xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonConstPropagation.cpp (revision dc318a4ffabcbfa23bb56a33403aad36e6de30af)
1 //===- HexagonConstPropagation.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #define DEBUG_TYPE "hcp"
10 
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/PostOrderIterator.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <cstring>
41 #include <iterator>
42 #include <map>
43 #include <queue>
44 #include <set>
45 #include <utility>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 namespace {
51 
52   // Properties of a value that are tracked by the propagation.
53   // A property that is marked as present (i.e. bit is set) dentes that the
54   // value is known (proven) to have this property. Not all combinations
55   // of bits make sense, for example Zero and NonZero are mutually exclusive,
56   // but on the other hand, Zero implies Finite. In this case, whenever
57   // the Zero property is present, Finite should also be present.
58   class ConstantProperties {
59   public:
60     enum {
61       Unknown   = 0x0000,
62       Zero      = 0x0001,
63       NonZero   = 0x0002,
64       Finite    = 0x0004,
65       Infinity  = 0x0008,
66       NaN       = 0x0010,
67       SignedZero = 0x0020,
68       NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero),
69       PosOrZero       = 0x0100,
70       NegOrZero       = 0x0200,
71       SignProperties  = (PosOrZero|NegOrZero),
72       Everything      = (NumericProperties|SignProperties)
73     };
74 
75     // For a given constant, deduce the set of trackable properties that this
76     // constant has.
77     static uint32_t deduce(const Constant *C);
78   };
79 
80   // A representation of a register as it can appear in a MachineOperand,
81   // i.e. a pair register:subregister.
82 
83   // FIXME: Use TargetInstrInfo::RegSubRegPair. Also duplicated in
84   // HexagonGenPredicate
85   struct RegisterSubReg {
86     unsigned Reg, SubReg;
87 
88     explicit RegisterSubReg(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {}
89     explicit RegisterSubReg(const MachineOperand &MO)
90       : Reg(MO.getReg()), SubReg(MO.getSubReg()) {}
91 
92     void print(const TargetRegisterInfo *TRI = nullptr) const {
93       dbgs() << printReg(Reg, TRI, SubReg);
94     }
95 
96     bool operator== (const RegisterSubReg &R) const {
97       return (Reg == R.Reg) && (SubReg == R.SubReg);
98     }
99   };
100 
101   // Lattice cell, based on that was described in the W-Z paper on constant
102   // propagation.
103   // Latice cell will be allowed to hold multiple constant values. While
104   // multiple values would normally indicate "bottom", we can still derive
105   // some useful information from them. For example, comparison X > 0
106   // could be folded if all the values in the cell associated with X are
107   // positive.
108   class LatticeCell {
109   private:
110     enum { Normal, Top, Bottom };
111 
112     static const unsigned MaxCellSize = 4;
113 
114     unsigned Kind:2;
115     unsigned Size:3;
116     unsigned IsSpecial:1;
117     unsigned :0;
118 
119   public:
120     union {
121       uint32_t Properties;
122       const Constant *Value;
123       const Constant *Values[MaxCellSize];
124     };
125 
126     LatticeCell() : Kind(Top), Size(0), IsSpecial(false) {
127       for (unsigned i = 0; i < MaxCellSize; ++i)
128         Values[i] = nullptr;
129     }
130 
131     bool meet(const LatticeCell &L);
132     bool add(const Constant *C);
133     bool add(uint32_t Property);
134     uint32_t properties() const;
135     unsigned size() const { return Size; }
136 
137     LatticeCell(const LatticeCell &L) {
138       // This memcpy also copies Properties (when L.Size == 0).
139       uint32_t N =
140           L.IsSpecial ? sizeof L.Properties : L.Size * sizeof(const Constant *);
141       memcpy(Values, L.Values, N);
142       Kind = L.Kind;
143       Size = L.Size;
144       IsSpecial = L.IsSpecial;
145     }
146 
147     LatticeCell &operator=(const LatticeCell &L) {
148       if (this != &L) {
149         // This memcpy also copies Properties (when L.Size == 0).
150         uint32_t N = L.IsSpecial ? sizeof L.Properties
151                                  : L.Size * sizeof(const Constant *);
152         memcpy(Values, L.Values, N);
153         Kind = L.Kind;
154         Size = L.Size;
155         IsSpecial = L.IsSpecial;
156       }
157       return *this;
158     }
159 
160     bool isSingle() const { return size() == 1; }
161     bool isProperty() const { return IsSpecial; }
162     bool isTop() const { return Kind == Top; }
163     bool isBottom() const { return Kind == Bottom; }
164 
165     bool setBottom() {
166       bool Changed = (Kind != Bottom);
167       Kind = Bottom;
168       Size = 0;
169       IsSpecial = false;
170       return Changed;
171     }
172 
173     void print(raw_ostream &os) const;
174 
175   private:
176     void setProperty() {
177       IsSpecial = true;
178       Size = 0;
179       Kind = Normal;
180     }
181 
182     bool convertToProperty();
183   };
184 
185 #ifndef NDEBUG
186   raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) {
187     L.print(os);
188     return os;
189   }
190 #endif
191 
192   class MachineConstEvaluator;
193 
194   class MachineConstPropagator {
195   public:
196     MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) {
197       Bottom.setBottom();
198     }
199 
200     // Mapping: vreg -> cell
201     // The keys are registers _without_ subregisters. This won't allow
202     // definitions in the form of "vreg:subreg = ...". Such definitions
203     // would be questionable from the point of view of SSA, since the "vreg"
204     // could not be initialized in its entirety (specifically, an instruction
205     // defining the "other part" of "vreg" would also count as a definition
206     // of "vreg", which would violate the SSA).
207     // If a value of a pair vreg:subreg needs to be obtained, the cell for
208     // "vreg" needs to be looked up, and then the value of subregister "subreg"
209     // needs to be evaluated.
210     class CellMap {
211     public:
212       CellMap() {
213         assert(Top.isTop());
214         Bottom.setBottom();
215       }
216 
217       void clear() { Map.clear(); }
218 
219       bool has(unsigned R) const {
220         // All non-virtual registers are considered "bottom".
221         if (!Register::isVirtualRegister(R))
222           return true;
223         MapType::const_iterator F = Map.find(R);
224         return F != Map.end();
225       }
226 
227       const LatticeCell &get(unsigned R) const {
228         if (!Register::isVirtualRegister(R))
229           return Bottom;
230         MapType::const_iterator F = Map.find(R);
231         if (F != Map.end())
232           return F->second;
233         return Top;
234       }
235 
236       // Invalidates any const references.
237       void update(unsigned R, const LatticeCell &L) {
238         Map[R] = L;
239       }
240 
241       void print(raw_ostream &os, const TargetRegisterInfo &TRI) const;
242 
243     private:
244       using MapType = std::map<unsigned, LatticeCell>;
245 
246       MapType Map;
247       // To avoid creating "top" entries, return a const reference to
248       // this cell in "get". Also, have a "Bottom" cell to return from
249       // get when a value of a physical register is requested.
250       LatticeCell Top, Bottom;
251 
252     public:
253       using const_iterator = MapType::const_iterator;
254 
255       const_iterator begin() const { return Map.begin(); }
256       const_iterator end() const { return Map.end(); }
257     };
258 
259     bool run(MachineFunction &MF);
260 
261   private:
262     void visitPHI(const MachineInstr &PN);
263     void visitNonBranch(const MachineInstr &MI);
264     void visitBranchesFrom(const MachineInstr &BrI);
265     void visitUsesOf(unsigned R);
266     bool computeBlockSuccessors(const MachineBasicBlock *MB,
267           SetVector<const MachineBasicBlock*> &Targets);
268     void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To);
269 
270     void propagate(MachineFunction &MF);
271     bool rewrite(MachineFunction &MF);
272 
273     MachineRegisterInfo      *MRI = nullptr;
274     MachineConstEvaluator    &MCE;
275 
276     using CFGEdge = std::pair<unsigned, unsigned>;
277     using SetOfCFGEdge = std::set<CFGEdge>;
278     using SetOfInstr = std::set<const MachineInstr *>;
279     using QueueOfCFGEdge = std::queue<CFGEdge>;
280 
281     LatticeCell     Bottom;
282     CellMap         Cells;
283     SetOfCFGEdge    EdgeExec;
284     SetOfInstr      InstrExec;
285     QueueOfCFGEdge  FlowQ;
286   };
287 
288   // The "evaluator/rewriter" of machine instructions. This is an abstract
289   // base class that provides the interface that the propagator will use,
290   // as well as some helper functions that are target-independent.
291   class MachineConstEvaluator {
292   public:
293     MachineConstEvaluator(MachineFunction &Fn)
294       : TRI(*Fn.getSubtarget().getRegisterInfo()),
295         MF(Fn), CX(Fn.getFunction().getContext()) {}
296     virtual ~MachineConstEvaluator() = default;
297 
298     // The required interface:
299     // - A set of three "evaluate" functions. Each returns "true" if the
300     //       computation succeeded, "false" otherwise.
301     //   (1) Given an instruction MI, and the map with input values "Inputs",
302     //       compute the set of output values "Outputs". An example of when
303     //       the computation can "fail" is if MI is not an instruction that
304     //       is recognized by the evaluator.
305     //   (2) Given a register R (as reg:subreg), compute the cell that
306     //       corresponds to the "subreg" part of the given register.
307     //   (3) Given a branch instruction BrI, compute the set of target blocks.
308     //       If the branch can fall-through, add null (0) to the list of
309     //       possible targets.
310     // - A function "rewrite", that given the cell map after propagation,
311     //   could rewrite instruction MI in a more beneficial form. Return
312     //   "true" if a change has been made, "false" otherwise.
313     using CellMap = MachineConstPropagator::CellMap;
314     virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
315                           CellMap &Outputs) = 0;
316     virtual bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
317                           LatticeCell &Result) = 0;
318     virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
319                           SetVector<const MachineBasicBlock*> &Targets,
320                           bool &CanFallThru) = 0;
321     virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0;
322 
323     const TargetRegisterInfo &TRI;
324 
325   protected:
326     MachineFunction &MF;
327     LLVMContext     &CX;
328 
329     struct Comparison {
330       enum {
331         Unk = 0x00,
332         EQ  = 0x01,
333         NE  = 0x02,
334         L   = 0x04, // Less-than property.
335         G   = 0x08, // Greater-than property.
336         U   = 0x40, // Unsigned property.
337         LTs = L,
338         LEs = L | EQ,
339         GTs = G,
340         GEs = G | EQ,
341         LTu = L      | U,
342         LEu = L | EQ | U,
343         GTu = G      | U,
344         GEu = G | EQ | U
345       };
346 
347       static uint32_t negate(uint32_t Cmp) {
348         if (Cmp == EQ)
349           return NE;
350         if (Cmp == NE)
351           return EQ;
352         assert((Cmp & (L|G)) != (L|G));
353         return Cmp ^ (L|G);
354       }
355     };
356 
357     // Helper functions.
358 
359     bool getCell(const RegisterSubReg &R, const CellMap &Inputs, LatticeCell &RC);
360     bool constToInt(const Constant *C, APInt &Val) const;
361     bool constToFloat(const Constant *C, APFloat &Val) const;
362     const ConstantInt *intToConst(const APInt &Val) const;
363 
364     // Compares.
365     bool evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, const RegisterSubReg &R2,
366           const CellMap &Inputs, bool &Result);
367     bool evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, const APInt &A2,
368           const CellMap &Inputs, bool &Result);
369     bool evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, uint64_t Props2,
370           const CellMap &Inputs, bool &Result);
371     bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2,
372           bool &Result);
373     bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2,
374           bool &Result);
375     bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2,
376           bool &Result);
377 
378     bool evaluateCOPY(const RegisterSubReg &R1, const CellMap &Inputs,
379           LatticeCell &Result);
380 
381     // Logical operations.
382     bool evaluateANDrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
383           const CellMap &Inputs, LatticeCell &Result);
384     bool evaluateANDri(const RegisterSubReg &R1, const APInt &A2,
385           const CellMap &Inputs, LatticeCell &Result);
386     bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result);
387     bool evaluateORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
388           const CellMap &Inputs, LatticeCell &Result);
389     bool evaluateORri(const RegisterSubReg &R1, const APInt &A2,
390           const CellMap &Inputs, LatticeCell &Result);
391     bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result);
392     bool evaluateXORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
393           const CellMap &Inputs, LatticeCell &Result);
394     bool evaluateXORri(const RegisterSubReg &R1, const APInt &A2,
395           const CellMap &Inputs, LatticeCell &Result);
396     bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result);
397 
398     // Extensions.
399     bool evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
400           const CellMap &Inputs, LatticeCell &Result);
401     bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits,
402           APInt &Result);
403     bool evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
404           const CellMap &Inputs, LatticeCell &Result);
405     bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits,
406           APInt &Result);
407 
408     // Leading/trailing bits.
409     bool evaluateCLBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
410           const CellMap &Inputs, LatticeCell &Result);
411     bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
412     bool evaluateCTBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
413           const CellMap &Inputs, LatticeCell &Result);
414     bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
415 
416     // Bitfield extract.
417     bool evaluateEXTRACTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
418           unsigned Offset, bool Signed, const CellMap &Inputs,
419           LatticeCell &Result);
420     bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset,
421           bool Signed, APInt &Result);
422     // Vector operations.
423     bool evaluateSplatr(const RegisterSubReg &R1, unsigned Bits, unsigned Count,
424           const CellMap &Inputs, LatticeCell &Result);
425     bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count,
426           APInt &Result);
427   };
428 
429 } // end anonymous namespace
430 
431 uint32_t ConstantProperties::deduce(const Constant *C) {
432   if (isa<ConstantInt>(C)) {
433     const ConstantInt *CI = cast<ConstantInt>(C);
434     if (CI->isZero())
435       return Zero | PosOrZero | NegOrZero | Finite;
436     uint32_t Props = (NonZero | Finite);
437     if (CI->isNegative())
438       return Props | NegOrZero;
439     return Props | PosOrZero;
440   }
441 
442   if (isa<ConstantFP>(C)) {
443     const ConstantFP *CF = cast<ConstantFP>(C);
444     uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero)
445                                       : PosOrZero;
446     if (CF->isZero())
447       return (Props & ~NumericProperties) | (Zero|Finite);
448     Props = (Props & ~NumericProperties) | NonZero;
449     if (CF->isNaN())
450       return (Props & ~NumericProperties) | NaN;
451     const APFloat &Val = CF->getValueAPF();
452     if (Val.isInfinity())
453       return (Props & ~NumericProperties) | Infinity;
454     Props |= Finite;
455     return Props;
456   }
457 
458   return Unknown;
459 }
460 
461 // Convert a cell from a set of specific values to a cell that tracks
462 // properties.
463 bool LatticeCell::convertToProperty() {
464   if (isProperty())
465     return false;
466   // Corner case: converting a fresh (top) cell to "special".
467   // This can happen, when adding a property to a top cell.
468   uint32_t Everything = ConstantProperties::Everything;
469   uint32_t Ps = !isTop() ? properties()
470                          : Everything;
471   if (Ps != ConstantProperties::Unknown) {
472     Properties = Ps;
473     setProperty();
474   } else {
475     setBottom();
476   }
477   return true;
478 }
479 
480 #ifndef NDEBUG
481 void LatticeCell::print(raw_ostream &os) const {
482   if (isProperty()) {
483     os << "{ ";
484     uint32_t Ps = properties();
485     if (Ps & ConstantProperties::Zero)
486       os << "zero ";
487     if (Ps & ConstantProperties::NonZero)
488       os << "nonzero ";
489     if (Ps & ConstantProperties::Finite)
490       os << "finite ";
491     if (Ps & ConstantProperties::Infinity)
492       os << "infinity ";
493     if (Ps & ConstantProperties::NaN)
494       os << "nan ";
495     if (Ps & ConstantProperties::PosOrZero)
496       os << "poz ";
497     if (Ps & ConstantProperties::NegOrZero)
498       os << "nez ";
499     os << '}';
500     return;
501   }
502 
503   os << "{ ";
504   if (isBottom()) {
505     os << "bottom";
506   } else if (isTop()) {
507     os << "top";
508   } else {
509     for (unsigned i = 0; i < size(); ++i) {
510       const Constant *C = Values[i];
511       if (i != 0)
512         os << ", ";
513       C->print(os);
514     }
515   }
516   os << " }";
517 }
518 #endif
519 
520 // "Meet" operation on two cells. This is the key of the propagation
521 // algorithm.
522 bool LatticeCell::meet(const LatticeCell &L) {
523   bool Changed = false;
524   if (L.isBottom())
525     Changed = setBottom();
526   if (isBottom() || L.isTop())
527     return Changed;
528   if (isTop()) {
529     *this = L;
530     // L can be neither Top nor Bottom, so *this must have changed.
531     return true;
532   }
533 
534   // Top/bottom cases covered. Need to integrate L's set into ours.
535   if (L.isProperty())
536     return add(L.properties());
537   for (unsigned i = 0; i < L.size(); ++i) {
538     const Constant *LC = L.Values[i];
539     Changed |= add(LC);
540   }
541   return Changed;
542 }
543 
544 // Add a new constant to the cell. This is actually where the cell update
545 // happens. If a cell has room for more constants, the new constant is added.
546 // Otherwise, the cell is converted to a "property" cell (i.e. a cell that
547 // will track properties of the associated values, and not the values
548 // themselves. Care is taken to handle special cases, like "bottom", etc.
549 bool LatticeCell::add(const Constant *LC) {
550   assert(LC);
551   if (isBottom())
552     return false;
553 
554   if (!isProperty()) {
555     // Cell is not special. Try to add the constant here first,
556     // if there is room.
557     unsigned Index = 0;
558     while (Index < Size) {
559       const Constant *C = Values[Index];
560       // If the constant is already here, no change is needed.
561       if (C == LC)
562         return false;
563       Index++;
564     }
565     if (Index < MaxCellSize) {
566       Values[Index] = LC;
567       Kind = Normal;
568       Size++;
569       return true;
570     }
571   }
572 
573   bool Changed = false;
574 
575   // This cell is special, or is not special, but is full. After this
576   // it will be special.
577   Changed = convertToProperty();
578   uint32_t Ps = properties();
579   uint32_t NewPs = Ps & ConstantProperties::deduce(LC);
580   if (NewPs == ConstantProperties::Unknown) {
581     setBottom();
582     return true;
583   }
584   if (Ps != NewPs) {
585     Properties = NewPs;
586     Changed = true;
587   }
588   return Changed;
589 }
590 
591 // Add a property to the cell. This will force the cell to become a property-
592 // tracking cell.
593 bool LatticeCell::add(uint32_t Property) {
594   bool Changed = convertToProperty();
595   uint32_t Ps = properties();
596   if (Ps == (Ps & Property))
597     return Changed;
598   Properties = Property & Ps;
599   return true;
600 }
601 
602 // Return the properties of the values in the cell. This is valid for any
603 // cell, and does not alter the cell itself.
604 uint32_t LatticeCell::properties() const {
605   if (isProperty())
606     return Properties;
607   assert(!isTop() && "Should not call this for a top cell");
608   if (isBottom())
609     return ConstantProperties::Unknown;
610 
611   assert(size() > 0 && "Empty cell");
612   uint32_t Ps = ConstantProperties::deduce(Values[0]);
613   for (unsigned i = 1; i < size(); ++i) {
614     if (Ps == ConstantProperties::Unknown)
615       break;
616     Ps &= ConstantProperties::deduce(Values[i]);
617   }
618   return Ps;
619 }
620 
621 #ifndef NDEBUG
622 void MachineConstPropagator::CellMap::print(raw_ostream &os,
623       const TargetRegisterInfo &TRI) const {
624   for (auto &I : Map)
625     dbgs() << "  " << printReg(I.first, &TRI) << " -> " << I.second << '\n';
626 }
627 #endif
628 
629 void MachineConstPropagator::visitPHI(const MachineInstr &PN) {
630   const MachineBasicBlock *MB = PN.getParent();
631   unsigned MBN = MB->getNumber();
632   LLVM_DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN);
633 
634   const MachineOperand &MD = PN.getOperand(0);
635   RegisterSubReg DefR(MD);
636   assert(Register::isVirtualRegister(DefR.Reg));
637 
638   bool Changed = false;
639 
640   // If the def has a sub-register, set the corresponding cell to "bottom".
641   if (DefR.SubReg) {
642 Bottomize:
643     const LatticeCell &T = Cells.get(DefR.Reg);
644     Changed = !T.isBottom();
645     Cells.update(DefR.Reg, Bottom);
646     if (Changed)
647       visitUsesOf(DefR.Reg);
648     return;
649   }
650 
651   LatticeCell DefC = Cells.get(DefR.Reg);
652 
653   for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) {
654     const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB();
655     unsigned PBN = PB->getNumber();
656     if (!EdgeExec.count(CFGEdge(PBN, MBN))) {
657       LLVM_DEBUG(dbgs() << "  edge " << printMBBReference(*PB) << "->"
658                         << printMBBReference(*MB) << " not executable\n");
659       continue;
660     }
661     const MachineOperand &SO = PN.getOperand(i);
662     RegisterSubReg UseR(SO);
663     // If the input is not a virtual register, we don't really know what
664     // value it holds.
665     if (!Register::isVirtualRegister(UseR.Reg))
666       goto Bottomize;
667     // If there is no cell for an input register, it means top.
668     if (!Cells.has(UseR.Reg))
669       continue;
670 
671     LatticeCell SrcC;
672     bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC);
673     LLVM_DEBUG(dbgs() << "  edge from " << printMBBReference(*PB) << ": "
674                       << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC
675                       << '\n');
676     Changed |= Eval ? DefC.meet(SrcC)
677                     : DefC.setBottom();
678     Cells.update(DefR.Reg, DefC);
679     if (DefC.isBottom())
680       break;
681   }
682   if (Changed)
683     visitUsesOf(DefR.Reg);
684 }
685 
686 void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) {
687   LLVM_DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent())
688                     << "): " << MI);
689   CellMap Outputs;
690   bool Eval = MCE.evaluate(MI, Cells, Outputs);
691   LLVM_DEBUG({
692     if (Eval) {
693       dbgs() << "  outputs:";
694       for (auto &I : Outputs)
695         dbgs() << ' ' << I.second;
696       dbgs() << '\n';
697     }
698   });
699 
700   // Update outputs. If the value was not computed, set all the
701   // def cells to bottom.
702   for (const MachineOperand &MO : MI.operands()) {
703     if (!MO.isReg() || !MO.isDef())
704       continue;
705     RegisterSubReg DefR(MO);
706     // Only track virtual registers.
707     if (!Register::isVirtualRegister(DefR.Reg))
708       continue;
709     bool Changed = false;
710     // If the evaluation failed, set cells for all output registers to bottom.
711     if (!Eval) {
712       const LatticeCell &T = Cells.get(DefR.Reg);
713       Changed = !T.isBottom();
714       Cells.update(DefR.Reg, Bottom);
715     } else {
716       // Find the corresponding cell in the computed outputs.
717       // If it's not there, go on to the next def.
718       if (!Outputs.has(DefR.Reg))
719         continue;
720       LatticeCell RC = Cells.get(DefR.Reg);
721       Changed = RC.meet(Outputs.get(DefR.Reg));
722       Cells.update(DefR.Reg, RC);
723     }
724     if (Changed)
725       visitUsesOf(DefR.Reg);
726   }
727 }
728 
729 // Starting at a given branch, visit remaining branches in the block.
730 // Traverse over the subsequent branches for as long as the preceding one
731 // can fall through. Add all the possible targets to the flow work queue,
732 // including the potential fall-through to the layout-successor block.
733 void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) {
734   const MachineBasicBlock &B = *BrI.getParent();
735   unsigned MBN = B.getNumber();
736   MachineBasicBlock::const_iterator It = BrI.getIterator();
737   MachineBasicBlock::const_iterator End = B.end();
738 
739   SetVector<const MachineBasicBlock*> Targets;
740   bool EvalOk = true, FallsThru = true;
741   while (It != End) {
742     const MachineInstr &MI = *It;
743     InstrExec.insert(&MI);
744     LLVM_DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "("
745                       << printMBBReference(B) << "): " << MI);
746     // Do not evaluate subsequent branches if the evaluation of any of the
747     // previous branches failed. Keep iterating over the branches only
748     // to mark them as executable.
749     EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru);
750     if (!EvalOk)
751       FallsThru = true;
752     if (!FallsThru)
753       break;
754     ++It;
755   }
756 
757   if (B.mayHaveInlineAsmBr())
758     EvalOk = false;
759 
760   if (EvalOk) {
761     // Need to add all CFG successors that lead to EH landing pads.
762     // There won't be explicit branches to these blocks, but they must
763     // be processed.
764     for (const MachineBasicBlock *SB : B.successors()) {
765       if (SB->isEHPad())
766         Targets.insert(SB);
767     }
768     if (FallsThru) {
769       const MachineFunction &MF = *B.getParent();
770       MachineFunction::const_iterator BI = B.getIterator();
771       MachineFunction::const_iterator Next = std::next(BI);
772       if (Next != MF.end())
773         Targets.insert(&*Next);
774     }
775   } else {
776     // If the evaluation of the branches failed, make "Targets" to be the
777     // set of all successors of the block from the CFG.
778     // If the evaluation succeeded for all visited branches, then if the
779     // last one set "FallsThru", then add an edge to the layout successor
780     // to the targets.
781     Targets.clear();
782     LLVM_DEBUG(dbgs() << "  failed to evaluate a branch...adding all CFG "
783                          "successors\n");
784     for (const MachineBasicBlock *SB : B.successors())
785       Targets.insert(SB);
786   }
787 
788   for (const MachineBasicBlock *TB : Targets) {
789     unsigned TBN = TB->getNumber();
790     LLVM_DEBUG(dbgs() << "  pushing edge " << printMBBReference(B) << " -> "
791                       << printMBBReference(*TB) << "\n");
792     FlowQ.push(CFGEdge(MBN, TBN));
793   }
794 }
795 
796 void MachineConstPropagator::visitUsesOf(unsigned Reg) {
797   LLVM_DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI)
798                     << Cells.get(Reg) << '\n');
799   for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
800     // Do not process non-executable instructions. They can become exceutable
801     // later (via a flow-edge in the work queue). In such case, the instruc-
802     // tion will be visited at that time.
803     if (!InstrExec.count(&MI))
804       continue;
805     if (MI.isPHI())
806       visitPHI(MI);
807     else if (!MI.isBranch())
808       visitNonBranch(MI);
809     else
810       visitBranchesFrom(MI);
811   }
812 }
813 
814 bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB,
815       SetVector<const MachineBasicBlock*> &Targets) {
816   Targets.clear();
817 
818   MachineBasicBlock::const_iterator FirstBr = MB->end();
819   for (const MachineInstr &MI : *MB) {
820     if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
821       return false;
822     if (MI.isDebugInstr())
823       continue;
824     if (MI.isBranch()) {
825       FirstBr = MI.getIterator();
826       break;
827     }
828   }
829 
830   MachineBasicBlock::const_iterator End = MB->end();
831 
832   bool DoNext = true;
833   for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) {
834     const MachineInstr &MI = *I;
835     // Can there be debug instructions between branches?
836     if (MI.isDebugInstr())
837       continue;
838     if (!InstrExec.count(&MI))
839       continue;
840     bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext);
841     if (!Eval)
842       return false;
843     if (!DoNext)
844       break;
845   }
846   // If the last branch could fall-through, add block's layout successor.
847   if (DoNext) {
848     MachineFunction::const_iterator BI = MB->getIterator();
849     MachineFunction::const_iterator NextI = std::next(BI);
850     if (NextI != MB->getParent()->end())
851       Targets.insert(&*NextI);
852   }
853 
854   // Add all the EH landing pads.
855   for (const MachineBasicBlock *SB : MB->successors())
856     if (SB->isEHPad())
857       Targets.insert(SB);
858 
859   return true;
860 }
861 
862 void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From,
863       MachineBasicBlock *To) {
864   // First, remove the CFG successor/predecessor information.
865   From->removeSuccessor(To);
866   // Remove all corresponding PHI operands in the To block.
867   for (auto I = To->begin(), E = To->getFirstNonPHI(); I != E; ++I) {
868     MachineInstr *PN = &*I;
869     // reg0 = PHI reg1, bb2, reg3, bb4, ...
870     int N = PN->getNumOperands()-2;
871     while (N > 0) {
872       if (PN->getOperand(N+1).getMBB() == From) {
873         PN->RemoveOperand(N+1);
874         PN->RemoveOperand(N);
875       }
876       N -= 2;
877     }
878   }
879 }
880 
881 void MachineConstPropagator::propagate(MachineFunction &MF) {
882   MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF);
883   unsigned EntryNum = Entry->getNumber();
884 
885   // Start with a fake edge, just to process the entry node.
886   FlowQ.push(CFGEdge(EntryNum, EntryNum));
887 
888   while (!FlowQ.empty()) {
889     CFGEdge Edge = FlowQ.front();
890     FlowQ.pop();
891 
892     LLVM_DEBUG(
893         dbgs() << "Picked edge "
894                << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->"
895                << printMBBReference(*MF.getBlockNumbered(Edge.second)) << '\n');
896     if (Edge.first != EntryNum)
897       if (EdgeExec.count(Edge))
898         continue;
899     EdgeExec.insert(Edge);
900     MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second);
901 
902     // Process the block in three stages:
903     // - visit all PHI nodes,
904     // - visit all non-branch instructions,
905     // - visit block branches.
906     MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end();
907 
908     // Visit PHI nodes in the successor block.
909     while (It != End && It->isPHI()) {
910       InstrExec.insert(&*It);
911       visitPHI(*It);
912       ++It;
913     }
914 
915     // If the successor block just became executable, visit all instructions.
916     // To see if this is the first time we're visiting it, check the first
917     // non-debug instruction to see if it is executable.
918     while (It != End && It->isDebugInstr())
919       ++It;
920     assert(It == End || !It->isPHI());
921     // If this block has been visited, go on to the next one.
922     if (It != End && InstrExec.count(&*It))
923       continue;
924     // For now, scan all non-branch instructions. Branches require different
925     // processing.
926     while (It != End && !It->isBranch()) {
927       if (!It->isDebugInstr()) {
928         InstrExec.insert(&*It);
929         visitNonBranch(*It);
930       }
931       ++It;
932     }
933 
934     // Time to process the end of the block. This is different from
935     // processing regular (non-branch) instructions, because there can
936     // be multiple branches in a block, and they can cause the block to
937     // terminate early.
938     if (It != End) {
939       visitBranchesFrom(*It);
940     } else {
941       // If the block didn't have a branch, add all successor edges to the
942       // work queue. (There should really be only one successor in such case.)
943       unsigned SBN = SB->getNumber();
944       for (const MachineBasicBlock *SSB : SB->successors())
945         FlowQ.push(CFGEdge(SBN, SSB->getNumber()));
946     }
947   } // while (FlowQ)
948 
949   LLVM_DEBUG({
950     dbgs() << "Cells after propagation:\n";
951     Cells.print(dbgs(), MCE.TRI);
952     dbgs() << "Dead CFG edges:\n";
953     for (const MachineBasicBlock &B : MF) {
954       unsigned BN = B.getNumber();
955       for (const MachineBasicBlock *SB : B.successors()) {
956         unsigned SN = SB->getNumber();
957         if (!EdgeExec.count(CFGEdge(BN, SN)))
958           dbgs() << "  " << printMBBReference(B) << " -> "
959                  << printMBBReference(*SB) << '\n';
960       }
961     }
962   });
963 }
964 
965 bool MachineConstPropagator::rewrite(MachineFunction &MF) {
966   bool Changed = false;
967   // Rewrite all instructions based on the collected cell information.
968   //
969   // Traverse the instructions in a post-order, so that rewriting an
970   // instruction can make changes "downstream" in terms of control-flow
971   // without affecting the rewriting process. (We should not change
972   // instructions that have not yet been visited by the rewriter.)
973   // The reason for this is that the rewriter can introduce new vregs,
974   // and replace uses of old vregs (which had corresponding cells
975   // computed during propagation) with these new vregs (which at this
976   // point would not have any cells, and would appear to be "top").
977   // If an attempt was made to evaluate an instruction with a fresh
978   // "top" vreg, it would cause an error (abend) in the evaluator.
979 
980   // Collect the post-order-traversal block ordering. The subsequent
981   // traversal/rewrite will update block successors, so it's safer
982   // if the visiting order it computed ahead of time.
983   std::vector<MachineBasicBlock*> POT;
984   for (MachineBasicBlock *B : post_order(&MF))
985     if (!B->empty())
986       POT.push_back(B);
987 
988   for (MachineBasicBlock *B : POT) {
989     // Walk the block backwards (which usually begin with the branches).
990     // If any branch is rewritten, we may need to update the successor
991     // information for this block. Unless the block's successors can be
992     // precisely determined (which may not be the case for indirect
993     // branches), we cannot modify any branch.
994 
995     // Compute the successor information.
996     SetVector<const MachineBasicBlock*> Targets;
997     bool HaveTargets = computeBlockSuccessors(B, Targets);
998     // Rewrite the executable instructions. Skip branches if we don't
999     // have block successor information.
1000     for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
1001       MachineInstr &MI = *I;
1002       if (InstrExec.count(&MI)) {
1003         if (MI.isBranch() && !HaveTargets)
1004           continue;
1005         Changed |= MCE.rewrite(MI, Cells);
1006       }
1007     }
1008     // The rewriting could rewrite PHI nodes to non-PHI nodes, causing
1009     // regular instructions to appear in between PHI nodes. Bring all
1010     // the PHI nodes to the beginning of the block.
1011     for (auto I = B->begin(), E = B->end(); I != E; ++I) {
1012       if (I->isPHI())
1013         continue;
1014       // I is not PHI. Find the next PHI node P.
1015       auto P = I;
1016       while (++P != E)
1017         if (P->isPHI())
1018           break;
1019       // Not found.
1020       if (P == E)
1021         break;
1022       // Splice P right before I.
1023       B->splice(I, B, P);
1024       // Reset I to point at the just spliced PHI node.
1025       --I;
1026     }
1027     // Update the block successor information: remove unnecessary successors.
1028     if (HaveTargets) {
1029       SmallVector<MachineBasicBlock*,2> ToRemove;
1030       for (MachineBasicBlock *SB : B->successors()) {
1031         if (!Targets.count(SB))
1032           ToRemove.push_back(const_cast<MachineBasicBlock*>(SB));
1033         Targets.remove(SB);
1034       }
1035       for (unsigned i = 0, n = ToRemove.size(); i < n; ++i)
1036         removeCFGEdge(B, ToRemove[i]);
1037       // If there are any blocks left in the computed targets, it means that
1038       // we think that the block could go somewhere, but the CFG does not.
1039       // This could legitimately happen in blocks that have non-returning
1040       // calls---we would think that the execution can continue, but the
1041       // CFG will not have a successor edge.
1042     }
1043   }
1044   // Need to do some final post-processing.
1045   // If a branch was not executable, it will not get rewritten, but should
1046   // be removed (or replaced with something equivalent to a A2_nop). We can't
1047   // erase instructions during rewriting, so this needs to be delayed until
1048   // now.
1049   for (MachineBasicBlock &B : MF) {
1050     MachineBasicBlock::iterator I = B.begin(), E = B.end();
1051     while (I != E) {
1052       auto Next = std::next(I);
1053       if (I->isBranch() && !InstrExec.count(&*I))
1054         B.erase(I);
1055       I = Next;
1056     }
1057   }
1058   return Changed;
1059 }
1060 
1061 // This is the constant propagation algorithm as described by Wegman-Zadeck.
1062 // Most of the terminology comes from there.
1063 bool MachineConstPropagator::run(MachineFunction &MF) {
1064   LLVM_DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr));
1065 
1066   MRI = &MF.getRegInfo();
1067 
1068   Cells.clear();
1069   EdgeExec.clear();
1070   InstrExec.clear();
1071   assert(FlowQ.empty());
1072 
1073   propagate(MF);
1074   bool Changed = rewrite(MF);
1075 
1076   LLVM_DEBUG({
1077     dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n";
1078     if (Changed)
1079       MF.print(dbgs(), nullptr);
1080   });
1081   return Changed;
1082 }
1083 
1084 // --------------------------------------------------------------------
1085 // Machine const evaluator.
1086 
1087 bool MachineConstEvaluator::getCell(const RegisterSubReg &R, const CellMap &Inputs,
1088       LatticeCell &RC) {
1089   if (!Register::isVirtualRegister(R.Reg))
1090     return false;
1091   const LatticeCell &L = Inputs.get(R.Reg);
1092   if (!R.SubReg) {
1093     RC = L;
1094     return !RC.isBottom();
1095   }
1096   bool Eval = evaluate(R, L, RC);
1097   return Eval && !RC.isBottom();
1098 }
1099 
1100 bool MachineConstEvaluator::constToInt(const Constant *C,
1101       APInt &Val) const {
1102   const ConstantInt *CI = dyn_cast<ConstantInt>(C);
1103   if (!CI)
1104     return false;
1105   Val = CI->getValue();
1106   return true;
1107 }
1108 
1109 const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const {
1110   return ConstantInt::get(CX, Val);
1111 }
1112 
1113 bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1,
1114       const RegisterSubReg &R2, const CellMap &Inputs, bool &Result) {
1115   assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1116   LatticeCell LS1, LS2;
1117   if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
1118     return false;
1119 
1120   bool IsProp1 = LS1.isProperty();
1121   bool IsProp2 = LS2.isProperty();
1122   if (IsProp1) {
1123     uint32_t Prop1 = LS1.properties();
1124     if (IsProp2)
1125       return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result);
1126     uint32_t NegCmp = Comparison::negate(Cmp);
1127     return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result);
1128   }
1129   if (IsProp2) {
1130     uint32_t Prop2 = LS2.properties();
1131     return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result);
1132   }
1133 
1134   APInt A;
1135   bool IsTrue = true, IsFalse = true;
1136   for (unsigned i = 0; i < LS2.size(); ++i) {
1137     bool Res;
1138     bool Computed = constToInt(LS2.Values[i], A) &&
1139                     evaluateCMPri(Cmp, R1, A, Inputs, Res);
1140     if (!Computed)
1141       return false;
1142     IsTrue &= Res;
1143     IsFalse &= !Res;
1144   }
1145   assert(!IsTrue || !IsFalse);
1146   // The actual logical value of the comparison is same as IsTrue.
1147   Result = IsTrue;
1148   // Return true if the result was proven to be true or proven to be false.
1149   return IsTrue || IsFalse;
1150 }
1151 
1152 bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1,
1153       const APInt &A2, const CellMap &Inputs, bool &Result) {
1154   assert(Inputs.has(R1.Reg));
1155   LatticeCell LS;
1156   if (!getCell(R1, Inputs, LS))
1157     return false;
1158   if (LS.isProperty())
1159     return evaluateCMPpi(Cmp, LS.properties(), A2, Result);
1160 
1161   APInt A;
1162   bool IsTrue = true, IsFalse = true;
1163   for (unsigned i = 0; i < LS.size(); ++i) {
1164     bool Res;
1165     bool Computed = constToInt(LS.Values[i], A) &&
1166                     evaluateCMPii(Cmp, A, A2, Res);
1167     if (!Computed)
1168       return false;
1169     IsTrue &= Res;
1170     IsFalse &= !Res;
1171   }
1172   assert(!IsTrue || !IsFalse);
1173   // The actual logical value of the comparison is same as IsTrue.
1174   Result = IsTrue;
1175   // Return true if the result was proven to be true or proven to be false.
1176   return IsTrue || IsFalse;
1177 }
1178 
1179 bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1,
1180       uint64_t Props2, const CellMap &Inputs, bool &Result) {
1181   assert(Inputs.has(R1.Reg));
1182   LatticeCell LS;
1183   if (!getCell(R1, Inputs, LS))
1184     return false;
1185   if (LS.isProperty())
1186     return evaluateCMPpp(Cmp, LS.properties(), Props2, Result);
1187 
1188   APInt A;
1189   uint32_t NegCmp = Comparison::negate(Cmp);
1190   bool IsTrue = true, IsFalse = true;
1191   for (unsigned i = 0; i < LS.size(); ++i) {
1192     bool Res;
1193     bool Computed = constToInt(LS.Values[i], A) &&
1194                     evaluateCMPpi(NegCmp, Props2, A, Res);
1195     if (!Computed)
1196       return false;
1197     IsTrue &= Res;
1198     IsFalse &= !Res;
1199   }
1200   assert(!IsTrue || !IsFalse);
1201   Result = IsTrue;
1202   return IsTrue || IsFalse;
1203 }
1204 
1205 bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1,
1206       const APInt &A2, bool &Result) {
1207   // NE is a special kind of comparison (not composed of smaller properties).
1208   if (Cmp == Comparison::NE) {
1209     Result = !APInt::isSameValue(A1, A2);
1210     return true;
1211   }
1212   if (Cmp == Comparison::EQ) {
1213     Result = APInt::isSameValue(A1, A2);
1214     return true;
1215   }
1216   if (Cmp & Comparison::EQ) {
1217     if (APInt::isSameValue(A1, A2))
1218       return (Result = true);
1219   }
1220   assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison");
1221   Result = false;
1222 
1223   unsigned W1 = A1.getBitWidth();
1224   unsigned W2 = A2.getBitWidth();
1225   unsigned MaxW = (W1 >= W2) ? W1 : W2;
1226   if (Cmp & Comparison::U) {
1227     const APInt Zx1 = A1.zextOrSelf(MaxW);
1228     const APInt Zx2 = A2.zextOrSelf(MaxW);
1229     if (Cmp & Comparison::L)
1230       Result = Zx1.ult(Zx2);
1231     else if (Cmp & Comparison::G)
1232       Result = Zx2.ult(Zx1);
1233     return true;
1234   }
1235 
1236   // Signed comparison.
1237   const APInt Sx1 = A1.sextOrSelf(MaxW);
1238   const APInt Sx2 = A2.sextOrSelf(MaxW);
1239   if (Cmp & Comparison::L)
1240     Result = Sx1.slt(Sx2);
1241   else if (Cmp & Comparison::G)
1242     Result = Sx2.slt(Sx1);
1243   return true;
1244 }
1245 
1246 bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props,
1247       const APInt &A2, bool &Result) {
1248   if (Props == ConstantProperties::Unknown)
1249     return false;
1250 
1251   // Should never see NaN here, but check for it for completeness.
1252   if (Props & ConstantProperties::NaN)
1253     return false;
1254   // Infinity could theoretically be compared to a number, but the
1255   // presence of infinity here would be very suspicious. If we don't
1256   // know for sure that the number is finite, bail out.
1257   if (!(Props & ConstantProperties::Finite))
1258     return false;
1259 
1260   // Let X be a number that has properties Props.
1261 
1262   if (Cmp & Comparison::U) {
1263     // In case of unsigned comparisons, we can only compare against 0.
1264     if (A2 == 0) {
1265       // Any x!=0 will be considered >0 in an unsigned comparison.
1266       if (Props & ConstantProperties::Zero)
1267         Result = (Cmp & Comparison::EQ);
1268       else if (Props & ConstantProperties::NonZero)
1269         Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
1270       else
1271         return false;
1272       return true;
1273     }
1274     // A2 is not zero. The only handled case is if X = 0.
1275     if (Props & ConstantProperties::Zero) {
1276       Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
1277       return true;
1278     }
1279     return false;
1280   }
1281 
1282   // Signed comparisons are different.
1283   if (Props & ConstantProperties::Zero) {
1284     if (A2 == 0)
1285       Result = (Cmp & Comparison::EQ);
1286     else
1287       Result = (Cmp == Comparison::NE) ||
1288                ((Cmp & Comparison::L) && !A2.isNegative()) ||
1289                ((Cmp & Comparison::G) &&  A2.isNegative());
1290     return true;
1291   }
1292   if (Props & ConstantProperties::PosOrZero) {
1293     // X >= 0 and !(A2 < 0) => cannot compare
1294     if (!A2.isNegative())
1295       return false;
1296     // X >= 0 and A2 < 0
1297     Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
1298     return true;
1299   }
1300   if (Props & ConstantProperties::NegOrZero) {
1301     // X <= 0 and Src1 < 0 => cannot compare
1302     if (A2 == 0 || A2.isNegative())
1303       return false;
1304     // X <= 0 and A2 > 0
1305     Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
1306     return true;
1307   }
1308 
1309   return false;
1310 }
1311 
1312 bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1,
1313       uint32_t Props2, bool &Result) {
1314   using P = ConstantProperties;
1315 
1316   if ((Props1 & P::NaN) && (Props2 & P::NaN))
1317     return false;
1318   if (!(Props1 & P::Finite) || !(Props2 & P::Finite))
1319     return false;
1320 
1321   bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero);
1322   bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero);
1323   if (Zero1 && Zero2) {
1324     Result = (Cmp & Comparison::EQ);
1325     return true;
1326   }
1327   if (Cmp == Comparison::NE) {
1328     if ((Zero1 && NonZero2) || (NonZero1 && Zero2))
1329       return (Result = true);
1330     return false;
1331   }
1332 
1333   if (Cmp & Comparison::U) {
1334     // In unsigned comparisons, we can only compare against a known zero,
1335     // or a known non-zero.
1336     if (Zero1 && NonZero2) {
1337       Result = (Cmp & Comparison::L);
1338       return true;
1339     }
1340     if (NonZero1 && Zero2) {
1341       Result = (Cmp & Comparison::G);
1342       return true;
1343     }
1344     return false;
1345   }
1346 
1347   // Signed comparison. The comparison is not NE.
1348   bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero);
1349   bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero);
1350   if (Nez1 && Poz2) {
1351     if (NonZero1 || NonZero2) {
1352       Result = (Cmp & Comparison::L);
1353       return true;
1354     }
1355     // Either (or both) could be zero. Can only say that X <= Y.
1356     if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L))
1357       return (Result = true);
1358   }
1359   if (Poz1 && Nez2) {
1360     if (NonZero1 || NonZero2) {
1361       Result = (Cmp & Comparison::G);
1362       return true;
1363     }
1364     // Either (or both) could be zero. Can only say that X >= Y.
1365     if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G))
1366       return (Result = true);
1367   }
1368 
1369   return false;
1370 }
1371 
1372 bool MachineConstEvaluator::evaluateCOPY(const RegisterSubReg &R1,
1373       const CellMap &Inputs, LatticeCell &Result) {
1374   return getCell(R1, Inputs, Result);
1375 }
1376 
1377 bool MachineConstEvaluator::evaluateANDrr(const RegisterSubReg &R1,
1378       const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1379   assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1380   const LatticeCell &L1 = Inputs.get(R2.Reg);
1381   const LatticeCell &L2 = Inputs.get(R2.Reg);
1382   // If both sources are bottom, exit. Otherwise try to evaluate ANDri
1383   // with the non-bottom argument passed as the immediate. This is to
1384   // catch cases of ANDing with 0.
1385   if (L2.isBottom()) {
1386     if (L1.isBottom())
1387       return false;
1388     return evaluateANDrr(R2, R1, Inputs, Result);
1389   }
1390   LatticeCell LS2;
1391   if (!evaluate(R2, L2, LS2))
1392     return false;
1393   if (LS2.isBottom() || LS2.isProperty())
1394     return false;
1395 
1396   APInt A;
1397   for (unsigned i = 0; i < LS2.size(); ++i) {
1398     LatticeCell RC;
1399     bool Eval = constToInt(LS2.Values[i], A) &&
1400                 evaluateANDri(R1, A, Inputs, RC);
1401     if (!Eval)
1402       return false;
1403     Result.meet(RC);
1404   }
1405   return !Result.isBottom();
1406 }
1407 
1408 bool MachineConstEvaluator::evaluateANDri(const RegisterSubReg &R1,
1409       const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1410   assert(Inputs.has(R1.Reg));
1411   if (A2 == -1)
1412     return getCell(R1, Inputs, Result);
1413   if (A2 == 0) {
1414     LatticeCell RC;
1415     RC.add(intToConst(A2));
1416     // Overwrite Result.
1417     Result = RC;
1418     return true;
1419   }
1420   LatticeCell LS1;
1421   if (!getCell(R1, Inputs, LS1))
1422     return false;
1423   if (LS1.isBottom() || LS1.isProperty())
1424     return false;
1425 
1426   APInt A, ResA;
1427   for (unsigned i = 0; i < LS1.size(); ++i) {
1428     bool Eval = constToInt(LS1.Values[i], A) &&
1429                 evaluateANDii(A, A2, ResA);
1430     if (!Eval)
1431       return false;
1432     const Constant *C = intToConst(ResA);
1433     Result.add(C);
1434   }
1435   return !Result.isBottom();
1436 }
1437 
1438 bool MachineConstEvaluator::evaluateANDii(const APInt &A1,
1439       const APInt &A2, APInt &Result) {
1440   Result = A1 & A2;
1441   return true;
1442 }
1443 
1444 bool MachineConstEvaluator::evaluateORrr(const RegisterSubReg &R1,
1445       const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1446   assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1447   const LatticeCell &L1 = Inputs.get(R2.Reg);
1448   const LatticeCell &L2 = Inputs.get(R2.Reg);
1449   // If both sources are bottom, exit. Otherwise try to evaluate ORri
1450   // with the non-bottom argument passed as the immediate. This is to
1451   // catch cases of ORing with -1.
1452   if (L2.isBottom()) {
1453     if (L1.isBottom())
1454       return false;
1455     return evaluateORrr(R2, R1, Inputs, Result);
1456   }
1457   LatticeCell LS2;
1458   if (!evaluate(R2, L2, LS2))
1459     return false;
1460   if (LS2.isBottom() || LS2.isProperty())
1461     return false;
1462 
1463   APInt A;
1464   for (unsigned i = 0; i < LS2.size(); ++i) {
1465     LatticeCell RC;
1466     bool Eval = constToInt(LS2.Values[i], A) &&
1467                 evaluateORri(R1, A, Inputs, RC);
1468     if (!Eval)
1469       return false;
1470     Result.meet(RC);
1471   }
1472   return !Result.isBottom();
1473 }
1474 
1475 bool MachineConstEvaluator::evaluateORri(const RegisterSubReg &R1,
1476       const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1477   assert(Inputs.has(R1.Reg));
1478   if (A2 == 0)
1479     return getCell(R1, Inputs, Result);
1480   if (A2 == -1) {
1481     LatticeCell RC;
1482     RC.add(intToConst(A2));
1483     // Overwrite Result.
1484     Result = RC;
1485     return true;
1486   }
1487   LatticeCell LS1;
1488   if (!getCell(R1, Inputs, LS1))
1489     return false;
1490   if (LS1.isBottom() || LS1.isProperty())
1491     return false;
1492 
1493   APInt A, ResA;
1494   for (unsigned i = 0; i < LS1.size(); ++i) {
1495     bool Eval = constToInt(LS1.Values[i], A) &&
1496                 evaluateORii(A, A2, ResA);
1497     if (!Eval)
1498       return false;
1499     const Constant *C = intToConst(ResA);
1500     Result.add(C);
1501   }
1502   return !Result.isBottom();
1503 }
1504 
1505 bool MachineConstEvaluator::evaluateORii(const APInt &A1,
1506       const APInt &A2, APInt &Result) {
1507   Result = A1 | A2;
1508   return true;
1509 }
1510 
1511 bool MachineConstEvaluator::evaluateXORrr(const RegisterSubReg &R1,
1512       const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1513   assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1514   LatticeCell LS1, LS2;
1515   if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
1516     return false;
1517   if (LS1.isProperty()) {
1518     if (LS1.properties() & ConstantProperties::Zero)
1519       return !(Result = LS2).isBottom();
1520     return false;
1521   }
1522   if (LS2.isProperty()) {
1523     if (LS2.properties() & ConstantProperties::Zero)
1524       return !(Result = LS1).isBottom();
1525     return false;
1526   }
1527 
1528   APInt A;
1529   for (unsigned i = 0; i < LS2.size(); ++i) {
1530     LatticeCell RC;
1531     bool Eval = constToInt(LS2.Values[i], A) &&
1532                 evaluateXORri(R1, A, Inputs, RC);
1533     if (!Eval)
1534       return false;
1535     Result.meet(RC);
1536   }
1537   return !Result.isBottom();
1538 }
1539 
1540 bool MachineConstEvaluator::evaluateXORri(const RegisterSubReg &R1,
1541       const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1542   assert(Inputs.has(R1.Reg));
1543   LatticeCell LS1;
1544   if (!getCell(R1, Inputs, LS1))
1545     return false;
1546   if (LS1.isProperty()) {
1547     if (LS1.properties() & ConstantProperties::Zero) {
1548       const Constant *C = intToConst(A2);
1549       Result.add(C);
1550       return !Result.isBottom();
1551     }
1552     return false;
1553   }
1554 
1555   APInt A, XA;
1556   for (unsigned i = 0; i < LS1.size(); ++i) {
1557     bool Eval = constToInt(LS1.Values[i], A) &&
1558                 evaluateXORii(A, A2, XA);
1559     if (!Eval)
1560       return false;
1561     const Constant *C = intToConst(XA);
1562     Result.add(C);
1563   }
1564   return !Result.isBottom();
1565 }
1566 
1567 bool MachineConstEvaluator::evaluateXORii(const APInt &A1,
1568       const APInt &A2, APInt &Result) {
1569   Result = A1 ^ A2;
1570   return true;
1571 }
1572 
1573 bool MachineConstEvaluator::evaluateZEXTr(const RegisterSubReg &R1, unsigned Width,
1574       unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
1575   assert(Inputs.has(R1.Reg));
1576   LatticeCell LS1;
1577   if (!getCell(R1, Inputs, LS1))
1578     return false;
1579   if (LS1.isProperty())
1580     return false;
1581 
1582   APInt A, XA;
1583   for (unsigned i = 0; i < LS1.size(); ++i) {
1584     bool Eval = constToInt(LS1.Values[i], A) &&
1585                 evaluateZEXTi(A, Width, Bits, XA);
1586     if (!Eval)
1587       return false;
1588     const Constant *C = intToConst(XA);
1589     Result.add(C);
1590   }
1591   return true;
1592 }
1593 
1594 bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width,
1595       unsigned Bits, APInt &Result) {
1596   unsigned BW = A1.getBitWidth();
1597   (void)BW;
1598   assert(Width >= Bits && BW >= Bits);
1599   APInt Mask = APInt::getLowBitsSet(Width, Bits);
1600   Result = A1.zextOrTrunc(Width) & Mask;
1601   return true;
1602 }
1603 
1604 bool MachineConstEvaluator::evaluateSEXTr(const RegisterSubReg &R1, unsigned Width,
1605       unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
1606   assert(Inputs.has(R1.Reg));
1607   LatticeCell LS1;
1608   if (!getCell(R1, Inputs, LS1))
1609     return false;
1610   if (LS1.isBottom() || LS1.isProperty())
1611     return false;
1612 
1613   APInt A, XA;
1614   for (unsigned i = 0; i < LS1.size(); ++i) {
1615     bool Eval = constToInt(LS1.Values[i], A) &&
1616                 evaluateSEXTi(A, Width, Bits, XA);
1617     if (!Eval)
1618       return false;
1619     const Constant *C = intToConst(XA);
1620     Result.add(C);
1621   }
1622   return true;
1623 }
1624 
1625 bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width,
1626       unsigned Bits, APInt &Result) {
1627   unsigned BW = A1.getBitWidth();
1628   assert(Width >= Bits && BW >= Bits);
1629   // Special case to make things faster for smaller source widths.
1630   // Sign extension of 0 bits generates 0 as a result. This is consistent
1631   // with what the HW does.
1632   if (Bits == 0) {
1633     Result = APInt(Width, 0);
1634     return true;
1635   }
1636   // In C, shifts by 64 invoke undefined behavior: handle that case in APInt.
1637   if (BW <= 64 && Bits != 0) {
1638     int64_t V = A1.getSExtValue();
1639     switch (Bits) {
1640       case 8:
1641         V = static_cast<int8_t>(V);
1642         break;
1643       case 16:
1644         V = static_cast<int16_t>(V);
1645         break;
1646       case 32:
1647         V = static_cast<int32_t>(V);
1648         break;
1649       default:
1650         // Shift left to lose all bits except lower "Bits" bits, then shift
1651         // the value back, replicating what was a sign bit after the first
1652         // shift.
1653         V = (V << (64-Bits)) >> (64-Bits);
1654         break;
1655     }
1656     // V is a 64-bit sign-extended value. Convert it to APInt of desired
1657     // width.
1658     Result = APInt(Width, V, true);
1659     return true;
1660   }
1661   // Slow case: the value doesn't fit in int64_t.
1662   if (Bits < BW)
1663     Result = A1.trunc(Bits).sext(Width);
1664   else // Bits == BW
1665     Result = A1.sext(Width);
1666   return true;
1667 }
1668 
1669 bool MachineConstEvaluator::evaluateCLBr(const RegisterSubReg &R1, bool Zeros,
1670       bool Ones, const CellMap &Inputs, LatticeCell &Result) {
1671   assert(Inputs.has(R1.Reg));
1672   LatticeCell LS1;
1673   if (!getCell(R1, Inputs, LS1))
1674     return false;
1675   if (LS1.isBottom() || LS1.isProperty())
1676     return false;
1677 
1678   APInt A, CA;
1679   for (unsigned i = 0; i < LS1.size(); ++i) {
1680     bool Eval = constToInt(LS1.Values[i], A) &&
1681                 evaluateCLBi(A, Zeros, Ones, CA);
1682     if (!Eval)
1683       return false;
1684     const Constant *C = intToConst(CA);
1685     Result.add(C);
1686   }
1687   return true;
1688 }
1689 
1690 bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros,
1691       bool Ones, APInt &Result) {
1692   unsigned BW = A1.getBitWidth();
1693   if (!Zeros && !Ones)
1694     return false;
1695   unsigned Count = 0;
1696   if (Zeros && (Count == 0))
1697     Count = A1.countLeadingZeros();
1698   if (Ones && (Count == 0))
1699     Count = A1.countLeadingOnes();
1700   Result = APInt(BW, static_cast<uint64_t>(Count), false);
1701   return true;
1702 }
1703 
1704 bool MachineConstEvaluator::evaluateCTBr(const RegisterSubReg &R1, bool Zeros,
1705       bool Ones, const CellMap &Inputs, LatticeCell &Result) {
1706   assert(Inputs.has(R1.Reg));
1707   LatticeCell LS1;
1708   if (!getCell(R1, Inputs, LS1))
1709     return false;
1710   if (LS1.isBottom() || LS1.isProperty())
1711     return false;
1712 
1713   APInt A, CA;
1714   for (unsigned i = 0; i < LS1.size(); ++i) {
1715     bool Eval = constToInt(LS1.Values[i], A) &&
1716                 evaluateCTBi(A, Zeros, Ones, CA);
1717     if (!Eval)
1718       return false;
1719     const Constant *C = intToConst(CA);
1720     Result.add(C);
1721   }
1722   return true;
1723 }
1724 
1725 bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros,
1726       bool Ones, APInt &Result) {
1727   unsigned BW = A1.getBitWidth();
1728   if (!Zeros && !Ones)
1729     return false;
1730   unsigned Count = 0;
1731   if (Zeros && (Count == 0))
1732     Count = A1.countTrailingZeros();
1733   if (Ones && (Count == 0))
1734     Count = A1.countTrailingOnes();
1735   Result = APInt(BW, static_cast<uint64_t>(Count), false);
1736   return true;
1737 }
1738 
1739 bool MachineConstEvaluator::evaluateEXTRACTr(const RegisterSubReg &R1,
1740       unsigned Width, unsigned Bits, unsigned Offset, bool Signed,
1741       const CellMap &Inputs, LatticeCell &Result) {
1742   assert(Inputs.has(R1.Reg));
1743   assert(Bits+Offset <= Width);
1744   LatticeCell LS1;
1745   if (!getCell(R1, Inputs, LS1))
1746     return false;
1747   if (LS1.isBottom())
1748     return false;
1749   if (LS1.isProperty()) {
1750     uint32_t Ps = LS1.properties();
1751     if (Ps & ConstantProperties::Zero) {
1752       const Constant *C = intToConst(APInt(Width, 0, false));
1753       Result.add(C);
1754       return true;
1755     }
1756     return false;
1757   }
1758 
1759   APInt A, CA;
1760   for (unsigned i = 0; i < LS1.size(); ++i) {
1761     bool Eval = constToInt(LS1.Values[i], A) &&
1762                 evaluateEXTRACTi(A, Bits, Offset, Signed, CA);
1763     if (!Eval)
1764       return false;
1765     const Constant *C = intToConst(CA);
1766     Result.add(C);
1767   }
1768   return true;
1769 }
1770 
1771 bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits,
1772       unsigned Offset, bool Signed, APInt &Result) {
1773   unsigned BW = A1.getBitWidth();
1774   assert(Bits+Offset <= BW);
1775   // Extracting 0 bits generates 0 as a result (as indicated by the HW people).
1776   if (Bits == 0) {
1777     Result = APInt(BW, 0);
1778     return true;
1779   }
1780   if (BW <= 64) {
1781     int64_t V = A1.getZExtValue();
1782     V <<= (64-Bits-Offset);
1783     if (Signed)
1784       V >>= (64-Bits);
1785     else
1786       V = static_cast<uint64_t>(V) >> (64-Bits);
1787     Result = APInt(BW, V, Signed);
1788     return true;
1789   }
1790   if (Signed)
1791     Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits);
1792   else
1793     Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits);
1794   return true;
1795 }
1796 
1797 bool MachineConstEvaluator::evaluateSplatr(const RegisterSubReg &R1,
1798       unsigned Bits, unsigned Count, const CellMap &Inputs,
1799       LatticeCell &Result) {
1800   assert(Inputs.has(R1.Reg));
1801   LatticeCell LS1;
1802   if (!getCell(R1, Inputs, LS1))
1803     return false;
1804   if (LS1.isBottom() || LS1.isProperty())
1805     return false;
1806 
1807   APInt A, SA;
1808   for (unsigned i = 0; i < LS1.size(); ++i) {
1809     bool Eval = constToInt(LS1.Values[i], A) &&
1810                 evaluateSplati(A, Bits, Count, SA);
1811     if (!Eval)
1812       return false;
1813     const Constant *C = intToConst(SA);
1814     Result.add(C);
1815   }
1816   return true;
1817 }
1818 
1819 bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits,
1820       unsigned Count, APInt &Result) {
1821   assert(Count > 0);
1822   unsigned BW = A1.getBitWidth(), SW = Count*Bits;
1823   APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zextOrSelf(Bits);
1824   if (Count > 1)
1825     LoBits = LoBits.zext(SW);
1826 
1827   APInt Res(SW, 0, false);
1828   for (unsigned i = 0; i < Count; ++i) {
1829     Res <<= Bits;
1830     Res |= LoBits;
1831   }
1832   Result = Res;
1833   return true;
1834 }
1835 
1836 // ----------------------------------------------------------------------
1837 // Hexagon-specific code.
1838 
1839 namespace llvm {
1840 
1841   FunctionPass *createHexagonConstPropagationPass();
1842   void initializeHexagonConstPropagationPass(PassRegistry &Registry);
1843 
1844 } // end namespace llvm
1845 
1846 namespace {
1847 
1848   class HexagonConstEvaluator : public MachineConstEvaluator {
1849   public:
1850     HexagonConstEvaluator(MachineFunction &Fn);
1851 
1852     bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
1853           CellMap &Outputs) override;
1854     bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
1855           LatticeCell &Result) override;
1856     bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
1857           SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru)
1858           override;
1859     bool rewrite(MachineInstr &MI, const CellMap &Inputs) override;
1860 
1861   private:
1862     unsigned getRegBitWidth(unsigned Reg) const;
1863 
1864     static uint32_t getCmp(unsigned Opc);
1865     static APInt getCmpImm(unsigned Opc, unsigned OpX,
1866           const MachineOperand &MO);
1867     void replaceWithNop(MachineInstr &MI);
1868 
1869     bool evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, const CellMap &Inputs,
1870           LatticeCell &Result);
1871     bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs,
1872           CellMap &Outputs);
1873     // This is suitable to be called for compare-and-jump instructions.
1874     bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1,
1875           const MachineOperand &Src2, const CellMap &Inputs, bool &Result);
1876     bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs,
1877           CellMap &Outputs);
1878     bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs,
1879           CellMap &Outputs);
1880     bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs,
1881           CellMap &Outputs);
1882     bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs,
1883           CellMap &Outputs);
1884     bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs,
1885           CellMap &Outputs);
1886 
1887     void replaceAllRegUsesWith(unsigned FromReg, unsigned ToReg);
1888     bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs);
1889     bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs,
1890           bool &AllDefs);
1891     bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs);
1892 
1893     MachineRegisterInfo *MRI;
1894     const HexagonInstrInfo &HII;
1895     const HexagonRegisterInfo &HRI;
1896   };
1897 
1898   class HexagonConstPropagation : public MachineFunctionPass {
1899   public:
1900     static char ID;
1901 
1902     HexagonConstPropagation() : MachineFunctionPass(ID) {}
1903 
1904     StringRef getPassName() const override {
1905       return "Hexagon Constant Propagation";
1906     }
1907 
1908     bool runOnMachineFunction(MachineFunction &MF) override {
1909       const Function &F = MF.getFunction();
1910       if (skipFunction(F))
1911         return false;
1912 
1913       HexagonConstEvaluator HCE(MF);
1914       return MachineConstPropagator(HCE).run(MF);
1915     }
1916   };
1917 
1918 } // end anonymous namespace
1919 
1920 char HexagonConstPropagation::ID = 0;
1921 
1922 INITIALIZE_PASS(HexagonConstPropagation, "hexagon-constp",
1923   "Hexagon Constant Propagation", false, false)
1924 
1925 HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn)
1926   : MachineConstEvaluator(Fn),
1927     HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()),
1928     HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) {
1929   MRI = &Fn.getRegInfo();
1930 }
1931 
1932 bool HexagonConstEvaluator::evaluate(const MachineInstr &MI,
1933       const CellMap &Inputs, CellMap &Outputs) {
1934   if (MI.isCall())
1935     return false;
1936   if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg())
1937     return false;
1938   const MachineOperand &MD = MI.getOperand(0);
1939   if (!MD.isDef())
1940     return false;
1941 
1942   unsigned Opc = MI.getOpcode();
1943   RegisterSubReg DefR(MD);
1944   assert(!DefR.SubReg);
1945   if (!Register::isVirtualRegister(DefR.Reg))
1946     return false;
1947 
1948   if (MI.isCopy()) {
1949     LatticeCell RC;
1950     RegisterSubReg SrcR(MI.getOperand(1));
1951     bool Eval = evaluateCOPY(SrcR, Inputs, RC);
1952     if (!Eval)
1953       return false;
1954     Outputs.update(DefR.Reg, RC);
1955     return true;
1956   }
1957   if (MI.isRegSequence()) {
1958     unsigned Sub1 = MI.getOperand(2).getImm();
1959     unsigned Sub2 = MI.getOperand(4).getImm();
1960     const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg);
1961     unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo);
1962     unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi);
1963     if (Sub1 != SubLo && Sub1 != SubHi)
1964       return false;
1965     if (Sub2 != SubLo && Sub2 != SubHi)
1966       return false;
1967     assert(Sub1 != Sub2);
1968     bool LoIs1 = (Sub1 == SubLo);
1969     const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3);
1970     const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1);
1971     LatticeCell RC;
1972     RegisterSubReg SrcRL(OpLo), SrcRH(OpHi);
1973     bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC);
1974     if (!Eval)
1975       return false;
1976     Outputs.update(DefR.Reg, RC);
1977     return true;
1978   }
1979   if (MI.isCompare()) {
1980     bool Eval = evaluateHexCompare(MI, Inputs, Outputs);
1981     return Eval;
1982   }
1983 
1984   switch (Opc) {
1985     default:
1986       return false;
1987     case Hexagon::A2_tfrsi:
1988     case Hexagon::A2_tfrpi:
1989     case Hexagon::CONST32:
1990     case Hexagon::CONST64:
1991     {
1992       const MachineOperand &VO = MI.getOperand(1);
1993       // The operand of CONST32 can be a blockaddress, e.g.
1994       //   %0 = CONST32 <blockaddress(@eat, %l)>
1995       // Do this check for all instructions for safety.
1996       if (!VO.isImm())
1997         return false;
1998       int64_t V = MI.getOperand(1).getImm();
1999       unsigned W = getRegBitWidth(DefR.Reg);
2000       if (W != 32 && W != 64)
2001         return false;
2002       IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX)
2003                                   : Type::getInt64Ty(CX);
2004       const ConstantInt *CI = ConstantInt::get(Ty, V, true);
2005       LatticeCell RC = Outputs.get(DefR.Reg);
2006       RC.add(CI);
2007       Outputs.update(DefR.Reg, RC);
2008       break;
2009     }
2010 
2011     case Hexagon::PS_true:
2012     case Hexagon::PS_false:
2013     {
2014       LatticeCell RC = Outputs.get(DefR.Reg);
2015       bool NonZero = (Opc == Hexagon::PS_true);
2016       uint32_t P = NonZero ? ConstantProperties::NonZero
2017                            : ConstantProperties::Zero;
2018       RC.add(P);
2019       Outputs.update(DefR.Reg, RC);
2020       break;
2021     }
2022 
2023     case Hexagon::A2_and:
2024     case Hexagon::A2_andir:
2025     case Hexagon::A2_andp:
2026     case Hexagon::A2_or:
2027     case Hexagon::A2_orir:
2028     case Hexagon::A2_orp:
2029     case Hexagon::A2_xor:
2030     case Hexagon::A2_xorp:
2031     {
2032       bool Eval = evaluateHexLogical(MI, Inputs, Outputs);
2033       if (!Eval)
2034         return false;
2035       break;
2036     }
2037 
2038     case Hexagon::A2_combineii:  // combine(#s8Ext, #s8)
2039     case Hexagon::A4_combineii:  // combine(#s8, #u6Ext)
2040     {
2041       if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isImm())
2042         return false;
2043       uint64_t Hi = MI.getOperand(1).getImm();
2044       uint64_t Lo = MI.getOperand(2).getImm();
2045       uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF);
2046       IntegerType *Ty = Type::getInt64Ty(CX);
2047       const ConstantInt *CI = ConstantInt::get(Ty, Res, false);
2048       LatticeCell RC = Outputs.get(DefR.Reg);
2049       RC.add(CI);
2050       Outputs.update(DefR.Reg, RC);
2051       break;
2052     }
2053 
2054     case Hexagon::S2_setbit_i:
2055     {
2056       int64_t B = MI.getOperand(2).getImm();
2057       assert(B >=0 && B < 32);
2058       APInt A(32, (1ull << B), false);
2059       RegisterSubReg R(MI.getOperand(1));
2060       LatticeCell RC = Outputs.get(DefR.Reg);
2061       bool Eval = evaluateORri(R, A, Inputs, RC);
2062       if (!Eval)
2063         return false;
2064       Outputs.update(DefR.Reg, RC);
2065       break;
2066     }
2067 
2068     case Hexagon::C2_mux:
2069     case Hexagon::C2_muxir:
2070     case Hexagon::C2_muxri:
2071     case Hexagon::C2_muxii:
2072     {
2073       bool Eval = evaluateHexCondMove(MI, Inputs, Outputs);
2074       if (!Eval)
2075         return false;
2076       break;
2077     }
2078 
2079     case Hexagon::A2_sxtb:
2080     case Hexagon::A2_sxth:
2081     case Hexagon::A2_sxtw:
2082     case Hexagon::A2_zxtb:
2083     case Hexagon::A2_zxth:
2084     {
2085       bool Eval = evaluateHexExt(MI, Inputs, Outputs);
2086       if (!Eval)
2087         return false;
2088       break;
2089     }
2090 
2091     case Hexagon::S2_ct0:
2092     case Hexagon::S2_ct0p:
2093     case Hexagon::S2_ct1:
2094     case Hexagon::S2_ct1p:
2095     {
2096       using namespace Hexagon;
2097 
2098       bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p);
2099       RegisterSubReg R1(MI.getOperand(1));
2100       assert(Inputs.has(R1.Reg));
2101       LatticeCell T;
2102       bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T);
2103       if (!Eval)
2104         return false;
2105       // All of these instructions return a 32-bit value. The evaluate
2106       // will generate the same type as the operand, so truncate the
2107       // result if necessary.
2108       APInt C;
2109       LatticeCell RC = Outputs.get(DefR.Reg);
2110       for (unsigned i = 0; i < T.size(); ++i) {
2111         const Constant *CI = T.Values[i];
2112         if (constToInt(CI, C) && C.getBitWidth() > 32)
2113           CI = intToConst(C.trunc(32));
2114         RC.add(CI);
2115       }
2116       Outputs.update(DefR.Reg, RC);
2117       break;
2118     }
2119 
2120     case Hexagon::S2_cl0:
2121     case Hexagon::S2_cl0p:
2122     case Hexagon::S2_cl1:
2123     case Hexagon::S2_cl1p:
2124     case Hexagon::S2_clb:
2125     case Hexagon::S2_clbp:
2126     {
2127       using namespace Hexagon;
2128 
2129       bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p);
2130       bool OnlyOnes =  (Opc == S2_cl1) || (Opc == S2_cl1p);
2131       RegisterSubReg R1(MI.getOperand(1));
2132       assert(Inputs.has(R1.Reg));
2133       LatticeCell T;
2134       bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T);
2135       if (!Eval)
2136         return false;
2137       // All of these instructions return a 32-bit value. The evaluate
2138       // will generate the same type as the operand, so truncate the
2139       // result if necessary.
2140       APInt C;
2141       LatticeCell RC = Outputs.get(DefR.Reg);
2142       for (unsigned i = 0; i < T.size(); ++i) {
2143         const Constant *CI = T.Values[i];
2144         if (constToInt(CI, C) && C.getBitWidth() > 32)
2145           CI = intToConst(C.trunc(32));
2146         RC.add(CI);
2147       }
2148       Outputs.update(DefR.Reg, RC);
2149       break;
2150     }
2151 
2152     case Hexagon::S4_extract:
2153     case Hexagon::S4_extractp:
2154     case Hexagon::S2_extractu:
2155     case Hexagon::S2_extractup:
2156     {
2157       bool Signed = (Opc == Hexagon::S4_extract) ||
2158                     (Opc == Hexagon::S4_extractp);
2159       RegisterSubReg R1(MI.getOperand(1));
2160       unsigned BW = getRegBitWidth(R1.Reg);
2161       unsigned Bits = MI.getOperand(2).getImm();
2162       unsigned Offset = MI.getOperand(3).getImm();
2163       LatticeCell RC = Outputs.get(DefR.Reg);
2164       if (Offset >= BW) {
2165         APInt Zero(BW, 0, false);
2166         RC.add(intToConst(Zero));
2167         break;
2168       }
2169       if (Offset+Bits > BW) {
2170         // If the requested bitfield extends beyond the most significant bit,
2171         // the extra bits are treated as 0s. To emulate this behavior, reduce
2172         // the number of requested bits, and make the extract unsigned.
2173         Bits = BW-Offset;
2174         Signed = false;
2175       }
2176       bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC);
2177       if (!Eval)
2178         return false;
2179       Outputs.update(DefR.Reg, RC);
2180       break;
2181     }
2182 
2183     case Hexagon::S2_vsplatrb:
2184     case Hexagon::S2_vsplatrh:
2185     // vabsh, vabsh:sat
2186     // vabsw, vabsw:sat
2187     // vconj:sat
2188     // vrndwh, vrndwh:sat
2189     // vsathb, vsathub, vsatwuh
2190     // vsxtbh, vsxthw
2191     // vtrunehb, vtrunohb
2192     // vzxtbh, vzxthw
2193     {
2194       bool Eval = evaluateHexVector1(MI, Inputs, Outputs);
2195       if (!Eval)
2196         return false;
2197       break;
2198     }
2199 
2200     // TODO:
2201     // A2_vaddh
2202     // A2_vaddhs
2203     // A2_vaddw
2204     // A2_vaddws
2205   }
2206 
2207   return true;
2208 }
2209 
2210 bool HexagonConstEvaluator::evaluate(const RegisterSubReg &R,
2211       const LatticeCell &Input, LatticeCell &Result) {
2212   if (!R.SubReg) {
2213     Result = Input;
2214     return true;
2215   }
2216   const TargetRegisterClass *RC = MRI->getRegClass(R.Reg);
2217   if (RC != &Hexagon::DoubleRegsRegClass)
2218     return false;
2219   if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi)
2220     return false;
2221 
2222   assert(!Input.isTop());
2223   if (Input.isBottom())
2224     return false;
2225 
2226   using P = ConstantProperties;
2227 
2228   if (Input.isProperty()) {
2229     uint32_t Ps = Input.properties();
2230     if (Ps & (P::Zero|P::NaN)) {
2231       uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties));
2232       Result.add(Ns);
2233       return true;
2234     }
2235     if (R.SubReg == Hexagon::isub_hi) {
2236       uint32_t Ns = (Ps & P::SignProperties);
2237       Result.add(Ns);
2238       return true;
2239     }
2240     return false;
2241   }
2242 
2243   // The Input cell contains some known values. Pick the word corresponding
2244   // to the subregister.
2245   APInt A;
2246   for (unsigned i = 0; i < Input.size(); ++i) {
2247     const Constant *C = Input.Values[i];
2248     if (!constToInt(C, A))
2249       return false;
2250     if (!A.isIntN(64))
2251       return false;
2252     uint64_t U = A.getZExtValue();
2253     if (R.SubReg == Hexagon::isub_hi)
2254       U >>= 32;
2255     U &= 0xFFFFFFFFULL;
2256     uint32_t U32 = Lo_32(U);
2257     int32_t V32;
2258     memcpy(&V32, &U32, sizeof V32);
2259     IntegerType *Ty = Type::getInt32Ty(CX);
2260     const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32));
2261     Result.add(C32);
2262   }
2263   return true;
2264 }
2265 
2266 bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI,
2267       const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets,
2268       bool &FallsThru) {
2269   // We need to evaluate one branch at a time. TII::analyzeBranch checks
2270   // all the branches in a basic block at once, so we cannot use it.
2271   unsigned Opc = BrI.getOpcode();
2272   bool SimpleBranch = false;
2273   bool Negated = false;
2274   switch (Opc) {
2275     case Hexagon::J2_jumpf:
2276     case Hexagon::J2_jumpfnew:
2277     case Hexagon::J2_jumpfnewpt:
2278       Negated = true;
2279       LLVM_FALLTHROUGH;
2280     case Hexagon::J2_jumpt:
2281     case Hexagon::J2_jumptnew:
2282     case Hexagon::J2_jumptnewpt:
2283       // Simple branch:  if([!]Pn) jump ...
2284       // i.e. Op0 = predicate, Op1 = branch target.
2285       SimpleBranch = true;
2286       break;
2287     case Hexagon::J2_jump:
2288       Targets.insert(BrI.getOperand(0).getMBB());
2289       FallsThru = false;
2290       return true;
2291     default:
2292 Undetermined:
2293       // If the branch is of unknown type, assume that all successors are
2294       // executable.
2295       FallsThru = !BrI.isUnconditionalBranch();
2296       return false;
2297   }
2298 
2299   if (SimpleBranch) {
2300     const MachineOperand &MD = BrI.getOperand(0);
2301     RegisterSubReg PR(MD);
2302     // If the condition operand has a subregister, this is not something
2303     // we currently recognize.
2304     if (PR.SubReg)
2305       goto Undetermined;
2306     assert(Inputs.has(PR.Reg));
2307     const LatticeCell &PredC = Inputs.get(PR.Reg);
2308     if (PredC.isBottom())
2309       goto Undetermined;
2310 
2311     uint32_t Props = PredC.properties();
2312     bool CTrue = false, CFalse = false;
2313     if (Props & ConstantProperties::Zero)
2314       CFalse = true;
2315     else if (Props & ConstantProperties::NonZero)
2316       CTrue = true;
2317     // If the condition is not known to be either, bail out.
2318     if (!CTrue && !CFalse)
2319       goto Undetermined;
2320 
2321     const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB();
2322 
2323     FallsThru = false;
2324     if ((!Negated && CTrue) || (Negated && CFalse))
2325       Targets.insert(BranchTarget);
2326     else if ((!Negated && CFalse) || (Negated && CTrue))
2327       FallsThru = true;
2328     else
2329       goto Undetermined;
2330   }
2331 
2332   return true;
2333 }
2334 
2335 bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) {
2336   if (MI.isBranch())
2337     return rewriteHexBranch(MI, Inputs);
2338 
2339   unsigned Opc = MI.getOpcode();
2340   switch (Opc) {
2341     default:
2342       break;
2343     case Hexagon::A2_tfrsi:
2344     case Hexagon::A2_tfrpi:
2345     case Hexagon::CONST32:
2346     case Hexagon::CONST64:
2347     case Hexagon::PS_true:
2348     case Hexagon::PS_false:
2349       return false;
2350   }
2351 
2352   unsigned NumOp = MI.getNumOperands();
2353   if (NumOp == 0)
2354     return false;
2355 
2356   bool AllDefs, Changed;
2357   Changed = rewriteHexConstDefs(MI, Inputs, AllDefs);
2358   // If not all defs have been rewritten (i.e. the instruction defines
2359   // a register that is not compile-time constant), then try to rewrite
2360   // register operands that are known to be constant with immediates.
2361   if (!AllDefs)
2362     Changed |= rewriteHexConstUses(MI, Inputs);
2363 
2364   return Changed;
2365 }
2366 
2367 unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const {
2368   const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2369   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC))
2370     return 32;
2371   if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC))
2372     return 64;
2373   if (Hexagon::PredRegsRegClass.hasSubClassEq(RC))
2374     return 8;
2375   llvm_unreachable("Invalid register");
2376   return 0;
2377 }
2378 
2379 uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) {
2380   switch (Opc) {
2381     case Hexagon::C2_cmpeq:
2382     case Hexagon::C2_cmpeqp:
2383     case Hexagon::A4_cmpbeq:
2384     case Hexagon::A4_cmpheq:
2385     case Hexagon::A4_cmpbeqi:
2386     case Hexagon::A4_cmpheqi:
2387     case Hexagon::C2_cmpeqi:
2388     case Hexagon::J4_cmpeqn1_t_jumpnv_nt:
2389     case Hexagon::J4_cmpeqn1_t_jumpnv_t:
2390     case Hexagon::J4_cmpeqi_t_jumpnv_nt:
2391     case Hexagon::J4_cmpeqi_t_jumpnv_t:
2392     case Hexagon::J4_cmpeq_t_jumpnv_nt:
2393     case Hexagon::J4_cmpeq_t_jumpnv_t:
2394       return Comparison::EQ;
2395 
2396     case Hexagon::C4_cmpneq:
2397     case Hexagon::C4_cmpneqi:
2398     case Hexagon::J4_cmpeqn1_f_jumpnv_nt:
2399     case Hexagon::J4_cmpeqn1_f_jumpnv_t:
2400     case Hexagon::J4_cmpeqi_f_jumpnv_nt:
2401     case Hexagon::J4_cmpeqi_f_jumpnv_t:
2402     case Hexagon::J4_cmpeq_f_jumpnv_nt:
2403     case Hexagon::J4_cmpeq_f_jumpnv_t:
2404       return Comparison::NE;
2405 
2406     case Hexagon::C2_cmpgt:
2407     case Hexagon::C2_cmpgtp:
2408     case Hexagon::A4_cmpbgt:
2409     case Hexagon::A4_cmphgt:
2410     case Hexagon::A4_cmpbgti:
2411     case Hexagon::A4_cmphgti:
2412     case Hexagon::C2_cmpgti:
2413     case Hexagon::J4_cmpgtn1_t_jumpnv_nt:
2414     case Hexagon::J4_cmpgtn1_t_jumpnv_t:
2415     case Hexagon::J4_cmpgti_t_jumpnv_nt:
2416     case Hexagon::J4_cmpgti_t_jumpnv_t:
2417     case Hexagon::J4_cmpgt_t_jumpnv_nt:
2418     case Hexagon::J4_cmpgt_t_jumpnv_t:
2419       return Comparison::GTs;
2420 
2421     case Hexagon::C4_cmplte:
2422     case Hexagon::C4_cmpltei:
2423     case Hexagon::J4_cmpgtn1_f_jumpnv_nt:
2424     case Hexagon::J4_cmpgtn1_f_jumpnv_t:
2425     case Hexagon::J4_cmpgti_f_jumpnv_nt:
2426     case Hexagon::J4_cmpgti_f_jumpnv_t:
2427     case Hexagon::J4_cmpgt_f_jumpnv_nt:
2428     case Hexagon::J4_cmpgt_f_jumpnv_t:
2429       return Comparison::LEs;
2430 
2431     case Hexagon::C2_cmpgtu:
2432     case Hexagon::C2_cmpgtup:
2433     case Hexagon::A4_cmpbgtu:
2434     case Hexagon::A4_cmpbgtui:
2435     case Hexagon::A4_cmphgtu:
2436     case Hexagon::A4_cmphgtui:
2437     case Hexagon::C2_cmpgtui:
2438     case Hexagon::J4_cmpgtui_t_jumpnv_nt:
2439     case Hexagon::J4_cmpgtui_t_jumpnv_t:
2440     case Hexagon::J4_cmpgtu_t_jumpnv_nt:
2441     case Hexagon::J4_cmpgtu_t_jumpnv_t:
2442       return Comparison::GTu;
2443 
2444     case Hexagon::J4_cmpltu_f_jumpnv_nt:
2445     case Hexagon::J4_cmpltu_f_jumpnv_t:
2446       return Comparison::GEu;
2447 
2448     case Hexagon::J4_cmpltu_t_jumpnv_nt:
2449     case Hexagon::J4_cmpltu_t_jumpnv_t:
2450       return Comparison::LTu;
2451 
2452     case Hexagon::J4_cmplt_f_jumpnv_nt:
2453     case Hexagon::J4_cmplt_f_jumpnv_t:
2454       return Comparison::GEs;
2455 
2456     case Hexagon::C4_cmplteu:
2457     case Hexagon::C4_cmplteui:
2458     case Hexagon::J4_cmpgtui_f_jumpnv_nt:
2459     case Hexagon::J4_cmpgtui_f_jumpnv_t:
2460     case Hexagon::J4_cmpgtu_f_jumpnv_nt:
2461     case Hexagon::J4_cmpgtu_f_jumpnv_t:
2462       return Comparison::LEu;
2463 
2464     case Hexagon::J4_cmplt_t_jumpnv_nt:
2465     case Hexagon::J4_cmplt_t_jumpnv_t:
2466       return Comparison::LTs;
2467 
2468     default:
2469       break;
2470   }
2471   return Comparison::Unk;
2472 }
2473 
2474 APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX,
2475       const MachineOperand &MO) {
2476   bool Signed = false;
2477   switch (Opc) {
2478     case Hexagon::A4_cmpbgtui:   // u7
2479     case Hexagon::A4_cmphgtui:   // u7
2480       break;
2481     case Hexagon::A4_cmpheqi:    // s8
2482     case Hexagon::C4_cmpneqi:   // s8
2483       Signed = true;
2484       break;
2485     case Hexagon::A4_cmpbeqi:    // u8
2486       break;
2487     case Hexagon::C2_cmpgtui:      // u9
2488     case Hexagon::C4_cmplteui:  // u9
2489       break;
2490     case Hexagon::C2_cmpeqi:       // s10
2491     case Hexagon::C2_cmpgti:       // s10
2492     case Hexagon::C4_cmpltei:   // s10
2493       Signed = true;
2494       break;
2495     case Hexagon::J4_cmpeqi_f_jumpnv_nt:   // u5
2496     case Hexagon::J4_cmpeqi_f_jumpnv_t:    // u5
2497     case Hexagon::J4_cmpeqi_t_jumpnv_nt:   // u5
2498     case Hexagon::J4_cmpeqi_t_jumpnv_t:    // u5
2499     case Hexagon::J4_cmpgti_f_jumpnv_nt:   // u5
2500     case Hexagon::J4_cmpgti_f_jumpnv_t:    // u5
2501     case Hexagon::J4_cmpgti_t_jumpnv_nt:   // u5
2502     case Hexagon::J4_cmpgti_t_jumpnv_t:    // u5
2503     case Hexagon::J4_cmpgtui_f_jumpnv_nt:  // u5
2504     case Hexagon::J4_cmpgtui_f_jumpnv_t:   // u5
2505     case Hexagon::J4_cmpgtui_t_jumpnv_nt:  // u5
2506     case Hexagon::J4_cmpgtui_t_jumpnv_t:   // u5
2507       break;
2508     default:
2509       llvm_unreachable("Unhandled instruction");
2510       break;
2511   }
2512 
2513   uint64_t Val = MO.getImm();
2514   return APInt(32, Val, Signed);
2515 }
2516 
2517 void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) {
2518   MI.setDesc(HII.get(Hexagon::A2_nop));
2519   while (MI.getNumOperands() > 0)
2520     MI.RemoveOperand(0);
2521 }
2522 
2523 bool HexagonConstEvaluator::evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH,
2524       const CellMap &Inputs, LatticeCell &Result) {
2525   assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg));
2526   LatticeCell LSL, LSH;
2527   if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH))
2528     return false;
2529   if (LSL.isProperty() || LSH.isProperty())
2530     return false;
2531 
2532   unsigned LN = LSL.size(), HN = LSH.size();
2533   SmallVector<APInt,4> LoVs(LN), HiVs(HN);
2534   for (unsigned i = 0; i < LN; ++i) {
2535     bool Eval = constToInt(LSL.Values[i], LoVs[i]);
2536     if (!Eval)
2537       return false;
2538     assert(LoVs[i].getBitWidth() == 32);
2539   }
2540   for (unsigned i = 0; i < HN; ++i) {
2541     bool Eval = constToInt(LSH.Values[i], HiVs[i]);
2542     if (!Eval)
2543       return false;
2544     assert(HiVs[i].getBitWidth() == 32);
2545   }
2546 
2547   for (unsigned i = 0; i < HiVs.size(); ++i) {
2548     APInt HV = HiVs[i].zextOrSelf(64) << 32;
2549     for (unsigned j = 0; j < LoVs.size(); ++j) {
2550       APInt LV = LoVs[j].zextOrSelf(64);
2551       const Constant *C = intToConst(HV | LV);
2552       Result.add(C);
2553       if (Result.isBottom())
2554         return false;
2555     }
2556   }
2557   return !Result.isBottom();
2558 }
2559 
2560 bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI,
2561       const CellMap &Inputs, CellMap &Outputs) {
2562   unsigned Opc = MI.getOpcode();
2563   bool Classic = false;
2564   switch (Opc) {
2565     case Hexagon::C2_cmpeq:
2566     case Hexagon::C2_cmpeqp:
2567     case Hexagon::C2_cmpgt:
2568     case Hexagon::C2_cmpgtp:
2569     case Hexagon::C2_cmpgtu:
2570     case Hexagon::C2_cmpgtup:
2571     case Hexagon::C2_cmpeqi:
2572     case Hexagon::C2_cmpgti:
2573     case Hexagon::C2_cmpgtui:
2574       // Classic compare:  Dst0 = CMP Src1, Src2
2575       Classic = true;
2576       break;
2577     default:
2578       // Not handling other compare instructions now.
2579       return false;
2580   }
2581 
2582   if (Classic) {
2583     const MachineOperand &Src1 = MI.getOperand(1);
2584     const MachineOperand &Src2 = MI.getOperand(2);
2585 
2586     bool Result;
2587     unsigned Opc = MI.getOpcode();
2588     bool Computed = evaluateHexCompare2(Opc, Src1, Src2, Inputs, Result);
2589     if (Computed) {
2590       // Only create a zero/non-zero cell. At this time there isn't really
2591       // much need for specific values.
2592       RegisterSubReg DefR(MI.getOperand(0));
2593       LatticeCell L = Outputs.get(DefR.Reg);
2594       uint32_t P = Result ? ConstantProperties::NonZero
2595                           : ConstantProperties::Zero;
2596       L.add(P);
2597       Outputs.update(DefR.Reg, L);
2598       return true;
2599     }
2600   }
2601 
2602   return false;
2603 }
2604 
2605 bool HexagonConstEvaluator::evaluateHexCompare2(unsigned Opc,
2606       const MachineOperand &Src1, const MachineOperand &Src2,
2607       const CellMap &Inputs, bool &Result) {
2608   uint32_t Cmp = getCmp(Opc);
2609   bool Reg1 = Src1.isReg(), Reg2 = Src2.isReg();
2610   bool Imm1 = Src1.isImm(), Imm2 = Src2.isImm();
2611   if (Reg1) {
2612     RegisterSubReg R1(Src1);
2613     if (Reg2) {
2614       RegisterSubReg R2(Src2);
2615       return evaluateCMPrr(Cmp, R1, R2, Inputs, Result);
2616     } else if (Imm2) {
2617       APInt A2 = getCmpImm(Opc, 2, Src2);
2618       return evaluateCMPri(Cmp, R1, A2, Inputs, Result);
2619     }
2620   } else if (Imm1) {
2621     APInt A1 = getCmpImm(Opc, 1, Src1);
2622     if (Reg2) {
2623       RegisterSubReg R2(Src2);
2624       uint32_t NegCmp = Comparison::negate(Cmp);
2625       return evaluateCMPri(NegCmp, R2, A1, Inputs, Result);
2626     } else if (Imm2) {
2627       APInt A2 = getCmpImm(Opc, 2, Src2);
2628       return evaluateCMPii(Cmp, A1, A2, Result);
2629     }
2630   }
2631   // Unknown kind of comparison.
2632   return false;
2633 }
2634 
2635 bool HexagonConstEvaluator::evaluateHexLogical(const MachineInstr &MI,
2636       const CellMap &Inputs, CellMap &Outputs) {
2637   unsigned Opc = MI.getOpcode();
2638   if (MI.getNumOperands() != 3)
2639     return false;
2640   const MachineOperand &Src1 = MI.getOperand(1);
2641   const MachineOperand &Src2 = MI.getOperand(2);
2642   RegisterSubReg R1(Src1);
2643   bool Eval = false;
2644   LatticeCell RC;
2645   switch (Opc) {
2646     default:
2647       return false;
2648     case Hexagon::A2_and:
2649     case Hexagon::A2_andp:
2650       Eval = evaluateANDrr(R1, RegisterSubReg(Src2), Inputs, RC);
2651       break;
2652     case Hexagon::A2_andir: {
2653       if (!Src2.isImm())
2654         return false;
2655       APInt A(32, Src2.getImm(), true);
2656       Eval = evaluateANDri(R1, A, Inputs, RC);
2657       break;
2658     }
2659     case Hexagon::A2_or:
2660     case Hexagon::A2_orp:
2661       Eval = evaluateORrr(R1, RegisterSubReg(Src2), Inputs, RC);
2662       break;
2663     case Hexagon::A2_orir: {
2664       if (!Src2.isImm())
2665         return false;
2666       APInt A(32, Src2.getImm(), true);
2667       Eval = evaluateORri(R1, A, Inputs, RC);
2668       break;
2669     }
2670     case Hexagon::A2_xor:
2671     case Hexagon::A2_xorp:
2672       Eval = evaluateXORrr(R1, RegisterSubReg(Src2), Inputs, RC);
2673       break;
2674   }
2675   if (Eval) {
2676     RegisterSubReg DefR(MI.getOperand(0));
2677     Outputs.update(DefR.Reg, RC);
2678   }
2679   return Eval;
2680 }
2681 
2682 bool HexagonConstEvaluator::evaluateHexCondMove(const MachineInstr &MI,
2683       const CellMap &Inputs, CellMap &Outputs) {
2684   // Dst0 = Cond1 ? Src2 : Src3
2685   RegisterSubReg CR(MI.getOperand(1));
2686   assert(Inputs.has(CR.Reg));
2687   LatticeCell LS;
2688   if (!getCell(CR, Inputs, LS))
2689     return false;
2690   uint32_t Ps = LS.properties();
2691   unsigned TakeOp;
2692   if (Ps & ConstantProperties::Zero)
2693     TakeOp = 3;
2694   else if (Ps & ConstantProperties::NonZero)
2695     TakeOp = 2;
2696   else
2697     return false;
2698 
2699   const MachineOperand &ValOp = MI.getOperand(TakeOp);
2700   RegisterSubReg DefR(MI.getOperand(0));
2701   LatticeCell RC = Outputs.get(DefR.Reg);
2702 
2703   if (ValOp.isImm()) {
2704     int64_t V = ValOp.getImm();
2705     unsigned W = getRegBitWidth(DefR.Reg);
2706     APInt A(W, V, true);
2707     const Constant *C = intToConst(A);
2708     RC.add(C);
2709     Outputs.update(DefR.Reg, RC);
2710     return true;
2711   }
2712   if (ValOp.isReg()) {
2713     RegisterSubReg R(ValOp);
2714     const LatticeCell &LR = Inputs.get(R.Reg);
2715     LatticeCell LSR;
2716     if (!evaluate(R, LR, LSR))
2717       return false;
2718     RC.meet(LSR);
2719     Outputs.update(DefR.Reg, RC);
2720     return true;
2721   }
2722   return false;
2723 }
2724 
2725 bool HexagonConstEvaluator::evaluateHexExt(const MachineInstr &MI,
2726       const CellMap &Inputs, CellMap &Outputs) {
2727   // Dst0 = ext R1
2728   RegisterSubReg R1(MI.getOperand(1));
2729   assert(Inputs.has(R1.Reg));
2730 
2731   unsigned Opc = MI.getOpcode();
2732   unsigned Bits;
2733   switch (Opc) {
2734     case Hexagon::A2_sxtb:
2735     case Hexagon::A2_zxtb:
2736       Bits = 8;
2737       break;
2738     case Hexagon::A2_sxth:
2739     case Hexagon::A2_zxth:
2740       Bits = 16;
2741       break;
2742     case Hexagon::A2_sxtw:
2743       Bits = 32;
2744       break;
2745     default:
2746       llvm_unreachable("Unhandled extension opcode");
2747   }
2748 
2749   bool Signed = false;
2750   switch (Opc) {
2751     case Hexagon::A2_sxtb:
2752     case Hexagon::A2_sxth:
2753     case Hexagon::A2_sxtw:
2754       Signed = true;
2755       break;
2756   }
2757 
2758   RegisterSubReg DefR(MI.getOperand(0));
2759   unsigned BW = getRegBitWidth(DefR.Reg);
2760   LatticeCell RC = Outputs.get(DefR.Reg);
2761   bool Eval = Signed ? evaluateSEXTr(R1, BW, Bits, Inputs, RC)
2762                      : evaluateZEXTr(R1, BW, Bits, Inputs, RC);
2763   if (!Eval)
2764     return false;
2765   Outputs.update(DefR.Reg, RC);
2766   return true;
2767 }
2768 
2769 bool HexagonConstEvaluator::evaluateHexVector1(const MachineInstr &MI,
2770       const CellMap &Inputs, CellMap &Outputs) {
2771   // DefR = op R1
2772   RegisterSubReg DefR(MI.getOperand(0));
2773   RegisterSubReg R1(MI.getOperand(1));
2774   assert(Inputs.has(R1.Reg));
2775   LatticeCell RC = Outputs.get(DefR.Reg);
2776   bool Eval;
2777 
2778   unsigned Opc = MI.getOpcode();
2779   switch (Opc) {
2780     case Hexagon::S2_vsplatrb:
2781       // Rd = 4 times Rs:0..7
2782       Eval = evaluateSplatr(R1, 8, 4, Inputs, RC);
2783       break;
2784     case Hexagon::S2_vsplatrh:
2785       // Rdd = 4 times Rs:0..15
2786       Eval = evaluateSplatr(R1, 16, 4, Inputs, RC);
2787       break;
2788     default:
2789       return false;
2790   }
2791 
2792   if (!Eval)
2793     return false;
2794   Outputs.update(DefR.Reg, RC);
2795   return true;
2796 }
2797 
2798 bool HexagonConstEvaluator::rewriteHexConstDefs(MachineInstr &MI,
2799       const CellMap &Inputs, bool &AllDefs) {
2800   AllDefs = false;
2801 
2802   // Some diagnostics.
2803   // LLVM_DEBUG({...}) gets confused with all this code as an argument.
2804 #ifndef NDEBUG
2805   bool Debugging = DebugFlag && isCurrentDebugType(DEBUG_TYPE);
2806   if (Debugging) {
2807     bool Const = true, HasUse = false;
2808     for (const MachineOperand &MO : MI.operands()) {
2809       if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
2810         continue;
2811       RegisterSubReg R(MO);
2812       if (!Register::isVirtualRegister(R.Reg))
2813         continue;
2814       HasUse = true;
2815       // PHIs can legitimately have "top" cells after propagation.
2816       if (!MI.isPHI() && !Inputs.has(R.Reg)) {
2817         dbgs() << "Top " << printReg(R.Reg, &HRI, R.SubReg)
2818                << " in MI: " << MI;
2819         continue;
2820       }
2821       const LatticeCell &L = Inputs.get(R.Reg);
2822       Const &= L.isSingle();
2823       if (!Const)
2824         break;
2825     }
2826     if (HasUse && Const) {
2827       if (!MI.isCopy()) {
2828         dbgs() << "CONST: " << MI;
2829         for (const MachineOperand &MO : MI.operands()) {
2830           if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
2831             continue;
2832           Register R = MO.getReg();
2833           dbgs() << printReg(R, &TRI) << ": " << Inputs.get(R) << "\n";
2834         }
2835       }
2836     }
2837   }
2838 #endif
2839 
2840   // Avoid generating TFRIs for register transfers---this will keep the
2841   // coalescing opportunities.
2842   if (MI.isCopy())
2843     return false;
2844 
2845   MachineFunction *MF = MI.getParent()->getParent();
2846   auto &HST = MF->getSubtarget<HexagonSubtarget>();
2847 
2848   // Collect all virtual register-def operands.
2849   SmallVector<unsigned,2> DefRegs;
2850   for (const MachineOperand &MO : MI.operands()) {
2851     if (!MO.isReg() || !MO.isDef())
2852       continue;
2853     Register R = MO.getReg();
2854     if (!Register::isVirtualRegister(R))
2855       continue;
2856     assert(!MO.getSubReg());
2857     assert(Inputs.has(R));
2858     DefRegs.push_back(R);
2859   }
2860 
2861   MachineBasicBlock &B = *MI.getParent();
2862   const DebugLoc &DL = MI.getDebugLoc();
2863   unsigned ChangedNum = 0;
2864 #ifndef NDEBUG
2865   SmallVector<const MachineInstr*,4> NewInstrs;
2866 #endif
2867 
2868   // For each defined register, if it is a constant, create an instruction
2869   //   NewR = const
2870   // and replace all uses of the defined register with NewR.
2871   for (unsigned i = 0, n = DefRegs.size(); i < n; ++i) {
2872     unsigned R = DefRegs[i];
2873     const LatticeCell &L = Inputs.get(R);
2874     if (L.isBottom())
2875       continue;
2876     const TargetRegisterClass *RC = MRI->getRegClass(R);
2877     MachineBasicBlock::iterator At = MI.getIterator();
2878 
2879     if (!L.isSingle()) {
2880       // If this a zero/non-zero cell, we can fold a definition
2881       // of a predicate register.
2882       using P = ConstantProperties;
2883 
2884       uint64_t Ps = L.properties();
2885       if (!(Ps & (P::Zero|P::NonZero)))
2886         continue;
2887       const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
2888       if (RC != PredRC)
2889         continue;
2890       const MCInstrDesc *NewD = (Ps & P::Zero) ?
2891         &HII.get(Hexagon::PS_false) :
2892         &HII.get(Hexagon::PS_true);
2893       Register NewR = MRI->createVirtualRegister(PredRC);
2894       const MachineInstrBuilder &MIB = BuildMI(B, At, DL, *NewD, NewR);
2895       (void)MIB;
2896 #ifndef NDEBUG
2897       NewInstrs.push_back(&*MIB);
2898 #endif
2899       replaceAllRegUsesWith(R, NewR);
2900     } else {
2901       // This cell has a single value.
2902       APInt A;
2903       if (!constToInt(L.Value, A) || !A.isSignedIntN(64))
2904         continue;
2905       const TargetRegisterClass *NewRC;
2906       const MCInstrDesc *NewD;
2907 
2908       unsigned W = getRegBitWidth(R);
2909       int64_t V = A.getSExtValue();
2910       assert(W == 32 || W == 64);
2911       if (W == 32)
2912         NewRC = &Hexagon::IntRegsRegClass;
2913       else
2914         NewRC = &Hexagon::DoubleRegsRegClass;
2915       Register NewR = MRI->createVirtualRegister(NewRC);
2916       const MachineInstr *NewMI;
2917 
2918       if (W == 32) {
2919         NewD = &HII.get(Hexagon::A2_tfrsi);
2920         NewMI = BuildMI(B, At, DL, *NewD, NewR)
2921                   .addImm(V);
2922       } else {
2923         if (A.isSignedIntN(8)) {
2924           NewD = &HII.get(Hexagon::A2_tfrpi);
2925           NewMI = BuildMI(B, At, DL, *NewD, NewR)
2926                     .addImm(V);
2927         } else {
2928           int32_t Hi = V >> 32;
2929           int32_t Lo = V & 0xFFFFFFFFLL;
2930           if (isInt<8>(Hi) && isInt<8>(Lo)) {
2931             NewD = &HII.get(Hexagon::A2_combineii);
2932             NewMI = BuildMI(B, At, DL, *NewD, NewR)
2933                       .addImm(Hi)
2934                       .addImm(Lo);
2935           } else if (MF->getFunction().hasOptSize() || !HST.isTinyCore()) {
2936             // Disable CONST64 for tiny core since it takes a LD resource.
2937             NewD = &HII.get(Hexagon::CONST64);
2938             NewMI = BuildMI(B, At, DL, *NewD, NewR)
2939                       .addImm(V);
2940           } else
2941             return false;
2942         }
2943       }
2944       (void)NewMI;
2945 #ifndef NDEBUG
2946       NewInstrs.push_back(NewMI);
2947 #endif
2948       replaceAllRegUsesWith(R, NewR);
2949     }
2950     ChangedNum++;
2951   }
2952 
2953   LLVM_DEBUG({
2954     if (!NewInstrs.empty()) {
2955       MachineFunction &MF = *MI.getParent()->getParent();
2956       dbgs() << "In function: " << MF.getName() << "\n";
2957       dbgs() << "Rewrite: for " << MI << "  created " << *NewInstrs[0];
2958       for (unsigned i = 1; i < NewInstrs.size(); ++i)
2959         dbgs() << "          " << *NewInstrs[i];
2960     }
2961   });
2962 
2963   AllDefs = (ChangedNum == DefRegs.size());
2964   return ChangedNum > 0;
2965 }
2966 
2967 bool HexagonConstEvaluator::rewriteHexConstUses(MachineInstr &MI,
2968       const CellMap &Inputs) {
2969   bool Changed = false;
2970   unsigned Opc = MI.getOpcode();
2971   MachineBasicBlock &B = *MI.getParent();
2972   const DebugLoc &DL = MI.getDebugLoc();
2973   MachineBasicBlock::iterator At = MI.getIterator();
2974   MachineInstr *NewMI = nullptr;
2975 
2976   switch (Opc) {
2977     case Hexagon::M2_maci:
2978     // Convert DefR += mpyi(R2, R3)
2979     //   to   DefR += mpyi(R, #imm),
2980     //   or   DefR -= mpyi(R, #imm).
2981     {
2982       RegisterSubReg DefR(MI.getOperand(0));
2983       assert(!DefR.SubReg);
2984       RegisterSubReg R2(MI.getOperand(2));
2985       RegisterSubReg R3(MI.getOperand(3));
2986       assert(Inputs.has(R2.Reg) && Inputs.has(R3.Reg));
2987       LatticeCell LS2, LS3;
2988       // It is enough to get one of the input cells, since we will only try
2989       // to replace one argument---whichever happens to be a single constant.
2990       bool HasC2 = getCell(R2, Inputs, LS2), HasC3 = getCell(R3, Inputs, LS3);
2991       if (!HasC2 && !HasC3)
2992         return false;
2993       bool Zero = ((HasC2 && (LS2.properties() & ConstantProperties::Zero)) ||
2994                    (HasC3 && (LS3.properties() & ConstantProperties::Zero)));
2995       // If one of the operands is zero, eliminate the multiplication.
2996       if (Zero) {
2997         // DefR == R1 (tied operands).
2998         MachineOperand &Acc = MI.getOperand(1);
2999         RegisterSubReg R1(Acc);
3000         unsigned NewR = R1.Reg;
3001         if (R1.SubReg) {
3002           // Generate COPY. FIXME: Replace with the register:subregister.
3003           const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3004           NewR = MRI->createVirtualRegister(RC);
3005           NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3006                     .addReg(R1.Reg, getRegState(Acc), R1.SubReg);
3007         }
3008         replaceAllRegUsesWith(DefR.Reg, NewR);
3009         MRI->clearKillFlags(NewR);
3010         Changed = true;
3011         break;
3012       }
3013 
3014       bool Swap = false;
3015       if (!LS3.isSingle()) {
3016         if (!LS2.isSingle())
3017           return false;
3018         Swap = true;
3019       }
3020       const LatticeCell &LI = Swap ? LS2 : LS3;
3021       const MachineOperand &OpR2 = Swap ? MI.getOperand(3)
3022                                         : MI.getOperand(2);
3023       // LI is single here.
3024       APInt A;
3025       if (!constToInt(LI.Value, A) || !A.isSignedIntN(8))
3026         return false;
3027       int64_t V = A.getSExtValue();
3028       const MCInstrDesc &D = (V >= 0) ? HII.get(Hexagon::M2_macsip)
3029                                       : HII.get(Hexagon::M2_macsin);
3030       if (V < 0)
3031         V = -V;
3032       const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3033       Register NewR = MRI->createVirtualRegister(RC);
3034       const MachineOperand &Src1 = MI.getOperand(1);
3035       NewMI = BuildMI(B, At, DL, D, NewR)
3036                 .addReg(Src1.getReg(), getRegState(Src1), Src1.getSubReg())
3037                 .addReg(OpR2.getReg(), getRegState(OpR2), OpR2.getSubReg())
3038                 .addImm(V);
3039       replaceAllRegUsesWith(DefR.Reg, NewR);
3040       Changed = true;
3041       break;
3042     }
3043 
3044     case Hexagon::A2_and:
3045     {
3046       RegisterSubReg R1(MI.getOperand(1));
3047       RegisterSubReg R2(MI.getOperand(2));
3048       assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
3049       LatticeCell LS1, LS2;
3050       unsigned CopyOf = 0;
3051       // Check if any of the operands is -1 (i.e. all bits set).
3052       if (getCell(R1, Inputs, LS1) && LS1.isSingle()) {
3053         APInt M1;
3054         if (constToInt(LS1.Value, M1) && !~M1)
3055           CopyOf = 2;
3056       }
3057       else if (getCell(R2, Inputs, LS2) && LS2.isSingle()) {
3058         APInt M1;
3059         if (constToInt(LS2.Value, M1) && !~M1)
3060           CopyOf = 1;
3061       }
3062       if (!CopyOf)
3063         return false;
3064       MachineOperand &SO = MI.getOperand(CopyOf);
3065       RegisterSubReg SR(SO);
3066       RegisterSubReg DefR(MI.getOperand(0));
3067       unsigned NewR = SR.Reg;
3068       if (SR.SubReg) {
3069         const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3070         NewR = MRI->createVirtualRegister(RC);
3071         NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3072                   .addReg(SR.Reg, getRegState(SO), SR.SubReg);
3073       }
3074       replaceAllRegUsesWith(DefR.Reg, NewR);
3075       MRI->clearKillFlags(NewR);
3076       Changed = true;
3077     }
3078     break;
3079 
3080     case Hexagon::A2_or:
3081     {
3082       RegisterSubReg R1(MI.getOperand(1));
3083       RegisterSubReg R2(MI.getOperand(2));
3084       assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
3085       LatticeCell LS1, LS2;
3086       unsigned CopyOf = 0;
3087 
3088       using P = ConstantProperties;
3089 
3090       if (getCell(R1, Inputs, LS1) && (LS1.properties() & P::Zero))
3091         CopyOf = 2;
3092       else if (getCell(R2, Inputs, LS2) && (LS2.properties() & P::Zero))
3093         CopyOf = 1;
3094       if (!CopyOf)
3095         return false;
3096       MachineOperand &SO = MI.getOperand(CopyOf);
3097       RegisterSubReg SR(SO);
3098       RegisterSubReg DefR(MI.getOperand(0));
3099       unsigned NewR = SR.Reg;
3100       if (SR.SubReg) {
3101         const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3102         NewR = MRI->createVirtualRegister(RC);
3103         NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3104                   .addReg(SR.Reg, getRegState(SO), SR.SubReg);
3105       }
3106       replaceAllRegUsesWith(DefR.Reg, NewR);
3107       MRI->clearKillFlags(NewR);
3108       Changed = true;
3109     }
3110     break;
3111   }
3112 
3113   if (NewMI) {
3114     // clear all the kill flags of this new instruction.
3115     for (MachineOperand &MO : NewMI->operands())
3116       if (MO.isReg() && MO.isUse())
3117         MO.setIsKill(false);
3118   }
3119 
3120   LLVM_DEBUG({
3121     if (NewMI) {
3122       dbgs() << "Rewrite: for " << MI;
3123       if (NewMI != &MI)
3124         dbgs() << "  created " << *NewMI;
3125       else
3126         dbgs() << "  modified the instruction itself and created:" << *NewMI;
3127     }
3128   });
3129 
3130   return Changed;
3131 }
3132 
3133 void HexagonConstEvaluator::replaceAllRegUsesWith(unsigned FromReg,
3134       unsigned ToReg) {
3135   assert(Register::isVirtualRegister(FromReg));
3136   assert(Register::isVirtualRegister(ToReg));
3137   for (auto I = MRI->use_begin(FromReg), E = MRI->use_end(); I != E;) {
3138     MachineOperand &O = *I;
3139     ++I;
3140     O.setReg(ToReg);
3141   }
3142 }
3143 
3144 bool HexagonConstEvaluator::rewriteHexBranch(MachineInstr &BrI,
3145       const CellMap &Inputs) {
3146   MachineBasicBlock &B = *BrI.getParent();
3147   unsigned NumOp = BrI.getNumOperands();
3148   if (!NumOp)
3149     return false;
3150 
3151   bool FallsThru;
3152   SetVector<const MachineBasicBlock*> Targets;
3153   bool Eval = evaluate(BrI, Inputs, Targets, FallsThru);
3154   unsigned NumTargets = Targets.size();
3155   if (!Eval || NumTargets > 1 || (NumTargets == 1 && FallsThru))
3156     return false;
3157   if (BrI.getOpcode() == Hexagon::J2_jump)
3158     return false;
3159 
3160   LLVM_DEBUG(dbgs() << "Rewrite(" << printMBBReference(B) << "):" << BrI);
3161   bool Rewritten = false;
3162   if (NumTargets > 0) {
3163     assert(!FallsThru && "This should have been checked before");
3164     // MIB.addMBB needs non-const pointer.
3165     MachineBasicBlock *TargetB = const_cast<MachineBasicBlock*>(Targets[0]);
3166     bool Moot = B.isLayoutSuccessor(TargetB);
3167     if (!Moot) {
3168       // If we build a branch here, we must make sure that it won't be
3169       // erased as "non-executable". We can't mark any new instructions
3170       // as executable here, so we need to overwrite the BrI, which we
3171       // know is executable.
3172       const MCInstrDesc &JD = HII.get(Hexagon::J2_jump);
3173       auto NI = BuildMI(B, BrI.getIterator(), BrI.getDebugLoc(), JD)
3174                   .addMBB(TargetB);
3175       BrI.setDesc(JD);
3176       while (BrI.getNumOperands() > 0)
3177         BrI.RemoveOperand(0);
3178       // This ensures that all implicit operands (e.g. implicit-def %r31, etc)
3179       // are present in the rewritten branch.
3180       for (auto &Op : NI->operands())
3181         BrI.addOperand(Op);
3182       NI->eraseFromParent();
3183       Rewritten = true;
3184     }
3185   }
3186 
3187   // Do not erase instructions. A newly created instruction could get
3188   // the same address as an instruction marked as executable during the
3189   // propagation.
3190   if (!Rewritten)
3191     replaceWithNop(BrI);
3192   return true;
3193 }
3194 
3195 FunctionPass *llvm::createHexagonConstPropagationPass() {
3196   return new HexagonConstPropagation();
3197 }
3198