant to work post-SSA, but still on virtual registers. It was
11 // originally placed between register coalescing and machine instruction
12 // scheduler.
13 // In this place in the optimization sequence, live interval analysis had
14 // been performed, and the live intervals should be preserved. A large part
15 // of the code deals with preserving the liveness information.
16 //
17 // Liveness tracking aside, the main functionality of this pass is divided
18 // into two steps. The first step is to replace an instruction
19 //   %0 = C2_mux %1, %2, %3
20 // with a pair of conditional transfers
21 //   %0 = A2_tfrt %1, %2
22 //   %0 = A2_tfrf %1, %3
23 // It is the intention that the execution of this pass could be terminated
24 // after this step, and the code generated would be functionally correct.
25 //
26 // If the uses of the source values %1 and %2 are kills, and their
27 // definitions are predicable, then in the second step, the conditional
28 // transfers will then be rewritten as predicated instructions. E.g.
29 //   %0 = A2_or %1, %2
30 //   %3 = A2_tfrt %99, killed %0
31 // will be rewritten as
32 //   %3 = A2_port %99, %1, %2
33 //
34 // This replacement has two variants: "up" and "down". Consider this case:
35 //   %0 = A2_or %1, %2
36 //   ... [intervening instructions] ...
37 //   %3 = A2_tfrt %99, killed %0
38 // variant "up":
39 //   %3 = A2_port %99, %1, %2
40 //   ... [intervening instructions, %0->vreg3] ...
41 //   [deleted]
42 // variant "down":
43 //   [deleted]
44 //   ... [intervening instructions] ...
45 //   %3 = A2_port %99, %1, %2
46 //
47 // Both, one or none of these variants may be valid, and checks are made
48 // to rule out inapplicable variants.
49 //
50 // As an additional optimization, before either of the two steps above is
51 // executed, the pass attempts to coalesce the target register with one of
52 // the source registers, e.g. given an instruction
53 //   %3 = C2_mux %0, %1, %2
54 // %3 will be coalesced with either %1 or %2. If this succeeds,
55 // the instruction would then be (for example)
56 //   %3 = C2_mux %0, %3, %2
57 // and, under certain circumstances, this could result in only one predicated
58 // instruction:
59 //   %3 = A2_tfrf %0, %2
60 //
61 
62 // Splitting a definition of a register into two predicated transfers
63 // creates a complication in liveness tracking. Live interval computation
64 // will see both instructions as actual definitions, and will mark the
65 // first one as dead. The definition is not actually dead, and this
66 // situation will need to be fixed. For example:
67 //   dead %1 = A2_tfrt ...  ; marked as dead
68 //   %1 = A2_tfrf ...
69 //
70 // Since any of the individual predicated transfers may end up getting
71 // removed (in case it is an identity copy), some pre-existing def may
72 // be marked as dead after live interval recomputation:
73 //   dead %1 = ...          ; marked as dead
74 //   ...
75 //   %1 = A2_tfrf ...       ; if A2_tfrt is removed
76 // This case happens if %1 was used as a source in A2_tfrt, which means
77 // that is it actually live at the A2_tfrf, and so the now dead definition
78 // of %1 will need to be updated to non-dead at some point.
79 //
80 // This issue could be remedied by adding implicit uses to the predicated
81 // transfers, but this will create a problem with subsequent predication,
82 // since the transfers will no longer be possible to reorder. To avoid
83 // that, the initial splitting will not add any implicit uses. These
84 // implicit uses will be added later, after predication. The extra price,
85 // however, is that finding the locations where the implicit uses need
86 // to be added, and updating the live ranges will be more involved.
87 
88 #include "HexagonInstrInfo.h"
89 #include "HexagonRegisterInfo.h"
90 #include "llvm/ADT/DenseMap.h"
91 #include "llvm/ADT/SetVector.h"
92 #include "llvm/ADT/SmallVector.h"
93 #include "llvm/ADT/StringRef.h"
94 #include "llvm/CodeGen/LiveInterval.h"
95 #include "llvm/CodeGen/LiveIntervals.h"
96 #include "llvm/CodeGen/MachineBasicBlock.h"
97 #include "llvm/CodeGen/MachineDominators.h"
98 #include "llvm/CodeGen/MachineFunction.h"
99 #include "llvm/CodeGen/MachineFunctionPass.h"
100 #include "llvm/CodeGen/MachineInstr.h"
101 #include "llvm/CodeGen/MachineInstrBuilder.h"
102 #include "llvm/CodeGen/MachineOperand.h"
103 #include "llvm/CodeGen/MachineRegisterInfo.h"
104 #include "llvm/CodeGen/SlotIndexes.h"
105 #include "llvm/CodeGen/TargetRegisterInfo.h"
106 #include "llvm/CodeGen/TargetSubtargetInfo.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/LaneBitmask.h"
110 #include "llvm/Pass.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include <cassert>
116 #include <iterator>
117 #include <set>
118 #include <utility>
119 
120 #define DEBUG_TYPE "expand-condsets"
121 
122 using namespace llvm;
123 
124 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
125   cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
126 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
127   cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
128 
129 namespace llvm {
130 
131   void initializeHexagonExpandCondsetsPass(PassRegistry&);
132   FunctionPass *createHexagonExpandCondsets();
133 
134 } // end namespace llvm
135 
136 namespace {
137 
138   class HexagonExpandCondsets : public MachineFunctionPass {
139   public:
140     static char ID;
141 
142     HexagonExpandCondsets() : MachineFunctionPass(ID) {
143       if (OptCoaLimit.getPosition())
144         CoaLimitActive = true, CoaLimit = OptCoaLimit;
145       if (OptTfrLimit.getPosition())
146         TfrLimitActive = true, TfrLimit = OptTfrLimit;
147       initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
148     }
149 
150     StringRef getPassName() const override { return "Hexagon Expand Condsets"; }
151 
152     void getAnalysisUsage(AnalysisUsage &AU) const override {
153       AU.addRequired<LiveIntervals>();
154       AU.addPreserved<LiveIntervals>();
155       AU.addPreserved<SlotIndexes>();
156       AU.addRequired<MachineDominatorTree>();
157       AU.addPreserved<MachineDominatorTree>();
158       MachineFunctionPass::getAnalysisUsage(AU);
159     }
160 
161     bool runOnMachineFunction(MachineFunction &MF) override;
162 
163   private:
164     const HexagonInstrInfo *HII = nullptr;
165     const TargetRegisterInfo *TRI = nullptr;
166     MachineDominatorTree *MDT;
167     MachineRegisterInfo *MRI = nullptr;
168     LiveIntervals *LIS = nullptr;
169     bool CoaLimitActive = false;
170     bool TfrLimitActive = false;
171     unsigned CoaLimit;
172     unsigned TfrLimit;
173     unsigned CoaCounter = 0;
174     unsigned TfrCounter = 0;
175 
176     struct RegisterRef {
177       RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
178           Sub(Op.getSubReg()) {}
179       RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
180 
181       bool operator== (RegisterRef RR) const {
182         return Reg == RR.Reg && Sub == RR.Sub;
183       }
184       bool operator!= (RegisterRef RR) const { return !operator==(RR); }
185       bool operator< (RegisterRef RR) const {
186         return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
187       }
188 
189       unsigned Reg, Sub;
190     };
191 
192     using ReferenceMap = DenseMap<unsigned, unsigned>;
193     enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
194     enum { Exec_Then = 0x10, Exec_Else = 0x20 };
195 
196     unsigned getMaskForSub(unsigned Sub);
197     bool isCondset(const MachineInstr &MI);
198     LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);
199 
200     void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
201     bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
202 
203     void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
204     void updateKillFlags(unsigned Reg);
205     void updateDeadFlags(unsigned Reg);
206     void recalculateLiveInterval(unsigned Reg);
207     void removeInstr(MachineInstr &MI);
208     void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
209         bool UpdateKills, bool UpdateDeads);
210 
211     unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
212     MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
213         MachineBasicBlock::iterator At, unsigned DstR,
214         unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
215         bool ReadUndef, bool ImpUse);
216     bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);
217 
218     bool isPredicable(MachineInstr *MI);
219     MachineInstr *getReachingDefForPred(RegisterRef RD,
220         MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
221     bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
222     bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
223     void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
224                      MachineBasicBlock::iterator Where,
225                      const MachineOperand &PredOp, bool Cond,
226                      std::set<unsigned> &UpdRegs);
227     void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
228         bool Cond, MachineBasicBlock::iterator First,
229         MachineBasicBlock::iterator Last);
230     bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
231     bool predicateInBlock(MachineBasicBlock &B,
232         std::set<unsigned> &UpdRegs);
233 
234     bool isIntReg(RegisterRef RR, unsigned &BW);
235     bool isIntraBlocks(LiveInterval &LI);
236     bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
237     bool coalesceSegments(const SmallVectorImpl<MachineInstr*> &Condsets,
238                           std::set<unsigned> &UpdRegs);
239   };
240 
241 } // end anonymous namespace
242 
243 char HexagonExpandCondsets::ID = 0;
244 
245 namespace llvm {
246 
247   char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID;
248 
249 } // end namespace llvm
250 
251 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
252   "Hexagon Expand Condsets", false, false)
253 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
254 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
255 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
256 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
257   "Hexagon Expand Condsets", false, false)
258 
259 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
260   switch (Sub) {
261     case Hexagon::isub_lo:
262     case Hexagon::vsub_lo:
263       return Sub_Low;
264     case Hexagon::isub_hi:
265     case Hexagon::vsub_hi:
266       return Sub_High;
267     case Hexagon::NoSubRegister:
268       return Sub_None;
269   }
270   llvm_unreachable("Invalid subregister");
271 }
272 
273 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
274   unsigned Opc = MI.getOpcode();
275   switch (Opc) {
276     case Hexagon::C2_mux:
277     case Hexagon::C2_muxii:
278     case Hexagon::C2_muxir:
279     case Hexagon::C2_muxri:
280     case Hexagon::PS_pselect:
281         return true;
282       break;
283   }
284   return false;
285 }
286 
287 LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
288   assert(Register::isVirtualRegister(Reg));
289   return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
290                   : MRI->getMaxLaneMaskForVReg(Reg);
291 }
292 
293 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
294       unsigned Exec) {
295   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
296   ReferenceMap::iterator F = Map.find(RR.Reg);
297   if (F == Map.end())
298     Map.insert(std::make_pair(RR.Reg, Mask));
299   else
300     F->second |= Mask;
301 }
302 
303 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
304       unsigned Exec) {
305   ReferenceMap::iterator F = Map.find(RR.Reg);
306   if (F == Map.end())
307     return false;
308   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
309   if (Mask & F->second)
310     return true;
311   return false;
312 }
313 
314 void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
315   auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
316     // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
317     MachineInstr *MI = LIS->getInstructionFromIndex(K);
318     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
319       MachineOperand &Op = MI->getOperand(i);
320       if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg ||
321           MI->isRegTiedToDefOperand(i))
322         continue;
323       LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
324       if ((SLM & LM) == SLM) {
325         // Only set the kill flag on the first encountered use of Reg in this
326         // instruction.
327         Op.setIsKill(true);
328         break;
329       }
330     }
331   };
332 
333   LiveInterval &LI = LIS->getInterval(Reg);
334   for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
335     if (!I->end.isRegister())
336       continue;
337     // Do not mark the end of the segment as <kill>, if the next segment
338     // starts with a predicated instruction.
339     auto NextI = std::next(I);
340     if (NextI != E && NextI->start.isRegister()) {
341       MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
342       if (HII->isPredicated(*DefI))
343         continue;
344     }
345     bool WholeReg = true;
346     if (LI.hasSubRanges()) {
347       auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
348         LiveRange::iterator F = S.find(I->end);
349         return F != S.end() && I->end == F->end;
350       };
351       // Check if all subranges end at I->end. If so, make sure to kill
352       // the whole register.
353       for (LiveInterval::SubRange &S : LI.subranges()) {
354         if (EndsAtI(S))
355           KillAt(I->end, S.LaneMask);
356         else
357           WholeReg = false;
358       }
359     }
360     if (WholeReg)
361       KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
362   }
363 }
364 
365 void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
366       LiveRange &Range) {
367   assert(Register::isVirtualRegister(Reg));
368   if (Range.empty())
369     return;
370 
371   // Return two booleans: { def-modifes-reg, def-covers-reg }.
372   auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
373     if (!Op.isReg() || !Op.isDef())
374       return { false, false };
375     Register DR = Op.getReg(), DSR = Op.getSubReg();
376     if (!Register::isVirtualRegister(DR) || DR != Reg)
377       return { false, false };
378     LaneBitmask SLM = getLaneMask(DR, DSR);
379     LaneBitmask A = SLM & LM;
380     return { A.any(), A == SLM };
381   };
382 
383   // The splitting step will create pairs of predicated definitions without
384   // any implicit uses (since implicit uses would interfere with predication).
385   // This can cause the reaching defs to become dead after live range
386   // recomputation, even though they are not really dead.
387   // We need to identify predicated defs that need implicit uses, and
388   // dead defs that are not really dead, and correct both problems.
389 
390   auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
391                           MachineBasicBlock *Dest) -> bool {
392     for (MachineBasicBlock *D : Defs)
393       if (D != Dest && MDT->dominates(D, Dest))
394         return true;
395 
396     MachineBasicBlock *Entry = &Dest->getParent()->front();
397     SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
398     for (unsigned i = 0; i < Work.size(); ++i) {
399       MachineBasicBlock *B = Work[i];
400       if (Defs.count(B))
401         continue;
402       if (B == Entry)
403         return false;
404       for (auto *P : B->predecessors())
405         Work.insert(P);
406     }
407     return true;
408   };
409 
410   // First, try to extend live range within individual basic blocks. This
411   // will leave us only with dead defs that do not reach any predicated
412   // defs in the same block.
413   SetVector<MachineBasicBlock*> Defs;
414   SmallVector<SlotIndex,4> PredDefs;
415   for (auto &Seg : Range) {
416     if (!Seg.start.isRegister())
417       continue;
418     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
419     Defs.insert(DefI->getParent());
420     if (HII->isPredicated(*DefI))
421       PredDefs.push_back(Seg.start);
422   }
423 
424   SmallVector<SlotIndex,8> Undefs;
425   LiveInterval &LI = LIS->getInterval(Reg);
426   LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());
427 
428   for (auto &SI : PredDefs) {
429     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
430     auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
431     if (P.first != nullptr || P.second)
432       SI = SlotIndex();
433   }
434 
435   // Calculate reachability for those predicated defs that were not handled
436   // by the in-block extension.
437   SmallVector<SlotIndex,4> ExtTo;
438   for (auto &SI : PredDefs) {
439     if (!SI.isValid())
440       continue;
441     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
442     if (BB->pred_empty())
443       continue;
444     // If the defs from this range reach SI via all predecessors, it is live.
445     // It can happen that SI is reached by the defs through some paths, but
446     // not all. In the IR coming into this optimization, SI would not be
447     // considered live, since the defs would then not jointly dominate SI.
448     // That means that SI is an overwriting def, and no implicit use is
449     // needed at this point. Do not add SI to the extension points, since
450     // extendToIndices will abort if there is no joint dominance.
451     // If the abort was avoided by adding extra undefs added to Undefs,
452     // extendToIndices could actually indicate that SI is live, contrary
453     // to the original IR.
454     if (Dominate(Defs, BB))
455       ExtTo.push_back(SI);
456   }
457 
458   if (!ExtTo.empty())
459     LIS->extendToIndices(Range, ExtTo, Undefs);
460 
461   // Remove <dead> flags from all defs that are not dead after live range
462   // extension, and collect all def operands. They will be used to generate
463   // the necessary implicit uses.
464   // At the same time, add <dead> flag to all defs that are actually dead.
465   // This can happen, for example, when a mux with identical inputs is
466   // replaced with a COPY: the use of the predicate register disappears and
467   // the dead can become dead.
468   std::set<RegisterRef> DefRegs;
469   for (auto &Seg : Range) {
470     if (!Seg.start.isRegister())
471       continue;
472     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
473     for (auto &Op : DefI->operands()) {
474       auto P = IsRegDef(Op);
475       if (P.second && Seg.end.isDead()) {
476         Op.setIsDead(true);
477       } else if (P.first) {
478         DefRegs.insert(Op);
479         Op.setIsDead(false);
480       }
481     }
482   }
483 
484   // Now, add implicit uses to each predicated def that is reached
485   // by other defs.
486   for (auto &Seg : Range) {
487     if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
488       continue;
489     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
490     if (!HII->isPredicated(*DefI))
491       continue;
492     // Construct the set of all necessary implicit uses, based on the def
493     // operands in the instruction. We need to tie the implicit uses to
494     // the corresponding defs.
495     std::map<RegisterRef,unsigned> ImpUses;
496     for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) {
497       MachineOperand &Op = DefI->getOperand(i);
498       if (!Op.isReg() || !DefRegs.count(Op))
499         continue;
500       if (Op.isDef()) {
501         // Tied defs will always have corresponding uses, so no extra
502         // implicit uses are needed.
503         if (!Op.isTied())
504           ImpUses.insert({Op, i});
505       } else {
506         // This function can be called for the same register with different
507         // lane masks. If the def in this instruction was for the whole
508         // register, we can get here more than once. Avoid adding multiple
509         // implicit uses (or adding an implicit use when an explicit one is
510         // present).
511         if (Op.isTied())
512           ImpUses.erase(Op);
513       }
514     }
515     if (ImpUses.empty())
516       continue;
517     MachineFunction &MF = *DefI->getParent()->getParent();
518     for (std::pair<RegisterRef, unsigned> P : ImpUses) {
519       RegisterRef R = P.first;
520       MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
521       DefI->tieOperands(P.second, DefI->getNumOperands()-1);
522     }
523   }
524 }
525 
526 void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
527   LiveInterval &LI = LIS->getInterval(Reg);
528   if (LI.hasSubRanges()) {
529     for (LiveInterval::SubRange &S : LI.subranges()) {
530       updateDeadsInRange(Reg, S.LaneMask, S);
531       LIS->shrinkToUses(S, Reg);
532     }
533     LI.clear();
534     LIS->constructMainRangeFromSubranges(LI);
535   } else {
536     updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
537   }
538 }
539 
540 void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
541   LIS->removeInterval(Reg);
542   LIS->createAndComputeVirtRegInterval(Reg);
543 }
544 
545 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
546   LIS->RemoveMachineInstrFromMaps(MI);
547   MI.eraseFromParent();
548 }
549 
550 void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
551       bool Recalc, bool UpdateKills, bool UpdateDeads) {
552   UpdateKills |= UpdateDeads;
553   for (unsigned R : RegSet) {
554     if (!Register::isVirtualRegister(R)) {
555       assert(Register::isPhysicalRegister(R));
556       // There shouldn't be any physical registers as operands, except
557       // possibly reserved registers.
558       assert(MRI->isReserved(R));
559       continue;
560     }
561     if (Recalc)
562       recalculateLiveInterval(R);
563     if (UpdateKills)
564       MRI->clearKillFlags(R);
565     if (UpdateDeads)
566       updateDeadFlags(R);
567     // Fixing <dead> flags may extend live ranges, so reset <kill> flags
568     // after that.
569     if (UpdateKills)
570       updateKillFlags(R);
571     LIS->getInterval(R).verify();
572   }
573 }
574 
575 /// Get the opcode for a conditional transfer of the value in SO (source
576 /// operand). The condition (true/false) is given in Cond.
577 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
578       bool IfTrue) {
579   using namespace Hexagon;
580 
581   if (SO.isReg()) {
582     Register PhysR;
583     RegisterRef RS = SO;
584     if (Register::isVirtualRegister(RS.Reg)) {
585       const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
586       assert(VC->begin() != VC->end() && "Empty register class");
587       PhysR = *VC->begin();
588     } else {
589       assert(Register::isPhysicalRegister(RS.Reg));
590       PhysR = RS.Reg;
591     }
592     Register PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
593     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
594     switch (TRI->getRegSizeInBits(*RC)) {
595       case 32:
596         return IfTrue ? A2_tfrt : A2_tfrf;
597       case 64:
598         return IfTrue ? A2_tfrpt : A2_tfrpf;
599     }
600     llvm_unreachable("Invalid register operand");
601   }
602   switch (SO.getType()) {
603     case MachineOperand::MO_Immediate:
604     case MachineOperand::MO_FPImmediate:
605     case MachineOperand::MO_ConstantPoolIndex:
606     case MachineOperand::MO_TargetIndex:
607     case MachineOperand::MO_JumpTableIndex:
608     case MachineOperand::MO_ExternalSymbol:
609     case MachineOperand::MO_GlobalAddress:
610     case MachineOperand::MO_BlockAddress:
611       return IfTrue ? C2_cmoveit : C2_cmoveif;
612     default:
613       break;
614   }
615   llvm_unreachable("Unexpected source operand");
616 }
617 
618 /// Generate a conditional transfer, copying the value SrcOp to the
619 /// destination register DstR:DstSR, and using the predicate register from
620 /// PredOp. The Cond argument specifies whether the predicate is to be
621 /// if(PredOp), or if(!PredOp).
622 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
623       MachineBasicBlock::iterator At,
624       unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
625       bool PredSense, bool ReadUndef, bool ImpUse) {
626   MachineInstr *MI = SrcOp.getParent();
627   MachineBasicBlock &B = *At->getParent();
628   const DebugLoc &DL = MI->getDebugLoc();
629 
630   // Don't avoid identity copies here (i.e. if the source and the destination
631   // are the same registers). It is actually better to generate them here,
632   // since this would cause the copy to potentially be predicated in the next
633   // step. The predication will remove such a copy if it is unable to
634   /// predicate.
635 
636   unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
637   unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0);
638   unsigned PredState = getRegState(PredOp) & ~RegState::Kill;
639   MachineInstrBuilder MIB;
640 
641   if (SrcOp.isReg()) {
642     unsigned SrcState = getRegState(SrcOp);
643     if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR))
644       SrcState &= ~RegState::Kill;
645     MIB = BuildMI(B, At, DL, HII->get(Opc))
646           .addReg(DstR, DstState, DstSR)
647           .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
648           .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg());
649   } else {
650     MIB = BuildMI(B, At, DL, HII->get(Opc))
651               .addReg(DstR, DstState, DstSR)
652               .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
653               .add(SrcOp);
654   }
655 
656   LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB);
657   return &*MIB;
658 }
659 
660 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
661 /// performs all necessary changes to complete the replacement.
662 bool HexagonExpandCondsets::split(MachineInstr &MI,
663                                   std::set<unsigned> &UpdRegs) {
664   if (TfrLimitActive) {
665     if (TfrCounter >= TfrLimit)
666       return false;
667     TfrCounter++;
668   }
669   LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent())
670                     << ": " << MI);
671   MachineOperand &MD = MI.getOperand(0);  // Definition
672   MachineOperand &MP = MI.getOperand(1);  // Predicate register
673   assert(MD.isDef());
674   Register DR = MD.getReg(), DSR = MD.getSubReg();
675   bool ReadUndef = MD.isUndef();
676   MachineBasicBlock::iterator At = MI;
677 
678   auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void {
679     for (auto &Op : MI.operands())
680       if (Op.isReg())
681         UpdRegs.insert(Op.getReg());
682   };
683 
684   // If this is a mux of the same register, just replace it with COPY.
685   // Ideally, this would happen earlier, so that register coalescing would
686   // see it.
687   MachineOperand &ST = MI.getOperand(2);
688   MachineOperand &SF = MI.getOperand(3);
689   if (ST.isReg() && SF.isReg()) {
690     RegisterRef RT(ST);
691     if (RT == RegisterRef(SF)) {
692       // Copy regs to update first.
693       updateRegs(MI);
694       MI.setDesc(HII->get(TargetOpcode::COPY));
695       unsigned S = getRegState(ST);
696       while (MI.getNumOperands() > 1)
697         MI.RemoveOperand(MI.getNumOperands()-1);
698       MachineFunction &MF = *MI.getParent()->getParent();
699       MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub);
700       return true;
701     }
702   }
703 
704   // First, create the two invididual conditional transfers, and add each
705   // of them to the live intervals information. Do that first and then remove
706   // the old instruction from live intervals.
707   MachineInstr *TfrT =
708       genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false);
709   MachineInstr *TfrF =
710       genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true);
711   LIS->InsertMachineInstrInMaps(*TfrT);
712   LIS->InsertMachineInstrInMaps(*TfrF);
713 
714   // Will need to recalculate live intervals for all registers in MI.
715   updateRegs(MI);
716 
717   removeInstr(MI);
718   return true;
719 }
720 
721 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
722   if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
723     return false;
724   if (MI->hasUnmodeledSideEffects() || MI->mayStore())
725     return false;
726   // Reject instructions with multiple defs (e.g. post-increment loads).
727   bool HasDef = false;
728   for (auto &Op : MI->operands()) {
729     if (!Op.isReg() || !Op.isDef())
730       continue;
731     if (HasDef)
732       return false;
733     HasDef = true;
734   }
735   for (auto &Mo : MI->memoperands())
736     if (Mo->isVolatile() || Mo->isAtomic())
737       return false;
738   return true;
739 }
740 
741 /// Find the reaching definition for a predicated use of RD. The RD is used
742 /// under the conditions given by PredR and Cond, and this function will ignore
743 /// definitions that set RD under the opposite conditions.
744 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
745       MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
746   MachineBasicBlock &B = *UseIt->getParent();
747   MachineBasicBlock::iterator I = UseIt, S = B.begin();
748   if (I == S)
749     return nullptr;
750 
751   bool PredValid = true;
752   do {
753     --I;
754     MachineInstr *MI = &*I;
755     // Check if this instruction can be ignored, i.e. if it is predicated
756     // on the complementary condition.
757     if (PredValid && HII->isPredicated(*MI)) {
758       if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
759         continue;
760     }
761 
762     // Check the defs. If the PredR is defined, invalidate it. If RD is
763     // defined, return the instruction or 0, depending on the circumstances.
764     for (auto &Op : MI->operands()) {
765       if (!Op.isReg() || !Op.isDef())
766         continue;
767       RegisterRef RR = Op;
768       if (RR.Reg == PredR) {
769         PredValid = false;
770         continue;
771       }
772       if (RR.Reg != RD.Reg)
773         continue;
774       // If the "Reg" part agrees, there is still the subregister to check.
775       // If we are looking for %1:loreg, we can skip %1:hireg, but
776       // not %1 (w/o subregisters).
777       if (RR.Sub == RD.Sub)
778         return MI;
779       if (RR.Sub == 0 || RD.Sub == 0)
780         return nullptr;
781       // We have different subregisters, so we can continue looking.
782     }
783   } while (I != S);
784 
785   return nullptr;
786 }
787 
788 /// Check if the instruction MI can be safely moved over a set of instructions
789 /// whose side-effects (in terms of register defs and uses) are expressed in
790 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
791 /// that depend on the same predicate register to allow moving instructions
792 /// over instructions predicated on the opposite condition.
793 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
794                                         ReferenceMap &Uses) {
795   // In order to be able to safely move MI over instructions that define
796   // "Defs" and use "Uses", no def operand from MI can be defined or used
797   // and no use operand can be defined.
798   for (auto &Op : MI.operands()) {
799     if (!Op.isReg())
800       continue;
801     RegisterRef RR = Op;
802     // For physical register we would need to check register aliases, etc.
803     // and we don't want to bother with that. It would be of little value
804     // before the actual register rewriting (from virtual to physical).
805     if (!Register::isVirtualRegister(RR.Reg))
806       return false;
807     // No redefs for any operand.
808     if (isRefInMap(RR, Defs, Exec_Then))
809       return false;
810     // For defs, there cannot be uses.
811     if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
812       return false;
813   }
814   return true;
815 }
816 
817 /// Check if the instruction accessing memory (TheI) can be moved to the
818 /// location ToI.
819 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
820                                          bool IsDown) {
821   bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
822   if (!IsLoad && !IsStore)
823     return true;
824   if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
825     return true;
826   if (TheI.hasUnmodeledSideEffects())
827     return false;
828 
829   MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
830   MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
831   bool Ordered = TheI.hasOrderedMemoryRef();
832 
833   // Search for aliased memory reference in (StartI, EndI).
834   for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
835     MachineInstr *MI = &*I;
836     if (MI->hasUnmodeledSideEffects())
837       return false;
838     bool L = MI->mayLoad(), S = MI->mayStore();
839     if (!L && !S)
840       continue;
841     if (Ordered && MI->hasOrderedMemoryRef())
842       return false;
843 
844     bool Conflict = (L && IsStore) || S;
845     if (Conflict)
846       return false;
847   }
848   return true;
849 }
850 
851 /// Generate a predicated version of MI (where the condition is given via
852 /// PredR and Cond) at the point indicated by Where.
853 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
854                                         MachineInstr &MI,
855                                         MachineBasicBlock::iterator Where,
856                                         const MachineOperand &PredOp, bool Cond,
857                                         std::set<unsigned> &UpdRegs) {
858   // The problem with updating live intervals is that we can move one def
859   // past another def. In particular, this can happen when moving an A2_tfrt
860   // over an A2_tfrf defining the same register. From the point of view of
861   // live intervals, these two instructions are two separate definitions,
862   // and each one starts another live segment. LiveIntervals's "handleMove"
863   // does not allow such moves, so we need to handle it ourselves. To avoid
864   // invalidating liveness data while we are using it, the move will be
865   // implemented in 4 steps: (1) add a clone of the instruction MI at the
866   // target location, (2) update liveness, (3) delete the old instruction,
867   // and (4) update liveness again.
868 
869   MachineBasicBlock &B = *MI.getParent();
870   DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
871   unsigned Opc = MI.getOpcode();
872   unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
873   MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
874   unsigned Ox = 0, NP = MI.getNumOperands();
875   // Skip all defs from MI first.
876   while (Ox < NP) {
877     MachineOperand &MO = MI.getOperand(Ox);
878     if (!MO.isReg() || !MO.isDef())
879       break;
880     Ox++;
881   }
882   // Add the new def, then the predicate register, then the rest of the
883   // operands.
884   MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
885   MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
886             PredOp.getSubReg());
887   while (Ox < NP) {
888     MachineOperand &MO = MI.getOperand(Ox);
889     if (!MO.isReg() || !MO.isImplicit())
890       MB.add(MO);
891     Ox++;
892   }
893   MB.cloneMemRefs(MI);
894 
895   MachineInstr *NewI = MB;
896   NewI->clearKillInfo();
897   LIS->InsertMachineInstrInMaps(*NewI);
898 
899   for (auto &Op : NewI->operands())
900     if (Op.isReg())
901       UpdRegs.insert(Op.getReg());
902 }
903 
904 /// In the range [First, Last], rename all references to the "old" register RO
905 /// to the "new" register RN, but only in instructions predicated on the given
906 /// condition.
907 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
908       unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
909       MachineBasicBlock::iterator Last) {
910   MachineBasicBlock::iterator End = std::next(Last);
911   for (MachineBasicBlock::iterator I = First; I != End; ++I) {
912     MachineInstr *MI = &*I;
913     // Do not touch instructions that are not predicated, or are predicated
914     // on the opposite condition.
915     if (!HII->isPredicated(*MI))
916       continue;
917     if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
918       continue;
919 
920     for (auto &Op : MI->operands()) {
921       if (!Op.isReg() || RO != RegisterRef(Op))
922         continue;
923       Op.setReg(RN.Reg);
924       Op.setSubReg(RN.Sub);
925       // In practice, this isn't supposed to see any defs.
926       assert(!Op.isDef() && "Not expecting a def");
927     }
928   }
929 }
930 
931 /// For a given conditional copy, predicate the definition of the source of
932 /// the copy under the given condition (using the same predicate register as
933 /// the copy).
934 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
935                                       std::set<unsigned> &UpdRegs) {
936   // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
937   unsigned Opc = TfrI.getOpcode();
938   (void)Opc;
939   assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
940   LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
941                     << ": " << TfrI);
942 
943   MachineOperand &MD = TfrI.getOperand(0);
944   MachineOperand &MP = TfrI.getOperand(1);
945   MachineOperand &MS = TfrI.getOperand(2);
946   // The source operand should be a <kill>. This is not strictly necessary,
947   // but it makes things a lot simpler. Otherwise, we would need to rename
948   // some registers, which would complicate the transformation considerably.
949   if (!MS.isKill())
950     return false;
951   // Avoid predicating instructions that define a subregister if subregister
952   // liveness tracking is not enabled.
953   if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
954     return false;
955 
956   RegisterRef RT(MS);
957   Register PredR = MP.getReg();
958   MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
959   if (!DefI || !isPredicable(DefI))
960     return false;
961 
962   LLVM_DEBUG(dbgs() << "Source def: " << *DefI);
963 
964   // Collect the information about registers defined and used between the
965   // DefI and the TfrI.
966   // Map: reg -> bitmask of subregs
967   ReferenceMap Uses, Defs;
968   MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
969 
970   // Check if the predicate register is valid between DefI and TfrI.
971   // If it is, we can then ignore instructions predicated on the negated
972   // conditions when collecting def and use information.
973   bool PredValid = true;
974   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
975     if (!I->modifiesRegister(PredR, nullptr))
976       continue;
977     PredValid = false;
978     break;
979   }
980 
981   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
982     MachineInstr *MI = &*I;
983     // If this instruction is predicated on the same register, it could
984     // potentially be ignored.
985     // By default assume that the instruction executes on the same condition
986     // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
987     unsigned Exec = Exec_Then | Exec_Else;
988     if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
989       Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;
990 
991     for (auto &Op : MI->operands()) {
992       if (!Op.isReg())
993         continue;
994       // We don't want to deal with physical registers. The reason is that
995       // they can be aliased with other physical registers. Aliased virtual
996       // registers must share the same register number, and can only differ
997       // in the subregisters, which we are keeping track of. Physical
998       // registers ters no longer have subregisters---their super- and
999       // subregisters are other physical registers, and we are not checking
1000       // that.
1001       RegisterRef RR = Op;
1002       if (!Register::isVirtualRegister(RR.Reg))
1003         return false;
1004 
1005       ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1006       if (Op.isDef() && Op.isUndef()) {
1007         assert(RR.Sub && "Expecting a subregister on <def,read-undef>");
1008         // If this is a <def,read-undef>, then it invalidates the non-written
1009         // part of the register. For the purpose of checking the validity of
1010         // the move, assume that it modifies the whole register.
1011         RR.Sub = 0;
1012       }
1013       addRefToMap(RR, Map, Exec);
1014     }
1015   }
1016 
1017   // The situation:
1018   //   RT = DefI
1019   //   ...
1020   //   RD = TfrI ..., RT
1021 
1022   // If the register-in-the-middle (RT) is used or redefined between
1023   // DefI and TfrI, we may not be able proceed with this transformation.
1024   // We can ignore a def that will not execute together with TfrI, and a
1025   // use that will. If there is such a use (that does execute together with
1026   // TfrI), we will not be able to move DefI down. If there is a use that
1027   // executed if TfrI's condition is false, then RT must be available
1028   // unconditionally (cannot be predicated).
1029   // Essentially, we need to be able to rename RT to RD in this segment.
1030   if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1031     return false;
1032   RegisterRef RD = MD;
1033   // If the predicate register is defined between DefI and TfrI, the only
1034   // potential thing to do would be to move the DefI down to TfrI, and then
1035   // predicate. The reaching def (DefI) must be movable down to the location
1036   // of the TfrI.
1037   // If the target register of the TfrI (RD) is not used or defined between
1038   // DefI and TfrI, consider moving TfrI up to DefI.
1039   bool CanUp =   canMoveOver(TfrI, Defs, Uses);
1040   bool CanDown = canMoveOver(*DefI, Defs, Uses);
1041   // The TfrI does not access memory, but DefI could. Check if it's safe
1042   // to move DefI down to TfrI.
1043   if (DefI->mayLoad() || DefI->mayStore())
1044     if (!canMoveMemTo(*DefI, TfrI, true))
1045       CanDown = false;
1046 
1047   LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1048                     << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1049   MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1050   if (CanUp)
1051     predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
1052   else if (CanDown)
1053     predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
1054   else
1055     return false;
1056 
1057   if (RT != RD) {
1058     renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1059     UpdRegs.insert(RT.Reg);
1060   }
1061 
1062   removeInstr(TfrI);
1063   removeInstr(*DefI);
1064   return true;
1065 }
1066 
1067 /// Predicate all cases of conditional copies in the specified block.
1068 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
1069       std::set<unsigned> &UpdRegs) {
1070   bool Changed = false;
1071   MachineBasicBlock::iterator I, E, NextI;
1072   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
1073     NextI = std::next(I);
1074     unsigned Opc = I->getOpcode();
1075     if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1076       bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
1077       if (!Done) {
1078         // If we didn't predicate I, we may need to remove it in case it is
1079         // an "identity" copy, e.g.  %1 = A2_tfrt %2, %1.
1080         if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
1081           for (auto &Op : I->operands())
1082             if (Op.isReg())
1083               UpdRegs.insert(Op.getReg());
1084           removeInstr(*I);
1085         }
1086       }
1087       Changed |= Done;
1088     }
1089   }
1090   return Changed;
1091 }
1092 
1093 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1094   if (!Register::isVirtualRegister(RR.Reg))
1095     return false;
1096   const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1097   if (RC == &Hexagon::IntRegsRegClass) {
1098     BW = 32;
1099     return true;
1100   }
1101   if (RC == &Hexagon::DoubleRegsRegClass) {
1102     BW = (RR.Sub != 0) ? 32 : 64;
1103     return true;
1104   }
1105   return false;
1106 }
1107 
1108 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1109   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
1110     LiveRange::Segment &LR = *I;
1111     // Range must start at a register...
1112     if (!LR.start.isRegister())
1113       return false;
1114     // ...and end in a register or in a dead slot.
1115     if (!LR.end.isRegister() && !LR.end.isDead())
1116       return false;
1117   }
1118   return true;
1119 }
1120 
1121 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1122   if (CoaLimitActive) {
1123     if (CoaCounter >= CoaLimit)
1124       return false;
1125     CoaCounter++;
1126   }
1127   unsigned BW1, BW2;
1128   if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1129     return false;
1130   if (MRI->isLiveIn(R1.Reg))
1131     return false;
1132   if (MRI->isLiveIn(R2.Reg))
1133     return false;
1134 
1135   LiveInterval &L1 = LIS->getInterval(R1.Reg);
1136   LiveInterval &L2 = LIS->getInterval(R2.Reg);
1137   if (L2.empty())
1138     return false;
1139   if (L1.hasSubRanges() || L2.hasSubRanges())
1140     return false;
1141   bool Overlap = L1.overlaps(L2);
1142 
1143   LLVM_DEBUG(dbgs() << "compatible registers: ("
1144                     << (Overlap ? "overlap" : "disjoint") << ")\n  "
1145                     << printReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
1146                     << printReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
1147   if (R1.Sub || R2.Sub)
1148     return false;
1149   if (Overlap)
1150     return false;
1151 
1152   // Coalescing could have a negative impact on scheduling, so try to limit
1153   // to some reasonable extent. Only consider coalescing segments, when one
1154   // of them does not cross basic block boundaries.
1155   if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1156     return false;
1157 
1158   MRI->replaceRegWith(R2.Reg, R1.Reg);
1159 
1160   // Move all live segments from L2 to L1.
1161   using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>;
1162   ValueInfoMap VM;
1163   for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
1164     VNInfo *NewVN, *OldVN = I->valno;
1165     ValueInfoMap::iterator F = VM.find(OldVN);
1166     if (F == VM.end()) {
1167       NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
1168       VM.insert(std::make_pair(OldVN, NewVN));
1169     } else {
1170       NewVN = F->second;
1171     }
1172     L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
1173   }
1174   while (L2.begin() != L2.end())
1175     L2.removeSegment(*L2.begin());
1176   LIS->removeInterval(R2.Reg);
1177 
1178   updateKillFlags(R1.Reg);
1179   LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1180   L1.verify();
1181 
1182   return true;
1183 }
1184 
1185 /// Attempt to coalesce one of the source registers to a MUX instruction with
1186 /// the destination register. This could lead to having only one predicated
1187 /// instruction in the end instead of two.
1188 bool HexagonExpandCondsets::coalesceSegments(
1189       const SmallVectorImpl<MachineInstr*> &Condsets,
1190       std::set<unsigned> &UpdRegs) {
1191   SmallVector<MachineInstr*,16> TwoRegs;
1192   for (MachineInstr *MI : Condsets) {
1193     MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1194     if (!S1.isReg() && !S2.isReg())
1195       continue;
1196     TwoRegs.push_back(MI);
1197   }
1198 
1199   bool Changed = false;
1200   for (MachineInstr *CI : TwoRegs) {
1201     RegisterRef RD = CI->getOperand(0);
1202     RegisterRef RP = CI->getOperand(1);
1203     MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1204     bool Done = false;
1205     // Consider this case:
1206     //   %1 = instr1 ...
1207     //   %2 = instr2 ...
1208     //   %0 = C2_mux ..., %1, %2
1209     // If %0 was coalesced with %1, we could end up with the following
1210     // code:
1211     //   %0 = instr1 ...
1212     //   %2 = instr2 ...
1213     //   %0 = A2_tfrf ..., %2
1214     // which will later become:
1215     //   %0 = instr1 ...
1216     //   %0 = instr2_cNotPt ...
1217     // i.e. there will be an unconditional definition (instr1) of %0
1218     // followed by a conditional one. The output dependency was there before
1219     // and it unavoidable, but if instr1 is predicable, we will no longer be
1220     // able to predicate it here.
1221     // To avoid this scenario, don't coalesce the destination register with
1222     // a source register that is defined by a predicable instruction.
1223     if (S1.isReg()) {
1224       RegisterRef RS = S1;
1225       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1226       if (!RDef || !HII->isPredicable(*RDef)) {
1227         Done = coalesceRegisters(RD, RegisterRef(S1));
1228         if (Done) {
1229           UpdRegs.insert(RD.Reg);
1230           UpdRegs.insert(S1.getReg());
1231         }
1232       }
1233     }
1234     if (!Done && S2.isReg()) {
1235       RegisterRef RS = S2;
1236       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1237       if (!RDef || !HII->isPredicable(*RDef)) {
1238         Done = coalesceRegisters(RD, RegisterRef(S2));
1239         if (Done) {
1240           UpdRegs.insert(RD.Reg);
1241           UpdRegs.insert(S2.getReg());
1242         }
1243       }
1244     }
1245     Changed |= Done;
1246   }
1247   return Changed;
1248 }
1249 
1250 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1251   if (skipFunction(MF.getFunction()))
1252     return false;
1253 
1254   HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1255   TRI = MF.getSubtarget().getRegisterInfo();
1256   MDT = &getAnalysis<MachineDominatorTree>();
1257   LIS = &getAnalysis<LiveIntervals>();
1258   MRI = &MF.getRegInfo();
1259 
1260   LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
1261                         MF.getFunction().getParent()));
1262 
1263   bool Changed = false;
1264   std::set<unsigned> CoalUpd, PredUpd;
1265 
1266   SmallVector<MachineInstr*,16> Condsets;
1267   for (auto &B : MF)
1268     for (auto &I : B)
1269       if (isCondset(I))
1270         Condsets.push_back(&I);
1271 
1272   // Try to coalesce the target of a mux with one of its sources.
1273   // This could eliminate a register copy in some circumstances.
1274   Changed |= coalesceSegments(Condsets, CoalUpd);
1275 
1276   // Update kill flags on all source operands. This is done here because
1277   // at this moment (when expand-condsets runs), there are no kill flags
1278   // in the IR (they have been removed by live range analysis).
1279   // Updating them right before we split is the easiest, because splitting
1280   // adds definitions which would interfere with updating kills afterwards.
1281   std::set<unsigned> KillUpd;
1282   for (MachineInstr *MI : Condsets)
1283     for (MachineOperand &Op : MI->operands())
1284       if (Op.isReg() && Op.isUse())
1285         if (!CoalUpd.count(Op.getReg()))
1286           KillUpd.insert(Op.getReg());
1287   updateLiveness(KillUpd, false, true, false);
1288   LLVM_DEBUG(
1289       LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent()));
1290 
1291   // First, simply split all muxes into a pair of conditional transfers
1292   // and update the live intervals to reflect the new arrangement. The
1293   // goal is to update the kill flags, since predication will rely on
1294   // them.
1295   for (MachineInstr *MI : Condsets)
1296     Changed |= split(*MI, PredUpd);
1297   Condsets.clear(); // The contents of Condsets are invalid here anyway.
1298 
1299   // Do not update live ranges after splitting. Recalculation of live
1300   // intervals removes kill flags, which were preserved by splitting on
1301   // the source operands of condsets. These kill flags are needed by
1302   // predication, and after splitting they are difficult to recalculate
1303   // (because of predicated defs), so make sure they are left untouched.
1304   // Predication does not use live intervals.
1305   LLVM_DEBUG(
1306       LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent()));
1307 
1308   // Traverse all blocks and collapse predicable instructions feeding
1309   // conditional transfers into predicated instructions.
1310   // Walk over all the instructions again, so we may catch pre-existing
1311   // cases that were not created in the previous step.
1312   for (auto &B : MF)
1313     Changed |= predicateInBlock(B, PredUpd);
1314   LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n",
1315                         MF.getFunction().getParent()));
1316 
1317   PredUpd.insert(CoalUpd.begin(), CoalUpd.end());
1318   updateLiveness(PredUpd, true, true, true);
1319 
1320   LLVM_DEBUG({
1321     if (Changed)
1322       LIS->print(dbgs() << "After expand-condsets\n",
1323                  MF.getFunction().getParent());
1324   });
1325 
1326   return Changed;
1327 }
1328 
1329 //===----------------------------------------------------------------------===//
1330 //                         Public Constructor Functions
1331 //===----------------------------------------------------------------------===//
1332 FunctionPass *llvm::createHexagonExpandCondsets() {
1333   return new HexagonExpandCondsets();
1334 }
1335