xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===- HexagonExpandCondsets.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // Replace mux instructions with the corresponding legal instructions.
10 // It is meant to work post-SSA, but still on virtual registers. It was
11 // originally placed between register coalescing and machine instruction
12 // scheduler.
13 // In this place in the optimization sequence, live interval analysis had
14 // been performed, and the live intervals should be preserved. A large part
15 // of the code deals with preserving the liveness information.
16 //
17 // Liveness tracking aside, the main functionality of this pass is divided
18 // into two steps. The first step is to replace an instruction
19 //   %0 = C2_mux %1, %2, %3
20 // with a pair of conditional transfers
21 //   %0 = A2_tfrt %1, %2
22 //   %0 = A2_tfrf %1, %3
23 // It is the intention that the execution of this pass could be terminated
24 // after this step, and the code generated would be functionally correct.
25 //
26 // If the uses of the source values %1 and %2 are kills, and their
27 // definitions are predicable, then in the second step, the conditional
28 // transfers will then be rewritten as predicated instructions. E.g.
29 //   %0 = A2_or %1, %2
30 //   %3 = A2_tfrt %99, killed %0
31 // will be rewritten as
32 //   %3 = A2_port %99, %1, %2
33 //
34 // This replacement has two variants: "up" and "down". Consider this case:
35 //   %0 = A2_or %1, %2
36 //   ... [intervening instructions] ...
37 //   %3 = A2_tfrt %99, killed %0
38 // variant "up":
39 //   %3 = A2_port %99, %1, %2
40 //   ... [intervening instructions, %0->vreg3] ...
41 //   [deleted]
42 // variant "down":
43 //   [deleted]
44 //   ... [intervening instructions] ...
45 //   %3 = A2_port %99, %1, %2
46 //
47 // Both, one or none of these variants may be valid, and checks are made
48 // to rule out inapplicable variants.
49 //
50 // As an additional optimization, before either of the two steps above is
51 // executed, the pass attempts to coalesce the target register with one of
52 // the source registers, e.g. given an instruction
53 //   %3 = C2_mux %0, %1, %2
54 // %3 will be coalesced with either %1 or %2. If this succeeds,
55 // the instruction would then be (for example)
56 //   %3 = C2_mux %0, %3, %2
57 // and, under certain circumstances, this could result in only one predicated
58 // instruction:
59 //   %3 = A2_tfrf %0, %2
60 //
61 
62 // Splitting a definition of a register into two predicated transfers
63 // creates a complication in liveness tracking. Live interval computation
64 // will see both instructions as actual definitions, and will mark the
65 // first one as dead. The definition is not actually dead, and this
66 // situation will need to be fixed. For example:
67 //   dead %1 = A2_tfrt ...  ; marked as dead
68 //   %1 = A2_tfrf ...
69 //
70 // Since any of the individual predicated transfers may end up getting
71 // removed (in case it is an identity copy), some pre-existing def may
72 // be marked as dead after live interval recomputation:
73 //   dead %1 = ...          ; marked as dead
74 //   ...
75 //   %1 = A2_tfrf ...       ; if A2_tfrt is removed
76 // This case happens if %1 was used as a source in A2_tfrt, which means
77 // that is it actually live at the A2_tfrf, and so the now dead definition
78 // of %1 will need to be updated to non-dead at some point.
79 //
80 // This issue could be remedied by adding implicit uses to the predicated
81 // transfers, but this will create a problem with subsequent predication,
82 // since the transfers will no longer be possible to reorder. To avoid
83 // that, the initial splitting will not add any implicit uses. These
84 // implicit uses will be added later, after predication. The extra price,
85 // however, is that finding the locations where the implicit uses need
86 // to be added, and updating the live ranges will be more involved.
87 
88 #include "HexagonInstrInfo.h"
89 #include "HexagonRegisterInfo.h"
90 #include "llvm/ADT/DenseMap.h"
91 #include "llvm/ADT/SetVector.h"
92 #include "llvm/ADT/SmallVector.h"
93 #include "llvm/ADT/StringRef.h"
94 #include "llvm/CodeGen/LiveInterval.h"
95 #include "llvm/CodeGen/LiveIntervals.h"
96 #include "llvm/CodeGen/MachineBasicBlock.h"
97 #include "llvm/CodeGen/MachineDominators.h"
98 #include "llvm/CodeGen/MachineFunction.h"
99 #include "llvm/CodeGen/MachineFunctionPass.h"
100 #include "llvm/CodeGen/MachineInstr.h"
101 #include "llvm/CodeGen/MachineInstrBuilder.h"
102 #include "llvm/CodeGen/MachineOperand.h"
103 #include "llvm/CodeGen/MachineRegisterInfo.h"
104 #include "llvm/CodeGen/SlotIndexes.h"
105 #include "llvm/CodeGen/TargetRegisterInfo.h"
106 #include "llvm/CodeGen/TargetSubtargetInfo.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/InitializePasses.h"
110 #include "llvm/MC/LaneBitmask.h"
111 #include "llvm/Pass.h"
112 #include "llvm/Support/CommandLine.h"
113 #include "llvm/Support/Debug.h"
114 #include "llvm/Support/ErrorHandling.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include <cassert>
117 #include <iterator>
118 #include <set>
119 #include <utility>
120 
121 #define DEBUG_TYPE "expand-condsets"
122 
123 using namespace llvm;
124 
125 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
126   cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
127 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
128   cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
129 
130 namespace llvm {
131 
132   void initializeHexagonExpandCondsetsPass(PassRegistry&);
133   FunctionPass *createHexagonExpandCondsets();
134 
135 } // end namespace llvm
136 
137 namespace {
138 
139   class HexagonExpandCondsets : public MachineFunctionPass {
140   public:
141     static char ID;
142 
143     HexagonExpandCondsets() : MachineFunctionPass(ID) {
144       if (OptCoaLimit.getPosition())
145         CoaLimitActive = true, CoaLimit = OptCoaLimit;
146       if (OptTfrLimit.getPosition())
147         TfrLimitActive = true, TfrLimit = OptTfrLimit;
148       initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
149     }
150 
151     StringRef getPassName() const override { return "Hexagon Expand Condsets"; }
152 
153     void getAnalysisUsage(AnalysisUsage &AU) const override {
154       AU.addRequired<LiveIntervals>();
155       AU.addPreserved<LiveIntervals>();
156       AU.addPreserved<SlotIndexes>();
157       AU.addRequired<MachineDominatorTree>();
158       AU.addPreserved<MachineDominatorTree>();
159       MachineFunctionPass::getAnalysisUsage(AU);
160     }
161 
162     bool runOnMachineFunction(MachineFunction &MF) override;
163 
164   private:
165     const HexagonInstrInfo *HII = nullptr;
166     const TargetRegisterInfo *TRI = nullptr;
167     MachineDominatorTree *MDT;
168     MachineRegisterInfo *MRI = nullptr;
169     LiveIntervals *LIS = nullptr;
170     bool CoaLimitActive = false;
171     bool TfrLimitActive = false;
172     unsigned CoaLimit;
173     unsigned TfrLimit;
174     unsigned CoaCounter = 0;
175     unsigned TfrCounter = 0;
176 
177     // FIXME: Consolidate duplicate definitions of RegisterRef
178     struct RegisterRef {
179       RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
180           Sub(Op.getSubReg()) {}
181       RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
182 
183       bool operator== (RegisterRef RR) const {
184         return Reg == RR.Reg && Sub == RR.Sub;
185       }
186       bool operator!= (RegisterRef RR) const { return !operator==(RR); }
187       bool operator< (RegisterRef RR) const {
188         return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
189       }
190 
191       Register Reg;
192       unsigned Sub;
193     };
194 
195     using ReferenceMap = DenseMap<unsigned, unsigned>;
196     enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
197     enum { Exec_Then = 0x10, Exec_Else = 0x20 };
198 
199     unsigned getMaskForSub(unsigned Sub);
200     bool isCondset(const MachineInstr &MI);
201     LaneBitmask getLaneMask(Register Reg, unsigned Sub);
202 
203     void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
204     bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
205 
206     void updateDeadsInRange(Register Reg, LaneBitmask LM, LiveRange &Range);
207     void updateKillFlags(Register Reg);
208     void updateDeadFlags(Register Reg);
209     void recalculateLiveInterval(Register Reg);
210     void removeInstr(MachineInstr &MI);
211     void updateLiveness(const std::set<Register> &RegSet, bool Recalc,
212                         bool UpdateKills, bool UpdateDeads);
213     void distributeLiveIntervals(const std::set<Register> &Regs);
214 
215     unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
216     MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
217         MachineBasicBlock::iterator At, unsigned DstR,
218         unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
219         bool ReadUndef, bool ImpUse);
220     bool split(MachineInstr &MI, std::set<Register> &UpdRegs);
221 
222     bool isPredicable(MachineInstr *MI);
223     MachineInstr *getReachingDefForPred(RegisterRef RD,
224         MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
225     bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
226     bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
227     void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
228                      MachineBasicBlock::iterator Where,
229                      const MachineOperand &PredOp, bool Cond,
230                      std::set<Register> &UpdRegs);
231     void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
232         bool Cond, MachineBasicBlock::iterator First,
233         MachineBasicBlock::iterator Last);
234     bool predicate(MachineInstr &TfrI, bool Cond, std::set<Register> &UpdRegs);
235     bool predicateInBlock(MachineBasicBlock &B, std::set<Register> &UpdRegs);
236 
237     bool isIntReg(RegisterRef RR, unsigned &BW);
238     bool isIntraBlocks(LiveInterval &LI);
239     bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
240     bool coalesceSegments(const SmallVectorImpl<MachineInstr *> &Condsets,
241                           std::set<Register> &UpdRegs);
242   };
243 
244 } // end anonymous namespace
245 
246 char HexagonExpandCondsets::ID = 0;
247 
248 namespace llvm {
249 
250   char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID;
251 
252 } // end namespace llvm
253 
254 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
255   "Hexagon Expand Condsets", false, false)
256 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
257 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
258 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
259 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
260   "Hexagon Expand Condsets", false, false)
261 
262 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
263   switch (Sub) {
264     case Hexagon::isub_lo:
265     case Hexagon::vsub_lo:
266       return Sub_Low;
267     case Hexagon::isub_hi:
268     case Hexagon::vsub_hi:
269       return Sub_High;
270     case Hexagon::NoSubRegister:
271       return Sub_None;
272   }
273   llvm_unreachable("Invalid subregister");
274 }
275 
276 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
277   unsigned Opc = MI.getOpcode();
278   switch (Opc) {
279     case Hexagon::C2_mux:
280     case Hexagon::C2_muxii:
281     case Hexagon::C2_muxir:
282     case Hexagon::C2_muxri:
283     case Hexagon::PS_pselect:
284         return true;
285       break;
286   }
287   return false;
288 }
289 
290 LaneBitmask HexagonExpandCondsets::getLaneMask(Register Reg, unsigned Sub) {
291   assert(Reg.isVirtual());
292   return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
293                   : MRI->getMaxLaneMaskForVReg(Reg);
294 }
295 
296 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
297       unsigned Exec) {
298   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
299   ReferenceMap::iterator F = Map.find(RR.Reg);
300   if (F == Map.end())
301     Map.insert(std::make_pair(RR.Reg, Mask));
302   else
303     F->second |= Mask;
304 }
305 
306 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
307       unsigned Exec) {
308   ReferenceMap::iterator F = Map.find(RR.Reg);
309   if (F == Map.end())
310     return false;
311   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
312   if (Mask & F->second)
313     return true;
314   return false;
315 }
316 
317 void HexagonExpandCondsets::updateKillFlags(Register Reg) {
318   auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
319     // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
320     MachineInstr *MI = LIS->getInstructionFromIndex(K);
321     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
322       MachineOperand &Op = MI->getOperand(i);
323       if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg ||
324           MI->isRegTiedToDefOperand(i))
325         continue;
326       LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
327       if ((SLM & LM) == SLM) {
328         // Only set the kill flag on the first encountered use of Reg in this
329         // instruction.
330         Op.setIsKill(true);
331         break;
332       }
333     }
334   };
335 
336   LiveInterval &LI = LIS->getInterval(Reg);
337   for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
338     if (!I->end.isRegister())
339       continue;
340     // Do not mark the end of the segment as <kill>, if the next segment
341     // starts with a predicated instruction.
342     auto NextI = std::next(I);
343     if (NextI != E && NextI->start.isRegister()) {
344       MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
345       if (HII->isPredicated(*DefI))
346         continue;
347     }
348     bool WholeReg = true;
349     if (LI.hasSubRanges()) {
350       auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
351         LiveRange::iterator F = S.find(I->end);
352         return F != S.end() && I->end == F->end;
353       };
354       // Check if all subranges end at I->end. If so, make sure to kill
355       // the whole register.
356       for (LiveInterval::SubRange &S : LI.subranges()) {
357         if (EndsAtI(S))
358           KillAt(I->end, S.LaneMask);
359         else
360           WholeReg = false;
361       }
362     }
363     if (WholeReg)
364       KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
365   }
366 }
367 
368 void HexagonExpandCondsets::updateDeadsInRange(Register Reg, LaneBitmask LM,
369                                                LiveRange &Range) {
370   assert(Reg.isVirtual());
371   if (Range.empty())
372     return;
373 
374   // Return two booleans: { def-modifes-reg, def-covers-reg }.
375   auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
376     if (!Op.isReg() || !Op.isDef())
377       return { false, false };
378     Register DR = Op.getReg(), DSR = Op.getSubReg();
379     if (!DR.isVirtual() || DR != Reg)
380       return { false, false };
381     LaneBitmask SLM = getLaneMask(DR, DSR);
382     LaneBitmask A = SLM & LM;
383     return { A.any(), A == SLM };
384   };
385 
386   // The splitting step will create pairs of predicated definitions without
387   // any implicit uses (since implicit uses would interfere with predication).
388   // This can cause the reaching defs to become dead after live range
389   // recomputation, even though they are not really dead.
390   // We need to identify predicated defs that need implicit uses, and
391   // dead defs that are not really dead, and correct both problems.
392 
393   auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
394                           MachineBasicBlock *Dest) -> bool {
395     for (MachineBasicBlock *D : Defs) {
396       if (D != Dest && MDT->dominates(D, Dest))
397         return true;
398     }
399     MachineBasicBlock *Entry = &Dest->getParent()->front();
400     SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
401     for (unsigned i = 0; i < Work.size(); ++i) {
402       MachineBasicBlock *B = Work[i];
403       if (Defs.count(B))
404         continue;
405       if (B == Entry)
406         return false;
407       for (auto *P : B->predecessors())
408         Work.insert(P);
409     }
410     return true;
411   };
412 
413   // First, try to extend live range within individual basic blocks. This
414   // will leave us only with dead defs that do not reach any predicated
415   // defs in the same block.
416   SetVector<MachineBasicBlock*> Defs;
417   SmallVector<SlotIndex,4> PredDefs;
418   for (auto &Seg : Range) {
419     if (!Seg.start.isRegister())
420       continue;
421     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
422     Defs.insert(DefI->getParent());
423     if (HII->isPredicated(*DefI))
424       PredDefs.push_back(Seg.start);
425   }
426 
427   SmallVector<SlotIndex,8> Undefs;
428   LiveInterval &LI = LIS->getInterval(Reg);
429   LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());
430 
431   for (auto &SI : PredDefs) {
432     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
433     auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
434     if (P.first != nullptr || P.second)
435       SI = SlotIndex();
436   }
437 
438   // Calculate reachability for those predicated defs that were not handled
439   // by the in-block extension.
440   SmallVector<SlotIndex,4> ExtTo;
441   for (auto &SI : PredDefs) {
442     if (!SI.isValid())
443       continue;
444     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
445     if (BB->pred_empty())
446       continue;
447     // If the defs from this range reach SI via all predecessors, it is live.
448     // It can happen that SI is reached by the defs through some paths, but
449     // not all. In the IR coming into this optimization, SI would not be
450     // considered live, since the defs would then not jointly dominate SI.
451     // That means that SI is an overwriting def, and no implicit use is
452     // needed at this point. Do not add SI to the extension points, since
453     // extendToIndices will abort if there is no joint dominance.
454     // If the abort was avoided by adding extra undefs added to Undefs,
455     // extendToIndices could actually indicate that SI is live, contrary
456     // to the original IR.
457     if (Dominate(Defs, BB))
458       ExtTo.push_back(SI);
459   }
460 
461   if (!ExtTo.empty())
462     LIS->extendToIndices(Range, ExtTo, Undefs);
463 
464   // Remove <dead> flags from all defs that are not dead after live range
465   // extension, and collect all def operands. They will be used to generate
466   // the necessary implicit uses.
467   // At the same time, add <dead> flag to all defs that are actually dead.
468   // This can happen, for example, when a mux with identical inputs is
469   // replaced with a COPY: the use of the predicate register disappears and
470   // the dead can become dead.
471   std::set<RegisterRef> DefRegs;
472   for (auto &Seg : Range) {
473     if (!Seg.start.isRegister())
474       continue;
475     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
476     for (auto &Op : DefI->operands()) {
477       auto P = IsRegDef(Op);
478       if (P.second && Seg.end.isDead()) {
479         Op.setIsDead(true);
480       } else if (P.first) {
481         DefRegs.insert(Op);
482         Op.setIsDead(false);
483       }
484     }
485   }
486 
487   // Now, add implicit uses to each predicated def that is reached
488   // by other defs.
489   for (auto &Seg : Range) {
490     if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
491       continue;
492     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
493     if (!HII->isPredicated(*DefI))
494       continue;
495     // Construct the set of all necessary implicit uses, based on the def
496     // operands in the instruction. We need to tie the implicit uses to
497     // the corresponding defs.
498     std::map<RegisterRef,unsigned> ImpUses;
499     for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) {
500       MachineOperand &Op = DefI->getOperand(i);
501       if (!Op.isReg() || !DefRegs.count(Op))
502         continue;
503       if (Op.isDef()) {
504         // Tied defs will always have corresponding uses, so no extra
505         // implicit uses are needed.
506         if (!Op.isTied())
507           ImpUses.insert({Op, i});
508       } else {
509         // This function can be called for the same register with different
510         // lane masks. If the def in this instruction was for the whole
511         // register, we can get here more than once. Avoid adding multiple
512         // implicit uses (or adding an implicit use when an explicit one is
513         // present).
514         if (Op.isTied())
515           ImpUses.erase(Op);
516       }
517     }
518     if (ImpUses.empty())
519       continue;
520     MachineFunction &MF = *DefI->getParent()->getParent();
521     for (auto [R, DefIdx] : ImpUses) {
522       MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
523       DefI->tieOperands(DefIdx, DefI->getNumOperands()-1);
524     }
525   }
526 }
527 
528 void HexagonExpandCondsets::updateDeadFlags(Register Reg) {
529   LiveInterval &LI = LIS->getInterval(Reg);
530   if (LI.hasSubRanges()) {
531     for (LiveInterval::SubRange &S : LI.subranges()) {
532       updateDeadsInRange(Reg, S.LaneMask, S);
533       LIS->shrinkToUses(S, Reg);
534     }
535     LI.clear();
536     LIS->constructMainRangeFromSubranges(LI);
537   } else {
538     updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
539   }
540 }
541 
542 void HexagonExpandCondsets::recalculateLiveInterval(Register Reg) {
543   LIS->removeInterval(Reg);
544   LIS->createAndComputeVirtRegInterval(Reg);
545 }
546 
547 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
548   LIS->RemoveMachineInstrFromMaps(MI);
549   MI.eraseFromParent();
550 }
551 
552 void HexagonExpandCondsets::updateLiveness(const std::set<Register> &RegSet,
553                                            bool Recalc, bool UpdateKills,
554                                            bool UpdateDeads) {
555   UpdateKills |= UpdateDeads;
556   for (Register R : RegSet) {
557     if (!R.isVirtual()) {
558       assert(R.isPhysical());
559       // There shouldn't be any physical registers as operands, except
560       // possibly reserved registers.
561       assert(MRI->isReserved(R));
562       continue;
563     }
564     if (Recalc)
565       recalculateLiveInterval(R);
566     if (UpdateKills)
567       MRI->clearKillFlags(R);
568     if (UpdateDeads)
569       updateDeadFlags(R);
570     // Fixing <dead> flags may extend live ranges, so reset <kill> flags
571     // after that.
572     if (UpdateKills)
573       updateKillFlags(R);
574     LIS->getInterval(R).verify();
575   }
576 }
577 
578 void HexagonExpandCondsets::distributeLiveIntervals(
579     const std::set<Register> &Regs) {
580   ConnectedVNInfoEqClasses EQC(*LIS);
581   for (Register R : Regs) {
582     if (!R.isVirtual())
583       continue;
584     LiveInterval &LI = LIS->getInterval(R);
585     unsigned NumComp = EQC.Classify(LI);
586     if (NumComp == 1)
587       continue;
588 
589     SmallVector<LiveInterval*> NewLIs;
590     const TargetRegisterClass *RC = MRI->getRegClass(LI.reg());
591     for (unsigned I = 1; I < NumComp; ++I) {
592       Register NewR = MRI->createVirtualRegister(RC);
593       NewLIs.push_back(&LIS->createEmptyInterval(NewR));
594     }
595     EQC.Distribute(LI, NewLIs.begin(), *MRI);
596   }
597 }
598 
599 /// Get the opcode for a conditional transfer of the value in SO (source
600 /// operand). The condition (true/false) is given in Cond.
601 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
602       bool IfTrue) {
603   if (SO.isReg()) {
604     MCRegister PhysR;
605     RegisterRef RS = SO;
606     if (RS.Reg.isVirtual()) {
607       const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
608       assert(VC->begin() != VC->end() && "Empty register class");
609       PhysR = *VC->begin();
610     } else {
611       PhysR = RS.Reg;
612     }
613     MCRegister PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
614     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
615     switch (TRI->getRegSizeInBits(*RC)) {
616       case 32:
617         return IfTrue ? Hexagon::A2_tfrt : Hexagon::A2_tfrf;
618       case 64:
619         return IfTrue ? Hexagon::A2_tfrpt : Hexagon::A2_tfrpf;
620     }
621     llvm_unreachable("Invalid register operand");
622   }
623   switch (SO.getType()) {
624     case MachineOperand::MO_Immediate:
625     case MachineOperand::MO_FPImmediate:
626     case MachineOperand::MO_ConstantPoolIndex:
627     case MachineOperand::MO_TargetIndex:
628     case MachineOperand::MO_JumpTableIndex:
629     case MachineOperand::MO_ExternalSymbol:
630     case MachineOperand::MO_GlobalAddress:
631     case MachineOperand::MO_BlockAddress:
632       return IfTrue ? Hexagon::C2_cmoveit : Hexagon::C2_cmoveif;
633     default:
634       break;
635   }
636   llvm_unreachable("Unexpected source operand");
637 }
638 
639 /// Generate a conditional transfer, copying the value SrcOp to the
640 /// destination register DstR:DstSR, and using the predicate register from
641 /// PredOp. The Cond argument specifies whether the predicate is to be
642 /// if(PredOp), or if(!PredOp).
643 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
644       MachineBasicBlock::iterator At,
645       unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
646       bool PredSense, bool ReadUndef, bool ImpUse) {
647   MachineInstr *MI = SrcOp.getParent();
648   MachineBasicBlock &B = *At->getParent();
649   const DebugLoc &DL = MI->getDebugLoc();
650 
651   // Don't avoid identity copies here (i.e. if the source and the destination
652   // are the same registers). It is actually better to generate them here,
653   // since this would cause the copy to potentially be predicated in the next
654   // step. The predication will remove such a copy if it is unable to
655   /// predicate.
656 
657   unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
658   unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0);
659   unsigned PredState = getRegState(PredOp) & ~RegState::Kill;
660   MachineInstrBuilder MIB;
661 
662   if (SrcOp.isReg()) {
663     unsigned SrcState = getRegState(SrcOp);
664     if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR))
665       SrcState &= ~RegState::Kill;
666     MIB = BuildMI(B, At, DL, HII->get(Opc))
667             .addReg(DstR, DstState, DstSR)
668             .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
669             .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg());
670   } else {
671     MIB = BuildMI(B, At, DL, HII->get(Opc))
672             .addReg(DstR, DstState, DstSR)
673             .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
674             .add(SrcOp);
675   }
676 
677   LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB);
678   return &*MIB;
679 }
680 
681 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
682 /// performs all necessary changes to complete the replacement.
683 bool HexagonExpandCondsets::split(MachineInstr &MI,
684                                   std::set<Register> &UpdRegs) {
685   if (TfrLimitActive) {
686     if (TfrCounter >= TfrLimit)
687       return false;
688     TfrCounter++;
689   }
690   LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent())
691                     << ": " << MI);
692   MachineOperand &MD = MI.getOperand(0);  // Definition
693   MachineOperand &MP = MI.getOperand(1);  // Predicate register
694   assert(MD.isDef());
695   Register DR = MD.getReg(), DSR = MD.getSubReg();
696   bool ReadUndef = MD.isUndef();
697   MachineBasicBlock::iterator At = MI;
698 
699   auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void {
700     for (auto &Op : MI.operands()) {
701       if (Op.isReg())
702         UpdRegs.insert(Op.getReg());
703     }
704   };
705 
706   // If this is a mux of the same register, just replace it with COPY.
707   // Ideally, this would happen earlier, so that register coalescing would
708   // see it.
709   MachineOperand &ST = MI.getOperand(2);
710   MachineOperand &SF = MI.getOperand(3);
711   if (ST.isReg() && SF.isReg()) {
712     RegisterRef RT(ST);
713     if (RT == RegisterRef(SF)) {
714       // Copy regs to update first.
715       updateRegs(MI);
716       MI.setDesc(HII->get(TargetOpcode::COPY));
717       unsigned S = getRegState(ST);
718       while (MI.getNumOperands() > 1)
719         MI.removeOperand(MI.getNumOperands()-1);
720       MachineFunction &MF = *MI.getParent()->getParent();
721       MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub);
722       return true;
723     }
724   }
725 
726   // First, create the two invididual conditional transfers, and add each
727   // of them to the live intervals information. Do that first and then remove
728   // the old instruction from live intervals.
729   MachineInstr *TfrT =
730       genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false);
731   MachineInstr *TfrF =
732       genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true);
733   LIS->InsertMachineInstrInMaps(*TfrT);
734   LIS->InsertMachineInstrInMaps(*TfrF);
735 
736   // Will need to recalculate live intervals for all registers in MI.
737   updateRegs(MI);
738 
739   removeInstr(MI);
740   return true;
741 }
742 
743 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
744   if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
745     return false;
746   if (MI->hasUnmodeledSideEffects() || MI->mayStore())
747     return false;
748   // Reject instructions with multiple defs (e.g. post-increment loads).
749   bool HasDef = false;
750   for (auto &Op : MI->operands()) {
751     if (!Op.isReg() || !Op.isDef())
752       continue;
753     if (HasDef)
754       return false;
755     HasDef = true;
756   }
757   for (auto &Mo : MI->memoperands()) {
758     if (Mo->isVolatile() || Mo->isAtomic())
759       return false;
760   }
761   return true;
762 }
763 
764 /// Find the reaching definition for a predicated use of RD. The RD is used
765 /// under the conditions given by PredR and Cond, and this function will ignore
766 /// definitions that set RD under the opposite conditions.
767 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
768       MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
769   MachineBasicBlock &B = *UseIt->getParent();
770   MachineBasicBlock::iterator I = UseIt, S = B.begin();
771   if (I == S)
772     return nullptr;
773 
774   bool PredValid = true;
775   do {
776     --I;
777     MachineInstr *MI = &*I;
778     // Check if this instruction can be ignored, i.e. if it is predicated
779     // on the complementary condition.
780     if (PredValid && HII->isPredicated(*MI)) {
781       if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
782         continue;
783     }
784 
785     // Check the defs. If the PredR is defined, invalidate it. If RD is
786     // defined, return the instruction or 0, depending on the circumstances.
787     for (auto &Op : MI->operands()) {
788       if (!Op.isReg() || !Op.isDef())
789         continue;
790       RegisterRef RR = Op;
791       if (RR.Reg == PredR) {
792         PredValid = false;
793         continue;
794       }
795       if (RR.Reg != RD.Reg)
796         continue;
797       // If the "Reg" part agrees, there is still the subregister to check.
798       // If we are looking for %1:loreg, we can skip %1:hireg, but
799       // not %1 (w/o subregisters).
800       if (RR.Sub == RD.Sub)
801         return MI;
802       if (RR.Sub == 0 || RD.Sub == 0)
803         return nullptr;
804       // We have different subregisters, so we can continue looking.
805     }
806   } while (I != S);
807 
808   return nullptr;
809 }
810 
811 /// Check if the instruction MI can be safely moved over a set of instructions
812 /// whose side-effects (in terms of register defs and uses) are expressed in
813 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
814 /// that depend on the same predicate register to allow moving instructions
815 /// over instructions predicated on the opposite condition.
816 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
817                                         ReferenceMap &Uses) {
818   // In order to be able to safely move MI over instructions that define
819   // "Defs" and use "Uses", no def operand from MI can be defined or used
820   // and no use operand can be defined.
821   for (auto &Op : MI.operands()) {
822     if (!Op.isReg())
823       continue;
824     RegisterRef RR = Op;
825     // For physical register we would need to check register aliases, etc.
826     // and we don't want to bother with that. It would be of little value
827     // before the actual register rewriting (from virtual to physical).
828     if (!RR.Reg.isVirtual())
829       return false;
830     // No redefs for any operand.
831     if (isRefInMap(RR, Defs, Exec_Then))
832       return false;
833     // For defs, there cannot be uses.
834     if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
835       return false;
836   }
837   return true;
838 }
839 
840 /// Check if the instruction accessing memory (TheI) can be moved to the
841 /// location ToI.
842 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
843                                          bool IsDown) {
844   bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
845   if (!IsLoad && !IsStore)
846     return true;
847   if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
848     return true;
849   if (TheI.hasUnmodeledSideEffects())
850     return false;
851 
852   MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
853   MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
854   bool Ordered = TheI.hasOrderedMemoryRef();
855 
856   // Search for aliased memory reference in (StartI, EndI).
857   for (MachineInstr &MI : llvm::make_range(std::next(StartI), EndI)) {
858     if (MI.hasUnmodeledSideEffects())
859       return false;
860     bool L = MI.mayLoad(), S = MI.mayStore();
861     if (!L && !S)
862       continue;
863     if (Ordered && MI.hasOrderedMemoryRef())
864       return false;
865 
866     bool Conflict = (L && IsStore) || S;
867     if (Conflict)
868       return false;
869   }
870   return true;
871 }
872 
873 /// Generate a predicated version of MI (where the condition is given via
874 /// PredR and Cond) at the point indicated by Where.
875 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
876                                         MachineInstr &MI,
877                                         MachineBasicBlock::iterator Where,
878                                         const MachineOperand &PredOp, bool Cond,
879                                         std::set<Register> &UpdRegs) {
880   // The problem with updating live intervals is that we can move one def
881   // past another def. In particular, this can happen when moving an A2_tfrt
882   // over an A2_tfrf defining the same register. From the point of view of
883   // live intervals, these two instructions are two separate definitions,
884   // and each one starts another live segment. LiveIntervals's "handleMove"
885   // does not allow such moves, so we need to handle it ourselves. To avoid
886   // invalidating liveness data while we are using it, the move will be
887   // implemented in 4 steps: (1) add a clone of the instruction MI at the
888   // target location, (2) update liveness, (3) delete the old instruction,
889   // and (4) update liveness again.
890 
891   MachineBasicBlock &B = *MI.getParent();
892   DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
893   unsigned Opc = MI.getOpcode();
894   unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
895   MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
896   unsigned Ox = 0, NP = MI.getNumOperands();
897   // Skip all defs from MI first.
898   while (Ox < NP) {
899     MachineOperand &MO = MI.getOperand(Ox);
900     if (!MO.isReg() || !MO.isDef())
901       break;
902     Ox++;
903   }
904   // Add the new def, then the predicate register, then the rest of the
905   // operands.
906   MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
907   MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
908             PredOp.getSubReg());
909   while (Ox < NP) {
910     MachineOperand &MO = MI.getOperand(Ox);
911     if (!MO.isReg() || !MO.isImplicit())
912       MB.add(MO);
913     Ox++;
914   }
915   MB.cloneMemRefs(MI);
916 
917   MachineInstr *NewI = MB;
918   NewI->clearKillInfo();
919   LIS->InsertMachineInstrInMaps(*NewI);
920 
921   for (auto &Op : NewI->operands()) {
922     if (Op.isReg())
923       UpdRegs.insert(Op.getReg());
924   }
925 }
926 
927 /// In the range [First, Last], rename all references to the "old" register RO
928 /// to the "new" register RN, but only in instructions predicated on the given
929 /// condition.
930 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
931       unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
932       MachineBasicBlock::iterator Last) {
933   MachineBasicBlock::iterator End = std::next(Last);
934   for (MachineInstr &MI : llvm::make_range(First, End)) {
935     // Do not touch instructions that are not predicated, or are predicated
936     // on the opposite condition.
937     if (!HII->isPredicated(MI))
938       continue;
939     if (!MI.readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI)))
940       continue;
941 
942     for (auto &Op : MI.operands()) {
943       if (!Op.isReg() || RO != RegisterRef(Op))
944         continue;
945       Op.setReg(RN.Reg);
946       Op.setSubReg(RN.Sub);
947       // In practice, this isn't supposed to see any defs.
948       assert(!Op.isDef() && "Not expecting a def");
949     }
950   }
951 }
952 
953 /// For a given conditional copy, predicate the definition of the source of
954 /// the copy under the given condition (using the same predicate register as
955 /// the copy).
956 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
957                                       std::set<Register> &UpdRegs) {
958   // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
959   unsigned Opc = TfrI.getOpcode();
960   (void)Opc;
961   assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
962   LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
963                     << ": " << TfrI);
964 
965   MachineOperand &MD = TfrI.getOperand(0);
966   MachineOperand &MP = TfrI.getOperand(1);
967   MachineOperand &MS = TfrI.getOperand(2);
968   // The source operand should be a <kill>. This is not strictly necessary,
969   // but it makes things a lot simpler. Otherwise, we would need to rename
970   // some registers, which would complicate the transformation considerably.
971   if (!MS.isKill())
972     return false;
973   // Avoid predicating instructions that define a subregister if subregister
974   // liveness tracking is not enabled.
975   if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
976     return false;
977 
978   RegisterRef RT(MS);
979   Register PredR = MP.getReg();
980   MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
981   if (!DefI || !isPredicable(DefI))
982     return false;
983 
984   LLVM_DEBUG(dbgs() << "Source def: " << *DefI);
985 
986   // Collect the information about registers defined and used between the
987   // DefI and the TfrI.
988   // Map: reg -> bitmask of subregs
989   ReferenceMap Uses, Defs;
990   MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
991 
992   // Check if the predicate register is valid between DefI and TfrI.
993   // If it is, we can then ignore instructions predicated on the negated
994   // conditions when collecting def and use information.
995   bool PredValid = true;
996   for (MachineInstr &MI : llvm::make_range(std::next(DefIt), TfrIt)) {
997     if (!MI.modifiesRegister(PredR, nullptr))
998       continue;
999     PredValid = false;
1000     break;
1001   }
1002 
1003   for (MachineInstr &MI : llvm::make_range(std::next(DefIt), TfrIt)) {
1004     // If this instruction is predicated on the same register, it could
1005     // potentially be ignored.
1006     // By default assume that the instruction executes on the same condition
1007     // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
1008     unsigned Exec = Exec_Then | Exec_Else;
1009     if (PredValid && HII->isPredicated(MI) && MI.readsRegister(PredR))
1010       Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else;
1011 
1012     for (auto &Op : MI.operands()) {
1013       if (!Op.isReg())
1014         continue;
1015       // We don't want to deal with physical registers. The reason is that
1016       // they can be aliased with other physical registers. Aliased virtual
1017       // registers must share the same register number, and can only differ
1018       // in the subregisters, which we are keeping track of. Physical
1019       // registers ters no longer have subregisters---their super- and
1020       // subregisters are other physical registers, and we are not checking
1021       // that.
1022       RegisterRef RR = Op;
1023       if (!RR.Reg.isVirtual())
1024         return false;
1025 
1026       ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1027       if (Op.isDef() && Op.isUndef()) {
1028         assert(RR.Sub && "Expecting a subregister on <def,read-undef>");
1029         // If this is a <def,read-undef>, then it invalidates the non-written
1030         // part of the register. For the purpose of checking the validity of
1031         // the move, assume that it modifies the whole register.
1032         RR.Sub = 0;
1033       }
1034       addRefToMap(RR, Map, Exec);
1035     }
1036   }
1037 
1038   // The situation:
1039   //   RT = DefI
1040   //   ...
1041   //   RD = TfrI ..., RT
1042 
1043   // If the register-in-the-middle (RT) is used or redefined between
1044   // DefI and TfrI, we may not be able proceed with this transformation.
1045   // We can ignore a def that will not execute together with TfrI, and a
1046   // use that will. If there is such a use (that does execute together with
1047   // TfrI), we will not be able to move DefI down. If there is a use that
1048   // executed if TfrI's condition is false, then RT must be available
1049   // unconditionally (cannot be predicated).
1050   // Essentially, we need to be able to rename RT to RD in this segment.
1051   if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1052     return false;
1053   RegisterRef RD = MD;
1054   // If the predicate register is defined between DefI and TfrI, the only
1055   // potential thing to do would be to move the DefI down to TfrI, and then
1056   // predicate. The reaching def (DefI) must be movable down to the location
1057   // of the TfrI.
1058   // If the target register of the TfrI (RD) is not used or defined between
1059   // DefI and TfrI, consider moving TfrI up to DefI.
1060   bool CanUp =   canMoveOver(TfrI, Defs, Uses);
1061   bool CanDown = canMoveOver(*DefI, Defs, Uses);
1062   // The TfrI does not access memory, but DefI could. Check if it's safe
1063   // to move DefI down to TfrI.
1064   if (DefI->mayLoadOrStore()) {
1065     if (!canMoveMemTo(*DefI, TfrI, true))
1066       CanDown = false;
1067   }
1068 
1069   LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1070                     << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1071   MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1072   if (CanUp)
1073     predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
1074   else if (CanDown)
1075     predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
1076   else
1077     return false;
1078 
1079   if (RT != RD) {
1080     renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1081     UpdRegs.insert(RT.Reg);
1082   }
1083 
1084   removeInstr(TfrI);
1085   removeInstr(*DefI);
1086   return true;
1087 }
1088 
1089 /// Predicate all cases of conditional copies in the specified block.
1090 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
1091                                              std::set<Register> &UpdRegs) {
1092   bool Changed = false;
1093   for (MachineInstr &MI : llvm::make_early_inc_range(B)) {
1094     unsigned Opc = MI.getOpcode();
1095     if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1096       bool Done = predicate(MI, (Opc == Hexagon::A2_tfrt), UpdRegs);
1097       if (!Done) {
1098         // If we didn't predicate I, we may need to remove it in case it is
1099         // an "identity" copy, e.g.  %1 = A2_tfrt %2, %1.
1100         if (RegisterRef(MI.getOperand(0)) == RegisterRef(MI.getOperand(2))) {
1101           for (auto &Op : MI.operands()) {
1102             if (Op.isReg())
1103               UpdRegs.insert(Op.getReg());
1104           }
1105           removeInstr(MI);
1106         }
1107       }
1108       Changed |= Done;
1109     }
1110   }
1111   return Changed;
1112 }
1113 
1114 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1115   if (!RR.Reg.isVirtual())
1116     return false;
1117   const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1118   if (RC == &Hexagon::IntRegsRegClass) {
1119     BW = 32;
1120     return true;
1121   }
1122   if (RC == &Hexagon::DoubleRegsRegClass) {
1123     BW = (RR.Sub != 0) ? 32 : 64;
1124     return true;
1125   }
1126   return false;
1127 }
1128 
1129 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1130   for (LiveRange::Segment &LR : LI) {
1131     // Range must start at a register...
1132     if (!LR.start.isRegister())
1133       return false;
1134     // ...and end in a register or in a dead slot.
1135     if (!LR.end.isRegister() && !LR.end.isDead())
1136       return false;
1137   }
1138   return true;
1139 }
1140 
1141 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1142   if (CoaLimitActive) {
1143     if (CoaCounter >= CoaLimit)
1144       return false;
1145     CoaCounter++;
1146   }
1147   unsigned BW1, BW2;
1148   if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1149     return false;
1150   if (MRI->isLiveIn(R1.Reg))
1151     return false;
1152   if (MRI->isLiveIn(R2.Reg))
1153     return false;
1154 
1155   LiveInterval &L1 = LIS->getInterval(R1.Reg);
1156   LiveInterval &L2 = LIS->getInterval(R2.Reg);
1157   if (L2.empty())
1158     return false;
1159   if (L1.hasSubRanges() || L2.hasSubRanges())
1160     return false;
1161   bool Overlap = L1.overlaps(L2);
1162 
1163   LLVM_DEBUG(dbgs() << "compatible registers: ("
1164                     << (Overlap ? "overlap" : "disjoint") << ")\n  "
1165                     << printReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
1166                     << printReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
1167   if (R1.Sub || R2.Sub)
1168     return false;
1169   if (Overlap)
1170     return false;
1171 
1172   // Coalescing could have a negative impact on scheduling, so try to limit
1173   // to some reasonable extent. Only consider coalescing segments, when one
1174   // of them does not cross basic block boundaries.
1175   if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1176     return false;
1177 
1178   MRI->replaceRegWith(R2.Reg, R1.Reg);
1179 
1180   // Move all live segments from L2 to L1.
1181   using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>;
1182   ValueInfoMap VM;
1183   for (LiveRange::Segment &I : L2) {
1184     VNInfo *NewVN, *OldVN = I.valno;
1185     ValueInfoMap::iterator F = VM.find(OldVN);
1186     if (F == VM.end()) {
1187       NewVN = L1.getNextValue(I.valno->def, LIS->getVNInfoAllocator());
1188       VM.insert(std::make_pair(OldVN, NewVN));
1189     } else {
1190       NewVN = F->second;
1191     }
1192     L1.addSegment(LiveRange::Segment(I.start, I.end, NewVN));
1193   }
1194   while (!L2.empty())
1195     L2.removeSegment(*L2.begin());
1196   LIS->removeInterval(R2.Reg);
1197 
1198   updateKillFlags(R1.Reg);
1199   LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1200   L1.verify();
1201 
1202   return true;
1203 }
1204 
1205 /// Attempt to coalesce one of the source registers to a MUX instruction with
1206 /// the destination register. This could lead to having only one predicated
1207 /// instruction in the end instead of two.
1208 bool HexagonExpandCondsets::coalesceSegments(
1209     const SmallVectorImpl<MachineInstr *> &Condsets,
1210     std::set<Register> &UpdRegs) {
1211   SmallVector<MachineInstr*,16> TwoRegs;
1212   for (MachineInstr *MI : Condsets) {
1213     MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1214     if (!S1.isReg() && !S2.isReg())
1215       continue;
1216     TwoRegs.push_back(MI);
1217   }
1218 
1219   bool Changed = false;
1220   for (MachineInstr *CI : TwoRegs) {
1221     RegisterRef RD = CI->getOperand(0);
1222     RegisterRef RP = CI->getOperand(1);
1223     MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1224     bool Done = false;
1225     // Consider this case:
1226     //   %1 = instr1 ...
1227     //   %2 = instr2 ...
1228     //   %0 = C2_mux ..., %1, %2
1229     // If %0 was coalesced with %1, we could end up with the following
1230     // code:
1231     //   %0 = instr1 ...
1232     //   %2 = instr2 ...
1233     //   %0 = A2_tfrf ..., %2
1234     // which will later become:
1235     //   %0 = instr1 ...
1236     //   %0 = instr2_cNotPt ...
1237     // i.e. there will be an unconditional definition (instr1) of %0
1238     // followed by a conditional one. The output dependency was there before
1239     // and it unavoidable, but if instr1 is predicable, we will no longer be
1240     // able to predicate it here.
1241     // To avoid this scenario, don't coalesce the destination register with
1242     // a source register that is defined by a predicable instruction.
1243     if (S1.isReg()) {
1244       RegisterRef RS = S1;
1245       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1246       if (!RDef || !HII->isPredicable(*RDef)) {
1247         Done = coalesceRegisters(RD, RegisterRef(S1));
1248         if (Done) {
1249           UpdRegs.insert(RD.Reg);
1250           UpdRegs.insert(S1.getReg());
1251         }
1252       }
1253     }
1254     if (!Done && S2.isReg()) {
1255       RegisterRef RS = S2;
1256       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1257       if (!RDef || !HII->isPredicable(*RDef)) {
1258         Done = coalesceRegisters(RD, RegisterRef(S2));
1259         if (Done) {
1260           UpdRegs.insert(RD.Reg);
1261           UpdRegs.insert(S2.getReg());
1262         }
1263       }
1264     }
1265     Changed |= Done;
1266   }
1267   return Changed;
1268 }
1269 
1270 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1271   if (skipFunction(MF.getFunction()))
1272     return false;
1273 
1274   HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1275   TRI = MF.getSubtarget().getRegisterInfo();
1276   MDT = &getAnalysis<MachineDominatorTree>();
1277   LIS = &getAnalysis<LiveIntervals>();
1278   MRI = &MF.getRegInfo();
1279 
1280   LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
1281                         MF.getFunction().getParent()));
1282 
1283   bool Changed = false;
1284   std::set<Register> CoalUpd, PredUpd;
1285 
1286   SmallVector<MachineInstr*,16> Condsets;
1287   for (auto &B : MF) {
1288     for (auto &I : B) {
1289       if (isCondset(I))
1290         Condsets.push_back(&I);
1291     }
1292   }
1293 
1294   // Try to coalesce the target of a mux with one of its sources.
1295   // This could eliminate a register copy in some circumstances.
1296   Changed |= coalesceSegments(Condsets, CoalUpd);
1297 
1298   // Update kill flags on all source operands. This is done here because
1299   // at this moment (when expand-condsets runs), there are no kill flags
1300   // in the IR (they have been removed by live range analysis).
1301   // Updating them right before we split is the easiest, because splitting
1302   // adds definitions which would interfere with updating kills afterwards.
1303   std::set<Register> KillUpd;
1304   for (MachineInstr *MI : Condsets) {
1305     for (MachineOperand &Op : MI->operands()) {
1306       if (Op.isReg() && Op.isUse()) {
1307         if (!CoalUpd.count(Op.getReg()))
1308           KillUpd.insert(Op.getReg());
1309       }
1310     }
1311   }
1312   updateLiveness(KillUpd, false, true, false);
1313   LLVM_DEBUG(
1314       LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent()));
1315 
1316   // First, simply split all muxes into a pair of conditional transfers
1317   // and update the live intervals to reflect the new arrangement. The
1318   // goal is to update the kill flags, since predication will rely on
1319   // them.
1320   for (MachineInstr *MI : Condsets)
1321     Changed |= split(*MI, PredUpd);
1322   Condsets.clear(); // The contents of Condsets are invalid here anyway.
1323 
1324   // Do not update live ranges after splitting. Recalculation of live
1325   // intervals removes kill flags, which were preserved by splitting on
1326   // the source operands of condsets. These kill flags are needed by
1327   // predication, and after splitting they are difficult to recalculate
1328   // (because of predicated defs), so make sure they are left untouched.
1329   // Predication does not use live intervals.
1330   LLVM_DEBUG(
1331       LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent()));
1332 
1333   // Traverse all blocks and collapse predicable instructions feeding
1334   // conditional transfers into predicated instructions.
1335   // Walk over all the instructions again, so we may catch pre-existing
1336   // cases that were not created in the previous step.
1337   for (auto &B : MF)
1338     Changed |= predicateInBlock(B, PredUpd);
1339   LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n",
1340                         MF.getFunction().getParent()));
1341 
1342   PredUpd.insert(CoalUpd.begin(), CoalUpd.end());
1343   updateLiveness(PredUpd, true, true, true);
1344 
1345   if (Changed)
1346     distributeLiveIntervals(PredUpd);
1347 
1348   LLVM_DEBUG({
1349     if (Changed)
1350       LIS->print(dbgs() << "After expand-condsets\n",
1351                  MF.getFunction().getParent());
1352   });
1353 
1354   return Changed;
1355 }
1356 
1357 //===----------------------------------------------------------------------===//
1358 //                         Public Constructor Functions
1359 //===----------------------------------------------------------------------===//
1360 FunctionPass *llvm::createHexagonExpandCondsets() {
1361   return new HexagonExpandCondsets();
1362 }
1363