1 //===- HexagonExpandCondsets.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 // Replace mux instructions with the corresponding legal instructions. 10 // It is meant to work post-SSA, but still on virtual registers. It was 11 // originally placed between register coalescing and machine instruction 12 // scheduler. 13 // In this place in the optimization sequence, live interval analysis had 14 // been performed, and the live intervals should be preserved. A large part 15 // of the code deals with preserving the liveness information. 16 // 17 // Liveness tracking aside, the main functionality of this pass is divided 18 // into two steps. The first step is to replace an instruction 19 // %0 = C2_mux %1, %2, %3 20 // with a pair of conditional transfers 21 // %0 = A2_tfrt %1, %2 22 // %0 = A2_tfrf %1, %3 23 // It is the intention that the execution of this pass could be terminated 24 // after this step, and the code generated would be functionally correct. 25 // 26 // If the uses of the source values %1 and %2 are kills, and their 27 // definitions are predicable, then in the second step, the conditional 28 // transfers will then be rewritten as predicated instructions. E.g. 29 // %0 = A2_or %1, %2 30 // %3 = A2_tfrt %99, killed %0 31 // will be rewritten as 32 // %3 = A2_port %99, %1, %2 33 // 34 // This replacement has two variants: "up" and "down". Consider this case: 35 // %0 = A2_or %1, %2 36 // ... [intervening instructions] ... 37 // %3 = A2_tfrt %99, killed %0 38 // variant "up": 39 // %3 = A2_port %99, %1, %2 40 // ... [intervening instructions, %0->vreg3] ... 41 // [deleted] 42 // variant "down": 43 // [deleted] 44 // ... [intervening instructions] ... 45 // %3 = A2_port %99, %1, %2 46 // 47 // Both, one or none of these variants may be valid, and checks are made 48 // to rule out inapplicable variants. 49 // 50 // As an additional optimization, before either of the two steps above is 51 // executed, the pass attempts to coalesce the target register with one of 52 // the source registers, e.g. given an instruction 53 // %3 = C2_mux %0, %1, %2 54 // %3 will be coalesced with either %1 or %2. If this succeeds, 55 // the instruction would then be (for example) 56 // %3 = C2_mux %0, %3, %2 57 // and, under certain circumstances, this could result in only one predicated 58 // instruction: 59 // %3 = A2_tfrf %0, %2 60 // 61 62 // Splitting a definition of a register into two predicated transfers 63 // creates a complication in liveness tracking. Live interval computation 64 // will see both instructions as actual definitions, and will mark the 65 // first one as dead. The definition is not actually dead, and this 66 // situation will need to be fixed. For example: 67 // dead %1 = A2_tfrt ... ; marked as dead 68 // %1 = A2_tfrf ... 69 // 70 // Since any of the individual predicated transfers may end up getting 71 // removed (in case it is an identity copy), some pre-existing def may 72 // be marked as dead after live interval recomputation: 73 // dead %1 = ... ; marked as dead 74 // ... 75 // %1 = A2_tfrf ... ; if A2_tfrt is removed 76 // This case happens if %1 was used as a source in A2_tfrt, which means 77 // that is it actually live at the A2_tfrf, and so the now dead definition 78 // of %1 will need to be updated to non-dead at some point. 79 // 80 // This issue could be remedied by adding implicit uses to the predicated 81 // transfers, but this will create a problem with subsequent predication, 82 // since the transfers will no longer be possible to reorder. To avoid 83 // that, the initial splitting will not add any implicit uses. These 84 // implicit uses will be added later, after predication. The extra price, 85 // however, is that finding the locations where the implicit uses need 86 // to be added, and updating the live ranges will be more involved. 87 88 #include "HexagonInstrInfo.h" 89 #include "HexagonRegisterInfo.h" 90 #include "llvm/ADT/DenseMap.h" 91 #include "llvm/ADT/SetVector.h" 92 #include "llvm/ADT/SmallVector.h" 93 #include "llvm/ADT/StringRef.h" 94 #include "llvm/CodeGen/LiveInterval.h" 95 #include "llvm/CodeGen/LiveIntervals.h" 96 #include "llvm/CodeGen/MachineBasicBlock.h" 97 #include "llvm/CodeGen/MachineDominators.h" 98 #include "llvm/CodeGen/MachineFunction.h" 99 #include "llvm/CodeGen/MachineFunctionPass.h" 100 #include "llvm/CodeGen/MachineInstr.h" 101 #include "llvm/CodeGen/MachineInstrBuilder.h" 102 #include "llvm/CodeGen/MachineOperand.h" 103 #include "llvm/CodeGen/MachineRegisterInfo.h" 104 #include "llvm/CodeGen/SlotIndexes.h" 105 #include "llvm/CodeGen/TargetRegisterInfo.h" 106 #include "llvm/CodeGen/TargetSubtargetInfo.h" 107 #include "llvm/IR/DebugLoc.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/InitializePasses.h" 110 #include "llvm/MC/LaneBitmask.h" 111 #include "llvm/Pass.h" 112 #include "llvm/Support/CommandLine.h" 113 #include "llvm/Support/Debug.h" 114 #include "llvm/Support/ErrorHandling.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include <cassert> 117 #include <iterator> 118 #include <set> 119 #include <utility> 120 121 #define DEBUG_TYPE "expand-condsets" 122 123 using namespace llvm; 124 125 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit", 126 cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions")); 127 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit", 128 cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings")); 129 130 namespace llvm { 131 132 void initializeHexagonExpandCondsetsPass(PassRegistry&); 133 FunctionPass *createHexagonExpandCondsets(); 134 135 } // end namespace llvm 136 137 namespace { 138 139 class HexagonExpandCondsets : public MachineFunctionPass { 140 public: 141 static char ID; 142 143 HexagonExpandCondsets() : MachineFunctionPass(ID) { 144 if (OptCoaLimit.getPosition()) 145 CoaLimitActive = true, CoaLimit = OptCoaLimit; 146 if (OptTfrLimit.getPosition()) 147 TfrLimitActive = true, TfrLimit = OptTfrLimit; 148 initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry()); 149 } 150 151 StringRef getPassName() const override { return "Hexagon Expand Condsets"; } 152 153 void getAnalysisUsage(AnalysisUsage &AU) const override { 154 AU.addRequired<LiveIntervals>(); 155 AU.addPreserved<LiveIntervals>(); 156 AU.addPreserved<SlotIndexes>(); 157 AU.addRequired<MachineDominatorTree>(); 158 AU.addPreserved<MachineDominatorTree>(); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 bool runOnMachineFunction(MachineFunction &MF) override; 163 164 private: 165 const HexagonInstrInfo *HII = nullptr; 166 const TargetRegisterInfo *TRI = nullptr; 167 MachineDominatorTree *MDT; 168 MachineRegisterInfo *MRI = nullptr; 169 LiveIntervals *LIS = nullptr; 170 bool CoaLimitActive = false; 171 bool TfrLimitActive = false; 172 unsigned CoaLimit; 173 unsigned TfrLimit; 174 unsigned CoaCounter = 0; 175 unsigned TfrCounter = 0; 176 177 // FIXME: Consolidate duplicate definitions of RegisterRef 178 struct RegisterRef { 179 RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()), 180 Sub(Op.getSubReg()) {} 181 RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {} 182 183 bool operator== (RegisterRef RR) const { 184 return Reg == RR.Reg && Sub == RR.Sub; 185 } 186 bool operator!= (RegisterRef RR) const { return !operator==(RR); } 187 bool operator< (RegisterRef RR) const { 188 return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub); 189 } 190 191 Register Reg; 192 unsigned Sub; 193 }; 194 195 using ReferenceMap = DenseMap<unsigned, unsigned>; 196 enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) }; 197 enum { Exec_Then = 0x10, Exec_Else = 0x20 }; 198 199 unsigned getMaskForSub(unsigned Sub); 200 bool isCondset(const MachineInstr &MI); 201 LaneBitmask getLaneMask(Register Reg, unsigned Sub); 202 203 void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec); 204 bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec); 205 206 void updateDeadsInRange(Register Reg, LaneBitmask LM, LiveRange &Range); 207 void updateKillFlags(Register Reg); 208 void updateDeadFlags(Register Reg); 209 void recalculateLiveInterval(Register Reg); 210 void removeInstr(MachineInstr &MI); 211 void updateLiveness(const std::set<Register> &RegSet, bool Recalc, 212 bool UpdateKills, bool UpdateDeads); 213 void distributeLiveIntervals(const std::set<Register> &Regs); 214 215 unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond); 216 MachineInstr *genCondTfrFor(MachineOperand &SrcOp, 217 MachineBasicBlock::iterator At, unsigned DstR, 218 unsigned DstSR, const MachineOperand &PredOp, bool PredSense, 219 bool ReadUndef, bool ImpUse); 220 bool split(MachineInstr &MI, std::set<Register> &UpdRegs); 221 222 bool isPredicable(MachineInstr *MI); 223 MachineInstr *getReachingDefForPred(RegisterRef RD, 224 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond); 225 bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses); 226 bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown); 227 void predicateAt(const MachineOperand &DefOp, MachineInstr &MI, 228 MachineBasicBlock::iterator Where, 229 const MachineOperand &PredOp, bool Cond, 230 std::set<Register> &UpdRegs); 231 void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, 232 bool Cond, MachineBasicBlock::iterator First, 233 MachineBasicBlock::iterator Last); 234 bool predicate(MachineInstr &TfrI, bool Cond, std::set<Register> &UpdRegs); 235 bool predicateInBlock(MachineBasicBlock &B, std::set<Register> &UpdRegs); 236 237 bool isIntReg(RegisterRef RR, unsigned &BW); 238 bool isIntraBlocks(LiveInterval &LI); 239 bool coalesceRegisters(RegisterRef R1, RegisterRef R2); 240 bool coalesceSegments(const SmallVectorImpl<MachineInstr *> &Condsets, 241 std::set<Register> &UpdRegs); 242 }; 243 244 } // end anonymous namespace 245 246 char HexagonExpandCondsets::ID = 0; 247 248 namespace llvm { 249 250 char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID; 251 252 } // end namespace llvm 253 254 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets", 255 "Hexagon Expand Condsets", false, false) 256 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 257 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 258 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 259 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets", 260 "Hexagon Expand Condsets", false, false) 261 262 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) { 263 switch (Sub) { 264 case Hexagon::isub_lo: 265 case Hexagon::vsub_lo: 266 return Sub_Low; 267 case Hexagon::isub_hi: 268 case Hexagon::vsub_hi: 269 return Sub_High; 270 case Hexagon::NoSubRegister: 271 return Sub_None; 272 } 273 llvm_unreachable("Invalid subregister"); 274 } 275 276 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) { 277 unsigned Opc = MI.getOpcode(); 278 switch (Opc) { 279 case Hexagon::C2_mux: 280 case Hexagon::C2_muxii: 281 case Hexagon::C2_muxir: 282 case Hexagon::C2_muxri: 283 case Hexagon::PS_pselect: 284 return true; 285 break; 286 } 287 return false; 288 } 289 290 LaneBitmask HexagonExpandCondsets::getLaneMask(Register Reg, unsigned Sub) { 291 assert(Reg.isVirtual()); 292 return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 293 : MRI->getMaxLaneMaskForVReg(Reg); 294 } 295 296 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map, 297 unsigned Exec) { 298 unsigned Mask = getMaskForSub(RR.Sub) | Exec; 299 ReferenceMap::iterator F = Map.find(RR.Reg); 300 if (F == Map.end()) 301 Map.insert(std::make_pair(RR.Reg, Mask)); 302 else 303 F->second |= Mask; 304 } 305 306 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map, 307 unsigned Exec) { 308 ReferenceMap::iterator F = Map.find(RR.Reg); 309 if (F == Map.end()) 310 return false; 311 unsigned Mask = getMaskForSub(RR.Sub) | Exec; 312 if (Mask & F->second) 313 return true; 314 return false; 315 } 316 317 void HexagonExpandCondsets::updateKillFlags(Register Reg) { 318 auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void { 319 // Set the <kill> flag on a use of Reg whose lane mask is contained in LM. 320 MachineInstr *MI = LIS->getInstructionFromIndex(K); 321 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 322 MachineOperand &Op = MI->getOperand(i); 323 if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg || 324 MI->isRegTiedToDefOperand(i)) 325 continue; 326 LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg()); 327 if ((SLM & LM) == SLM) { 328 // Only set the kill flag on the first encountered use of Reg in this 329 // instruction. 330 Op.setIsKill(true); 331 break; 332 } 333 } 334 }; 335 336 LiveInterval &LI = LIS->getInterval(Reg); 337 for (auto I = LI.begin(), E = LI.end(); I != E; ++I) { 338 if (!I->end.isRegister()) 339 continue; 340 // Do not mark the end of the segment as <kill>, if the next segment 341 // starts with a predicated instruction. 342 auto NextI = std::next(I); 343 if (NextI != E && NextI->start.isRegister()) { 344 MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start); 345 if (HII->isPredicated(*DefI)) 346 continue; 347 } 348 bool WholeReg = true; 349 if (LI.hasSubRanges()) { 350 auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool { 351 LiveRange::iterator F = S.find(I->end); 352 return F != S.end() && I->end == F->end; 353 }; 354 // Check if all subranges end at I->end. If so, make sure to kill 355 // the whole register. 356 for (LiveInterval::SubRange &S : LI.subranges()) { 357 if (EndsAtI(S)) 358 KillAt(I->end, S.LaneMask); 359 else 360 WholeReg = false; 361 } 362 } 363 if (WholeReg) 364 KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg)); 365 } 366 } 367 368 void HexagonExpandCondsets::updateDeadsInRange(Register Reg, LaneBitmask LM, 369 LiveRange &Range) { 370 assert(Reg.isVirtual()); 371 if (Range.empty()) 372 return; 373 374 // Return two booleans: { def-modifes-reg, def-covers-reg }. 375 auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> { 376 if (!Op.isReg() || !Op.isDef()) 377 return { false, false }; 378 Register DR = Op.getReg(), DSR = Op.getSubReg(); 379 if (!DR.isVirtual() || DR != Reg) 380 return { false, false }; 381 LaneBitmask SLM = getLaneMask(DR, DSR); 382 LaneBitmask A = SLM & LM; 383 return { A.any(), A == SLM }; 384 }; 385 386 // The splitting step will create pairs of predicated definitions without 387 // any implicit uses (since implicit uses would interfere with predication). 388 // This can cause the reaching defs to become dead after live range 389 // recomputation, even though they are not really dead. 390 // We need to identify predicated defs that need implicit uses, and 391 // dead defs that are not really dead, and correct both problems. 392 393 auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs, 394 MachineBasicBlock *Dest) -> bool { 395 for (MachineBasicBlock *D : Defs) { 396 if (D != Dest && MDT->dominates(D, Dest)) 397 return true; 398 } 399 MachineBasicBlock *Entry = &Dest->getParent()->front(); 400 SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end()); 401 for (unsigned i = 0; i < Work.size(); ++i) { 402 MachineBasicBlock *B = Work[i]; 403 if (Defs.count(B)) 404 continue; 405 if (B == Entry) 406 return false; 407 for (auto *P : B->predecessors()) 408 Work.insert(P); 409 } 410 return true; 411 }; 412 413 // First, try to extend live range within individual basic blocks. This 414 // will leave us only with dead defs that do not reach any predicated 415 // defs in the same block. 416 SetVector<MachineBasicBlock*> Defs; 417 SmallVector<SlotIndex,4> PredDefs; 418 for (auto &Seg : Range) { 419 if (!Seg.start.isRegister()) 420 continue; 421 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); 422 Defs.insert(DefI->getParent()); 423 if (HII->isPredicated(*DefI)) 424 PredDefs.push_back(Seg.start); 425 } 426 427 SmallVector<SlotIndex,8> Undefs; 428 LiveInterval &LI = LIS->getInterval(Reg); 429 LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes()); 430 431 for (auto &SI : PredDefs) { 432 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); 433 auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI); 434 if (P.first != nullptr || P.second) 435 SI = SlotIndex(); 436 } 437 438 // Calculate reachability for those predicated defs that were not handled 439 // by the in-block extension. 440 SmallVector<SlotIndex,4> ExtTo; 441 for (auto &SI : PredDefs) { 442 if (!SI.isValid()) 443 continue; 444 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); 445 if (BB->pred_empty()) 446 continue; 447 // If the defs from this range reach SI via all predecessors, it is live. 448 // It can happen that SI is reached by the defs through some paths, but 449 // not all. In the IR coming into this optimization, SI would not be 450 // considered live, since the defs would then not jointly dominate SI. 451 // That means that SI is an overwriting def, and no implicit use is 452 // needed at this point. Do not add SI to the extension points, since 453 // extendToIndices will abort if there is no joint dominance. 454 // If the abort was avoided by adding extra undefs added to Undefs, 455 // extendToIndices could actually indicate that SI is live, contrary 456 // to the original IR. 457 if (Dominate(Defs, BB)) 458 ExtTo.push_back(SI); 459 } 460 461 if (!ExtTo.empty()) 462 LIS->extendToIndices(Range, ExtTo, Undefs); 463 464 // Remove <dead> flags from all defs that are not dead after live range 465 // extension, and collect all def operands. They will be used to generate 466 // the necessary implicit uses. 467 // At the same time, add <dead> flag to all defs that are actually dead. 468 // This can happen, for example, when a mux with identical inputs is 469 // replaced with a COPY: the use of the predicate register disappears and 470 // the dead can become dead. 471 std::set<RegisterRef> DefRegs; 472 for (auto &Seg : Range) { 473 if (!Seg.start.isRegister()) 474 continue; 475 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); 476 for (auto &Op : DefI->operands()) { 477 auto P = IsRegDef(Op); 478 if (P.second && Seg.end.isDead()) { 479 Op.setIsDead(true); 480 } else if (P.first) { 481 DefRegs.insert(Op); 482 Op.setIsDead(false); 483 } 484 } 485 } 486 487 // Now, add implicit uses to each predicated def that is reached 488 // by other defs. 489 for (auto &Seg : Range) { 490 if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot())) 491 continue; 492 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); 493 if (!HII->isPredicated(*DefI)) 494 continue; 495 // Construct the set of all necessary implicit uses, based on the def 496 // operands in the instruction. We need to tie the implicit uses to 497 // the corresponding defs. 498 std::map<RegisterRef,unsigned> ImpUses; 499 for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) { 500 MachineOperand &Op = DefI->getOperand(i); 501 if (!Op.isReg() || !DefRegs.count(Op)) 502 continue; 503 if (Op.isDef()) { 504 // Tied defs will always have corresponding uses, so no extra 505 // implicit uses are needed. 506 if (!Op.isTied()) 507 ImpUses.insert({Op, i}); 508 } else { 509 // This function can be called for the same register with different 510 // lane masks. If the def in this instruction was for the whole 511 // register, we can get here more than once. Avoid adding multiple 512 // implicit uses (or adding an implicit use when an explicit one is 513 // present). 514 if (Op.isTied()) 515 ImpUses.erase(Op); 516 } 517 } 518 if (ImpUses.empty()) 519 continue; 520 MachineFunction &MF = *DefI->getParent()->getParent(); 521 for (auto [R, DefIdx] : ImpUses) { 522 MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub); 523 DefI->tieOperands(DefIdx, DefI->getNumOperands()-1); 524 } 525 } 526 } 527 528 void HexagonExpandCondsets::updateDeadFlags(Register Reg) { 529 LiveInterval &LI = LIS->getInterval(Reg); 530 if (LI.hasSubRanges()) { 531 for (LiveInterval::SubRange &S : LI.subranges()) { 532 updateDeadsInRange(Reg, S.LaneMask, S); 533 LIS->shrinkToUses(S, Reg); 534 } 535 LI.clear(); 536 LIS->constructMainRangeFromSubranges(LI); 537 } else { 538 updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI); 539 } 540 } 541 542 void HexagonExpandCondsets::recalculateLiveInterval(Register Reg) { 543 LIS->removeInterval(Reg); 544 LIS->createAndComputeVirtRegInterval(Reg); 545 } 546 547 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) { 548 LIS->RemoveMachineInstrFromMaps(MI); 549 MI.eraseFromParent(); 550 } 551 552 void HexagonExpandCondsets::updateLiveness(const std::set<Register> &RegSet, 553 bool Recalc, bool UpdateKills, 554 bool UpdateDeads) { 555 UpdateKills |= UpdateDeads; 556 for (Register R : RegSet) { 557 if (!R.isVirtual()) { 558 assert(R.isPhysical()); 559 // There shouldn't be any physical registers as operands, except 560 // possibly reserved registers. 561 assert(MRI->isReserved(R)); 562 continue; 563 } 564 if (Recalc) 565 recalculateLiveInterval(R); 566 if (UpdateKills) 567 MRI->clearKillFlags(R); 568 if (UpdateDeads) 569 updateDeadFlags(R); 570 // Fixing <dead> flags may extend live ranges, so reset <kill> flags 571 // after that. 572 if (UpdateKills) 573 updateKillFlags(R); 574 LIS->getInterval(R).verify(); 575 } 576 } 577 578 void HexagonExpandCondsets::distributeLiveIntervals( 579 const std::set<Register> &Regs) { 580 ConnectedVNInfoEqClasses EQC(*LIS); 581 for (Register R : Regs) { 582 if (!R.isVirtual()) 583 continue; 584 LiveInterval &LI = LIS->getInterval(R); 585 unsigned NumComp = EQC.Classify(LI); 586 if (NumComp == 1) 587 continue; 588 589 SmallVector<LiveInterval*> NewLIs; 590 const TargetRegisterClass *RC = MRI->getRegClass(LI.reg()); 591 for (unsigned I = 1; I < NumComp; ++I) { 592 Register NewR = MRI->createVirtualRegister(RC); 593 NewLIs.push_back(&LIS->createEmptyInterval(NewR)); 594 } 595 EQC.Distribute(LI, NewLIs.begin(), *MRI); 596 } 597 } 598 599 /// Get the opcode for a conditional transfer of the value in SO (source 600 /// operand). The condition (true/false) is given in Cond. 601 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO, 602 bool IfTrue) { 603 if (SO.isReg()) { 604 MCRegister PhysR; 605 RegisterRef RS = SO; 606 if (RS.Reg.isVirtual()) { 607 const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg); 608 assert(VC->begin() != VC->end() && "Empty register class"); 609 PhysR = *VC->begin(); 610 } else { 611 PhysR = RS.Reg; 612 } 613 MCRegister PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub); 614 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS); 615 switch (TRI->getRegSizeInBits(*RC)) { 616 case 32: 617 return IfTrue ? Hexagon::A2_tfrt : Hexagon::A2_tfrf; 618 case 64: 619 return IfTrue ? Hexagon::A2_tfrpt : Hexagon::A2_tfrpf; 620 } 621 llvm_unreachable("Invalid register operand"); 622 } 623 switch (SO.getType()) { 624 case MachineOperand::MO_Immediate: 625 case MachineOperand::MO_FPImmediate: 626 case MachineOperand::MO_ConstantPoolIndex: 627 case MachineOperand::MO_TargetIndex: 628 case MachineOperand::MO_JumpTableIndex: 629 case MachineOperand::MO_ExternalSymbol: 630 case MachineOperand::MO_GlobalAddress: 631 case MachineOperand::MO_BlockAddress: 632 return IfTrue ? Hexagon::C2_cmoveit : Hexagon::C2_cmoveif; 633 default: 634 break; 635 } 636 llvm_unreachable("Unexpected source operand"); 637 } 638 639 /// Generate a conditional transfer, copying the value SrcOp to the 640 /// destination register DstR:DstSR, and using the predicate register from 641 /// PredOp. The Cond argument specifies whether the predicate is to be 642 /// if(PredOp), or if(!PredOp). 643 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp, 644 MachineBasicBlock::iterator At, 645 unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, 646 bool PredSense, bool ReadUndef, bool ImpUse) { 647 MachineInstr *MI = SrcOp.getParent(); 648 MachineBasicBlock &B = *At->getParent(); 649 const DebugLoc &DL = MI->getDebugLoc(); 650 651 // Don't avoid identity copies here (i.e. if the source and the destination 652 // are the same registers). It is actually better to generate them here, 653 // since this would cause the copy to potentially be predicated in the next 654 // step. The predication will remove such a copy if it is unable to 655 /// predicate. 656 657 unsigned Opc = getCondTfrOpcode(SrcOp, PredSense); 658 unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0); 659 unsigned PredState = getRegState(PredOp) & ~RegState::Kill; 660 MachineInstrBuilder MIB; 661 662 if (SrcOp.isReg()) { 663 unsigned SrcState = getRegState(SrcOp); 664 if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR)) 665 SrcState &= ~RegState::Kill; 666 MIB = BuildMI(B, At, DL, HII->get(Opc)) 667 .addReg(DstR, DstState, DstSR) 668 .addReg(PredOp.getReg(), PredState, PredOp.getSubReg()) 669 .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg()); 670 } else { 671 MIB = BuildMI(B, At, DL, HII->get(Opc)) 672 .addReg(DstR, DstState, DstSR) 673 .addReg(PredOp.getReg(), PredState, PredOp.getSubReg()) 674 .add(SrcOp); 675 } 676 677 LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB); 678 return &*MIB; 679 } 680 681 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function 682 /// performs all necessary changes to complete the replacement. 683 bool HexagonExpandCondsets::split(MachineInstr &MI, 684 std::set<Register> &UpdRegs) { 685 if (TfrLimitActive) { 686 if (TfrCounter >= TfrLimit) 687 return false; 688 TfrCounter++; 689 } 690 LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent()) 691 << ": " << MI); 692 MachineOperand &MD = MI.getOperand(0); // Definition 693 MachineOperand &MP = MI.getOperand(1); // Predicate register 694 assert(MD.isDef()); 695 Register DR = MD.getReg(), DSR = MD.getSubReg(); 696 bool ReadUndef = MD.isUndef(); 697 MachineBasicBlock::iterator At = MI; 698 699 auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void { 700 for (auto &Op : MI.operands()) { 701 if (Op.isReg()) 702 UpdRegs.insert(Op.getReg()); 703 } 704 }; 705 706 // If this is a mux of the same register, just replace it with COPY. 707 // Ideally, this would happen earlier, so that register coalescing would 708 // see it. 709 MachineOperand &ST = MI.getOperand(2); 710 MachineOperand &SF = MI.getOperand(3); 711 if (ST.isReg() && SF.isReg()) { 712 RegisterRef RT(ST); 713 if (RT == RegisterRef(SF)) { 714 // Copy regs to update first. 715 updateRegs(MI); 716 MI.setDesc(HII->get(TargetOpcode::COPY)); 717 unsigned S = getRegState(ST); 718 while (MI.getNumOperands() > 1) 719 MI.removeOperand(MI.getNumOperands()-1); 720 MachineFunction &MF = *MI.getParent()->getParent(); 721 MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub); 722 return true; 723 } 724 } 725 726 // First, create the two invididual conditional transfers, and add each 727 // of them to the live intervals information. Do that first and then remove 728 // the old instruction from live intervals. 729 MachineInstr *TfrT = 730 genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false); 731 MachineInstr *TfrF = 732 genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true); 733 LIS->InsertMachineInstrInMaps(*TfrT); 734 LIS->InsertMachineInstrInMaps(*TfrF); 735 736 // Will need to recalculate live intervals for all registers in MI. 737 updateRegs(MI); 738 739 removeInstr(MI); 740 return true; 741 } 742 743 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) { 744 if (HII->isPredicated(*MI) || !HII->isPredicable(*MI)) 745 return false; 746 if (MI->hasUnmodeledSideEffects() || MI->mayStore()) 747 return false; 748 // Reject instructions with multiple defs (e.g. post-increment loads). 749 bool HasDef = false; 750 for (auto &Op : MI->operands()) { 751 if (!Op.isReg() || !Op.isDef()) 752 continue; 753 if (HasDef) 754 return false; 755 HasDef = true; 756 } 757 for (auto &Mo : MI->memoperands()) { 758 if (Mo->isVolatile() || Mo->isAtomic()) 759 return false; 760 } 761 return true; 762 } 763 764 /// Find the reaching definition for a predicated use of RD. The RD is used 765 /// under the conditions given by PredR and Cond, and this function will ignore 766 /// definitions that set RD under the opposite conditions. 767 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD, 768 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) { 769 MachineBasicBlock &B = *UseIt->getParent(); 770 MachineBasicBlock::iterator I = UseIt, S = B.begin(); 771 if (I == S) 772 return nullptr; 773 774 bool PredValid = true; 775 do { 776 --I; 777 MachineInstr *MI = &*I; 778 // Check if this instruction can be ignored, i.e. if it is predicated 779 // on the complementary condition. 780 if (PredValid && HII->isPredicated(*MI)) { 781 if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI))) 782 continue; 783 } 784 785 // Check the defs. If the PredR is defined, invalidate it. If RD is 786 // defined, return the instruction or 0, depending on the circumstances. 787 for (auto &Op : MI->operands()) { 788 if (!Op.isReg() || !Op.isDef()) 789 continue; 790 RegisterRef RR = Op; 791 if (RR.Reg == PredR) { 792 PredValid = false; 793 continue; 794 } 795 if (RR.Reg != RD.Reg) 796 continue; 797 // If the "Reg" part agrees, there is still the subregister to check. 798 // If we are looking for %1:loreg, we can skip %1:hireg, but 799 // not %1 (w/o subregisters). 800 if (RR.Sub == RD.Sub) 801 return MI; 802 if (RR.Sub == 0 || RD.Sub == 0) 803 return nullptr; 804 // We have different subregisters, so we can continue looking. 805 } 806 } while (I != S); 807 808 return nullptr; 809 } 810 811 /// Check if the instruction MI can be safely moved over a set of instructions 812 /// whose side-effects (in terms of register defs and uses) are expressed in 813 /// the maps Defs and Uses. These maps reflect the conditional defs and uses 814 /// that depend on the same predicate register to allow moving instructions 815 /// over instructions predicated on the opposite condition. 816 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs, 817 ReferenceMap &Uses) { 818 // In order to be able to safely move MI over instructions that define 819 // "Defs" and use "Uses", no def operand from MI can be defined or used 820 // and no use operand can be defined. 821 for (auto &Op : MI.operands()) { 822 if (!Op.isReg()) 823 continue; 824 RegisterRef RR = Op; 825 // For physical register we would need to check register aliases, etc. 826 // and we don't want to bother with that. It would be of little value 827 // before the actual register rewriting (from virtual to physical). 828 if (!RR.Reg.isVirtual()) 829 return false; 830 // No redefs for any operand. 831 if (isRefInMap(RR, Defs, Exec_Then)) 832 return false; 833 // For defs, there cannot be uses. 834 if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then)) 835 return false; 836 } 837 return true; 838 } 839 840 /// Check if the instruction accessing memory (TheI) can be moved to the 841 /// location ToI. 842 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI, 843 bool IsDown) { 844 bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore(); 845 if (!IsLoad && !IsStore) 846 return true; 847 if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI)) 848 return true; 849 if (TheI.hasUnmodeledSideEffects()) 850 return false; 851 852 MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI; 853 MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI; 854 bool Ordered = TheI.hasOrderedMemoryRef(); 855 856 // Search for aliased memory reference in (StartI, EndI). 857 for (MachineInstr &MI : llvm::make_range(std::next(StartI), EndI)) { 858 if (MI.hasUnmodeledSideEffects()) 859 return false; 860 bool L = MI.mayLoad(), S = MI.mayStore(); 861 if (!L && !S) 862 continue; 863 if (Ordered && MI.hasOrderedMemoryRef()) 864 return false; 865 866 bool Conflict = (L && IsStore) || S; 867 if (Conflict) 868 return false; 869 } 870 return true; 871 } 872 873 /// Generate a predicated version of MI (where the condition is given via 874 /// PredR and Cond) at the point indicated by Where. 875 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp, 876 MachineInstr &MI, 877 MachineBasicBlock::iterator Where, 878 const MachineOperand &PredOp, bool Cond, 879 std::set<Register> &UpdRegs) { 880 // The problem with updating live intervals is that we can move one def 881 // past another def. In particular, this can happen when moving an A2_tfrt 882 // over an A2_tfrf defining the same register. From the point of view of 883 // live intervals, these two instructions are two separate definitions, 884 // and each one starts another live segment. LiveIntervals's "handleMove" 885 // does not allow such moves, so we need to handle it ourselves. To avoid 886 // invalidating liveness data while we are using it, the move will be 887 // implemented in 4 steps: (1) add a clone of the instruction MI at the 888 // target location, (2) update liveness, (3) delete the old instruction, 889 // and (4) update liveness again. 890 891 MachineBasicBlock &B = *MI.getParent(); 892 DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction. 893 unsigned Opc = MI.getOpcode(); 894 unsigned PredOpc = HII->getCondOpcode(Opc, !Cond); 895 MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc)); 896 unsigned Ox = 0, NP = MI.getNumOperands(); 897 // Skip all defs from MI first. 898 while (Ox < NP) { 899 MachineOperand &MO = MI.getOperand(Ox); 900 if (!MO.isReg() || !MO.isDef()) 901 break; 902 Ox++; 903 } 904 // Add the new def, then the predicate register, then the rest of the 905 // operands. 906 MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg()); 907 MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0, 908 PredOp.getSubReg()); 909 while (Ox < NP) { 910 MachineOperand &MO = MI.getOperand(Ox); 911 if (!MO.isReg() || !MO.isImplicit()) 912 MB.add(MO); 913 Ox++; 914 } 915 MB.cloneMemRefs(MI); 916 917 MachineInstr *NewI = MB; 918 NewI->clearKillInfo(); 919 LIS->InsertMachineInstrInMaps(*NewI); 920 921 for (auto &Op : NewI->operands()) { 922 if (Op.isReg()) 923 UpdRegs.insert(Op.getReg()); 924 } 925 } 926 927 /// In the range [First, Last], rename all references to the "old" register RO 928 /// to the "new" register RN, but only in instructions predicated on the given 929 /// condition. 930 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN, 931 unsigned PredR, bool Cond, MachineBasicBlock::iterator First, 932 MachineBasicBlock::iterator Last) { 933 MachineBasicBlock::iterator End = std::next(Last); 934 for (MachineInstr &MI : llvm::make_range(First, End)) { 935 // Do not touch instructions that are not predicated, or are predicated 936 // on the opposite condition. 937 if (!HII->isPredicated(MI)) 938 continue; 939 if (!MI.readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI))) 940 continue; 941 942 for (auto &Op : MI.operands()) { 943 if (!Op.isReg() || RO != RegisterRef(Op)) 944 continue; 945 Op.setReg(RN.Reg); 946 Op.setSubReg(RN.Sub); 947 // In practice, this isn't supposed to see any defs. 948 assert(!Op.isDef() && "Not expecting a def"); 949 } 950 } 951 } 952 953 /// For a given conditional copy, predicate the definition of the source of 954 /// the copy under the given condition (using the same predicate register as 955 /// the copy). 956 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond, 957 std::set<Register> &UpdRegs) { 958 // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi). 959 unsigned Opc = TfrI.getOpcode(); 960 (void)Opc; 961 assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf); 962 LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false") 963 << ": " << TfrI); 964 965 MachineOperand &MD = TfrI.getOperand(0); 966 MachineOperand &MP = TfrI.getOperand(1); 967 MachineOperand &MS = TfrI.getOperand(2); 968 // The source operand should be a <kill>. This is not strictly necessary, 969 // but it makes things a lot simpler. Otherwise, we would need to rename 970 // some registers, which would complicate the transformation considerably. 971 if (!MS.isKill()) 972 return false; 973 // Avoid predicating instructions that define a subregister if subregister 974 // liveness tracking is not enabled. 975 if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg())) 976 return false; 977 978 RegisterRef RT(MS); 979 Register PredR = MP.getReg(); 980 MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond); 981 if (!DefI || !isPredicable(DefI)) 982 return false; 983 984 LLVM_DEBUG(dbgs() << "Source def: " << *DefI); 985 986 // Collect the information about registers defined and used between the 987 // DefI and the TfrI. 988 // Map: reg -> bitmask of subregs 989 ReferenceMap Uses, Defs; 990 MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI; 991 992 // Check if the predicate register is valid between DefI and TfrI. 993 // If it is, we can then ignore instructions predicated on the negated 994 // conditions when collecting def and use information. 995 bool PredValid = true; 996 for (MachineInstr &MI : llvm::make_range(std::next(DefIt), TfrIt)) { 997 if (!MI.modifiesRegister(PredR, nullptr)) 998 continue; 999 PredValid = false; 1000 break; 1001 } 1002 1003 for (MachineInstr &MI : llvm::make_range(std::next(DefIt), TfrIt)) { 1004 // If this instruction is predicated on the same register, it could 1005 // potentially be ignored. 1006 // By default assume that the instruction executes on the same condition 1007 // as TfrI (Exec_Then), and also on the opposite one (Exec_Else). 1008 unsigned Exec = Exec_Then | Exec_Else; 1009 if (PredValid && HII->isPredicated(MI) && MI.readsRegister(PredR)) 1010 Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else; 1011 1012 for (auto &Op : MI.operands()) { 1013 if (!Op.isReg()) 1014 continue; 1015 // We don't want to deal with physical registers. The reason is that 1016 // they can be aliased with other physical registers. Aliased virtual 1017 // registers must share the same register number, and can only differ 1018 // in the subregisters, which we are keeping track of. Physical 1019 // registers ters no longer have subregisters---their super- and 1020 // subregisters are other physical registers, and we are not checking 1021 // that. 1022 RegisterRef RR = Op; 1023 if (!RR.Reg.isVirtual()) 1024 return false; 1025 1026 ReferenceMap &Map = Op.isDef() ? Defs : Uses; 1027 if (Op.isDef() && Op.isUndef()) { 1028 assert(RR.Sub && "Expecting a subregister on <def,read-undef>"); 1029 // If this is a <def,read-undef>, then it invalidates the non-written 1030 // part of the register. For the purpose of checking the validity of 1031 // the move, assume that it modifies the whole register. 1032 RR.Sub = 0; 1033 } 1034 addRefToMap(RR, Map, Exec); 1035 } 1036 } 1037 1038 // The situation: 1039 // RT = DefI 1040 // ... 1041 // RD = TfrI ..., RT 1042 1043 // If the register-in-the-middle (RT) is used or redefined between 1044 // DefI and TfrI, we may not be able proceed with this transformation. 1045 // We can ignore a def that will not execute together with TfrI, and a 1046 // use that will. If there is such a use (that does execute together with 1047 // TfrI), we will not be able to move DefI down. If there is a use that 1048 // executed if TfrI's condition is false, then RT must be available 1049 // unconditionally (cannot be predicated). 1050 // Essentially, we need to be able to rename RT to RD in this segment. 1051 if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else)) 1052 return false; 1053 RegisterRef RD = MD; 1054 // If the predicate register is defined between DefI and TfrI, the only 1055 // potential thing to do would be to move the DefI down to TfrI, and then 1056 // predicate. The reaching def (DefI) must be movable down to the location 1057 // of the TfrI. 1058 // If the target register of the TfrI (RD) is not used or defined between 1059 // DefI and TfrI, consider moving TfrI up to DefI. 1060 bool CanUp = canMoveOver(TfrI, Defs, Uses); 1061 bool CanDown = canMoveOver(*DefI, Defs, Uses); 1062 // The TfrI does not access memory, but DefI could. Check if it's safe 1063 // to move DefI down to TfrI. 1064 if (DefI->mayLoadOrStore()) { 1065 if (!canMoveMemTo(*DefI, TfrI, true)) 1066 CanDown = false; 1067 } 1068 1069 LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no") 1070 << ", can move down: " << (CanDown ? "yes\n" : "no\n")); 1071 MachineBasicBlock::iterator PastDefIt = std::next(DefIt); 1072 if (CanUp) 1073 predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs); 1074 else if (CanDown) 1075 predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs); 1076 else 1077 return false; 1078 1079 if (RT != RD) { 1080 renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt); 1081 UpdRegs.insert(RT.Reg); 1082 } 1083 1084 removeInstr(TfrI); 1085 removeInstr(*DefI); 1086 return true; 1087 } 1088 1089 /// Predicate all cases of conditional copies in the specified block. 1090 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B, 1091 std::set<Register> &UpdRegs) { 1092 bool Changed = false; 1093 for (MachineInstr &MI : llvm::make_early_inc_range(B)) { 1094 unsigned Opc = MI.getOpcode(); 1095 if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) { 1096 bool Done = predicate(MI, (Opc == Hexagon::A2_tfrt), UpdRegs); 1097 if (!Done) { 1098 // If we didn't predicate I, we may need to remove it in case it is 1099 // an "identity" copy, e.g. %1 = A2_tfrt %2, %1. 1100 if (RegisterRef(MI.getOperand(0)) == RegisterRef(MI.getOperand(2))) { 1101 for (auto &Op : MI.operands()) { 1102 if (Op.isReg()) 1103 UpdRegs.insert(Op.getReg()); 1104 } 1105 removeInstr(MI); 1106 } 1107 } 1108 Changed |= Done; 1109 } 1110 } 1111 return Changed; 1112 } 1113 1114 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) { 1115 if (!RR.Reg.isVirtual()) 1116 return false; 1117 const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg); 1118 if (RC == &Hexagon::IntRegsRegClass) { 1119 BW = 32; 1120 return true; 1121 } 1122 if (RC == &Hexagon::DoubleRegsRegClass) { 1123 BW = (RR.Sub != 0) ? 32 : 64; 1124 return true; 1125 } 1126 return false; 1127 } 1128 1129 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) { 1130 for (LiveRange::Segment &LR : LI) { 1131 // Range must start at a register... 1132 if (!LR.start.isRegister()) 1133 return false; 1134 // ...and end in a register or in a dead slot. 1135 if (!LR.end.isRegister() && !LR.end.isDead()) 1136 return false; 1137 } 1138 return true; 1139 } 1140 1141 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) { 1142 if (CoaLimitActive) { 1143 if (CoaCounter >= CoaLimit) 1144 return false; 1145 CoaCounter++; 1146 } 1147 unsigned BW1, BW2; 1148 if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2) 1149 return false; 1150 if (MRI->isLiveIn(R1.Reg)) 1151 return false; 1152 if (MRI->isLiveIn(R2.Reg)) 1153 return false; 1154 1155 LiveInterval &L1 = LIS->getInterval(R1.Reg); 1156 LiveInterval &L2 = LIS->getInterval(R2.Reg); 1157 if (L2.empty()) 1158 return false; 1159 if (L1.hasSubRanges() || L2.hasSubRanges()) 1160 return false; 1161 bool Overlap = L1.overlaps(L2); 1162 1163 LLVM_DEBUG(dbgs() << "compatible registers: (" 1164 << (Overlap ? "overlap" : "disjoint") << ")\n " 1165 << printReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n " 1166 << printReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n"); 1167 if (R1.Sub || R2.Sub) 1168 return false; 1169 if (Overlap) 1170 return false; 1171 1172 // Coalescing could have a negative impact on scheduling, so try to limit 1173 // to some reasonable extent. Only consider coalescing segments, when one 1174 // of them does not cross basic block boundaries. 1175 if (!isIntraBlocks(L1) && !isIntraBlocks(L2)) 1176 return false; 1177 1178 MRI->replaceRegWith(R2.Reg, R1.Reg); 1179 1180 // Move all live segments from L2 to L1. 1181 using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>; 1182 ValueInfoMap VM; 1183 for (LiveRange::Segment &I : L2) { 1184 VNInfo *NewVN, *OldVN = I.valno; 1185 ValueInfoMap::iterator F = VM.find(OldVN); 1186 if (F == VM.end()) { 1187 NewVN = L1.getNextValue(I.valno->def, LIS->getVNInfoAllocator()); 1188 VM.insert(std::make_pair(OldVN, NewVN)); 1189 } else { 1190 NewVN = F->second; 1191 } 1192 L1.addSegment(LiveRange::Segment(I.start, I.end, NewVN)); 1193 } 1194 while (!L2.empty()) 1195 L2.removeSegment(*L2.begin()); 1196 LIS->removeInterval(R2.Reg); 1197 1198 updateKillFlags(R1.Reg); 1199 LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n"); 1200 L1.verify(); 1201 1202 return true; 1203 } 1204 1205 /// Attempt to coalesce one of the source registers to a MUX instruction with 1206 /// the destination register. This could lead to having only one predicated 1207 /// instruction in the end instead of two. 1208 bool HexagonExpandCondsets::coalesceSegments( 1209 const SmallVectorImpl<MachineInstr *> &Condsets, 1210 std::set<Register> &UpdRegs) { 1211 SmallVector<MachineInstr*,16> TwoRegs; 1212 for (MachineInstr *MI : Condsets) { 1213 MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3); 1214 if (!S1.isReg() && !S2.isReg()) 1215 continue; 1216 TwoRegs.push_back(MI); 1217 } 1218 1219 bool Changed = false; 1220 for (MachineInstr *CI : TwoRegs) { 1221 RegisterRef RD = CI->getOperand(0); 1222 RegisterRef RP = CI->getOperand(1); 1223 MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3); 1224 bool Done = false; 1225 // Consider this case: 1226 // %1 = instr1 ... 1227 // %2 = instr2 ... 1228 // %0 = C2_mux ..., %1, %2 1229 // If %0 was coalesced with %1, we could end up with the following 1230 // code: 1231 // %0 = instr1 ... 1232 // %2 = instr2 ... 1233 // %0 = A2_tfrf ..., %2 1234 // which will later become: 1235 // %0 = instr1 ... 1236 // %0 = instr2_cNotPt ... 1237 // i.e. there will be an unconditional definition (instr1) of %0 1238 // followed by a conditional one. The output dependency was there before 1239 // and it unavoidable, but if instr1 is predicable, we will no longer be 1240 // able to predicate it here. 1241 // To avoid this scenario, don't coalesce the destination register with 1242 // a source register that is defined by a predicable instruction. 1243 if (S1.isReg()) { 1244 RegisterRef RS = S1; 1245 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true); 1246 if (!RDef || !HII->isPredicable(*RDef)) { 1247 Done = coalesceRegisters(RD, RegisterRef(S1)); 1248 if (Done) { 1249 UpdRegs.insert(RD.Reg); 1250 UpdRegs.insert(S1.getReg()); 1251 } 1252 } 1253 } 1254 if (!Done && S2.isReg()) { 1255 RegisterRef RS = S2; 1256 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false); 1257 if (!RDef || !HII->isPredicable(*RDef)) { 1258 Done = coalesceRegisters(RD, RegisterRef(S2)); 1259 if (Done) { 1260 UpdRegs.insert(RD.Reg); 1261 UpdRegs.insert(S2.getReg()); 1262 } 1263 } 1264 } 1265 Changed |= Done; 1266 } 1267 return Changed; 1268 } 1269 1270 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) { 1271 if (skipFunction(MF.getFunction())) 1272 return false; 1273 1274 HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo()); 1275 TRI = MF.getSubtarget().getRegisterInfo(); 1276 MDT = &getAnalysis<MachineDominatorTree>(); 1277 LIS = &getAnalysis<LiveIntervals>(); 1278 MRI = &MF.getRegInfo(); 1279 1280 LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n", 1281 MF.getFunction().getParent())); 1282 1283 bool Changed = false; 1284 std::set<Register> CoalUpd, PredUpd; 1285 1286 SmallVector<MachineInstr*,16> Condsets; 1287 for (auto &B : MF) { 1288 for (auto &I : B) { 1289 if (isCondset(I)) 1290 Condsets.push_back(&I); 1291 } 1292 } 1293 1294 // Try to coalesce the target of a mux with one of its sources. 1295 // This could eliminate a register copy in some circumstances. 1296 Changed |= coalesceSegments(Condsets, CoalUpd); 1297 1298 // Update kill flags on all source operands. This is done here because 1299 // at this moment (when expand-condsets runs), there are no kill flags 1300 // in the IR (they have been removed by live range analysis). 1301 // Updating them right before we split is the easiest, because splitting 1302 // adds definitions which would interfere with updating kills afterwards. 1303 std::set<Register> KillUpd; 1304 for (MachineInstr *MI : Condsets) { 1305 for (MachineOperand &Op : MI->operands()) { 1306 if (Op.isReg() && Op.isUse()) { 1307 if (!CoalUpd.count(Op.getReg())) 1308 KillUpd.insert(Op.getReg()); 1309 } 1310 } 1311 } 1312 updateLiveness(KillUpd, false, true, false); 1313 LLVM_DEBUG( 1314 LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent())); 1315 1316 // First, simply split all muxes into a pair of conditional transfers 1317 // and update the live intervals to reflect the new arrangement. The 1318 // goal is to update the kill flags, since predication will rely on 1319 // them. 1320 for (MachineInstr *MI : Condsets) 1321 Changed |= split(*MI, PredUpd); 1322 Condsets.clear(); // The contents of Condsets are invalid here anyway. 1323 1324 // Do not update live ranges after splitting. Recalculation of live 1325 // intervals removes kill flags, which were preserved by splitting on 1326 // the source operands of condsets. These kill flags are needed by 1327 // predication, and after splitting they are difficult to recalculate 1328 // (because of predicated defs), so make sure they are left untouched. 1329 // Predication does not use live intervals. 1330 LLVM_DEBUG( 1331 LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent())); 1332 1333 // Traverse all blocks and collapse predicable instructions feeding 1334 // conditional transfers into predicated instructions. 1335 // Walk over all the instructions again, so we may catch pre-existing 1336 // cases that were not created in the previous step. 1337 for (auto &B : MF) 1338 Changed |= predicateInBlock(B, PredUpd); 1339 LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n", 1340 MF.getFunction().getParent())); 1341 1342 PredUpd.insert(CoalUpd.begin(), CoalUpd.end()); 1343 updateLiveness(PredUpd, true, true, true); 1344 1345 if (Changed) 1346 distributeLiveIntervals(PredUpd); 1347 1348 LLVM_DEBUG({ 1349 if (Changed) 1350 LIS->print(dbgs() << "After expand-condsets\n", 1351 MF.getFunction().getParent()); 1352 }); 1353 1354 return Changed; 1355 } 1356 1357 //===----------------------------------------------------------------------===// 1358 // Public Constructor Functions 1359 //===----------------------------------------------------------------------===// 1360 FunctionPass *llvm::createHexagonExpandCondsets() { 1361 return new HexagonExpandCondsets(); 1362 } 1363